Sample records for laboratory msl curiosity

  1. Possible Impacts from MSL Hardware

    NASA Image and Video Library

    2013-10-16

    This cluster of small impact craters was spotted by the Context Camera on Mars Reconnaissance Orbiter in the region northwest of Gale Crater, the landing site of the Mars Science Laboratory MSL rover, Curiosity.

  2. MSL Animation EDL and Sky Crane

    NASA Image and Video Library

    2011-11-07

    Animation of Mars Science Laboratory (MSL), also known as the Curiosity rover, from cruise stage to EDL (entry, descent and landing), roving around the planet, zapping rocks with its laser and drilling into rocks.

  3. Updates from the MSL-RAD Experiment on the Mars Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Zeitlin, Cary

    2015-01-01

    The MSL-RAD instrument continues to operate flawlessly on Mars. As of this writing, some 1040 sols (Martian days) of data have been successfully acquired. Several improvements have been made to the instrument's configuration, particularly aimed at enabling the analysis of neutral-particle data. The dose rate since MSL's landing in August 2012 has remained remarkably stable, reflecting the unusual and very weak solar maximum of Cycle 24. Only a few small SEP events have been observed by RAD, which is shielded by the Martian atmosphere. Gale Crater, where Curiosity landed, is 4.4 km below the mean surface of Mars, and the column depth of atmosphere above is approximately 20 g/sq cm, which provides significant attenuation of GCR heavy ions and SEPs. Recent analysis results will be presented, including updated estimates of the neutron contributions to dose and dose equivalent in cruise and on the surface of Mars.

  4. Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI): Complete Flight Data Set

    NASA Technical Reports Server (NTRS)

    Cheatwood, F. McNeil; Bose, Deepak; Karlgaard, Christopher D.; Kuhl, Christopher A.; Santos, Jose A.; Wright, Michael J.

    2014-01-01

    The Mars Science Laboratory (MSL) entry vehicle (EV) successfully entered the Mars atmosphere and landed the Curiosity rover safely on the surface of the planet in Gale crater on August 6, 2012. MSL carried the MSL Entry, Descent, and Landing (EDL) Instrumentation (MEDLI). MEDLI delivered the first in-depth understanding of the Mars entry environments and the response of the entry vehicle to those environments. MEDLI was comprised of three major subsystems: the Mars Entry Atmospheric Data System (MEADS), the MEDLI Integrated Sensor Plugs (MISP), and the Sensor Support Electronics (SSE). Ultimately, the entire MEDLI sensor suite consisting of both MEADS and MISP provided measurements that were used for trajectory reconstruction and engineering validation of aerodynamic, atmospheric, and thermal protection system (TPS) models in addition to Earth-based systems testing procedures. This report contains in-depth hardware descriptions, performance evaluation, and data information of the three MEDLI subsystems.

  5. Wide Range Vacuum Pumps for the SAM Instrument on the MSL Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Sorensen, Paul; Kline-Schoder, Robert; Farley, Rodger

    2014-01-01

    Creare Incorporated and NASA Goddard Space Flight Center developed and space qualified two wide range pumps (WRPs) that were included in the Sample Analysis at Mars (SAM) instrument. This instrument was subsequently integrated into the Mars Science Laboratory (MSL) "Curiosity Rover," launched aboard an Atlas V rocket in 2011, and landed on August 6, 2012, in the Gale Crater on Mars. The pumps have now operated for more than 18 months in the Gale Crater and have been evacuating the key components of the SAM instrument: a quadrupole mass spectrometer, a tunable laser spectrometer, and six gas chromatograph columns. In this paper, we describe the main design challenges and the ways in which they were solved. This includes the custom design of a miniaturized, high-speed motor to drive the turbo drag pump rotor, analysis of rotor dynamics for super critical operation, and bearing/lubricant design/selection.

  6. Stealth life detection instruments aboard Curiosity

    NASA Astrophysics Data System (ADS)

    Levin, Gilbert V.

    2012-10-01

    NASA has often stated (e.g. MSL Science Corner1) that it's Mars Science Laboratory (MSL), "Curiosity," Mission to Mars carries no life detection experiments. This is in keeping with NASA's 36-year explicit ban on such, imposed immediately after the 1976 Viking Mission to Mars. The space agency attributes the ban to the "ambiguity" of that Mission's Labeled Release (LR) life detection experiment, fearing an adverse effect on the space program should a similar "inconclusive" result come from a new robotic quest. Yet, despite the NASA ban, this author, the Viking LR Experimenter, contends there are "stealth life detection instruments" aboard Curiosity. These are life detection instruments in the sense that they can free the Viking LR from the pall of ambiguity that has held it prisoner so long. Curiosity's stealth instruments are those seeking organic compounds, and the mission's high-resolution camera system. Results from any or all of these devices, coupled with the Viking LR data, can confirm the LR's life detection claim. In one possible scenario, Curiosity can, of itself, completely corroborate the finding of life on Mars. MSL has just successfully landed on Mars. Hopefully, its stealth confirmations of life will be reported shortly.

  7. Microgravity Science Laboratory (MSL-1)

    NASA Technical Reports Server (NTRS)

    Robinson, M. B. (Compiler)

    1998-01-01

    The MSL-1 payload first flew on the Space Shuttle Columbia (STS-83) April 4-8, 1997. Due to a fuel cell problem, the mission was cut short, and the payload flew again on Columbia (STS-94) July 1-17, 1997. The MSL-1 investigations were performed in a pressurized Spacelab module and the Shuttle middeck. Twenty-nine experiments were performed and represented disciplines such as fluid physics, combustion, materials science, biotechnology, and plant growth. Four accelerometers were used to record and characterize the microgravity environment. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity.

  8. Exploration of Mars with the ChemCam LIBS Instrument and the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Newsom, Horton E.

    2016-01-01

    The Mars Science Laboratory (MSL) Curiosity rover landed on Mars in August 2012, and has been exploring the planet ever since. Dr. Horton E. Newsom will discuss the MSL's design and main goal, which is to characterize past environments that may have been conducive to the evolution and sustainability of life. He will also discuss Curiosity's science payload, and remote sensing, analytical capabilities, and direct discoveries of the Chemistry & Camera (ChemCam) instrument, which is the first Laser Induced Breakdown Spectrometer (LIBS) to operate on another planetary surface and determine the chemistry of the rocks and soils.

  9. NASA Mars Science Laboratory Rover

    NASA Technical Reports Server (NTRS)

    Olson, Tim

    2017-01-01

    Since August 2012, the NASA Mars Science Laboratory (MSL) rover Curiosity has been operating on the Martian surface. The primary goal of the MSL mission is to assess whether Mars ever had an environment suitable for life. MSL Science Team member Dr. Tim Olson will provide an overview of the rover's capabilities and the major findings from the mission so far. He will also share some of his experiences of what it is like to operate Curiosity's science cameras and explore Mars as part of a large team of scientists and engineers.

  10. Ground Data System Analysis Tools to Track Flight System State Parameters for the Mars Science Laboratory (MSL) and Beyond

    NASA Technical Reports Server (NTRS)

    Allard, Dan; Deforrest, Lloyd

    2014-01-01

    Flight software parameters enable space mission operators fine-tuned control over flight system configurations, enabling rapid and dynamic changes to ongoing science activities in a much more flexible manner than can be accomplished with (otherwise broadly used) configuration file based approaches. The Mars Science Laboratory (MSL), Curiosity, makes extensive use of parameters to support complex, daily activities via commanded changes to said parameters in memory. However, as the loss of Mars Global Surveyor (MGS) in 2006 demonstrated, flight system management by parameters brings with it risks, including the possibility of losing track of the flight system configuration and the threat of invalid command executions. To mitigate this risk a growing number of missions have funded efforts to implement parameter tracking parameter state software tools and services including MSL and the Soil Moisture Active Passive (SMAP) mission. This paper will discuss the engineering challenges and resulting software architecture of MSL's onboard parameter state tracking software and discuss the road forward to make parameter management tools suitable for use on multiple missions.

  11. Mars science laboratory radiation assessment detector (MSL/RAD) modeling workshop proceedings

    NASA Astrophysics Data System (ADS)

    Hassler, Donald M.; Norbury, John W.; Reitz, Günther

    2017-08-01

    The Radiation Assessment Detector (RAD) (Hassler et al., 2012; Zeitlin et al., 2016) onboard the Mars Science Laboratory (MSL) Curiosity rover (Grotzinger et al., 2012) is a sophisticated charged and neutral particle radiation analyzer developed by an international team of scientists and engineers from Southwest Research Institute in Boulder, Colorado as the leading institution, the University of Kiel and the German Aerospace Center in Cologne, Germany. RAD is a compact, powerful instrument capable of distinguishing between ionizing particles and neutral particles and providing neutron, gamma, and charged particle spectra from protons to iron as well as absorbed dose measurements in tissue-equivalent material. During the 6 month cruise to Mars, inside the MSL spacecraft, RAD served as a proxy to validate models of the radiation levels expected inside a spacecraft that future astronauts might experience (Zeitlin et al., 2013). RAD was turned on one day after the landing on August 7, 2012, exactly 100 years to the day after the discovery of cosmic rays on Earth by Victor Hess. These measurements are the first of their kind on the surface of another planet (Hassler et al., 2014), and the radiation data collected by RAD on the surface of Mars will inform projections of crew health risks and the design of protective surface habitats and other countermeasures for future human missions in the coming decades.

  12. Initiating the 2002 Mars Science Laboratory (MSL) Technology Program

    NASA Technical Reports Server (NTRS)

    Caffrey, Robert T.; Udomkesmalee, Gabriel; Hayati, Samad A.; Henderson, Rebecca

    2004-01-01

    The Mars Science Laboratory (MSL) Project is an aggressive mission launching in 2009 to investigate the Martian environment and requires new capabilities that are currently are not available. The MSL Technology Program is developing a wide-range of technologies needed for this Mission and potentially other space missions. The MSL Technology Program reports to both the MSL Project and the Mars Technology Program (MTP). The dual reporting process creates a challenging management situation, but ensures the new technology meets both the specific MSL requirements and the broader Mars Program requirements. MTP is a NASA-wide technology development program managed by JPL and is divided into a Focused Program and a Base Program. The MSL Technology Program is under the focused program and is tightly coupled to MSL's mission milestones and deliverables. The technology budget is separate from the flight Project budget, but the technology's requirements and the development process are tightly coordinated with the Project. The MSL Technology Program combines the proven management techniques of flight projects with the commercial technology management strategies of industry and academia, to create a technology management program that meets the short-term requirements of MSL and the long-term requirements of MTP. This paper examines the initiation of 2002 MSL Technology program. Some of the areas discussed in this paper include technology definition, task selection, technology management, and technology assessment. This paper also provides an update of the 2003 MSL technology program and examines some of the drivers that changed the program from its initiation.

  13. Accuracy Analysis and Validation of the Mars Science Laboratory (MSL) Robotic Arm

    NASA Technical Reports Server (NTRS)

    Collins, Curtis L.; Robinson, Matthew L.

    2013-01-01

    The Mars Science Laboratory (MSL) Curiosity Rover is currently exploring the surface of Mars with a suite of tools and instruments mounted to the end of a five degree-of-freedom robotic arm. To verify and meet a set of end-to-end system level accuracy requirements, a detailed positioning uncertainty model of the arm was developed and exercised over the arm operational workspace. Error sources at each link in the arm kinematic chain were estimated and their effects propagated to the tool frames.A rigorous test and measurement program was developed and implemented to collect data to characterize and calibrate the kinematic and stiffness parameters of the arm. Numerous absolute and relative accuracy and repeatability requirements were validated with a combination of analysis and test data extrapolated to the Mars gravity and thermal environment. Initial results of arm accuracy and repeatability on Mars demonstrate the effectiveness of the modeling and test program as the rover continues to explore the foothills of Mount Sharp.

  14. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    Dawn Sumner, geologist, University of California, Davis speaks at a Mars Science Laboratory (MSL) press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The Mars Science Laboratory (MSL), or Curiosity, is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  15. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    John Grant, geologist, Smithsonian National Air and Space Museum in Washington, speaks at a Mars Science Laboratory (MSL) press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The Mars Science Laboratory (MSL), or Curiosity, is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  16. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    NASA chief scientist, Dr. Waleed Abdalati, speaks at a Mars Science Laboratory (MSL) press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The Mars Science Laboratory (MSL), or Curiosity, is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  17. Initiating the 2002 Mars Science Laboratory (MSL) Focused Technology Program

    NASA Technical Reports Server (NTRS)

    Caffrey, Robert T.; Udomkesmalee, Gabriel; Hayati, Samad A.

    2004-01-01

    The Mars Science Laboratory (MSL) Project is an aggressive mission launching in 2009 to deliver a new generation of rover safely to the surface of Mars and conduct comprehensive in situ investigations using a new generation of instruments. This system will be designed to land with precision and be capable of operating over a large percentage on the surface of Mars. It will have capabilities that will support NASA's scientific goals into the next decade of exphation. The MSL Technology program is developing a wide-range of technologies needed for this Mission and potentially other space missions. The MSL Technology Program reports to both the MSL Project and the Mars Technology Program (MTP). The dual reporting process creates a challenging management situation, but ensures the new technology meets both the specific MSL requirements and the broader Mars Program requirements. MTP is a NASA-wide technology development program managed by the Jet Propulsion Laboratory (JPL) and is divided into a Focused Program and a Base Program. The Focused Technology Program addresses technologies that are specific and critical to near-term missions, while the Base Technology Program addresses those technologies that are applicable to multiple missions and which can be characterized as longer term, higher risk, and high payoff technologies. The MSL Technology Program is under the Focused Program and is tightly coupled to MSL's mission milestones and deliverables. The technology budget is separate from the flight Project budget, but the technology s requirements and the development process are tightly coordinated with the Project. The Technology Program combines proven management techniques of flight projects with commercial and academic technology management strategies, to create a technology management program that meets the near-term requirements of MSL and the long-term requirements of MTP. This paper examines the initiation of 2002 MSL Technology program. Some of the areas

  18. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    John Grotzinger, Mars Science Laboratory (MSL) project scientist, Jet Propulsion Lab (JPL), Pasadena, Calif., holds up a model of the MSL, or Curiosity, at a press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The MSL is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  19. Preliminary Geological Map of the Peace Vallis Fan Integrated with In Situ Mosaics From the Curiosity Rover, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Sumner, D. Y.; Palucis, M.; Dietrich, B.; Calef, F.; Stack, K. M.; Ehlmann, B.; Bridges, J.; Dromart, J.; Eigenbrode, J.; Farmer, J.; hide

    2013-01-01

    A geomorphically defined alluvial fan extends from Peace Vallis on the NW wall of Gale Crater, Mars into the Mars Science Laboratory (MSL) Curiosity rover landing ellipse. Prior to landing, the MSL team mapped the ellipse and surrounding areas, including the Peace Vallis fan. Map relationships suggest that bedded rocks east of the landing site are likely associated with the fan, which led to the decision to send Curiosity east. Curiosity's mast camera (Mastcam) color images are being used to refine local map relationships. Results from regional mapping and the first 100 sols of the mission demonstrate that the area has a rich geological history. Understanding this history will be critical for assessing ancient habitability and potential organic matter preservation at Gale Crater.

  20. Calcium Sulfate Characterized by ChemCam/Curiosity at Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Nachon, M.; Clegg, S. N.; Mangold, N.; Schroeder, S.; Kah, L. C.; Dromart, G.; Ollila, A.; Johnson, J. R.; Oehler, D. Z.; Bridges, J. C.; hide

    2014-01-01

    Onboard the Mars Science Laboratory (MSL) Curiosity rover, the ChemCam instrument consists of :(1) a Laser-Induced Breakdown Spectrometer (LIBS) for elemental analysis of the targets [1;2] and (2) a Remote Micro Imager (RMI), for the imaging context of laser analysis [3]. Within the Gale crater, Curiosity traveled from Bradbury Landing through the Rocknest region and into Yellowknife Bay (YB). In the latter, abundant light-toned fracture-fill material were seen [4;5]. ChemCam analysis demonstrate that those fracture fills consist of calcium sulfates [6].

  1. Overview of Mars Science Laboratory (MSL) Environmental Program

    NASA Technical Reports Server (NTRS)

    Forgave, John C.; Man, Kin F.; Hoffman, Alan R.

    2006-01-01

    This viewgraph presentation is an overview of the Mars Science Laboratory (MSL) program. The engineering objectives of the program are to create a Mobile Science Laboratory capable of one Mars Year surface operational lifetime (670 Martian sols = 687 Earth days). It will be able to land and operation over wide range of latitudes, altitudes and seasons It must have controlled propulsive landing and demonstrate improved landing precision via guided entry The general science objectives are to perform science that will focus on Mars habitability, perform next generation analytical laboratory science investigations, perform remote sensing/contact investigations and carry a suite of environmental monitoring instruments. Specific scientific objectives of the MSL are: (1) Characterization of geological features, contributing to deciphering geological history and the processes that have modified rocks and regolith, including the role of water. (2) Determination of the mineralogy and chemical composition (including an inventory of elements such as C, H, N, O, P, S, etc. known to be building blocks for life) of surface and near-surface materials. (3) Determination of energy sources that could be used to sustain biological processes. (4) Characterization of organic compounds and potential biomarkers in representative regolith, rocks, and ices. (5) Determination the stable isotopic and noble gas composition of the present-day bulk atmosphere. (6) Identification potential bio-signatures (chemical, textural, isotopic) in rocks and regolith. (7) Characterization of the broad spectrum of surface radiation, including galactic cosmic radiation, solar proton events, and secondary neutrons. (8) Characterization of the local environment, including basic meteorology, the state and cycling of water and C02, and the near-surface distribution of hydrogen. Several views of the planned MSL and the rover are shown. The MSL environmental program is to: (1) Ensure the flight hardware design is

  2. Integrated Results from Analysis of the Rocknest Aeolian Deposit by the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Leshin, L. A.; Grotzinger, J. P.; Blake, D. F.; Edgett, K. S.; Gellert, R.; Mahaffy, P. R.; Malin, M. C.; Wiens, R. C.; Treiman, A. H.; Ming, D. W.; hide

    2013-01-01

    The Mars Science Laboratory Curiosity rover spent 45 sols (from sol 56-101) at an area called Rocknest (Fig. 1), characterizing local geology and ingesting its aeolian fines into the analytical instruments CheMin and SAM for mineralogical and chemical analysis. Many abstracts at this meeting present the contextual information and detailed data on these first solid samples analyzed in detail by Curiosity at Rocknest. Here, we present an integrated view of the results from Rocknest - the general agreement from discussions among the entire MSL Science Team.

  3. Detection of Reduced Nitrogen Compounds at Rocknest Using the Sample Analysis At Mars (SAM) Instrument on the Mars Science Laboratory (MSL)

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Steele, A.; Brunner, A.; Coll, P.; Eigenbrode, J.; Franz, H. B.; Freissinet, C.; Glavin, D.; Jones, J. H.; Navarro-Gonzalez, R.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected nitrogen-bearing compounds during the pyrolysis of Rocknest material at Gale Crater. Hydrogen cyanide and acetonitrile were identified by the quadrupole mass spectrometer (QMS) both in direct evolved gas analysis (EGA). SAM carried out four separate analyses from Rocknest Scoop 5. A significant low temperature release was present in Rocknest runs 1-4, while a smaller high temperature release was also seen in Rocknest runs 1-3. Here we evaluate whether these compounds are indigenous to Mars or a pyrolysis product resulting from known terrestrial materials that are part of the SAM derivatization.

  4. NASA Ames Celebrates Curiosity Rover's Landing on Mars (Reporter Package)

    NASA Image and Video Library

    2012-08-08

    Nearly 7,000 people came to NASA Ames Research Center, Moffett Field, Calif., to watch the Mars Science Laboratory rover Curiosity land on Mars. A full day's worth of activities and discussions with local Mars experts informed attendees about the contributions NASA Ames made to the mission. The highlight of the event was the live NASA TV broadcast of MSL's entry, descent and landing on the Martian surface.

  5. Mars Science Laboratory (MSL) : the US 2009 Mars rover mission

    NASA Technical Reports Server (NTRS)

    Palluconi, Frank; Tampari, Leslie; Steltzner, Adam; Umland, Jeff

    2003-01-01

    The Mars Science Laboratory mission is the 2009 United States Mars Exploration Program rover mission. The MSL Project expects to complete its pre-Phase A definition activity this fiscal year (FY2003), investigations in mid-March 2004, launch in 2009, arrive at Mars in 2010 during Northern hemisphere summer and then complete a full 687 day Mars year of surface exploration. MSL will assess the potential for habitability (past and present) of a carefully selected landing region on Mars by exploring for the chemical building blocks of life, and seeking to understand quantitatively the chemical and physical environment with which these components have interacted over the geologic history of the planet. Thus, MSL will advance substantially our understanding of the history of Mars and potentially, its capacity to sustain life.

  6. MSL Chemistry and Mineralogy X-Ray Diffraction X-Ray Fluorescence (CheMin) Instrument

    NASA Technical Reports Server (NTRS)

    Zimmerman, Wayne; Blake, Dave; Harris, William; Morookian, John Michael; Randall, Dave; Reder, Leonard J.; Sarrazin, Phillipe

    2013-01-01

    This paper provides an overview of the Mars Science Laboratory (MSL) Chemistry and Mineralogy Xray Diffraction (XRD), X-ray Fluorescence (XRF) (CheMin) Instrument, an element of the landed Curiosity rover payload, which landed on Mars in August of 2012. The scientific goal of the MSL mission is to explore and quantitatively assess regions in Gale Crater as a potential habitat for life - past or present. The CheMin instrument will receive Martian rock and soil samples from the MSL Sample Acquisition/Sample Processing and Handling (SA/SPaH) system, and process it utilizing X-Ray spectroscopy methods to determine mineral composition. The Chemin instrument will analyze Martian soil and rocks to enable scientists to investigate geophysical processes occurring on Mars. The CheMin science objectives and proposed surface operations are described along with the CheMin hardware with an emphasis on the system engineering challenges associated with developing such a complex instrument.

  7. Mars Science Laboratory Mission Curiosity Rover Stereo

    NASA Image and Video Library

    2011-07-22

    This stereo image of NASA Mars Science Laboratory Curiosity Rovert was taken May 26, 2011, in Spacecraft Assembly Facility at NASA Jet Propulsion Laboratory in Pasadena, Calif. 3D glasses are necessary to view this image.

  8. Comparison of Martian Surface Radiation Predictions to the Measurements of Mars Science Laboratory Radiation Assessment Detector (MSL/RAD)

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.; Zeitlin, Cary; Hassler, Donald M.; Ehresmann, Bent; Rafkin, Scot C. R.; Wimmer-Schweingruber, Robert F; Boettcher, Stephan; Boehm, Eckart; Guo, Jingnan; hide

    2014-01-01

    For the analysis of radiation risks to astronauts and planning exploratory space missions, detailed knowledge of particle spectra is an important factor. Detailed measurements of the energetic particle radiation environment on the surface of Mars have been made by the Mars Science Laboratory Radiation Assessment Detector (MSL-RAD) on the Curiosity rover since August 2012, and particle fluxes for a wide range of ion species (up to several hundred MeV/u) and high energy neutrons (8 - 1000 MeV) have been available for the first 200 sols. Although the data obtained on the surface of Mars for 200 sols are limited in the narrow energy spectra, the simulation results using the Badhwar-O'Neill galactic cosmic ray (GCR) environment model and the high-charge and energy transport (HZETRN) code are compared to the data. For the nuclear interactions of primary GCR through Mars atmosphere and Curiosity rover, the quantum multiple scattering theory of nuclear fragmentation (QMSFRG) is used, which includes direct knockout, evaporation and nuclear coalescence. Daily atmospheric pressure measurements at Gale Crater by the MSL Rover Environmental Monitoring Station are implemented into transport calculations for describing the daily column depth of atmosphere. Particles impinging on top of the Martian atmosphere reach the RAD after traversing varying depths of atmosphere that depend on the slant angles, and the model accounts for shielding of the RAD by the rest of the instrument. Calculations of stopping particle spectra are in good agreement with the RAD measurements for the first 200 sols by accounting changing heliospheric conditions and atmospheric pressure. Detailed comparisons between model predictions and spectral data of various particle types provide the validation of radiation transport models, and thus increase the accuracy of the predictions of future radiation environments on Mars. These contributions lend support to the understanding of radiation health risks to

  9. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    Michael Watkins (right), mission manager and Mars Science Laboratory (MSL) engineer, Jet Propulsion Lab, Pasadena, Calif., speaks at a press conference, as Michael Meyer, Mars Exploration Program lead scientist looks on, at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The MSL, or Curiosity, is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  10. Phyllosilicate analysis capabilities of the CheMin mineralogical instrument on the Mars Science Laboratory (MSL '11) Curiosity Rover

    NASA Astrophysics Data System (ADS)

    Blake, D. F.; Bish, D. L.; Vaniman, D. T.; Chipera, S.; Bristow, T. F.; Sarrazin, P.

    2011-12-01

    The CheMin mineralogical instrument on the MSL '11 Curiosity rover will return quantitative X-ray diffraction data (XRD) from scooped soil samples and drilled rock powders collected from the Mars surface. Samples of 45-65 mm3 from material sieved to <150 μm will be delivered through a funnel to one of 27 reuseable sample cells (five additional cells on the sample wheel contain diffraction or fluorescence standards). Sample cells are 8-mm diameter discs with 7-μm thick Mylar or Kapton windows spaced 170 μm apart. Within this volume, the sample is shaken by piezoelectric vibration at sonic frequencies, causing the powder to flow past a narrow, collimated X-ray beam in random orientations over the course of an analysis. In this way, diffraction patterns exhibiting little to no preferred orientation can be obtained even from minerals normally exhibiting strong preferred orientation such as phyllosilicates. Individual analyses will require several hours over one or more Mars sols. For typical well-ordered minerals, CheMin has a Minimum Detection Limit (MDL) of <3% by mass, an accuracy of better than 15% and a precision of better than 10% for phases present in concentrations >4X MDL (12%). The resolution of the diffraction patterns is 0.30 degrees 2θ, and the angular measurement range is 4-55 degrees 2θ. With this performance, CheMin can identify and distinguish a number of clay minerals. For example, discrimination between 1:1 phyllosilicates (such as the kaolin minerals), with repeat distances of ~7Å, and smectites (e.g., montmorillonite, nontronite, saponite), with repeat distances from 10-15Å, is straightforward. However, it is important to note that the variety of treatments used in terrestrial laboratories to aid in discrimination of clay minerals will not be accessible on Mars (e.g., saturation with ethylene glycol vapor, heat treatments). Although these treatments will not be available on Mars, dehydration within the CheMin instrument could be used to

  11. Mars Science Laboratory Parachute, Artist Concept

    NASA Image and Video Library

    2011-10-03

    This artist concept is of NASA Mars Science Laboratory MSL Curiosity rover parachute system; the largest parachute ever built to fly on a planetary mission. The parachute is attached to the top of the backshell portion of the spacecraft aeroshell.

  12. Rock Abrasion as Seen by the MSL Curiosity Rover: Insights on Physical Weathering on Mars

    NASA Astrophysics Data System (ADS)

    Bridges, N.; Day, M. D.; Le Mouelic, S.; Martin-Torres, F. J.; Newsom, H. E.; Sullivan, R. J., Jr.; Ullan, A.; Wiens, R. C.; Zorzano, M. P.

    2014-12-01

    Mars is a dry planet, with actively blowing sand in many regions. In the absence of stable liquid water and an active hydrosphere, rates of chemical weathering are slow, such that aeolian abrasion is a dominant agent of landscape modification where sand is present and winds above threshold occur at sufficient frequency. Reflecting this activity, ventifacts, rocks that have been abraded by windborne particles, and wind-eroded outcrops, are common. They provide invaluable markers of the Martian wind record and insight into climate and landscape modification. Ventifacts are distributed along the traverse of the Mars Science Laboratory Curiosity rover. They contain one or more diagnostic features and textures: Facets, keels, basal sills, elongated pits, scallops/flutes, grooves, rock tails, and lineations. Keels at the junction of facets are sharp enough to pose a hazard MSL's wheels in some areas. Geomorphic and textural patterns on outcrops indicate retreat of windward faces. Moonlight Valley and other depressions are demarcated by undercut walls and scree boulders, with the valley interiors containing fewer rocks, most of which show evidence for significant abrasion. Together, this suggests widening and undercutting of the valley walls, and erosion of interior rocks, by windblown sand. HiRISE images do not show any dark sand dunes in the traverse so far, in contrast to the large dune field to the south that is migrating up to 2 m per year. In addition, ChemCam shows that the rock Bathurst has a rind rich in mobile elements that would be removed in an abrading environment. This indicates that rock abrasion was likely more dominant in the past, a hypothesis consistent with rapid scarp retreat as suggested by the cosmogenic noble gases in Yellowknife Bay. Ventifacts and evidence for bedrock abrasion have also been found at the Pathfinder, Spirit, and Opportunity sites, areas, like the Curiosity traverse so far, that lack evidence for current high sand fluxes. Yardangs

  13. Managing Complexity in the MSL/Curiosity Entry, Descent, and Landing Flight Software and Avionics Verification and Validation Campaign

    NASA Technical Reports Server (NTRS)

    Stehura, Aaron; Rozek, Matthew

    2013-01-01

    The complexity of the Mars Science Laboratory (MSL) mission presented the Entry, Descent, and Landing systems engineering team with many challenges in its Verification and Validation (V&V) campaign. This paper describes some of the logistical hurdles related to managing a complex set of requirements, test venues, test objectives, and analysis products in the implementation of a specific portion of the overall V&V program to test the interaction of flight software with the MSL avionics suite. Application-specific solutions to these problems are presented herein, which can be generalized to other space missions and to similar formidable systems engineering problems.

  14. Mars Science Laboratory Aeroshell with Curiosity Inside

    NASA Image and Video Library

    2011-10-05

    At the Payload Hazardous Servicing Facility at NASA Kennedy Space Center in Florida, the Mars Science Laboratory rover, Curiosity, and the spacecraft descent stage have been enclosed inside the spacecraft aeroshell.

  15. The Unparalleled Systems Engineering of MSL's Backup Entry, Descent, and Landing System: Second Chance

    NASA Technical Reports Server (NTRS)

    Roumeliotis, Chris; Grinblat, Jonathan; Reeves, Glenn

    2013-01-01

    Second Chance (SECC) was a bare bones version of Mars Science Laboratory's (MSL) Entry Descent & Landing (EDL) flight software that ran on Curiosity's backup computer, which could have taken over swiftly in the event of a reset of Curiosity's prime computer, in order to land her safely on Mars. Without SECC, a reset of Curiosity's prime computer would have lead to catastrophic mission failure. Even though a reset of the prime computer never occurred, SECC had the important responsibility as EDL's guardian angel, and this responsibility would not have seen such success without unparalleled systems engineering. This paper will focus on the systems engineering behind SECC: Covering a brief overview of SECC's design, the intense schedule to use SECC as a backup system, the verification and validation of the system's "Do No Harm" mandate, the system's overall functional performance, and finally, its use on the fateful day of August 5th, 2012.

  16. Diagenetic Features Analyzed by ChemCam/Curiosity at Pahrump Hills, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Nachon, M.; Mangold, N.; Cousin, A.; Forni, O.; Anderson, R. B.; Blank, J. G.; Calef, F.; Clegg, S.; Fabre, C.; Fisk, M.; hide

    2015-01-01

    Onboard the Mars Science Laboratory (MSL) Curiosity rover, the ChemCam instrument consists of : (1) a Laser-Induced Breakdown Spectrometer (LIBS) for elemental analysis of targets and (2) a Remote Micro Imager (RMI), which provides imaging context for the LIBS. The LIBS/ChemCam performs analysis typically of spot sizes 350-550 micrometers in diameter, up to 7 meters from the rover. Within Gale crater, Curiosity traveled from Bradbury Landing toward the base of Mount Sharp, reaching Pahrump Hills outcrop circa sol 750. This region, as seen from orbit, represents the first exposures of lower Mount Sharp. In this abstract we focus on two types of features present within the Pahrump Hills outcrop: concretion features and light-toned veins.

  17. Detection and Quantification of Nitrogen Compounds in the First Drilled Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite on the Mars Science Laboratory (MSL)

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Navarro-Gonzalez, Rafael; Freissinet, Caroline; McKay, Christopher P.; Archer, P. Douglas, Jr.; Buch, Arnaud; Coll, Patrice; Eigenbrode, Jennifer L.; Franz, Heather B.; Glavin, Daniel P.; hide

    2014-01-01

    The Sampl;e Analysis at Mars (sam) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen bearing compounds during the pyrolysis of surface materials from the three sites at Gale Crater. Preliminary detections of nitrogen species include No, HCN, ClCN, and TFMA ((trifluoro-N-methyl-acetamide), Confirmation of indigenous Martian nitrogen-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate a compound that has also been identified by SAM in Mars solid samples.

  18. The Radiation Environment on the Surface of Mars and its Implications for Human Exploration: Five Years of Measurements with the MSL/RAD instrument

    NASA Astrophysics Data System (ADS)

    Ehresmann, B.; Zeitlin, C. J.; Hassler, D.; Wimmer-Schweingruber, R. F.; Guo, J.; Appel, J. K.; Boehm, E.; Boettcher, S. I.; Burmeister, S.; Lohf, H.; Martin-Garcia, C.; Matthiae, D.; Rafkin, S. C.; Reitz, G.

    2017-12-01

    NASA's Mars Science Laboratory (MSL) mission has now been operating in Gale Crater on the surface of Mars for five years. Onboard Curiosity, the Radiation Assessment Detector (MSL/RAD) is measuring the Martian surface radiation environment, providing insights into its intensity and composition. This radiation field is mainly composed of primary Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. On short time scales, the radiation environment can be dominated by contributions from Solar Energetic Particle (SEP) events. Due to the shielding effect of the Martian atmosphere, shapes and intensities of SEP spectra differ significantly between interplanetary space and the Martian surface. Understanding how SEP events influence the surface radiation field is crucial to assess associated health risks for potential human missions to Mars. Even in the absence of SEP events, the surface environment is influenced by solar activity, which determines the strength of the interplanetary magnetic field and modulates GCR intensities. The GCR flux has risen considerably since Curiosity's landing as the solar cycle heads towards minimum. Here, we present updated MSL/RAD results for charged particle fluxes measured on the surface from GCRs and SEP events from the five years of MSL operations on Mars. We will present results that incorporate updated analysis techniques for the MSL/RAD data and yield the most robust particle spectra to date. The GCR results will be compared to simulation results. The SEP-induced fluxes on the surface will be compared to measurements from other spacecraft in the inner heliosphere and, in particular, in Martian orbit.

  19. Detection and Quantification of Nitrogen Compounds in the First Drilled Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite on the Mars Science Laboratory (MSL)

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Navarro-Gonzales, R.; Freissinet, C.; McKay, C. P.; Archer, P. D., Jr.; Buch, A.; Brunner, A. E.; Coll, P.; Eigenbrode, J. L.; Franz, H. B.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen-bearing compounds during the pyrolysis of surface materials at Yellowknife Bay in Gale Crater. Preliminary detections of nitrogen species include NO, HCN, ClCN, CH3CN, and TFMA (trifluoro-N-methyl-acetamide). Confirmation of indigenous Martian N-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents (e.g. N-methyl-N-tertbutyldimethylsilyltrifluoroacetamide, MTBSTFA and dimethylformamide, DMF) carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate, a compound that has also been identified by SAM in Mars solid samples.

  20. Overview of DAN/MSL water and chlorine measurements acquired in Gale area for four years of surface observations

    NASA Astrophysics Data System (ADS)

    Litvak, Maxim

    2017-04-01

    During more than 4 years MSL Curiosity rover (landed in Gale crater in August 2012) is traveling toward sedimentary layered mound deposited with phyllosilicates and hematite hydrated minerals. Curiosity already traversed more than 14 km and identified lacustrine deposits left from ancient lakes filled Gale area in early history of Mars. Along the traverse the Curiosity rover discovered unique signatures regarding how the Mars environment changed from ancient warm and wet conditions and probably habitable environment to the modern cold and dry climate. We have summarized numerous measurements from the Dynamic Albedo of Neutron (DAN) instrument on Curiosity rover to overview variations of subsurface bound water distribution from the wet to the dry locations, compared it with other MSL measurements and with possible distribution of hydrated minerals and sequence of geological units travelled by Curiosity. We have also performed joint analysis of water and chlorine distributions and compared bulk (down to 0.5 m depth) equivalent chlorine concentrations measured by DAN throughout the Gale area and APXS observations of corresponding local surface targets and drill fines.

  1. Curiosity on the Naukluft Plateau

    NASA Image and Video Library

    2016-06-22

    This image from NASA Mars Reconnaissance Orbiter spacecraft shows the Curiosity rover currently located on the Naukluft Plateau just north of the Bagnold Dune field. Its position was captured by HiRISE on 25 March 2016 (MSL Sol 1291. Views from the surface at this location are available here and here.) The rover is within sandstone outcrops informally named the "Stimson Formation." There are no obvious rover tracks in the HiRISE views indicating that this bedrock contains little dust that otherwise could be disturbed by the rover wheels as has been seen earlier in Curiosity's traverse. http://photojournal.jpl.nasa.gov/catalog/PIA20738

  2. 76 FR 4133 - National Environmental Policy Act; Mars Science Laboratory (MSL) Mission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-008)] National Environmental Policy Act; Mars Science Laboratory (MSL) Mission AGENCY: National Aeronautics and Space Administration (NASA...). SUMMARY: Pursuant to the National Environmental Policy Act, as amended, (NEPA) (42 U.S.C. 4321 et seq...

  3. Curiosity First 16 Rock or Soil Sampling Sites on Mars

    NASA Image and Video Library

    2016-10-03

    This graphic maps locations of the sites where NASA's Curiosity Mars rover collected its first 18 rock or soil samples for analysis by laboratory instruments inside the vehicle. It also presents images of the drilled holes where 14 rock-powder samples were acquired. Curiosity scooped two soil samples at each of the other two sites: Rocknest and Gobabeb. The diameter of each drill hole is about 0.6 inch (1.6 centimeters), slightly smaller than a U.S. dime. The images used here are raw color, as recorded by the rover's Mars Hand Lens Imager (MAHLI) camera. Notice the differences in color of the material at different drilling sites. For the map, north is toward upper left corner. The scale bar represents 2 kilometers (1.2 miles). The base map is from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. The latest sample site included is "Quela,"where Curiosity drilled into bedrock of the Murray formation on Sept. 18, 2016, during the 1,464th Martian day, or sol, of the mission. Curiosity landed in August 2012 on the plain (named Aeolis Palus) near Mount Sharp (or Aeolis Mons). More drilling samples collected by MSL are available at http://photojournal.jpl.nasa.gov/catalog/PIA20845

  4. Curiosity Self-Portrait at Martian Sand Dune

    NASA Image and Video Library

    2016-01-29

    This self-portrait of NASA's Curiosity Mars rover shows the vehicle at "Namib Dune," where the rover's activities included scuffing into the dune with a wheel and scooping samples of sand for laboratory analysis. The scene combines 57 images taken on Jan. 19, 2016, during the 1,228th Martian day, or sol, of Curiosity's work on Mars. The camera used for this is the Mars Hand Lens Imager (MAHLI) at the end of the rover's robotic arm. Namib Dune is part of the dark-sand "Bagnold Dune Field" along the northwestern flank of Mount Sharp. Images taken from orbit have shown that dunes in the Bagnold field move as much as about 3 feet (1 meter) per Earth year. The location of Namib Dune is show on a map of Curiosity's route at http://mars.nasa.gov/msl/multimedia/images/?ImageID=7640. The relationship of Bagnold Dune Field to the lower portion of Mount Sharp is shown in a map at PIA16064. The view does not include the rover's arm. Wrist motions and turret rotations on the arm allowed MAHLI to acquire the mosaic's component images. The arm was positioned out of the shot in the images, or portions of images, that were used in this mosaic. This process was used previously in acquiring and assembling Curiosity self-portraits taken at sample-collection sites, including "Rocknest" (PIA16468), "Windjana" (PIA18390) and "Buckskin" (PIA19807). For scale, the rover's wheels are 20 inches (50 centimeters) in diameter and about 16 inches (40 centimeters) wide. Other Curiosity self-portraits are available at http://photojournal.jpl.nasa.gov/catalog/PIA20316

  5. Looking Up at Mars Rover Curiosity in Buckskin Selfie

    NASA Image and Video Library

    2015-08-19

    This low-angle self-portrait of NASA's Curiosity Mars rover shows the vehicle at the site from which it reached down to drill into a rock target called "Buckskin" on lower Mount Sharp. The selfie combines several component images taken by Curiosity's Mars Hand Lens Imager (MAHLI) on Aug. 5, 2015, during the 1,065th Martian day, or sol, of the rover's work on Mars. For scale, the rover's wheels are 20 inches (50 centimeters) in diameter and about 16 inches (40 centimeters) wide. This view is a portion of a larger panorama available at PIA19807. A close look reveals a small rock stuck onto Curiosity's left middle wheel (on the right in this head-on view). The rock had been seen previously during periodic monitoring of wheel condition about three weeks earlier, in the MAHLI raw image at http://mars.nasa.gov/msl/multimedia/raw/?rawid=1046MH0002640000400290E01_DXXX&s=1046. MAHLI is mounted at the end of the rover's robotic arm. For this self-portrait, the rover team positioned the camera lower in relation to the rover body than for any previous full self-portrait of Curiosity. This yielded a view that includes the rover's "belly," as in a partial self-portrait (/catalog/PIA16137) taken about five weeks after Curiosity's August 2012 landing inside Mars' Gale Crater. The selfie at Buckskin does not include the rover's robotic arm beyond a portion of the upper arm held nearly vertical from the shoulder joint. With the wrist motions and turret rotations used in pointing the camera for the component images, the arm was positioned out of the shot in the frames or portions of frames used in this mosaic. This process was used previously in acquiring and assembling Curiosity self-portraits taken at sample-collection sites "Rocknest" (PIA16468), "John Klein" (PIA16937), "Windjana" (PIA18390) and "Mojave" (PIA19142). MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages

  6. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    John Grotzinger, Mars Science Laboratory (MSL) project scientist, Jet Propulsion Lab (JPL), Pasadena, Calif., answers a reporter's question at a press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The MSL is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  7. Bringing a Chemical Laboratory Named Sam to Mars on the 2011 Curiosity Rover

    NASA Astrophysics Data System (ADS)

    Mahaffy, P. R.; Bleacher, L.; Jones, A.; Atreya, S. K.; Manning, H. L.; Cabane, M.; Webster, C. R.; Sam Team

    2010-12-01

    Introduction: An important goal of upcoming missions to Mars is to understand if life could have developed there. The task of the Sample Analysis at Mars (SAM) suite of instruments [1] and the other Curiosity investigations [2] is to move us steadily toward that goal with an assessment of the habitability of our neighboring planet through a series of chemical and geological measurements. SAM is designed to search for organic compounds and inorganic volatiles and measure isotope ratios. Other instruments on Curiosity will provide elemental analysis and identify minerals. SAM will analyze both atmospheric samples and gases evolved from powdered rocks that may have formed billions of years ago with Curiosity providing access to interesting sites scouted by orbiting cameras and spectrometers. SAM Instrument Suite: SAM’s instruments are a Quadrupole Mass Spectrometer (QMS), a 6-column Gas Chromatograph (GC), and a 2-channel Tunable Laser Spectrometer (TLS). SAM can identify organic compounds in Mars rocks to sub-ppb sensitivity and secure precise isotope ratios for C, H, and O in carbon dioxide and water and measure trace levels of methane and its carbon 13 isotope. The SAM gas processing system consists of valves, heaters, pressure sensors, gas scrubbers and getters, traps, and gas tanks used for calibration or combustion experiments [2]. A variety of calibrant compounds interior and exterior to SAM will allow the science and engineering teams to assess SAM’s performance. SAM has been calibrated and tested in a Mars-like environment. Keeping Educators and the Public Informed: The Education and Public Outreach (EPO) goals of the SAM team are to make this complex chemical laboratory and its data widely available to educators, students, and the public. Formal education activities include developing templates for professional development workshops for educators to teach them about SAM and Curiosity, incorporating data into Mars Student Data Teams, and writing articles

  8. MSL-2 accelerometer data results

    NASA Technical Reports Server (NTRS)

    Henderson, Fred

    1990-01-01

    The Materials Science Laboratory-2 (MSL-2) mission flew the Marshall Space Flight Center-developed Linear Triaxial Accelerometer (LTA) on the Space Transportation System (STS) 61-C Shuttle mission launched January 21, 1986. Flight data were analyzed to verify the quietness of the MSL carrier and to characterize the acceleration environment for future MSL users. The MSL was found to introduce no significant experiment acceleration; and the effects of crew treadmill exercise, Orbiter vernier engine firings, and other routine flight occurrences were established. The LTA was found to be well suited for measuring nominal to very quiet STS acceleration levels at frequencies below 50 Hz. Special processing was used to examine the low-frequency spectrum and to establish the effective rms amplitude associated with dominant frequencies.

