Sample records for laboratory pilot scale

  1. Laboratory and pilot-scale bioremediation of pentaerythritol tetranitrate (PETN) contaminated soil.

    PubMed

    Zhuang, Li; Gui, Lai; Gillham, Robert W; Landis, Richard C

    2014-01-15

    PETN (pentaerythritol tetranitrate), a munitions constituent, is commonly encountered in munitions-contaminated soils, and pose a serious threat to aquatic organisms. This study investigated anaerobic remediation of PETN-contaminated soil at a site near Denver Colorado. Both granular iron and organic carbon amendments were used in both laboratory and pilot-scale tests. The laboratory results showed that, with various organic carbon amendments, PETN at initial concentrations of between 4500 and 5000mg/kg was effectively removed within 84 days. In the field trial, after a test period of 446 days, PETN mass removal of up to 53,071mg/kg of PETN (80%) was achieved with an organic carbon amendment (DARAMEND) of 4% by weight. In previous laboratory studies, granular iron has shown to be highly effective in degrading PETN. However, for both the laboratory and pilot-scale tests, granular iron was proven to be ineffective. This was a consequence of passivation of the iron surfaces caused by the very high concentrations of nitrate in the contaminated soil. This study indicated that low concentration of organic carbon was a key factor limiting bioremediation of PETN in the contaminated soil. Furthermore, the addition of organic carbon amendments such as the DARAMEND materials or brewers grain, proved to be highly effective in stimulating the biodegradation of PETN and could provide the basis for full-scale remediation of PETN-contaminated sites. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Laboratory and Pilot Scale Evaluation of Coagulation, Clarification, and Filtration for Upgrading Sewage Lagoon Effluents.

    DTIC Science & Technology

    1980-08-01

    AD-AGAB 906 ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG--ETC FIG 14/2 LABORATORY AND PILOT SCALE EVALUATION OF COAGULATION, CLARIFICA -ETC U...FILTRATION FOR LWGRADING JEWAGE LAGOON EFFLUENTS~ w IL j0 ( M John ullinane, Jr., Richard A. hafer (0 Environmental Laboratory gel U. S. Army Engineer ...Shafer 9. PERFORMING ORGANIZATION NAME AND ADORESS SO. PROGRAM ELEMENT, PROJECT, TASK AREA a WORK UNIT NUMBERS U. S. Army Engineer Waterways Experiment

  3. Anaerobic treatment of animal byproducts from slaughterhouses at laboratory and pilot scale.

    PubMed

    Edström, Mats; Nordberg, Ake; Thyselius, Lennart

    2003-01-01

    Different mixtures of animal byproducts, other slaughterhouse waste (i.e., rumen, stomach and intestinal content), food waste, and liquid manure were codigested at mesophilic conditions (37 degrees C) at laboratory and pilot scale. Animal byproducts, including blood, represent 70-80% of the total biogas potential from waste generated during slaughter of animals. The total biogas potential from waste generated during slaughter is about 1300 MJ/cattle and about 140 MJ/pig. Fed-batch digestion of pasteurized (70 degrees C, 1 h) animal byproducts resulted in a fourfold increase in biogas yield (1.14 L/g of volatile solids [VS]) compared with nonpasteurized animal byproducts (0.31 L/g of VS). Mixtures with animal byproducts representing 19-38% of the total dry matter were digested in continuous-flow stirred tank reactors at laboratory and pilot scale. Stable processes at organic loading rates (OLRs) exceeding 2.5 g of VS/(L.d) and hydraulic retention times (HRTs) less than 40 d could be obtained with total ammonia nitrogen concentrations (NH4-N + NH3-N) in the range of 4.0-5.0 g/L. After operating one process for more than 1.5 yr at total ammonia nitrogen concentrations >4 g/L, an increase in OLR to 5 g of VS/(L.d) and a decrease in HRT to 22 d was possible without accumulation of volatile fatty acids.

  4. Pilot-Scale Laboratory Instruction for Chemical Engineering: The Specific Case of the Pilot-Unit Leading Group

    ERIC Educational Resources Information Center

    Billet, Anne-Marie; Camy, Severine; Coufort-Saudejaud, Carole

    2010-01-01

    This paper presents an original approach for Chemical Engineering laboratory teaching that is currently applied at INP-ENSIACET (France). This approach, referred to as "pilot-unit leading group" is based on a partial management of the laboratories by the students themselves who become temporarily in charge of one specific laboratory. In…

  5. Application of simultaneous saccharification and fermentation (SSF) from viscosity reducing of raw sweet potato for bioethanol production at laboratory, pilot and industrial scales.

    PubMed

    Zhang, Liang; Zhao, Hai; Gan, Mingzhe; Jin, Yanlin; Gao, Xiaofeng; Chen, Qian; Guan, Jiafa; Wang, Zhongyan

    2011-03-01

    The aim of this work was to research a bioprocess for bioethanol production from raw sweet potato by Saccharomyces cerevisiae at laboratory, pilot and industrial scales. The fermentation mode, inoculum size and pressure from different gases were determined in laboratory. The maximum ethanol concentration, average ethanol productivity rate and yield of ethanol after fermentation in laboratory scale (128.51 g/L, 4.76 g/L/h and 91.4%) were satisfactory with small decrease at pilot scale (109.06 g/L, 4.89 g/L/h and 91.24%) and industrial scale (97.94 g/L, 4.19 g/L/h and 91.27%). When scaled up, the viscosity caused resistance to fermentation parameters, 1.56 AUG/g (sweet potato mash) of xylanase decreased the viscosity from approximately 30000 to 500 cp. Overall, sweet potato is a attractive feedstock for be bioethanol production from both the economic standpoints and environmentally friendly. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Predicting the performance uncertainty of a 1-MW pilot-scale carbon capture system after hierarchical laboratory-scale calibration and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhijie; Lai, Canhai; Marcy, Peter William

    2017-05-01

    A challenging problem in designing pilot-scale carbon capture systems is to predict, with uncertainty, the adsorber performance and capture efficiency under various operating conditions where no direct experimental data exist. Motivated by this challenge, we previously proposed a hierarchical framework in which relevant parameters of physical models were sequentially calibrated from different laboratory-scale carbon capture unit (C2U) experiments. Specifically, three models of increasing complexity were identified based on the fundamental physical and chemical processes of the sorbent-based carbon capture technology. Results from the corresponding laboratory experiments were used to statistically calibrate the physical model parameters while quantifying some of theirmore » inherent uncertainty. The parameter distributions obtained from laboratory-scale C2U calibration runs are used in this study to facilitate prediction at a larger scale where no corresponding experimental results are available. In this paper, we first describe the multiphase reactive flow model for a sorbent-based 1-MW carbon capture system then analyze results from an ensemble of simulations with the upscaled model. The simulation results are used to quantify uncertainty regarding the design’s predicted efficiency in carbon capture. In particular, we determine the minimum gas flow rate necessary to achieve 90% capture efficiency with 95% confidence.« less

  7. RELATIONSHIPS BETWEEN LABORATORY AND PILOT-SCALE COMBUSTION OF SOME CHLORINATED HYDROCARBONS

    EPA Science Inventory

    Factors governing the occurence of trace amounts of residual organic substance emmissions (ROSEs) in full-scale incierators are not fully understood. Pilot-scale spray combustion expereiments involving some liquid chlorinated hydrocarbons (CHCs) and their dilute mixtures with hy...

  8. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale.

    PubMed

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-09-18

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g(-1) volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g(-1) VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH₄ recovery of 189 L kg(-1) VS was achieved and a biogas composition of 55% CH₄ and 38% CO₂ was recorded.

  9. Activated carbon enhanced anaerobic digestion of food waste - Laboratory-scale and Pilot-scale operation.

    PubMed

    Zhang, Le; Zhang, Jingxin; Loh, Kai-Chee

    2018-05-01

    Effects of activated carbon (AC) supplementation on anaerobic digestion (AD) of food waste were elucidated in lab- and pilot-scales. Lab-scale AD was performed in 1 L and 8 L digesters, while pilot-scale AD was conducted in a 1000 L digester. Based on the optimal dose of 15 g AC per working volume derived from the 1 L digester, for the same AC dosage in the 8 L digester, an improved operation stability coupled with a higher methane yield was achieved even when digesters without AC supplementation failed after 59 days due to accumulation of substantial organic intermediates. At the same time, color removal from the liquid phase of the digestate was dramatically enhanced and the particle size of the digestate solids was increased by 53% through AC supplementation after running for 59 days. Pyrosequencing of 16S rRNA gene showed the abundance of predominant phyla Firmicutes, Elusimicrobia and Proteobacteria selectively enhanced by 1.7-fold, 2.9-fold and 2.1-fold, respectively. Pilot-scale digester without AC gave an average methane yield of 0.466 L⋅(gVS) -1 ⋅d -1 at a composition of 53-61% v/v methane. With AC augmentation, an increase of 41% in methane yield was achieved in the 1000 L digester under optimal organic loading rate (1.6 g VS FW ·L -1 ·d -1 ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale

    PubMed Central

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-01-01

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g−1 volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g−1 VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH4 recovery of 189 L kg−1 VS was achieved and a biogas composition of 55% CH4 and 38% CO2 was recorded. PMID:26393620

  11. Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales.

    PubMed

    Pleissner, Daniel; Neu, Anna-Katrin; Mehlmann, Kerstin; Schneider, Roland; Puerta-Quintero, Gloria Inés; Venus, Joachim

    2016-10-01

    In this study, the lignocellulosic residue coffee pulp was used as carbon source in fermentative l(+)-lactic acid production using Bacillus coagulans. After thermo-chemical treatment at 121°C for 30min in presence of 0.18molL(-1) H2SO4 and following an enzymatic digestion using Accellerase 1500 carbon-rich hydrolysates were obtained. Two different coffee pulp materials with comparable biomass composition were used, but sugar concentrations in hydrolysates showed variations. The primary sugars were (gL(-1)) glucose (20-30), xylose (15-25), sucrose (5-11) and arabinose (0.7-10). Fermentations were carried out at laboratory (2L) and pilot (50L) scales in presence of 10gL(-1) yeast extract. At pilot scale carbon utilization and lactic acid yield per gram of sugar consumed were 94.65% and 0.78gg(-1), respectively. The productivity was 4.02gL(-1)h(-1). Downstream processing resulted in a pure formulation containing 937gL(-1)l(+)-lactic acid with an optical purity of 99.7%. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Reduction of product-related species during the fermentation and purification of a recombinant IL-1 receptor antagonist at the laboratory and pilot scale.

    PubMed

    Schirmer, Emily B; Golden, Kathryn; Xu, Jin; Milling, Jesse; Murillo, Alec; Lowden, Patricia; Mulagapati, Srihariraju; Hou, Jinzhao; Kovalchin, Joseph T; Masci, Allyson; Collins, Kathryn; Zarbis-Papastoitsis, Gregory

    2013-08-01

    Through a parallel approach of tracking product quality through fermentation and purification development, a robust process was designed to reduce the levels of product-related species. Three biochemically similar product-related species were identified as byproducts of host-cell enzymatic activity. To modulate intracellular proteolytic activity, key fermentation parameters (temperature, pH, trace metals, EDTA levels, and carbon source) were evaluated through bioreactor optimization, while balancing negative effects on growth, productivity, and oxygen demand. The purification process was based on three non-affinity steps and resolved product-related species by exploiting small charge differences. Using statistical design of experiments for elution conditions, a high-resolution cation exchange capture column was optimized for resolution and recovery. Further reduction of product-related species was achieved by evaluating a matrix of conditions for a ceramic hydroxyapatite column. The optimized fermentation process was transferred from the 2-L laboratory scale to the 100-L pilot scale and the purification process was scaled accordingly to process the fermentation harvest. The laboratory- and pilot-scale processes resulted in similar process recoveries of 60 and 65%, respectively, and in a product that was of equal quality and purity to that of small-scale development preparations. The parallel approach for up- and downstream development was paramount in achieving a robust and scalable clinical process. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Production of polyhydroxyalkanoates (PHA) by bacterial consortium from excess sludge fermentation liquid at laboratory and pilot scales.

    PubMed

    Jia, Qianqian; Xiong, Huilei; Wang, Hui; Shi, Hanchang; Sheng, Xinying; Sun, Run; Chen, Guoqiang

    2014-11-01

    The generation of polyhydroxyalkanoates (PHA) from excess sludge fermentation liquid (SFL) was studied at lab and pilot scale. A PHA-accumulated bacterial consortium (S-150) was isolated from activated sludge using simulated SFL (S-SFL) contained high concentration volatile fatty acids (VFA) and nitrogen. The maximal PHA content accounted for 59.18% in S-SFL and dropped to 23.47% in actual SFL (L-SFL) of the dry cell weight (DCW) at lab scale. The pilot-scale integrated system comprised an anaerobic fermentation reactor (AFR), a ceramic membrane system (CMS) and a PHA production bio-reactor (PHAR). The PHA content from pilot-scale SFL (P-SFL) finally reached to 59.47% DCW with the maximal PHA yield coefficient (YP/S) of 0.17 g PHA/g COD. The results indicated that VFA-containing SFL was suitable for PHA production. The adverse impact of excess nitrogen and non-VFAs in SFL might be eliminated by pilot-scale domestication, which might resulted in community structure optimization and substrate selective ability improvement of S-150. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Pilot-scale production of fuel ethanol from concentrated food waste hydrolysates using Saccharomyces cerevisiae H058.

    PubMed

    Yan, Shoubao; Chen, Xiangsong; Wu, Jingyong; Wang, Pingchao

    2013-07-01

    The aim of this study was to develop a bioprocess to produce ethanol from food waste at laboratory, semipilot and pilot scales. Laboratory tests demonstrated that ethanol fermentation with reducing sugar concentration of 200 g/L, inoculum size of 2 % (Initial cell number was 2 × 10⁶ CFU/mL) and addition of YEP (3 g/L of yeast extract and 5 g/L of peptone) was the best choice. The maximum ethanol concentration in laboratory scale (93.86 ± 1.15 g/L) was in satisfactory with semipilot scale (93.79 ± 1.11 g/L), but lower than that (96.46 ± 1.12 g/L) of pilot-scale. Similar ethanol yield and volumetric ethanol productivity of 0.47 ± 0.02 g/g, 1.56 ± 0.03 g/L/h and 0.47 ± 0.03 g/g, 1.56 ± 0.03 g/L/h after 60 h of fermentation in laboratory and semipilot fermentors, respectively, however, both were lower than that (0.48 ± 0.02 g/g, 1.79 ± 0.03 g/L/h) of pilot reactor. In addition, simple models were developed to predict the fermentation kinetics during the scale-up process and they were successfully applied to simulate experimental results.