  9. The Amorphous Component in Martian Basaltic Soil in Global Perspective from MSL and MER Missions

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Ming, D. W.; Blake, D. F.; Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Downs, R. T.; Gellert, R.; Treiman, A. H.; Yen, A. S.; hide

    2013-01-01

    The mineralogy instrument CheMin onboard the MSL rover Curiosity analyzed by transmission XRD [1] the <150 microns size fraction of putative global basaltic martian soil from scoops 4 and 5 of the Rocknest aeolian bedform (sol 81-120). Here, we combine chemical (APXS) and mineralogical (Mossbauer; MB) results from the MER rovers with chemical (APXS) and mineralogical (CheMin) results from Curiosity to constrain the relative proportions of amorphous and crystalline components, the bulk chemical composition of those components, and the

  10. Characterizing the Phyllosilicates and Amorphous Phases Found by MSL Using Laboratory XRD and EGA Measurements of Natural and Synthetic Materials

    NASA Technical Reports Server (NTRS)

    Rampe, Elizabeth B.; Morris, Richard V.; Chipera, Steve; Bish, David L.; Bristow, Thomas; Archer, Paul Douglas; Blake, David; Achilles, Cherie; Ming, Douglas W.; Vaniman, David; hide

    2013-01-01

    The Curiosity Rover landed on the Peace Vallis alluvial fan in Gale crater on August 5, 2012. A primary mission science objective is to search for past habitable environments, and, in particular, to assess the role of past water. Identifying the minerals and mineraloids that result from aqueous alteration at Gale crater is essential for understanding past aqueous processes at the MSL landing site and hence for interpreting the site's potential habitability. X-ray diffraction (XRD) data from the CheMin instrument and evolved gas analyses (EGA) from the SAM instrument have helped the MSL science team identify phases that resulted from aqueous processes: phyllosilicates and amorphous phases were measure in two drill samples (John Klein and Cumberland) obtained from the Sheepbed Member, Yellowknife Bay Fm., which is believed to represent a fluvial-lacustrine environment. A third set of analyses was obtained from scoop samples from the Rocknest sand shadow. Chemical data from the APXS instrument have helped constrain the chemical compositions of these secondary phases and suggest that the phyllosilicate component is Mg-enriched and the amorphous component is Fe-enriched, relatively Si-poor, and S- and H-bearing. To refine the phyllosilicate and amorphous components in the samples measured by MSL, we measured XRD and EGA data for a variety of relevant natural terrestrial phyllosilicates and synthetic mineraloids in laboratory testbeds of the CheMin and SAM instruments. Specifically, Mg-saturated smectites and vermiculites were measured with XRD at low relative humidity to understand the behavior of the 001 reflections under Mars-like conditions. Our laboratory XRD measurements suggest that interlayer cation composition affects the hydration state of swelling clays at low RH and, thus, the 001 peak positions. XRD patterns of synthetic amorphous materials, including allophane, ferrihydrite, and hisingerite were used in full-pattern fitting (FULLPAT) models to help

  11. Preparations for ExoMars: Learning Lessons from Curiosity

    NASA Astrophysics Data System (ADS)

    Edwards, Peter Henry; Hutchinson, Ian; Morgan, Sally; McHugh, Melissa; Malherbe, Cedric; Lerman, Hannah; INGLEY, Richard

    2016-10-01

    In 2020, the European Space Agency will launch its first Mars rover mission, ExoMars. The rover will use a drill to obtain samples from up to 2m below the Martian surface that will then be analysed using a variety of analytical instruments, including the Raman Laser Spectrometer (RLS), which will be the first Raman spectrometer to be used on a planetary mission.To prepare for ExoMars RLS operations, we report on a series of experiments that have been performed in order to investigate the response of a representative Raman instrument to a number of analogue samples (selected based on the types of material known to be important, following investigations performed by NASA's Mars Science Laboratory, MSL, on the Curiosity rover). Raman spectroscopy will provide molecular and mineralogical information about the samples obtained from the drill cores on ExoMars. MSL acquires similar information using the CheMin XRD instrument which analyses samples acquired from drill holes several centimetres deep. Like Raman spectroscopy, XRD also provides information on the mineralogical makeup of the analysed samples.The samples in our study were selected based on CheMin data obtained from drill sites at Yellowknife Bay, one of the first locations visited by Curiosity (supplemented with additional fine scale elemental information obtained with the ChemCam LIBS laser instrument). Once selected (or produced), the samples were characterised using standard laboratory XRD and XRF instruments (in order to compare with the data obtained by CheMin) and a standard, laboratory based LIBS system (in order to compare with the ChemCam data). This characterisation provides confirmation that the analogue samples are representative of the materials likely to be encountered on Mars by the ExoMars rover.A representative, miniaturised Raman spectrometer was used to analyse the samples, using acquisition strategies and operating modes similar to those expected for the ExoMars instrument. The type of

  12. Preliminary Interpretation of the MSL REMS Pressure Data

    NASA Astrophysics Data System (ADS)

    Haberle, Robert; Gómez-Elvira, Javier; de la Torre Juárez, Manuel; Harri, Ari-Matti; Hollingsworth, Jeffery; Kahanpää, Henrik; Kahre, Melinda; Martin-Torres, Javier; Mischna, Michael; Newman, Claire; Rafkin, Scot; Rennó, Nilton; Richardson, Mark; Rodríguez-Manfredi, Jose; Vasavada, Ashwin; Zorzano, Maria-Paz; REMS/MSL Science Teams

    2013-04-01

    The Rover Environmental Monitoring Station (REMS) on the Mars Science Laboratory (MSL) Curiosity rover consists of a suite of meteorological instruments that measure pressure, temperature (air and ground), wind (speed and direction), relative humidity, and the UV flux. A detailed description of the REMS sensors and their performance can be found in Gómez-Elvira et al. [2012, Space Science Reviews, 170(1-4), 583-640]. Here we focus on interpreting the first 100 sols of REMS operations with a particular emphasis on the pressure data. A unique feature of pressure data is that they reveal information on meteorological phenomena with time scales from seconds to years and spatial scales from local to global. From a single station we can learn about dust devils, regional circulations, thermal tides, synoptic weather systems, the CO2 cycle, dust storms, and interannual variability. Thus far MSL's REMS pressure sensor, provided by the Finnish Meteorological Institute and integrated into the REMS payload by Centro de Astrobiología, is performing flawlessly and our preliminary interpretation of its data includes the discovery of relatively dust-free convective vortices; a regional circulation system significantly modified by Gale crater and its central mound; the strongest thermal tides yet measured from the surface of Mars whose amplitudes and phases are very sensitive to fluctuations in global dust loading; and the classical signature of the seasonal cycling of carbon dioxide into and out of the polar caps.

  13. Relay Support for the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D. Jr,; Bell, David J.; Gladden, Roy E.; Ilott, Peter A.; Jedrey, Thomas C.; Johnston, M. Daniel; Maxwell, Jennifer L.; Mendoza, Ricardo; McSmith, Gaylon W.; Potts, Christopher L.; hide

    2013-01-01

    The Mars Science Laboratory (MSL) mission landed the Curiosity Rover on the surface of Mars on August 6, 2012, beginning a one-Martian-year primary science mission. An international network of Mars relay orbiters, including NASA's 2001 Mars Odyssey Orbiter (ODY) and Mars Reconnaissance Orbiter (MRO), and ESA's Mars Express Orbiter (MEX), were positioned to provide critical event coverage of MSL's Entry, Descent, and Landing (EDL). The EDL communication plan took advantage of unique and complementary capabilities of each orbiter to provide robust information capture during this critical event while also providing low-latency information during the landing. Once on the surface, ODY and MRO have provided effectively all of Curiosity's data return from the Martian surface. The link from Curiosity to MRO incorporates a number of new features enabled by the Electra and Electra-Lite software-defined radios on MRO and Curiosity, respectively. Specifically, the Curiosity-MRO link has for the first time on Mars relay links utilized frequency-agile operations, data rates up to 2.048 Mb/s, suppressed carrier modulation, and a new Adaptive Data Rate algorithm in which the return link data rate is optimally varied throughout the relay pass based on the actual observed link channel characteristics. In addition to the baseline surface relay support by ODY and MRO, the MEX relay service has been verified in several successful surface relay passes, and MEX now stands ready to provide backup relay support should NASA's orbiters become unavailable for some period of time.

  14. Curiosity: the Mars Science Laboratory Project

    NASA Technical Reports Server (NTRS)

    Cook, Richard A.

    2012-01-01

    The Curiosity rover landed successfully in Gale Crater, Mars on August 5, 2012. This event was a dramatic high point in the decade long effort to design, build, test and fly the most sophisticated scientific vehicle ever sent to Mars. The real achievements of the mission have only just begun, however, as Curiosity is now searching for signs that Mars once possessed habitable environments. The Mars Science Laboratory Project has been one of the most ambitious and challenging planetary projects that NASA has undertaken. It started in the successful aftermath of the 2003 Mars Exploration Rover project and was designed to take significant steps forward in both engineering and scientific capabilities. This included a new landing system capable of emplacing a large mobile vehicle over a wide range of potential landing sites, advanced sample acquisition and handling capabilities that can retrieve samples from both rocks and soil, and a high reliability avionics suite that is designed to permit long duration surface operations. It also includes a set of ten sophisticated scientific instruments that will investigate both the geological context of the landing site plus analyze samples to understand the chemical & organic composition of rocks & soil found there. The Gale Crater site has been specifically selected as a promising location where ancient habitable environments may have existed and for which evidence may be preserved. Curiosity will spend a minimum of one Mars year (about two Earth years) looking for this evidence. This paper will report on the progress of the mission over the first few months of surface operations, plus look retrospectively at lessons learned during both the development and cruise operations phase of the mission..

  15. Mars Science Laboratory Entry, Descent and Landing System Overview

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam D.; San Martin, A. Miguel; Rivellini, Tomasso P.; Chen, Allen

    2013-01-01

    The Mars Science Laboratory project recently places the Curiosity rove on the surface of Mars. With the success of the landing system, the performance envelope of entry, descent and landing capabilities has been extended over the previous state of the art. This paper will present an overview to the MSL entry, descent and landing system design and preliminary flight performance results.

  16. Thermal Performance of the Mars Science Laboratory Rover During Mars Surface Operations

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Lee, Chern-Jiin

    2013-01-01

    On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. Eight months later, on August 5, 2012, the MSL rover (Curiosity) successfully touched down on the surface of Mars. As of the writing of this paper, the rover had completed over 200 Sols of Mars surface operations in the Gale Crater landing site (4.5 deg S latitude). This paper describes the thermal performance of the MSL Rover during the early part of its two Earth-0.year (670 Sols) prime surface mission. Curiosity landed in Gale Crater during early Spring (Ls=151) in the Southern Hemisphere of Mars. This paper discusses the thermal performance of the rover from landing day (Sol 0) through Summer Solstice (Sol 197) and out to Sol 204. The rover surface thermal design performance was very close to pre-landing predictions. The very successful thermal design allowed a high level of operational power dissipation immediately after landing without overheating and required a minimal amount of survival heating. Early morning operations of cameras and actuators were aided by successful heating activities. MSL rover surface operations thermal experiences are discussed in this paper. Conclusions about the rover surface operations thermal performance are also presented.

  17. Thermal Performance of the Mars Science Laboratory Rover During Mars Surface Operations

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Lee, Chern-Jiin

    2013-01-01

    On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. Eight months later, on August 5, 2012, the MSL rover (Curiosity) successfully touched down on the surface of Mars. As of the writing of this paper, the rover had completed over 200 Sols of Mars surface operations in the Gale Crater landing site (4.5 degrees South latitude). This paper describes the thermal performance of the MSL Rover during the early part of its two Earth-0.year (670 Sols) prime surface mission. Curiosity landed in Gale Crater during early Spring (Solar longitude=151) in the Southern Hemisphere of Mars. This paper discusses the thermal performance of the rover from landing day (Sol 0) through Summer Solstice (Sol 197) and out to Sol 204. The rover surface thermal design performance was very close to pre-landing predictions. The very successful thermal design allowed a high level of operational power dissipation immediately after landing without overheating and required a minimal amount of survival heating. Early morning operations of cameras and actuators were aided by successful heating activities. MSL rover surface operations thermal experiences are discussed in this paper. Conclusions about the rover surface operations thermal performance are also presented.

  18. Mars Science Laboratory Planetary Protection Status

    NASA Astrophysics Data System (ADS)

    Benardini, James; La Duc, Myron; Naviaux, Keith; Samuels, Jessica

    With over 500 sols of surface operations, the Mars Science Laboratory (MSL) Rover has trekked over 5km. A key finding along this journey thus far, is that water molecules are bound to fine-grained soil particles, accounting for about 2 percent of the particles' weight at Gale Crater where Curiosity landed. There is no concern to planetary protection as the finding resulted directly from SAM baking (100-835°C) out the soil for analysis. Over that temperature range, OH and/or H2O was released, which was bound in amorphous phases. MSL has completed an approved Post-Launch Report. The Project continues to be in compliance with planetary protection requirements as Curiosity continues its exploration and scientific discoveries there is no evidence suggesting the presence of a special region. There is no spacecraft induced special region and no currently flowing liquid. All systems of interest to planetary protection are functioning nominally. The project has submitted an extended mission request to the NASA PPO. The status of the PP activities will be reported.

  19. Analysis of Solar Wind Plasma Properties of Co-Rotating Interaction Regions at Mars with MSL/RAD

    NASA Astrophysics Data System (ADS)

    Lohf, H.; Kohler, J.; Zeitlin, C. J.; Ehresmann, B.; Guo, J.; Wimmer-Schweingruber, R. F.; Hassler, D.; Reitz, G.; Posner, A.; Heber, B.; Appel, J. K.; Matthiae, D.; Brinza, D. E.; Weigle, E.; Böttcher, S. I.; Burmeister, S.; Martin-Garcia, C.; Boehm, E.; Rafkin, S. C.; Kahanpää, H.; Martín-Torres, J.; Zorzano, M. P.

    2014-12-01

    The measurements of the Radiation Assessment Detector (RAD) onboard Mars Science Laboratory's rover Curiosity have given us the very first opportunity to evaluate the radiation environment on the surface of Mars, which consists mostly of Galactic Cosmic Rays (GCRs) and secondary particles created in the Martian Atmosphere. The solar wind can have an influence on the modulation of the GCR, e.g. when the fast solar wind (~ 750 km/s) interacts with the slow solar wind (~ 400 km/s) at so-called Stream Interaction Regions (SIRs) resulting in an enhancement of the local magnetic field which could affect the shielding of GCRs. SIRs often occur periodically as Co-rotating Interaction Regions (CIRs) which may-be observed at Mars as a decrease in the radiation data measured by MSL/RAD. Considering the difference of the Earth-Mars orbit, we correlate these in-situ radiation data at Mars with the solar wind properties measured by spacecrafts at 1 AU, with the aim to eventually determine the solar wind properties at Mars based on MSL/RAD measurements.

  20. Sleuthing the MSL EDL performance from an X band carrier perspective

    NASA Astrophysics Data System (ADS)

    Oudrhiri, Kamal; Asmar, Sami; Estabrook, Polly; Kahan, Daniel; Mukai, Ryan; Ilott, Peter; Schratz, Brian; Soriano, Melissa; Finley, Susan; Shidner, Jeremy

    During the Entry, Descent, and Landing (EDL) of NASA's Mars Science Laboratory (MSL), or Curiosity, rover to Gale Crater on Mars on August 6, 2012 UTC, the rover transmitted an X-band signal composed of carrier and tone frequencies and a UHF signal modulated with an 8kbps data stream. During EDL, the spacecraft's orientation is determined by its guidance and mechanical subsystems to ensure that the vehicle land safely at its destination. Although orientation to maximize telecom performance is not possible, antennas are especially designed and mounted to provide the best possible line of sight to Earth and to the Mars orbiters supporting MSL's landing. The tones and data transmitted over these links are selected carefully to reflect the most essential parameters of the vehicle's state and the performance of the EDL subsystems for post-EDL reconstruction should no further data transmission from the vehicle be possible. This paper addresses the configuration of the X band receive system used at NASA / JPL's Deep Space Network (DSN) to capture the signal spectrum of MSL's X band carrier and tone signal, examines the MSL vehicle state information obtained from the X band carrier signal only and contrasts the Doppler-derived information against the post-EDL known vehicle state. The paper begins with a description of the MSL EDL sequence of events and discusses the impact of the EDL maneuvers such as guided entry, parachute deploy, and powered descent on the frequency observables expected at the DSN. The range of Doppler dynamics possible is derived from extensive 6 Degrees-Of-Freedom (6 DOF) vehicle state calculations performed by MSL's EDL simulation team. The configuration of the DSN's receive system, using the Radio Science Receivers (RSR) to perform open-loop recording for both for nominal and off-nominal EDL scenarios, is detailed. Expected signal carrier power-to-noise levels during EDL are shown and their impact on signal detection is considered. Particula

  1. Sleuthing the MSL EDL Performance from an X Band Carrier Perspective

    NASA Technical Reports Server (NTRS)

    Oudrhiri, Kamal; Asmar, Sami; Estabrook, Polly; Kahan, Daniel; Mukai, Ryan; Ilott, Peter; Schratz, Brian; Soriano, Melissa; Finley, Susan; Shidner, Jeremy

    2013-01-01

    During the Entry, Descent, and Landing (EDL) of NASA's Mars Science Laboratory (MSL), or Curiosity, rover to Gale Crater on Mars on August 6, 2012 UTC, the rover transmitted an X-band signal composed of carrier and tone frequencies and a UHF signal modulated with an 8kbps data stream. During EDL, the spacecraft's orientation is determined by its guidance and mechanical subsystems to ensure that the vehicle land safely at its destination. Although orientation to maximize telecom performance is not possible, antennas are especially designed and mounted to provide the best possible line of sight to Earth and to the Mars orbiters supporting MSL's landing. The tones and data transmitted over these links are selected carefully to reflect the most essential parameters of the vehicle's state and the performance of the EDL subsystems for post-EDL reconstruction should no further data transmission from the vehicle be possible. This paper addresses the configuration of the X band receive system used at NASA / JPL's Deep Space Network (DSN) to capture the signal spectrum of MSL's X band carrier and tone signal, examines the MSL vehicle state information obtained from the X band carrier signal only and contrasts the Doppler-derived information against the post-EDL known vehicle state. The paper begins with a description of the MSL EDL sequence of events and discusses the impact of the EDL maneuvers such as guided entry, parachute deploy, and powered descent on the frequency observables expected at the DSN. The range of Doppler dynamics possible is derived from extensive 6 Degrees-Of-Freedom (6 DOF) vehicle state calculations performed by MSL's EDL simulation team. The configuration of the DSN's receive system, using the Radio Science Receivers (RSR) to perform open-loop recording for both for nominal and off-nominal EDL scenarios, is detailed. Expected signal carrier power-to-noise levels during EDL are shown and their impact on signal detection is considered. Particular

  2. KSC-2011-7879

    NASA Image and Video Library

    2011-11-22

    CAPE CANAVERAL, Fla. – NASA’s Kennedy Space Center in Florida is host to a Mars Science Laboratory (MSL) science briefing as part of preflight activities for the MSL mission. From left, NASA Public Affairs Officer Guy Webster moderates the conference featuring Michael Meyer, lead scientist for NASA Mars Exploration Program; John Grotzinger, project scientist for Mars Science Laboratory California Institute of Technology, Pasadena, Calif.; Michael Malin, principal investigator for the Mast Camera and Mars Descent Imager investigations on Curiosity, Malin Space Science Systems; Roger Wiens, principal investigator for Chemistry and Camera investigation on Curiosity, Los Alamos National Laboratory; David Blake, NASA principal investigator for Chemistry and Mineralogy investigation on Curiosity, NASA Ames Research Center; and Paul Mahaffy, NASA principal investigator for Sample Analysis at Mars investigation on Curiosity, NASA Goddard Space Flight Center. MSL’s components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 26 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  3. KSC-2011-7878

    NASA Image and Video Library

    2011-11-22

    CAPE CANAVERAL, Fla. – NASA’s Kennedy Space Center in Florida is host to a Mars Science Laboratory (MSL) science briefing as part of preflight activities for the MSL mission. From left, NASA Public Affairs Officer Guy Webster moderates the conference featuring Michael Meyer, lead scientist for NASA Mars Exploration Program; John Grotzinger, project scientist for Mars Science Laboratory California Institute of Technology, Pasadena, Calif.; Michael Malin, principal investigator for the Mast Camera and Mars Descent Imager investigations on Curiosity, Malin Space Science Systems; Roger Wiens, principal investigator for Chemistry and Camera investigation on Curiosity, Los Alamos National Laboratory; David Blake, NASA principal investigator for Chemistry and Mineralogy investigation on Curiosity, NASA Ames Research Center; and Paul Mahaffy, NASA principal investigator for Sample Analysis at Mars investigation on Curiosity, NASA Goddard Space Flight Center. MSL’s components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 26 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  4. In situ analysis of martian regolith with the SAM experiment during the first mars year of the MSL mission: Identification of organic molecules by gas chromatography from laboratory measurements

    NASA Astrophysics Data System (ADS)

    Millan, M.; Szopa, C.; Buch, A.; Coll, P.; Glavin, D. P.; Freissinet, C.; Navarro-Gonzalez, R.; François, P.; Coscia, D.; Bonnet, J. Y.; Teinturier, S.; Cabane, M.; Mahaffy, P. R.

    2016-09-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover, is specifically designed for in situ molecular and isotopic analyses of martian surface materials and atmosphere. It contributes to the Mars Science Laboratory (MSL) missions primary scientific goal to characterize the potential past, present or future habitability of Mars. In all of the analyses of solid samples delivered to SAM so far, chlorinated organic compounds have been detected above instrument background levels and identified by gas chromatography coupled to mass spectrometry (GC-MS) (Freissinet et al., 2015; Glavin et al., 2013). While some of these may originate from reactions between oxychlorines and terrestrial organic carbon present in the instrument background (Glavin et al., 2013), others have been demonstrated to originate from indigenous organic carbon present in samples (Freissinet et al., 2015). We present here laboratory calibrations that focused on the analyses performed with the MXT-CLP GC column (SAM GC-5 channel) used for nearly all of the GC-MS analyses of the martian soil samples carried out with SAM to date. Complementary to the mass spectrometric data, gas chromatography allows us to separate and identify the species analyzable in a nominal SAM-GC run time of about 21 min. To characterize the analytical capabilities of this channel within the SAM Flight Model (FM) operating conditions on Mars, and their implications on the detection of organic matter, it is required to perform laboratory experimental tests and calibrations on spare model components. This work assesses the SAM flight GC-5 column efficiency, confirms the identification of the molecules based on their retention time, and enables a better understanding of the behavior of the SAM injection trap (IT) and its release of organic molecules. This work will enable further optimization of the SAM-GC runs for additional samples to be analyzed during the MSL mission.

  5. In Situ Analysis of Martian Regolith with the SAM Experiment During the First Mars Year of the MSL Mission: Identification of Organic Molecules by Gas Chromatography from Laboratory Measurements

    NASA Technical Reports Server (NTRS)

    Millan, M.; Szopa, C.; Buch, A.; Coll, P.; Glavin, D. P.; Freissinet, C.; Navarro-Gonzalez, R.; Francois, P.; Coscia, D.; Bonnet, J. Y.; hide

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover, is specifically designed for in situ molecular and isotopic analyses of martian surface materials and atmosphere. It contributes to the Mars Science Laboratory (MSL) missions primary scientific goal to characterize the potential past, present or future habitability of Mars. In all of the analyses of solid samples delivered to SAM so far, chlorinated organic compounds have been detected above instrument background levels and identified by gas chromatography coupled to mass spectrometry (GC-MS) (Freissinet et al., 2015; Glavin et al., 2013). While some of these may originate from reactions between oxychlorines and terrestrial organic carbon present in the instrument background (Glavin et al., 2013), others have been demonstrated to originate from indigenous organic carbon present in samples (Freissinet et al., 2015). We present here laboratory calibrations that focused on the analyses performed with the MXT-CLP GC column (SAM GC-5 channel) used for nearly all of the GC-MS analyses of the martian soil samples carried out with SAM to date. Complementary to the mass spectrometric data, gas chromatography allows us to separate and identify the species analyzable in a nominal SAM-GC run time of about 21 min. To characterize the analytical capabilities of this channel within the SAM Flight Model (FM) operating conditions on Mars, and their implications on the detection of organic matter, it is required to perform laboratory experimental tests and calibrations on spare model components. This work assesses the SAM flight GC-5 column efficiency, confirms the identification of the molecules based on their retention time, and enables a better understanding of the behavior of the SAM injection trap (IT) and its release of organic molecules. This work will enable further optimization of the SAM-GC runs for additional samples to be analyzed during the MSL mission.

  6. The Mars Science Laboratory Organic Check Material

    NASA Technical Reports Server (NTRS)

    Conrad, Pamela G.; Eigenbrode, J. E.; Mogensen, C. T.; VonderHeydt, M. O.; Glavin, D. P.; Mahaffy, P. M.; Johnson, J. A.

    2011-01-01

    The Organic Check Material (OCM) has been developed for use on the Mars Science Laboratory mission to serve as a sample standard for verification of organic cleanliness and characterization of potential sample alteration as a function of the sample acquisition and portioning process on the Curiosity rover. OCM samples will be acquired using the same procedures for drilling, portioning and delivery as are used to study martian samples with The Sample Analysis at Mars (SAM) instrument suite during MSL surface operations. Because the SAM suite is highly sensitive to organic molecules, the mission can better verify the cleanliness of Curiosity's sample acquisition hardware if a known material can be processed through SAM and compared with the results obtained from martian samples.

  7. Mars Science Laboratory Heatshield Flight Data Analysis

    NASA Technical Reports Server (NTRS)

    Mahzari, Milad; White, Todd

    2017-01-01

    NASA Mars Science Laboratory (MSL), which landed the Curiosity rover on the surface of Mars on August 5th, 2012, was the largest and heaviest Mars entry vehicle representing a significant advancement in planetary entry, descent and landing capability. Hypersonic flight performance data was collected using MSLs on-board sensors called Mars Entry, Descent and Landing Instrumentation (MEDLI). This talk will give an overview of MSL entry and a description of MEDLI sensors. Observations from flight data will be examined followed by a discussion of analysis efforts to reconstruct surface heating from heatshields in-depth temperature measurements. Finally, a brief overview of MEDLI2 instrumentation, which will fly on NASAs Mars2020 mission, will be presented with a discussion on how lessons learned from MEDLI data affected the design of MEDLI2 instrumentation.

  8. MARS Science Laboratory Post-Landing Location Estimation Using Post2 Trajectory Simulation

    NASA Technical Reports Server (NTRS)

    Davis, J. L.; Shidner, Jeremy D.; Way, David W.

    2013-01-01

    The Mars Science Laboratory (MSL) Curiosity rover landed safely on Mars August 5th, 2012 at 10:32 PDT, Earth Received Time. Immediately following touchdown confirmation, best estimates of position were calculated to assist in determining official MSL locations during entry, descent and landing (EDL). Additionally, estimated balance mass impact locations were provided and used to assess how predicted locations compared to actual locations. For MSL, the Program to Optimize Simulated Trajectories II (POST2) was the primary trajectory simulation tool used to predict and assess EDL performance from cruise stage separation through rover touchdown and descent stage impact. This POST2 simulation was used during MSL operations for EDL trajectory analyses in support of maneuver decisions and imaging MSL during EDL. This paper presents the simulation methodology used and results of pre/post-landing MSL location estimates and associated imagery from Mars Reconnaissance Orbiter s (MRO) High Resolution Imaging Science Experiment (HiRISE) camera. To generate these estimates, the MSL POST2 simulation nominal and Monte Carlo data, flight telemetry from onboard navigation, relay orbiter positions from MRO and Mars Odyssey and HiRISE generated digital elevation models (DEM) were utilized. A comparison of predicted rover and balance mass location estimations against actual locations are also presented.

  9. Multivariate Statistical Analysis of MSL APXS Bulk Geochemical Data

    NASA Astrophysics Data System (ADS)

    Hamilton, V. E.; Edwards, C. S.; Thompson, L. M.; Schmidt, M. E.

    2014-12-01

    We apply cluster and factor analyses to bulk chemical data of 130 soil and rock samples measured by the Alpha Particle X-ray Spectrometer (APXS) on the Mars Science Laboratory (MSL) rover Curiosity through sol 650. Multivariate approaches such as principal components analysis (PCA), cluster analysis, and factor analysis compliment more traditional approaches (e.g., Harker diagrams), with the advantage of simultaneously examining the relationships between multiple variables for large numbers of samples. Principal components analysis has been applied with success to APXS, Pancam, and Mössbauer data from the Mars Exploration Rovers. Factor analysis and cluster analysis have been applied with success to thermal infrared (TIR) spectral data of Mars. Cluster analyses group the input data by similarity, where there are a number of different methods for defining similarity (hierarchical, density, distribution, etc.). For example, without any assumptions about the chemical contributions of surface dust, preliminary hierarchical and K-means cluster analyses clearly distinguish the physically adjacent rock targets Windjana and Stephen as being distinctly different than lithologies observed prior to Curiosity's arrival at The Kimberley. In addition, they are separated from each other, consistent with chemical trends observed in variation diagrams but without requiring assumptions about chemical relationships. We will discuss the variation in cluster analysis results as a function of clustering method and pre-processing (e.g., log transformation, correction for dust cover) and implications for interpreting chemical data. Factor analysis shares some similarities with PCA, and examines the variability among observed components of a dataset so as to reveal variations attributable to unobserved components. Factor analysis has been used to extract the TIR spectra of components that are typically observed in mixtures and only rarely in isolation; there is the potential for similar

  10. Mineralogical Results from the Mars Science Laboratory Rover Curiosity

    NASA Technical Reports Server (NTRS)

    Blake, David Frederick.

    2017-01-01

    NASA's CheMin instrument, the first X-ray Diffractometer flown in space, has been operating on Mars for nearly five years. CheMin was first to establish the quantitative mineralogy of the Mars global soil (1). The instrument was next used to determine the mineralogy of a 3.7 billion year old lacustrine mudstone, a result that, together with findings from other instruments on the MSL Curiosity rover, documented the first habitable environment found on another planet (2). The mineralogy of this mudstone from an ancient playa lake was also used to derive the maximum concentration of CO2 in the early Mars atmosphere, a surprisingly low value that calls into question the current theory that CO2 greenhouse warming was responsible for the warm and wet environment of early Mars. CheMin later identified the mineral tridymite, indicative of silica-rich volcanism, in mudstones of the Murray formation on Mt. Sharp. This discovery challenges the paradigm of Mars as a basaltic planet and ushers in a new chapter of comparative terrestrial planetology (3). CheMin is now being used to systematically sample the sedimentary layers that comprise the lower strata of Mt. Sharp, a 5,000 meter sequence of sedimentary rock laid down in what was once a crater lake, characterizing isochemical sediments that through their changing mineralogy, document the oxidation and drying out of the Mars in early Hesperian time.

  11. Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument

    NASA Astrophysics Data System (ADS)

    Fabre, C.; Maurice, S.; Cousin, A.; Wiens, R. C.; Forni, O.; Sautter, V.; Guillaume, D.

    2011-03-01

    Accurate characterization of the Chemistry Camera (ChemCam) laser-induced breakdown spectroscopy (LIBS) on-board composition targets is of prime importance for the ChemCam instrument. The Mars Science Laboratory (MSL) science and operations teams expect ChemCam to provide the first compositional results at remote distances (1.5-7 m) during the in situ analyses of the Martian surface starting in 2012. Thus, establishing LIBS reference spectra from appropriate calibration standards must be undertaken diligently. Considering the global mineralogy of the Martian surface, and the possible landing sites, three specific compositions of igneous targets have been determined. Picritic, noritic, and shergottic glasses have been produced, along with a Macusanite natural glass. A sample of each target will fly on the MSL Curiosity rover deck, 1.56 m from the ChemCam instrument, and duplicates are available on the ground. Duplicates are considered to be identical, as the relative standard deviation (RSD) of the composition dispersion is around 8%. Electronic microprobe and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) analyses give evidence that the chemical composition of the four silicate targets is very homogeneous at microscopic scales larger than the instrument spot size, with RSD < 5% for concentration variations > 0.1 wt.% using electronic microprobe, and < 10% for concentration variations > 0.01 wt.% using LA ICP-MS. The LIBS campaign on the igneous targets performed under flight-like Mars conditions establishes reference spectra for the entire mission. The LIBS spectra between 240 and 900 nm are extremely rich, hundreds of lines with high signal-to-noise, and a dynamical range sufficient to identify unambiguously major, minor and trace elements. For instance, a first LIBS calibration curve has been established for strontium from [Sr] = 284 ppm to [Sr] = 1480 ppm, showing the potential for the future calibrations for other major or minor

  12. Implementing planetary protection measures on the Mars Science Laboratory.

    PubMed

    Benardini, James N; La Duc, Myron T; Beaudet, Robert A; Koukol, Robert

    2014-01-01

    The Mars Science Laboratory (MSL), comprising a cruise stage; an aeroshell; an entry, descent, and landing system; and the radioisotope thermoelectric generator-powered Curiosity rover, made history with its unprecedented sky crane landing on Mars on August 6, 2012. The mission's primary science objective has been to explore the area surrounding Gale Crater and assess its habitability for past life. Because microbial contamination could profoundly impact the integrity of the mission and compliance with international treaty was required, planetary protection measures were implemented on MSL hardware to verify that bioburden levels complied with NASA regulations. By applying the proper antimicrobial countermeasures throughout all phases of assembly, the total bacterial endospore burden of MSL at the time of launch was kept to 2.78×10⁵ spores, well within the required specification of less than 5.0×10⁵ spores. The total spore burden of the exposed surfaces of the landed MSL hardware was 5.64×10⁴, well below the allowed limit of 3.0×10⁵ spores. At the time of launch, the MSL spacecraft was burdened with an average of 22 spores/m², which included both planned landed and planned impacted hardware. Here, we report the results of a campaign to implement and verify planetary protection measures on the MSL flight system.

  13. Mars Hand Lens Imager (MAHLI) Efforts and Observations at the Rocknest Eolian Sand Shadow in Curiosity's Gale Crater Field Site

    NASA Technical Reports Server (NTRS)

    Edgett, K. S.; Yingst, R. A.; Minitti, M. E.; Goetz, W.; Kah, L. C.; Kennedy, M. R.; Lipkaman, L. J.; Jensen, E. H.; Anderson, R. C.; Beegle, L. W.; hide

    2013-01-01

    The Mars Science Laboratory (MSL) mission is focused on assessing the past or present habitability of Mars, through interrogation of environment and environmental records at the Curiosity rover field site in Gale crater. The MSL team has two methods available to collect, process and deliver samples to onboard analytical laboratories, the Chemistry and Mineralogy instrument (CheMin) and the Sample Analysis at Mars (SAM) instrument suite. One approach obtains samples by drilling into a rock, the other uses a scoop to collect loose regolith fines. Scooping was planned to be first method performed on Mars because materials could be readily scooped multiple times and used to remove any remaining, minute terrestrial contaminants from the sample processing system, the Collection and Handling for In-Situ Martian Rock Analysis (CHIMRA). Because of this cleaning effort, the ideal first material to be scooped would consist of fine to very fine sand, like the interior of the Serpent Dune studied by the Mars Exploration Rover (MER) Spirit team in 2004 [1]. The MSL team selected a linear eolian deposit in the lee of a group of cobbles they named Rocknest (Fig. 1) as likely to be similar to Serpent Dune. Following the definitions in Chapter 13 of Bagnold [2], the deposit is termed a sand shadow. The scooping campaign occurred over approximately 6 weeks in October and November 2012. To support these activities, the Mars Hand Lens Imager (MAHLI) acquired images for engineering support/assessment and scientific inquiry.

  14. Curiosity Rover's First Anniversary

    NASA Image and Video Library

    2013-08-06

    A small-scaled model of NASA's Curiosity rover is seen at a public event observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)

  15. Chromatographic, Spectroscopic and Mass Spectrometric Approaches for Exploring the Habitability of Mars in 2012 and Beyond with the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul

    2012-01-01

    The Sample Analysis at Mars (SAM) suite of instruments on the Curiosity Rover of Mars Science Laboratory Mission is designed to provide chemical and isotopic analysis of organic and inorganic volatiles for both atmospheric and solid samples. The goals of the science investigation enabled by the gas chromatograph mass spectrometer and tunable laser spectrometer instruments of SAM are to work together with the other MSL investigations is to quantitatively assess habitability through a series of chemical and geological measurements. We describe the multi-column gas chromatograph system employed on SAM and the approach to extraction and analysis of organic compounds that might be preserved in ancient martian rocks.

  16. KSC-2011-7880

    NASA Image and Video Library

    2011-11-22

    CAPE CANAVERAL, Fla. – John Grotzinger, project scientist for Mars Science Laboratory (MSL) at the California Institute of Technology in Pasadena, Calif., demonstrates the operation of MSL's rover, Curiosity, during a science briefing at NASA's Kennedy Space Center in Florida, part of preflight activities for the MSL mission. Michael Malin, principal investigator for the Mast Camera and Mars Descent Imager investigations on Curiosity from Malin Space Science Systems, looks on at right. MSL’s components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 26 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  17. MSL-RAD Cruise Operations Concept

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Zeitlin, Cary; Hassler, Donald; Weigle, Gerald E.; Boettcher, Stephan; Martin, Cesar; Wimmer-Schweingrubber, Robert

    2012-01-01

    The Mars Science Laboratory (MSL) payload includes the Radiation Assessment Detector (RAD) instrument, intended to fully characterize the radiation environment for the MSL mission. The RAD instrument operations concept is intended to reduce impact to spacecraft resources and effort for the MSL operations team. By design, RAD autonomously performs regular science observations without the need for frequent commanding from the Rover Compute Element (RCE). RAD operates with pre-defined "sleep" and "observe" periods, with an adjustable duty cycle for meeting power and data volume constraints during the mission. At the start of a new science observation, RAD performs a pre-observation activity to assess count rates for selected RAD detector elements. Based on this assessment, RAD can enter "solar event" mode, in which instrument parameters (including observation duration) are selected to more effectively characterize the environment. At the end of each observation period, RAD stores a time-tagged, fixed length science data packet in its non-volatile mass memory storage. The operating cadence is defined by adjustable parameters, also stored in non-volatile memory within the instrument. Periodically, the RCE executes an on-board sequence to transfer RAD science data packets from the instrument mass storage to the MSL downlink buffer. Infrequently, the RAD instrument operating configuration is modified by updating internal parameter tables and configuration entries.

  18. The CheMin XRD on the Mars Science Laboratory Rover Curiosity: Construction, Operation, and Quantitative Mineralogical Results from the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Blake, David F.

    2015-01-01

    The Mars Science Laboratory mission was launched from Cape Canaveral, Florida on Nov. 26, 2011 and landed in Gale crater, Mars on Aug. 6, 2012. MSL's mission is to identify and characterize ancient "habitable" environments on Mars. MSL's precision landing system placed the Curiosity rover within 2 km of the center of its 20 X 6 km landing ellipse, next to Gale's central mound, a 5,000 meter high pile of laminated sediment which may contain 1 billion years of Mars history. Curiosity carries with it a full suite of analytical instruments, including the CheMin X-ray diffractometer, the first XRD flown in space. CheMin is essentially a transmission X-ray pinhole camera. A fine-focus Co source and collimator transmits a 50µm beam through a powdered sample held between X-ray transparent plastic windows. The sample holder is shaken by a piezoelectric actuator such that the powder flows like a liquid, each grain passing in random orientation through the beam over time. Forward-diffracted and fluoresced X-ray photons from the sample are detected by an X-ray sensitive Charge Coupled Device (CCD) operated in single photon counting mode. When operated in this way, both the x,y position and the energy of each photon are detected. The resulting energy-selected Co Kalpha Debye-Scherrer pattern is used to determine the identities and amounts of minerals present via Rietveld refinement, and a histogram of all X-ray events constitutes an X-ray fluorescence analysis of the sample.The key role that definitive mineralogy plays in understanding the Martian surface is a consequence of the fact that minerals are thermodynamic phases, having known and specific ranges of temperature, pressure and composition within which they are stable. More than simple compositional analysis, definitive mineralogical analysis can provide information about pressure/temperature conditions of formation, past climate, water activity and the like. Definitive mineralogical analyses are necessary to establish

  19. The Mars Science Laboratory (MSL) Entry, Descent And Landing Instrumentation (MEDLI): Hardware Performance and Data Reconstruction

    NASA Technical Reports Server (NTRS)

    Little, Alan; Bose, Deepak; Karlgaard, Chris; Munk, Michelle; Kuhl, Chris; Schoenenberger, Mark; Antill, Chuck; Verhappen, Ron; Kutty, Prasad; White, Todd

    2013-01-01

    The Mars Science Laboratory (MSL) Entry, Descent and Landing Instrumentation (MEDLI) hardware was a first-of-its-kind sensor system that gathered temperature and pressure readings on the MSL heatshield during Mars entry on August 6, 2012. MEDLI began as challenging instrumentation problem, and has been a model of collaboration across multiple NASA organizations. After the culmination of almost 6 years of effort, the sensors performed extremely well, collecting data from before atmospheric interface through parachute deploy. This paper will summarize the history of the MEDLI project and hardware development, including key lessons learned that can apply to future instrumentation efforts. MEDLI returned an unprecedented amount of high-quality engineering data from a Mars entry vehicle. We will present the performance of the 3 sensor types: pressure, temperature, and isotherm tracking, as well as the performance of the custom-built sensor support electronics. A key component throughout the MEDLI project has been the ground testing and analysis effort required to understand the returned flight data. Although data analysis is ongoing through 2013, this paper will reveal some of the early findings on the aerothermodynamic environment that MSL encountered at Mars, the response of the heatshield material to that heating environment, and the aerodynamic performance of the entry vehicle. The MEDLI data results promise to challenge our engineering assumptions and revolutionize the way we account for margins in entry vehicle design.

  20. Mars Science Laboratory Entry, Descent and Landing System Development Challenges and Preliminary Flight Performance

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam D.; San Martin, A. Miguel; Rivellini, Tommaso P.

    2013-01-01

    The Mars Science Laboratory project recently landed the Curiosity rover on the surface of Mars. With the success of the landing system, the performance envelope of entry, descent, and landing capabilities has been extended over the previous state of the art. This paper will present an overview of the MSL entry, descent, and landing system, a discussion of a subset of its development challenges, and include a discussion of preliminary results of the flight reconstruction effort.

  1. The Mars Hand Lens Imager (MAHLI) aboard the Mars rover, Curiosity

    NASA Astrophysics Data System (ADS)

    Edgett, K. S.; Ravine, M. A.; Caplinger, M. A.; Ghaemi, F. T.; Schaffner, J. A.; Malin, M. C.; Baker, J. M.; Dibiase, D. R.; Laramee, J.; Maki, J. N.; Willson, R. G.; Bell, J. F., III; Cameron, J. F.; Dietrich, W. E.; Edwards, L. J.; Hallet, B.; Herkenhoff, K. E.; Heydari, E.; Kah, L. C.; Lemmon, M. T.; Minitti, M. E.; Olson, T. S.; Parker, T. J.; Rowland, S. K.; Schieber, J.; Sullivan, R. J.; Sumner, D. Y.; Thomas, P. C.; Yingst, R. A.

    2009-08-01

    The Mars Science Laboratory (MSL) rover, Curiosity, is expected to land on Mars in 2012. The Mars Hand Lens Imager (MAHLI) will be used to document martian rocks and regolith with a 2-megapixel RGB color CCD camera with a focusable macro lens mounted on an instrument-bearing turret on the end of Curiosity's robotic arm. The flight MAHLI can focus on targets at working distances of 20.4 mm to infinity. At 20.4 mm, images have a pixel scale of 13.9 μm/pixel. The pixel scale at 66 mm working distance is about the same (31 μm/pixel) as that of the Mars Exploration Rover (MER) Microscopic Imager (MI). MAHLI camera head placement is dependent on the capabilities of the MSL robotic arm, the design for which presently has a placement uncertainty of ~20 mm in 3 dimensions; hence, acquisition of images at the minimum working distance may be challenging. The MAHLI consists of 3 parts: a camera head, a Digital Electronics Assembly (DEA), and a calibration target. The camera head and DEA are connected by a JPL-provided cable which transmits data, commands, and power. JPL is also providing a contact sensor. The camera head will be mounted on the rover's robotic arm turret, the DEA will be inside the rover body, and the calibration target will be mounted on the robotic arm azimuth motor housing. Camera Head. MAHLI uses a Kodak KAI-2020CM interline transfer CCD (1600 x 1200 active 7.4 μm square pixels with RGB filtered microlenses arranged in a Bayer pattern). The optics consist of a group of 6 fixed lens elements, a movable group of 3 elements, and a fixed sapphire window front element. Undesired near-infrared radiation is blocked using a coating deposited on the inside surface of the sapphire window. The lens is protected by a dust cover with a Lexan window through which imaging can be ac-complished if necessary, and targets can be illuminated by sunlight or two banks of two white light LEDs. Two 365 nm UV LEDs are included to search for fluores-cent materials at night. DEA

  2. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, 5th from left, joined by his wife Karen Pence, left, and daughter Charlotte Pence. 2nd from left, view the Vehicle System Test Bed (VSTB) rover in the Mars Yard during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. NASA Mars Exploration Manager Li Fuk, 2nd from left, JPL Director Michael Watkins, Mars Curiosity Engineering Operations Team Chief Megan Lin, and MSL Engineer Sean McGill, right, helped explain to the Vice President and his family how they use these test rovers. Photo Credit: (NASA/Bill Ingalls)

  3. Curiosity Low-Angle Self-Portrait at Buckskin Drilling Site on Mount Sharp

    NASA Image and Video Library

    2015-08-19

    This low-angle self-portrait of NASA's Curiosity Mars rover shows the vehicle above the "Buckskin" rock target, where the mission collected its seventh drilled sample. The site is in the "Marias Pass" area of lower Mount Sharp. The scene combines dozens of images taken by Curiosity's Mars Hand Lens Imager (MAHLI) on Aug. 5, 2015, during the 1,065th Martian day, or sol, of the rover's work on Mars. The 92 component images are among MAHLI Sol 1065 raw images at http://mars.nasa.gov/msl/multimedia/raw/?s=1065&camera=MAHLI. For scale, the rover's wheels are 20 inches (50 centimeters) in diameter and about 16 inches (40 centimeters) wide. Curiosity drilled the hole at Buckskin during Sol 1060 (July 30, 2015). Two patches of pale, powdered rock material pulled from Buckskin are visible in this scene, in front of the rover. The patch closer to the rover is where the sample-handling mechanism on Curiosity's robotic arm dumped collected material that did not pass through a sieve in the mechanism. Sieved sample material was delivered to laboratory instruments inside the rover. The patch farther in front of the rover, roughly triangular in shape, shows where fresh tailings spread downhill from the drilling process. The drilled hole, 0.63 inch (1.6 centimeters) in diameter, is at the upper point of the tailings. The rover is facing northeast, looking out over the plains from the crest of a 20-foot (6-meter) hill that it climbed to reach the Marias Pass area. The upper levels of Mount Sharp are visible behind the rover, while Gale Crater's northern rim dominates the horizon on the left and right of the mosaic. A portion of this selfie cropped tighter around the rover is at PIA19808. Another version of the wide view, presented in a projection that shows the horizon as a circle, is at PIA19806. MAHLI is mounted at the end of the rover's robotic arm. For this self-portrait, the rover team positioned the camera lower in relation to the rover body than for any previous full self

  4. Self-Portrait of Curiosity Stunt Double

    NASA Image and Video Library

    2012-12-11

    Camera and robotic-arm maneuvers for taking a self-portrait of the NASA Curiosity rover on Mars were checked first, at NASA Jet Propulsion Laboratory in Pasadena, Calif., using the main test rover for the Curiosity.