  15. Measuring Pilot Knowledge in Training: The Pathfinder Network Scaling Technique

    DTIC Science & Technology

    2007-01-01

    Network Scaling Technique Leah J. Rowe Roger W. Schvaneveldt L -3 Communications Arizona State University Mesa, AZ Mesa, AZ leah.rowe...7293 Page 2 of 8 Measuring Pilot Knowledge in Training: The Pathfinder Network Scaling Technique Leah J. Rowe Roger W. Schvaneveldt L -3...training. ABOUT THE AUTHORS Leah J. Rowe is a Training Research Specialist with L -3 Communications at the Air Force Research Laboratory

  16. Ultrasonic pilot-scale reactor for enzymatic bleaching of cotton fabrics.

    PubMed

    Gonçalves, Idalina; Herrero-Yniesta, Victor; Perales Arce, Iratxe; Escrigas Castañeda, Monica; Cavaco-Paulo, Artur; Silva, Carla

    2014-07-01

    The potential of ultrasound-assisted technology has been demonstrated by several laboratory scale studies. However, their successful industrial scaling-up is still a challenge due to the limited pilot and commercial sonochemical reactors. In this work, a pilot reactor for laccase-hydrogen peroxide cotton bleaching assisted by ultrasound was scaled-up. For this purpose, an existing dyeing machine was transformed and adapted by including piezoelectric ultrasonic devices. Laboratory experiments demonstrated that both low frequency, high power (22 kHz, 2100 W) and high frequency, low power ultrasounds (850 kHz, 400 W) were required to achieve satisfactory results. Standard half (4 g/L H2O2 at 90 °C for 60 min) and optical (8 g/L H2O2 at 103 °C for 40 min) cotton bleaching processes were used as references. Two sequential stages were established for cotton bleaching: (1) laccase pretreatment assisted by high frequency ultrasound (850 kHz, 400 W) and (2) bleaching using high power ultrasound (22 kHz, 2100 W). When compared with conventional methods, combined laccase-hydrogen peroxide cotton bleaching with ultrasound energy improved the whitening effectiveness. Subsequently, less energy (temperature) and chemicals (hydrogen peroxide) were needed for cotton bleaching thus resulting in costs reduction. This technology allowed the combination of enzyme and hydrogen peroxide treatment in a continuous process. The developed pilot-scale reactor offers an enhancement of the cotton bleaching process with lower environmental impact as well as a better performance of further finishing operations. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Validation of laboratory-scale recycling test method of paper PSA label products

    Treesearch

    Carl Houtman; Karen Scallon; Richard Oldack

    2008-01-01

    Starting with test methods and a specification developed by the U.S. Postal Service (USPS) Environmentally Benign Pressure Sensitive Adhesive Postage Stamp Program, a laboratory-scale test method and a specification were developed and validated for pressure-sensitive adhesive labels, By comparing results from this new test method and pilot-scale tests, which have been...

  18. Flow characteristics of a pilot-scale high temperature, short time pasteurizer.

    PubMed

    Tomasula, P M; Kozempel, M F

    2004-09-01

    In this study, we present a method for determining the fastest moving particle (FMP) and residence time distribution (RTD) in a pilot-scale high temperature, short time (HTST) pasteurizer to ensure that laboratory or pilot-scale HTST apparatus meets the Pasteurized Milk Ordinance standards for pasteurization of milk and can be used for obtaining thermal inactivation data. The overall dimensions of the plate in the pasteurizer were 75 x 115 mm, with a thickness of 0.5 mm and effective diameter of 3.0 mm. The pasteurizer was equipped with nominal 21.5- and 52.2-s hold tubes, and flow capacity was variable from 0 to 20 L/h. Tracer studies were used to determine FMP times and RTD data to establish flow characteristics. Using brine milk as tracer, the FMP time for the short holding section was 18.6 s and for the long holding section was 36 s at 72 degrees C, compared with the nominal times of 21.5 and 52.2 s, respectively. The RTD study indicates that the short hold section was 45% back mixed and 55% plug flow for whole milk at 72 degrees C. The long hold section was 91% plug and 9% back mixed for whole milk at 72 degrees C. This study demonstrates that continuous laboratory and pilot-scale pasteurizers may be used to study inactivation of microorganisms only if the flow conditions in the holding tube are established for comparison with commercial HTST systems.

  19. NACA Pilots at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-07-21

    The Aircraft Engine Research Laboratory’s pilot corps during the final days of World War II: from left to right, Joseph Vensel, Howard Lilly, William Swann, and Joseph Walker. William “Eb” Gough joined the group months after this photograph. These men were responsible for flying the various National Advisory Committee for Aeronautics (NACA) aircraft to test new engine modifications, study ice buildup, and determine fuel performance. Vensel, a veteran pilot from Langley, was the Chief of Flight Operations and a voice of reason at the laboratory. In April 1947 Vensel was transferred to lead the new Muroc Flight Tests Unit in California until 1966. Lilly was a young pilot with recent Navy experience. Lilly also flew in the 1946 National Air Races. He followed Vensel to Muroc in July 1947 where he became the first NACA pilot to penetrate the sound barrier. On May 3, 1948, Lilly became the first NACA pilot to die in the line of duty. Swann was a young civilian pilot when he joined the NACA. He spent his entire career at the Cleveland laboratory, and led the flight operations group from the early 1960s until 1979. Two World War II veterans joined the crew after the war. Walker was a 24-year-old P–38 reconnaissance pilot. He joined the NACA as a physicist in early 1945 but soon worked his way into the cadre of pilots. Walker later gained fame as an X-plane pilot at Muroc and was killed in a June 1966 fatal crash. Gough survived being shot down twice during the war and was decorated for flying rescue missions in occupied areas.

  20. Solvent-free microwave extraction of essential oil from aromatic herbs: from laboratory to pilot and industrial scale.

    PubMed

    Filly, Aurore; Fernandez, Xavier; Minuti, Matteo; Visinoni, Francesco; Cravotto, Giancarlo; Chemat, Farid

    2014-05-01

    Solvent-free microwave extraction (SFME) has been proposed as a green method for the extraction of essential oil from aromatic herbs that are extensively used in the food industry. This technique is a combination of microwave heating and dry distillation performed at atmospheric pressure without any added solvent or water. The isolation and concentration of volatile compounds is performed in a single stage. In this work, SFME and a conventional technique, hydro-distillation HD (Clevenger apparatus), are used for the extraction of essential oil from rosemary (Rosmarinus officinalis L.) and are compared. This preliminary laboratory study shows that essential oils extracted by SFME in 30min were quantitatively (yield and kinetics profile) and qualitatively (aromatic profile) similar to those obtained using conventional hydro-distillation in 2h. Experiments performed in a 75L pilot microwave reactor prove the feasibility of SFME up scaling and potential industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Laboratory and pilot-scale field experiments for application of iron oxide nanoparticle-loaded chitosan composites to phosphate removal from natural water.

    PubMed

    Kim, Jae-Hyun; Kim, Song-Bae; Lee, Sang-Hyup; Choi, Jae-Woo

    2018-03-01

    The aim of this study was to apply iron oxide nanoparticle-chitosan (ION-chitosan) composites to phosphate removal from natural water collected from the Seoho Stream in Suwon, Republic of Korea. Laboratory batch experiments showed that phosphate removal by the ION-chitosan composites was not sensitive to pH changes between pH values of 5.0 and 9.0. During six cycles of adsorption-desorption, the composites could be successfully regenerated with 5 mM NaOH solution and reused for phosphate removal. Laboratory fixed-bed column experiments (column height = 10 and 20 cm, inner diameter = 2.5 cm, flow rate = 8.18 and 16.36 mL/min) demonstrated that the composites could be successfully applied for phosphate removal under dynamic flow conditions. A pilot-scale field experiment was performed in a pilot plant, which was mainly composed of chemical reactor/dissolved air flotation and an adsorption tower, built nearby the Seoho Stream. The natural water was pumped from the Seoho Stream into the pilot plant, passed through the chemical reactor/dissolved air flotation process, and then introduced into the adsorption tower (height = 100 cm, inner diameter = 45 cm, flow rate = 7.05 ± 0.18 L/min) for phosphate removal via the composites (composite volume = 80 L, composite weight = 85.74 kg). During monitoring of the adsorption tower (33 days), the influent total phosphorus (T-P) concentration was in the range of 0.020-0.046 mgP/L, whereas the effluent T-P concentration was in the range of 0.010-0.028 mgP/L. The percent removal of T-P in the adsorption tower was 52.3% with a phosphate removal capacity of 0.059 mgP/g.

  2. Manufacturing demonstration of microbially mediated zinc sulfide nanoparticles in pilot-plant scale reactors.

    PubMed

    Moon, Ji-Won; Phelps, Tommy J; Fitzgerald, Curtis L; Lind, Randall F; Elkins, James G; Jang, Gyoung Gug; Joshi, Pooran C; Kidder, Michelle; Armstrong, Beth L; Watkins, Thomas R; Ivanov, Ilia N; Graham, David E

    2016-09-01

    The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale (≤ 24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of pilot-plant scale experiments were performed using 100-L and 900-L reactors. Pasteurization and N2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2-nm average crystallite size (ACS) and yields of ~0.5 g L(-1), similar to the small-scale batches. The 900-L pilot plant reactor produced ~320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width × 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic, and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98 % of the buffer chemical costs. The final NP products were characterized using XRD, ICP-OES, TEM, FTIR, PL, DLS, HPLC, and C/N analyses, which confirmed that the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.

  3. Manufacturing demonstration of microbially mediated zinc sulfide nanoparticles in pilot-plant scale reactors

    DOE PAGES

    Moon, Ji-Won; Phelps, Tommy J.; Fitzgerald Jr, Curtis L.; ...

    2016-04-27

    The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale ( ≤24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of meso-scale experiments were performed using 100-l and 900-l reactors. Pasteurization and N 2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot-plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2 nm average crystallite size (ACS) and yields of ~0.5g L -1, similar to small-scale batches.more » The 900-L pilot plant reactor produced ~ 320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98% of the buffer chemical costs. In conclusion, the final NP products were characterized using XRD, ICP-OES, FTIR, DLS, and C/N analyses, which confirmed the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.« less

  4. Biological treatment of whey by Tetrahymena pyriformis and impact study on laboratory-scale wastewater lagoon process.

    PubMed

    Bonnet, J L; Bogaerts, P; Bohatier, J

    1999-06-01

    A procedure based on a biological treatment of whey was tested as part of research on waste treatment at the scale of small cheesemaking units. We studied the potential biodegradation of whey by a protozoan ciliate, Tetrahymena pyriformis, and evaluated the functional, microbiological and physiological disturbances caused by crude whey and the biodegraded whey in laboratory-scale pilots mimicking a natural lagoon treatment. The results show that T. pyriformis can strongly reduce the pollutant load of whey. In the lagoon pilots serving as example of receptor media, crude whey gradually but completely arrested operation, whereas with the biodegraded whey adverse effects were only temporary, and normal operation versus a control was gradually recovered in a few days.

  5. [Pilot-scale cultivation of Spirulina plantensis with digested piggery wastewater ].

    PubMed

    Guo, Qing-qing; Liu, Rui; Luo, Jin-fei; Wang, Gen-rong; Chen, Lii-jun; Liu, Xiao

    2014-09-01

    The swine waste pretreated with coagulation sedimentation was used for the outdoor pilot-scale cultivation of Spirulina platensis isolated from digested piggery wastewater (DPW) in a raceway pond. The growth of S. platensis and removal of nitrogen/ phosphorus were studied, moreover, the conversion efficiency of total nitrogen (TN) or total phosphorus (TP) from DPW to S. platensis was calculated. On this basis, the existing problems and countermeasures during outdoor pilot-scale culture were analyzed and summarized combined with the laboratory research. We conducted 6 batches culture experiments, only 3 of which could reach the S. platensis harvest requirements (D560 >0. 8). Meanwhile, the 3 successful batches achieved removal of COD, ammonia nitrogen, TN, TP with corresponding 28. 6% -48. 5% , 0.4% -48. 5% , 41. 8% -48. 6% , 14. 3% -94. 5% , and the conversion efficiency of TN or TP from DPW to S. platensis reached 12. 1% -98. 5% , 21.2% -83.7% , respectively. High concentration of ammonia nitrogen and insect attack of remaining egg hatching in the pretreated swine waste were the main factors to cause the slow-growing of the 3 batches of S. platensis. Therefore, it is highly necessary for the removal of ammonia nitrogen with biological treatment technology and insect eggs with membrane to achieve a stable high productivity.

  6. Piloting laboratory quality system management in six health facilities in Nigeria.

    PubMed

    Mbah, Henry; Ojo, Emmanuel; Ameh, James; Musuluma, Humphrey; Negedu-Momoh, Olubunmi Ruth; Jegede, Feyisayo; Ojo, Olufunmilayo; Uwakwe, Nkem; Ochei, Kingsley; Dada, Michael; Udah, Donald; Chiegil, Robert; Torpey, Kwasi

    2014-01-01

    Achieving accreditation in laboratories is a challenge in Nigeria like in most African countries. Nigeria adopted the World Health Organization Regional Office for Africa Stepwise Laboratory (Quality) Improvement Process Towards Accreditation (WHO/AFRO- SLIPTA) in 2010. We report on FHI360 effort and progress in piloting WHO-AFRO recognition and accreditation preparedness in six health facility laboratories in five different states of Nigeria. Laboratory assessments were conducted at baseline, follow up and exit using the WHO/AFRO- SLIPTA checklist. From the total percentage score obtained, the quality status of laboratories were classified using a zero to five star rating, based on the WHO/AFRO quality improvement stepwise approach. Major interventions include advocacy, capacity building, mentorship and quality improvement projects. At baseline audit, two of the laboratories attained 1- star while the remaining four were at 0- star. At follow up audit one lab was at 1- star, two at 3-star and three at 4-star. At exit audit, four labs were at 4- star, one at 3-star and one at 2-star rating. One laboratory dropped a 'star' at exit audit, while others consistently improved. The two weakest elements at baseline; internal audit (4%) and occurrence/incidence management (15%) improved significantly, with an exit score of 76% and 81% respectively. The elements facility and safety was the major strength across board throughout the audit exercise. This effort resulted in measurable and positive impact on the laboratories. We recommend further improvement towards a formal international accreditation status and scale up of WHO/AFRO- SLIPTA implementation in Nigeria.

  7. UV/TiO2 photocatalytic disinfection of carbon-bacteria complexes in activated carbon-filtered water: Laboratory and pilot-scale investigation.

    PubMed

    Zhao, Jin Hui; Chen, Wei; Zhao, Yaqian; Liu, Cuiyun; Liu, Ranbin

    2015-01-01

    The occurrence of carbon-bacteria complexes in activated carbon filtered water has posed a public health problem regarding the biological safety of drinking water. The application of combined process of ultraviolet radiation and nanostructure titanium dioxide (UV/TiO2) photocatalysis for the disinfection of carbon-bacteria complexes were assessed in this study. Results showed that a 1.07 Lg disinfection rate can be achieved using a UV dose of 20 mJ cm(-2), while the optimal UV intensity was 0.01 mW cm(-2). Particle sizes ≥8 μm decreased the disinfection efficiency, whereas variation in particle number in activated carbon-filtered water did not significantly affect the disinfection efficiency. Photoreactivation ratio was reduced from 12.07% to 1.69% when the UV dose was increased from 5 mJ cm(-2) to 20 mJ cm(-2). Laboratory and on-site pilot-scale experiments have demonstrated that UV/TiO2 photocatalytic disinfection technology is capable of controlling the risk posed by carbon-bacteria complexes and securing drinking water safety.

  8. Evaluation of a laboratory quality assurance pilot programme for malaria diagnostics in low-transmission areas of Kenya, 2013.

    PubMed

    Wanja, Elizabeth; Achilla, Rachel; Obare, Peter; Adeny, Rose; Moseti, Caroline; Otieno, Victor; Morang'a, Collins; Murigi, Ephantus; Nyamuni, John; Monthei, Derek R; Ogutu, Bernhards; Buff, Ann M

    2017-05-25

    One objective of the Kenya National Malaria Strategy 2009-2017 is scaling access to prompt diagnosis and effective treatment. In 2013, a quality assurance (QA) pilot was implemented to improve accuracy of malaria diagnostics at selected health facilities in low-transmission counties of Kenya. Trends in malaria diagnostic and QA indicator performance during the pilot are described. From June to December 2013, 28 QA officers provided on-the-job training and mentoring for malaria microscopy, malaria rapid diagnostic tests and laboratory QA/quality control (QC) practices over four 1-day visits at 83 health facilities. QA officers observed and recorded laboratory conditions and practices and cross-checked blood slides for malaria parasite presence, and a portion of cross-checked slides were confirmed by reference laboratories. Eighty (96%) facilities completed the pilot. Among 315 personnel at pilot initiation, 13% (n = 40) reported malaria diagnostics training within the previous 12 months. Slide positivity ranged from 3 to 7%. Compared to the reference laboratory, microscopy sensitivity ranged from 53 to 96% and positive predictive value from 39 to 53% for facility staff and from 60 to 96% and 52 to 80%, respectively, for QA officers. Compared to reference, specificity ranged from 88 to 98% and negative predictive value from 98 to 99% for health-facility personnel and from 93 to 99% and 99%, respectively, for QA officers. The kappa value ranged from 0.48-0.66 for facility staff and 0.57-0.84 for QA officers compared to reference. The only significant test performance improvement observed for facility staff was for specificity from 88% (95% CI 85-90%) to 98% (95% CI 97-99%). QA/QC practices, including use of positive-control slides, internal and external slide cross-checking and recording of QA/QC activities, all increased significantly across the pilot (p < 0.001). Reference material availability also increased significantly; availability of six microscopy job

  9. Final Pilot Performance Rating Scales.

    ERIC Educational Resources Information Center

    Horner, Walter R.; And Others

    These rating scales are intended for evaluation of student pilot performance. Each student is evaluated individually on the basis of video recordings of the student in flight. Ten point rating lines are used for the ten criterion performance elements of each of three maneuvers, (1) Final Turn to Landing, (2) Lazy Eight, and (3) Vertical S "A".…

  10. Scaling Down to Scale Up: A Health Economic Analysis of Integrating Point-of-Care Syphilis Testing into Antenatal Care in Zambia during Pilot and National Rollout Implementation.

    PubMed

    Shelley, Katharine D; Ansbro, Éimhín M; Ncube, Alexander Tshaka; Sweeney, Sedona; Fleischer, Colette; Tembo Mumba, Grace; Gill, Michelle M; Strasser, Susan; Peeling, Rosanna W; Terris-Prestholt, Fern

    2015-01-01

    Maternal syphilis results in an estimated 500,000 stillbirths and neonatal deaths annually in Sub-Saharan Africa. Despite the existence of national guidelines for antenatal syphilis screening, syphilis testing is often limited by inadequate laboratory and staff services. Recent availability of inexpensive rapid point-of-care syphilis tests (RST) can improve access to antenatal syphilis screening. A 2010 pilot in Zambia explored the feasibility of integrating RST within prevention of mother-to-child-transmission of HIV services. Following successful demonstration, the Zambian Ministry of Health adopted RSTs into national policy in 2011. Cost data from the pilot and 2012 preliminary national rollout were extracted from project records, antenatal registers, clinic staff interviews, and facility observations, with the aim of assessing the cost and quality implications of scaling up a successful pilot into a national rollout. Start-up, capital, and recurrent cost inputs were collected, including costs of extensive supervision and quality monitoring during the pilot. Costs were analysed from a provider's perspective, incremental to existing antenatal services. Total and unit costs were calculated and a multivariate sensitivity analysis was performed. Our accompanying qualitative study by Ansbro et al. (2015) elucidated quality assurance and supervisory system challenges experienced during rollout, which helped explain key cost drivers. The average unit cost per woman screened during rollout ($11.16) was more than triple the pilot unit cost ($3.19). While quality assurance costs were much lower during rollout, the increased unit costs can be attributed to several factors, including higher RST prices and lower RST coverage during rollout, which reduced economies of scale. Pilot and rollout cost drivers differed due to implementation decisions related to training, supervision, and quality assurance. This study explored the cost of integrating RST into antenatal care in

  11. Pilot-scale cooling tower to evaluate corrosion, scaling, and biofouling control strategies for cooling system makeup water.

    PubMed

    Chien, S H; Hsieh, M K; Li, H; Monnell, J; Dzombak, D; Vidic, R

    2012-02-01

    Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.

  12. Results of a Pilot-Scale Disinfection Test using Peracetic Acid (PAA) at the Oak Ridge National Laboratory (ORNL) Sewage Treatment Plant (STP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Paul Allen

    The purpose of this report is to present the results of a small pilot-scale test using PAA to disinfect a side stream of the effluent from the ORNL STP. These results provide the basis for requesting approval for full-scale use of PAA at the ORNL STP.

  13. Low-nitrogen oxides combustion of dried sludge using a pilot-scale cyclone combustor with recirculation.

    PubMed

    Shim, Sung Hoon; Jeong, Sang Hyun; Lee, Sang-Sup

    2015-04-01

    Recently, numerical and experimental studies have been conducted to develop a moderate or intense low-oxygen dilution (MILD) combustion technology for solid fuels. The study results demonstrated that intense recirculation inside the furnace by high-momentum air is a key parameter to achieve the MILD combustion of solid fuels. However, the high-velocity air requires a significant amount of electricity consumption. A cyclone-type MILD combustor was therefore designed and constructed in the authors' laboratory to improve the recirculation inside the combustor. The laboratory-scale tests yielded promising results for the MILD combustion of dried sewage sludge. To achieve pilot-scale MILD combustion of dried sludge in this study, the effects of geometric parameters such as the venturi tube configuration, the air injection location, and the air nozzle diameter were investigated. With the optimized geometric and operational conditions, the pilot-scale cyclone combustor demonstrated successful MILD combustion of dried sludge at a rate of 75 kg/hr with an excess air ratio of 1.05. A horizontal cyclone combustor with recirculation demonstrated moderate or intense low-oxygen dilution (MILD) combustion of dried sewage sludge at a rate of 75 kg/hr. Optimizing only geometric and operational conditions of the combustor reduced nitrogen oxide (NOx) emissions to less than 75 ppm. Because the operating cost of the MILD combustor is much lower than that of the selective catalytic reduction (SCR) applied to the conventional combustor, MILD combustion technology with the cyclone type furnace is an eligible option for reducing NOx emissions from the combustion of dried sewage sludge.

  14. Virus removal retention challenge tests performed at lab scale and pilot scale during operation of membrane units.

    PubMed

    Humbert, H; Machinal, C; Labaye, Ivan; Schrotter, J C

    2011-01-01

    The determination of the virus retention capabilities of UF units during operation is essential for the operators of drinking water treatment facilities in order to guarantee an efficient and stable removal of viruses through time. In previous studies, an effective method (MS2-phage challenge tests) was developed by the Water Research Center of Veolia Environnement for the measurement of the virus retention rates (Log Removal Rate, LRV) of commercially available hollow fiber membranes at lab scale. In the present work, the protocol for monitoring membrane performance was transferred from lab scale to pilot scale. Membrane performances were evaluated during pilot trial and compared to the results obtained at lab scale with fibers taken from the pilot plant modules. PFU culture method was compared to RT-PCR method for the calculation of LRV in both cases. Preliminary tests at lab scale showed that both methods can be used interchangeably. For tests conducted on virgin membrane, a good consistency was observed between lab and pilot scale results with the two analytical methods used. This work intends to show that a reliable determination of the membranes performances based on RT-PCR analytical method can be achieved during the operation of the UF units.

  15. Pilot-scale tests of HEME and HEPA dissolution process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qureshi, Z.H.; Strege, D.K.

    A series of pilot-scale demonstration tests for the dissolution of High Efficiency Mist Eliminators (HEME`s) and High Efficiency Particulate Airfilters (HEPA) were performed on a 1/5th linear scale. These fiberglass filters are to be used in the Defense Waste Processing Facility (DWPF) to decontaminate the effluents from the off-gases generated during the feed preparation process and vitrification. When removed, these filters will be dissolved in the Decontamination Waste Treatment Tank (DWTT) using 5 wt% NaOH solution. The contaminated fiberglass is converted to an aqueous stream which will be transferred to the waste tanks. The filter metal structure will be rinsedmore » with process water before its disposal as low-level solid waste. The pilot-scale study reported here successfully demonstrated a simple one step process using 5 wt% NaOH solution. The proposed process requires the installation of a new water spray ring with 30 nozzles. In addition to the reduced waste generated, the total process time is reduced to 48 hours only (66% saving in time). The pilot-scale tests clearly demonstrated that the dissolution process of HEMEs has two stages - chemical digestion of the filter and mechanical erosion of the digested filter. The digestion is achieved by a boiling 5 wt% caustic solutions, whereas the mechanical break down of the digested filter is successfully achieved by spraying process water on the digested filter. An alternate method of breaking down the digested filter by increased air sparging of the solution was found to be marginally successful are best. The pilot-scale tests also demonstrated that the products of dissolution are easily pumpable by a centrifugal pump.« less

  16. Pilot-scale verification of maximum tolerable hydrodynamic stress for mammalian cell culture.

    PubMed

    Neunstoecklin, Benjamin; Villiger, Thomas K; Lucas, Eric; Stettler, Matthieu; Broly, Hervé; Morbidelli, Massimo; Soos, Miroslav

    2016-04-01

    Although several scaling bioreactor models of mammalian cell cultures are suggested and described in the literature, they mostly lack a significant validation at pilot or manufacturing scale. The aim of this study is to validate an oscillating hydrodynamic stress loop system developed earlier by our group for the evaluation of the maximum operating range for stirring, based on a maximum tolerable hydrodynamic stress. A 300-L pilot-scale bioreactor for cultivation of a Sp2/0 cell line was used for this purpose. Prior to cultivations, a stress-sensitive particulate system was applied to determine the stress values generated by stirring and sparging. Pilot-scale data, collected from 7- to 28-Pa maximum stress conditions, were compared with data from classical 3-L cultivations and cultivations from the oscillating stress loop system. Results for the growth behavior, analyzed metabolites, productivity, and product quality showed a dependency on the different environmental stress conditions but not on reactor size. Pilot-scale conditions were very similar to those generated in the oscillating stress loop model confirming its predictive capability, including conditions at the edge of failure.

  17. Validity and reliability of a pilot scale for assessment of multiple system atrophy symptoms.

    PubMed

    Matsushima, Masaaki; Yabe, Ichiro; Takahashi, Ikuko; Hirotani, Makoto; Kano, Takahiro; Horiuchi, Kazuhiro; Houzen, Hideki; Sasaki, Hidenao

    2017-01-01

    Multiple system atrophy (MSA) is a rare progressive neurodegenerative disorder for which brief yet sensitive scale is required in order for use in clinical trials and general screening. We previously compared several scales for the assessment of MSA symptoms and devised an eight-item pilot scale with large standardized response mean [handwriting, finger taps, transfers, standing with feet together, turning trunk, turning 360°, gait, body sway]. The aim of the present study is to investigate the validity and reliability of a simple pilot scale for assessment of multiple system atrophy symptoms. Thirty-two patients with MSA (15 male/17 female; 20 cerebellar subtype [MSA-C]/12 parkinsonian subtype [MSA-P]) were prospectively registered between January 1, 2014 and February 28, 2015. Patients were evaluated by two independent raters using the Unified MSA Rating Scale (UMSARS), Scale for Assessment and Rating of Ataxia (SARA), and the pilot scale. Correlations between UMSARS, SARA, pilot scale scores, intraclass correlation coefficients (ICCs), and Cronbach's alpha coefficients were calculated. Pilot scale scores significantly correlated with scores for UMSARS Parts I, II, and IV as well as with SARA scores. Intra-rater and inter-rater ICCs and Cronbach's alpha coefficients remained high (> 0.94) for all measures. The results of the present study indicate the validity and reliability of the eight-item pilot scale, particularly for the assessment of symptoms in patients with early state multiple system atrophy.