  5. Curiosity Rover's First Anniversary

    NASA Image and Video Library

    2013-08-06

    NASA Administrator Charles Bolden speaks at a public event at NASA Headquarters observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)

  6. Mast Camera View of Curiosity Deck

    NASA Image and Video Library

    2011-05-31

    NASA Mars rover Curiosity took the images combined into this mosaic of the rover upper deck. The images were taken in March 2011. At the time, Curiosity was inside a space simulation chamber at NASA Jet Propulsion Laboratory, Pasadena, Calif.

  7. Mars Rover Curiosity Arm Held High

    NASA Image and Video Library

    2011-06-13

    This photograph of the NASA Mars Science Laboratory rover, Curiosity, was taken during testing on June 3, 2011. The turret at the end of Curiosity robotic arm holds five devices. In this view, the drill is at the six oclock position.

  8. The Development of the Chemin Mineralogy Instrument and Its Deployment on Mars (and Latest Results from the Mars Science Laboratory Rover Curiosity)

    NASA Technical Reports Server (NTRS)

    Blake, David F.

    2014-01-01

    The CheMin instrument (short for "Chemistry and Mineralogy") on the Mars Science Laboratory rover Curiosity is one of two "laboratory quality" instruments on board the Curiosity rover that is exploring Gale crater, Mars. CheMin is an X-ray diffractometer that has for the first time returned definitive and fully quantitative mineral identifications of Mars soil and drilled rock. I will describe CheMin's 23-year development from an idea to a spacecraft qualified instrument, and report on some of the discoveries that Curiosity has made since its entry, descent and landing on Aug. 6, 2012, including the discovery and characterization of the first habitable environment on Mars.

  9. Hadfield poses with MSL FLSS in the Node 2

    NASA Image and Video Library

    2012-12-23

    View of Canada Space Agency (CSA) Chris Hadfield, Expedition 34 Flight Engineer (FE), poses with a Materials Science Laboratory (MSL) Furnace Launch Support Structure (FLSS) in the U.S. Laboratory. Tom Marshburn (background), Expedition 34 FE uses laptop computer. Photo was taken during Expedition 34.

  10. Curiosity Rover's First Anniversary

    NASA Image and Video Library

    2013-08-06

    Prasun Desai, acting director, Strategic Integration, NASA's Space Technology Mission Directorate, speaks at a public event at NASA Headquarters observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)

  11. Curiosity Rover's First Anniversary

    NASA Image and Video Library

    2013-08-06

    Jim Green, director, Planetary Division, NASA's Science Mission Directorate, speaks at a public event at NASA Headquarters observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)

  12. Curiosity Rover's First Anniversary

    NASA Image and Video Library

    2013-08-06

    Jim Green, director, Planetary Division, NASA's Science Mission Directorate, answers a question at a public event at NASA Headquarters observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)

  13. Curiosity Rover's First Anniversary

    NASA Image and Video Library

    2013-08-06

    Sam Scimemi, director, NASA's International Space Station Program, speaks at a public event at NASA Headquarters observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)

  14. Measurements of Forbush decreases at Mars: both by MSL on ground and by MAVEN in orbit

    NASA Astrophysics Data System (ADS)

    Guo, Jingnan; Lillis, Robert; Wimmer-Schweingruber, Robert F.; Zeitlin, Cary; Simonson, Patrick; Rahmati, Ali; Posner, Arik; Papaioannou, Athanasios; Lundt, Niklas; Lee, Christina O.; Larson, Davin; Halekas, Jasper; Hassler, Donald M.; Ehresmann, Bent; Dunn, Patrick; Böttcher, Stephan

    2018-04-01

    The Radiation Assessment Detector (RAD), on board Mars Science Laboratory's (MSL) Curiosity rover, has been measuring ground level particle fluxes along with the radiation dose rate at the surface of Mars since August 2012. Similar to neutron monitors at Earth, RAD sees many Forbush decreases (FDs) in the galactic cosmic ray (GCR) induced surface fluxes and dose rates. These FDs are associated with coronal mass ejections (CMEs) and/or stream/corotating interaction regions (SIRs/CIRs). Orbiting above the Martian atmosphere, the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has also been monitoring space weather conditions at Mars since September 2014. The penetrating particle flux channels in the solar energetic particle (SEP) instrument onboard MAVEN can also be employed to detect FDs. For the first time, we study the statistics and properties of a list of FDs observed in-situ at Mars, seen both on the surface by MSL/RAD and in orbit detected by the MAVEN/SEP instrument. Such a list of FDs can be used for studying interplanetary coronal mass ejections (ICME) propagation and SIR evolution through the inner heliosphere. The magnitudes of different FDs can be well-fitted by a power-law distribution. The systematic difference between the magnitudes of the FDs within and outside the Martian atmosphere may be mostly attributed to the energy-dependent modulation of the GCR particles by both the pass-by ICMEs/SIRs and the Martian atmosphere.

  15. Inlet Cover On the Curiosity Rover

    NASA Image and Video Library

    2018-06-04

    The drill bit of NASA's Curiosity Mars rover over one of the sample inlets on the rover's deck. The inlets lead to Curiosity's onboard laboratories. This image was taken on Sol 2068 by the rover's Mast Camera (Mastcam). https://photojournal.jpl.nasa.gov/catalog/PIA22327

  16. Curiosity on Tilt Table with Mast Up

    NASA Image and Video Library

    2011-03-25

    The Mast Camera Mastcam on NASA Mars rover Curiosity has two rectangular eyes near the top of the rover remote sensing mast. This image shows Curiosity on a tilt table NASA Jet Propulsion Laboratory, Pasadena, California.

  17. Mars Rover Curiosity in Artist Concept, Tall

    NASA Image and Video Library

    2011-05-26

    This artist concept features NASA Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars past or present ability to sustain microbial life. Curiosity is being tested in preparation for launch in the fall of 2011.

  18. Mars Rover Curiosity in Artist Concept, Wide

    NASA Image and Video Library

    2011-05-26

    This artist concept features NASA Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars past or present ability to sustain microbial life. Curiosity is being tested in preparation for launch in the fall of 2011.

  19. Hadfield poses with MSL FLSS in the Node 2

    NASA Image and Video Library

    2012-12-23

    ISS034-E-010603 (28 Dec. 2012) --- Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, poses with a Materials Science Laboratory (MSL) Furnace Launch Support Structure (FLSS) in the Destiny laboratory of the International Space Station. NASA astronaut Tom Marshburn, flight engineer, uses a computer in the background.

  20. Curiosity Rover's First Anniversary

    NASA Image and Video Library

    2013-08-06

    Jason Townsend, NASA's Deputy Social Media Manager, asks a question on behalf of a NASA Twitter follower at a public event at NASA Headquarters observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)

  1. Interannual and Diurnal Variability in Water Ice Clouds Observed from MSL Over Two Martian Years

    NASA Astrophysics Data System (ADS)

    Kloos, J. L.; Moores, J. E.; Whiteway, J. A.; Aggarwal, M.

    2018-01-01

    We update the results of cloud imaging sequences from the Mars Science Laboratory (MSL) rover Curiosity to complete two Mars years of observations (LS=160° of Mars year (MY) 31 to LS=160° of MY 33). Relatively good seasonal coverage is achieved within the study period, with just over 500 observations obtained, averaging one observation every 2-3 sols. Cloud opacity measurements are made using differential photometry and a simplified radiative transfer method. These opacity measurements are used to assess the interannual variability of the aphelion cloud belt (ACB) for MY 32 and 33. Upon accounting for a statistical bias in the data set, the variation is found to be <30% within uncertainty. Diurnal variation of the ACB is also able to be examined in MY 33 owing to an increased number of early morning observations in this year. Although a gap in data around local noon prevents a complete assessment, we find that cloud opacity is moderately increased in the morning hours (07:00-09:00) compared to the late afternoon (15:00-17:00).

  2. Connecting Curiosity Neck

    NASA Image and Video Library

    2010-07-23

    In the clean room at NASA Jet Propulsion Laboratory, engineers gather around the base of Curiosity neck the Mast as they slowly lower it into place for attachment to the rover body the Wet Electronics Box, or WEB.

  3. Curiosity Self-Portrait at Murray Buttes.

    NASA Image and Video Library

    2016-10-03

    This self-portrait of NASA's Curiosity Mars rover shows the vehicle at the "Quela" drilling location in the "Murray Buttes" area on lower Mount Sharp. Key features on the skyline of this panorama are the dark mesa called "M12" to the left of the rover's mast and pale, upper Mount Sharp to the right of the mast. The top of M12 stands about 23 feet (7 meters) above the base of the sloping piles of rocks just behind Curiosity. The scene combines approximately 60 images taken by the Mars Hand Lens Imager (MAHLI) camera at the end of the rover's robotic arm. Most of the component images were taken on Sept. 17, 2016, during the 1,463rd Martian day, or sol, of Curiosity's work on Mars. Two component images of the drill-hole area in front of the rover were taken on Sol 1466 (Sept. 20) to show the hole created by collecting a drilled sample at Quela on Sol 1464 (Sept. 18). The skyline sweeps from west on the left to south-southwest on the right, with the rover's mast at northeast. The rover's location when it recorded this scene was where it ended a drive on Sol 1455, mapped at http://mars.nasa.gov/msl/multimedia/images/?ImageID=8029. The view does not include the rover's arm nor the MAHLI camera itself, except in the miniature scene reflected upside down in the parabolic mirror at the top of the mast. That mirror is part of Curiosity's Chemistry and Camera (ChemCam) instrument. MAHLI appears in the center of the mirror. Wrist motions and turret rotations on the arm allowed MAHLI to acquire the mosaic's component images. The arm was positioned out of the shot in the images, or portions of images, that were used in this mosaic. This process was used previously in acquiring and assembling Curiosity self-portraits taken at other sample-collection sites, including "Rocknest" (PIA16468), "Windjana" (PIA18390"), "Buckskin" (PIA19808) and "Gobabeb" (PIA20316). For scale, the rover's wheels are 20 inches (50 centimeters) in diameter and about 16 inches (40 centimeters) wide. http

  4. The psychology and neuroscience of curiosity

    PubMed Central

    Kidd, Celeste; Hayden, Benjamin Y.

    2015-01-01

    SUMMARY Curiosity is a basic element of our cognition, yet its biological function, mechanisms, and neural underpinning remain poorly understood. It is nonetheless a motivator for learning, influential in decision-making, and crucial for healthy development. One factor limiting our understanding of it is the lack of a widely agreed upon delineation of what is and is not curiosity; another factor is the dearth of standardized laboratory tasks that manipulate curiosity in the lab. Despite these barriers, recent years have seen a major growth of interest in both the neuroscience and psychology of curiosity. In this Perspective, we advocate for the importance of the field, provide a selective overview of its current state, and describe tasks that are used to study curiosity and information-seeking. We propose that, rather than worry about defining curiosity, it is more helpful to consider the motivations for information-seeking behavior and to study it in its ethological context. PMID:26539887

  5. The Psychology and Neuroscience of Curiosity.

    PubMed

    Kidd, Celeste; Hayden, Benjamin Y

    2015-11-04

    Curiosity is a basic element of our cognition, but its biological function, mechanisms, and neural underpinning remain poorly understood. It is nonetheless a motivator for learning, influential in decision-making, and crucial for healthy development. One factor limiting our understanding of it is the lack of a widely agreed upon delineation of what is and is not curiosity. Another factor is the dearth of standardized laboratory tasks that manipulate curiosity in the lab. Despite these barriers, recent years have seen a major growth of interest in both the neuroscience and psychology of curiosity. In this Perspective, we advocate for the importance of the field, provide a selective overview of its current state, and describe tasks that are used to study curiosity and information-seeking. We propose that, rather than worry about defining curiosity, it is more helpful to consider the motivations for information-seeking behavior and to study it in its ethological context. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. MSL Parachute Flapping in the Wind

    NASA Image and Video Library

    2013-04-03

    This image from NASA Mars Reconnaissance Orbiter shows wind-caused changes in the parachute of NASA Mars Science Laboratory spacecraft as the chute lay on the Martian ground during months after its use in safe landing of the Curiosity rover.

  7. Effect of the Presence of Chlorates and Perchlorates on the Pyrolysis of Organic Compounds: Implications for Measurements Done with the SAM Experiment Onboard the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Coll, P.; Glavin, D. P.; Freissinet, C.; Archer, P. D., Jr.; Sutter, B.; Summons, R. E.; hide

    2016-01-01

    The Mars Science Laboratory (MSL) Curiosity Rover carries a suite of instruments, one of which is the Sample Analysis at Mars (SAM) experiment. SAM is devoted to the in situ molecular analysis of gases evolving from solid samples collected by Curiosity on Mars surface/sub-surface. Among its three analytical devices, SAM has a gaschromatograph coupled to a quadrupole mass spectrometer (GC-QMS). The GC-QMS is devoted to the separation and identification of organic and inorganic material. Before proceeding to the GC-QMS analysis, the solid sample collected by Curiosity is subjected to a thermal treatment thanks to the pyrolysis oven to release the volatiles into the gas processing system. Depending on the sample, a derivatization method by wet chemistry: MTBSTFA of TMAH can also be applied to analyze the most refractory compounds. The GC is able to separate the organic molecules which are then detected and identified by the QMS (Figure 1). For the second time after the Viking landers in 1976, SAM detected chlorinated organic compounds with the pyrolysis GC-QMS experiment. The detection of perchlorates salts (ClO4-) in soil at the Phoenix Landing site suggests that the chlorohydrocarbons detected could come from the reaction of organics with oxychlorines. Indeed, laboratory pyrolysis experiments have demonstrated that oxychlorines decomposed into molecular oxygen and volatile chlorine (HCl and/or Cl2) when heated which then react with the organic matter in the solid samples by oxidation and/or chlorination processes.

  8. Nili Fossae Trough, Candidate MSL Landing Site

    NASA Image and Video Library

    2010-12-20

    This image from NASA Mars Reconnaissance Orbiter shows Nili Fossae region of Mars, one of the largest exposures of clay minerals, and a prime candidate landing site for Mars Science Laboratory rover, Curiosity.

  9. Measurements of Forbush decreases at Mars: both by MSL on ground and by MAVEN in orbit

    NASA Astrophysics Data System (ADS)

    Guo, J.; Lillis, R. J.; Wimmer-Schweingruber, R. F.; Posner, A.; Halekas, J. S.; Zeitlin, C.; Hassler, D.; Lundt, N.; Simonson, P.; Lee, C. O.; Appel, J. K.; Boehm, E.; Boettcher, S. I.; Burmeister, S.; Brinza, D. E.; Cucinotta, F.; Ehresmann, B.; Lohf, H.; Martin-Garcia, C.; Matthiae, D.; Rafkin, S. C.; Reitz, G.; weigle, G., II

    2017-12-01

    The Radiation Assessment Detector (RAD), on board Mars Science Laboratory's (MSL) rover Curiosity, has been measuring the ground level particle fluxes along with the radiation dose rate at the surface of Mars since August 2012. Similar to neutron monitors at Earth, RAD sees many Forbush decreases (FDs) in the galactic cosmic ray (GCR) induced surface fluxes and dose rates. These FDs are associated with coronal mass ejections (CMEs) and/or streaming/corotating interaction regions (SIRs/CIRs). Orbiting above the Martian atmosphere, the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has also been monitoring space weather conditions at Mars since its arrival in September 2014. The penetrating particle flux channel in the Solar Energetic Particle (SEP) instrument aboard can also be employed to detect FDs. For the first time, we study the statistics and properties of a list of FDs observed in-situ at Mars, seen both on the surface by MSL/RAD and in orbit detected by the MAVEN/SEP instrument. Such a list of FDs can be used for studying ICME propagations and SIR evolutions through the inner-heliosphere. The magnitudes of different FDs can be well-fitted by a power-law distribution. The systematic difference between the magnitudes of the FDs within and outside the Martian atmosphere may be attributed to the energy-dependent modulation of the GCR particles by not only the pass-by ICMEs/SIRs but also the Martian atmosphere. Such an effect has been modeled via transporting particles of differently modulated GCR spectra through the Martian atmosphere.

  10. Investigation of Martian Aqueous Processes Using Multiple Alpha Particle X-ray Spectrometer (APXS) Datasets

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Ming, D. W.; Gellert, R.; Vaniman, D.; Clark, B.; Morris, R. V.; Mittlefehldt, D. W.; Arvidson, R. E.

    2014-01-01

    The APXS instruments flown on the Mars Exploration Rovers (MER) Spirit and Opportunity and the Mars Science Laboratory (MSL) Curiosity were based on the same fundamental design. The calibration effort of the MSL APXS used the same reference standards analyzed in the MER calibration which ensures that data produced by all three instruments provide the same compositional results for the same sample. This cross-calibration effort is unprecedented and allows direct comparisons and contrasts of samples analyzed at Gusev Crater by Spirit, Meridiani Planum by Opportunity, and Gale Crater by Curiosity.

  11. Charged particle spectra measured during the transit to Mars with the Mars Science Laboratory Radiation Assessment Detector (MSL/RAD).

    PubMed

    Ehresmann, Bent; Hassler, Donald M; Zeitlin, Cary; Guo, Jingnan; Köhler, Jan; Wimmer-Schweingruber, Robert F; Appel, Jan K; Brinza, David E; Rafkin, Scot C R; Böttcher, Stephan I; Burmeister, Sönke; Lohf, Henning; Martin, Cesar; Böhm, Eckart; Matthiä, Daniel; Reitz, Günther

    2016-08-01

    The Mars Science Laboratory (MSL) started its 253-day cruise to Mars on November 26, 2011. During cruise the Radiation Assessment Detector (RAD), situated on board the Curiosity rover, conducted measurements of the energetic-particle radiation environment inside the spacecraft. This environment consists mainly of galactic cosmic rays (GCRs), as well as secondary particles created by interactions of these GCRs with the spacecraft. The RAD measurements can serve as a proxy for the radiation environment a human crew would encounter during a transit to Mars, for a given part of the solar cycle, assuming that a crewed vehicle would have comparable shielding. The measurements of radiological quantities made by RAD are important in themselves, and, the same data set allow for detailed analysis of GCR-induced particle spectra inside the spacecraft. This provides important inputs for the evaluation of current transport models used to model the free-space (and spacecraft) radiation environment for different spacecraft shielding and different times in the solar cycle. Changes in these conditions can lead to significantly different radiation fields and, thus, potential health risks, emphasizing the need for validated transport codes. Here, we present the first measurements of charged particle fluxes inside a spacecraft during the transit from Earth to Mars. Using data obtained during the last two month of the cruise to Mars (June 11-July 14, 2012), we have derived detailed energy spectra for low-Z particles stopping in the instrument's detectors, as well as integral fluxes for penetrating particles with higher energies. Furthermore, we analyze the temporal changes in measured proton fluxes during quiet solar periods (i.e., when no solar energetic particle events occurred) over the duration of the transit (December 9, 2011-July 14, 2012) and correlate them with changing heliospheric conditions. Copyright © 2016 The Committee on Space Research (COSPAR). All rights reserved.

  12. Charged particle spectra measured during the transit to Mars with the Mars Science Laboratory Radiation Assessment Detector (MSL/RAD)

    NASA Astrophysics Data System (ADS)

    Ehresmann, Bent; Hassler, Donald M.; Zeitlin, Cary; Guo, Jingnan; Köhler, Jan; Wimmer-Schweingruber, Robert F.; Appel, Jan K.; Brinza, David E.; Rafkin, Scot C. R.; Böttcher, Stephan I.; Burmeister, Sönke; Lohf, Henning; Martin, Cesar; Böhm, Eckart; Matthiä, Daniel; Reitz, Günther

    2016-08-01

    The Mars Science Laboratory (MSL) started its 253-day cruise to Mars on November 26, 2011. During cruise the Radiation Assessment Detector (RAD), situated on board the Curiosity rover, conducted measurements of the energetic-particle radiation environment inside the spacecraft. This environment consists mainly of galactic cosmic rays (GCRs), as well as secondary particles created by interactions of these GCRs with the spacecraft. The RAD measurements can serve as a proxy for the radiation environment a human crew would encounter during a transit to Mars, for a given part of the solar cycle, assuming that a crewed vehicle would have comparable shielding. The measurements of radiological quantities made by RAD are important in themselves, and, the same data set allow for detailed analysis of GCR-induced particle spectra inside the spacecraft. This provides important inputs for the evaluation of current transport models used to model the free-space (and spacecraft) radiation environment for different spacecraft shielding and different times in the solar cycle. Changes in these conditions can lead to significantly different radiation fields and, thus, potential health risks, emphasizing the need for validated transport codes. Here, we present the first measurements of charged particle fluxes inside a spacecraft during the transit from Earth to Mars. Using data obtained during the last two month of the cruise to Mars (June 11-July 14, 2012), we have derived detailed energy spectra for low-Z particles stopping in the instrument's detectors, as well as integral fluxes for penetrating particles with higher energies. Furthermore, we analyze the temporal changes in measured proton fluxes during quiet solar periods (i.e., when no solar energetic particle events occurred) over the duration of the transit (December 9, 2011-July 14, 2012) and correlate them with changing heliospheric conditions.

  13. MSL's Widgets: Adding Rebustness to Martian Sample Acquisition, Handling, and Processing

    NASA Technical Reports Server (NTRS)

    Roumeliotis, Chris; Kennedy, Brett; Lin, Justin; DeGrosse, Patrick; Cady, Ian; Onufer, Nicholas; Sigel, Deborah; Jandura, Louise; Anderson, Robert; Katz, Ira; hide

    2013-01-01

    Mars Science Laboratory's (MSL) Sample Acquisition Sample Processing and Handling (SA-SPaH) system is one of the most ambitious terrain interaction and manipulation systems ever built and successfully used outside of planet earth. Mars has a ruthless environment that has surprised many who have tried to explore there. The robustness widget program was implemented by the MSL project to help ensure the SA-SPaH system would be robust enough to the surprises of this ruthless Martian environment. The robustness widget program was an effort of extreme schedule pressure and responsibility, but was accomplished with resounding success. This paper will focus on a behind the scenes look at MSL's robustness widgets: the particle fun zone, the wind guards, and the portioner pokers.

  14. Feeding People's Curiosity: Leveraging the Cloud for Automatic Dissemination of Mars Images

    NASA Technical Reports Server (NTRS)

    Knight, David; Powell, Mark

    2013-01-01

    Smartphones and tablets have made wireless computing ubiquitous, and users expect instant, on-demand access to information. The Mars Science Laboratory (MSL) operations software suite, MSL InterfaCE (MSLICE), employs a different back-end image processing architecture compared to that of the Mars Exploration Rovers (MER) in order to better satisfy modern consumer-driven usage patterns and to offer greater server-side flexibility. Cloud services are a centerpiece of the server-side architecture that allows new image data to be delivered automatically to both scientists using MSLICE and the general public through the MSL website (http://mars.jpl.nasa.gov/msl/).

  15. Carbon Isotopic Composition of CO2, Evolved During Perchlorate-Induced Reactions in Mars Analog Materials: Interpreting SAM/MSL Rocknest Data

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; McAdam, A. C.; Archer, P. D., Jr.; Bower, H.; Buch, A.; Eigenbrode, J.; Freissinet, C.; Franz, H. B.; Glavin, D.; Jones, J. H.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) Instrument Suite on the Mars Science Laboratory (MSL) Rover Curiosity made its first solid sample evolved gas analysis of unconsolidated material at aeolian bedform Rocknest in Gale Crater. The magnitude of O2 evolved in each run as well as the chlorinated hydrocarbons detected by SAM gas chromatograph/ mass spectrometer (GCMS) [1] suggest a chlorinated oxidant such as perchlorate in Rocknest materials [2]. Perchlorate induced combustion of organics present in the sample would contribute to the CO2 volatile inventory, possibly overlapping with CO2 from inorganic sources. The resulting carbon and oxygen isotopic composition of CO2 sent to the Tunable Laser Spectrometer (TLS) for analysis would represent mixed sources. This work was undertaken to better understand a) how well the carbon isotopic composition ( 13C) of CO2 from partially combusted products represents their source and b) how the 13C of combusted products can be deconvolved from other carbon sources such as thermal decomposition of carbonate.

  16. KSC-2011-7900

    NASA Image and Video Library

    2011-11-17

    CAPE CANAVERAL, Fla. -- In the Vertical Integration Facility at Space Launch Complex-41 on Cape Canaveral Air Force Station, spacecraft technicians install the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission on the Curiosity rover. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25. For more information, visit http://www.nasa.gov/msl. Photo credit: Department of Energy/Idaho National Laboratory

  17. Expedition 21 Commander De Winne poses for a photo with a MSL FLSS

    NASA Image and Video Library

    2009-10-14

    ISS021-E-018952 (14 Oct. 2009) --- European Space Agency astronaut Frank De Winne, Expedition 21 commander, is pictured with Materials Science Laboratory (MSL) hardware in the Kibo laboratory of the International Space Station.

  18. Curiosity's Mars Hand Lens Imager (MAHLI) Investigation

    USGS Publications Warehouse

    Edgett, Kenneth S.; Yingst, R. Aileen; Ravine, Michael A.; Caplinger, Michael A.; Maki, Justin N.; Ghaemi, F. Tony; Schaffner, Jacob A.; Bell, James F.; Edwards, Laurence J.; Herkenhoff, Kenneth E.; Heydari, Ezat; Kah, Linda C.; Lemmon, Mark T.; Minitti, Michelle E.; Olson, Timothy S.; Parker, Timothy J.; Rowland, Scott K.; Schieber, Juergen; Sullivan, Robert J.; Sumner, Dawn Y.; Thomas, Peter C.; Jensen, Elsa H.; Simmonds, John J.; Sengstacken, Aaron J.; Wilson, Reg G.; Goetz, Walter

    2012-01-01

    The Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) investigation will use a 2-megapixel color camera with a focusable macro lens aboard the rover, Curiosity, to investigate the stratigraphy and grain-scale texture, structure, mineralogy, and morphology of geologic materials in northwestern Gale crater. Of particular interest is the stratigraphic record of a ?5 km thick layered rock sequence exposed on the slopes of Aeolis Mons (also known as Mount Sharp). The instrument consists of three parts, a camera head mounted on the turret at the end of a robotic arm, an electronics and data storage assembly located inside the rover body, and a calibration target mounted on the robotic arm shoulder azimuth actuator housing. MAHLI can acquire in-focus images at working distances from ?2.1 cm to infinity. At the minimum working distance, image pixel scale is ?14 μm per pixel and very coarse silt grains can be resolved. At the working distance of the Mars Exploration Rover Microscopic Imager cameras aboard Spirit and Opportunity, MAHLI?s resolution is comparable at ?30 μm per pixel. Onboard capabilities include autofocus, auto-exposure, sub-framing, video imaging, Bayer pattern color interpolation, lossy and lossless compression, focus merging of up to 8 focus stack images, white light and longwave ultraviolet (365 nm) illumination of nearby subjects, and 8 gigabytes of non-volatile memory data storage.

  19. From Concept-to-Flight: An Active Active Fluid Loop Based Thermal Control System for Mars Science Laboratory Rover

    NASA Technical Reports Server (NTRS)

    Birur, Gajanana C.; Bhandari, Pradeep; Bame, David; Karlmann, Paul; Mastropietro, A. J.; Liu, Yuanming; Miller, Jennifer; Pauken, Michael; Lyra, Jacqueline

    2012-01-01

    The Mars Science Laboratory (MSL) rover, Curiosity, which was launched on November 26, 2011, incorporates a novel active thermal control system to keep the sensitive electronics and science instruments at safe operating and survival temperatures. While the diurnal temperature variations on the Mars surface range from -120 C to +30 C, the sensitive equipment are kept within -40 C to +50 C. The active thermal control system is based on a single-phase mechanically pumped fluid loop (MPFL) system which removes or recovers excess waste heat and manages it to maintain the sensitive equipment inside the rover at safe temperatures. This paper will describe the entire process of developing this active thermal control system for the MSL rover from concept to flight implementation. The development of the rover thermal control system during its architecture, design, fabrication, integration, testing, and launch is described.

  20. KSC-2011-6711

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a spacecraft technician from NASA's Jet Propulsion Laboratory conducts a visual inspection of the cooling tubes on the exterior of the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission following the MMRTG fit check on the Curiosity rover. At right is the Curiosity rover on an elevated work stand. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  1. KSC-2011-6712

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a spacecraft technician from NASA's Jet Propulsion Laboratory conducts a visual inspection of the cooling tubes on the exterior of the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission following the MMRTG fit check on the Curiosity rover. At right is the Curiosity rover on an elevated work stand. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  2. Ground Truth Mineralogy vs. Orbital Observations at the Bagnold Dune Field

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Downs, R. T.; Ming, D. W.; Rampe, E. B.; Morris, R. V.; Treiman, A. H.; Morrison, S. M.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.

    2017-01-01

    The Mars Science Laboratory (MSL) rover, Curiosity, is analyzing rock and sediments in Gale crater to provide in situ sedimentological, geochemical, and mineralogical assessments of the crater's geologic history. Curiosity's recent traverse through an active, basaltic eolian deposit, informally named the Bagnold Dunes, provided the opportunity for a multi-instrument investigation of the dune field.

  3. Data from the Mars Science Laboratory CheMin XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Vaniman, David; Blake, David; Bristow, Tom; DesMarais, David; Achilles, Cherie; Anderson, Robert; Crips, Joy; Morookian, John Michael; Spanovich, Nicole; Vasavada, Ashwin; hide

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity uses a Co tube source and a CCD detector to acquire mineralogy from diffracted primary X-rays and chemical information from fluoresced X-rays. CheMin has been operating at the MSL Gale Crater field site since August 5, 2012 and has provided the first X-ray diffraction (XRD) analyses in situ on a body beyond Earth. Data from the first sample collected, the Rocknest eolian soil, identify a basaltic mineral suite, predominantly plagioclase (approx.An50), forsteritic olivine (approx.Fo58), augite and pigeonite, consistent with expectation that detrital grains on Mars would reflect widespread basaltic sources. Minor phases (each <2 wt% of the crystalline component) include sanidine, magnetite, quartz, anhydrite, hematite and ilmenite. Significantly, about a third of the sample is amorphous or poorly ordered in XRD. This amorphous component is attested to by a broad rise in background centered at approx.27deg 2(theta) (Co K(alpha)) and may include volcanic glass, impact glass, and poorly crystalline phases including iron oxyhydroxides; a rise at lower 2(theta) may indicate allophane or hisingerite. Constraints from phase chemistry of the crystalline components, compared with a Rocknest bulk composition from the APXS instrument on Curiosity, indicate that in sum the amorphous or poorly crystalline components are relatively Si, Al, Mg-poor and enriched in Ti, Cr, Fe, K, P, S, and Cl. All of the identified crystalline phases are volatile-free; H2O, SO2 and CO2 volatile releases from a split of this sample analyzed by the SAM instrument on Curiosity are associated with the amorphous or poorly ordered materials. The Rocknest eolian soil may be a mixture of local detritus, mostly crystalline, with a regional or global set of dominantly amorphous or poorly ordered components. The Rocknest sample was targeted by MSL for "first time analysis" to demonstrate that a loose deposit could be scooped, sieved to

  4. The Mawrth Vallis region of Mars: A potential landing site for the Mars Science Laboratory (MSL) mission.

    PubMed

    Michalski, Joseph R; Jean-PierreBibring; Poulet, François; Loizeau, Damien; Mangold, Nicolas; Dobrea, Eldar Noe; Bishop, Janice L; Wray, James J; McKeown, Nancy K; Parente, Mario; Hauber, Ernst; Altieri, Francesca; Carrozzo, F Giacomo; Niles, Paul B

    2010-09-01

    The primary objective of NASA's Mars Science Laboratory (MSL) mission, which will launch in 2011, is to characterize the habitability of a site on Mars through detailed analyses of the composition and geological context of surface materials. Within the framework of established mission goals, we have evaluated the value of a possible landing site in the Mawrth Vallis region of Mars that is targeted directly on some of the most geologically and astrobiologically enticing materials in the Solar System. The area around Mawrth Vallis contains a vast (>1 × 10⁶ km²) deposit of phyllosilicate-rich, ancient, layered rocks. A thick (>150 m) stratigraphic section that exhibits spectral evidence for nontronite, montmorillonite, amorphous silica, kaolinite, saponite, other smectite clay minerals, ferrous mica, and sulfate minerals indicates a rich geological history that may have included multiple aqueous environments. Because phyllosilicates are strong indicators of ancient aqueous activity, and the preservation potential of biosignatures within sedimentary clay deposits is high, martian phyllosilicate deposits are desirable astrobiological targets. The proposed MSL landing site at Mawrth Vallis is located directly on the largest and most phyllosilicate-rich deposit on Mars and is therefore an excellent place to explore for evidence of life or habitability.

  5. Nitrogen and Martian Habitability: Insights from Five Years of Curiosity Measurements

    NASA Astrophysics Data System (ADS)

    Stern, J. C.; Sutter, B.; Navarro-Gonzalez, R.; McKay, C.; Ming, D. W.; Mahaffy, P. R.; Archer, D., Jr.; Franz, H. B.; Freissinet, C.; Jackson, W. A.; Conrad, P. G.; Glavin, D. P.; Trainer, M. G.; Malespin, C.; McAdam, A.; Eigenbrode, J. L.; Teinturier, S.; Manning, C.

    2017-12-01

    The detection of "fixed" N on Mars in the form of nitrate by the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover [1] has major implications for martian habitability. "Follow the nitrogen" has been proposed as a strategy in the search for both extant and extinct life on Mars [e.g., 2]. Nitrogen is so crucial to life on Earth that life developed metabolic pathways to break the triple bond of N2 and "fix" atmospheric nitrogen to more biologically available molecules for use in proteins and informational polymers. Sequestration of nitrate in regolith has long been predicted to contribute to the removal of N from the martian atmosphere [e.g., 3], and our detections confirm that nitrogen fixation was occurring on ancient Mars. Detections of fixed nitrogen, particularly within the context of the habitable environment in Yellowknife Bay characterized by the MSL payload, are an important tool to assess whether life ever could have existed on ancient Mars. We present 5 years of analyses and interpretation of nitrate in solid martian drilled and scooped samples by SAM on MSL. Nitrate abundance reported by SAM in situ measurements ranges from non-detection to 681 ± 304 mg/kg [1,4] in the samples examined to date. The measured abundances are consistent with nitrogen fixation via impact generated thermal shock on ancient Mars and/or dry deposition from photochemistry of thermospheric NO. We review the integration of SAM data with terrestrial Mars analog work in order to better understand the timing of nitrogen fixation and mobility of nitrogen on Mars, and thus its availability to putative biology. In particular, the relationship between nitrate and other soluble salts, such as perchlorate, may help reveal the timing of nitrogen fixation and post-depositional behavior of nitrate on Mars [4]. Finally, we present a comparison of isotopic composition (δ15N) of nitrate with δ15N of atmospheric nitrogen (δ15N ≈ 574‰, [5

  6. KSC-2011-7936

    NASA Image and Video Library

    2011-11-25

    CAPE CANAVERAL, Fla. – Ashwin Vasavada, deputy project scientist for the Mars Science Laboratory (MSL) at NASA's Jet Propulsion Laboratory, speaks to a group of Tweetup participants at NASA Kennedy Space Center's Press Site in Florida during prelaunch activities for the agency’s MSL launch. Pan Conrad, deputy principal investigator for the Sample Analysis at Mars (SAM) instrument on the Curiosity rover from NASA Goddard Space Flight Center, awaits her turn to speak, at right. Following a series of briefings, participants will tour the center and get a close-up view of Space Launch Complex-41 on Cape Canaveral Air Force Station. The tweeters will share their experiences with followers through the social networking site Twitter. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Liftoff of MSL aboard a United Launch Alliance Atlas V rocket from pad 41 is planned during a launch window which extends from 10:02 a.m. to 11:45 a.m. EST on Nov. 26. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Jim Grossmann

  7. KSC-2011-7898

    NASA Image and Video Library

    2011-11-17

    CAPE CANAVERAL, Fla. -- In the Vertical Integration Facility at Space Launch Complex-41 on Cape Canaveral Air Force Station, a turning fixture lowers the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission toward the radioisotope power system integration cart (RIC). Once the MMRTG is secured on the cart, it will be installed on the Curiosity rover. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25. For more information, visit http://www.nasa.gov/msl. Photo credit: Department of Energy/Idaho National Laboratory

  8. KSC-2011-7899

    NASA Image and Video Library

    2011-11-17

    CAPE CANAVERAL, Fla. -- In the Vertical Integration Facility at Space Launch Complex-41 on Cape Canaveral Air Force Station, the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission, secured to a turning fixture, is positioned on the radioisotope power system integration cart (RIC). The MMRTG will be installed on the Curiosity rover with the aid of the RIC. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25. For more information, visit http://www.nasa.gov/msl. Photo credit: Department of Energy/Idaho National Laboratory

  9. KSC-2011-7097

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – At the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, integration between a rocket-powered descent stage and NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, is complete. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  10. KSC-2011-7093

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – Under the watchful eyes of technicians at the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a rocket-powered descent stage, after being lowered by an overhead crane, is integrated with NASA's Mars Science Laboratory (MSL) rover, known as Curiosity. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  11. KSC-2011-7101

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – At the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, integration between a rocket-powered descent stage and NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, is complete. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  12. KSC-2011-7079

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – At the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, an overhead crane is being lowered over a rocket-powered descent stage for integration with NASA's Mars Science Laboratory (MSL) rover, known as Curiosity. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  13. KSC-2011-7076

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – At the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, will be integrated with a rocket-powered descent stage. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  14. KSC-2011-7103

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – At the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, integration between a rocket-powered descent stage and NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, is complete. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  15. KSC-2011-7095

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – At the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, integration between a rocket-powered descent stage and NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, is complete. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  16. KSC-2011-7096

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – At the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, integration between a rocket-powered descent stage and NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, is complete. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  17. KSC-2011-7088

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – Preparing for integration to NASA's Mars Science Laboratory (MSL) rover known as Curiosity, technicians help guide a rocket-powered descent stage over the rover at NASA's Kennedy Space Center Payload Hazardous Servicing Facility. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  18. KSC-2011-7086

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – At the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, an overhead crane lifts a rocket-powered descent stage for integration with NASA's Mars Science Laboratory (MSL) rover, known as Curiosity. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  19. KSC-2011-7075

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – At the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, will be integrated with a rocket-powered descent stage. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  20. KSC-2011-7087

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – Preparing for integration to NASA's Mars Science Laboratory (MSL) rover known as Curiosity, technicians help guide a rocket-powered descent stage over the rover at NASA's Kennedy Space Center Payload Hazardous Servicing Facility. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  1. KSC-2011-7100

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – At the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, integration between a rocket-powered descent stage and NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, is complete. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  2. KSC-2011-7102

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – At the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, integration between a rocket-powered descent stage and NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, is complete. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  3. KSC-2011-7089

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – Under the watchful eyes of technicians at the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, an overhead crane lowers a rocket-powered descent stage over NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, for integration. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  4. KSC-2011-7083

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – Technicians, at the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, use an overhead crane to move a rocket-powered descent stage for integration with NASA's Mars Science Laboratory (MSL) rover, known as Curiosity. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  5. KSC-2011-7099

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – At the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, integration between a rocket-powered descent stage and NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, is complete. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  6. KSC-2011-7091

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – Technicians at the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, guide an overhead crane as it lowers a rocket-powered descent stage over NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, for integration. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  7. KSC-2011-7085

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – Under the watchful eyes of technicians at the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, an overhead crane begins lifting a rocket-powered descent stage for integration with NASA's Mars Science Laboratory (MSL) rover, known as Curiosity. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  8. KSC-2011-7094

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – At the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, a rocket-powered descent stage, after being lowered by an overhead crane, is integrated with NASA's Mars Science Laboratory (MSL) rover, known as Curiosity. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  9. KSC-2011-7098

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – At the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, integration between a rocket-powered descent stage and NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, is complete. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  10. KSC-2011-7077

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – At the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, will be integrated with a rocket-powered descent stage (shown here to the left of the rover). The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  11. KSC-2011-7092

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – Under the watchful eyes of technicians at the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a rocket-powered descent stage, after being lowered by an overhead crane, is integrated with NASA's Mars Science Laboratory (MSL) rover, known as Curiosity. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  12. KSC-2011-7082

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – At the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, technicians carefully monitor the attachment of an overhead crane to a rocket-powered descent stage which will be integrated with NASA's Mars Science Laboratory (MSL) rover, known as Curiosity (in the foreground). The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  13. KSC-2011-7074

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – At the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, technicians prepare NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, for integration with a rocket-powered descent stage. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  14. KSC-2011-7090

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – Technicians at the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, guide an overhead crane as it lowers a rocket-powered descent stage over NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, for integration. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  15. KSC-2011-7078

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – At the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, technicians dressed in clean room attire, known as "bunny" suits, prepare a rocket-powered descent stage for integration with NASA's Mars Science Laboratory (MSL) rover, known as Curiosity. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  16. KSC-2011-7081

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – At the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, technicians carefully monitor the attachment of an overhead crane to a rocket-powered descent stage which will be integrated with NASA's Mars Science Laboratory (MSL) rover, known as Curiosity. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  17. KSC-2011-7084

    NASA Image and Video Library

    2011-09-23

    CAPE CANAVERAL, Fla. – At the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians use an overhead crane to move a rocket-powered descent stage for integration with NASA's Mars Science Laboratory (MSL) rover, known as Curiosity. The descent stage will lower Curiosity to the surface of Mars. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  18. Mars Descent Imager for Curiosity

    NASA Image and Video Library

    2010-07-19

    A pocketknife provides scale for this image of the Mars Descent Imager camera; the camera will fly on the Curiosity rover of NASA Mars Science Laboratory mission. Malin Space Science Systems, San Diego, Calif., supplied the camera for the mission.

  19. AtMSL9 and AtMSL10: Sensors of plasma membrane tension in Arabidopsis roots.

    PubMed

    Peyronnet, Rémi; Haswell, Elizabeth S; Barbier-Brygoo, Hélène; Frachisse, Jean-Marie

    2008-09-01

    Plant cells, like those of animals and bacteria, are able to sense physical deformation of the plasma membrane. Mechanosensitive (MS) channels are proteins that transduce mechanical force into ion flux, providing a mechanism for the perception of mechanical stimuli such as sound, touch and osmotic pressure. We recently identified AtMSL9 and AtMSL10, two mechanosensitive channels in Arabidopsis thaliana, as molecular candidates for mechanosensing in higher plants.1 AtMSL9 and AtMSL10 are members of a family of proteins in Arabidopsis that are related to the bacterial MS channel MscS, termed MscS-Like (or MSL).2 MscS (Mechanosensitive channel of Small conductance) is one of the best-characterized MS channels, first identified as an electrophysiological activity in the plasma membrane (PM) of giant E. coli spheroplasts.3,4 Activation of MscS is voltage-independent, but responds directly to tension applied to the membrane and does not require other cellular proteins for this regulation.5,6 MscS family members are widely distributed throughout bacterial and archaeal genomes, are present in all plant genomes yet examined, and are found in selected fungal genomes.2,7,8 MscS homolgues have not yet been identified in animals.

  20. Curiosity Trek

    NASA Image and Video Library

    2015-12-10

    The Mars Science Laboratory, Curiosity, continues its exciting traverse of Mars. In an image acquired in September, it was exploring the boundary between two rock units: the light-toned Murray Formation and the overlying and darker-toned Stimson unit. We can clearly see the rover in a complex terrain marked by tonally varied rocks, which on the surface, can correspond to the contact between rock units and dark sand. http://photojournal.jpl.nasa.gov/catalog/PIA20211

  1. KSC-2011-8028

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket stands ready for launch at Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Courtesy: Scott Andrews/Canon

  2. KSC-2011-8026

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket stands ready for launch at Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Courtesy: Scott Andrews/Canon

  3. Assessment of the Reconstructed Aerodynamics of the Mars Science Laboratory Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Schoenenberger, Mark; Van Norman, John W.; Dyakonov, Artem A.; Karlgaard, Christopher D.; Way, David W.; Kutty, Prasad

    2013-01-01

    On August 5, 2012, the Mars Science Laboratory entry vehicle successfully entered Mars atmosphere, flying a guided entry until parachute deploy. The Curiosity rover landed safely in Gale crater upon completion of the Entry Descent and Landing sequence. This paper compares the aerodynamics of the entry capsule extracted from onboard flight data, including Inertial Measurement Unit (IMU) accelerometer and rate gyro information, and heatshield surface pressure measurements. From the onboard data, static force and moment data has been extracted. This data is compared to preflight predictions. The information collected by MSL represents the most complete set of information collected during Mars entry to date. It allows the separation of aerodynamic performance from atmospheric conditions. The comparisons show the MSL aerodynamic characteristics have been identified and resolved to an accuracy better than the aerodynamic database uncertainties used in preflight simulations. A number of small anomalies have been identified and are discussed. This data will help revise aerodynamic databases for future missions and will guide computational fluid dynamics (CFD) development to improved prediction codes.

  4. Testing Precision of Movement of Curiosity Robotic Arm

    NASA Image and Video Library

    2012-02-22

    A NASA Mars Science Laboratory test rover called the Vehicle System Test Bed, or VSTB, at NASA Jet Propulsion Laboratory, Pasadena, CA serves as the closest double for Curiosity in evaluations of the mission hardware and software.

  5. MSL Lessons Learned and Knowledge Capture

    NASA Technical Reports Server (NTRS)

    Buxbaum, Karen L.

    2012-01-01

    The Mars Program has recently been informed of the Planetary Protection Subcommittee (PPS) recommendation, which was endorsed by the NAC, concerning Mars Science Lab (MSL) lessons learned and knowledge capture. The Mars Program has not had an opportunity to consider any decisions specific to the PPS recommendation. Some of the activities recommended by the PPS would involve members of the MSL flight team who are focused on cruise, entry descent & landing, and early surface operations; those activities would have to wait. Members of the MSL planetary protection team at JPL are still available to support MSL lessons learned and knowledge capture; some of the specifically recommended activities have already begun. The Mars Program shares the PPS/NAC concerns about loss of potential information & expertise in planetary protection practice.

  6. Fully Automated Single-Zone Elliptic Grid Generation for Mars Science Laboratory (MSL) Aeroshell and Canopy Geometries

    NASA Technical Reports Server (NTRS)

    kaul, Upender K.

    2008-01-01

    A procedure for generating smooth uniformly clustered single-zone grids using enhanced elliptic grid generation has been demonstrated here for the Mars Science Laboratory (MSL) geometries such as aeroshell and canopy. The procedure obviates the need for generating multizone grids for such geometries, as reported in the literature. This has been possible because the enhanced elliptic grid generator automatically generates clustered grids without manual prescription of decay parameters needed with the conventional approach. In fact, these decay parameters are calculated as decay functions as part of the solution, and they are not constant over a given boundary. Since these decay functions vary over a given boundary, orthogonal grids near any arbitrary boundary can be clustered automatically without having to break up the boundaries and the corresponding interior domains into various zones for grid generation.

  7. KSC-2011-7896

    NASA Image and Video Library

    2011-11-17

    CAPE CANAVERAL, Fla. -- In the Vertical Integration Facility at Space Launch Complex-41 on Cape Canaveral Air Force Station, the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission is uncovered during preparations to install it on MSL's Curiosity rover. The mesh container, known as the "gorilla cage," is suspended above the generator as it is lifted off the MMRTG's support base. The cage protects the MMRTG during transport and allows any excess heat generated to dissipate into the air. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25. For more information, visit http://www.nasa.gov/msl. Photo credit: Department of Energy/Idaho National Laboratory

  8. KSC-2011-7895

    NASA Image and Video Library

    2011-11-17

    CAPE CANAVERAL, Fla. -- In the Vertical Integration Facility at Space Launch Complex-41 on Cape Canaveral Air Force Station, spacecraft technicians guide the mesh container protecting the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission as a crane lifts it from around the generator. The container, known as the "gorilla cage," protects the MMRTG during transport and allows any excess heat generated to dissipate into the air. Next, the MMRTG will be installed on MSL's Curiosity rover. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25. For more information, visit http://www.nasa.gov/msl. Photo credit: Department of Energy/Idaho National Laboratory

  9. Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity rover.

    PubMed

    Hassler, Donald M; Zeitlin, Cary; Wimmer-Schweingruber, Robert F; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L; Brinza, David E; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P

    2014-01-24

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.

  10. Aerodynamic Interference Due to MSL Reaction Control System

    NASA Technical Reports Server (NTRS)

    Dyakonov, Artem A.; Schoenenberger, Mark; Scallion, William I.; VanNorman, John W.; Novak, Luke A.; Tang, Chun Y.

    2009-01-01

    An investigation of effectiveness of the reaction control system (RCS) of Mars Science Laboratory (MSL) entry capsule during atmospheric flight has been conducted. The reason for the investigation is that MSL is designed to fly a lifting actively guided entry with hypersonic bank maneuvers, therefore an understanding of RCS effectiveness is required. In the course of the study several jet configurations were evaluated using Langley Aerothermal Upwind Relaxation Algorithm (LAURA) code, Data Parallel Line Relaxation (DPLR) code, Fully Unstructured 3D (FUN3D) code and an Overset Grid Flowsolver (OVERFLOW) code. Computations indicated that some of the proposed configurations might induce aero-RCS interactions, sufficient to impede and even overwhelm the intended control torques. It was found that the maximum potential for aero-RCS interference exists around peak dynamic pressure along the trajectory. Present analysis largely relies on computational methods. Ground testing, flight data and computational analyses are required to fully understand the problem. At the time of this writing some experimental work spanning range of Mach number 2.5 through 4.5 has been completed and used to establish preliminary levels of confidence for computations. As a result of the present work a final RCS configuration has been designed such as to minimize aero-interference effects and it is a design baseline for MSL entry capsule.

  11. Mars Science Laboratory Propulsive Maneuver Design and Execution

    NASA Technical Reports Server (NTRS)

    Wong, Mau C.; Kangas, Julie A.; Ballard, Christopher G.; Gustafson, Eric D.; Martin-Mur, Tomas J.

    2012-01-01

    The NASA Mars Science Laboratory (MSL) rover, Curiosity, was launched on November 26, 2011 and successfully landed at the Gale Crater on Mars. For the 8-month interplanetary trajectory from Earth to Mars, five nominal and two contingency trajectory correction maneuvers (TCM) were planned. The goal of these TCMs was to accurately deliver the spacecraft to the desired atmospheric entry aimpoint in Martian atmosphere so as to ensure a high probability of successful landing on the Mars surface. The primary mission requirements on maneuver performance were the total mission propellant usage and the entry flight path angle (EFPA) delivery accuracy. They were comfortably met in this mission. In this paper we will describe the spacecraft propulsion system, TCM constraints and requirements, TCM design processes, and their implementation and verification.

  12. KSC-2011-8020

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket begins to liftoff from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kenny Allen

  13. KSC-2011-8037

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket lifts off from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Ken Thornsley

  14. KSC-2011-8038

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V lifts off from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Ken Thornsley

  15. KSC-2011-7978

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket prepares to liftoff from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/George Roberts

  16. KSC-2011-8021

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket begins to liftoff from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kenny Allen

  17. KSC-2011-8010

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- The United Launch Alliance Atlas V rocket carrying NASA's Mars Science Laboratory (MSL) spacecraft begins to rise from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Tony Gray and Rick Wetherington

  18. KSC-2011-8022

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket lifts off from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kenny Allen

  19. KSC-2011-8027

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket rolls toward the launch pad at Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Courtesy: Scott Andrews/Canon

  20. KSC-2011-8019

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket begins to liftoff from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kenny Allen

  1. KSC-2011-7981

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket prepares to liftoff from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/George Roberts

  2. KSC-2011-7980

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket prepares to liftoff from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/George Roberts

  3. KSC-2011-7979

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket prepares to liftoff from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/George Roberts

  4. The Ricor K508 cryocooler operational experience on Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Dean L.; Lysek, Mark J.; Morookian, John Michael

    The Mars Science Laboratory (Curiosity) landed successfully on Mars on August 5, 2012, eight months after launch. The chosen landing site of Gale Crater, located at 4.5 degrees south latitude, 137.4 degrees east longitude, has provided a much more benign environment than was originally planned for during the critical design and integration phases of the MSL Project when all possible landing sites were still being considered. The expected near-surface atmospheric temperatures at the Gale Crater landing site during Curiosity's primary mission (1 Martian year or 687 Earth days) are from −90°C to 0°C. However, enclosed within Curiosity's thermal control fluidmore » loops the Chemistry and Mineralogy (CheMin) instrument is maintained at approximately +20°C. The CheMin instrument uses X-ray diffraction spectroscopy to make precise measurements of mineral constituents of Mars rocks and soil. The instrument incorporated the commercially available Ricor K508 Stirling cycle cryocooler to cool the CCD detector. After several months of brushing itself off, stretching and testing out its subsystems, Curiosity began the exploration of the Mars surface in October 2012. The CheMin instrument on the Mars Science Laboratory (MSL) received its first soil sample from Curiosity on October 24, and successfully analyzed its first soil sample. After a brief review of the rigorous Ricor K508 cooler qualification tests and life tests based on the original MSL environmental requirements this paper presents final pre-launch instrument integration and testing results, and details the operational data of the CheMin cryocooler, providing a snapshot of the resulting CheMin instrument analytical data.« less

  5. Pressure and Humidity Measurements at the MSL Landing Site Supported by Modeling of the Atmospheric Conditions

    NASA Astrophysics Data System (ADS)

    Harri, A.; Savijarvi, H. I.; Schmidt, W.; Genzer, M.; Paton, M.; Kauhanen, J.; Atlaskin, E.; Polkko, J.; Kahanpaa, H.; Kemppinen, O.; Haukka, H.

    2012-12-01

    The Mars Science Laboratory (MSL) called Curiosity Rover landed safely on the Martian surface at the Gale crater on 6th August 2012. Among the MSL scientific objectives are investigations of the Martian environment that will be addressed by the Rover Environmental Monitoring Station (REMS) instrument. It will investigate habitability conditions at the Martian surface by performing a versatile set of environmental measurements including accurate observations of pressure and humidity of the Martian atmosphere. This paper describes the instrumental implementation of the MSL pressure and humidity measurement devices and briefly analyzes the atmospheric conditions at the Gale crater by modeling efforts using an atmospheric modeling tools. MSL humidity and pressure devices are based on proprietary technology of Vaisala, Inc. Humidity observations make use of Vaisala Humicap® relative humidity sensor heads and Vaisala Barocap® sensor heads are used for pressure observations. Vaisala Thermocap® temperature sensors heads are mounted in a close proximity of Humicap® and Barocap® sensor heads to enable accurate temperature measurements needed for interpretation of Humicap® and Barocap® readings. The sensor heads are capacitive. The pressure and humidity devices are lightweight and are based on a low-power transducer controlled by a dedicated ASIC. The transducer is designed to measure small capacitances in order of a few pF with resolution in order of 0.1fF (femtoFarad). The transducer design has a good spaceflight heritage, as it has been used in several previous missions, for example Mars mission Phoenix as well as the Cassini Huygens mission. The humidity device has overall dimensions of 40 x 25 x 55 mm. It weighs18 g, and consumes 15 mW of power. It includes 3 Humicap® sensor heads and 1 Thermocap®. The transducer electronics and the sensor heads are placed on a single multi-layer PCB protected by a metallic Faraday cage. The Humidity device has measurement range

  6. Curiosity about people: the development of a social curiosity measure in adults.

    PubMed

    Renner, Britta

    2006-12-01

    Curiosity refers to the desire for acquiring new information. The aim of this study was to develop a questionnaire to assess social curiosity, that is, interest in how other people think, feel, and behave. The questionnaire was administered to 312 participants. Factor analyses of the 10-item Social Curiosity Scale (SCS) yielded 2 factors: General Social Curiosity and Covert Social Curiosity. Evidence of convergent validity was provided by moderately high correlations of the SCS with other measures of curiosity and self-perceived curiosity, whereas discriminant validity was demonstrated by low correlations of the SCS with other personality traits, such as neuroticism and agreeableness. Of interest, social interaction anxiety was observed to facilitate covert social curiosity while inhibiting general social curiosity.

  7. KSC-2011-8013

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- At ignition, a glow of flame is barely visible beneath the United Launch Alliance Atlas V rocket as it launches with NASA's Mars Science Laboratory (MSL) spacecraft. MSL lifted off from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Tony Gray and Rick Wetherington

  8. KSC-2011-8009

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- Smoke and steam billow from the main engine of the United Launch Alliance Atlas V rocket as it launches with NASA's Mars Science Laboratory (MSL) spacecraft. MSL lifted off from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Tony Gray and Rick Wetherington

  9. Solar Energetic Particle Events Observed on Mars with MSL/RAD

    NASA Astrophysics Data System (ADS)

    Ehresmann, B.; Hassler, D.; Zeitlin, C.; Guo, J.; Wimmer-Schweingruber, R. F.; Appel, J. K.; Boehm, E.; Boettcher, S. I.; Brinza, D. E.; Burmeister, S.; Lohf, H.; Martin-Garcia, C.; Rafkin, S. C.; Posner, A.; Reitz, G.

    2016-12-01

    The Mars Science Laboratory's Radiation Assessment Detector (MSL/RAD) has been conducting measurements of the ionizing radiation field on the Martian surface since August 2012. While this field is mainly dominated by Galactic Cosmic Rays (GCRs) and their interactions with the atoms in the atmosphere and soil, Solar Energetic Particle (SEP) events can contribute significantly to the radiation environment on short time scales and enhance and dominate, in particular, the Martian surface proton flux. Monitoring and understanding the effects of these SEP events on the radiation environment is of great importance to assess the associated health risks for potential, future manned missions to Mars. Furthermore, measurements of the proton spectra during such events aids in the validation of particle transport codes that are used to model the propagation of SEPs through the Martian atmosphere. Comparing the temporal evolution of the SEP events signals detected by MSL/RAD with measurements from other spacecraft can further yield insight into SEP propagation throughout the heliosphere. Here, we present and overview of measurements of the SEP events that have been directly detected on the Martian surface by the MSL/RAD instrument.

  10. Sealed Organic Check Material on Curiosity

    NASA Image and Video Library

    2012-09-10

    NASA Mars rover Curiosity carries five cylindrical blocks of organic check material for use in a control experiment if the rover Sample Analysis at Mars SAM laboratory detects any organic compounds in samples of Martian soil or powdered rock.

  11. KSC-2011-6715

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, spacecraft technicians from NASA's Jet Propulsion Laboratory park the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission on its support base in the airlock following the MMRTG fit check on the Curiosity rover in the high bay. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  12. KSC-2011-6710

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a spacecraft technician from NASA's Jet Propulsion Laboratory conducts a visual inspection of the cooling tubes on the exterior of the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission following the MMRTG fit check on the Curiosity rover. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  13. KSC-2011-6713

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a spacecraft technician from NASA's Jet Propulsion Laboratory conducts a visual inspection of the cooling tubes on the exterior of the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission following the MMRTG fit check on the Curiosity rover. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  14. KSC-2011-6714

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, spacecraft technicians from NASA's Jet Propulsion Laboratory roll the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission on its support base from the high bay into the airlock following the MMRTG fit check on the Curiosity rover. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  15. KSC-2011-7894

    NASA Image and Video Library

    2011-11-17

    CAPE CANAVERAL, Fla. -- At Space Launch Complex-41 on Cape Canaveral Air Force Station, spacecraft technicians in the Vertical Integration Facility prepare to install the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission on the Curiosity rover. The MMRTG is enclosed in a protective mesh container, known as the "gorilla cage," which protects it during transport and allows any excess heat generated to dissipate into the air. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25. For more information, visit http://www.nasa.gov/msl. Photo credit: Department of Energy/Idaho National Laboratory

  16. Close Look at Curiosity First Drive

    NASA Image and Video Library

    2010-07-29

    A test operator in clean-room garb observes rolling of the wheels during the first drive test of NASA Curiosity rover, on July 23, 2010. Technicians and engineers conducted the drive test at the Jet Propulsion Laboratory in Pasadena, Calif.

  17. Color Camera for Curiosity Robotic Arm

    NASA Image and Video Library

    2010-11-16

    The Mars Hand Lens Imager MAHLI camera will fly on NASA Mars Science Laboratory mission, launching in late 2011. This photo of the camera was taken before MAHLI November 2010 installation onto the robotic arm of the mission Mars rover, Curiosity.

  18. Atmosphere Assessment for MARS Science Laboratory Entry, Descent and Landing Operations

    NASA Technical Reports Server (NTRS)

    Cianciolo, Alicia D.; Cantor, Bruce; Barnes, Jeff; Tyler, Daniel, Jr.; Rafkin, Scot; Chen, Allen; Kass, David; Mischna, Michael; Vasavada, Ashwin R.

    2013-01-01

    On August 6, 2012, the Mars Science Laboratory rover, Curiosity, successfully landed on the surface of Mars. The Entry, Descent and Landing (EDL) sequence was designed using atmospheric conditions estimated from mesoscale numerical models. The models, developed by two independent organizations (Oregon State University and the Southwest Research Institute), were validated against observations at Mars from three prior years. In the weeks and days before entry, the MSL "Council of Atmospheres" (CoA), a group of atmospheric scientists and modelers, instrument experts and EDL simulation engineers, evaluated the latest Mars data from orbiting assets including the Mars Reconnaissance Orbiter's Mars Color Imager (MARCI) and Mars Climate Sounder (MCS), as well as Mars Odyssey's Thermal Emission Imaging System (THEMIS). The observations were compared to the mesoscale models developed for EDL performance simulation to determine if a spacecraft parameter update was necessary prior to entry. This paper summarizes the daily atmosphere observations and comparison to the performance simulation atmosphere models. Options to modify the atmosphere model in the simulation to compensate for atmosphere effects are also presented. Finally, a summary of the CoA decisions and recommendations to the MSL project in the days leading up to EDL is provided.

  19. Lowering SAM Instrument into Curiosity Mars Rover

    NASA Image and Video Library

    2011-01-18

    In this photograph, technicians and engineers inside a clean room at NASA Jet Propulsion Laboratory, Pasadena, Calif., position NASA Sample Analysis at Mars SAM above the mission Mars rover, Curiosity, for installing the instrument.

  20. Installing SAM Instrument into Curiosity Mars Rover

    NASA Image and Video Library

    2011-01-18

    In this photograph, technicians and engineers inside a clean room at NASA Jet Propulsion Laboratory, Pasadena, Calif., position NASA Sample Analysis at Mars SAM above the mission Mars rover, Curiosity, for installing the instrument.

  1. Curiosity ChemCam Finds High-Silica Mars Rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frydenvang, Jens

    A team of scientists, including one from Los Alamos National Laboratory, has found much higher concentrations of silica at some sites the Curiosity rover has investigated in the past seven months than anywhere else it has visited since landing on Mars 40 months ago. The first discovery was as Curiosity approached the area “Marias Pass,” where a lower geological unit contacts an overlying one. ChemCam, the rover’s laser-firing instrument for checking rock composition from a distance, detected bountiful silica in some targets the rover passed along the way to the contact zone. The ChemCam instrument was developed at Los Alamosmore » in partnership with the French IRAP laboratory in Toulouse and the French Space Agency. “The high silica was a surprise,” said Jens Frydenvang of Los Alamos National Laboratory and the University of Copenhagen, also a Curiosity science team member. “While we’re still working with multiple hypotheses on how the silica got so enriched, these hypotheses all require considerable water activity, and on Earth high silica deposits are often associated with environments that provide excellent support for microbial life. Because of this, the science team agreed to make a rare backtrack to investigate it more.”« less

  2. Characterization of Aerodynamic Interactions with the Mars Science Laboratory Reaction Control System Using Computation and Experiment

    NASA Technical Reports Server (NTRS)

    Schoenenberger, Mark; VanNorman, John; Rhode, Matthew; Paulson, John

    2013-01-01

    On August 5 , 2012, the Mars Science Laboratory (MSL) entry capsule successfully entered Mars' atmosphere and landed the Curiosity rover in Gale Crater. The capsule used a reaction control system (RCS) consisting of four pairs of hydrazine thrusters to fly a guided entry. The RCS provided bank control to fly along a flight path commanded by an onboard computer and also damped unwanted rates due to atmospheric disturbances and any dynamic instabilities of the capsule. A preliminary assessment of the MSL's flight data from entry showed that the capsule flew much as predicted. This paper will describe how the MSL aerodynamics team used engineering analyses, computational codes and wind tunnel testing in concert to develop the RCS system and certify it for flight. Over the course of MSL's development, the RCS configuration underwent a number of design iterations to accommodate mechanical constraints, aeroheating concerns and excessive aero/RCS interactions. A brief overview of the MSL RCS configuration design evolution is provided. Then, a brief description is presented of how the computational predictions of RCS jet interactions were validated. The primary work to certify that the RCS interactions were acceptable for flight was centered on validating computational predictions at hypersonic speeds. A comparison of computational fluid dynamics (CFD) predictions to wind tunnel force and moment data gathered in the NASA Langley 31-Inch Mach 10 Tunnel was the lynch pin to validating the CFD codes used to predict aero/RCS interactions. Using the CFD predictions and experimental data, an interaction model was developed for Monte Carlo analyses using 6-degree-of-freedom trajectory simulation. The interaction model used in the flight simulation is presented.

  3. Curiosity at Center of Attention During Test

    NASA Image and Video Library

    2010-07-29

    Technicians and engineers in clean-room garb monitor the first drive test of NASA Curiosity rover, on July 23, 2010. Technicians and engineers conducted the drive test at the Jet Propulsion Laboratory in Pasadena, Calif.

  4. Bringing a Chemical Laboratory Named Sam to Mars on the 2011 Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Bleacher, L.; Jones, A.; Conrad, P. G.; Cabane, M.; Webster, C. R.; Atreya, S. A.; Manning, H.

    2010-01-01

    An important goal of upcoming missions to Mars is to understand if life could have developed there. The task of the Sample Analysis at Mars (SAM) suite of instruments [1] and the other Curiosity investigations [2] is to move us steadily toward that goal with an assessment of the habitability of our neighboring planet through a series of chemical and geological measurements. SAM is designed to search for organic compounds and inorganic volatiles and measure isotope ratios. Other instruments on Curiosity will provide elemental analysis and identify minerals. SAM will analyze both atmospheric samples and gases evolved from powdered rocks that may have formed billions of years ago with Curiosity providing access to interesting sites scouted by orbiting cameras and spectrometers.

  5. Isotopes of nitrogen on Mars: Atmospheric measurements by Curiosity's mass spectrometer

    PubMed Central

    Wong, Michael H; Atreya, Sushil K; Mahaffy, Paul N; Franz, Heather B; Malespin, Charles; Trainer, Melissa G; Stern, Jennifer C; Conrad, Pamela G; Manning, Heidi L K; Pepin, Robert O; Becker, Richard H; McKay, Christopher P; Owen, Tobias C; Navarro-González, Rafael; Jones, John H; Jakosky, Bruce M; Steele, Andrew

    2013-01-01

    [1] The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) measured a Mars atmospheric14N/15N ratio of 173 ± 11 on sol 341 of the mission, agreeing with Viking's measurement of 168 ± 17. The MSL/SAM value was based on Quadrupole Mass Spectrometer measurements of an enriched atmospheric sample, with CO2 and H2O removed. Doubly ionized nitrogen data at m/z 14 and 14.5 had the highest signal/background ratio, with results confirmed by m/z 28 and 29 data. Gases in SNC meteorite glasses have been interpreted as mixtures containing a Martian atmospheric component, based partly on distinctive14N/15N and40Ar/14N ratios. Recent MSL/SAM measurements of the40Ar/14N ratio (0.51 ± 0.01) are incompatible with the Viking ratio (0.35 ± 0.08). The meteorite mixing line is more consistent with the atmospheric composition measured by Viking than by MSL. PMID:26074632

  6. KSC-2011-8006

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- NASA's Mars Science Laboratory (MSL) spacecraft, sealed inside the payload fairing of the United Launch Alliance Atlas V rocket, rises from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Tony Gray and Rick Wetherington

  7. KSC-2011-7961

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL – Launch controllers oversee the countdown in the Atlas V Spaceflight Operations Center (ASOC) before the launch of the Mars Science Laboratory on an Atlas V rocket. MSL lifted off at 10:02 a.m. EST Nov. 26, beginning a 9-month interplanetary cruise to Mars. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  8. KSC-2011-8015

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- The United Launch Alliance Atlas V rocket carrying NASA's Mars Science Laboratory (MSL) spacecraft rides a plume of flames as it lifts off from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Tony Gray and Rick Wetherington

  9. KSC-2011-7965

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL – Launch controllers oversee the countdown in the Atlas V Spaceflight Operations Center (ASOC) before the launch of the Mars Science Laboratory on an Atlas V rocket. MSL lifted off at 10:02 a.m. EST Nov. 26, beginning a 9-month interplanetary cruise to Mars. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  10. KSC-2011-8003

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket begins to liftoff from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Tony Gray and Rick Wetherington

  11. KSC-2011-8031

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket rides smoke and flames as it rises from the launch pad at Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Courtesy: Scott Andrews/Canon

  12. KSC-2011-8024

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket rides a plume of flames as it climbs into the sky over Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kenny Allen

  13. KSC-2011-8011

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- The United Launch Alliance Atlas V rocket carrying NASA's Mars Science Laboratory (MSL) spacecraft rides a plume of flames as it lifts off from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Tony Gray and Rick Wetherington

  14. KSC-2011-8016

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- The United Launch Alliance Atlas V rocket carrying NASA's Mars Science Laboratory (MSL) spacecraft rides a plume of flames as it clears the tower at Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Tony Gray and Rick Wetherington

  15. KSC-2011-8018

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket lifts off from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Tony Gray and Rick Wetherington

  16. KSC-2011-7959

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL – Launch controllers oversee the countdown in the Atlas V Spaceflight Operations Center (ASOC) before the launch of the Mars Science Laboratory on an Atlas V rocket. MSL lifted off at 10:02 a.m. EST Nov. 26, beginning a 9-month interplanetary cruise to Mars. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  17. KSC-2011-7960

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL – Launch controllers oversee the countdown in the Atlas V Spaceflight Operations Center (ASOC) before the launch of the Mars Science Laboratory on an Atlas V rocket. MSL lifted off at 10:02 a.m. EST Nov. 26, beginning a 9-month interplanetary cruise to Mars. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  18. KSC-2011-7964

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL – Launch managers from NASA and United Launch Alliance oversee the countdown in the Atlas V Spaceflight Operations Center (ASOC) before the launch of the Mars Science Laboratory on an Atlas V rocket. MSL lifted off at 10:02 a.m. EST Nov. 26, beginning a 9-month interplanetary cruise to Mars. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  19. KSC-2011-8040

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket rides a tall pillar of smoke and flames as it soars over Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Ken Thornsley

  20. KSC-2011-8034

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket rides smoke and flames as it rises from the launch pad at Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Courtesy: Scott Andrews/Canon

  1. In Situ Analysis of Mars Soil and Rocks Sample with the Sam Gcms Instrumentation Onboard Curiosity : Interpretation and Comparison of Measurements Done during the First Martian Year of Curiosity on Mars

    NASA Astrophysics Data System (ADS)

    Szopa, C.; Coll, P. J.; Cabane, M.; Buch, A.; Coscia, D.; Millan, M.; Francois, P.; Belmahadi, I.; Teinturier, S.; Navarro-Gonzalez, R.; Glavin, D. P.; Freissinet, C.; Steele, A.; Eigenbrode, J. L.; Mahaffy, P. R.

    2014-12-01

    The characterisation of the chemical and mineralogical composition of solid surface samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal (heating up to about 900°C)/chemical (derivatization procedure) treatment of any soil sample collected by the Curiosity rover. With the aim to search for potential organic molecules outgassed from the samples, SAM-GC analytical channels composed of thermal-desorption injector, and a MXT-CLP or a MXT-Q chromatographic column was chosen to achieve all the measurements done up today, with the aim to separate of a wide range of volatile inorganic and organic molecules. Four solid samples have been analyzed with GCMS, one sand sample collected at the Rocknest site, two rock samples (John Klein and Cumberland respectively) collected at the Yellowknife Bay site using the Curiosity driller, and one rock sample collected at the Kimberly site. All the measurements were successful and they produced complex chromatograms with both detectors used for SAM GC, i.e. a thermal conductivity detector and the SAM quandrupole mass spectrometer. Their interpretation already revealed the presence of an oxychlorine phase present in the sample which is at the origin of chlorohydrocarbons clearly identified [2] but this represents only a fraction of the GCMS signal recorded [3,4]. This work presents a systematic comparison of the GCMS measurements done for the different samples collected, supported by reference data obtained in laboratory with different spare models of the gas chromatograph, with the aim to bring new elements of interpretation of the SAM measurements. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Leshin L. et al. (2013

  2. OARE STS-94 (MSL-1R)

    NASA Technical Reports Server (NTRS)

    Rice, James E.

    1998-01-01

    The report is organized into sections representing the phases of work performed in analyzing the STS-94 (MSL-IR) results. STS-94 (MSL1R) is a reflight of the STS-83 (MSL-1) mission which was terminated early because of a fuel cell problem. Section I briefly outlines the OARE system features, coordinates, and measurement parameters. Section 2 describes the results from STS-94. The mission description, data calibration, and representative data obtained on STS-94 are presented. Also, the anomalous performance of OARE on STS-94 is discussed. Finally, Section 3 presents a discussion of accuracy achieved and achievable with OARE. Appendix A discuss the calibration and data processing methodology in detail.

  3. Bright Days Ahead for Curiosity Mars Rover

    NASA Image and Video Library

    2011-03-18

    This image shows preparation for March 2011 testing of the Mars Science Laboratory rover, Curiosity, in a space-simulation chamber; the rover will go through operational sequences in environmental conditions similar to what it will experience on Mars.

  4. Curiosity ChemCam Finds High-Silica Mars Rocks

    ScienceCinema

    Frydenvang, Jens

    2018-01-16

    A team of scientists, including one from Los Alamos National Laboratory, has found much higher concentrations of silica at some sites the Curiosity rover has investigated in the past seven months than anywhere else it has visited since landing on Mars 40 months ago. The first discovery was as Curiosity approached the area “Marias Pass,” where a lower geological unit contacts an overlying one. ChemCam, the rover’s laser-firing instrument for checking rock composition from a distance, detected bountiful silica in some targets the rover passed along the way to the contact zone. The ChemCam instrument was developed at Los Alamos in partnership with the French IRAP laboratory in Toulouse and the French Space Agency. “The high silica was a surprise,” said Jens Frydenvang of Los Alamos National Laboratory and the University of Copenhagen, also a Curiosity science team member. “While we’re still working with multiple hypotheses on how the silica got so enriched, these hypotheses all require considerable water activity, and on Earth high silica deposits are often associated with environments that provide excellent support for microbial life. Because of this, the science team agreed to make a rare backtrack to investigate it more.”

  5. Curiosity Mars Rover Flexes its Robotic Arm

    NASA Image and Video Library

    2010-09-16

    Test operators in a clean room at NASA Jet Propulsion Laboratory monitor some of the first motions by the robotic arm on the Mars rover Curiosity after installation in August 2010. The arm is shown in a partially extended position.

  6. Measurements of the neutron spectrum on the Martian surface with MSL/RAD

    NASA Astrophysics Data System (ADS)

    Köhler, J.; Zeitlin, C.; Ehresmann, B.; Wimmer-Schweingruber, R. F.; Hassler, D. M.; Reitz, G.; Brinza, D. E.; Weigle, G.; Appel, J.; Böttcher, S.; Böhm, E.; Burmeister, S.; Guo, J.; Martin, C.; Posner, A.; Rafkin, S.; Kortmann, O.

    2014-03-01

    The Radiation Assessment Detector (RAD), onboard the Mars Science Laboratory (MSL) rover Curiosity, measures the energetic charged and neutral particles and the radiation dose rate on the surface of Mars. An important factor for determining the biological impact of the Martian surface radiation is the specific contribution of neutrons, with their deeper penetration depth and ensuing high biological effectiveness. This is very difficult to measure quantitatively, resulting in considerable uncertainties in the total radiation dose. In contrast to charged particles, neutral particles (neutrons and gamma rays) are generally only measured indirectly. Measured spectra are a complex convolution of the incident particle spectrum with the detector response function and must be unfolded. We apply an inversion method (based on a maximum likelihood estimation) to calculate the neutron and gamma spectra from the RAD neutral particle measurements. Here we show the first spectra on the surface of Mars and compare them to theoretical predictions. The measured neutron spectrum (ranging from 8 to 740 MeV) translates into a radiation dose rate of 14±4μGy/d and a dose equivalent rate of 61±15μSv/d. This corresponds to 7% of the measured total surface dose rate and 10% of the biologically relevant surface dose equivalent rate on Mars. Measuring the Martian neutron and gamma spectra is an essential step for determining the mutagenic influences to past or present life at or beneath the Martian surface as well as the radiation hazard for future human exploration, including the shielding design of a potential habitat.

  7. Camera, Hand Lens, and Microscope Probe (CHAMP): An Instrument Proposed for the 2009 MSL Rover Mission

    NASA Technical Reports Server (NTRS)

    Mungas, Greg S.; Beegle, Luther W.; Boynton, John E.; Lee, Pascal; Shidemantle, Ritch; Fisher, Ted

    2004-01-01

    The Camera, Hand Lens, and Microscope Probe (CHAMP) will allow examination of martian surface features and materials (terrain, rocks, soils, samples) on spatial scales ranging from kilometers to micrometers, thus enabling both microscopy and context imaging with high operational flexibility. CHAMP is designed to allow the detailed and quantitative investigation of a wide range of geologic features and processes on Mars, leading to a better quantitative understanding of the evolution of the martian surface environment through time. In particular, CHAMP will provide key data that will help understand the local region explored by Mars Surface Laboratory (MSL) as a potential habitat for life. CHAMP will also support other anticipated MSL investigations, in particular by helping identify and select the highest priority targets for sample collection and analysis by the MSL's analytical suite.

  8. Transmission X-ray Diffraction (XRD) Patterns Relevant to the MSL Chemin Amorphous Component: Sulfates And Silicates

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Rampe, E. B.; Graff, T. G.; Archer, P. D., Jr.; Le, L.; Ming, D. W.; Sutter, B.

    2015-01-01

    The Mars Science Laboratory (MSL) CheMin instrument on the Curiosity rover is a transmission X-ray diffractometer (Co-Kalpha radiation source and a approx.5deg to approx.52deg 2theta range) where the analyzed powder samples are constrained to have discrete particle diameters <150 microns by a sieve. To date, diffraction patterns have been obtained for one basaltic soil (Rocknest (RN)) and four drill fines of coherent rock (John Klein (JK), Cumberland (CB), Windjana (WJ), and Confidence Hills (CH)). The CheMin instrument has detected and quantified the abundance of both primary igneous (e.g., feldspar, olivine, and pyroxene) and secondary (e.g., Ca-sulfates, hematite, akaganeite, and Fe-saponite) minerals. The diffraction patterns of all CheMin samples are also characterized by a broad diffraction band centered near 30deg 2theta and by increasing diffraction intensity (scattering continuum) from approx.15deg to approx.5deg, the 2theta minimum. Both the broad band and the scattering continuum are attributed to the presence of an XRD amorphous component. Estimates of amorphous component abundance, based on the XRD data itself and on mass-balance calculations using APXS data crystalline component chemistry derived from XRD data, martian meteorites, and/or stoichiometry [e.g., 6-9], range from approx.20 wt.% to approx.50 wt.% of bulk sample. The APXSbased calculations show that the amorphous component is rich in volatile elements (esp. SO3) and is not simply primary basaltic glass, which was used as a surrogate to model the broad band in the RN CheMin pattern. For RN, the entire volatile inventory (except minor anhydrite) is assigned to the amorphous component because no volatile-bearing crystalline phases were reported within detection limits [2]. For JK and CB, Fesaponite, basanite, and akaganeite are volatile-bearing crystalline components. Here we report transmission XRD patterns for sulfate and silicate phases relevant to interpretation of MSL-CheMin XRD amorphous

  9. KSC-2011-6700

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, spacecraft technicians from NASA's Jet Propulsion Laboratory prepare to attach the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission onto the aft of the Curiosity rover for a fit check with the aid of the MMRTG integration cart. The MMRTG then will be removed and installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  10. KSC-2011-6701

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, spacecraft technicians from NASA's Jet Propulsion Laboratory use extension tools to attach the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission on the MMRTG integration cart onto the aft of the Curiosity rover for a fit check. The MMRTG then will be removed and installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  11. KSC-2011-6698

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, spacecraft technicians from NASA's Jet Propulsion Laboratory transfer the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission onto the aft of the Curiosity rover for a fit check with the aid of the MMRTG integration cart. The MMRTG then will be removed and installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  12. KSC-2011-6699

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, spacecraft technicians from NASA's Jet Propulsion Laboratory transfer the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission onto the aft of the Curiosity rover for a fit check with the aid of the MMRTG integration cart. The MMRTG then will be removed and installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  13. Camera Test on Curiosity During Flight to Mars

    NASA Image and Video Library

    2012-05-07

    An in-flight camera check produced this out-of-focus image when NASA Mars Science Laboratory spacecraft turned on illumination sources that are part of the Curiosity rover Mars Hand Lens Imager MAHLI instrument.

  14. Curiosity: The Next Mars Rover Artist Concept

    NASA Image and Video Library

    2011-05-19

    This artist concept features NASA Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars past or present ability to sustain microbial life. The rover examines a rock on Mars with a set of tools at the end of the rover arm.

  15. KSC-2011-6731

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the trailer transporting the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission arrives at the RTG storage facility (RTGF). The MMRTG is returning to the RTGF following a fit check on MSL's Curiosity rover in the Payload Hazardous Servicing Facility (PHSF). The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  16. KSC-2011-6732

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- At the RTG storage facility (RTGF) at NASA's Kennedy Space Center in Florida, preparations are under way to offload the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission from the MMRTG trailer. The MMRTG is returning to the RTGF following a fit check on MSL's Curiosity rover in the Payload Hazardous Servicing Facility (PHSF). The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  17. KSC-2011-6678

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- The multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission is delivered to the airlock doors of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida inside the MMRTG trailer. In the PHSF, the MMRTG temporarily will be installed on the MSL rover, Curiosity, for a fit check but will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  18. KSC-2011-6744

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- The multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission is uncovered in the high bay of the RTG storage facility (RTGF) at NASA's Kennedy Space Center in Florida. The MMRTG was returned to the RTGF following a fit check on MSL's Curiosity rover in the Payload Hazardous Servicing Facility (PHSF). The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  19. KSC-2011-6677

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- The multi-mission radioisotope thermoelectric generator (MMRTG) trailer backs toward the airlock doors of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida. The MMRTG for NASA's Mars Science Laboratory (MSL) mission is being transferred into the PHSF, where it will be installed on the MSL rover, Curiosity, for a fit check. The MMRTG will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  20. KSC-2011-6730

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission, secured inside the MMRTG trailer, makes its way between the Payload Hazardous Servicing Facility (PHSF) and the RTG storage facility. The MMRTG is being moved following a fit check on MSL's Curiosity rover in the PHSF. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  1. Inheriting Curiosity: Leveraging MBSE to Build Mars2020

    NASA Technical Reports Server (NTRS)

    Fosse, Elyse; Harmon, Corey; Lefland, Mallory; Castillo, Robert; Devereaux, Ann

    2015-01-01

    The success of the Jet Propulsion Laboratory's (JPL) Martian mission Mars Science Laboratory (MSL) prompted NASA to challenge JPL to build a second rover, Mars2020. Mars2020 has chosen to infuse Model Based Systems Engineering (MBSE) in pursuit of aiding the design of the Flight System. This paper will derive the motivation for MBSE infusion and will explain the current state of the Mars2020 Flight System Model. Successes in MBSE adoption will be discussed, as will limitations to the methodology.

  2. Cumberland Target for Drilling by Curiosity Mars Rover

    NASA Image and Video Library

    2013-05-09

    Cumberland has been selected as the second target for drilling by NASA Mars rover Curiosity. The rover has the capability to collect powdered material from inside the target rock and analyze that powder with laboratory instruments.

  3. KSC-2011-7983

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket rides a plume of flames as it climbs into the blue sky over Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/George Roberts

  4. KSC-2011-7989

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket rides a plume of flames as it continues its assent into the blue sky over Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/George Roberts

  5. KSC-2011-8025

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket rides a plume of flames as it climbs into the blue sky over Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kenny Allen

  6. KSC-2011-7987

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket rides a plume of flames as it climbs into the blue sky over Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/George Roberts

  7. KSC-2011-8023

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket rides a plume of flames as it roars off the launch pad at Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kenny Allen

  8. KSC-2011-7986

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket rides a plume of flames as it climbs into the blue sky over Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/George Roberts

  9. KSC-2011-7991

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket rides a plume of flames as it continues its assent into the blue sky over Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/George Roberts

  10. KSC-2011-7990

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket rides a plume of flames as it continues its assent into the blue sky over Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/George Roberts

  11. KSC-2011-7982

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket rides a plume of flames as it roars off the launch pad at Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/George Roberts

  12. KSC-2011-7984

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket rides a plume of flames as it climbs into the blue sky over Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/George Roberts

  13. Advances in Discrete-Event Simulation for MSL Command Validation

    NASA Technical Reports Server (NTRS)

    Patrikalakis, Alexander; O'Reilly, Taifun

    2013-01-01

    In the last five years, the discrete event simulator, SEQuence GENerator (SEQGEN), developed at the Jet Propulsion Laboratory to plan deep-space missions, has greatly increased uplink operations capacity to deal with increasingly complicated missions. In this paper, we describe how the Mars Science Laboratory (MSL) project makes full use of an interpreted environment to simulate change in more than fifty thousand flight software parameters and conditional command sequences to predict the result of executing a conditional branch in a command sequence, and enable the ability to warn users whenever one or more simulated spacecraft states change in an unexpected manner. Using these new SEQGEN features, operators plan more activities in one sol than ever before.

  14. Arm and Mast of NASA Mars Rover Curiosity

    NASA Image and Video Library

    2011-04-06

    The arm and the remote sensing mast of the Mars rover Curiosity each carry science instruments and other tools for NASA Mars Science Laboratory mission. This image shows the arm on the left and the mast just right of center.

  15. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars

    PubMed Central

    Stern, Jennifer C.; Sutter, Brad; Freissinet, Caroline; Navarro-González, Rafael; McKay, Christopher P.; Archer, P. Douglas; Buch, Arnaud; Brunner, Anna E.; Coll, Patrice; Eigenbrode, Jennifer L.; Fairen, Alberto G.; Franz, Heather B.; Glavin, Daniel P.; Kashyap, Srishti; McAdam, Amy C.; Ming, Douglas W.; Steele, Andrew; Szopa, Cyril; Wray, James J.; Martín-Torres, F. Javier; Zorzano, Maria-Paz; Conrad, Pamela G.; Mahaffy, Paul R.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Grotzinger, John; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; - Torres, F. Javier Martín; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d’Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Jones, Andrea; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Vasavada, Ashwin R.; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Sumner, Dawn Y.; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mueller-Mellin, Reinhold; Wimmer-Schweingruber, Robert; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2015-01-01

    The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110–300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70–260 and 330–1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen. PMID:25831544

  16. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars.

    PubMed

    Stern, Jennifer C; Sutter, Brad; Freissinet, Caroline; Navarro-González, Rafael; McKay, Christopher P; Archer, P Douglas; Buch, Arnaud; Brunner, Anna E; Coll, Patrice; Eigenbrode, Jennifer L; Fairen, Alberto G; Franz, Heather B; Glavin, Daniel P; Kashyap, Srishti; McAdam, Amy C; Ming, Douglas W; Steele, Andrew; Szopa, Cyril; Wray, James J; Martín-Torres, F Javier; Zorzano, Maria-Paz; Conrad, Pamela G; Mahaffy, Paul R

    2015-04-07

    The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110-300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70-260 and 330-1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen.

  17. Curiosity Flying Over Mars

    NASA Image and Video Library

    2012-08-06

    NASA Curiosity rover and its parachute were spotted by NASA Mars Reconnaissance Orbiter as Curiosity descended to the surface on Aug. 5 PDT Aug. 6 EDT. Curiosity and its parachute are in the small white box at center.

  18. Calcium Sulfate Characterized by Chemcam/Curiousity at Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Nachon, M.; Clegg, S. M.; Mangold, N.; Schroeder, S.; Kah, L. C.; Dromart, G.; Ollila, A.; Johnson, J. R; Oehler, D. Z.; Bridges, J. C.; hide

    2014-01-01

    Onboard the Mars Science Laboratory (MSL) Curiosity rover, the ChemCam instrument consists of : (1) a Laser-Induced Breakdown Spectrometer (LIBS) for elemental analysis of the targets and (2) a Remote Micro Imager (RMI), for the imaging context of laser analysis. Within the Gale crater, Curiosity traveled from Bradbury Landing through the Rocknest region and into Yellowknife Bay (YB). In the latter, abundant light-toned fracture-fill material occur. ChemCam analysis demonstrates that those fracture fills consist of calcium sulfates.[

  19. NASA Mars Rover Curiosity at JPL, Side View

    NASA Image and Video Library

    2011-04-06

    The rover for NASA Mars Science Laboratory mission, named Curiosity, is about 3 meters 10 feet long, not counting the additional length that the rover arm can be extended forward. The front of the rover is on the left in this side view.

  20. The Case of Curiosity and the Night Sky: Relationship between Noctcaelador and Three Forms of Curiosity

    ERIC Educational Resources Information Center

    Kelly, William E.; Daughtry, Don

    2016-01-01

    The purpose of this study is to examine the relationship between noctcaelador (psychological attachment to the night sky) and curiosity. A measure of noctcaelador and three curiosity scales (perceptual curiosity, epistemic curiosity, and curiosity as a feeling of deprivation) were administered to 233 university students. Correlations indicated…

  1. Charged Particle Environment on Mars - One Mars Year of MSL/RAD Measurements

    NASA Astrophysics Data System (ADS)

    Ehresmann, B.; Hassler, D.; Zeitlin, C. J.; Kohler, J.; Wimmer-Schweingruber, R. F.; Brinza, D. E.; Rafkin, S. C.; Reitz, G.; Appel, J. K.; Guo, J.; Lohf, H.; Burmeister, S.; Matthiae, D.; Boettcher, S. I.; Boehm, E.; Martin-Garcia, C.

    2015-12-01

    The Mars Science Laboratory's Radiation Assessment Detector (MSL/RAD) has been conducting measurements of the ionizing radiation field on the Martian surface since August 2012. This field is mainly dominated by Galactic Cosmic Rays (GCRs) and their interactions with the atoms in the atmosphere and soil. This yields a radiation environment consisting of a wide variety of particles and energies which, at high energies, is dominated by charged particles, e.g., ions, and their isotopes, electrons, and others. Over the course of the first Martian year (~2 Earth years) of the MSL mission, the radiation field was mainly modulated by two influences: the seasonal pressure cycle at Gale crater; and the variation of the impeding GCR flux due to changes in the solar activity. Here, we present charged particle fluxes measured over a 1000 days and analyze how the more-abundant ion species vary over that time frame. A second major influence to the radiation field can be the contribution from Solar Energetic Particle (SEP) events. In particular, the Martian surface proton flux can be enhanced by orders of magnitude on short time scales during strong events. Here, we present measurements of the proton fluxes during the SEP events MSL/RAD has so far directly measured in Gale crater.