  18. Scaling Down to Scale Up: A Health Economic Analysis of Integrating Point-of-Care Syphilis Testing into Antenatal Care in Zambia during Pilot and National Rollout Implementation

    PubMed Central

    Ncube, Alexander Tshaka; Sweeney, Sedona; Fleischer, Colette; Mumba, Grace Tembo; Gill, Michelle M.; Strasser, Susan; Peeling, Rosanna W.; Terris-Prestholt, Fern

    2015-01-01

    Maternal syphilis results in an estimated 500,000 stillbirths and neonatal deaths annually in Sub-Saharan Africa. Despite the existence of national guidelines for antenatal syphilis screening, syphilis testing is often limited by inadequate laboratory and staff services. Recent availability of inexpensive rapid point-of-care syphilis tests (RST) can improve access to antenatal syphilis screening. A 2010 pilot in Zambia explored the feasibility of integrating RST within prevention of mother-to-child-transmission of HIV services. Following successful demonstration, the Zambian Ministry of Health adopted RSTs into national policy in 2011. Cost data from the pilot and 2012 preliminary national rollout were extracted from project records, antenatal registers, clinic staff interviews, and facility observations, with the aim of assessing the cost and quality implications of scaling up a successful pilot into a national rollout. Start-up, capital, and recurrent cost inputs were collected, including costs of extensive supervision and quality monitoring during the pilot. Costs were analysed from a provider’s perspective, incremental to existing antenatal services. Total and unit costs were calculated and a multivariate sensitivity analysis was performed. Our accompanying qualitative study by Ansbro et al. (2015) elucidated quality assurance and supervisory system challenges experienced during rollout, which helped explain key cost drivers. The average unit cost per woman screened during rollout ($11.16) was more than triple the pilot unit cost ($3.19). While quality assurance costs were much lower during rollout, the increased unit costs can be attributed to several factors, including higher RST prices and lower RST coverage during rollout, which reduced economies of scale. Pilot and rollout cost drivers differed due to implementation decisions related to training, supervision, and quality assurance. This study explored the cost of integrating RST into antenatal care in

  19. Syngas fermentation in a 100-L pilot scale fermentor: design and process considerations.

    PubMed

    Kundiyana, Dimple K; Huhnke, Raymond L; Wilkins, Mark R

    2010-05-01

    Fermentation of syngas offers several advantages compared to chemical catalysts such as higher specificity of biocatalysts, lower energy costs, and higher carbon efficiency. Scale-up of syngas fermentation from a bench scale to a pilot scale fermentor is a critical step leading to commercialization. The primary objective of this research was to install and commission a pilot scale fermentor, and subsequently scale-up the Clostridium strain P11 fermentation from a 7.5-L fermentor to a pilot scale 100-L fermentor. Initial preparation and fermentations were conducted in strictly anaerobic conditions. The fermentation system was maintained in a batch mode with continuous syngas supply. The effect of anaerobic fermentation in a pilot scale fermentor was evaluated. In addition, the impact of improving the syngas mass transfer coefficient on the utilization and product formation was studied. Results indicate a six fold improvement in ethanol concentration compared to serum bottle fermentation, and formation of other compounds such as isopropyl alcohol, acetic acid and butanol, which are of commercial importance. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Pilot-scale laboratory waste treatment by supercritical water oxidation.

    PubMed

    Oshima, Yoshito; Hayashi, Rumiko; Yamamoto, Kazuo

    2006-01-01

    Supercritical water oxidation (SCWO) is a reaction in which organics in an aqueous solution can be oxidized by O2 to CO2 and H2O at a very high reaction rate. In 2003, The University of Tokyo constructed a facility for the SCWO process, the capacity of which is approximately 20 kl/year, for the purpose of treating organic laboratory waste. Through the operation of this facility, we have demonstrated that most of the organics in laboratory waste including halogenated organic compounds can be successfully treated without the formation of dioxines, suggesting that SCWO is useful as an alternative technology to the conventional incineration process.

  1. Coupled solar photo-Fenton and biological treatment for the degradation of diuron and linuron herbicides at pilot scale.

    PubMed

    Farré, Maria José; Maldonado, Manuel Ignacio; Gernjak, Wolfgang; Oller, Isabel; Malato, Sixto; Domènech, Xavier; Peral, José

    2008-06-01

    A coupled solar photo-Fenton (chemical) and biological treatment has been used to remove biorecalcitrant diuron (42 mg l(-1)) and linuron (75 mg l(-1)) herbicides from water at pilot plant scale. The chemical process has been carried out in a 82 l solar pilot plant made up by four compound parabolic collector units, and it was followed by a biological treatment performed in a 40 l sequencing batch reactor. Two Fe(II) doses (2 and 5 mg l(-1)) and sequential additions of H2O2 (20 mg l(-1)) have been used to chemically degrade the initially polluted effluent. Next, biodegradability at different oxidation states has been assessed by means of BOD/COD ratio. A reagent dose of Fe=5 mg l(-1) and H2O2=100 mg l(-1) has been required to obtain a biodegradable effluent after 100 min of irradiation time. Finally, the organic content of the photo-treated solution has been completely assimilated by a biomass consortium in the sequencing batch reactor using a total suspended solids concentration of 0.2 g l(-1) and a hydraulic retention time of 24h. Comparison between the data obtained at pilot plant scale (specially the one corresponding to the chemical step) and previously published data from a similar system performing at laboratory scale, has been carried out.

  2. In-Flight Validation of a Pilot Rating Scale for Evaluating Failure Transients in Electronic Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III

    2006-01-01

    Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.

  3. ORGANIC EMISSIONS FROM PILOT-SCALE INCINERATION OF CFCS

    EPA Science Inventory

    The paper gives results of the characterization of organic emissions resulting from the pilot-scale incineration of trichlorofluoromethane (CFC-11) and dichlorodifluoromethane (CFC-12) under varied feed concentrations. (NOTE: As a result of the Montreal Protocol, an international...

  4. Achieving across-laboratory replicability in psychophysical scaling

    PubMed Central

    Ward, Lawrence M.; Baumann, Michael; Moffat, Graeme; Roberts, Larry E.; Mori, Shuji; Rutledge-Taylor, Matthew; West, Robert L.

    2015-01-01

    It is well known that, although psychophysical scaling produces good qualitative agreement between experiments, precise quantitative agreement between experimental results, such as that routinely achieved in physics or biology, is rarely or never attained. A particularly galling example of this is the fact that power function exponents for the same psychological continuum, measured in different laboratories but ostensibly using the same scaling method, magnitude estimation, can vary by a factor of three. Constrained scaling (CS), in which observers first learn a standardized meaning for a set of numerical responses relative to a standard sensory continuum and then make magnitude judgments of other sensations using the learned response scale, has produced excellent quantitative agreement between individual observers’ psychophysical functions. Theoretically it could do the same for across-laboratory comparisons, although this needs to be tested directly. We compared nine different experiments from four different laboratories as an example of the level of across experiment and across-laboratory agreement achievable using CS. In general, we found across experiment and across-laboratory agreement using CS to be significantly superior to that typically obtained with conventional magnitude estimation techniques, although some of its potential remains to be realized. PMID:26191019

  5. PILOT STUDY: Report on the CCPR Pilot Comparison: Spectral Responsivity 10 nm to 20 nm

    NASA Astrophysics Data System (ADS)

    Scholze, Frank; Vest, Robert; Saito, Terubumi

    2010-01-01

    The CCPR Pilot Comparison on spectral responsivity in the 10 nm to 20 nm spectral range was carried out within the framework of the CIPM Mutual Recognition Arrangement by three laboratories: PTB (Germany), NIST (USA), and NMIJ/AIST (Japan) with PTB acting as the central and reporting laboratory. All participating laboratories used monochromatized synchrotron radiation. PTB and NIST used a cryogenic radiometer as the primary standard detector and NMIJ, an ionization chamber with extrapolation by a wavelength-independent detector. The aim of the pilot comparison was to check the accuracy of the radiometric scale of spectral responsivity in the short wavelength EUV spectral range which has recently gained in technological importance. The wavelengths of measurement were from 11.5 nm to 20 nm in 0.5 nm steps and additionally 12.2 nm. The comparison was carried out through the calibration of a group of transfer standard detectors. Two sets of three diodes of types AXUV and SXUV from International Radiation Detectors, Inc. were used for the comparison. The comparison had the form of a star comparison: Pilot-lab A-pilot-lab B-pilot, PTB acting as the pilot laboratory. All results were communicated directly to the pilot laboratory. The report describes in detail the measurements made at PTB and summarizes the reports submitted by the participants. Measurements carried out by the pilot laboratory before and after the circulation of the detectors proved that the stability of the detectors was sufficient for the comparison. For the type AXUV detectors, however, changes in their responsivity contributed to the uncertainty of the comparison. Measurement results from participants and their associated uncertainties were analyzed in this report according to the Guidelines for CCPR Comparison Report Preparation. The uncertainty contributions were separated, as to whether they are wavelength dependent or not. All bilateral DoE are well within the respective k = 2 expanded uncertainty

  6. The Characterization of Grade PCEA Recycle Graphite Pilot Scale Billets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burchell, Timothy D; Pappano, Peter J

    2010-10-01

    Here we report the physical properties of a series specimens machined from pilot scale (~ 152 mm diameter x ~305 mm length) grade PCEA recycle billets manufactured by GrafTech. The pilot scale billets were processed with increasing amounts of (unirradiated) graphite (from 20% to 100%) introduced to the formulation with the goal of determining if large fractions of recycle graphite have a deleterious effect on properties. The properties determined include Bulk Density, Electrical Resistivity, Elastic (Young s) Modulus, and Coefficient of Thermal Expansion. Although property variations were observed to be correlated with the recycle fraction, the magnitude of the variationsmore » was noted to be small.« less

  7. Comparison of bacteriophage and enteric virus removal in pilot scale activated sludge plants.

    PubMed

    Arraj, A; Bohatier, J; Laveran, H; Traore, O

    2005-01-01

    The aim of this experimental study was to determine comparatively the removal of two types of bacteriophages, a somatic coliphage and an F-specific RNA phage and of three types of enteric viruses, hepatitis A virus (HAV), poliovirus and rotavirus during sewage treatment by activated sludge using laboratory pilot plants. The cultivable simian rotavirus SA11, the HAV HM 175/18f cytopathic strain and poliovirus were quantified by cell culture. The bacteriophages were quantified by plaque formation on the host bacterium in agar medium. In each experiment, two pilots simulating full-scale activated sludge plants were inoculated with viruses at known concentrations, and mixed liquor and effluent samples were analysed regularly. In the mixed liquor, liquid and solid fractions were analysed separately. The viral behaviour in both the liquid and solid phases was similar between pilots of each experiment. Viral concentrations decreased rapidly following viral injection in the pilots. Ten minutes after the injections, viral concentrations in the liquid phase had decreased from 1.0 +/- 0.4 log to 2.2 +/- 0.3 log. Poliovirus and HAV were predominantly adsorbed on the solid matters of the mixed liquor while rotavirus was not detectable in the solid phase. In our model, the estimated mean log viral reductions after 3-day experiment were 9.2 +/- 0.4 for rotavirus, 6.6 +/- 2.4 for poliovirus, 5.9 +/- 3.5 for HAV, 3.2 +/- 1.2 for MS2 and 2.3 +/- 0.5 for PhiX174. This study demonstrates that the pilots are useful models to assess the removal of infectious enteric viruses and bacteriophages by activated sludge treatment. Our results show the efficacy of the activated sludge treatment on the five viruses and suggest that coliphages could be an acceptable indicator of viral removal in this treatment system.

  8. How compliant are technicians with universal safety measures in medical laboratories in Croatia?--A pilot study.

    PubMed

    Dukic, Kristina; Zoric, Matea; Pozaic, Petra; Starcic, Jelena; Culjak, Marija; Saracevic, Andrea; Miler, Marijana

    2015-01-01

    This pilot study aimed to investigate the use of personal protective equipment (PPE) and compliance to the code of conduct (rules defined in institutional, governmental and professional guidelines) among laboratory technicians in Croatian medical laboratories. In addition, we explored the differences in compliance between participants of different age groups, laboratory ownership and accreditation status. An anonymous and voluntary survey with 15 questions was conducted among Croatian medical laboratory technicians (N=217). The questions were divided into two groups: demographic characteristics and the use of PPE. The questions of the second part were graded according to the Likert scale (1-4) and an overall score, shown as median and range (min-max), was calculated for each participant. Differences between the overall scores were tested for each group of participants. The majority of participants always wear protective clothes at work, 38.7% of them always wear gloves in daily routine, more than 30.0% consume food and almost half of them drink beverages at workplace. A significantly lower overall score was found for participants working in public compared to private laboratories (36 (16-40) vs. 40 (31-40), P<0.001). There were no statistically significant differences in overall scores for participants of different age groups (P=0.456) and laboratory accreditation status (P=0.081). A considerable percentage of laboratory technicians in Croatian medical laboratories do not comply with safety measures. Lack of compliance is observed in all personnel regardless laboratory accreditation and participants' age. However, those working in private laboratories adhere more to the code of conduct.

  9. Transitioning glass-ceramic scintillators for diagnostic x-ray imaging from the laboratory to commercial scale

    NASA Astrophysics Data System (ADS)

    Beckert, M. Brooke; Gallego, Sabrina; Elder, Eric; Nadler, Jason

    2016-10-01

    This study sought to mitigate risk in transitioning newly developed glass-ceramic scintillator technology from a laboratory concept to commercial product by identifying the most significant hurdles to increased scale. These included selection of cost effective raw material sources, investigation of process parameters with the most significant impact on performance, and synthesis steps that could see the greatest benefit from participation of an industry partner that specializes in glass or optical component manufacturing. Efforts focused on enhancing the performance of glass-ceramic nanocomposite scintillators developed specifically for medical imaging via composition and process modifications that ensured efficient capture of incident X-ray energy and emission of scintillation light. The use of cost effective raw materials and existing manufacturing methods demonstrated proof-of-concept for economical viable alternatives to existing benchmark materials, as well as possible disruptive applications afforded by novel geometries and comparatively lower cost per volume. The authors now seek the expertise of industry to effectively navigate the transition from laboratory demonstrations to pilot scale production and testing to evince the industry of the viability and usefulness of composite-based scintillators.

  10. The Development, Test, and Evaluation of Three Pilot Performance Reference Scales.

    ERIC Educational Resources Information Center

    Horner, Walter R.; And Others

    A set of pilot performance reference scales was developed based upon airborne Audio-Video Recording (AVR) of student performance in T-37 undergraduate Pilot Training. After selection of the training maneuvers to be studied, video tape recordings of the maneuvers were selected from video tape recordings already available from a previous research…

  11. Laboratory, semi-pilot and room scale study of nitrite and molybdate mediated control of H(2)S emission from swine manure.

    PubMed

    Moreno, Lyman; Predicala, Bernardo; Nemati, Mehdi

    2010-04-01

    The effects of manure age on emission of H(2)S and required level of nitrite or molybdate to control these emissions were investigated in the present work. Molybdate mediated control of H(2)S emission was also studied in semi-pilot scale open systems, and in specifically designed chambers which simulated swine production rooms. With fresh 1-, 3- and 6-month old manures average H(2)S concentration in the headspace gas of the closed systems were 4856+/-460, 3431+/-208, 1037+/-98 ppm and non-detectable, respectively. Moreover, the level of nitrite or molybdate required to control the emission of H(2)S decreased as manure age increased. In the semi-pilot scale open system and chambers, average H(2)S concentration at the surface of agitated fresh manure were 831+/-26 and 88.4+/-5.7 ppm, respectively. Furthermore, 0.1-0.25 mM molybdate was sufficient to control the emission of H(2)S. A cost study for an average size swine operation showed that the cost of treatment with molybdate was less than 1% of the overall production cost for each market hog. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Demonstrating Functional Equivalence of Pilot and Production Scale Freeze-Drying of BCG.

    PubMed

    Ten Have, R; Reubsaet, K; van Herpen, P; Kersten, G; Amorij, J-P

    2016-01-01

    Process analytical technology (PAT)-tools were used to monitor freeze-drying of Bacille Calmette-Guérin (BCG) at pilot and production scale. Among the evaluated PAT-tools, there is the novel use of the vacuum valve open/close frequency for determining the endpoint of primary drying at production scale. The duration of primary drying, the BCG survival rate, and the residual moisture content (RMC) were evaluated using two different freeze-drying protocols and were found to be independent of the freeze-dryer scale evidencing functional equivalence. The absence of an effect of the freeze-dryer scale on the process underlines the feasibility of the pilot scale freeze-dryer for further BCG freeze-drying process optimization which may be carried out using a medium without BCG.

  13. Hydrodynamic Scalings: from Astrophysics to Laboratory

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.; Remington, B. A.

    2000-05-01

    A surprisingly general hydrodynamic similarity has been recently described in Refs. [1,2]. One can call it the Euler similarity because it works for the Euler equations (with MHD effects included). Although the dissipation processes are assumed to be negligible, the presence of shocks is allowed. For the polytropic medium (i.e., the medium where the energy density is proportional to the pressure), an evolution of an arbitrarily chosen 3D initial state can be scaled to another system, if a single dimensionless parameter (the Euler number) is the same for both initial states. The Euler similarity allows one to properly design laboratory experiments modeling astrophysical phenomena. We discuss several examples of such experiments related to the physics of supernovae [3]. For the problems with a single spatial scale, the condition of the smallness of dissipative processes can be adequately described in terms of the Reynolds, Peclet, and magnetic Reynolds numbers related to this scale (all three numbers must be large). However, if the system develops small-scale turbulence, dissipation may become important at these smaller scales, thereby affecting the gross behavior of the system. We analyze the corresponding constraints. We discuss also constraints imposed by the presence of interfaces between the substances with different polytropic index. Another set of similarities governs evolution of photoevaporation fronts in astrophysics. Convenient scaling laws exist in situations where the density of the ablated material is very low compared to the bulk density. We conclude that a number of hydrodynamical problems related to such objects as the Eagle Nebula can be adequately simulated in the laboratory. We discuss also possible scalings for radiative astrophysical jets (see Ref. [3] and references therein). This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract W-7405-Eng-48

  14. Pilot Scale Production and Testing of a Recombinant Staphylococcal Enterotoxin (SEB) Triple Mutant

    DTIC Science & Technology

    2017-09-01

    1 PILOT-SCALE PRODUCTION AND TESTING OF A RECOMBINANT STAPHYLOCOCCAL ENTEROTOXIN (SEB) TRIPLE MUTANT ECBC...Disclaimer The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorizing...TYPE Final 3. DATES COVERED (From - To) Mar 2010 – Dec 2011 4. TITLE AND SUBTITLE Pilot-Scale Production and Testing of a Recombinant

  15. Demonstrating Functional Equivalence of Pilot and Production Scale Freeze-Drying of BCG

    PubMed Central

    ten Have, R.; Reubsaet, K.; van Herpen, P.; Kersten, G.; Amorij, J.-P.

    2016-01-01

    Process analytical technology (PAT)-tools were used to monitor freeze-drying of Bacille Calmette-Guérin (BCG) at pilot and production scale. Among the evaluated PAT-tools, there is the novel use of the vacuum valve open/close frequency for determining the endpoint of primary drying at production scale. The duration of primary drying, the BCG survival rate, and the residual moisture content (RMC) were evaluated using two different freeze-drying protocols and were found to be independent of the freeze-dryer scale evidencing functional equivalence. The absence of an effect of the freeze-dryer scale on the process underlines the feasibility of the pilot scale freeze-dryer for further BCG freeze-drying process optimization which may be carried out using a medium without BCG. PMID:26981867

  16. Pilot-scale gasification of woody biomass

    Treesearch

    Thomas Elder; Leslie H. Groom

    2011-01-01

    The gasification of pine and mixed-hardwood chips has been carried out in a pilot-scale system at a range of gas flow rates. Consuming ~17-30 kgh-1 of feedstock, the producer gas was composed of ~200 dm3 m-3 carbon monoxide, 12 dm3 m-3 carbon dioxide, 30 dm3 m-3 methane and 190 dm3 m-3 hydrogen, with an energy content of ~6 MJ m-3 for both feedstocks. It was found that...

  17. Comparison of NASA-TLX scale, Modified Cooper-Harper scale and mean inter-beat interval as measures of pilot mental workload during simulated flight tasks.

    PubMed

    Mansikka, Heikki; Virtanen, Kai; Harris, Don

    2018-04-30

    The sensitivity of NASA-TLX scale, modified Cooper-Harper (MCH) scale and the mean inter-beat interval (IBI) of successive heart beats, as measures of pilot mental workload (MWL), were evaluated in a flight training device (FTD). Operational F/A-18C pilots flew instrument approaches with varying task loads. Pilots' performance, subjective MWL ratings and IBI were measured. Based on the pilots' performance, three performance categories were formed; high-, medium- and low-performance. Values of the subjective rating scales and IBI were compared between categories. It was found that all measures were able to differentiate most task conditions and there was a strong, positive correlation between NASA-TLX and MCH scale. An explicit link between IBI, NASA-TLX, MCH and performance was demonstrated. While NASA-TLX, MCH and IBI have all been previously used to measure MWL, this study is the first one to investigate their association in a modern FTD, using a realistic flying mission and operational pilots.

  18. [Pilot-scale purification of lipopeptide from marine-derived Bacillus marinus].

    PubMed

    Gu, Kangbo; Guan, Cheng; Xu, Jiahui; Li, Shulan; Luo, Yuanchan; Shen, Guomin; Zhang, Daojing; Li, Yuanguang

    2016-11-25

    This research was aimed at establishing the pilot-scale purification technology of lipopeptide from marine-derived Bacillus marinus. We studied lipopeptide surfactivity interferences on scale-up unit technologies including acid precipitation, methanol extraction, solvent precipitation, salting out, extraction, silica gel column chromatography and HZ806 macroporous absorption resin column chromatography. Then, the unit technologies were combined in a certain order, to remove the impurities gradually, and to gain purified lipopeptide finally, with high recovery rate throughout the whole process. The novel pilot-scale purification technology could effectively isolate and purify lipopeptide with 87.51% to 100% purity in hectograms from 1 ton of Bacillus marinus B-9987 fermentation broth with more than 81.73% recovery rate. The first practical hectogram production of highly purified lipopeptide derived from Bacillus marinus was achieved. With this new purification method, using complex media became possible in fermentation process to reduce the fermentation cost and scale-up the purification for lipopeptide production. For practicability and economy, foaming problem resulting from massive water evaporation was avoided in this technology.

  19. PILOT SCALE PROCESS EVALUATION OF REBURNING FOR IN-FURNACE NOX REDUCTION

    EPA Science Inventory

    The report gives results of coal and natural gas reburning application tests to a pilot scale 3.0 MWt furnace to provide the scaling information required for commercial application of reburning to pulverized-coal-fired boilers. Initial parametric studies had been conducted in a 2...

  20. AFHRL/FT [Air Force Human Resources Laboratory/Flight Training] Capabilities in Undergraduate Pilot Training Simulation Research: Executive Summary.

    ERIC Educational Resources Information Center

    Matheny, W. G.; And Others

    The document presents a summary description of the Air Force Human Resource Laboratory's Flying Training Division (AFHRL/FT) research capabilities for undergraduate pilot training. One of the research devices investigated is the Advanced Simulator for Undergraduate Pilot Training (ASUPT). The equipment includes the ASUPT, the instrumented T-37…

  1. Large-scale preparation of clove essential oil and eugenol-loaded liposomes using a membrane contactor and a pilot plant.

    PubMed

    Sebaaly, Carine; Greige-Gerges, Hélène; Agusti, Géraldine; Fessi, Hatem; Charcosset, Catherine

    2016-01-01

    Based on our previous study where optimal conditions were defined to encapsulate clove essential oil (CEO) into liposomes at laboratory scale, we scaled-up the preparation of CEO and eugenol (Eug)-loaded liposomes using a membrane contactor (600 mL) and a pilot plant (3 L) based on the principle of ethanol injection method, both equipped with a Shirasu Porous Glass membrane for injection of the organic phase into the aqueous phase. Homogenous, stable, nanometric-sized and multilamellar liposomes with high phospholipid, Eug loading rates and encapsulation efficiency of CEO components were obtained. Saturation of phospholipids and drug concentration in the organic phase may control the liposome stability. Liposomes loaded with other hydrophobic volatile compounds could be prepared at large scale using the ethanol injection method and a membrane for injection.

  2. How compliant are technicians with universal safety measures in medical laboratories in Croatia? – A pilot study

    PubMed Central

    Dukic, Kristina; Zoric, Matea; Pozaic, Petra; Starcic, Jelena; Culjak, Marija; Saracevic, Andrea; Miler, Marijana

    2015-01-01

    Introduction This pilot study aimed to investigate the use of personal protective equipment (PPE) and compliance to the code of conduct (rules defined in institutional, governmental and professional guidelines) among laboratory technicians in Croatian medical laboratories. In addition, we explored the differences in compliance between participants of different age groups, laboratory ownership and accreditation status. Materials and methods An anonymous and voluntary survey with 15 questions was conducted among Croatian medical laboratory technicians (N = 217). The questions were divided into two groups: demographic characteristics and the use of PPE. The questions of the second part were graded according to the Likert scale (1-4) and an overall score, shown as median and range (min-max), was calculated for each participant. Differences between the overall scores were tested for each group of participants. Results The majority of participants always wear protective clothes at work, 38.7% of them always wear gloves in daily routine, more than 30.0% consume food and almost half of them drink beverages at workplace. A significantly lower overall score was found for participants working in public compared to private laboratories (36 (16-40) vs. 40 (31-40), P < 0.001). There were no statistically significant differences in overall scores for participants of different age groups (P = 0.456) and laboratory accreditation status (P = 0.081). Conclusion A considerable percentage of laboratory technicians in Croatian medical laboratories do not comply with safety measures. Lack of compliance is observed in all personnel regardless laboratory accreditation and participants’ age. However, those working in private laboratories adhere more to the code of conduct. PMID:26526817

  3. Pilot-scale study of powdered activated carbon recirculation for micropollutant removal.

    PubMed

    Meinel, F; Sperlich, A; Jekel, M

    Adsorption onto powdered activated carbon (PAC) is a promising technique for the removal of organic micropollutants (OMPs) from treated wastewater. To enhance the adsorption efficiency, PAC is recycled back into the adsorption stage. This technique was examined in pilot scale in comparison to a reference without recirculation. Coagulation with Fe(3+) was carried out simultaneously to adsorption. Extensive OMP measurements showed that recirculation significantly increased OMP eliminations. Thus, significant PAC savings were feasible. The PAC concentration in the contact reactor proved to be an important operating parameter that can be surrogated by the easily measurable total suspended solids (TSS) concentration. OMP eliminations increased with increasing TSS concentrations. At 20 mg PAC L(-1) and 2.8 g TSS L(-1) in the contact reactor, well-adsorbable carbamazepine was eliminated by 97%, moderately adsorbable diclofenac was eliminated by 92% and poorly-adsorbable acesulfame was eliminated by 54% in comparison to 49%, 35% and 18%, respectively, without recirculation. The recirculation system represents an efficient technique, as the PAC's adsorption capacity is practically completely used. Small PAC dosages yield high OMP eliminations. Poorly-adsorbable gabapentin was eliminated to an unexpectedly high degree. A laboratory-scale biomass inhibition study showed that aerobic biodegradation removed gabapentin in addition to adsorption.

  4. Smouldering Remediation (STAR) Technology: Field Pilot Tests and First Full Scale Application

    NASA Astrophysics Data System (ADS)

    Gerhard, J.; Kinsman, L.; Torero, J. L.

    2015-12-01

    STAR (Self-sustaining Treatment for Active Remediation) is an innovative remediation technology based on the principles of smoldering combustion where the contaminants are the fuel. The self-sustaining aspect means that a single, local ignition event can result in many days of contaminant destruction in situ. Presented research to date has focused on bench scale experiments, numerical modelling and process understanding. Presented here is the maturation of the in situ technology, including three field pilot tests and a full-scale implementation to treat coal tar-impacted soils. The first pilot determined a Radius of Influence (ROI) for a single ignition of approximately eight feet with an average propagation rate of the reaction of approximately one foot per day. TPH concentrations in soils were reduced from 10,000 milligrams per kilogram to a few hundred milligrams per kilogram. The second pilot was conducted in an area of significant void spaces created through the anthropogenic deposition of clay bricks and tiles. The void spaces led to pre-mature termination of the combustion reaction, limiting ROI and the effectiveness of the technology in this setting. The third case study involved the pilot testing, design, and full-scale implementation of STAR at a 37-acre former chemical manufacturing facility. Three phases of pilot testing were conducted within two hydrogeologic units at the site (i.e., surficial fill and deep alluvial sand units). Pilot testing within the fill demonstrated self-sustained coal tar destruction rates in excess of 800 kg/day supported through air injection at a single well. Deep sand unit testing (twenty-five feet below the water table) resulted in the treatment of a targeted six-foot layer of impacted fine sands to a radial distance of approximately twelve feet. These results (and additional parameters) were used to develop a full-scale STAR design consisting of approximately 1500 surficial fill ignition points and 500 deep sand ignition

  5. Optimization of instant powdered chicken feet broth’s drying temperature and time on pilot plant scale production

    NASA Astrophysics Data System (ADS)

    Hidayati, N.; Widyaningsih, T. D.