  2. KSC-2011-6687

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, spacecraft technicians from NASA's Jet Propulsion Laboratory connect a crane to a turning fixture connected to the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission. The fixture will lift and lower the MMRTG onto the MMRTG integration cart. The cart will be used to install the MMRTG on Curiosity for a fit check. The MMRTG will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  3. KSC-2011-6686

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, spacecraft technicians from NASA's Jet Propulsion Laboratory guide a turning fixture onto the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission. The fixture will be used to lift and lower the MMRTG onto the MMRTG integration cart. The cart will be used to install the MMRTG on Curiosity for a fit check. The MMRTG will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  4. KSC-2011-6691

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, spacecraft technicians from NASA's Jet Propulsion Laboratory rotate the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission, using the turning fixture to align the MMRTG with the angle of the MMRTG integration cart behind it. The cart will be used to install the MMRTG on the Curiosity rover for a fit check. The rover is on an elevated work stand, at right. The MMRTG will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  5. KSC-2011-7939

    NASA Image and Video Library

    2011-11-25

    CAPE CANAVERAL, Fla. – An educational news conference to explore "Why Mars Excites and Inspires Us" begins in NASA Kennedy Space Center's Press Site auditorium in Florida during prelaunch activities for the agency’s Mars Science Laboratory (MSL) launch. Participants are, from left, Leland Melvin, NASA associate administrator for Education; Clara Ma, student, NASA contest winner for naming Curiosity, Shawnee Mission East High School, Prairie Village, Kansas; Scott Anderson, teacher and science department chairman, Da Vinci School for Science and the Arts, El Paso, Texas; Lauren Lyons, graduate student, Harvard University, FIRST robotics alumna; and Veronica McGregor, manager, Media Relations Office, NASA Jet Propulsion Laboratory. MSL's car-sized Martian rover, Curiosity, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Ma's entry was selected the winner from 9,000 entries in NASA's nationwide student contest to name the rover. At the time, she was a twelve-year-old sixth-grade student at the Sunflower Elementary school in Lenexa, Kansas. Liftoff of MSL aboard a United Launch Alliance Atlas V rocket from Space Launch Complex-41 on Cape Canaveral Air Force Station is planned during a launch window which extends from 10:02 a.m. to 11:45 a.m. EST on Nov. 26. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  6. KSC-2011-6689

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, spacecraft technicians from NASA's Jet Propulsion Laboratory attach guide ropes to the turning fixture connected to the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission during preparations to lift it from its support base. The turning fixture will lift and lower the MMRTG onto the MMRTG integration cart. The cart will be used to install the MMRTG on Curiosity for a fit check. The MMRTG will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  7. KSC-2011-7940

    NASA Image and Video Library

    2011-11-25

    CAPE CANAVERAL, Fla. – An educational news conference to explore "Why Mars Excites and Inspires Us" is under way in NASA Kennedy Space Center's Press Site auditorium in Florida during prelaunch activities for the agency’s Mars Science Laboratory (MSL) launch. Participants are, from left, moderator George Diller, NASA Public Affairs, NASA Kennedy Space Center; Leland Melvin, NASA associate administrator for Education; Clara Ma, student, NASA contest winner for naming Curiosity, Shawnee Mission East High School, Prairie Village, Kansas; Scott Anderson, teacher and science department chairman, Da Vinci School for Science and the Arts, El Paso, Texas; Lauren Lyons, graduate student, Harvard University, FIRST robotics alumna; and Veronica McGregor, manager, Media Relations Office, NASA Jet Propulsion Laboratory. MSL's car-sized Martian rover, Curiosity, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Ma's entry was selected the winner from 9,000 entries in NASA's nationwide student contest to name the rover. At the time, she was a twelve-year-old sixth-grade student at the Sunflower Elementary school in Lenexa, Kansas. Liftoff of MSL aboard a United Launch Alliance Atlas V rocket from Space Launch Complex-41 on Cape Canaveral Air Force Station is planned during a launch window which extends from 10:02 a.m. to 11:45 a.m. EST on Nov. 26. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  8. KSC-2011-6692

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, spacecraft technicians from NASA's Jet Propulsion Laboratory guide the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission on the turning fixture toward the MMRTG integration cart. The cart will be used to install the MMRTG on the Curiosity rover for a fit check. The rover is on an elevated work stand, at right. The MMRTG will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  9. KSC-2011-6693

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, spacecraft technicians from NASA's Jet Propulsion Laboratory guide the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission on the turning fixture toward the MMRTG integration cart. The cart will be used to install the MMRTG on the Curiosity rover for a fit check. The rover is on an elevated work stand, at right. The MMRTG will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  10. KSC-2011-6694

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, spacecraft technicians from NASA's Jet Propulsion Laboratory position the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission on the turning fixture above the MMRTG integration cart. The cart will be used to install the MMRTG on the Curiosity rover for a fit check. The rover is on an elevated work stand, at right. The MMRTG will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  11. KSC-2011-7941

    NASA Image and Video Library

    2011-11-25

    CAPE CANAVERAL, Fla. – David Blake, NASA principal investigator for the Chemistry and Mineralogy (CheMin) investigation by the Curiosity rover, demonstrates the experiment for the media in NASA Kennedy Space Center's Press Site auditorium in Florida during prelaunch activities for the agency’s Mars Science Laboratory (MSL) launch. CheMin is designed to analyze powdered rock and soil samples by identifying and quantifying their mineral content using X-ray diffraction, a first for a mission to Mars. The car-sized Martian rover, Curiosity, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Liftoff of MSL aboard a United Launch Alliance Atlas V rocket from Space Launch Complex-41 on Cape Canaveral Air Force Station is planned during a launch window which extends from 10:02 a.m. to 11:45 a.m. EST on Nov. 26. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  12. KSC-2011-7942

    NASA Image and Video Library

    2011-11-25

    CAPE CANAVERAL, Fla. – David Blake, NASA principal investigator for the Chemistry and Mineralogy (CheMin) investigation by the Curiosity rover, explains the experiment to the media in NASA Kennedy Space Center's Press Site auditorium in Florida during prelaunch activities for the agency’s Mars Science Laboratory (MSL) launch. CheMin is designed to analyze powdered rock and soil samples by identifying and quantifying their mineral content using X-ray diffraction, a first for a mission to Mars. The car-sized Martian rover, Curiosity, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Liftoff of MSL aboard a United Launch Alliance Atlas V rocket from Space Launch Complex-41 on Cape Canaveral Air Force Station is planned during a launch window which extends from 10:02 a.m. to 11:45 a.m. EST on Nov. 26. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  13. The Curiosity in Marketing Thinking

    ERIC Educational Resources Information Center

    Hill, Mark E.; McGinnis, John

    2007-01-01

    This article identifies the curiosity in marketing thinking and offers ways to teach for marketing thinking through an environment that fosters students' curiosity. The significance of curiosity in its relationship with thinking is that when curiosity is absent, so is thinking. Challenges are discussed in recognizing the fragility of curiosity…

  14. KSC-2011-6745

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- The multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission is position behind mobile plexiglass radiation shields in the high bay of the RTG storage facility (RTGF) at NASA's Kennedy Space Center in Florida. The MMRTG was returned to the RTGF following a fit check on MSL's Curiosity rover in the Payload Hazardous Servicing Facility (PHSF). The generator will remain in the RTGF until is moved to the pad for integration on the rover. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  15. KSC-2011-6706

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, the descent stage for NASA's Mars Science Laboratory (MSL) mission awaits installation on the Curiosity rover, in the background at right. MSL's multi-mission radioisotope thermoelectric generator has been installed onto the aft of the rover for a fit check. The descent stage will cradle the rover and its MMRTG during their approach to the surface of Mars. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  16. KSC-2011-6705

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, the descent stage for NASA's Mars Science Laboratory (MSL) mission awaits installation on the Curiosity rover, in the background at right. MSL's multi-mission radioisotope thermoelectric generator has been installed onto the aft of the rover for a fit check. The descent stage will cradle the rover and its MMRTG during their approach to the surface of Mars. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  17. KSC-2011-6684

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- Workers dressed in clean room attire, known as bunny suits, transfer the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission on its holding base from the airlock of the Payload Hazardous Servicing Facility (PHSF) into the facility's high bay. In the high bay, the MMRTG temporarily will be installed on the MSL rover, Curiosity, for a fit check but will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  18. Methane Measurements by NASA Curiosity in Mars Gale Crater

    NASA Image and Video Library

    2014-12-16

    This graphic shows tenfold spiking in the abundance of methane in the Martian atmosphere surrounding NASA Curiosity Mars rover, as detected by a series of measurements made with the Tunable Laser Spectrometer instrument in the rover laboratory suite.

  19. KSC-2011-7962

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL – Chuck Duvale, deputy director of the Launch Services Program, left, and Bob Cabana, Kennedy Space Center director, oversee the countdown in the Atlas V Spaceflight Operations Center (ASOC) before the launch of the Mars Science Laboratory on an Atlas V rocket. MSL lifted off at 10:02 a.m. EST Nov. 26, beginning a 9-month interplanetary cruise to Mars. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  20. Curiosity Killed the Cocktail? Curiosity, Sensation Seeking, and Alcohol-related Problems in College Women

    PubMed Central

    Lindgren, Kristen P.; Mullins, Peter M.; Neighbors, Clayton; Blayney, Jessica A.

    2010-01-01

    Curiosity, composed of two factors: exploration and absorption, has been previously associated with life satisfaction, life meaningfulness, and enhanced positive affect. It also shares some overlap with sensation seeking, which has been linked to alcohol use and other addictive behaviors. The present research explored the association between curiosity and college women’s problematic drinking in the context of sensation seeking. Participants (79 women) completed questionnaires measuring curiosity, sensation seeking, alcohol consumption, and consequences related to alcohol consumption. A zero-inflated negative binomial model indicated that curiosity and sensation seeking accounted for unique variance in alcohol-related problems after controlling for drinking. The curiosity factors had opposing relationships to alcohol-related problems: higher scores on absorption were associated with more alcohol related problems whereas higher scores on exploration were associated with fewer alcohol related problems. Should findings be replicated, the curiosity factors may represent additional prevention and intervention targets. Future directions for research about curiosity and drinking and for the inclusion of positive psychology constructs in addictive behaviors research are discussed. PMID:20080358

  1. KSC-2011-7861

    NASA Image and Video Library

    2011-11-21

    CAPE CANAVERAL, Fla. -- Members of the media view the Radiological Control Center (RADCC) at NASA's Kennedy Space Center in Florida during a tour regarding safety equipment and procedures for the upcoming launch of the Mars Science Laboratory (MSL) mission. The MSL spacecraft includes a multi-mission radioisotope thermoelectric generator (MMRTG) that will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 26 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  2. KSC-2011-6709

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission is positioned on a support base with the aid of a turning fixture following the MMRTG fit check on the Curiosity rover. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  3. KSC-2011-6707

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission is lowered onto a support base with the aid of a turning fixture following the MMRTG fit check on the Curiosity rover. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  4. KSC-2011-6702

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission is detached from the MMRTG integration cart and installed onto the aft of the Curiosity rover for a fit check. Next, the MMRTG will be removed and later installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  5. Design and Implementation of the MSL Cruise Propulsion Tank Heaters

    NASA Technical Reports Server (NTRS)

    Krylo, Robert; Mikhaylov, Rebecca; Cucullu, Gordon; Watkins, Brenda

    2008-01-01

    This slide presentation reviews the design and the implementation of the heaters for the Mars Science Laboratory (MSL). The pressurized tanks store hydrazine that freezes at 2 C, this means that heaters are required to keep the hydrazine and the helium at 36 C for the trip to Mars. Using the TMG software the heat loss was analyzed, and a thermal model simulates a half full tank which yielded a 13W heating requirement for each hemisphere. Views of the design, and the heater are included.

  6. Grain-Scale Analyses of Curiosity Data at Marias Pass, Gale Crater, Mars: Methods Comparison and Depositional Interpretation

    NASA Astrophysics Data System (ADS)

    Sacks, L. E.; Edgar, L. A.; Edwards, C. S.; Anderson, R. B.

    2016-12-01

    Images acquired by the Mars Hand Lens Imager (MAHLI) and the ChemCam Remote Micro Imager (RMI) onboard the Mars Science Laboratory (MSL) Curiosity rover provide grain-scale data that are critical for interpreting sedimentary deposits. At the location informally known as Marias Pass, Curiosity used both cameras to image the nine rock targets used in this study. We used manual point-counts to measure grain size distributions from those images to compare the abilities of the two cameras. The manually derived results were compared to automated grain size data obtained using pyDGS (Digital Grain Size), an open-source python program. Grain size analyses were used to test the lacustrine and aeolian depositional hypotheses for the Murray and Stimson formations at Marias Pass. Results indicate that the MAHLI and RMI instruments, despite their different fields of view and properties, provide comparable grain size measurements. Additionally, pyDGS does not account for grains smaller than a few pixels and thus does not report representative grain size data and should not be used on images with a large fraction of unresolved grains. Finally, the data collected at Marias Pass are consistent with the existing interpretations of the Murray and Stimson formations. The fine-grained results of the Murray formation analyses support lacustrine deposition, while the mean grain size of the Stimson formation is fine to medium sized sand, consistent with aeolian deposition. However, directly above the contact with the Murray formation, larger rip-up clasts of the Murray formation are present in the Stimson formation. It is possible that water was involved at this stage of erosion and re-deposition, prior to aeolian deposition. Additionally, the grain-scale analyses conducted in this study show that the Dust Removal Tool on Curiosity should be used prior to capturing images for grain-scale analysis. Two images of the target informally named Ronan, taken before and after brushing, resulted

  7. Curiosity Speaks Volumes

    NASA Image and Video Library

    2012-08-27

    This chart shows increases in the volume of data coming back from NASA Mars Curiosity over recent sols. New capabilities of the Electra relay-radios on MRO and Curiosity have greatly increased the volume of data the rover is sending back from Mars.

  8. MSL SAM-like Analyses of Hawaiian Altered Basaltic Materials: Implications for Analyses by the Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    McAdam, A.; Eigenbrode, J. L.; Young, K. E.; Bleacher, J. E.; Knudson, C. A.; Rogers, D.; Glotch, T. D.; Sutter, B.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Downs, R. T.

    2015-12-01

    Samples of basaltic materials were collected during several traverses of the Kau Desert on the leeward side of the Kilauea Volcano, Hawaii, conducted by the Remote, In Situ, and Synchrotron Studies for Science and Exploration (RIS4E) team, a node of the Solar System Exploration and Research Virtual Institute (SSERVI) program. Some of these samples had been exposed to circumneutral to slightly acidic alteration conditions from exposure to fog/rain, and acidic fog/rain, while others had been exposed to more acidic conditions due to proximity to fumaroles. The samples consisted of basalts with coatings, sands and soils, and ash, and were collected using organically clean protocols to enable investigation of organic chemistry and organic-mineral associations, in addition to mineralogy. The Mars Science Laboratory (MSL) rover has analyzed basaltic materials inferred to have been altered under conditions ranging from circumneutral to acidic, but several aspects of the Sample Analysis at Mars (SAM) instrument suite results are still being investigated and analyses of relevant terrestrial analogs can play an important role in interpretation of the data. For example, all materials analyzed to date have a significant amorphous component. Comparisons of the mineralogy obtained with the MSL CheMin instrument and volatiles evolved during SAM analyses indicate that, by mass balance, some portion of the volatiles, such as SO2 and H2O, are likely associated with this component. Many of the RIS4E samples also have a significant amorphous component, and field x-ray diffraction (XRD) and x-ray fluorescence (XRF) data indicate differences in the chemistry of this material in samples exposed to different alteration conditions. Preliminary SAM-like analyses indicate that the amorphous materials in some of these samples evolve volatiles such as H2O and SO2 during heating. Here we will discuss these results, and others, obtained through SAM-like analyses of selected samples.

  9. Vernal Crater, SW Arabia Terra: MSL Candidate with Extensively Layered Sediments, Possible Lake Deposits, and a Long History of Subsurface Ice

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2007-01-01

    Vernal Crater is a Mars Science Laboratory (MSL) landing site candidate providing relatively easy access to extensively layered sediments as well as potential lake deposits. Sediments of Vernal Crater are 400-1200 m below those being investigated by Opportunity in Meridiani Planum, and as such would allow study of significantly older geologic units, if Vernal Crater were selected for MSL. The location of Vernal Crater in SW Arabia Terra provides exceptional scientific interest, as rampart craters and gamma-ray spectrometer (GRS) data from the region suggest a long history of ice/fluids in the subsurface. The potential value of this MSL candidate is further enhanced by reports of atmospheric methane over Arabia, as any insight into the source of that methane would significantly increase our understanding of Mars. Finally, should MSL survive beyond its prime mission, the gentle slope within Vernal Crater would provide a route out of the crater for study of the once ice/fluid-rich plains.

  10. Preparing for Solar and Thermal Testing of Curiosity Mars Rover

    NASA Image and Video Library

    2011-03-18

    This image shows preparation for March 2011 testing of the Mars Science Laboratory rover, Curiosity, in a space-simulation chamber; the rover will go through operational sequences in environmental conditions similar to what it will experience on Mars.

  11. 2013 Inaugural Parade

    NASA Image and Video Library

    2013-01-21

    A replica of NASA's Curiosity Rover and members of the Mars Science Laboratory (MSL) science team pass the Presidential viewing stand and President Barack Obama during the inaugural parade honoring Obama, Monday Jan. 21, 2013, in Washington. Obama was sworn-in as the nation's 44th President earlier in the day. Photo Credit: (NASA/Bill Ingalls)

  12. Mars Science Laboratory's rover, Curiosity: Ongoing investigations into the habitability of Mars

    NASA Astrophysics Data System (ADS)

    Meyer, Michael; Vasavada, Ashwin

    2015-11-01

    NASA’s Curiosity rover has the objective to determine whether Mars was habitable. The rover’s science team has achieved that and more, including two major firsts in planetary science. First, Gale Crater was determined to once have an aqueous environment and able to support microbial life, evidenced by conglomerates and the detailed analyses of the drill samples [1]. Second, the age dating of rock on another planet - radiogenic and cosmogenic noble gases in a mudstone yielded a K-Ar age of 4.21 ± 0.35 Ga while 3He, 21Ne, and 36Ar yielded surface exposure ages of 78 ± 30 Ma [2], suggesting the potential to find rocks whose organic content has not yet been destroyed by cosmic rays. Indeed, organic compounds have been found in samples from the Sheepbed mudstone [3]. Reports of plumes of methane in the martian atmosphere have defied explanation to date. Curiosity measured a constant background level of atmospheric methane with a mean value of 0.69 ± 0.25 ppbv, consistent with methane released from the degradation of interplanetary dust and meteorites. However, in four consecutive measurements spanning two months, the rover measured a ten-fold increase (7.2 ± 2.1 ppbv), suggesting that methane was actively added from an unknown source [3]. Periodic measurements will continue, perhaps revealing the possible sources of high methane, whether biological or abiological. Enhancing our concept of Mars’ capability to support life, the Curiosity rover has detected nitrogen-bearing compounds of 110-300 ppm of nitrate in scooped sand, and 70-1,100 ppm of nitrate in drilled mudstone. Discovery of martian nitrogen has important implications for a nitrogen cycle at some point in martian history [4]. More recent exploration has focused on the investigation of a mudstone-sandstone geologic contact, high Si and H abundances, and organics. These and the latest results from Curiosity will be discussed, exploring the transition of Mars from a habitable world to the desert planet

  13. Numerical simulation of temperature and pressure fields in CdTe growth experiment in the Material Science Laboratory (MSL) onboard the International Space Station in relation to dewetting

    NASA Astrophysics Data System (ADS)

    Sylla, Lamine; Duffar, Thierry

    2007-05-01

    A global thermal modelling of a cadmium telluride (CdTe) space experiment has been performed to determine the temperature field within the sample cartridge assembly of the Material Science Laboratory-low gradient furnace (MSL-LGF) apparatus. Heat transfer and phase change have been treated with a commercial CFD software based on a control volume technique. This work underlines the difficult compromise between enhancing the crystal quality and the occurrence of the dewetting phenomenon when using a Cd overpressure or inert gas in the ampoule.

  14. Round-Horizon Version of Curiosity Low-Angle Selfie at Buckskin

    NASA Image and Video Library

    2015-08-19

    This version of a self-portrait of NASA's Curiosity Mars rover at a drilling site called "Buckskin" on lower Mount Sharp is presented as a stereographic projection, which shows the horizon as a circle. It is a mosaic assembled from the same set of 92 component raw images used for the flatter-horizon version at PIA19807. The component images were taken by Curiosity's Mars Hand Lens Imager (MAHLI) on Aug. 5, 2015, during the 1,065th Martian day, or sol, of the rover's work on Mars. Curiosity drilled the hole at Buckskin during Sol 1060 (July 30, 2015). Two patches of pale, powdered rock material pulled from inside Buckskin are visible in this scene, in front of the rover. The patch closer to the rover is where the sample-handling mechanism on Curiosity's robotic arm dumped collected material that did not pass through a sieve in the mechanism. Sieved sample material was delivered to laboratory instruments inside the rover. The patch farther in front of the rover, roughly triangular in shape, shows where fresh tailings spread downhill from the drilling process. The drilled hole, 0.63 inch (1.6 centimeters) in diameter, is at the upper point of the tailings. The rover is facing northeast, looking out over the plains from the crest of a 20-foot (6-meter) hill that it climbed to reach the "Marias Pass" area. The upper levels of Mount Sharp are visible behind the rover, while Gale Crater's northern rim dominates most of the rest of the horizon.the horizon on the left and right of the mosaic. MAHLI is mounted at the end of the rover's robotic arm. For this self-portrait, the rover team positioned the camera lower in relation to the rover body than for any previous full self-portrait of Curiosity. The assembled mosaic does not include the rover's arm beyond a portion of the upper arm held nearly vertical from the shoulder joint. Shadows from the rest of the arm and the turret of tools at the end of the arm are visible on the ground. With the wrist motions and turret

  15. In Situ Strategy of the 2011 Mars Science Laboratory to Investigate the Habitability of Ancient Mars

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.

    2011-01-01

    The ten science investigations of the 2011 Mars Science Laboratory (MSL) Rover named "Curiosity" seek to provide a quantitative assessment of habitability through chemical and geological measurements from a highly capable robotic' platform. This mission seeks to understand if the conditions for life on ancient Mars are preserved in the near-surface geochemical record. These substantial payload resources enabled by MSL's new entry descent and landing (EDL) system have allowed the inclusion of instrument types nevv to the Mars surface including those that can accept delivered sample from rocks and soils and perform a wide range of chemical, isotopic, and mineralogical analyses. The Chemistry and Mineralogy (CheMin) experiment that is located in the interior of the rover is a powder x-ray Diffraction (XRD) and X-ray Fluorescence (XRF) instrument that provides elemental and mineralogical information. The Sample Analysis at Mars (SAM) suite of instruments complements this experiment by analyzing the volatile component of identically processed samples and by analyzing atmospheric composition. Other MSL payload tools such as the Mast Camera (Mastcam) and the Chemistry & Camera (ChemCam) instruments are utilized to identify targets for interrogation first by the arm tools and subsequent ingestion into SAM and CheMin using the Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem. The arm tools include the Mars Hand Lens Imager (MAHLI) and the Chemistry and Alpha Particle X-ray Spectrometer (APXX). The Dynamic Albedo of Neutrons (DAN) instrument provides subsurface identification of hydrogen such as that contained in hydrated minerals

  16. KSC-2011-7856

    NASA Image and Video Library

    2011-11-21

    CAPE CANAVERAL, Fla. -- Randy Scott, director of Kennedy Space Center's Radiological Control Center (RADCC), speaks to media during a tour regarding safety equipment and procedures for the upcoming launch of the Mars Science Laboratory (MSL) mission. Behind him is Steve Homann, senior advisor for the Department of Energy. The MSL spacecraft includes a multi-mission radioisotope thermoelectric generator (MMRTG) that will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 26 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  17. KSC-2011-7860

    NASA Image and Video Library

    2011-11-21

    CAPE CANAVERAL, Fla. -- Members of the media take a tour of the Radiological Control Center (RADCC) at NASA's Kennedy Space Center in Florida. The tour focused on safety equipment and procedures for the upcoming launch of the Mars Science Laboratory (MSL) mission. The MSL spacecraft includes a multi-mission radioisotope thermoelectric generator (MMRTG) that will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 26 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  18. KSC-2011-7859

    NASA Image and Video Library

    2011-11-21

    CAPE CANAVERAL, Fla. -- Surrounded by monitors and consoles, Randy Scott, director of Kennedy Space Center's Radiological Control Center (RADCC), speaks to media during a tour regarding safety equipment and procedures for the upcoming launch of the Mars Science Laboratory (MSL) mission. The MSL spacecraft includes a multi-mission radioisotope thermoelectric generator (MMRTG) that will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 26 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  19. KSC-2011-7858

    NASA Image and Video Library

    2011-11-21

    CAPE CANAVERAL, Fla. -- Steve Homann, senior advisor for the Department of Energy, speaks to media during a tour of the Radiological Control Center (RADCC) at NASA's Kennedy Space Center in Florida. The tour focused on safety equipment and procedures for the upcoming launch of the Mars Science Laboratory (MSL) mission. The MSL spacecraft includes a multi-mission radioisotope thermoelectric generator (MMRTG) that will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 26 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  20. KSC-2011-7855

    NASA Image and Video Library

    2011-11-21

    CAPE CANAVERAL, Fla. -- Several instruments are displayed for the media during a tour of the Radiological Control Center (RADCC) at NASA's Kennedy Space Center in Florida. The tour focused on safety equipment and procedures for the upcoming launch of the Mars Science Laboratory (MSL) mission. The MSL spacecraft includes a multi-mission radioisotope thermoelectric generator (MMRTG) that will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 26 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  1. KSC-2011-7862

    NASA Image and Video Library

    2011-11-21

    CAPE CANAVERAL, Fla. -- During a tour of the Radiological Control Center (RADCC) at NASA's Kennedy Space Center in Florida, members of the media listen as Ryan Bechtel of the U.S. Department of Energy explains safety equipment and procedures for the upcoming launch of the Mars Science Laboratory (MSL) mission. The MSL spacecraft includes a multi-mission radioisotope thermoelectric generator (MMRTG) that will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 26 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  2. KSC-2011-7857

    NASA Image and Video Library

    2011-11-21

    CAPE CANAVERAL, Fla. -- Steve Homann, senior advisor for the Department of Energy, speaks to media during a tour of the Radiological Control Center (RADCC) at NASA's Kennedy Space Center in Florida. The tour focused on safety equipment and procedures for the upcoming launch of the Mars Science Laboratory (MSL) mission. The MSL spacecraft includes a multi-mission radioisotope thermoelectric generator (MMRTG) that will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 26 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  3. Preliminary Surface Thermal Design of the Mars 2020 Rover

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Kempenaar, Jason G.; Redmond, Matthew J.; Bhandari, Pradeep

    2015-01-01

    The Mars 2020 rover, scheduled for launch in July 2020, is currently being designed at NASA's Jet Propulsion Laboratory. The Mars 2020 rover design is derived from the Mars Science Laboratory (MSL) rover, Curiosity, which has been exploring the surface of Mars in Gale Crater for over 2.5 years. The Mars 2020 rover will carry a new science payload made up of 7 instruments. In addition, the Mars 2020 rover is responsible for collecting a sample cache of Mars regolith and rock core samples that could be returned to Earth in a future mission. Accommodation of the new payload and the Sampling Caching System (SCS) has driven significant thermal design changes from the original MSL rover design. This paper describes the similarities and differences between the heritage MSL rover thermal design and the new Mars 2020 thermal design. Modifications to the MSL rover thermal design that were made to accommodate the new payload and SCS are discussed. Conclusions about thermal design flexibility are derived from the Mars 2020 preliminary thermal design experience.

  4. KSC-2011-7934

    NASA Image and Video Library

    2011-11-25

    CAPE CANAVERAL, Fla. – Betina Pavri, systems engineer at NASA's Jet Propulsion Laboratory (JPL), speaks to a group of Tweetup participants at NASA Kennedy Space Center's Press Site in Florida during prelaunch activities for the agency’s Mars Science Laboratory (MSL) launch as Allen Chen, also a systems engineer at JPL, looks on, at left. Following a series of briefings, participants will tour the center and get a close-up view of Space Launch Complex-41 on Cape Canaveral Air Force Station. The tweeters will share their experiences with followers through the social networking site Twitter. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Liftoff of MSL aboard a United Launch Alliance Atlas V rocket from pad 41 is planned during a launch window which extends from 10:02 a.m. to 11:45 a.m. EST on Nov. 26. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Jim Grossmann

  5. KSC-2011-6680

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a forklift positions the protective mesh container enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission onto the floor of the airlock of the Payload Hazardous Servicing Facility (PHSF). The container, known as the "gorilla cage," protects the MMRTG and allows any excess heat generated to dissipate into the air. In the PHSF, the MMRTG temporarily will be installed on the MSL rover, Curiosity, for a fit check but will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  6. KSC-2011-6729

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, preparations are under way to secure the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission in the MMRTG trailer. The MMRTG is enclosed in a mesh container, known as the "gorilla cage," which protects it during transport and allows any excess heat generated to dissipate into the air. The MMRTG is being moved to the RTG storage facility following a fit check on MSL's Curiosity rover in the Payload Hazardous Servicing Facility (PHSF). The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  7. KSC-2011-6674

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- Outside the RTG storage facility at NASA's Kennedy Space Center in Florida, the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission, enclosed in the protective mesh container, known as the "gorilla cage," is positioned inside the MMRTG trailer that will transport it to the Payload Hazardous Servicing Facility (PHSF). The cage protects the MMRTG and allows any excess heat generated to dissipate into the air. In the PHSF, the MMRTG temporarily will be installed on the MSL rover, Curiosity, for a fit check but will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  8. KSC-2011-6727

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a forklift lifts the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission into the MMRTG trailer. The MMRTG is enclosed in a mesh container, known as the "gorilla cage," which protects it during transport and allows any excess heat generated to dissipate into the air. The MMRTG is being moved to the RTG storage facility following a fit check on MSL's Curiosity rover in the Payload Hazardous Servicing Facility (PHSF). The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  9. KSC-2011-6667

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the high bay of the RTG storage facility at NASA's Kennedy Space Center in Florida, the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission is enclosed in a protective mesh container, known as the "gorilla cage," for transport to the Payload Hazardous Servicing Facility (PHSF). The cage protects the MMRTG and allows any excess heat generated to dissipate into the air. In the PHSF, the MMRTG temporarily will be installed on the MSL rover, Curiosity, for a fit check but will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  10. KSC-2011-6722

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- In the airlock of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, t he multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission awaits transport to the RTG storage facility. The MMRTG is enclosed in a mesh container, known as the "gorilla cage," which protects it during transport and allows any excess heat generated to dissipate into the air. The MMRTG was in the PHSF for a fit check on MSL's Curiosity rover. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  11. KSC-2011-6726

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- A forklift transfers the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission from the airlock of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida to the MMRTG trailer. The MMRTG is enclosed in a mesh container, known as the "gorilla cage," which protects it during transport and allows any excess heat generated to dissipate into the air. The MMRTG is being moved to the RTG storage facility following a fit check on MSL's Curiosity rover in the PHSF. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  12. KSC-2011-6673

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- Outside the RTG storage facility at NASA's Kennedy Space Center in Florida, a forklift positions the protective mesh container, known as the "gorilla cage," enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission inside the MMRTG trailer that will transport it to the Payload Hazardous Servicing Facility (PHSF). The cage protects the MMRTG and allows any excess heat generated to dissipate into the air. In the PHSF, the MMRTG temporarily will be installed on the MSL rover, Curiosity, for a fit check but will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  13. KSC-2011-6739

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- In the high bay of the RTG storage facility (RTGF) at NASA's Kennedy Space Center in Florida, Department of Energy workers attach a crane to the mesh container enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission. The container, known as the "gorilla cage," protects it during transport and allows any excess heat generated to dissipate into the air. The cage is being removed from around the MMRTG following it return to the RTGF from a fit check on MSL's Curiosity rover in the Payload Hazardous Servicing Facility (PHSF). The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  14. KSC-2011-6682

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the airlock of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, the protective mesh container enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission is lifted from around the MMRTG. The container, known as the "gorilla cage," protects the MMRTG during transport and allows any excess heat generated to dissipate into the air. In the PHSF, the MMRTG temporarily will be installed on the MSL rover, Curiosity, for a fit check but will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  15. KSC-2011-6735

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- A forklift moves the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission into the high bay of the RTG storage facility (RTGF) at NASA's Kennedy Space Center in Florida. The MMRTG is enclosed in a mesh container, known as the "gorilla cage," which protects it during transport and allows any excess heat generated to dissipate into the air. The MMRTG is returning to the RTGF following a fit check on MSL's Curiosity rover in the Payload Hazardous Servicing Facility (PHSF). The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  16. KSC-2011-6734

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- A forklift moves the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission from the MMRTG trailer to the RTG storage facility (RTGF) at NASA's Kennedy Space Center in Florida. The MMRTG is enclosed in a mesh container, known as the "gorilla cage," which protects it during transport and allows any excess heat generated to dissipate into the air. The MMRTG is returning to the RTGF following a fit check on MSL's Curiosity rover in the Payload Hazardous Servicing Facility (PHSF). The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  17. KSC-2011-6725

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- A forklift carrying the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission backs away from the airlock of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida. The MMRTG is enclosed in a mesh container, known as the "gorilla cage," which protects it during transport and allows any excess heat generated to dissipate into the air. The MMRTG is being moved to the RTG storage facility following a fit check on MSL's Curiosity rover in the PHSF. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  18. KSC-2011-6736

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- Department of Energy workers park the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission in the high bay of the RTG storage facility (RTGF) at NASA's Kennedy Space Center in Florida. The MMRTG is enclosed in a mesh container, known as the "gorilla cage," which protects it during transport and allows any excess heat generated to dissipate into the air. The MMRTG is returning to the RTGF following a fit check on MSL's Curiosity rover in the Payload Hazardous Servicing Facility (PHSF). The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  19. KSC-2011-6679

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a forklift carries the protective mesh container, known as the "gorilla cage," enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission into the airlock of the Payload Hazardous Servicing Facility (PHSF). The cage protects the MMRTG and allows any excess heat generated to dissipate into the air. In the PHSF, the MMRTG temporarily will be installed on the MSL rover, Curiosity, for a fit check but will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  20. KSC-2011-6676

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- Outside the RTG storage facility at NASA's Kennedy Space Center in Florida, the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission, enclosed in the protective mesh container known as the "gorilla cage," is strapped down inside the MMRTG trailer and ready for transport to the Payload Hazardous Servicing Facility (PHSF). The cage protects the MMRTG and allows any excess heat generated to dissipate into the air. In the PHSF, the MMRTG temporarily will be installed on the MSL rover, Curiosity, for a fit check but will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  1. KSC-2011-6670

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- Outside the high bay of the RTG storage facility at NASA's Kennedy Space Center in Florida, a forklift picks up the protective mesh container, known as the "gorilla cage," enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission for its move to the Payload Hazardous Servicing Facility (PHSF). The cage protects the MMRTG and allows any excess heat generated to dissipate into the air. In the PHSF, the MMRTG temporarily will be installed on the MSL rover, Curiosity, for a fit check but will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  2. KSC-2011-6743

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- In the high bay of the RTG storage facility (RTGF) at NASA's Kennedy Space Center in Florida, the mesh container enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission is lifted from around the MMRTG. The container, known as the "gorilla cage," protects the MMRTG during transport and allows any excess heat generated to dissipate into the air. The cage is being removed following the return of the MMRTG to the RTGF from a fit check on MSL's Curiosity rover in the Payload Hazardous Servicing Facility (PHSF). The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  3. KSC-2011-6721

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- A forklift approaches the airlock of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida where the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission awaits transport to the RTG storage facility. The MMRTG is enclosed in a mesh container, known as the "gorilla cage," which protects it during transport and allows any excess heat generated to dissipate into the air. The MMRTG was in the PHSF for a fit check on MSL's Curiosity rover. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  4. KSC-2011-6723

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- A forklift moves into position to lift the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission from the floor of the Payload Hazardous Servicing Facility (PHSF) airlock at NASA's Kennedy Space Center in Florida. The MMRTG is enclosed in a mesh container, known as the "gorilla cage," which protects it during transport and allows any excess heat generated to dissipate into the air. The MMRTG is being transported to the RTG storage facility following a fit check on MSL's Curiosity rover in the PHSF. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  5. KSC-2011-6672

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- Outside the RTG storage facility at NASA's Kennedy Space Center in Florida, a forklift carries the protective mesh container, known as the "gorilla cage," enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission toward the MMRTG trailer that will transport it to the Payload Hazardous Servicing Facility (PHSF). The cage protects the MMRTG and allows any excess heat generated to dissipate into the air. In the PHSF, the MMRTG temporarily will be installed on the MSL rover, Curiosity, for a fit check but will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  6. KSC-2011-6733

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- The multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission is lifted from the MMRTG trailer at the RTG storage facility (RTGF) at NASA's Kennedy Space Center in Florida. The MMRTG is enclosed in a mesh container, known as the "gorilla cage," which protects it during transport and allows any excess heat generated to dissipate into the air. The MMRTG is returning to the RTGF following a fit check on MSL's Curiosity rover in the Payload Hazardous Servicing Facility (PHSF). The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  7. KSC-2011-6724

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- A forklift moves into position to lift the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission from the floor of the Payload Hazardous Servicing Facility (PHSF) airlock at NASA's Kennedy Space Center in Florida. The MMRTG is enclosed in a mesh container, known as the "gorilla cage," which protects it during transport and allows any excess heat generated to dissipate into the air. The MMRTG is being moved to the RTG storage facility following a fit check on MSL's Curiosity rover in the PHSF. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  8. KSC-2011-6681

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the airlock of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, the protective mesh container enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission is lifted from around the MMRTG. The container, known as the "gorilla cage," protects the MMRTG during transport and allows any excess heat generated to dissipate into the air. In the PHSF, the MMRTG temporarily will be installed on the MSL rover, Curiosity, for a fit check but will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  9. KSC-2011-6728

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a forklift lifts the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission into the MMRTG trailer. The MMRTG is enclosed in a mesh container, known as the "gorilla cage," which protects it during transport and allows any excess heat generated to dissipate into the air. The MMRTG is being moved to the RTG storage facility following a fit check on MSL's Curiosity rover in the Payload Hazardous Servicing Facility (PHSF). The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  10. KSC-2011-6675

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- Outside the RTG storage facility at NASA's Kennedy Space Center in Florida, the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission, enclosed in the protective mesh container known as the "gorilla cage," is strapped down inside the MMRTG trailer for transport to the Payload Hazardous Servicing Facility (PHSF). The cage protects the MMRTG and allows any excess heat generated to dissipate into the air. In the PHSF, the MMRTG temporarily will be installed on the MSL rover, Curiosity, for a fit check but will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  11. KSC-2011-6685

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- Workers dressed in clean room attire, known as bunny suits, transfer the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission on its holding base through the doors of the airlock of the Payload Hazardous Servicing Facility (PHSF) into the facility's high bay. In the high bay, the MMRTG temporarily will be installed on the MSL rover, Curiosity (in the background, at right), for a fit check using the MMRTG integration cart (in the background, at left). The MMRTG will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  12. Assessing Weather Curiosity in University Students

    NASA Astrophysics Data System (ADS)

    Stewart, A. E.

    2017-12-01

    This research focuses upon measuring an individual's level of trait curiosity about the weather using the Weather Curiosity Scale (WCS). The measure consists of 15 self-report items that describe weather preferences and/or behaviors that people may perform more or less frequently. The author reports on two initial studies of the WCS that have used the responses of 710 undergraduate students from a large university in the southeastern United States. In the first study, factor analysis of the 15 items indicated that the measure was unidimensional - suggesting that its items singularly assessed weather curiosity. The WCS also was internally consistent as evidenced by an acceptable Cronbach's alpha, a = .81). The second study sought to identify other personality variables that may relate with the WCS scores and thus illuminate the nature of weather curiosity. Several clusters of personality variables appear to underlie the curiosity levels people exhibited, the first of which related to perceptual curiosity (r = .59). Being curious about sights, sounds, smells, and textures generally related somewhat to curiosity about weather. Two measures of trait sensitivity to environmental stimulation, the Highly Sensitive Person Scale (r = .47) and the Orientation Sensitivity Scale of the Adult Temperament Questionnaire (r = .43), also predicted weather curiosity levels. Finally, possessing extraverted personality traits (r = .34) and an intense style of experiencing one's emotions (r = .33) related to weather curiosity. How can this measure be used in K-12 or post-secondary settings to further climate literacy? First, the WCS can identify students with natural curiosities about weather and climate so these students may be given more challenging instruction that will leverage their natural interests. Second, high-WCS students may function as weather and climate ambassadors during inquiry-based learning activities and thus help other students who are not as oriented to the

  13. The Epistemic Value of Curiosity

    ERIC Educational Resources Information Center

    Schmitt, Frederick F.; Lahroodi, Reza

    2008-01-01

    In this essay, Frederick Schmitt and Reza Lahroodi explore the value of curiosity for inquiry and knowledge. They defend an appetitive account of curiosity, viewing curiosity as a motivationally original desire to know that arises from having one's attention drawn to the object and that in turn sustains one's attention to it. Distinguishing…

  14. [Research advance of dosage compensation and MSL complex].

    PubMed

    Sun, Min-Qiu; Lin, Peng; Chen, Yun; Wang, Yi-Lei; Zhang, Zi-Ping

    2012-05-01

    Dosage compensation effect, which exists widely in eukaryotes with sexual reproduction, is an essential biological process that equalizes the level of gene expression between genders based on sex determination. In Drosophila, the male-specific lethal (MSL) complex mediates dosage compensation by acetylating histone H4 lysine K16 on nucleosome of some specific sites on the male X chromosome, globally upregulates twofold expression of active X-linked genes from the single X chromosome, and makes up for the shortage that the male has only one single X chromosome in male Drosophila. Up to date, the structure of basic components of MSL complex, which consists of at least five protein subunits and two non-coding RNAs, has already been revealed, and the interaction sites among these components have also been generally identified. Furthermore, abundant researches on recognition mechanism of the complex have been published. In contrast, many studies have revealed that mammalian dosage compensation functions by silencing gene expression from one of the two X chromosomes in females. The main components of mammalian MSL complex have already been identified, but the knowledge of their function is limited. Up to now, research of MSLs in teleosts is scarcely studied. This review summarizes the similarities and differences among dosage compensation mechanisms of nematodes, fruit flies and mammals, introduces the recent research advances in MSL complex, as well as molecular mechanism of dosage compensation in fruit fly, and finally addresses some problems to be resolved. Meanwhile, the diversity of msl3 gene in fishes is found by synteny analysis. This information might provide insightful directions for future research on the mechanisms of dosage compensation in various species.

  15. Curiosity Overview of a Two-Year Odyssey

    NASA Astrophysics Data System (ADS)

    Meyer, Michael A.; Vasavada, Ashwin R.

    2014-11-01

    The Mars Science Laboratory rover, Curiosity, has been exploring the floor of Gale Crater for well over a Mars year and has now entered its extended mission. Major milestones have been met and exceeded, especially having addressed its prime scientific objective through exploring Yellowknife Bay, an ancient fluvial environment in Gale Crater, and determining that it could have supported microbial life. The mission has accomplished many first-time planetary activities, such as measurements new to planetary science (Laser Induced Breakdown Spectroscopy, X-ray Diffraction), measurements of the high-energy radiation flux at the surface, radiogenic and cosmogenic isotope age dating of rocks, and detection of martian organic carbon. In addition, many measurements have provided a significant refinement to those of previous missions such as atmospheric isotopic measurements relevant to atmospheric loss, methane content of the atmosphere, and the daily and seasonal change in atmospheric temperature and pressure. Curiosity has left its landing ellipse and is progressing toward the base of Mt. Sharp. The rover has had the opportunity to make additional measurements of fluvial sediments, including extensive remote and contact measurements, and analysis of a drilled samples. A summary of two Earth years of major findings of Curiosity, their implications, and more recent results (potentially including comet Siding Spring) will be presented at the meeting.

  16. FPGA for Power Control of MSL Avionics

    NASA Technical Reports Server (NTRS)

    Wang, Duo; Burke, Gary R.

    2011-01-01

    A PLGT FPGA (Field Programmable Gate Array) is included in the LCC (Load Control Card), GID (Guidance Interface & Drivers), TMC (Telemetry Multiplexer Card), and PFC (Pyro Firing Card) boards of the Mars Science Laboratory (MSL) spacecraft. (PLGT stands for PFC, LCC, GID, and TMC.) It provides the interface between the backside bus and the power drivers on these boards. The LCC drives power switches to switch power loads, and also relays. The GID drives the thrusters and latch valves, as well as having the star-tracker and Sun-sensor interface. The PFC drives pyros, and the TMC receives digital and analog telemetry. The FPGA is implemented both in Xilinx (Spartan 3- 400) and in Actel (RTSX72SU, ASX72S). The Xilinx Spartan 3 part is used for the breadboard, the Actel ASX part is used for the EM (Engineer Module), and the pin-compatible, radiation-hardened RTSX part is used for final EM and flight. The MSL spacecraft uses a FC (Flight Computer) to control power loads, relays, thrusters, latch valves, Sun-sensor, and star-tracker, and to read telemetry such as temperature. Commands are sent over a 1553 bus to the MREU (Multi-Mission System Architecture Platform Remote Engineering Unit). The MREU resends over a remote serial command bus c-bus to the LCC, GID TMC, and PFC. The MREU also sends out telemetry addresses via a remote serial telemetry address bus to the LCC, GID, TMC, and PFC, and the status is returned over the remote serial telemetry data bus.