    2018-03-01

    Chicken feet by-product of chicken industries amounted to approximately 65,894 tons/year commonly used as broths. These by-products are potentially produced into an instant form as an anti-inflammatory functional food on industrial scale. Therefore, it is necessary to optimize the critical parameters of the drying process. The aim of this study was to determine the optimum temperature and time of instant powdered chicken feet broth’s drying on pilot plant scale, to find out product’s comparison of the laboratory and pilot plant scale, and to assess financial feasibility of the business plan. The optimization of pilot plant scale’s research prepared and designed with Response Surface Methodology-Central Composite Design. The optimized factors were powdered broth’s drying temperature (55°C, 60°C, 65°C) and time (10 minutes, 11 minutes, 12 minutes) with the response observed were water and chondroitin sulphate content. The optimum condition obtained was drying process with temperature of 60.85°C for 10,05 minutes resulting in 1.90 ± 0.02% moisture content, 32.48 ± 0.28% protein content, 12.05 ± 0.80% fat content, 28.92 ± 0.09 % ash content, 24.64 ± 0.52% carbohydrate content, 1.26 ± 0.05% glucosamine content, 0.99 ± 0.23% chondroitin sulphate content, 50.87 ± 1.00% solubility, 8.59 ± 0.19% water vapour absorption, 0.37% levels of free fatty acid, 13.66 ± 4.49% peroxide number, lightness of 60.33 ± 1.24, yellowness of 3.83 ± 0.26 and redness of 21.77 ± 0.42. Financial analysis concluded that this business project was feasible to run.

  6. PILOT-SCALE STUDIES ON THE INCINERATION OF ELECTRONICS INDUSTRY WASTE

    EPA Science Inventory

    The paper describes experiments performed on a pilot-scale rotary kiln incinerator to investigate the emissions and operational behavior during the incineration of consumer electronics waste. These experiments were targeted at destroying the organic components of printed circuit ...

  7. EPOS-WP16: A Platform for European Multi-scale Laboratories

    NASA Astrophysics Data System (ADS)

    Spiers, Chris; Drury, Martyn; Kan-Parker, Mirjam; Lange, Otto; Willingshofer, Ernst; Funiciello, Francesca; Rosenau, Matthias; Scarlato, Piergiorgio; Sagnotti, Leonardo; W16 Participants

    2016-04-01

    The participant countries in EPOS embody a wide range of world-class laboratory infrastructures ranging from high temperature and pressure experimental facilities, to electron microscopy, micro-beam analysis, analogue modeling and paleomagnetic laboratories. Most data produced by the various laboratory centres and networks are presently available only in limited "final form" in publications. As such many data remain inaccessible and/or poorly preserved. However, the data produced at the participating laboratories are crucial to serving society's need for geo-resources exploration and for protection against geo-hazards. Indeed, to model resource formation and system behaviour during exploitation, we need an understanding from the molecular to the continental scale, based on experimental data. This contribution will describe the work plans that the laboratories community in Europe is making, in the context of EPOS. The main objectives are: - To collect and harmonize available and emerging laboratory data on the properties and processes controlling rock system behaviour at multiple scales, in order to generate products accessible and interoperable through services for supporting research activities. - To co-ordinate the development, integration and trans-national usage of the major solid Earth Science laboratory centres and specialist networks. The length scales encompassed by the infrastructures included range from the nano- and micrometer levels (electron microscopy and micro-beam analysis) to the scale of experiments on centimetre sized samples, and to analogue model experiments simulating the reservoir scale, the basin scale and the plate scale. - To provide products and services supporting research into Geo-resources and Geo-storage, Geo-hazards and Earth System Evolution.

  8. A pilot rating scale for evaluating failure transients in electronic flight control systems

    NASA Technical Reports Server (NTRS)

    Hindson, William S.; Schroeder, Jeffery A.; Eshow, Michelle M.

    1990-01-01

    A pilot rating scale was developed to describe the effects of transients in helicopter flight-control systems on safety-of-flight and on pilot recovery action. The scale was applied to the evaluation of hardovers that could potentially occur in the digital flight-control system being designed for a variable-stability UH-60A research helicopter. Tests were conducted in a large moving-base simulator and in flight. The results of the investigation were combined with existing airworthiness criteria to determine quantitative reliability design goals for the control system.

  9. Creative use of pilot points to address site and regional scale heterogeneity in a variable-density model

    USGS Publications Warehouse

    Dausman, Alyssa M.; Doherty, John; Langevin, Christian D.

    2010-01-01

    Pilot points for parameter estimation were creatively used to address heterogeneity at both the well field and regional scales in a variable-density groundwater flow and solute transport model designed to test multiple hypotheses for upward migration of fresh effluent injected into a highly transmissive saline carbonate aquifer. Two sets of pilot points were used within in multiple model layers, with one set of inner pilot points (totaling 158) having high spatial density to represent hydraulic conductivity at the site, while a second set of outer points (totaling 36) of lower spatial density was used to represent hydraulic conductivity further from the site. Use of a lower spatial density outside the site allowed (1) the total number of pilot points to be reduced while maintaining flexibility to accommodate heterogeneity at different scales, and (2) development of a model with greater areal extent in order to simulate proper boundary conditions that have a limited effect on the area of interest. The parameters associated with the inner pilot points were log transformed hydraulic conductivity multipliers of the conductivity field obtained by interpolation from outer pilot points. The use of this dual inner-outer scale parameterization (with inner parameters constituting multipliers for outer parameters) allowed smooth transition of hydraulic conductivity from the site scale, where greater spatial variability of hydraulic properties exists, to the regional scale where less spatial variability was necessary for model calibration. While the model is highly parameterized to accommodate potential aquifer heterogeneity, the total number of pilot points is kept at a minimum to enable reasonable calibration run times.

  10. A PILOT-SCALE STUDY ON THE COMBUSTION OF WASTE ...

    EPA Pesticide Factsheets

    Symposium Paper Post-consumer carpet is a potential substitute fuel for high temperature thermal processes such as cement kilns and boilers.This paper reports on results examining emissions of PCDDs/Fs from a series of pilot-scale experiments performed on the EPA's rotary kiln incinerator simulator facility in Research triangle Park, NC.

  11. 30 CFR 14.21 - Laboratory-scale flame test apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Laboratory-scale flame test apparatus. 14.21 Section 14.21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING... Technical Requirements § 14.21 Laboratory-scale flame test apparatus. The principal parts of the apparatus...

  12. 30 CFR 14.21 - Laboratory-scale flame test apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Laboratory-scale flame test apparatus. 14.21 Section 14.21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING... Technical Requirements § 14.21 Laboratory-scale flame test apparatus. The principal parts of the apparatus...

  13. ON-SITE ENGINEERING REPORT OF THE SLURRY-PHASE BIOLOGICAL REACTOR FOR PILOT-SCALE TESTING ON CONTAMINATED SOIL

    EPA Science Inventory

    The performance of pilot-scale bioslurry treatment on creosote-contaminated soil was evaluated. Five reactors containing 66 L of slurry (30% soil by weight), were operated in parallel. The soil was a sandy soil with minor gravel content. The pilot-scale phase utilized an inoculum...

  14. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary M. Blythe

    2006-03-01

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal.more » The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive

  15. Pilot Inter-Laboratory Studies for Evaluating Weathering-Induced Release of Carbon Nanotubes from Solid Matrices

    EPA Science Inventory

    Nanomaterials are increasingly being used in polymer composites to enhance the properties of these materials. Here we present results of a pilot inter-laboratory study to simulate the effects of weathering on the potential release of multiwalled carbon nanotubes (MWCNT) from thei...

  16. Pilot-scale fractionation of whey proteins with supercritical CO2

    USDA-ARS?s Scientific Manuscript database

    A new pilot-scale process is being developed and optimized for the separation of whey proteins into two enriched, highly functional fractions that are free of contaminants. The fractionation of whey protein isolate (WPI), which contains approximately 32% alpha-lactalbumin (alpha-LA) and 61% beta-lac...

  17. LABORATORY SCALE STEAM INJECTION TREATABILITY STUDIES

    EPA Science Inventory

    Laboratory scale steam injection treatability studies were first developed at The University of California-Berkeley. A comparable testing facility has been developed at USEPA's Robert S. Kerr Environmental Research Center. Experience has already shown that many volatile organic...

  18. Development of a Laboratory for Improving Communication between Air Traffic Controllers and Pilots

    NASA Technical Reports Server (NTRS)

    Brammer, Anthony

    2003-01-01

    Runway incursions and other surface incidents are known to be significant threats to aviation safety and efficiency. Though the number of near mid-air collisions in U.S. air space has remained unchanged during the last five years, the number of runway incursions has increased and they are almost all due to human error. The three most common factors contributing to air traffic controller and pilot error in airport operations include two that involve failed auditory communication. This project addressed the problems of auditory communication in air traffic control from an acoustical standpoint, by establishing an acoustics laboratory designed for this purpose and initiating research into selected topics that show promise for improving voice communications between air traffic controllers and pilots.

  19. PILOT-SCALE STUDIES ON THE EFFECT OF BROMINE ADDITION ON THE EMISSIONS OF CHLORINATED ORGANIC COMBUSTION BY-PRODUCTS

    EPA Science Inventory

    The paper reports on a study to evaluate organic combustion by-product emissions while feeding varying amounts of bromine (Br) and chlorine (Cl) into a pilot-scale incinerator burning surrogate waste materials. (NOTE: Adding brominated organic compounds to a pilot-scale incinerat...

  20. SUPERFUND TREATABILITY CLEARINGHOUSE: BENGART AND MEMEL (BENCH-SCALE), GULFPORT (BENCH AND PILOT-SCALE), MONTANA POLE (BENCH-SCALE), AND WESTERN PROCESSING (BENCH-SCALE) TREATABILITY STUDIES

    EPA Science Inventory

    This document presents summary data on the results of various treatability studies (bench and pilot scale), conducted at three different sites where soils were contaminated with dioxins or PCBs. The synopsis is meant to show rough performance levels under a variety of differen...

  1. Pilot-scale road subbase made with granular material formulated with MSWI bottom ash and stabilized APC fly ash: environmental impact assessment.

    PubMed

    del Valle-Zermeño, R; Formosa, J; Prieto, M; Nadal, R; Niubó, M; Chimenos, J M

    2014-02-15

    A granular material (GM) to be used as road sub-base was formulated using 80% of weathered bottom ash (WBA) and 20% of mortar. The mortar was prepared separately and consisted in 50% APC and 50% of Portland cement. A pilot-scale study was carried on by constructing three roads in order to environmentally evaluate the performance of GM in a real scenario. By comparing the field results with those of the column experiments, the overestimations observed at laboratory scale can be explained by the potential mechanisms in which water enters into the road body and the pH of the media. An exception was observed in the case of Cu, whose concentration release at the test road was higher. The long-time of exposure at atmospheric conditions might have favoured oxidation of organic matter and therefore the leaching of this element. The results obtained showed that immobilization of all heavy metals and metalloids from APC is achieved by the pozzolanic effect of the cement mortar. This is, to the knowledge of the authors, the only pilot scale study that is considering reutilization of APC as a safe way to disposal. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. REMOVAL OF METHYL T-BUTYL ETHER (MTBE) FROM WATER BY PERVAPORATION: BENCH-SCALE AND PILOT SCALE EVALUATIONS

    EPA Science Inventory

    The ability of pervaporation to remove methyl t-butyl ether (MTBE) from water was evaluated at bench- and pilot-scales. Process parameters studied included flow rate, temperature, MTBE concentration, membrane module type, and permeate pressure. Pervaporation performance was ass...

  3. Public health laboratory workforce outreach in Hawai'i: CLIA-focused student internship pilot program at the state laboratories.

    PubMed

    Whelen, A Christian; Kitagawa, Kent

    2013-01-01

    Chronically understaffed public health laboratories depend on a decreasing number of employees who must assume broader responsibilities in order to sustain essential functions for the many clients the laboratories support. Prospective scientists considering a career in public health are often not aware of the requirements associated with working in a laboratory regulated by the Clinical Laboratory Improvement Amendments (CLIA). The purpose of this pilot internship was two-fold; introduce students to operations in a regulated laboratory early enough in their academics so that they could make good career decisions, and evaluate internship methodology as one possible solution to workforce shortages. Four interns were recruited from three different local universities, and were paired with an experienced State Laboratories Division (SLD) staff mentor. Students performed tasks that demonstrated the importance of CLIA regulations for 10-15 hours per week over a 14 week period. Students also attended several directed group sessions on regulatory lab practice and quality systems. Both interns and mentors were surveyed periodically during the semester. Surveys of mentors and interns indicated overall positive experiences. One-on-one pairing of experienced public health professionals and students seems to be a mutually beneficial arrangement. Interns reported that they would participate if the internship was lower paid, unpaid, or for credit only. The internship appeared to be an effective tool to expose students to employment in CLIA-regulated laboratories, and potentially help address public health laboratory staffing shortfalls. Longer term follow up with multiple classes of interns may provide a more informed assessment.

  4. Pilot-scale study on the treatment of basal aquifer water using ultrafiltration, reverse osmosis and evaporation/crystallization to achieve zero-liquid discharge.

    PubMed

    Loganathan, Kavithaa; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2016-01-01

    Basal aquifer water is deep groundwater found at the bottom of geological formations, underlying bitumen-saturated sands. Some of the concerns associated with basal aquifer water at the Athabasca oil sands are the high concentrations of hardness-causing compounds, alkalinity, and total dissolved solids. The objective of this pilot-scale study was to treat basal aquifer water to a quality suitable for its reuse in the production of synthetic oil. To achieve zero-liquid discharge (ZLD) conditions, the treatment train included chemical oxidation, polymeric ultrafiltration (UF), reverse osmosis (RO), and evaporation-crystallization technologies. The results indicated that the UF unit was effective in removing solids, with UF filtrate turbidity averaging 2.0 NTU and silt density index averaging 0.9. Membrane autopsies indicated that iron was the primary foulant on the UF and RO membranes. Laboratory and pilot-scale tests on RO reject were conducted to determine the feasibility of ZLD crystallization. Due to the high amounts of calcium, magnesium, and bicarbonate in the RO reject, softening of the feed was required to avoid scaling in the evaporator. Crystals produced throughout the testing were mainly sodium chloride. The results of this study indicated that the ZLD approach was effective in both producing freshwater and minimizing brine discharges. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Treatment of the Cerro Prieto I brines for use in reinjection. 2. Results of the pilot plant tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurtado J, R.; Mercado G, S.; Rocha C, E.

    Silica removal experiments have been carried out both in the laboratory and in pilot scale tests. The results obtained to date are presented, with special emphasis on the pilot tests with or without the use of flocculants. Previous studies on brine treatment are described briefly.

  6. Data Services and Transnational Access for European Geosciences Multi-Scale Laboratories

    NASA Astrophysics Data System (ADS)

    Funiciello, Francesca; Rosenau, Matthias; Sagnotti, Leonardo; Scarlato, Piergiorgio; Tesei, Telemaco; Trippanera, Daniele; Spires, Chris; Drury, Martyn; Kan-Parker, Mirjam; Lange, Otto; Willingshofer, Ernst

    2016-04-01

    frackability of reservoir rocks of interest in relation to unconventional resources and geothermal energy; 3) repository of analogue models on tectonic processes, from the plate to the reservoir scale, relevant to the understanding of Earth dynamics, geo-hazards and geo-energy; 4) paleomagnetic data, that are crucial a) for understanding the evolution of sedimentary basins and associated resources, and b) for charting geo-hazard frequency. EPOS IP WP16 - task 5 aims to create mechanisms and procedures for easy trans-national access to multiscale laboratory facilities. Moreover, the same task will coordinate all the activities in a pilot phase to test, validate and consolidate the over mentioned services and to provide a proof of concept for what will be offered beyond the completion of the EPOS IP.

  7. Local area networks, laboratory information management systems, languages, and operating systems in the lab and pilot plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dessy, R.E.

    1983-08-01

    Microprocessors and microcomputers are being incorporated into the instruments and controllers in our laboratory and pilot plant. They enhance both the quality and amount of information that is produced. Yet they simultaneously produce vast amounts of information that must be controlled, or scientists and engineers will become high priced secretaries. The devices need programs that control them in a time frame relevant to the experiment. Simple, expeditious pathways to the generation of software that will run rapidly is essential or first class scientists and engineers become second class system programmersexclamation This paper attempts to develop the vocabulary by which themore » people involved in this technological revolution can understand and control it. We will examine the elements that synergistically make up the electronic laboratory and pilot plant. More detailed analyses of each area may be found in a series of articles entitled A/C INTERFACE (1-4). Many factors interact in the final system that we bring into our laboratory. Yet many purchasers only perform a cursory evaluation on the superficial aspects of the hardware. The integrated lab and pilot plant require that microprocessors, which control and collect, be connected in a LAN to larger processors that can provide LIMS support. Statistics and scientific word processing capabilities then complete the armamentorium. The end result is a system that does things for the user, rather than doing things to him.« less

  8. Building a Laboratory-Scale Biogas Plant and Verifying its Functionality

    NASA Astrophysics Data System (ADS)

    Boleman, Tomáš; Fiala, Jozef; Blinová, Lenka; Gerulová, Kristína

    2011-01-01

    The paper deals with the process of building a laboratory-scale biogas plant and verifying its functionality. The laboratory-scale prototype was constructed in the Department of Safety and Environmental Engineering at the Faculty of Materials Science and Technology in Trnava, of the Slovak University of Technology. The Department has already built a solar laboratory to promote and utilise solar energy, and designed SETUR hydro engine. The laboratory is the next step in the Department's activities in the field of renewable energy sources and biomass. The Department is also involved in the European Union project, where the goal is to upgrade all existed renewable energy sources used in the Department.

  9. Pilot-scale ISCO treatment of a MtBE contaminated site using a Fenton-like process.

    PubMed

    Innocenti, Ivan; Verginelli, Iason; Massetti, Felicia; Piscitelli, Daniela; Gavasci, Renato; Baciocchi, Renato

    2014-07-01

    This paper reports about a pilot-scale feasibility study of In-Situ Chemical Oxidation (ISCO) application based on the use of stabilized hydrogen peroxide catalyzed by naturally occurring iron minerals (Fenton-like process) to a site formerly used for fuel storage and contaminated by MtBE. The stratigraphy of the site consists of a 2-3 meter backfill layer followed by a 3-4 meter low permeability layer, that confines the main aquifer, affected by a widespread MtBE groundwater contamination with concentrations up to 4000 μg/L, also with the presence of petroleum hydrocarbons. The design of the pilot-scale treatment was based on the integration of the results obtained from experimental and numerical modeling accounting for the technological and regulatory constraints existing in the site to be remediated. In particular, lab-scale batch tests allowed the selection of the most suitable operating conditions. Then, this information was implemented in a numerical software that allowed to define the injection and monitoring layout and to predict the propagation of hydrogen peroxide in groundwater. The pilot-scale field results confirmed the effective propagation of hydrogen peroxide in nearly all the target area (around 75 m(2) using 3 injection wells). As far as the MtBE removal is concerned, the ISCO application allowed us to meet the clean-up goals in an area of 60 m(2). Besides, the concentration of TBA, i.e. a potential by-product of MtBE oxidation, was actually reduced after the ISCO treatment. The results of the pilot-scale test suggest that ISCO may be a suitable option for the remediation of the groundwater plume contaminated by MtBE, providing the background data for the design and cost-estimate of the full-scale treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Physical-chemical treatment of rainwater runoff in recovery and recycling companies: Pilot-scale optimization.

    PubMed

    Blondeel, Evelyne; Depuydt, Veerle; Cornelis, Jasper; Chys, Michael; Verliefde, Arne; Van Hulle, Stijin Wim Henk

    2015-01-01

    Pilot-scale optimisation of different possible physical-chemical water treatment techniques was performed on the wastewater originating from three different recovery and recycling companies in order to select a (combination of) technique(s) for further full-scale implementation. This implementation is necessary to reduce the concentration of both common pollutants (such as COD, nutrients and suspended solids) and potentially toxic metals, polyaromatic hydrocarbons and poly-chlorinated biphenyls frequently below the discharge limits. The pilot-scale tests (at 250 L h(-1) scale) demonstrate that sand anthracite filtration or coagulation/flocculation are interesting as first treatment techniques with removal efficiencies of about 19% to 66% (sand anthracite filtration), respectively 18% to 60% (coagulation/flocculation) for the above mentioned pollutants (metals, polyaromatic hydrocarbons and poly chlorinated biphenyls). If a second treatment step is required, the implementation of an activated carbon filter is recommended (about 46% to 86% additional removal is obtained).

  11. Effective cultivation of microalgae for biofuel production: a pilot-scale evaluation of a novel oleaginous microalga Graesiella sp. WBG-1.

    PubMed

    Wen, Xiaobin; Du, Kui; Wang, Zhongjie; Peng, Xinan; Luo, Liming; Tao, Huanping; Xu, Yan; Zhang, Dan; Geng, Yahong; Li, Yeguang

    2016-01-01

    Commercial production of microalgal biodiesel is not yet economically viable, largely because of low storage lipid yield in microalgae mass cultivation. Selection of lipid-rich microalgae, thus, becomes one of the key research topics for microalgal biodiesel production. However, the laboratory screening protocols alone cannot predict the ability of the strains to dominate and perform in outdoor ponds. Comprehensive assessment of microalgae species should be performed not only under the laboratory conditions, but also in the fields. Laboratory investigations using a bubbled column photobioreactor indicated the microalga Graesiella sp. WBG-1 to be the most productive species among the 63 Chlorophyta strains. In a 10 L reactor, mimicking the industrial circular pond, Graesiella sp. WBG-1 produced 12.03 g biomass m(-2) day(-1) and 5.44 g lipids (45.23 % DW) m(-2) day(-1) under 15 mol m(-2) day(-1) artificial light irradiations. The lipid content decreased to ~34 % DW when the microalga was cultured in 30 L tank PBR under natural solar irradiations, but the decline of lipid content with scaling up was the minimum among the tested strains. Based on these results, the microalga was further tested for its lipid production and culture competitiveness using a pilot-scale raceway pond (200 m(2) illuminated area, culture volume 40,000 L). Consequently, Graesiella sp. WBG-1 maintained a high lipid content (33.4 % DW), of which ~90 % was storage TAGs. Results from the outdoor experiments indicated the nice adaptability of the Graesiella sp. WBG-1 to strong and fluctuating natural solar irradiance and temperature, and also demonstrated several other features, such as large cell size (easy for harvest and resistant to swallow by protozoa) and tolerance to high culture pH (helpful to CO2 fixation). Graesiella sp. WBG-1 was a promising strain capable of accumulating large amount of storage lipid under nature solar irradiance and temperature. The high lipid content

  12. Alkaline fermentation of waste activated sludge stimulated by saponin: volatile fatty acid production, mechanisms and pilot-scale application.

    PubMed

    Huang, Xiangfeng; Mu, Tianshuai; Shen, Changming; Lu, Lijun; Liu, Jia

    2016-12-01

    Volatile fatty acid (VFA) production stimulated by saponin (SP), an environmentally friendly bio-surfactant, was investigated during sludge alkaline fermentation in laboratory studies and pilot applications. The combined use of SP and pH 9 condition significantly enhanced VFA production to approximately 425 mg COD/g VSS, which was 4.7-fold of raw sludge and 1.5-fold of sole pH 10 adjustment (the optimum pH for alkaline fermentation). Further results indicated that SP & pH 9 condition provided sufficient substrates for acidification and decreased the consumption of VFAs through methanogenesis. Moreover, SP accompanied by moderate alkaline condition (i.e. pH 9) showed weaker inhibitory effects on key enzyme activities and metabolic potential of acidification microorganisms than sole pH 10 adjustment. On this basis, a pilot-scale system involving anaerobic fermentation and anaerobic-anoxic-aerobic step-feed bioreaction tanks was established to study the potential of VFAs as supplementary carbon sources for wastewater treatment. The influent of the pilot system was sanitary wastewater characterized by low C/N ratios from a scenic rural area. After flocculation and nutrient precipitation, the fermentation supernatant was mixed with the influent at a volume ratio of 1:30. With this approach, nitrogen and phosphorus concentrations in effluent fulfilled the first-A wastewater discharge standard in China.

  13. Pilot-scale evaluation of a novel TiO2-supported V2O5 catalyst for DeNOx at low temperatures at a waste incinerator.

    PubMed

    Jung, Hyounduk; Park, Eunseuk; Kim, Minsu; Jurng, Jongsoo

    2017-03-01

    The removal of NOx by catalytic technology at low temperatures is significant for treatment of flue gas in waste incineration plants, especially at temperatures below 200°C. A novel highly active TiO 2 -supported vanadium oxide catalyst at low temperatures (200-250°C) has been developed for the selective catalytic reduction (SCR) de-NOx process with ammonia. The catalyst was evaluated in a pilot-scale equipment, and the results were compared with those obtained in our previous work using laboratory scale (small volume test) equipment as well as bench-scale laboratory equipment. In the present work, we have performed our experiments in pilot scale equipment using a part of effluent flue gas that was obtained from flue gas cleaning equipment in a full-scale waste incineration plant in South Korea. Based on our previous work, we have prepared a TiO 2 -supported V 2 O 5 catalyst coated (with a loading of 7wt% of impregnated V 2 O 5 ) on a honeycomb cordierite monolith to remove NOx from a waste incinerator flue gas at low temperatures. The NOx (nitrogen oxides) removal efficiency of the SCR catalyst bed was measured in a catalyst fixed-bed reactor (flow rate: 100m 3 h -1 ) using real exhaust gas from the waste incinerator. The experimental results showed that the V 2 O 5 /TiO 2 SCR catalyst exhibited good DeNOx performance (over 98% conversion at an operating temperature of 300°C, 95% at 250°C, and 70% at 200°C), and was much better than the performance of commercial SCR catalysts (as low as 55% conversion at 250°C) under the same operating conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Computational simulation of laboratory-scale volcanic jets

    NASA Astrophysics Data System (ADS)

    Solovitz, S.; Van Eaton, A. R.; Mastin, L. G.; Herzog, M.

    2017-12-01

    Volcanic eruptions produce ash clouds that may travel great distances, significantly impacting aviation and communities downwind. Atmospheric hazard forecasting relies partly on numerical models of the flow physics, which incorporate data from eruption observations and analogue laboratory tests. As numerical tools continue to increase in complexity, they must be validated to fine-tune their effectiveness. Since eruptions are relatively infrequent and challenging to observe in great detail, analogue experiments can provide important insights into expected behavior over a wide range of input conditions. Unfortunately, laboratory-scale jets cannot easily attain the high Reynolds numbers ( 109) of natural volcanic eruption columns. Comparisons between the computational models and analogue experiments can help bridge this gap. In this study, we investigate a 3-D volcanic plume model, the Active Tracer High-resolution Atmospheric Model (ATHAM), which has been used to simulate a variety of eruptions. However, it has not been previously validated using laboratory-scale data. We conducted numerical simulations of three flows that we have studied in the laboratory: a vertical jet in a quiescent environment, a vertical jet in horizontal cross flow, and a particle-laden jet. We considered Reynolds numbers from 10,000 to 50,000, jet-to-cross flow velocity ratios of 2 to 10, and particle mass loadings of up to 25% of the exit mass flow rate. Vertical jet simulations produce Gaussian velocity profiles in the near exit region by 3 diameters downstream, matching the mean experimental profiles. Simulations of air entrainment are of the correct order of magnitude, but they show decreasing entrainment with vertical distance from the vent. Cross flow simulations reproduce experimental trajectories for the jet centerline initially, although confinement appears to impact the response later. Particle-laden simulations display minimal variation in concentration profiles between cases with

  15. PILOT-SCALE REMOVAL OF FLUORIDE FROM LEGACY PLUTONIUM MATERIALS USING VACUUM SALT DISTILLATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R. A.; Pak, D. J.