  17. Sample Analysis at Mars (SAM) Media Day

    NASA Image and Video Library

    2017-12-08

    On Saturday, November 26, NASA is scheduled to launch the Mars Science Laboratory (MSL) mission featuring Curiosity, the largest and most advanced rover ever sent to the Red Planet. The Curiosity rover bristles with multiple cameras and instruments, including Goddard's Sample Analysis at Mars (SAM) instrument suite. By looking for evidence of water, carbon, and other important building blocks of life in the Martian soil and atmosphere, SAM will help discover whether Mars ever had the potential to support life. Curiosity will be delivered to Gale crater, a 96-mile-wide crater that contains a record of environmental changes in its sedimentary rock, in August 2012. ----- NASA image November 18, 2010 The Sample Analysis at Mars (SAM) instrument is considered one of the most complicated instruments ever to land on the surface of another planet. Equipped with a gas chromatograph, a quadruple mass spectrometer, and a tunable laser spectrometer, SAM will carry out the initial search for organic compounds when the Mars Science Laboratory (MSL) rover lands in 2012. Credit: NASA/GSFC/Ed Campion NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Curiosity Self-Portrait at Big Sky Drilling Site

    NASA Image and Video Library

    2015-10-13

    This self-portrait of NASA's Curiosity Mars rover shows the vehicle at the "Big Sky" site, where its drill collected the mission's fifth taste of Mount Sharp. The scene combines dozens of images taken during the 1,126th Martian day, or sol, of Curiosity's work during Mars (Oct. 6, 2015, PDT), by the Mars Hand Lens Imager (MAHLI) camera at the end of the rover's robotic arm. The rock drilled at this site is sandstone in the Stimson geological unit inside Gale Crater. The location is on cross-bedded sandstone in which the cross bedding is more evident in views from when the rover was approaching the area, such as PIA19818. The view is centered toward the west-northwest. It does not include the rover's robotic arm, though the shadow of the arm is visible on the ground. Wrist motions and turret rotations on the arm allowed MAHLI to acquire the mosaic's component images. The arm was positioned out of the shot in the images, or portions of images, that were used in this mosaic. This process was used previously in acquiring and assembling Curiosity self-portraits taken at sample-collection sites "Rocknest" (PIA16468), "John Klein" (PIA16937) and "Windjana" (PIA18390). This portrait of the rover was designed to show the Chemistry and Camera (ChemCam) instrument atop the rover appearing level. This causes the horizon to appear to tilt toward the left, but in reality it is fairly flat. For scale, the rover's wheels are 20 inches (50 centimeters) in diameter and about 16 inches (40 centimeters) wide. The drilled hole in the rock, appearing grey near the lower left corner of the image, is 0.63 inch (1.6 centimeters) in diameter. MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. http

  19. Curiosity View From Below

    NASA Image and Video Library

    2012-08-17

    The Curiosity engineering team created this cylindrical projection view from images taken by NASA Curiosity rover front hazard avoidance cameras underneath the rover deck on Sol 0. Pictured here are are the pigeon-toed the wheels.

  20. KSC-2011-6696

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission is attached to the MMRTG integration cart. The cart will be used to install the MMRTG on the Curiosity rover for a fit check. The wheels of the rover appear to stick out on either side of the cart. The MMRTG will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  1. KSC-2011-6708

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission, still connected to the turning fixture, rests on a support base following the MMRTG fit check on the Curiosity rover. A mobile plexiglass radiation shield is in place between the MMRTG and the spacecraft technicians, at right, to help minimize the employees' radiation exposure. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  2. KSC-2011-7938

    NASA Image and Video Library

    2011-11-25

    CAPE CANAVERAL, Fla. – Leland Melvin, NASA associate administrator for Education; Clara Ma, student, NASA contest winner for naming Curiosity, Shawnee Mission East High School, Prairie Village, Kansas; Scott Anderson, teacher and science department chairman Da Vinci School for Science and the Arts, El Paso, Texas, take a moment pose for the camera before the start of an educational news conference to explore "Why Mars Excites and Inspires Us" in NASA Kennedy Space Center's Press Site auditorium in Florida during prelaunch activities for the agency’s Mars Science Laboratory (MSL) launch. MSL's car-sized Martian rover, Curiosity, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Ma's entry was selected the winner from 9,000 entries in NASA's nationwide student contest to name the rover. At the time, she was a twelve-year-old sixth-grade student at the Sunflower Elementary school in Lenexa, Kansas. Liftoff of MSL aboard a United Launch Alliance Atlas V rocket from Space Launch Complex-41 on Cape Canaveral Air Force Station is planned during a launch window which extends from 10:02 a.m. to 11:45 a.m. EST on Nov. 26. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  3. KSC-2011-6697

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission is attached to the MMRTG integration cart. The cart will be used to install the MMRTG on the Curiosity rover for a fit check. The rover is on an elevated work stand, at right. The MMRTG then will be removed and installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  4. KSC-2011-6695

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission on the turning fixture is lowered onto the MMRTG integration cart. The cart will be used to install the MMRTG on the Curiosity rover for a fit check. The rover is on an elevated work stand, at right. The MMRTG will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  5. KSC-2011-6716

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- The multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission rests on its support base in the airlock of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida following the MMRTG fit check on the Curiosity rover in the high bay. In the background, at right, is the mesh container, known as the "gorilla cage," which protects the MMRTG during transport and allows any excess heat generated to dissipate into the air. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  6. Curiosity and Comprehension

    ERIC Educational Resources Information Center

    Butler, John H. Montagu

    2012-01-01

    Most people have an innate curiosity about things and ideas, people and events. When they read stories, especially those concerning crime, love, or adventure, they not only want to find out what is happening or has happened, but they generally make some kind of guess as to what is likely to happen next. Where there is no such curiosity on the part…

  7. Curiosity Wheel During Descent

    NASA Image and Video Library

    2012-08-07

    This color thumbnail image was obtained by NASA Curiosity rover illustrating the first appearance of the left front wheel of the Curiosity rover after deployment of the suspension system as the vehicle was about to touch down on Mars.

  8. X-Ray Diffraction Reference Intensity Ratios of Amorphous and Poorly Crystalline Phases: Implications for CheMin on the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Achilles, C. N.; Chipera, S. J.; Ming, D. W.; Rampe, E. B.

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity is an X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of providing the mineralogical and chemical compositions of rocks and soils on the surface of Mars. CheMin uses a microfocus X-ray tube with a Co target, transmission geometry, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. Piezoelectric vibration of the cell is used to randomize the sample to reduce preferred orientation effects. Instrument details are provided in [1, 2, 3]. Analyses of rock and soil samples by the Mars Exploration Rovers (MER) show nanophase ferric oxide (npOx) is a significant component of the Martian global soil [4] and is thought to be one of the major contributing phases that the Curiosity rover will encounter if a soil sample is analyzed in Gale Crater. Because of the nature of this material, npOx will likely contribute to an X-ray amorphous or short-order component of a XRD pattern measured by the CheMin instrument.

  9. Test Rover Aids Preparations in California for Curiosity Rover on Mars

    NASA Image and Video Library

    2012-05-11

    NASA Mars Science Laboratory mission team members ran mobility tests on the test rover called Scarecrow on sand dunes near Death Valley, Ca. in early May 2012 in preparation for operating the Curiosity rover, currently en route to Mars.

  10. Curiosity Spotted on Parachute by Orbiter

    NASA Image and Video Library

    2012-08-06

    NASA Curiosity rover and its parachute were spotted by NASA Mars Reconnaissance Orbiter as Curiosity descended to the surface. The HiRISE camera captured this image of Curiosity while the orbiter was listening to transmissions from the rover.

  11. Curiosity Spotted on Parachute by Orbiter

    NASA Image and Video Library

    2012-08-06

    NASA Curiosity rover and its parachute were spotted by NASA Mars Reconnaissance Orbiter as Curiosity descended to the surface on Aug. 5 PDT Aug. 6 EDT. Curiosity and its parachute are in the center of the white box.

  12. Water equivalent hydrogen estimates from the first 200 sols of Curiosity's traverse (Bradbury Landing to Yellowknife Bay): Results from the Dynamic Albedo of Neutrons (DAN) passive mode experiment

    NASA Astrophysics Data System (ADS)

    Tate, C. G.; Moersch, J.; Jun, I.; Ming, D. W.; Mitrofanov, I.; Litvak, M.; Behar, A.; Boynton, W. V.; Deflores, L.; Drake, D.; Ehresmann, B.; Fedosov, F.; Golovin, D.; Hardgrove, C.; Harshman, K.; Hassler, D. M.; Kozyrev, A. S.; Kuzmin, R.; Lisov, D.; Malakhov, A.; Milliken, R.; Mischna, M.; Mokrousov, M.; Nikiforov, S.; Sanin, A. B.; Starr, R.; Varenikov, A.; Vostrukhin, A.; Zeitlin, C.

    2015-12-01

    The Dynamic Albedo of Neutrons (DAN) experiment on the Mars Science Laboratory (MSL) rover Curiosity is designed to detect neutrons to determine hydrogen abundance within the subsurface of Mars (Mitrofanov, I.G. et al. [2012]. Space Sci. Rev. 170, 559-582. http://dx.doi.org/10.1007/s11214-012-9924-y; Litvak, M.L. et al. [2008]. Astrobiology 8, 605-613. http://dx.doi.org/10.1089/ast.2007.0157). While DAN has a pulsed neutron generator for active measurements, in passive mode it only measures the leakage spectrum of neutrons produced by the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) and Galactic Cosmic Rays (GCR). DAN passive measurements provide better spatial coverage than the active measurements because they can be acquired while the rover is moving. Here we compare DAN passive-mode data to models of the instrument's response to compositional differences in a homogeneous regolith in order to estimate the water equivalent hydrogen (WEH) content along the first 200 sols of Curiosity's traverse in Gale Crater, Mars. WEH content is shown to vary greatly along the traverse. These estimates range from 0.5 ± 0.1 wt.% to 3.9 ± 0.2 wt.% for fixed locations (usually overnight stops) investigated by the rover and 0.6 ± 0.2 wt.% to 7.6 ± 1.3 wt.% for areas that the rover has traversed while continuously acquiring DAN passive data between fixed locations. Estimates of WEH abundances at fixed locations based on passive mode data are in broad agreement with those estimated at the same locations using active mode data. Localized (meter-scale) anomalies in estimated WEH values from traverse measurements have no particular surface expression observable in co-located images. However at a much larger scale, the hummocky plains and bedded fractured units are shown to be distinct compositional units based on the hydrogen content derived from DAN passive measurements. DAN passive WEH estimates are also shown to be consistent with geologic models inferred from other

  13. Measurements of the neutral particle spectra on Mars by MSL/RAD from 2015-11-15 to 2016-01-15

    NASA Astrophysics Data System (ADS)

    Guo, Jingnan; Zeitlin, Cary; Wimmer-Schweingruber, Robert; Hassler, Donald M.; Köhler, Jan; Ehresmann, Bent; Böttcher, Stephan; Böhm, Eckart; Brinza, David E.

    2017-08-01

    The Radiation Assessment Detector (RAD), onboard the Mars Science Laboratory (MSL) rover Curiosity, has been measuring the energetic charged and neutral particles and the radiation dose rate on the surface of Mars since the landing of the rover in August 2012. In contrast to charged particles, neutral particles (neutrons and γ-rays) are measured indirectly: the energy deposition spectra produced by neutral particles are complex convolutions of the incident particle spectra with the detector response functions. An inversion technique has been developed and applied to jointly unfold the deposited energy spectra measured in two scintillators of different types (CsI for high γ detection efficiency, and plastic for neutrons) to obtain the neutron and γ-ray spectra. This result is important for determining the biological impact of the Martian surface radiation contributed by neutrons, which interact with materials differently from the charged particles. These first in-situ measurements on Mars provide (1) an important reference for assessing the radiation-associated health risks for future manned missions to the red planet and (2) an experimental input for validating the particle transport codes used to model the radiation environments within spacecraft or on the surface of planets. Here we present neutral particle spectra as well as the corresponding dose and dose equivalent rates derived from RAD measurement during a period (November 15, 2015 to January 15, 2016) for which the surface particle spectra have been simulated via different transport models.

  14. JPL-20170801-MSLf-0001-Rover POV Five Years of Curiosity on Mars

    NASA Image and Video Library

    2017-08-02

    Five years of images from the Mars Science Laboratory rover Curiosity's Hazard Avoidance Camera (Hazcam) were used to create this time-lapse movie. An inset map shows the rover's location in Mars' Gale Crater.

  15. OARE and SAMS on STS-94/MSL-1

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton; Hrovat, Kenneth; McPherson, Kevin; Tschen, Peter; DeLombard, Richard; Nati, Maurizio

    1998-01-01

    Four microgravity acceleration measurement instruments were included on MSL-1 to measure the accelerations and vibrations to which science experiments were exposed during their operation on the mission. The data were processed and presented to the principal investigators in a variety of formats to aid their assessment of the microgravity environment during their experiment operations. Two accelerometer systems managed by the NASA Lewis Research Center (LeRC) supported the MSL-1 mission: the Orbital Acceleration Research Experiment (OARE), and the Space Acceleration Measurement System (SAMS). In addition, the Microgravity Measurement Assembly (MMA) and the Quasi- Steady Acceleration Measurement (QSAM) system, both sponsored by the Microgravity Research Division, collected acceleration data as a part of the MSL-1 mission. The NIMA was funded and designed by the European Space Agency in the Netherlands (ESA/ESTEC), and the QSAM system was funded and designed by the German Space Agency (DLR). The Principal Investigator Microgravity Services (PIMS) project at the NASA Lewis Research Center (LeRC) supports Principal Investigators (PIs) of the Microgravity science community as they evaluate the effects of acceleration on their experiments. PIMS primary responsibility is to support NASA-sponsored investigators in the area of acceleration data analysis and interpretation. A mission summary report was prepared and published by PIMS in order to furnish interested experiment investigators with a guide for evaluating the acceleration environment during the MSL-1 mission.

  16. The Charged Particle Environment on the Surface of Mars induced by Solar Energetic Particles - Five Years of Measurements with the MSL/RAD instrument

    NASA Astrophysics Data System (ADS)

    Ehresmann, B.; Hassler, D.; Zeitlin, C.; Guo, J.; Lee, C. O.; Wimmer-Schweingruber, R. F.; Appel, J. K.; Boehm, E.; Boettcher, S. I.; Brinza, D. E.; Burmeister, S.; Lohf, H.; Martin-Garcia, C.; Matthiae, D.; Rafkin, S. C.; Reitz, G.

    2017-12-01

    NASA's Mars Science Laboratory (MSL) mission has now been operating in Gale crater on the surface of Mars for five years. On board MSL, the Radiation Assessment Detector (MSL/RAD) is measuring the Martian surface radiation environment, providing insights on its intensity and composition. This radiation field is mainly composed of primary Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. However, on shorter time scales the radiation environment can be dominated by contributions from Solar Energetic Particle (SEP) events. Due to the modulating effect of the Martian atmosphere shape and intensity of these SEP spectra will differ significantly between interplanetary space and the Martian surface. Understanding how SEP events influence the surface radiation field is crucial to assess associated health risks for potential human missions to Mars. Here, we present updated MSL/RAD results for charged particle fluxes measured on the surface during SEP activity from the five years of MSL operations on Mars. The presented results incorporate updated analysis techniques for the MSL/RAD data and yield the most robust particle spectra to date. Furthermore, we compare the MSL/RAD SEP-induced fluxes to measurements from other spacecraft in the inner heliosphere and, in particular, in Martian orbit. Analyzing changes of SEP intensities from interplanetary space to the Martian surface gives insight into the modulating effect of the Martian atmosphere, while comparing timing profiles of SEP events between Mars and different points in interplanetary space can increase our understanding of SEP propagation in the heliosphere.

  17. Radiative Heating in MSL Entry: Comparison of Flight Heating Discrepancy to Ground Test and Predictive Models

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Brandis, Aaron M.; White, Todd R.; Mahzari, Milad; Bose, Deepak

    2014-01-01

    During the recent entry of the Mars Science Laboratory (MSL), the heat shield was equipped with thermocouple stacks to measure in-depth heating of the thermal protection system (TPS). When only convective heating was considered, the derived heat flux from gauges in the stagnation region was found to be underpredicted by as much as 17 W/sq cm, which is significant compared to the peak heating of 32 W/sq cm. In order to quantify the contribution of radiative heating phenomena to the discrepancy, ground tests and predictive simulations that replicated the MSL entry trajectory were performed. An analysis is carried through to assess the quality of the radiation model and the impact to stagnation line heating. The impact is shown to be significant, but does not fully explain the heating discrepancy.

  18. Calibration of the MSL/ChemCam/LIBS Remote Sensing Composition Instrument

    NASA Technical Reports Server (NTRS)

    Wiens, R. C.; Maurice S.; Bender, S.; Barraclough, B. L.; Cousin, A.; Forni, O.; Ollila, A.; Newsom, H.; Vaniman, D.; Clegg, S.; hide

    2011-01-01

    The ChemCam instrument suite on board the 2011 Mars Science Laboratory (MSL) Rover, Curiosity, will provide remote-sensing composition information for rock and soil samples within seven meters of the rover using a laser-induced breakdown spectroscopy (LIBS) system, and will provide context imaging with a resolution of 0.10 mradians using the remote micro-imager (RMI) camera. The high resolution is needed to image the small analysis footprint of the LIBS system, at 0.2-0.6 mm diameter. This fine scale analytical capability will enable remote probing of stratigraphic layers or other small features the size of "blueberries" or smaller. ChemCam is intended for rapid survey analyses within 7 m of the rover, with each measurement taking less than 6 minutes. Repeated laser pulses remove dust coatings and provide depth profiles through weathering layers, allowing detailed investigation of rock varnish features as well as analysis of the underlying pristine rock composition. The LIBS technique uses brief laser pulses greater than 10 MW/square mm to ablate and electrically excite material from the sample of interest. The plasma emits photons with wavelengths characteristic of the elements present in the material, permitting detection and quantification of nearly all elements, including the light elements H, Li, Be, B, C, N, O. ChemCam LIBS projects 14 mJ of 1067 nm photons on target and covers a spectral range of 240-850 nm with resolutions between 0.15 and 0.60 nm FWHM. The Nd:KGW laser is passively cooled and is tuned to provide maximum power output from -10 to 0 C, though it can operate at 20% degraded energy output at room temperature. Preliminary calibrations were carried out on the flight model (FM) in 2008. However, the detectors were replaced in 2009, and final calibrations occurred in April-June, 2010. This presentation describes the LIBS calibration and characterization procedures and results, and details plans for final analyses during rover system thermal testing

  19. Fish-eye View of NASA Curiosity Rover and its Powered Descent Vehicle

    NASA Image and Video Library

    2011-11-23

    An engineer says goodbye to the Curiosity rover and its powered descent vehicle in the Jet Propulsion Laboratory Spacecraft Assembly Facility shortly before the spacecraft was readied for shipment to Kennedy Space Center for launch.

  20. Curiosity Successfully Drills "Duluth"

    NASA Image and Video Library

    2018-05-23

    A close-up image of a 2-inch-deep hole produced using a new drilling technique for NASA's Curiosity rover. The hole is about 0.6 inches (1.6 centimeters) in diameter. This image was taken by Curiosity's Mast Camera (Mastcam) on Sol 2057. It has been white balanced and contrast-enhanced. Curiosity drilled this hole in a target called "Duluth" on May 20, 2018. It was the first rock sample captured by the drill since October 2016. A mechanical issue took the drill offline in December 2016. https://photojournal.jpl.nasa.gov/catalog/PIA22326

  1. KSC-2011-7968

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Press Site in Florida, participants in NASA's Tweetup photograph the launch of the agency's Mars Science Laboratory (MSL) as the countdown clock ticks off the seconds. The tweeters will share their experiences with followers through the social networking site Twitter. The 197-foot-tall United Launch Alliance Atlas V rocket lifted off Space Launch Complex-41 on neighboring Cape Canaveral Air Force Station at 10:02 a.m. EST at the opening of the launch window. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  2. The Geologic Exploration of the Bagnold Dune Field at Gale Crater by the Curiosity Rover.

    PubMed

    Chojnacki, Matthew; Fenton, Lori K

    2017-11-01

    The Mars Science Laboratory rover Curiosity engaged in a monthlong campaign investigating the Bagnold dune field in Gale crater. What represents the first in situ investigation of a dune field on another planet has resulted in a number of discoveries. Collectively, the Curiosity rover team has compiled the most comprehensive survey of any extraterrestrial aeolian system visited to date with results that yield important insights into a number of processes, including sediment transport, bed form morphology and structure, chemical and physical composition of aeolian sand, and wind regime characteristics. These findings and more are provided in detail by the JGR-Planets Special Issue Curiosity's Bagnold Dunes Campaign, Phase I.

  3. Curiosity rover LEGO® version could land soon

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-09-01

    Now that NASA's Curiosity rover has landed on Mars, a smaller LEGO® plastic brick construction version could be landing in toy stores. Less than 2 weeks after Curiosity set down on 5 August, a LEGO® set concept model designed by a mechanical and aerospace engineer who worked on the real rover garnered its 10,000th supporter on the Web site of CUUSOO, a Japanese partner of the LEGO® group. That milestone triggered a company review that began in September 2012 to test the model's “playability, safety, and ft with the LEGO® brand,” according to a congratulatory statement from the company to designer Stephen Pakbaz. Pakbaz told Eos that he has been an avid LEGO® and space exploration fan for most of his life. “For me, creating a LEGO® model of Curiosity using my firsthand knowledge of the rover was inevitable. What I enjoyed most was being able to faithfully replicate and subsequently demonstrate the rocker-bogie suspension system to friends, family, and coworkers,” he noted, referring to the suspension system that allows the rover to climb over obstacles while keeping its wheels on the ground. Pakbaz, who is currently with Orbital Sciences Corporation, was involved with aspects of the rover while working at the Jet Propulsion Laboratory from 2007 to 2011 as a mechanical engineer.

  4. The charged particle radiation environment on Mars measured by MSL/RAD from November 15, 2015 to January 15, 2016

    NASA Astrophysics Data System (ADS)

    Ehresmann, Bent; Zeitlin, Cary J.; Hassler, Donald M.; Matthiä, Daniel; Guo, Jingnan; Wimmer-Schweingruber, Robert F.; Appel, Jan K.; Brinza, David E.; Rafkin, Scot C. R.; Böttcher, Stephan I.; Burmeister, Sönke; Lohf, Henning; Martin, Cesar; Böhm, Eckart; Reitz, Günther

    2017-08-01

    The Radiation Assessment Detector (RAD) on board the Mars Science Laboratory (MSL) Curiosity rover has been measuring the radiation environment in Gale crater on Mars since August, 2012. These first in-situ measurements provide an important data set for assessing the radiation-associated health risks for future manned missions to Mars. Mainly, the radiation field on the Martian surface stems from Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. RAD is capable of measuring differential particle fluxes for lower-energy ions and isotopes of hydrogen and helium (up to hundreds of MeV/nuc). Additionally, RAD also measures integral particle fluxes for higher energies of these ions. Besides providing insight on the current Martian radiation environment, these fluxes also present an essential input for particle transport codes that are used to model the radiation to be encountered during future manned missions to Mars. Comparing simulation results with actual ground-truth measurements helps to validate these transport codes and identify potential areas of improvements in the underlying physics of these codes. At the First Mars Radiation Modeling Workshop (June 2016 in Boulder, CO), different groups of modelers were asked to calculate the Martian surface radiation environment for the time of November 15, 2015 to January 15, 2016. These model results can then be compared with in-situ measurements of MSL/RAD conducted during the same time frame. In this publication, we focus on presenting the charged particle fluxes measured by RAD between November 15, 2015 and January 15, 2016, providing the necessary data set for the comparison to model outputs from the modeling workshop. We also compare the fluxes to initial GCR intensities, as well as to RAD measurements from an earlier time period (August 2012 to January 2013). Furthermore, we describe how changes and updates in RAD on board processing and the on

  5. The charged particle radiation environment on Mars measured by MSL/RAD from November 15, 2015 to January 15, 2016.

    PubMed

    Ehresmann, Bent; Zeitlin, Cary J; Hassler, Donald M; Matthiä, Daniel; Guo, Jingnan; Wimmer-Schweingruber, Robert F; Appel, Jan K; Brinza, David E; Rafkin, Scot C R; Böttcher, Stephan I; Burmeister, Sönke; Lohf, Henning; Martin, Cesar; Böhm, Eckart; Reitz, Günther

    2017-08-01

    The Radiation Assessment Detector (RAD) on board the Mars Science Laboratory (MSL) Curiosity rover has been measuring the radiation environment in Gale crater on Mars since August, 2012. These first in-situ measurements provide an important data set for assessing the radiation-associated health risks for future manned missions to Mars. Mainly, the radiation field on the Martian surface stems from Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. RAD is capable of measuring differential particle fluxes for lower-energy ions and isotopes of hydrogen and helium (up to hundreds of MeV/nuc). Additionally, RAD also measures integral particle fluxes for higher energies of these ions. Besides providing insight on the current Martian radiation environment, these fluxes also present an essential input for particle transport codes that are used to model the radiation to be encountered during future manned missions to Mars. Comparing simulation results with actual ground-truth measurements helps to validate these transport codes and identify potential areas of improvements in the underlying physics of these codes. At the First Mars Radiation Modeling Workshop (June 2016 in Boulder, CO), different groups of modelers were asked to calculate the Martian surface radiation environment for the time of November 15, 2015 to January 15, 2016. These model results can then be compared with in-situ measurements of MSL/RAD conducted during the same time frame. In this publication, we focus on presenting the charged particle fluxes measured by RAD between November 15, 2015 and January 15, 2016, providing the necessary data set for the comparison to model outputs from the modeling workshop. We also compare the fluxes to initial GCR intensities, as well as to RAD measurements from an earlier time period (August 2012 to January 2013). Furthermore, we describe how changes and updates in RAD on board processing and the on

  6. KSC-2011-6738

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- A crane is positioned over the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission in the high bay of the RTG storage facility (RTGF) at NASA's Kennedy Space Center in Florida. Preparations are under way to lift the mesh container, known as the "gorilla cage," from the support base on which the MMRTG is resting. The cage protects the MMRTG during transport and allows any excess heat generated to dissipate into the air. The MMRTG is returning to the RTGF following a fit check on MSL's Curiosity rover in the Payload Hazardous Servicing Facility (PHSF). The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  7. KSC-2011-6683

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the airlock of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, the protective mesh container enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission is lowered to the floor of the airlock beside the MMRTG. The container, known as the "gorilla cage," protects the MMRTG during transport and allows any excess heat generated to dissipate into the air. Next, the airlock will be transitioned into a clean room by purging the air of any particles. In the PHSF, the MMRTG temporarily will be installed on the MSL rover, Curiosity, for a fit check but will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  8. KSC-2011-6737

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- Department of Energy workers position mobile plexiglass radiation shields around the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission upon its arrival in the high bay of the RTG storage facility (RTGF) at NASA's Kennedy Space Center in Florida. The shields are designed to minimize the employees' radiation exposure. The MMRTG is enclosed in a mesh container, known as the "gorilla cage," which protects it during transport and allows any excess heat generated to dissipate into the air. The MMRTG is returning to the RTGF following a fit check on MSL's Curiosity rover in the Payload Hazardous Servicing Facility (PHSF). The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  9. KSC-2011-6742

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- In the high bay of the RTG storage facility (RTGF) at NASA's Kennedy Space Center in Florida, the mesh container enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission is lifted from around the MMRTG. The container, known as the "gorilla cage," protects the MMRTG during transport and allows any excess heat generated to dissipate into the air. The cage is being removed following the return of the MMRTG to the RTGF from a fit check on MSL's Curiosity rover in the Payload Hazardous Servicing Facility (PHSF). The workers at right are observing the operation from behind a mobile plexiglass radiation shield to minimize their radiation exposure. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  10. KSC-2011-6741

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- In the high bay of the RTG storage facility (RTGF) at NASA's Kennedy Space Center in Florida, Department of Energy workers guide the mesh container enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission as it is lifted by a crane. The container, known as the "gorilla cage," protects the MMRTG during transport and allows any excess heat generated to dissipate into the air. The cage is being removed from around the MMRTG following it return to the RTGF from a fit check on MSL's Curiosity rover in the Payload Hazardous Servicing Facility (PHSF). The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  11. KSC-2011-6669

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- Department of Energy contractor employees roll the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission, enclosed in a protective mesh container known as the "gorilla cage," toward a forklift outside the high bay of the RTG storage facility at NASA's Kennedy Space Center in Florida for its move to the Payload Hazardous Servicing Facility (PHSF). The cage protects the MMRTG and allows any excess heat generated to dissipate into the air. In the PHSF, the MMRTG temporarily will be installed on the MSL rover, Curiosity, for a fit check but will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  12. KSC-2011-6668

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- Department of Energy contractor employees roll the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission, enclosed in a protective mesh container known as the "gorilla cage," out of the high bay of the RTG storage facility at NASA's Kennedy Space Center in Florida for its move to the Payload Hazardous Servicing Facility (PHSF). The cage protects the MMRTG and allows any excess heat generated to dissipate into the air. In the PHSF, the MMRTG temporarily will be installed on the MSL rover, Curiosity, for a fit check but will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  13. A Summary of the Quasi-Steady Acceleration Environment on-Board STS-94 (MSL-1)

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin M.; Nati, Maurizio; Touboul, Pierre; Schuette, Andreas; Sablon, Gert

    1999-01-01

    The continuous free-fall state of a low Earth orbit experienced by NASA's Orbiters results in a unique reduced gravity environment. While microgravity science experiments are conducted in this reduced gravity environment, various accelerometer systems measure and record the microgravity acceleration environment for real-time and post-flight correlation with microgravity science data. This overall microgravity acceleration environment is comprised of quasi-steady, oscillatory, and transient contributions. The First Microgravity Science Laboratory (MSL-1) payload was dedicated to experiments studying various microgravity science disciplines, including combustion, fluid physics, and materials processing. In support of the MSL-1 payload, two systems capable of measuring the quasi-steady acceleration environment were flown: the Orbital Acceleration Research Experiment (OARE) and the Microgravity Measurement Assembly (MMA) system's Accelerometre Spatiale Triaxiale most evident in the quasi-steady acceleration regime. Utilizing such quasi-steady events, a comparison and summary of the quasi-steady acceleration environment for STS-94 will be presented

  14. A Multi-mission Event-Driven Component-Based System for Support of Flight Software Development, ATLO, and Operations first used by the Mars Science Laboratory (MSL) Project

    NASA Technical Reports Server (NTRS)

    Dehghani, Navid; Tankenson, Michael

    2006-01-01

    This viewgraph presentation reviews the architectural description of the Mission Data Processing and Control System (MPCS). MPCS is an event-driven, multi-mission ground data processing components providing uplink, downlink, and data management capabilities which will support the Mars Science Laboratory (MSL) project as its first target mission. MPCS is designed with these factors (1) Enabling plug and play architecture (2) MPCS has strong inheritance from GDS components that have been developed for other Flight Projects (MER, MRO, DAWN, MSAP), and are currently being used in operations and ATLO, and (3) MPCS components are Java-based, platform independent, and are designed to consume and produce XML-formatted data

  15. A Curious Year on Mars - Long-Term Thermal Trends for Mars Science Laboratory Rover's First Martian Year

    NASA Technical Reports Server (NTRS)

    Cucullu, Gordy C., III; Zayas, Daniel; Novak, Keith; Wu, Pat

    2014-01-01

    By the time of this writing, Curiosity, the Mars Science Laboratory (MSL) Rover, has weathered four seasons in Gale Crater, just south of and approaching the foothills of the 5-km high Aeolis Mons, known as "Mount Sharp," at 4.59 deg south latitude. The mission design included a much broader latitude range of 30 deg north to 30 deg south constraining some of the Rover environmental requirements and operations. To date, Curiosity has relayed over 150 MB of thermal telemetry. Curiosity has relayed over 150 MB of thermal telemetry through four seasons. The trends and idiosyncrasies revealed through four seasons of telemetry from Mars are discussed. The better-characterized thermal environment allows for less conservatism in operational models and increases the amount of science data collection. Examples include: the elimination of overheating concerns for some cameras and the use of the previous sol's temperature telemetry along with the conservative soak temperature curve from the winter thermal model, to produce a custom heating prescription for the upcoming weeks thus increasing operation time and reducing heating times. This paper discusses the lessons learned for Rover operation as well as general idiosyncrasies discovered about the local environment-such as the effect of orientation on subsystem temperature variation, a regular morning and afternoon wind, ground and air microclimates with distinct temperature differences from other terrain, and how the Rover affects the local environment. This paper further documents and explains some of the interesting highs and lows of the temperature telemetry data as well as offers explanations for sudden temperature changes on board the Rover.

  16. KSC-2011-7935

    NASA Image and Video Library

    2011-11-25

    CAPE CANAVERAL, Fla. – Ryan Bechtel, from the Department of Energy, speaks to a group of Tweetup participants at NASA Kennedy Space Center's Press Site in Florida during prelaunch activities for the agency’s Mars Science Laboratory (MSL) launch. Following a series of briefings, participants will tour the center and get a close-up view of Space Launch Complex-41 on Cape Canaveral Air Force Station. The tweeters will share their experiences with followers through the social networking site Twitter. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Liftoff of MSL aboard a United Launch Alliance Atlas V rocket from pad 41 is planned during a launch window which extends from 10:02 a.m. to 11:45 a.m. EST on Nov. 26. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Jim Grossmann

  17. KSC-2011-6069

    NASA Image and Video Library

    2011-07-29

    CAPE CANAVERAL, Fla. -- The Atlas V first stage (right) and Centaur upper stage to support the Mars Science Laboratory (MSL) mission enter Cape Canaveral Air Force Station on their way to the Atlas Spaceflight Operations Center in Florida. Between the stages is a Navaho free-flying missile, on display at the station's main gate. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Dimitri Gerondidakis

  18. KSC-2011-6068

    NASA Image and Video Library

    2011-07-29

    CAPE CANAVERAL, Fla. -- The Atlas V first stage (right) and Centaur upper stage to support the Mars Science Laboratory (MSL) mission pass through the main gate of Cape Canaveral Air Force Station on their way to the Atlas Spaceflight Operations Center in Florida. At the far right is a Navaho free-flying missile, on display at the station's main gate. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Dimitri Gerondidakis

  19. KSC-2011-6067

    NASA Image and Video Library

    2011-07-29

    CAPE CANAVERAL, Fla. -- The Atlas V first stage (right) and Centaur upper stage to support the Mars Science Laboratory (MSL) mission approach the main gate of Cape Canaveral Air Force Station on their way to the Atlas Spaceflight Operations Center in Florida. At the far right is a Navaho free-flying missile, on display at the station's main gate. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Dimitri Gerondidakis

  20. KSC-2011-6070

    NASA Image and Video Library

    2011-07-29

    CAPE CANAVERAL, Fla. -- The Atlas V first stage (right) and Centaur upper stage to support the Mars Science Laboratory (MSL) mission make their way onto Cape Canaveral Air Force Station for delivery to the Atlas Spaceflight Operations Center in Florida. At the far left is a Navaho free-flying missile, on display at the station's main gate. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Dimitri Gerondidakis

  1. Mineral abundances at the final four curiosity study sites and implications for their formation

    NASA Astrophysics Data System (ADS)

    Poulet, F.; Carter, J.; Bishop, J. L.; Loizeau, D.; Murchie, S. M.

    2014-03-01

    A component of the landing site selection process for the Mars Science Laboratory (MSL) involved the presence of phyllosilicates as the main astrobiological targets. Gale crater was selected as the MSL landing site from among 4 down selected study sites (Gale, Eberswalde and Holden craters, Mawrth Vallis) that addressed the primary scientific goal of assessing the past habitability of Mars. A key constraint on the formation process of these phyllosilicate-bearing deposits is in the precise mineralogical composition. We present a reassessment of the mineralogy of the sites combined with a determination of the modal mineralogy of the major phyllosilicate-bearing deposits of the four final study sites from the modeling of near-infrared spectra using a radiative transfer model. The largest abundance of phyllosilicates (30-70%) is found in Mawrth Vallis, the lowest one in Eberswalde (<25%). Except for Mawrth Vallis, the anhydrous phases (plagioclase, pyroxenes and martian dust) are the dominant phases, suggesting formation conditions with a lower alteration grade and/or a post-formation mixing with anhydrous phases. The composition of Holden layered deposits (mixture of saponite and micas with a total abundance in the range of 25-45%) suggests transport and deposition of altered basalts of the Noachian crust without major chemical transformation. For Eberswalde, the modal mineralogy is also consistent with detrital clays, but the presence of opaline silica indicates that an authigenic formation occurred during the deposition. The overall composition including approximately 20-30% smectite detected by MSL in the rocks of Yellow-knife Bay area interpreted to be material deposited on the floor of Gale crater by channels (http://www.nasa.gov/mission_pages/msl/news/msl20130312.html).

  2. Mount Sharp 'Photobombs' Curiosity

    NASA Image and Video Library

    2018-01-31

    This self-portrait of NASA's Curiosity Mars rover shows the vehicle on Vera Rubin Ridge, which it's been investigating for the past several months. Directly behind the rover is the start of a clay-rich slope scientists are eager to begin exploring. In the coming week, Curiosity will begin to climb this slope. North is on the left and west is on the right, with Gale Crater's rim on the horizon of both edges. Poking up just behind Curiosity's mast is Mount Sharp, photobombing the robot's selfie. Curiosity landed on Mars five years ago with the intention of studying lower Mount Sharp, where it will remain for all of its time on Mars. The mountain's base provides access to layers formed over millions of years. These layers formed in the presence of water -- likely due to a lake or lakes that sat at the bottom of the mountain, which sits inside of Gale Crater. This mosaic was assembled from dozens of images taken by Curiosity's Mars Hands Lens Imager (MAHLI). They were all taken on Jan. 23, 2018, during Sol 1943. The view does not include the rover's arm nor the MAHLI camera itself, except in the miniature scene reflected upside down in the parabolic mirror at the top of the mast. That mirror is part of Curiosity's Chemistry and Camera (ChemCam) instrument. MAHLI appears in the center of the mirror. Wrist motions and turret rotations on the arm allowed MAHLI to acquire the mosaic's component images. The arm was positioned out of the shot in the images, or portions of images, that were used in this mosaic. A full-resolution image is available at https://photojournal.jpl.nasa.gov/catalog/PIA22207

  3. Biogenic iron mineralization at Iron Mountain, CA with implications for detection with the Mars Curiosity rover

    USGS Publications Warehouse

    Williams, Amy J.; Sumner, Dawn Y.; Alpers, Charles N.; Campbell, Kate M.; Nordstrom, D. Kirk

    2014-01-01

    (Introduction) Microbe-mineral interactions and biosignature preservation in oxidized sulfidic ore bodies (gossans) are prime candidates for astrobiological study. Such oxidized iron systems have been proposed as analogs for some Martian environments. Recent studies identified microbial fossils preserved as mineral-coated filaments. This study documents microbially-mediated mineral biosignatures in hydrous ferric oxide (HFO) and ferric oxyhydroxysulfates (FOHS) in three environments at Iron Mountain, CA. We investigated microbial community preservation via HFO and FOHS precipitation and the formation of filamentous mineral biosignatures. These environments included 1) actively precipitating (1000's yrs), naturally weathered HFO from in situ gossan, and 3) remobilized iron deposits, which contained lithified clastics and zones of HFO precipitate. We used published biogenicity criteria as guidelines to characterize the biogenicity of mineral filaments. These criteria included A) an actively precipitating environment where microbes are known to be coated in minerals, B) presence of extant microbial communities with carbon signatures, C) structures observable as a part of the host rock, and D) biological morphology, including cellular lumina, multiple member population, numerous taxa, variable and 3-D preservation, biological size ranges, uniform diameter, and evidence of flexibility. This study explores the relevance and detection of these biosignatures to possible Martian biosignatures. Similar filamentous biosignatures are resolvable by the Mars Hand Lens Imager (MAHLI) onboard the Mars Science Laboratory (MSL) rover, Curiosity, and may be identifiable as biogenic if present on Mars.

  4. Containerless Processing in Reduced Gravity Using the TEMPUS Facility during MSL-1 and MSL-1R

    NASA Technical Reports Server (NTRS)

    Rogers, Jan R.

    1998-01-01

    Containerless processing provides a high purity environment for the study of high-temperature, very reactive materials. It is an important method which provides access to the metastable state of an undercooled melt. In the absence of container walls, the nucleation rate is greatly reduced and undercooling up to (Tm-Tn)/Tm approx. equal to 0.2 can be obtained, where Tm and Tn are the melting and nucleation temperatures, respectively. Electromagnetic levitation represents a method particularly well-suited for the study of metallic melts. The TEMPUS (Tiegelfreies ElektroMagnetisches Prozessieren Unter Schwerelosgkeit) facility is a research instrument designed to perform electromagnetic levitation studies in reduced gravity. TEMPUS is a joint undertaking between DARA, the German Space Agency, and the Microgravity Science and Applications Division of NASA. The George C. Marshall Space Flight Center provides the leadership for scientific and management efforts which support the four US PI teams which performed experiments in the TEMPUS facility. The facility is sensitive to accelerations in the 1-10 Hz range. This became evident during the MSL-1 mission. Analysis of accelerometer and video data indicated that loss of sample control occurred during crew exercise periods which created disturbances in this frequency range. Prior to the MSL-1R flight the TEMPUS team, the accelerometer support groups and the mission operations team developed a strategy to provide for the operation of the facility without such disturbances. The successful implementation of this plan led to the highly successful operation of this facility during MSL-1R.

  5. The Case for Curiosity

    ERIC Educational Resources Information Center

    Engel, Susan

    2013-01-01

    When the author and her colleague asked teachers to list which qualities were most important without giving them a list to choose from, almost none mentioned curiosity. Many teachers endorse curiosity when they are asked about it, but it is not uppermost on their minds--or shaping their teaching plans. Why is this disturbing? Because research…

  6. A CNES remote operations center for the MSL ChemCam instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiens, Roger C; Lafaille, Vivian; Lorgny, Eric

    2010-01-01

    For the first time, a CNES remote operations center in Toulouse will be involved in the tactical operations of a Martian rover in order to operate the ChemCam science instrument in the framework of the NASA MSL (Mars Science Laboratory) mission in 2012. CNES/CESR and LANL have developed and delivered to JPL the ChemCam (Chemistry Camera) instrument located on the top of mast and in the body of the rover. This instrument incorporates a Laser-Induced Breakdown Spectrometer (LIBS) and a Remote Micro-Imager (RMI) for determining elemental compositions of rock targets or soil samples at remote distances from the rover (2-7more » m). An agreement has been achieved for operating ChemCam, alternatively, from Toulouse (FR) and Los Alamos (NM, USA), through the JPL ground data system in Pasadena (CA, USA) for a complete Martian year (2 years on Earth). After a brief overview of the MSL mission, this paper presents the instrument, the mission operational system and JPL organization requirements for the scientific investigators (PI and Co-Is). This paper emphasizes innovations applied on the ground segment components and on the operational approach to satisfy the requirements and constraints due to these shared and distributed operations over the world.« less

  7. KSC-2011-6690

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, a crane lifts the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission from its support base, at left, toward the MMRTG integration cart behind it. The cart will be used to install the MMRTG on the Curiosity rover for a fit check. The rover appears above the heads of the spacecraft technicians, at right. The MMRTG will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  8. KSC-2011-6719

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- In the airlock of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, Department of Energy employees lower the mesh container, known as the "gorilla cage," toward the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission. The mobile plexiglass radiation shields in the foreground help minimize the employees' radiation exposure. The cage protects the MMRTG during transport and allows any excess heat generated to dissipate into the air. Transport of the MMRTG to the RTG storage facility follows the completion of the MMRTG fit check on the Curiosity rover. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  9. KSC-2011-6704

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission is installed onto the aft of the Curiosity rover for a fit check. In view are the MMRTG's cooling fins which function like the radiator on a car and will reflect any excess heat generated by the MMRTG to prevent interference with the rover's electronics. Next, the MMRTG will be removed and later installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  10. KSC-2011-6703

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission is installed onto the aft of the Curiosity rover for a fit check. In view are the MMRTG's cooling fins which function like the radiator on a car and will reflect any excess heat generated by the MMRTG to prevent interference with the rover's electronics. Next, the MMRTG will be removed and later installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  11. KSC-2011-6717

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- In the airlock of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, Department of Energy employees prepare the support base of the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission for installation of the mesh container, known as the "gorilla cage." The cage, in the background at right, protects the MMRTG during transport and allows any excess heat generated to dissipate into the air. Transport of the MMRTG to the RTG storage facility follows the completion of the MMRTG fit check on the Curiosity rover. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  12. Mars Curiosity mission

    NASA Image and Video Library

    2012-08-04

    NASA welcomed hundreds of children and accompanying adults to its INFINITY visitor center on Aug. 4, offering Mars-related activities that focused attention on the space agency's Curiosity mission to the Red Planet. Parents and children, such as Myron and Trey (age 3) Cummings, enjoyed exploring Mars using an interactive touch table. Midway through the day of activities, visitors in the Science on a Sphere auditorium also enjoyed a presentation on Mars and the Curiosity mission by Dr. Steven Williams, a NASA expert on Mars.

  13. Measurements of the neutral particle spectra on Mars by MSL/RAD from 2015-11-15 to 2016-01-15.

    PubMed

    Guo, Jingnan; Zeitlin, Cary; Wimmer-Schweingruber, Robert; Hassler, Donald M; Köhler, Jan; Ehresmann, Bent; Böttcher, Stephan; Böhm, Eckart; Brinza, David E

    2017-08-01

    The Radiation Assessment Detector (RAD), onboard the Mars Science Laboratory (MSL) rover Curiosity, has been measuring the energetic charged and neutral particles and the radiation dose rate on the surface of Mars since the landing of the rover in August 2012. In contrast to charged particles, neutral particles (neutrons and γ-rays) are measured indirectly: the energy deposition spectra produced by neutral particles are complex convolutions of the incident particle spectra with the detector response functions. An inversion technique has been developed and applied to jointly unfold the deposited energy spectra measured in two scintillators of different types (CsI for high γ detection efficiency, and plastic for neutrons) to obtain the neutron and γ-ray spectra. This result is important for determining the biological impact of the Martian surface radiation contributed by neutrons, which interact with materials differently from the charged particles. These first in-situ measurements on Mars provide (1) an important reference for assessing the radiation-associated health risks for future manned missions to the red planet and (2) an experimental input for validating the particle transport codes used to model the radiation environments within spacecraft or on the surface of planets. Here we present neutral particle spectra as well as the corresponding dose and dose equivalent rates derived from RAD measurement during a period (November 15, 2015 to January 15, 2016) for which the surface particle spectra have been simulated via different transport models. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  14. Mars Curiosity mission

    NASA Image and Video Library

    2012-08-04

    NASA welcomed hundreds of children and accompanying adults to its INFINITY visitor center on Aug. 4, offering Mars-related activities that focused attention on the space agency's Curiosity mission to the Red Planet. Parents and children, such as Myron and Trey (age 3) Cummings, enjoyed exploring Mars using an interactive touch table (top right photo). Midway through the day of activities, visitors in the Science on a Sphere auditorium also enjoyed a presentation on Mars and the Curiosity mission by Dr. Steven Williams, a NASA expert on Mars.

  15. Male bisexual arousal: a matter of curiosity?

    PubMed

    Rieger, Gerulf; Rosenthal, Allen M; Cash, Brian M; Linsenmeier, Joan A W; Bailey, J Michael; Savin-Williams, Ritch C

    2013-12-01

    Conflicting evidence exists regarding whether bisexual-identified men are sexually aroused to both men and women. We hypothesized that a distinct characteristic, level of curiosity about sexually diverse acts, distinguishes bisexual-identified men with and without bisexual arousal. Study 1 assessed men's (n=277) sexual arousal via pupil dilation to male and female sexual stimuli. Bisexual men were, on average, higher in their sexual curiosity than other men. Despite this general difference, only bisexual-identified men with elevated sexual curiosity showed bisexual arousal. Those lower in curiosity had responses resembling those of homosexual men. Study 2 assessed men's (n=72) sexual arousal via genital responses and replicated findings of Study 1. Study 3 provided information on the validity on our measure of sexual curiosity by relating it to general curiosity and sexual sensation seeking (n=83). Based on their sexual arousal and personality, at least two groups of men identify as bisexual. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Interannual, seasonal and diurnal Mars surface environmental cycles observed from Viking to Curiosity

    NASA Astrophysics Data System (ADS)

    Martinez, German; Vicente-Retortillo, Álvaro; Kemppinen, Osku; Fischer, Erik; Fairen, Alberto G.; Guzewich, Scott David; Haberle, Robert; Lemmon, Mark T.; Newman, Claire E.; Renno, Nilton O.; Richardson, Mark I.; Smith, Michael D.; De la Torre, Manuel; Vasavada, Ashwin R.

    2016-10-01

    We analyze in-situ environmental data from the Viking landers to the Curiosity rover to estimate atmospheric pressure, near-surface air and ground temperature, relative humidity, wind speed and dust opacity with the highest confidence possible. We study the interannual, seasonal and diurnal variability of these quantities at the various landing sites over a span of more than twenty Martian years to characterize the climate on Mars and its variability. Additionally, we characterize the radiative environment at the various landing sites by estimating the daily UV irradiation (also called insolation and defined as the total amount of solar UV energy received on flat surface during one sol) and by analyzing its interannual and seasonal variability.In this study we use measurements conducted by the Viking Meteorology Instrument System (VMIS) and Viking lander camera onboard the Viking landers (VL); the Atmospheric Structure Instrument/Meteorology (ASIMET) package and the Imager for Mars Pathfinder (IMP) onboard the Mars Pathfinder (MPF) lander; the Miniature Thermal Emission Spectrometer (Mini-TES) and Pancam instruments onboard the Mars Exploration Rovers (MER); the Meteorological Station (MET), Thermal Electrical Conductivity Probe (TECP) and Phoenix Surface Stereo Imager (SSI) onboard the Phoenix (PHX) lander; and the Rover Environmental Monitoring Station (REMS) and Mastcam instrument onboard the Mars Science Laboratory (MSL) rover.A thorough analysis of in-situ environmental data from past and present missions is important to aid in the selection of the Mars 2020 landing site. We plan to extend our analysis of Mars surface environmental cycles by using upcoming data from the Temperature and Wind sensors (TWINS) instrument onboard the InSight mission and the Mars Environmental Dynamics Analyzer (MEDA) instrument onboard the Mars 2020 mission.

  17. KSC-2011-6671

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- Outside the RTG storage facility at NASA's Kennedy Space Center in Florida, a plexiglass shield has been installed on the forklift enlisted to move the protective mesh container, known as the "gorilla cage," enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission. The shield minimizes the amount of debris dispersed by the wheels of the forklift that can contact the gorilla cage. The cage protects the MMRTG and allows any excess heat generated to dissipate into the air. The MMRTG is being moved to the Payload Hazardous Servicing Facility (PHSF) where it temporarily will be installed on the MSL rover, Curiosity, for a fit check but will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  18. KSC-2011-6740

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- In the high bay of the RTG storage facility (RTGF) at NASA's Kennedy Space Center in Florida, Department of Energy workers guide the mesh container enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission as it is lifted by a crane. The container, known as the "gorilla cage," protects the MMRTG during transport and allows any excess heat generated to dissipate into the air. The cage is being removed from around the MMRTG following it return to the RTGF from a fit check on MSL's Curiosity rover in the Payload Hazardous Servicing Facility (PHSF). The workers at right are observing the operation from behind a mobile plexiglass radiation shield to minimize their radiation exposure. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder

  19. Curiosity is Ready for Clay

    NASA Image and Video Library

    2018-03-22

    This mosaic taken by NASA's Mars Curiosity rover looks uphill at Mount Sharp, which Curiosity has been climbing. Spanning the center of the image is an area with clay-bearing rocks that scientists are eager to explore; it could shed additional light on the role of water in creating Mount Sharp. The mosaic was assembled from dozens of images taken by Curiosity's Mast Camera (Mastcam). It was taken on Sol 1931 back in January. Mount Sharp stands in the middle of Gale Crater, which is 96 miles (154 kilometers) in diameter. This mound, which Curiosity has been climbing since 2014, likely formed in the presence of water at various points of time in Mars ancient history. That makes it an ideal place to study how water influenced the habitability of Mars billions of years ago. The scene has been white-balanced so the colors of the rock materials resemble how they would appear under daytime lighting conditions on Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22313

  20. Research Says/Curiosity Is Fleeting, but Teachable

    ERIC Educational Resources Information Center

    Goodwin, Bryan

    2014-01-01

    Psychologists and researchers have long puzzled over questions regarding "curiosity" and have more or less settled on a two-pronged definition as: (1) trait curiosity (an intrinsic drive for exploration and learning); and (2) state curiosity (an interest sparked by external conditions). Many studies have shown that human beings are…

  1. Determining the Local Abundance of Martian Methane and its 13-C/l2-C and D/H Isotopic Ratios for Comparison with Related Gas and Soil Analysis on the 2011 Mars Science Laboratory (MSL) Mission

    NASA Technical Reports Server (NTRS)

    Webster, Christopher R.; Mahaffy, Paul R.

    2011-01-01

    Understanding the origin of Martian methane will require numerous complementary measurements from both in situ and remote sensing investigations and laboratory work to correlate planetary surface geophysics with atmospheric dynamics and chemistry. Three instruments (Quadrupole Mass Spectrometer (QMS), Gas Chromatograph (GC) and Tunable Laser Spectrometer (TLS)) with sophisticated sample handling and processing capability make up the Sample Analysis at Mars (SAM) analytical chemistry suite on NASA s 2011 Mars Science Laboratory (MSL) Mission. Leveraging off the SAM sample and gas processing capability that includes methane enrichment, TLS has unprecedented sensitivity for measuring absolute methane (parts-per-trillion), water, and carbon dioxide abundances in both the Martian atmosphere and evolved from heated soil samples. In concert with a wide variety of associated trace gases (e.g. SO2, H2S, NH3, higher hydrocarbons, organics, etc.) and other isotope ratios measured by SAM, TLS will focus on determining the absolute abundances of methane, water and carbon dioxide, and their isotope ratios: 13C/12C and D/H in methane; 13C/12C and 18O/17O/16O in carbon dioxide; and 18O/17O/16O and D/H in water. Measurements near the MSL landing site will be correlated with satellite (Mars Express, Mars 2016) and ground-based observations.

  2. The Sample Analysis at Mars Investigation and Instrument Suite

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Webster, Christopher R.; Conrad, Pamela G.; Arvey, Robert; Bleacher, Lora; Brinckerhoff, William B.; Eigenbrode, Jennifer L.; Chalmers, Robert A.; Dworkin, Jason P.; Errigo, Therese; hide

    2012-01-01

    The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory (MSL) addresses the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. The SAM investigation is designed to contribute substantially to the mission goal of quantitatively assessing the habitability of Mars as an essential step in the search for past or present life on Mars. SAM is a 40 kg instrument suite located in the interior of MSL's Curiosity rover. The SAM instruments are a quadrupole mass spectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupled through solid and gas processing systems to provide complementary information on the same samples. The SAM suite is able to measure a suite of light isotopes and to analyze volatiles directly from the atmosphere or thermally released from solid samples. In addition to measurements of simple inorganic compounds and noble gases SAM will conduct a sensitive search for organic compounds with either thermal or chemical extraction from sieved samples delivered by the sample processing system on the Curiosity rover's robotic arm,

  3. Temporal evolution of UV opacity and dust particle size at Gale Crater from MSL/REMS measurements

    NASA Astrophysics Data System (ADS)

    Vicente-Retortillo, Álvaro; Martinez, German; Renno, Nilton O.; Lemmon, Mark T.; Mason, Emily; De la Torre, Manuel

    2016-10-01

    A better characterization of the size, radiative properties and temporal variability of suspended dust in the Martian atmosphere is necessary to improve our understanding of the current climate of Mars. The REMS UV sensor onboard the Mars Science Laboratory (MSL) Curiosity rover has performed ground-based measurements of solar radiation in six different UV spectral bands for the first time on Mars.We developed a novel technique to retrieve dust opacity and particle size from REMS UV measurements. We use the electrical output current (TELRDR products) of the six photodiodes and the ancillary data (ADR products) to avoid inconsistencies found in the processed data (units of W/m2) when the solar zenith angle is above 30°. In addition, we use TELRDR and ADR data only in events during which the Sun is temporally blocked by the rover's masthead or mast to mitigate uncertainties associated to the degradation of the sensor due to the deposition of dust on it. Then we use a radiative transfer model with updated dust properties based on the Monte-Carlo method to retrieve the dust opacity and particle size.We find that the seasonal trend of UV opacity is consistent with opacity values at 880 nm derived from Mastcam images of the Sun, with annual maximum values in spring and in summer and minimum values in winter. The interannual variability is low, with two local maxima in mid-spring and mid-summer. Finally, dust particle size also varies throughout the year with typical values of the effective radius in the range between 0.5 and 2 μm. These variations in particle size occur in a similar way to those in dust opacity; the smallest sizes are found when the opacity values are the lowest.

  4. "Measurements of the neutron spectrum in transit to Mars on the Mars Science Laboratory", Köhler et al.

    NASA Astrophysics Data System (ADS)

    Miller, Jack

    2015-04-01

    The Mars Science Laboratory (MSL) spacecraft carried the Curiosity rover to Mars. While the dramatic, successful landing of Curiosity and its subsequent exploration of the Martian surface have justifiably generated great excitement, from the standpoint of the health of crewmembers on missions to Mars, knowledge of the environment between Earth and Mars is critical. This paper reports data taken during the cruise phase of the MSL by the Radiation Assessment Detector (RAD). The results are of great interest for several reasons. They are a direct measurement of the radiation environment during what will be a significant fraction of the duration of a proposed human mission to Mars; they were made behind the de facto shielding provided by various spacecraft components; and, in particular, they are a measurement of the contribution to radiation dose by neutrons. The neutron environment inside spacecraft is produced primarily by galactic cosmic ray ions interacting in shielding materials, and given the high biological effectiveness of neutrons and the increased contribution of neutrons to dose with increased depth in shielding, accurate knowledge of the neutron energy spectrum behind shielding is vital. The results show a relatively modest contribution from neutrons and gammas compared to that from charged particles, but also a discrepancy in both dose and dose rate between the data and simulations. The failure of the calculations to accurately reproduce the data is significant, given that future manned spacecraft will be more heavily shielded (and thus produce more secondary neutrons) and that spacecraft design will rely on simulations and model calculations of radiation transport. The methodology of risk estimation continues to evolve, and incorporates our knowledge of both the physical and biological effects of radiation. The relatively large uncertainties in the biological data, and the difficulties in reducing those uncertainties, makes it all the more important to

  5. Curiosity analyzes Martian soil samples

    NASA Astrophysics Data System (ADS)

    Showstack, Randy; Balcerak, Ernie

    2012-12-01

    NASA's Mars Curiosity rover has conducted its first analysis of Martian soil samples using multiple instruments, the agency announced at a 3 December news briefing at the AGU Fall Meeting in San Francisco. "These results are an unprecedented look at the chemical diversity in the area," said NASA's Michael Meyer, program scientist for Curiosity.

  6. KSC-2011-7903

    NASA Image and Video Library

    2011-11-25

    CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station in Florida, lightning masts protect the 197-foot-tall United Launch Alliance Atlas V rocket as it leaves behind the safety of the Vertical Integration Facility (VIF) at Space Launch Complex-41 to take its position on the pad's surface. Atop the rocket is NASA's Mars Science Laboratory (MSL), enclosed in its payload fairing. The rocket began its move from the VIF at 8 a.m. EST. Liftoff is planned during a launch window which extends from 10:02 a.m. to 11:45 a.m. EST on Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Tony Gray

  7. KSC-2011-7902

    NASA Image and Video Library

    2011-11-25

    CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station in Florida, one of three lightning masts, at left, protects the 197-foot-tall United Launch Alliance Atlas V rocket as it rolls from the safety of the Vertical Integration Facility (VIF) at Space Launch Complex-41 to the pad's surface. Atop the rocket is NASA's Mars Science Laboratory (MSL), enclosed in its payload fairing. The rocket began its move from the VIF at 8 a.m. EST. Liftoff is planned during a launch window which extends from 10:02 a.m. to 11:45 a.m. EST on Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Tony Gray

  8. Curiosity First 14 Rock or Soil Sampling Sites on Mars

    NASA Image and Video Library

    2016-06-13

    This graphic maps locations of the first 14 sites where NASA's Curiosity Mars rover collected rock or soil samples for analysis by laboratory instruments inside the vehicle. It also presents images of the drilled holes where 12 rock-powder samples were acquired. At the other two sites -- Rocknest and Gobabeb -- Curiosity scooped soil samples. The diameter of each drill hole is about 0.6 inch (1.6 centimeters), slightly smaller than a U.S. dime. The images used here are raw color, as recorded by the rover's Mars Hand Lens Imager (MAHLI) camera. Notice the differences in color of the material at different drilling sites. The latest sample site included is "Oudam," where Curiosity drilled into mudstone of the "Murray formation" on June 4, during the 1,361th Martian day, or sol, of the mission. Curiosity landed in August 2012 on the plain (named Aeolis Palus) near Mount Sharp (or Aeolis Mons). Dates when the first 11 drilled-rock samples were collected are: "John Klein" on Feb. 8, 2013 (Sol 182); "Cumberland" on May 19, 2013 (Sol 279); "Windjana" on May 5, 2014 (Sol 621); "Confidence Hills" on Sept. 24, 2014 (Sol 759); "Mojave" on Jan. 29, 2015 (Sol 882); "Telegraph Peak" on Feb. 24, 2015 (Sol 908); "Buckskin" on July 30, 2015 (Sol 1060); "Big Sky" on Sept. 29, 2015 (Sol 1119); "Greenhorn" on Oct. 18, 2015 (Sol 1137); "Lubango" on April 23, 2016 (Sol 1320); and "Okoruso" on May 5, 2016 (Sol 1332). http://photojournal.jpl.nasa.gov/catalog/PIA20748

  9. The Tension-sensitive Ion Transport Activity of MSL8 is Critical for its Function in Pollen Hydration and Germination.

    PubMed

    Hamilton, Eric S; Haswell, Elizabeth S

    2017-07-01

    All cells respond to osmotic challenges, including those imposed during normal growth and development. Mechanosensitive (MS) ion channels provide a conserved mechanism for regulating osmotic forces by conducting ions in response to increased membrane tension. We previously demonstrated that the MS ion channel MscS-Like 8 (MSL8) is required for pollen to survive multiple osmotic challenges that occur during the normal process of fertilization, and that it can inhibit pollen germination. However, it remained unclear whether these physiological functions required ion flux through a mechanically gated channel provided by MSL8. We introduced two point mutations into the predicted pore-lining domain of MSL8 that disrupted normal channel function in different ways. The Ile711Ser mutation increased the tension threshold of the MSL8 channel while leaving conductance unchanged, and the Phe720Leu mutation severely disrupted the MSL8 channel. Both of these mutations impaired the ability of MSL8 to preserve pollen viability during hydration and to maintain the integrity of the pollen tube when expressed at endogenous levels. When overexpressed in an msl8-4 null background, MSL8I711S could partially rescue loss-of-function phenotypes, while MSL8F720L could not. When overexpressed in the wild-type Ler background, MSL8I711S suppressed pollen germination, similar to wild-type MSL8. In contrast, MSL8F720L failed to suppress pollen germination and increased pollen bursting, thereby phenocopying the msl8-4 mutant. Thus, an intact MSL8 channel is required for normal pollen function during hydration and germination. These data establish MSL8 as the first plant MS channel to fulfill previously established criteria for assignment as a mechanotransducer. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Powered Flight Design and Reconstructed Performance Summary for the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Sell, Steven; Chen, Allen; Davis, Jody; San Martin, Miguel; Serricchio, Frederick; Singh, Gurkirpal

    2013-01-01

    The Powered Flight segment of Mars Science Laboratory's (MSL) Entry, Descent, and Landing (EDL) system extends from backshell separation through landing. This segment is responsible for removing the final 0.1% of the kinetic energy dissipated during EDL and culminating with the successful touchdown of the rover on the surface of Mars. Many challenges exist in the Powered Flight segment: extraction of Powered Descent Vehicle from the backshell, performing a 300m divert maneuver to avoid the backshell and parachute, slowing the descent from 85 m/s to 0.75 m/s and successfully lowering the rover on a 7.5m bridle beneath the rocket-powered Descent Stage and gently placing it on the surface using the Sky Crane Maneuver. Finally, the nearly-spent Descent Stage must execute a Flyaway maneuver to ensure surface impact a safe distance from the Rover. This paper provides an overview of the powered flight design, key features, and event timeline. It also summarizes Curiosity's as flown performance on the night of August 5th as reconstructed by the flight team.

  11. KSC-2011-6688

    NASA Image and Video Library

    2011-07-12

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility (PHSF) at NASA's Kennedy Space Center in Florida, preparations are under way for a crane to lift the turning fixture connected to the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission from its support base. Between the MMRTG and the spacecraft technicians at right is a mobile plexiglass radiation shield to help minimize the employees' radiation exposure. The turning fixture will lift and lower the MMRTG onto the MMRTG integration cart. The cart will be used to install the MMRTG on Curiosity for a fit check. The MMRTG will be installed on the rover for launch at the pad. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Curiosity, MSL's car-sized rover, has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  12. KSC-2011-6720

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- In the airlock of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a Department of Energy employee positions the mesh container, known as the "gorilla cage," on the support base of the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission. The mobile plexiglass radiation shields, in the foreground at right, helps minimize the employees' radiation exposure. The cage protects the MMRTG during transport and allows any excess heat generated to dissipate into the air. Transport of the MMRTG to the RTG storage facility follows the completion of the MMRTG fit check on the Curiosity rover. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  13. KSC-2011-6718

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- In the airlock of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, Department of Energy employees lower the mesh container, known as the "gorilla cage," toward the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission. The employees are standing behind mobile plexiglass radiation shields to help minimize the employees' radiation exposure. The cage protects the MMRTG during transport and allows any excess heat generated to dissipate into the air. Transport of the MMRTG to the RTG storage facility follows the completion of the MMRTG fit check on the Curiosity rover. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  14. Curiosity Is Not Good--But It's Not Bad, Either

    ERIC Educational Resources Information Center

    Wong, David

    2012-01-01

    Curiosity is vital quality of the creative work. However, in the classroom, educators seem to view curiosity as alternately amoral, virtuous, or dangerous. Education's stance towards curiosity is, in a word, curious. Conversely, the author says, curiosity is inherently amoral--neither good nor bad--and the subject is ripe for an exploration of the…

  15. Curiosity Quad

    NASA Image and Video Library

    2012-08-09

    This image shows the quadrangle where NASA Curiosity rover landed, within the expansive Gale Crater. The mission science team has divided the landing region into several square quadrangles, or quads, of interest about 1-mile 1.3-kilometers wide.

  16. KSC-2011-7937

    NASA Image and Video Library

    2011-11-25

    CAPE CANAVERAL, Fla. – Rex Engelhardt, mission manager in NASA's Launch Services Program at the NASA Kennedy Space Center, speaks to a group of Tweetup participants at Kennedy's Press Site in Florida during prelaunch activities for the agency’s Mars Science Laboratory (MSL) launch. Following a series of briefings, participants will tour the center and get a close-up view of Space Launch Complex-41 on Cape Canaveral Air Force Station. The tweeters will share their experiences with followers through the social networking site Twitter. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Liftoff of MSL aboard a United Launch Alliance Atlas V rocket from pad 41 is planned during a launch window which extends from 10:02 a.m. to 11:45 a.m. EST on Nov. 26. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Jim Grossmann

  17. KSC-2011-7933

    NASA Image and Video Library

    2011-11-25

    CAPE CANAVERAL, Fla. – Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters, speaks to a group of Tweetup participants at NASA Kennedy Space Center's Press Site in Florida during prelaunch activities for the agency’s Mars Science Laboratory (MSL) launch. Following a series of briefings, participants will tour the center and get a close-up view of Space Launch Complex-41 on Cape Canaveral Air Force Station. The tweeters will share their experiences with followers through the social networking site Twitter. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Liftoff of MSL aboard a United Launch Alliance Atlas V rocket from pad 41 is planned during a launch window which extends from 10:02 a.m. to 11:45 a.m. EST on Nov. 26. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Jim Grossmann

  18. KSC-2011-7876

    NASA Image and Video Library

    2011-11-22

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, several scientists and researchers participate in a “Looking for Signs of Life in the Universe” news conference, Nov. 22, as part of preflight activities for the Mars Science Laboratory (MSL) mission. From left, are NASA Astrobiology Director Mary Voytek; Professor Jamie Foster from the Department of Microbiology and Cell Science at the University of Florida in Gainesville; MSL Deputy Principal Investigator Pan Conrad; Director of the Foundation for Applied Molecular Evolution Steven Benner; and NASA Planetary Protection Officer Catharine Conley. MSL’s components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 26 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  19. KSC-2011-7877

    NASA Image and Video Library

    2011-11-22

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, several scientists and researchers participate in a “Looking for Signs of Life in the Universe” news conference, Nov. 22, as part of preflight activities for the Mars Science Laboratory (MSL) mission. From left, are NASA Public Affairs Officer and conference moderator George Diller; NASA Astrobiology Director Mary Voytek; Professor Jamie Foster from the Department of Microbiology and Cell Science at the University of Florida in Gainesville; MSL Deputy Principal Investigator Pan Conrad; Director of the Foundation for Applied Molecular Evolution Steven Benner; and NASA Planetary Protection Officer Catharine Conley. MSL’s components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 26 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  20. KSC-2011-7535

    NASA Image and Video Library

    2011-10-25

    CAPE CANAVERAL, Fla. - In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the camera captures NASA's Mars Science Laboratory (MSL) one last time before an Atlas V rocket payload fairing is secured around it. Next, the lab will be transported to the launch pad. by dampening the sound created by the rocket during liftoff. The fairing will protect the spacecraft from the impact of aerodynamic pressure and heating during ascent. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including the chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex-41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Jim Grossmann

  1. Learning facts during aging: the benefits of curiosity.

    PubMed

    Galli, Giulia; Sirota, Miroslav; Gruber, Matthias J; Ivanof, Bianca Elena; Ganesh, Janani; Materassi, Maurizio; Thorpe, Alistair; Loaiza, Vanessa; Cappelletti, Marinella; Craik, Fergus I M

    2018-05-22

    Background/study context: Recent studies have shown that young adults better remember factual information they are curious about. It is not entirely clear, however, whether this effect is retained during aging. Here, the authors investigated curiosity-driven memory benefits in young and elderly individuals. In two experiments, young (age range 18-26) and older (age range 65-89) adults read trivia questions and rated their curiosity to find out the answer. They also attended to task-irrelevant faces presented between the trivia question and the answer. The authors then administered a surprise memory test to assess recall accuracy for trivia answers and recognition memory performance for the incidentally learned faces. In both young and elderly adults, recall performance was higher for answers to questions that elicited high levels of curiosity. In Experiment 1, the authors also found that faces presented in temporal proximity to curiosity-eliciting trivia questions were better recognized, indicating that the beneficial effects of curiosity extended to the encoding of task-irrelevant material. These findings show that elderly individuals benefit from the memory-enhancing effects of curiosity. This may lead to the implementation of learning strategies that target and stimulate curiosity in aging.

  2. Children's Question Asking and Curiosity: A Training Study

    ERIC Educational Resources Information Center

    Jirout, Jamie; Klahr, David

    2011-01-01

    A primary instructional objective of most early science programs is to foster children's scientific curiosity and question-asking skills (Jirout & Klahr, 2011). However, little is known about the relationship between curiosity, question-asking behavior, and general inquiry skills. While curiosity and question asking are invariably mentioned in…

  3. Jake Matijevic Contact Target for Curiosity

    NASA Image and Video Library

    2012-09-19

    The drive by NASA Mars rover Curiosity during the mission 43rd Martian day ended with this rock front of the rover. The rover team has assessed it as a suitable target for the first use of Curiosity contact instruments on a rock.

  4. Calibration Target for Curiosity Arm Camera

    NASA Image and Video Library

    2012-09-10

    This view of the calibration target for the MAHLI camera aboard NASA Mars rover Curiosity combines two images taken by that camera during Sept. 9, 2012. Part of Curiosity left-front and center wheels and a patch of Martian ground are also visible.

  5. Curiosity Self-Portrait at Okoruso Drill Hole

    NASA Image and Video Library

    2016-06-13

    This self-portrait of NASA's Curiosity Mars rover shows the vehicle at a drilled sample site called "Okoruso," on the "Naukluft Plateau" of lower Mount Sharp. The scene combines multiple images taken with the rover's Mars Hand Lens Imager (MAHLI) on May 11, 2016, during the 1,338th Martian day, or sol, of the rover's work on Mars. In front of the rover is the hole, surrounded by grayish drill cuttings, created by using Curiosity's drill to collect sample rock powder at Okoruo, plus a patch of powder dumped onto the ground after delivery of a portion to the rover's internal Chemistry and Mineralogy (CheMin) laboratory instrument. The rover team compared the rock powder from drilling at Okoruso to material from the nearby "Lubango" drilling site, which is visible behind the rover, just to the left of the mast. The Lubango site was selected within a pale zone, or "halo," beside a fracture in the area's sandstone bedrock. Okoruso is in less-altered bedrock farther from any fractures. Note that the Okoruso drill cuttings appear darker than the Lubango drill cuttings. The Lubango sample was found to be enriched in silica and sulfates, relative to Okoruso. To the left of the rover, in this scene, several broken rocks reveal grayish interiors. Here, Curiosity was driven over the rocks in a fracture-associated halo, so that freshly exposed surfaces could be examined with MAHLI, Mast Camera (Mastcam) and Chemistry and Camera (ChemCam) instruments. An upper portion of Mount Sharp is prominent on the horizon. http://photojournal.jpl.nasa.gov/catalog/PIA20602

  6. The effects of curiosity-evoking events on activity enjoyment.

    PubMed

    Isikman, Elif; MacInnis, Deborah J; Ülkümen, Gülden; Cavanaugh, Lisa A

    2016-09-01

    Whereas prior literature has studied the positive effects of curiosity-evoking events that are integral to focal activities, we explore whether and how a curiosity-evoking event that is incidental to a focal activity induces negative outcomes for enjoyment. Four experiments and 1 field study demonstrate that curiosity about an event that is incidental to an activity in which individuals are engaged, significantly affects enjoyment of a concurrent activity. The reason why is that curiosity diverts attention away from the concurrent activity and focuses attention on the curiosity-evoking event. Thus, curiosity regarding an incidental event decreases enjoyment of a positive focal activity but increases enjoyment of a negative focal activity. PsycINFO Database Record (c) 2016 APA, all rights reserved

  7. Sex-lethal promotes nuclear retention of msl2 mRNA via interactions with the STAR protein HOW

    PubMed Central

    Graindorge, Antoine; Carré, Clément; Gebauer, Fátima

    2013-01-01

    Female-specific repression of male-specific-lethal-2 (msl2) mRNA in Drosophila melanogaster provides a paradigm for coordinated control of gene expression by RNA-binding complexes. Repression is orchestrated by Sex-lethal (SXL), which binds to the 5′ and 3′ untranslated regions (UTRs) of the mRNA and inhibits splicing in the nucleus and subsequent translation in the cytoplasm. Here we show that SXL ensures msl2 silencing by yet a third mechanism that involves inhibition of nucleocytoplasmic transport of msl2 mRNA. To identify SXL cofactors in msl2 regulation, we devised a two-step purification method termed GRAB (GST pull-down and RNA affinity binding) and identified Held-Out-Wings (HOW) as a component of the msl2 5′ UTR-associated complex. HOW directly interacts with SXL and binds to two sequence elements in the msl2 5′ UTR. Depletion of HOW reduces the capacity of SXL to repress the expression of msl2 reporters without affecting SXL-mediated regulation of splicing or translation. Instead, HOW is required for SXL to retain msl2 transcripts in the nucleus. Cooperation with SXL confers a sex-specific role to HOW. Our results uncover a novel function of SXL in nuclear mRNA retention and identify HOW as a mediator of this function. PMID:23788626

  8. Neutrality and curiosity: elements of technique.

    PubMed

    Nersessian, Edward; Silvan, Matthew

    2007-07-01

    In the past three decades, neutrality has come under increasing criticism. The idea that a psychoanalyst can leave himself out of the therapeutic exchange has come to be seen as either an impossible dream or a myth. We propose that examining neutrality through the lens of curiosity allows for a new appreciation of the ongoing and vital importance of this psychoanalytic attitude. Our hypothesis is that curiosity and neutrality are linked, and that to maintain a neutral stance, the analyst must be able to direct a relatively conflict-free curiosity toward the workings of the analysand's mind as well as his own.

  9. Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database

    DOE PAGES

    Clegg, Samuel M.; Wiens, Roger C.; Anderson, Ryan; ...

    2016-12-24

    The ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity has obtained > 300,000 spectra of rock and soil analysis targets since landing at Gale Crater in 2012, and the spectra represent perhaps the largest publicly-available LIBS datasets. The compositions of the major elements, reported as oxides, have been re-calibrated using a laboratory LIBS instrument, Mars-like atmospheric conditions, and a much larger set of standards (408) that span a wider compositional range than previously employed. The new calibration uses a combination of partial least squares (PLS1) and Independent Component Analysis (ICA) algorithms, together with amore » calibration transfer matrix to minimize differences between the conditions under which the standards were analyzed in the laboratory and the conditions on Mars. While the previous model provided good results in the compositional range near the average Mars surface composition, the new model fits the extreme compositions far better. Examples are given for plagioclase feldspars, where silicon was previously significantly over-estimated, and for calcium-sulfate veins, where silicon compositions near zero were inaccurate. Here, the uncertainties of major element abundances are described as a function of the abundances, and are overall significantly lower than the previous model, enabling important new geochemical interpretations of the data.« less

  10. Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clegg, Samuel M.; Wiens, Roger C.; Anderson, Ryan

    The ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity has obtained > 300,000 spectra of rock and soil analysis targets since landing at Gale Crater in 2012, and the spectra represent perhaps the largest publicly-available LIBS datasets. The compositions of the major elements, reported as oxides, have been re-calibrated using a laboratory LIBS instrument, Mars-like atmospheric conditions, and a much larger set of standards (408) that span a wider compositional range than previously employed. The new calibration uses a combination of partial least squares (PLS1) and Independent Component Analysis (ICA) algorithms, together with amore » calibration transfer matrix to minimize differences between the conditions under which the standards were analyzed in the laboratory and the conditions on Mars. While the previous model provided good results in the compositional range near the average Mars surface composition, the new model fits the extreme compositions far better. Examples are given for plagioclase feldspars, where silicon was previously significantly over-estimated, and for calcium-sulfate veins, where silicon compositions near zero were inaccurate. Here, the uncertainties of major element abundances are described as a function of the abundances, and are overall significantly lower than the previous model, enabling important new geochemical interpretations of the data.« less

  11. System Verification of MSL Skycrane Using an Integrated ADAMS Simulation

    NASA Technical Reports Server (NTRS)

    White, Christopher; Antoun, George; Brugarolas, Paul; Lih, Shyh-Shiuh; Peng, Chia-Yen; Phan, Linh; San Martin, Alejandro; Sell, Steven

    2012-01-01

    Mars Science Laboratory (MSL) will use the Skycrane architecture to execute final descent and landing maneuvers. The Skycrane phase uses closed-loop feedback control throughout the entire phase, starting with rover separation, through mobility deploy, and through touchdown, ending only when the bridles have completely slacked. The integrated ADAMS simulation described in this paper couples complex dynamical models created by the mechanical subsystem with actual GNC flight software algorithms that have been compiled and linked into ADAMS. These integrated simulations provide the project with the best means to verify key Skycrane requirements which have a tightly coupled GNC-Mechanical aspect to them. It also provides the best opportunity to validate the design of the algorithm that determines when to cut the bridles. The results of the simulations show the excellent performance of the Skycrane system.

  12. A Multi-mission Event-Driven Component-Based System for Support of Flight Software Development, ATLO, and Operations first used by the Mars Science Laboratory (MSL) Project

    NASA Technical Reports Server (NTRS)

    Dehghani, Navid; Tankenson, Michael

    2006-01-01

    This paper details an architectural description of the Mission Data Processing and Control System (MPCS), an event-driven, multi-mission ground data processing components providing uplink, downlink, and data management capabilities which will support the Mars Science Laboratory (MSL) project as its first target mission. MPCS is developed based on a set of small reusable components, implemented in Java, each designed with a specific function and well-defined interfaces. An industry standard messaging bus is used to transfer information among system components. Components generate standard messages which are used to capture system information, as well as triggers to support the event-driven architecture of the system. Event-driven systems are highly desirable for processing high-rate telemetry (science and engineering) data, and for supporting automation for many mission operations processes.

  13. Curiosity is Ready for Clay (Highlighted)

    NASA Image and Video Library

    2018-03-22

    This mosaic taken by NASA's Mars Curiosity rover looks uphill at Mount Sharp, which Curiosity has been climbing. Highlighted in white is an area with clay-bearing rocks that scientists are eager to explore; it could shed additional light on the role of water in creating Mount Sharp. The mosaic was assembled from dozens of images taken by Curiosity's Mast Camera (Mastcam). It was taken on Sol 1931 back in January. Mount Sharp stands in the middle of Gale Crater, which is 96 miles (154 kilometers) in diameter. This mound, which Curiosity has been climbing since 2014, likely formed in the presence of water at various points of time in Mars ancient history. That makes it an ideal place to study how water influenced the habitability of Mars billions of years ago. The scene has been white-balanced so the colors of the rock materials resemble how they would appear under daytime lighting conditions on Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22312

  14. A DEFINITION OF CURIOSITY, A FACTOR ANALYSIS STUDY.

    ERIC Educational Resources Information Center

    MAW, WALLACE H.

    AN INVESTIGATION WAS CONDUCTED TO DETERMINE A DEFINITION OF CURIOSITY THAT WOULD HELP IDENTIFY PERSONALITY PATTERNS OF CHILDREN WHO ARE MOST LIKELY TO BE EITHER HIGH OR LOW IN CURIOSITY. DATA COLLECTED IN EARLIER STUDIES WERE FACTOR ANALYZED TO IDENTIFY THE PERSONAL AND SOCIAL VARIABLES THAT DIFFERENTIATE CHILDREN HIGH IN CURIOSITY FROM THOSE LOW…

  15. Measuring Epistemic Curiosity in Young Children

    ERIC Educational Resources Information Center

    Piotrowski, Jessica Taylor; Litman, Jordan A.; Valkenburg, Patti

    2014-01-01

    Epistemic curiosity (EC) is the desire to obtain new knowledge capable of either producing positive experiences of intellectual interest (I-type) or of reducing undesirable conditions of informational deprivation (D-type). Although researchers acknowledge that there are individual differences in young children's epistemic curiosity, there are…

  16. Organic cleanliness of the Mars Science Laboratory sample transfer chain.

    PubMed

    Blakkolb, B; Logan, C; Jandura, L; Okon, A; Anderson, M; Katz, I; Aveni, G; Brown, K; Chung, S; Ferraro, N; Limonadi, D; Melko, J; Mennella, J; Yavrouian, A

    2014-07-01

    One of the primary science goals of the Mars Science Laboratory (MSL) Rover, Curiosity, is the detection of organics in Mars rock and regolith. To achieve this, the Curiosity rover includes a robotic sampling system that acquires rock and regolith samples and delivers it to the Sample Analysis at Mars (SAM) instrument on board the rover. In order to provide confidence that any significant organics detection result was Martian and not terrestrial in origin, a requirement was levied on the flight system (i.e., all sources minus the SAM instrument) to impart no more than 36 parts per billion (ppb by weight) of total reduced carbon terrestrial contamination to any sample transferred to the SAM instrument. This very clean level was achieved by a combination of a rigorous contamination control program on the project, and then using the first collected samples for a "dilution cleaning" campaign of the sample chain prior to delivering a sample to the SAM instrument. Direct cleanliness assays of the sample-contacting and other Flight System surfaces during pre-launch processing were used as inputs to determine the number of dilution cleaning samples needed once on Mars, to enable delivery of suitably clean samples to the SAM experiment. Taking into account contaminant redistribution during launch thorough landing of the MSL on Mars, the amount of residue present on the sampling hardware prior to the time of first dilution cleaning sample acquisition was estimated to be 60 ng/cm(2) on exposed outer surfaces of the sampling hardware and 20 ng/cm(2) on internal sample contacting surfaces; residues consisting mainly of aliphatic hydrocarbons and esters. After three dilution cleaning samples, estimated in-sample contamination level for the first regolith sample delivered to the SAM instrument at the Gale Crater "Rocknest" site was bounded at ≤10 ppb total organic carbon. A Project decision to forego ejecting the dilution cleaning sample and instead transfer the first drill

  17. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    Michael Watkins (third from left), mission manager and project engineer, Mars Science Laboratory (MSL), Jet Propulsion Lab, Pasadena, Calif., speaks at a press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. From left to right, Watkins is joined by Dwayne Brown, NASA Headquarters public affairs officer; Michael Meyer, lead scientist Mars Exploration Program, NASA Headquarters; Watkins; John Grant, geologist, Smithsonian National Air and Space Museum in Washington; Dawn Sumner, geologist, University of California, Davis and John Grotzinger, MSL project scientist, JPL. Photo Credit: (NASA/Carla Cioffi)

  18. KSC-2011-7914

    NASA Image and Video Library

    2011-11-25

    CAPE CANAVERAL, Fla. -- A web of shadows stretches across the 197-foot-tall United Launch Alliance Atlas V rocket as the early morning sun shines through a metal lightning mast (left) at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Atop the rocket is NASA's Mars Science Laboratory (MSL), enclosed in its payload fairing. The rocket rolled out of the Vertical Integration Facility at 8 a.m. EST and arrived at the pad at 8:40 a.m. Liftoff is planned during a launch window which extends from 10:02 a.m. to 11:45 a.m. EST on Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  19. MODELING THE VARIATIONS OF DOSE RATE MEASURED BY RAD DURING THE FIRST MSL MARTIAN YEAR: 2012–2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Jingnan; Wimmer-Schweingruber, Robert F.; Heber, Bernd

    2015-09-01

    The Radiation Assessment Detector (RAD), on board Mars Science Laboratory’s (MSL) rover Curiosity, measures the energy spectra of both energetic charged and neutral particles along with the radiation dose rate at the surface of Mars. With these first-ever measurements on the Martian surface, RAD observed several effects influencing the galactic cosmic-ray (GCR) induced surface radiation dose concurrently: (a) short-term diurnal variations of the Martian atmospheric pressure caused by daily thermal tides, (b) long-term seasonal pressure changes in the Martian atmosphere, and (c) the modulation of the primary GCR flux by the heliospheric magnetic field, which correlates with long-term solar activitymore » and the rotation of the Sun. The RAD surface dose measurements, along with the surface pressure data and the solar modulation factor, are analyzed and fitted to empirical models that quantitatively demonstrate how the long-term influences ((b) and (c)) are related to the measured dose rates. Correspondingly, we can estimate dose rate and dose equivalents under different solar modulations and different atmospheric conditions, thus allowing empirical predictions of the Martian surface radiation environment.« less

  20. Deciphering the Binding between Nupr1 and MSL1 and Their DNA-Repairing Activity

    PubMed Central

    Doménech, Rosa; Pantoja-Uceda, David; Gironella, Meritxell; Santoro, Jorge; Velázquez-Campoy, Adrián; Neira, José L.; Iovanna, Juan L.

    2013-01-01

    The stress protein Nupr1 is a highly basic, multifunctional, intrinsically disordered protein (IDP). MSL1 is a histone acetyl transferase-associated protein, known to intervene in the dosage compensation complex (DCC). In this work, we show that both Nupr1 and MSL1 proteins were recruited and formed a complex into the nucleus in response to DNA-damage, which was essential for cell survival in reply to cisplatin damage. We studied the interaction of Nupr1 and MSL1, and their binding affinities to DNA by spectroscopic and biophysical methods. The MSL1 bound to Nupr1, with a moderate affinity (2.8 µM) in an entropically-driven process. MSL1 did not bind to non-damaged DNA, but it bound to chemically-damaged-DNA with a moderate affinity (1.2 µM) also in an entropically-driven process. The Nupr1 protein bound to chemically-damaged-DNA with a slightly larger affinity (0.4 µM), but in an enthalpically-driven process. Nupr1 showed different interacting regions in the formed complexes with Nupr1 or DNA; however, they were always disordered (“fuzzy”), as shown by NMR. These results underline a stochastic description of the functionality of the Nupr1 and its other interacting partners. PMID:24205110

  1. Mars Atmospheric Escape Recorded by H, C and O Isotope Ratios in Carbon Dioxide and Water Measured by the Sam Tunable Laser Spectrometer on the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Webster, C. R.; Mahaffy, P. R.; Leshin, L. A.; Atreya, S. K.; Flesch, G. J.; Stern, J.; Christensen, L. E.; Vasavada, A. R.; Owen, T.; Niles, P. B.; hide

    2013-01-01

    Stable isotope ratios in C, H, N, O and S are powerful indicators of a wide variety of planetary geophysical processes that can identify origin, transport, temperature history, radiation exposure, atmospheric escape, environmental habitability and biological activity [2]. For Mars, measurements to date have indicated enrichment in all the heavier isotopes consistent with atmospheric escape processes, but with uncertainty too high to tie the results with the more precise isotopic ratios achieved from SNC meteoritic analyses. We will present results to date of H, C and O isotope ratios in CO2 and H2O made to high precision (few per mil) using the Tunable Laser Spectrometer (TLS) that is part of the Sample Analysis at Mars (SAM) instrument suite on MSL s Curiosity Rover.

  2. Multi-spacecraft observations of ICMEs propagating beyond Earth orbit during MSL/RAD flight and surface phases

    NASA Astrophysics Data System (ADS)

    von Forstner, J.; Guo, J.; Wimmer-Schweingruber, R. F.; Hassler, D.; Temmer, M.; Vrsnak, B.; Čalogović, J.; Dumbovic, M.; Lohf, H.; Appel, J. K.; Heber, B.; Steigies, C. T.; Zeitlin, C.; Ehresmann, B.; Jian, L. K.; Boehm, E.; Boettcher, S. I.; Burmeister, S.; Martin-Garcia, C.; Brinza, D. E.; Posner, A.; Reitz, G.; Matthiae, D.; Rafkin, S. C.; weigle, G., II; Cucinotta, F.

    2017-12-01

    The propagation of interplanetary coronal mass ejections (ICMEs) between Earth's orbit (1 AU) and Mars ( 1.5 AU) has been studied with their propagation speed estimated from both measurements and simulations. The enhancement of the magnetic fields related to ICMEs and their shock fronts cause so-called Forbush decreases, which can be detected as a reduction of galactic cosmic rays measured on-ground or on a spacecraft. We have used galactic cosmic ray (GCR) data from in-situ measurements at Earth, from both STEREO A and B as well as the GCR measurement by the Radiation Assessment Detector (RAD) instrument onboard Mars Science Laboratory (MSL) on the surface of Mars as well as during its flight to Mars in 2011-2012. A set of ICME events has been selected during the periods when Earth (or STEREO A or B) and MSL locations were nearly aligned on the same side of the Sun in the ecliptic plane (so-called opposition phase). Such lineups allow us to estimate the ICMEs' transit times between 1 AU and the MSL location by estimating the delay time of the corresponding Forbush decreases measured at each location. We investigate the evolution of their propagation speeds after passing Earth's orbit and find that the deceleration of ICMEs due to their interaction with the ambient solar wind continues beyond 1 AU. The results are compared to simulation data obtained from two CME propagation models, namely the Drag-Based Model (DBM) and the WSA-ENLIL plus cone model.

  3. Post-Drive View on Curiosity Sol 102

    NASA Image and Video Library

    2012-11-20

    NASA Mars rover Curiosity drove 83 feet eastward during the 102nd Martian day, or sol, of the mission Nov. 18, 2012. At the end of the drive, Curiosity view was toward Yellowknife Bay in the Glenelg area of Gale Crater.

  4. KSC-2011-7252

    NASA Image and Video Library

    2011-10-06

    CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the fairing acoustic protection (FAP) system lines the inside of the Atlas V payload fairing for NASA's Mars Science Laboratory (MSL) mission. This half of the fairing has been uncovered during preparations to clean it to meet NASA's planetary protection requirements. The FAP protects the payload by dampening the sound created by the rocket during liftoff. The fairing will protect the spacecraft from the impact of aerodynamic pressure and heating during ascent. Although jettisoned once the spacecraft is outside the Earth's atmosphere, the fairing must be cleaned to the same exacting standards as the laboratory to avoid the possibility of contaminating it. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including the chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  5. KSC-2011-7253

    NASA Image and Video Library

    2011-10-06

    CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the fairing acoustic protection (FAP) system lining the inside of the Atlas V payload fairing for NASA's Mars Science Laboratory (MSL) mission is visible after the fairing is uncovered during preparations to clean it to meet NASA's planetary protection requirements. The FAP protects the payload by dampening the sound created by the rocket during liftoff. The fairing will protect the spacecraft from the impact of aerodynamic pressure and heating during ascent. Although jettisoned once the spacecraft is outside the Earth's atmosphere, the fairing must be cleaned to the same exacting standards as the laboratory to avoid the possibility of contaminating it. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including the chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  6. Specific and diversive curiosity in gifted elementary students.

    PubMed

    Johnson, L; Beer, J

    1992-10-01

    Twenty-nine gifted students in Grades 2 to 6 from the small school districts in north central Kansas completed the Maze test and the Which-to-Discuss test. Background information such as age, sex, grade, and marital status of parents was also collected. There were no significant differences between boys and girls or for students from divorced and nondivorced parents on either the Which-to-Discuss test (specific curiosity) or the Maze test scores (diversive curiosity). The students scored significantly higher on the former test than chance guessing which suggests the students were displaying specific curiosity. Scores of these gifted students on these two tests of curiosity were significantly and positively correlated.

  7. KSC-2011-7835

    NASA Image and Video Library

    2011-11-17

    CAPE CANAVERAL, Fla. -- Enclosed in the protective mesh container known as the "gorilla cage," the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission is lifted up the side of the Vertical Integration Facility at Space Launch Complex 41. The generator will be installed on the MSL spacecraft, encapsulated within the payload fairing. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat produced by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Heat emitted by the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Dimitri Gerondidakis

  8. KSC-2011-7829

    NASA Image and Video Library

    2011-11-17

    CAPE CANAVERAL, Fla. -- The Atlas V rocket set to launch NASA's Mars Science Laboratory (MSL) mission is illuminated inside the Vertical Integration Facility at Space Launch Complex 41, where employees have gathered to hoist the spacecraft's multi-mission radioisotope thermoelectric generator (MMRTG). The generator will be lifted up to the top of the rocket and installed on the MSL spacecraft, encapsulated within the payload fairing. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat produced by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Heat emitted by the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Dimitri Gerondidakis

  9. KSC-2011-7827

    NASA Image and Video Library

    2011-11-17

    CAPE CANAVERAL, Fla. -- Outside the Vertical Integration Facility at Space Launch Complex 41, an area has been cordoned off beside the trailer which has arrived at the pad carrying the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission. The generator will be lifted up to the top of the rocket and installed on the MSL spacecraft, encapsulated within the payload fairing. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat produced by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Heat emitted by the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Dimitri Gerondidakis

  10. KSC-2011-7836

    NASA Image and Video Library

    2011-11-17

    CAPE CANAVERAL, Fla. -- Enclosed in the protective mesh container known as the "gorilla cage," the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission is hoisted up beside the Atlas V rocket standing in the Vertical Integration Facility at Space Launch Complex 41. The generator will be installed on the MSL spacecraft, encapsulated within the payload fairing. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat produced by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Heat emitted by the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Dimitri Gerondidakis

  11. KSC-2011-7833

    NASA Image and Video Library

    2011-11-17

    CAPE CANAVERAL, Fla. -- Enclosed in the protective mesh container known as the "gorilla cage," the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission is lifted off the ground at the Vertical Integration Facility at Space Launch Complex 41. The generator will be hoisted up to the top of the rocket and installed on the MSL spacecraft, encapsulated within the payload fairing. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat produced by this natural decay will provide constant power through the day and night during all seasons. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Heat emitted by the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. Launch of MSL aboard a United Launch Alliance Atlas V rocket is targeted for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Dimitri Gerondidakis

  12. Eye movements reveal epistemic curiosity in human observers.

    PubMed

    Baranes, Adrien; Oudeyer, Pierre-Yves; Gottlieb, Jacqueline

    2015-12-01

    Saccadic (rapid) eye movements are primary means by which humans and non-human primates sample visual information. However, while saccadic decisions are intensively investigated in instrumental contexts where saccades guide subsequent actions, it is largely unknown how they may be influenced by curiosity - the intrinsic desire to learn. While saccades are sensitive to visual novelty and visual surprise, no study has examined their relation to epistemic curiosity - interest in symbolic, semantic information. To investigate this question, we tracked the eye movements of human observers while they read trivia questions and, after a brief delay, were visually given the answer. We show that higher curiosity was associated with earlier anticipatory orienting of gaze toward the answer location without changes in other metrics of saccades or fixations, and that these influences were distinct from those produced by variations in confidence and surprise. Across subjects, the enhancement of anticipatory gaze was correlated with measures of trait curiosity from personality questionnaires. Finally, a machine learning algorithm could predict curiosity in a cross-subject manner, relying primarily on statistical features of the gaze position before the answer onset and independently of covariations in confidence or surprise, suggesting potential practical applications for educational technologies, recommender systems and research in cognitive sciences. With this article, we provide full access to the annotated database allowing readers to reproduce the results. Epistemic curiosity produces specific effects on oculomotor anticipation that can be used to read out curiosity states. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Multispectral Imaging of Mars from the Mars Science Laboratory Mastcam Instruments: Spectral Properties and Mineralogic Implications Along the Gale Crater Traverse

    NASA Astrophysics Data System (ADS)

    Bell, James F.; Wellington, Danika; Hardgrove, Craig; Godber, Austin; Rice, Melissa S.; Johnson, Jeffrey R.; Fraeman, Abigail

    2016-10-01

    The Mars Science Laboratory (MSL) Curiosity rover Mastcam is a pair of multispectral CCD cameras that have been imaging the surface and atmosphere in three broadband visible RGB color channels as well as nine additional narrowband color channels between 400 and 1000 nm since the rover's landing in August 2012. As of Curiosity sol 1159 (the most recent PDS data release as of this writing), approximately 140 multispectral imaging targets have been imaged using all twelve unique bandpasses. Near-simultaneous imaging of an onboard calibration target allows rapid relative reflectance calibration of these data to radiance factor and estimated Lambert albedo, for direct comparison to lab reflectance spectra of rocks, minerals, and mixtures. Surface targets among this data set include a variety of outcrop and float rocks (some containing light-toned veins), unconsolidated pebbles and clasts, and loose sand and soil. Some of these targets have been brushed, scuffed, or otherwise disturbed by the rover in order to reveal the (less dusty) interiors of these materials, and those targets and each of Curiosity's drill holes and tailings piles have been specifically targeted for multispectral imaging.Analysis of the relative reflectance spectra of these materials, sometimes in concert with additional compositional and/or mineralogic information from Curiosity's ChemCam LIBS and passive-mode spectral data and CheMin XRD data, reveals the presence of relatively broad solid state crystal field and charge transfer absorption features characteristic of a variety of common iron-bearing phases, including hematite (both nanophase and crystalline), ferric sulfate, olivine, and pyroxene. In addition, Mastcam is sensitive to a weak hydration feature in the 900-1000 nm region that can provide insight on the hydration state of some of these phases, especially sulfates. Here we summarize the Mastcam multispectral data set and the major potential phase identifications made using that data set

  14. Hypersonic and Supersonic Static Aerodynamics of Mars Science Laboratory Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dyakonov, Artem A.; Schoenenberger, Mark; Vannorman, John W.

    2012-01-01

    This paper describes the analysis of continuum static aerodynamics of Mars Science Laboratory (MSL) entry vehicle (EV). The method is derived from earlier work for Mars Exploration Rover (MER) and Mars Path Finder (MPF) and the appropriate additions are made in the areas where physics are different from what the prior entry systems would encounter. These additions include the considerations for the high angle of attack of MSL EV, ablation of the heatshield during entry, turbulent boundary layer, and other aspects relevant to the flight performance of MSL. Details of the work, the supporting data and conclusions of the investigation are presented.

  15. The Mars Science Laboratory (MSL) Bagnold Dunes Campaign, Phase I: Overview and introduction to the special issue

    NASA Astrophysics Data System (ADS)

    Bridges, Nathan T.; Ehlmann, Bethany L.

    2018-01-01

    The Bagnold dunes in Gale Crater, Mars, are the first active aeolian dune field explored in situ on another planet. The Curiosity rover visited the Bagnold dune field to understand modern winds, aeolian processes, rates, and structures; to determine dune material composition, provenance, and the extent and type of compositional sorting; and to collect knowledge that informs the interpretation of past aeolian processes that are preserved in the Martian sedimentary rock record. The Curiosity rover conducted a coordinated campaign of activities lasting 4 months, interspersed with other rover activities, and employing all of the rover's science instruments and several engineering capabilities. Described in 13 manuscripts and summarized here, the major findings of the Bagnold Dunes Campaign, Phase I, include the following: the characterization of and explanation for a distinctive, meter-scale size of sinuous aeolian bedform formed in the high kinetic viscosity regime of Mars' thin atmosphere; articulation and evaluation of a grain splash model that successfully explains the occurrence of saltation even at wind speeds below the fluid threshold; determination of the dune sands' basaltic mineralogy and crystal chemistry in comparison with other soils and sedimentary rocks; and characterization of chemically distinctive volatile reservoirs in sand-sized versus dust-sized fractions of Mars soil, including two volatile-bearing types of amorphous phases.

  16. Curiosity Robotic Arm

    NASA Image and Video Library

    2012-09-06

    This engineering drawing shows the location of the arm on NASA Curiosity rover, in addition to the arm turret, which holds two instruments and three tools. The arm places and holds turret-mounted tools on rock and soil targets.

  17. Potential Cement Phases in Sedimentary Rocks Drilled by Curiosity at Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Morris, R. V.; Bish, D. L.; Chipera, S. J.; Ming, D. W.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; Cavanagh, P.; Farmer, J. D.; hide

    2015-01-01

    The Mars Science Laboratory rover Curiosity has encountered a variety of sedimentary rocks in Gale crater with different grain sizes, diagenetic features, sedimentary structures, and varying degrees of resistance to erosion. Curiosity has drilled three rocks to date and has analyzed the mineralogy, chemical composition, and textures of the samples with the science payload. The drilled rocks are the Sheepbed mudstone at Yellowknife Bay on the plains of Gale crater (John Klein and Cumberland targets), the Dillinger sandstone at the Kimberley on the plains of Gale crater (Windjana target), and a sedimentary unit in the Pahrump Hills in the lowermost rocks at the base of Mt. Sharp (Confidence Hills target). CheMin is the Xray diffractometer on Curiosity, and its data are used to identify and determine the abundance of mineral phases. Secondary phases can tell us about aqueous alteration processes and, thus, can help to elucidate past aqueous environments. Here, we present the secondary mineralogy of the rocks drilled to date as seen by CheMin and discuss past aqueous environments in Gale crater, the potential cementing agents in each rock, and how amorphous materials may play a role in cementing the sediments.

  18. The Martian surface radiation environment - a comparison of models and MSL/RAD measurements

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Ehresmann, Bent; Lohf, Henning; Köhler, Jan; Zeitlin, Cary; Appel, Jan; Sato, Tatsuhiko; Slaba, Tony; Martin, Cesar; Berger, Thomas; Boehm, Eckart; Boettcher, Stephan; Brinza, David E.; Burmeister, Soenke; Guo, Jingnan; Hassler, Donald M.; Posner, Arik; Rafkin, Scot C. R.; Reitz, Günther; Wilson, John W.; Wimmer-Schweingruber, Robert F.

    2016-03-01

    Context: The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) has been measuring the radiation environment on the surface of Mars since August 6th 2012. MSL-RAD is the first instrument to provide detailed information about charged and neutral particle spectra and dose rates on the Martian surface, and one of the primary objectives of the RAD investigation is to help improve and validate current radiation transport models. Aims: Applying different numerical transport models with boundary conditions derived from the MSL-RAD environment the goal of this work was to both provide predictions for the particle spectra and the radiation exposure on the Martian surface complementing the RAD sensitive range and, at the same time, validate the results with the experimental data, where applicable. Such validated models can be used to predict dose rates for future manned missions as well as for performing shield optimization studies. Methods: Several particle transport models (GEANT4, PHITS, HZETRN/OLTARIS) were used to predict the particle flux and the corresponding radiation environment caused by galactic cosmic radiation on Mars. From the calculated particle spectra the dose rates on the surface are estimated. Results: Calculations of particle spectra and dose rates induced by galactic cosmic radiation on the Martian surface are presented. Although good agreement is found in many cases for the different transport codes, GEANT4, PHITS, and HZETRN/OLTARIS, some models still show large, sometimes order of magnitude discrepancies in certain particle spectra. We have found that RAD data is helping to make better choices of input parameters and physical models. Elements of these validated models can be applied to more detailed studies on how the radiation environment is influenced by solar modulation, Martian atmosphere and soil, and changes due to the Martian seasonal pressure cycle. By extending the range of the calculated particle spectra with respect to

  19. KSC-2011-7889

    NASA Image and Video Library

    2011-11-23

    CAPE CANAVERAL, Fla. – Families visiting the Kennedy Space Center Visitor Complex in Florida participate in a LEGO "Build the Future" event. The festivities coincide with the launch of NASA's Mars Science Laboratory (MSL), carrying a compact car-sized rover, Curiosity, to the red planet. Part of the Space Act Agreement between NASA and LEGO A/S, the activities are designed to inspire students of every age to consider an education and careers in the science, technology, engineering and mathematics, or STEM, disciplines. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 26 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/audience/foreducators/nasa-lego-partnership.html. Photo credit: NASA/Kim Shiflett

  20. KSC-2011-8000

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center in Florida, Will.i.am (center), entertainer and member of The Black Eyed Peas, talks with employees on hand during his tour of the Operations and Checkout Building (O&C). The visit to the O&C followed his participation in a NASA Tweetup. The Tweetup is part of prelaunch activities for the agency’s Mars Science Laboratory (MSL) launch and provides the opportunity for tweeters will share their experiences with followers through the social networking site Twitter. The MSL mission will pioneer precision landing technology and a sky-crane touchdown to place a car-sized rover, Curiosity, near the foot of a mountain inside Gale Crater on Aug. 6, 2012. During a nearly two-year prime mission after landing, the rover will investigate whether the region has ever offered conditions favorable for microbial life, including the chemical ingredients for life. Liftoff of MSL aboard a United Launch Alliance Atlas V rocket from Space Launch Complex-41 on Cape Canaveral Air Force Station was at 10:02 a.m. EST on Nov. 26. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Jim Grossmann

  1. KSC-2011-7532

    NASA Image and Video Library

    2011-10-25

    CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, spacecraft technicians prepare to enclose NASA's Mars Science Laboratory (MSL) in an Atlas V rocket payload fairing. The blocks on the interior of the fairing are components of the fairing acoustic protection (FAP) system, designed to protect the payload by dampening the sound created by the rocket during liftoff. The fairing will protect the spacecraft from the impact of aerodynamic pressure and heating during ascent. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including the chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex-41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Jim Grossmann

  2. KSC-2011-7534

    NASA Image and Video Library

    2011-10-25

    CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, sections of an Atlas V rocket payload fairing obscure NASA's Mars Science Laboratory (MSL) from view as they close in around it. The blocks on the interior of the fairing are components of the fairing acoustic protection (FAP) system, designed to protect the payload by dampening the sound created by the rocket during liftoff. The fairing will protect the spacecraft from the impact of aerodynamic pressure and heating during ascent. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including the chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex-41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Jim Grossmann

  3. KSC-2011-7531

    NASA Image and Video Library

    2011-10-25

    CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, NASA's Mars Science Laboratory (MSL) is ready to be enclosed in the Atlas V rocket payload fairing in the background. The blocks on the interior of the fairing are components of the fairing acoustic protection (FAP) system, designed to protect the payload by dampening the sound created by the rocket during liftoff. The fairing will protect the spacecraft from the impact of aerodynamic pressure and heating during ascent. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including the chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex-41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Jim Grossmann

  4. KSC-2011-7533

    NASA Image and Video Library

    2011-10-25

    CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, sections of an Atlas V rocket payload fairing engulf NASA's Mars Science Laboratory (MSL) as they close in around it. The blocks on the interior of the fairing are components of the fairing acoustic protection (FAP) system, designed to protect the payload by dampening the sound created by the rocket during liftoff. The fairing will protect the spacecraft from the impact of aerodynamic pressure and heating during ascent. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including the chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex-41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Jim Grossmann

  5. KSC-2011-7530

    NASA Image and Video Library

    2011-10-25

    CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, preparations are under way to enclose NASA's Mars Science Laboratory (MSL) in an Atlas V rocket payload fairing. The blocks on the interior of the fairing are components of the fairing acoustic protection (FAP) system, designed to protect the payload by dampening the sound created by the rocket during liftoff. The fairing will protect the spacecraft from the impact of aerodynamic pressure and heating during ascent. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including the chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex-41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Jim Grossmann

  6. Flexing Curiosity's Arm

    NASA Image and Video Library

    2012-09-06

    This engineering drawing shows the arm on NASA's Curiosity's rover in its "ready-for-action" position, or "ready out" as engineers say, in addition to the position it assumes to drop off samples. http://photojournal.jpl.nasa.gov/catalog/PIA16147

  7. The Pandora Effect: The Power and Peril of Curiosity.

    PubMed

    Hsee, Christopher K; Ruan, Bowen

    2016-05-01

    Curiosity-the desire for information-underlies many human activities, from reading celebrity gossip to developing nuclear science. Curiosity is well recognized as a human blessing. Is it also a human curse? Tales about such things as Pandora's box suggest that it is, but scientific evidence is lacking. In four controlled experiments, we demonstrated that curiosity could lead humans to expose themselves to aversive stimuli (even electric shocks) for no apparent benefits. The research suggests that humans possess an inherent desire, independent of consequentialist considerations, to resolve uncertainty; when facing something uncertain and feeling curious, they will act to resolve the uncertainty even if they expect negative consequences. This research reveals the potential perverse side of curiosity, and is particularly relevant to the current epoch, the epoch of information, and to the scientific community, a community with high curiosity. © The Author(s) 2016.

  8. The Geologic Exploration of the Bagnold Dune Field at Gale Crater by the Curiosity Rover

    PubMed Central

    Chojnacki, Matthew; Fenton, Lori K.

    2018-01-01

    The Mars Science Laboratory rover Curiosity engaged in a monthlong campaign investigating the Bagnold dune field in Gale crater. What represents the first in situ investigation of a dune field on another planet has resulted in a number of discoveries. Collectively, the Curiosity rover team has compiled the most comprehensive survey of any extraterrestrial aeolian system visited to date with results that yield important insights into a number of processes, including sediment transport, bed form morphology and structure, chemical and physical composition of aeolian sand, and wind regime characteristics. These findings and more are provided in detail by the JGR-Planets Special Issue Curiosity’s Bagnold Dunes Campaign, Phase I. PMID:29564198

  9. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Sandra F.; Barnett, J. Matthew

    2015-05-04

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office (PNSO) has oversight and stewardship duties associated with the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) located on Battelle Land – Sequim.This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.'' The EDE to the MSL MEI duemore » to routine operations in 2014 was 9E-05 mrem (9E-07 mSv). No non-routine emissions occurred in 2014. The MSL is in compliance with the federal and state 10 mrem/yr standard.« less

  10. Describing medical student curiosity across a four year curriculum: An exploratory study.

    PubMed

    Sternszus, Robert; Saroyan, Alenoush; Steinert, Yvonne

    2017-04-01

    Intellectual curiosity can be defined as a desire for knowledge that leads to exploratory behavior and consists of an inherent and stable trait (i.e. trait curiosity) and a variable context-dependent state (i.e. state curiosity). Although intellectual curiosity has been considered an important aspect of medical education and practice, its relationship to medical education has not been empirically investigated. The purpose of this exploratory study was to describe medical students' intellectual curiosity across a four-year undergraduate program. We employed a cross-sectional design in which medical students, across a four-year undergraduate program at McGill University, completed the Melbourne Curiosity Inventory as a measure of their state and trait intellectual curiosity. A Mixed Models ANOVA was used to compare students across year of training. Four hundred and two out of 751 students completed the inventory (53.5%). Trait curiosity was significantly higher than state curiosity (M = 64.5, SD = 8.5 versus M = 58.5, SD = 11.6) overall, and within each year of training. This study is the first to describe state and trait intellectual curiosity in undergraduate medical education. Findings suggest that medical students' state curiosity may not be optimally supported and highlight avenues for further research.

  11. ChemCam for Mars Science Laboratory rover, undergoing pre-flight testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-10-20

    Los Alamos National Laboratory and partners developed a laser instrument, ChemCam, that will ride on the elevated mast of the Mars Science Laboratory rover Curiosity. The system allows Curiosity to "zap" rocks from a distance, reading their chemical composition through spectroscopic analysis. In this video, laboratory shaker-table testing of the instrument ensures that all of its components are solidly attached and resistant to damage from the rigors of launch, travel and landing.

  12. ChemCam for Mars Science Laboratory rover, undergoing pre-flight testing

    ScienceCinema

    None

    2018-06-06

    Los Alamos National Laboratory and partners developed a laser instrument, ChemCam, that will ride on the elevated mast of the Mars Science Laboratory rover Curiosity. The system allows Curiosity to "zap" rocks from a distance, reading their chemical composition through spectroscopic analysis. In this video, laboratory shaker-table testing of the instrument ensures that all of its components are solidly attached and resistant to damage from the rigors of launch, travel and landing.

  13. Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database

    USGS Publications Warehouse

    Clegg, Samuel M.; Wiens, Roger C.; Anderson, Ryan; Forni, Olivier; Frydenvang, Jens; Lasue, Jeremie; Cousin, Agnes; Payre, Valerie; Boucher, Tommy; Dyar, M. Darby; McLennan, Scott M.; Morris, Richard V.; Graff, Trevor G.; Mertzman, Stanley A; Ehlmann, Bethany L.; Belgacem, Ines; Newsom, Horton E.; Clark, Ben C.; Melikechi, Noureddine; Mezzacappa, Alissa; McInroy, Rhonda E.; Martinez, Ronald; Gasda, Patrick J.; Gasnault, Olivier; Maurice, Sylvestre

    2017-01-01

    The ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity has obtained > 300,000 spectra of rock and soil analysis targets since landing at Gale Crater in 2012, and the spectra represent perhaps the largest publicly-available LIBS datasets. The compositions of the major elements, reported as oxides (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O), have been re-calibrated using a laboratory LIBS instrument, Mars-like atmospheric conditions, and a much larger set of standards (408) that span a wider compositional range than previously employed. The new calibration uses a combination of partial least squares (PLS1) and Independent Component Analysis (ICA) algorithms, together with a calibration transfer matrix to minimize differences between the conditions under which the standards were analyzed in the laboratory and the conditions on Mars. While the previous model provided good results in the compositional range near the average Mars surface composition, the new model fits the extreme compositions far better. Examples are given for plagioclase feldspars, where silicon was significantly over-estimated by the previous model, and for calcium-sulfate veins, where silicon compositions near zero were inaccurate. The uncertainties of major element abundances are described as a function of the abundances, and are overall significantly lower than the previous model, enabling important new geochemical interpretations of the data.

  14. Mars Science Laboratory Rover System Thermal Test

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Dudik, Brenda A.

    2012-01-01

    On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. The MSL rover is scheduled to land on Mars on August 5, 2012. Prior to launch, the Rover was successfully operated in simulated mission extreme environments during a 16-day long Rover System Thermal Test (STT). This paper describes the MSL Rover STT, test planning, test execution, test results, thermal model correlation and flight predictions. The rover was tested in the JPL 25-Foot Diameter Space Simulator Facility at the Jet Propulsion Laboratory (JPL). The Rover operated in simulated Cruise (vacuum) and Mars Surface environments (8 Torr nitrogen gas) with mission extreme hot and cold boundary conditions. A Xenon lamp solar simulator was used to impose simulated solar loads on the rover during a bounding hot case and during a simulated Mars diurnal test case. All thermal hardware was exercised and performed nominally. The Rover Heat Rejection System, a liquid-phase fluid loop used to transport heat in and out of the electronics boxes inside the rover chassis, performed better than predicted. Steady state and transient data were collected to allow correlation of analytical thermal models. These thermal models were subsequently used to predict rover thermal performance for the MSL Gale Crater landing site. Models predict that critical hardware temperatures will be maintained within allowable flight limits over the entire 669 Sol surface mission.

  15. Curiosity Questions

    ERIC Educational Resources Information Center

    Nelsen, Jane; DeLorenzo, Chip

    2010-01-01

    Have you ever found yourself lecturing a child, with the best of intentions, in an attempt to help him or her learn a lesson or process a situation in a manner that you feel will be productive? Curiosity questions, which the authors also call What and How questions, help children process an experience, event, or natural consequence so that they…

  16. Classification Scheme for Diverse Sedimentary and Igneous Rocks Encountered by MSL in Gale Crater

    NASA Technical Reports Server (NTRS)

    Schmidt, M. E.; Mangold, N.; Fisk, M.; Forni, O.; McLennan, S.; Ming, D. W.; Sumner, D.; Sautter, V.; Williams, A. J.; Gellert, R.

    2015-01-01

    The Curiosity Rover landed in a lithologically and geochemically diverse region of Mars. We present a recommended rock classification framework based on terrestrial schemes, and adapted for the imaging and analytical capabilities of MSL as well as for rock types distinctive to Mars (e.g., high Fe sediments). After interpreting rock origin from textures, i.e., sedimentary (clastic, bedded), igneous (porphyritic, glassy), or unknown, the overall classification procedure (Fig 1) involves: (1) the characterization of rock type according to grain size and texture; (2) the assignment of geochemical modifiers according to Figs 3 and 4; and if applicable, in depth study of (3) mineralogy and (4) geologic/stratigraphic context. Sedimentary rock types are assigned by measuring grains in the best available resolution image (Table 1) and classifying according to the coarsest resolvable grains as conglomerate/breccia, (coarse, medium, or fine) sandstone, silt-stone, or mudstone. If grains are not resolvable in MAHLI images, grains in the rock are assumed to be silt sized or smaller than surface dust particles. Rocks with low color contrast contrast between grains (e.g., Dismal Lakes, sol 304) are classified according to minimum size of apparent grains from surface roughness or shadows outlining apparent grains. Igneous rocks are described as intrusive or extrusive depending on crystal size and fabric. Igneous textures may be described as granular, porphyritic, phaneritic, aphyric, or glassy depending on crystal size. Further descriptors may include terms such as vesicular or cumulate textures.

  17. Martian Terrain Near Curiosity Precipice Target

    NASA Image and Video Library

    2016-12-06

    This view from the Navigation Camera (Navcam) on the mast of NASA's Curiosity Mars rover shows rocky ground within view while the rover was working at an intended drilling site called "Precipice" on lower Mount Sharp. The right-eye camera of the stereo Navcam took this image on Dec. 2, 2016, during the 1,537th Martian day, or sol, of Curiosity's work on Mars. On the previous sol, an attempt to collect a rock-powder sample with the rover's drill ended before drilling began. This led to several days of diagnostic work while the rover remained in place, during which it continued to use cameras and a spectrometer on its mast, plus environmental monitoring instruments. In this view, hardware visible at lower right includes the sundial-theme calibration target for Curiosity's Mast Camera. http://photojournal.jpl.nasa.gov/catalog/PIA21140

  18. Curiosity New Home

    NASA Image and Video Library

    2012-08-08

    These are the first two full-resolution images of the Martian surface from the Navigation cameras on NASA Curiosity rover, which are located on the rover head or mast. The rim of Gale Crater can be seen in the distance beyond the pebbly ground.

  19. Measuring epistemic curiosity and its diversive and specific components.

    PubMed

    Litman, Jordan A; Spielberger, Charles D

    2003-02-01

    A questionnaire constructed to assess epistemic curiosity (EC) and perceptual curiosity (PC) curiosity was administered to 739 undergraduates (546 women, 193 men) ranging in age from 18 to 65. The study participants also responded to the trait anxiety, anger, depression, and curiosity scales of the State-Trait Personality Inventory (STPI; Spielberger et al., 1979) and selected subscales of the Sensation Seeking (SSS; Zuckerman, Kolin, Price, & Zoob, 1964) and Novelty Experiencing (NES; Pearson, 1970) scales. Factor analyses of the curiosity items with oblique rotation identified EC and PC factors with clear simple structure. Subsequent analyses of the EC items provided the basis for developing an EC scale, with Diversive and Specific Curiosity subscales. Moderately high correlations of the EC scale and subscales with other measures of curiosity provided strong evidence of convergent validity. Divergent validity was demonstrated by minimal correlations with trait anxiety and the sensation-seeking measures, and essentially zero correlations with the STPI trait anger and depression scales. Male participants had significantly higher scores on the EC scale and the NES External Cognition subscale (effect sizes of r =.16 and.21, respectively), indicating that they were more interested than female participants in solving problems and discovering how things work. Male participants also scored significantly higher than female participants on the SSS Thrill-and-Adventure and NES External Sensation subscales (r =.14 and.22, respectively), suggesting that they were more likely to engage in sensation-seeking activities.

  20. Curiosity Mars Rover Drilling Into Its Second Rock

    NASA Image and Video Library

    2013-06-05

    This frame from an animation from NASA Mars rover Curiosity shows the rover drilling into rock target Cumberland. The drilling was performed during the 279th Martian day, or sol, of the Curiosity work on Mars May 19, 2013.

  1. NASA Ames Science Instrument Launches Aboard New Mars Rover (CheMin)

    NASA Image and Video Library

    2011-11-23

    When NASA's Mars Science Laboratory lands in a region known as Gale Crater in August of 2012, it will be poised to carry out the most sophisticated chemical analysis of the Martian surface to date. One of the 10 instruments on board the rover Curiosity will be CheMin - short for chemistry and mineralogy. Developed by Ames researcher David Blake and his team, it will use new technology to analyze and identify minerals in the Martian rocks and soil. Youtube: NASA Ames Scientists Develop MSL Science Instrument

  2. Mars Reconnaissance Orbiter Navigation Strategy for Mars Science Laboratory Entry, Descent and Landing Telecommunication Relay Support

    NASA Technical Reports Server (NTRS)

    Williams, Jessica L.; Menon, Premkumar R.; Demcak, Stuart W.

    2012-01-01

    The Mars Reconnaissance Orbiter (MRO) is an orbiting asset that performs remote sensing observations in order to characterize the surface, subsurface and atmosphere of Mars. To support upcoming NASA Mars Exploration Program Office objectives, MRO will be used as a relay communication link for the Mars Science Laboratory (MSL) mission during the MSL Entry, Descent and Landing sequence. To do so, MRO Navigation must synchronize the MRO Primary Science Orbit (PSO) with a set of target conditions requested by the MSL Navigation Team; this may be accomplished via propulsive maneuvers. This paper describes the MRO Navigation strategy for and operational performance of MSL EDL relay telecommunication support.

  3. Curiositas and Studiositas: Investigating Student Curiosity and the Design Studio

    ERIC Educational Resources Information Center

    Smith, Korydon

    2011-01-01

    Curiosity is often considered the foundation of learning. There is, however, little understanding of how (or if) pedagogy in higher education affects student curiosity, especially in the studio setting of architecture, interior design and landscape architecture. This article provides a brief cultural history of curiosity and its role in the design…

  4. The Mars Science Laboratory Touchdown Test Facility

    NASA Technical Reports Server (NTRS)

    White, Christopher; Frankovich, John; Yates, Phillip; Wells Jr, George H.; Losey, Robert

    2009-01-01

    In the Touchdown Test Program for the Mars Science Laboratory (MSL) mission, a facility was developed to use a full-scale rover vehicle and an overhead winch system to replicate the Skycrane landing event.

  5. The Curiosity Effect

    NASA Technical Reports Server (NTRS)

    Smith, Kimberly Ennico

    2017-01-01

    This conference aims to improve how we learn through integrative project and discovery-based methods. My talk highlights areas in my experience as a scientist, and most recently working for our national space agency, NASA, where we work in teams with a "discovery-based" mindset. When you demonstrate broad curiosity, you become open to different viewpoints and ways to approach and manage situations. Sometimes working only from "what you have been trained to do" or "what you know" is not enough, especially when the rules may be changing. Increasing our openness in our learning, and sharing what we know, can lead to a more diverse and innovative community, solving problems in new ways, overcoming resistance to new ideas, and hopefully creating a dynamic and faring-forward society. Let us not kill curiosity, at any age, in any situation. Let us remind ourselves, at any time, in any circumstance, to continue to learn, to mentor, to stimulate, to engage and reconnect with that "open sense of possibility."

  6. Orbiter View of Curiosity From Nearly Straight Overhead

    NASA Image and Video Library

    2012-08-31

    Details such as the shadow of the mast on NASA Mars rover Curiosity appear in an image taken Aug. 17, 2012, by the HiRISE camera on NASA Mars Reconnaissance Orbiter, from more directly overhead than previous HiRISE images of Curiosity.

  7. Mars Science Laboratory Mission and Science Investigation

    NASA Astrophysics Data System (ADS)

    Grotzinger, John P.; Crisp, Joy; Vasavada, Ashwin R.; Anderson, Robert C.; Baker, Charles J.; Barry, Robert; Blake, David F.; Conrad, Pamela; Edgett, Kenneth S.; Ferdowski, Bobak; Gellert, Ralf; Gilbert, John B.; Golombek, Matt; Gómez-Elvira, Javier; Hassler, Donald M.; Jandura, Louise; Litvak, Maxim; Mahaffy, Paul; Maki, Justin; Meyer, Michael; Malin, Michael C.; Mitrofanov, Igor; Simmonds, John J.; Vaniman, David; Welch, Richard V.; Wiens, Roger C.

    2012-09-01

    Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (˜23 months), and drive capability of at least 20 km. Curiosity's science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity's field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5 km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate

  8. Organic and Isotope Measurement Protocols under Development for the 2009 Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Atreya, Sushil K.

    2006-01-01

    The Mars Science Laboratory (MSL) is under development by NASA with several international partners for launch in 2009. MSL is designed to quantitatively explore a local region on Mars as a potential habitat for present or past life (http://mars.jpl.nasa.gov/msl). The goals of MSL are to (1) assess the past or present biological potential of the target environment, (2) to characterize its geology and geochemistry, (3) to study planetary processes that influence habitability, and (4) to characterize the surface radiation. The last substantial search for organic molecules on the surface of Mars was with the Viking Landers in 1976 [Biemann, et al., 19771. In that mission, no organics were detected in near surface fines and presently a more comprehensive search is required to understand the potential of that planet to support life. While the Mars Exploration Rovers are able to identify mineralogical signatures of aqueous alteration, they are not equipped to search for organics. The planned capabilities of the MSL rover payload will enable a search for a wide range of organic molecules in both solid samples of rocks and fines and atmospheric samples. MSL will also provide a determination of definitive mineralogy of the solid samples and precision isotope measurements of several volatile elements. Contact and remote surface and subsurface survey tools will establish context for Analytical Laboratory measurements and will facilitate sample selection. The Sample Analysis at Mars (SAM) suite of MSL addresses several of the mission's core measurement goals. SAM includes a gas chromatograph, a mass spectrometer, and a tunable laser spectrometer. We will describe the range of measurement protocols under development and test for SAM and the relationship of our planned measurements to outstanding issues of martian habitability.

  9. Accurate Pointing by Curiosity

    NASA Image and Video Library

    2013-04-12

    NASA Curiosity Mars rover targeted the laser of the ChemCam instrument with remarkable accuracy for assessing the composition of the wall of a drilled hole and tailings that resulted from the drilling.

  10. Investigating Curiosity Drill Area

    NASA Image and Video Library

    2013-02-09

    NASA Mars rover Curiosity used its Mast Camera Mastcam to take the images combined into this mosaic of the drill area, called John Klein, where the rover ultimately performed its first sample drilling.

  11. Do individual differences in children's curiosity relate to their inquiry-based learning?

    NASA Astrophysics Data System (ADS)

    van Schijndel, Tessa J. P.; Jansen, Brenda R. J.; Raijmakers, Maartje E. J.

    2018-06-01

    This study investigates how individual differences in 7- to 9-year-olds' curiosity relate to the inquiry-learning process and outcomes in environments differing in structure. The focus on curiosity as individual differences variable was motivated by the importance of curiosity in science education, and uncertainty being central to both the definition of curiosity and the inquiry-learning environment. Curiosity was assessed with the Underwater Exploration game (Jirout, J., & Klahr, D. (2012). Children's scientific curiosity: In search of an operational definition of an elusive concept. Developmental Review, 32, 125-160. doi:10.1016/j.dr.2012.04.002), and inquiry-based learning with the newly developed Scientific Discovery task, which focuses on the principle of designing informative experiments. Structure of the inquiry-learning environment was manipulated by explaining this principle or not. As intelligence relates to learning and possibly curiosity, it was taken into account. Results showed that children's curiosity was positively related to their knowledge acquisition, but not to their quality of exploration. For low intelligent children, environment structure positively affected their quality of exploration, but not their knowledge acquisition. There was no interaction between curiosity and environment structure. These results support the existence of two distinct inquiry-based learning processes - the designing of experiments, on the one hand, and the reflection on performed experiments, on the other - and link children's curiosity to the latter process.

  12. Secular Climate Change on Mars: An Update Using MSL Pressure Data

    NASA Astrophysics Data System (ADS)

    Haberle, R. M.; Gómez-Elvira, J.; De La Torre Juarez, M.; Harri, A.; Hollingsworth, J. L.; Kahanpää, H.; Kahre, M. A.; Lemmon, M. T.; Martin-Torres, F. J.; Mischna, M. A.; Moores, J. E.; Newman, C. E.; Rafkin, S. C.; Renno, N. O.; Richardson, M. I.; Thomas, P. C.; Vasavada, A. R.; Wong, M. H.; Rodríguez-Manfredi, J. A.

    2013-12-01

    The South Polar Residual Cap (SPRC) on Mars is an icy reservoir of CO2. If all the CO2 trapped in the SPRC were released to the atmosphere the mean annual global surface pressure would rise by ~20 Pa. Repeated MOC and HiRISE imaging of scarp retreat rates within the SPRC have led to the suggestion that the SPRC is losing mass. Estimates for the loss rate vary between 0. 5 Pa per Mars Decade to 13 Pa per Mars Decade. Assuming 80% of this loss goes directly into the atmosphere, and that the loss is monotonic, the global annual mean surface pressure should have increased between ~1-20 Pa since the Viking mission (19 Mars years ago). Surface pressure measurements by the Phoenix Lander only 2 Mars years ago were found to be consistent with these loss rates. Here we compare surface pressure data from the MSL mission with that from Viking Lander 2 (VL-2) to determine if the trend continues. We use VL-2 because it is at the same elevation as MSL (-4500 m). However, based on the first 100 sols of data there does not appear to be a significant difference between the dynamically adjusted pressures of the two landers. This result implies one of several possibilities: (1) the cap is not losing mass and the difference between the Viking and Phoenix results is due to uncertainties in the measurements; (2) the cap has lost mass between the Viking and Phoenix missions but it has since gone back to the cap or into the regolith; or (3) that our analysis is flawed. The first possibility is real since post-mission analysis of the Phoenix sensor has shown that there is a +3 (×2) Pa offset in the data and there may also be uncertainties in the Viking data. The loss/gain scenario for the cap seems unlikely since scarps continue retreating, and regolith uptake implies something unique about the past several Mars years. That our analysis is flawed is certainly possible owing to the very different environments of the Viking and MSL landers. MSL is at the bottom of a deep crater in the

  13. Curiosity Rover Martian Mission, Exaggerated Cross Section

    NASA Image and Video Library

    2016-12-13

    This graphic depicts aspects of the driving distance, elevation, geological units and time intervals of NASA's Curiosity Mars rover mission, as of late 2016. The vertical dimension is exaggerated 14-fold compared with the horizontal dimension, for presentation-screen proportions. As of early December 2016, Curiosity had driven 9.3 miles (15 kilometers) since its August 2012 landing on the floor of Gale Crater near the base of Mount Sharp. It had climbed 541 feet (165 meters) in elevation. Elevation values shown on the vertical scale of this chart denote meters below an established zero-elevation level on Mars, which lacks a planetary "sea level." Because Curiosity is below the zero elevation, the numbers are negative. http://photojournal.jpl.nasa.gov/catalog/PIA21145

  14. Curiosity: organic molecules on Mars? (Italian Title: Curiosity: molecole organiche su Marte?)

    NASA Astrophysics Data System (ADS)

    Guaita, C.

    2015-05-01

    First analytical results from SAM instrument onboard of Curiosity are coherent with the presence, on Mars, of organic molecules possibly linked to bacterial metabolism. These data require also a modern revision of the debated results obtained by Viking landers.

  15. Analysis Of MSL-1 Measurements Of Heptane Droplet Combustion

    NASA Technical Reports Server (NTRS)

    Ackerman, Malissa; Williams, Forman

    2003-01-01

    A droplet combustion experiment (DCE) was performed on the MSL-1 mission of the Space Shuttle Columbia. There were two flights of this mission - STS-83 in April of 1997 and STS-94 in July of 1997. The reflight occurred because a fuel-cell power problem onboard the shuttle forced an early termination of the first flight; this was the only shuttle mission to be flown twice. DCE data were obtained during both flights. A fiber-supported droplet combustion (FSDC) experiment also was run on STS-94. This smaller 'glovebox' experiment, which investigated the combustion of fiber-supported droplets in Spacelab cabin air, had previously flown on the first United States Microgravity Laboratory (USML-1) mission of STS-73, but successful measurements with heptane as the fuel in this experiment were first obtained on STS-94. Although heptane droplet combustion in convective flow also was studied on STS-94, only data without forced convection are considered here. The objective of the present paper is to analyze the results on heptane droplet combustion in quiescent atmospheres.

  16. KSC-2011-7259

    NASA Image and Video Library

    2011-10-06

    CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the fairing acoustic protection (FAP) system lining the inside of the Atlas V payload fairing for NASA's Mars Science Laboratory (MSL) mission is in view as the fairing is lifted into a vertical position. The FAP protects the payload by dampening the sound created by the rocket during liftoff. The fairing has been uncovered, and preparations are under way to clean it to meet NASA's planetary protection requirements. At left is the other half of the fairing, still uncovered. The fairing will protect the spacecraft from the impact of aerodynamic pressure and heating during ascent. Although jettisoned once the spacecraft is outside the Earth's atmosphere, the fairing must be cleaned to the same exacting standards as the laboratory to avoid the possibility of contaminating it. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including the chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  17. KSC-2011-7258

    NASA Image and Video Library

    2011-10-06

    CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the fairing acoustic protection (FAP) system lining the inside of the Atlas V payload fairing for NASA's Mars Science Laboratory (MSL) mission comes into view as the fairing is lifted into a vertical position. The FAP protects the payload by dampening the sound created by the rocket during liftoff. The fairing has been uncovered, and preparations are under way to clean it to meet NASA's planetary protection requirements. The fairing will protect the spacecraft from the impact of aerodynamic pressure and heating during ascent. Although jettisoned once the spacecraft is outside the Earth's atmosphere, the fairing must be cleaned to the same exacting standards as the laboratory to avoid the possibility of contaminating it. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including the chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  18. Curiosity Finds Hydrogen-Rich Area of Mars Subsurface

    NASA Image and Video Library

    2015-08-19

    Curiosity's Russian-made instrument for checking hydration levels in the ground beneath the rover detected an unusually high amount at a site near "Marias Pass," prompting repeated passes over the area to map the hydrogen amounts. The instrument is named Dynamic Albedo of Neutrons, or DAN. It detects hydrogen by the effect of hydrogen atoms on neutrons entering the ground either from cosmic rays and Curiosity's power source (DAN's passive mode) or from the instrument's neutron pulse generator (DAN's active mode). DAN recognizes which neutrons have bounced off hydrogen from their rerduced energy level. This map, covering an area about 130 feet (40 meters) across, shows results from DAN's multiple traverses over the area, with color coding for levels of hydrogen detected. The red coding indicates amounts of hydrogen three to four times as high as the amounts detected anywhere previously along Curiosity's traverse of about 6.9 miles (11.1 kilometers) since landing in August 2012. The inset map at lower right shows the full traverse through Sol 1051 (July 21, 2015), with names assigned to rectangles within Gale Crater for geological mapping purposes. The vertical bar at left indicates the color coding according to counts per second in DAN's passive mode. The hydrogen detected by DAN is interpreted as water molecules or hydroxyl ions bound within minerals or water absorbed onto minerals in the rocks and soil, to a depth of about 3 feet (1 meter) beneath the rover. The amount of hydrogen is often expressed as "water equivalent hydrogen" based on two hydrogen atoms per molecule of water. In the same area where DAN detected an unusually high amount of hydration, Curiosity's Chemistry and Camera (ChemCam) instrument detected an unusually high amount of silica in several rock targets. The DAN and ChemCam findings led to the rover's science team choosing a rock target called "Buckskin" for collection of a drilled sample to be analyzed by the rover's internal laboratory

  19. MSL1 is a mechanosensitive ion channel that dissipates mitochondrial membrane potential and maintains redox homeostasis in mitochondria during abiotic stress

    PubMed Central

    Lee, Chun Pong; Maksaev, Grigory; Jensen, Gregory S.; Murcha, Monika W.; Wilson, Margaret E.; Fricker, Mark; Hell, Ruediger; Haswell, Elizabeth S.; Millar, A. Harvey; Sweetlove, Lee

    2016-01-01

    Mitochondria must maintain tight control over the electrochemical gradient across their inner membrane to allow ATP synthesis while maintaining a redox-balanced electron transport chain and avoiding excessive reactive oxygen species production. However, there is a scarcity of knowledge about the ion transporters in the inner mitochondrial membrane that contribute to control of membrane potential. We show that loss of MSL1, a member of a family of mechanosensitive ion channels related to the bacterial channel MscS, leads to increased membrane potential of Arabidopsis mitochondria under specific bioenergetic states. We demonstrate that MSL1 localises to the inner mitochondrial membrane. When expressed in E. coli, MSL1 forms a stretch-activated ion channel with a slight preference for anions and provides protection against hypo-osmotic shock. In contrast, loss of MSL1 in Arabidopsis did not prevent swelling of isolated mitochondria in hypo-osmotic conditions. Instead, our data suggest that ion transport by MSL1 leads to dissipation of mitochondrial membrane potential when it becomes too high. The importance of MSL1 function was demonstrated by the observation of a higher oxidation state of the mitochondrial glutathione pool in msl1-1 mutants under moderate heat- and heavy-metal-stress. Furthermore, we show that MSL1 function is not directly implicated in mitochondrial membrane potential pulsing but is complementary and appears to be important under similar conditions. PMID:27505616

  20. KSC-2011-7890

    NASA Image and Video Library

    2011-11-23

    CAPE CANAVERAL, Fla. – LEGO NXT robots, designed to look like Mars rovers, are on display at the LEGO "Build the Future" event at the Kennedy Space Center Visitor Complex in Florida. The festivities coincide with the launch of NASA's Mars Science Laboratory (MSL), carrying a compact car-sized rover, Curiosity, to the red planet. Part of the Space Act Agreement between NASA and LEGO A/S, the activities are designed to inspire students of every age to consider an education and careers in the science, technology, engineering and mathematics, or STEM, disciplines. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 26 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/audience/foreducators/nasa-lego-partnership.html. Photo credit: NASA/Kim Shiflett