    2012-09-11

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. In 2011, SRNL adapted the technology for the removal of fluoride from fluoride-bearing salts. The method involved an in situ reaction between potassium hydroxide (KOH) and the fluoride salt to yield potassium fluoride (KF) and the corresponding oxide. The KF and excess KOH can be distilled below 1000{deg}C using vacuum salt distillation (VSD). The apparatus for vacuum distillation contains a zone heated by a furnace and a zone actively cooled using eithermore » recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attaned, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile material in the feed boat. Studies discussed in this report were performed involving the use of non-radioactive simulants in small-scale and pilot-scale systems as well as radioactive testing of a small-scale system with plutonium-bearing materials. Aspects of interest include removable liner design considerations, boat materials, in-line moisture absorption, and salt deposition.« less

  16. REBURNING THERMAL AND CHEMICAL PROCESSES IN A TWO-DIMENSIONAL PILOT-SCALE SYSTEM

    EPA Science Inventory

    The paper describes an experimental investigation of the thermal and chemical processes influencing NOx reduction by natural gas reburning in a two-dimensional pilot-scale combustion system. Reburning effectiveness for initial NOx levels of 50-500 ppm and reburn stoichiometric ra...

  17. REVIEW OF BENCH-, PILOT-, AND FULL-SCALE ORIMULSION (R) COMBUSTION TESTS

    EPA Science Inventory

    The paper gives results of a review of bench-, pilot-, and full-scale Orimulsion combustion tests. A fossil fuel marketed by its producer, Petroleos de Venezuela, S.A. (PdVSA), since the late 1980s as an alternative to coal and heavy fuel oil, Orimulsion is a bitumen-in-water em...

  18. UV/H2O2 process stability and pilot-scale validation for trace organic chemical removal from wastewater treatment plant effluents.

    PubMed

    Miklos, David B; Hartl, Rebecca; Michel, Philipp; Linden, Karl G; Drewes, Jörg E; Hübner, Uwe

    2018-06-01

    This study investigated the removal of 15 trace organic chemicals (TOrCs) occurring at ambient concentrations from municipal wastewater treatment plant effluent by advanced oxidation using UV/H 2 O 2 at pilot-scale. Pseudo first-order rate constants (k obs ) for photolytic as well as combined oxidative and photolytic degradation observed at pilot-scale were validated with results from a bench-scale collimated beam device. No significant difference was determined between pilot- and lab-scale performance. During continuous pilot-scale operation at constant UV fluence of 800 mJ/cm 2 and H 2 O 2 dosage of 10 mg/L, the removal of various TOrCs was investigated. The average observed removal for photo-susceptible (k UV >10 -3  cm 2 /mJ; like diclofenac, iopromide and sulfamethoxazole), moderately photo-susceptible (10 -4 pilot-scale experiments. Additionally, based on removal kinetics of photo-resistant TOrCs, continuous pilot-scale operation revealed high variations of OH-radical exposure determined from removal kinetics of photo-resistant TOrCs, primarily due to nitrite concentration fluctuations in the feed water. Furthermore, a correlation between OH-radical exposure and scavenging capacity could be determined and verified by mechanistic modeling using UV fluence, H 2 O 2 dosage, and standard water quality parameters (i.e., DOC, NO 3 - , NO 2 - and HCO 3 - ) as model input data. This correlation revealed the possibility of OH-radical exposure prediction by water matrix parameters and proved its applicability for pilot-scale operations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. MHD scaling: from astrophysics to the laboratory

    NASA Astrophysics Data System (ADS)

    Ryutov, Dmitri

    2000-10-01

    During the last few years, considerable progress has been made in simulating astrophysical phenomena in laboratory experiments with high power lasers [1]. Astrophysical phenomena that have drawn particular interest include supernovae explosions; young supernova remnants; galactic jets; the formation of fine structures in late supernova remnants by instabilities; and the ablation driven evolution of molecular clouds illuminated by nearby bright stars, which may affect star formation. A question may arise as to what extent the laser experiments, which deal with targets of a spatial scale 0.01 cm and occur at a time scale of a few nanoseconds, can reproduce phenomena occurring at spatial scales of a million or more kilometers and time scales from hours to many years. Quite remarkably, if dissipative processes (like, e.g., viscosity, Joule dissipation, etc.) are subdominant in both systems, and the matter behaves as a polytropic gas, there exists a broad hydrodynamic similarity (the ``Euler similarity" of Ref. [2]) that allows a direct scaling of laboratory results to astrophysical phenomena. Following a review of relevant earlier work (in particular, [3]-[5]), discussion is presented of the details of the Euler similarity related to the presence of shocks and to a special case of a strong drive. After that, constraints stemming from possible development of small-scale turbulence are analyzed. Generalization of the Euler similarity to the case of a gas with spatially varying polytropic index is presented. A possibility of scaled simulations of ablation front dynamics is one more topic covered in this paper. It is shown that, with some additional constraints, a simple similarity exists. This, in particular, opens up the possibility of scaled laboratory simulation of the aforementioned ablation (photoevaporation) fronts. A nonlinear transformation [6] that establishes a duality between implosion and explosion processes is also discussed in the paper. 1. B.A. Remington et

  20. EPOS Multi-Scale Laboratory platform: a long-term reference tool for experimental Earth Sciences

    NASA Astrophysics Data System (ADS)

    Trippanera, Daniele; Tesei, Telemaco; Funiciello, Francesca; Sagnotti, Leonardo; Scarlato, Piergiorgio; Rosenau, Matthias; Elger, Kirsten; Ulbricht, Damian; Lange, Otto; Calignano, Elisa; Spiers, Chris; Drury, Martin; Willingshofer, Ernst; Winkler, Aldo

    2017-04-01

    With continuous progress on scientific research, a large amount of datasets has been and will be produced. The data access and sharing along with their storage and homogenization within a unique and coherent framework is a new challenge for the whole scientific community. This is particularly emphasized for geo-scientific laboratories, encompassing the most diverse Earth Science disciplines and typology of data. To this aim the "Multiscale Laboratories" Work Package (WP16), operating in the framework of the European Plate Observing System (EPOS), is developing a virtual platform of geo-scientific data and services for the worldwide community of laboratories. This long-term project aims at merging the top class multidisciplinary laboratories in Geoscience into a coherent and collaborative network, facilitating the standardization of virtual access to data, data products and software. This will help our community to evolve beyond the stage in which most of data produced by the different laboratories are available only within the related scholarly publications (often as print-version only) or they remain unpublished and inaccessible on local devices. The EPOS multi-scale laboratory platform will provide the possibility to easily share and discover data by means of open access, DOI-referenced, online data publication including long-term storage, managing and curation services and to set up a cohesive community of laboratories. The WP16 is starting with three pilot cases laboratories: (1) rock physics, (2) palaeomagnetic, and (3) analogue modelling. As a proof of concept, first analogue modelling datasets have been published via GFZ Data Services (http://doidb.wdc-terra.org/search/public/ui?&sort=updated+desc&q=epos). The datasets include rock analogue material properties (e.g. friction data, rheology data, SEM imagery), as well as supplementary figures, images and movies from experiments on tectonic processes. A metadata catalogue tailored to the specific communities

  1. A comparison of refuse attenuation in laboratory and field scale lysimeters.

    PubMed

    Youcai, Zhao; Luochun, Wang; Renhua, Hua; Dimin, Xu; Guowei, Gu

    2002-01-01

    For this study, small and middle scale laboratory lysimeters, and a large scale field lysimeter in situ in Shanghai Refuse Landfill, with refuse weights of 187,600 and 10,800,000 kg, respectively, were created. These lysimeters are compared in terms of leachate quality (pH, concentrations of COD, BOD and NH3-N), refuse composition (biodegradable matter and volatile solid) and surface settlement for a monitoring period of 0-300 days. The objectives of this study were to explore both the similarities and disparities between laboratory and field scale lysimeters, and to compare degradation behaviors of refuse at the intensive reaction phase in the different scale lysimeters. Quantitative relationships of leachate quality and refuse composition with placement time show that degradation behaviors of refuse seem to depend heavily on the scales of the lysimeters and the parameters of concern, especially in the starting period of 0-6 months. However, some similarities exist between laboratory and field lysimeters after 4-6 months of placement because COD and BOD concentrations in leachate in the field lysimeter decrease regularly in a parallel pattern with those in the laboratory lysimeters. NH3-N, volatile solid (VS) and biodegradable matter (BDM) also gradually decrease in parallel in this intensive reaction phase for all scale lysimeters as refuse ages. Though the concrete data are different among the different scale lysimeters, it may be considered that laboratory lysimeters with sufficient scale are basically applicable for a rough simulation of a real landfill, especially for illustrating the degradation pattern and mechanism. Settlement of refuse surface is roughly proportional to the initial refuse height.

  2. Pilot scale fermentation of Jerusalem artichoke tuber pulp mashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziobro, G.C.; Williams, L.A.

    1983-01-01

    Processing and fermentation of Jerusalem artichoke (Helianthus tuberosus L.) tuber pulp mashes were successfully carried out at pilot scales of 60 gallons and 1000 gallons. Whole tubers were pulped mechanically into a thick mash and fermented, using commercially available Saccharomyces cerevisiae and selected strains of Kluyveromyces fragilis. EtOH fermentation yields ranging from 50-70% of theoretical maximum were obtained in 3-4 days. Several problems regarding the processing and direct fermentation of tuber pulp mashes are discussed.

  3. Pilot scale evaluation of the BABIU process--upgrading of landfill gas or biogas with the use of MSWI bottom ash.

    PubMed

    Mostbauer, P; Lombardi, L; Olivieri, T; Lenz, S

    2014-01-01

    Biogas or landfill gas can be converted to a high-grade gas rich in methane with the use of municipal solid waste incineration bottom ash as a reactant for fixation of CO2 and H2S. In order to verify results previously obtained at a laboratory scale with 65-90 kg of bottom ash (BA), several test runs were performed at a pilot scale, using 500-1000 kg of bottom ash and up to 9.2 Nm(3)/h real landfill gas from a landfill in the Tuscany region (Italy). The input flow rate was altered. The best process performance was observed at a input flow rate of 3.7 Nm(3)/(htBA). At this flow rate, the removal efficiencies for H2S were approximately 99.5-99%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. PILOT-SCALE EVALUATION OF NEW RESIN APPLICATION EQUIPMENT FOR FIBER- REINFORCED PLASTICS

    EPA Science Inventory

    The article gives results of a pilot-scale evaluation of new resin application equipment for fiber- reinforced plastics. The study, an evaluation and comparison of styrene emissions, utilized Magnum's FIT(TM) nozzle with conventional spray guns and flow coaters (operated at both ...

  5. The pilot plant for electron beam food processing

    NASA Astrophysics Data System (ADS)

    Migdal, W.; Walis, L.; Chmielewski, A. G.

    1993-07-01

    In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in INCT. The pilot plant has been constructed inside an old fort what decreases significantly the cost of the investment. The pilot plant is equipped with a small research accelerator Pilot (10 MeV, 1 kW) and an industrial unit Elektronika (10 MeV, 10 kW). This allows both laboratory and full technological scale testing of the elaborated process to be conducted. The industrial unit is being equipped with e-/X conversion target, for high density products irradiation. On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permissions for permanent treatment of spices, garlic, onions and temporary permissions for mushrooms, and potatoes. Dosimetric methods have been elaborated for the routine use at the plant. In the INCT laboratory methods for the control of e-/X treated food have been established.

  6. National Alliance for Advance Biofuels and Bio-Products Final Technical Report Addendum Hydrothermal Processing Pilot System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyler, James R.

    2015-12-21

    The main objective of the NAABB was to combine science, technology, and engineering expertise from across the nation to break down critical technical barriers to commercialization of algae-based biofuels. As a part of the consortium, Genifuel’s NAABB goals was to fabricate and demonstrate a pilot-scale system to convert algae into fuels. The purpose of this pilot system was to show that processes developed in the laboratory at bench-scale during the program could be successfully scaled up to a pre-commercial level, and thereby provide visibility into the ultimate viability and cost of algae biofuels. The pilot system has now been completedmore » and tested, and this report documents what has been achieved.« less

  7. [Yield of starch extraction from plantain (Musa paradisiaca). Pilot plant study].

    PubMed

    Flores-Gorosquera, Emigdia; García-Suárez, Francisco J; Flores-Huicochea, Emmanuel; Núñez-Santiago, María C; González-Soto, Rosalia A; Bello-Pérez, Luis A

    2004-01-01

    In México, the banana (Musa paradisiaca) is cooked (boiling or deep frying) before being eaten, but the consumption is not very popular and a big quantity of the product is lost after harvesting. The unripe plantain has a high level of starch and due to this the use of banana can be diversified as raw material for starch isolation. The objective of this work was to study the starch yield at pilot plant scale. Experiments at laboratory scale were carried out using the pulp with citric acid to 0,3 % (antioxidant), in order to evaluate the different unitary operations of the process. The starch yield, based on starch presence in the pulp that can be isolated, were between 76 and 86 %, and the values at pilot plant scale were between 63 and 71 %, in different lots of banana fruit. Starch yield values were similar among the diverse lots, showing that the process is reproducible. The lower values of starch recovery at pilot plant scale are due to the loss during sieving operations; however, the amount of starch recovery is good.

  8. Design of a laboratory scale fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Wikström, E.; Andersson, P.; Marklund, S.

    1998-04-01

    The aim of this project was to construct a laboratory scale fluidized bed reactor that simulates the behavior of full scale municipal solid waste combustors. The design of this reactor is thoroughly described. The size of the laboratory scale fluidized bed reactor is 5 kW, which corresponds to a fuel-feeding rate of approximately 1 kg/h. The reactor system consists of four parts: a bed section, a freeboard section, a convector (postcombustion zone), and an air pollution control (APC) device system. The inside diameter of the reactor is 100 mm at the bed section and it widens to 200 mm in diameter in the freeboard section; the total height of the reactor is 1760 mm. The convector part consists of five identical sections; each section is 2700 mm long and has an inside diameter of 44.3 mm. The reactor is flexible regarding the placement and number of sampling ports. At the beginning of the first convector unit and at the end of each unit there are sampling ports for organic micropollutants (OMP). This makes it possible to study the composition of the flue gases at various residence times. Sampling ports for inorganic compounds and particulate matter are also placed in the convector section. All operating parameters, reactor temperatures, concentrations of CO, CO2, O2, SO2, NO, and NO2 are continuously measured and stored at selected intervals for further evaluation. These unique features enable full control over the fuel feed, air flows, and air distribution as well as over the temperature profile. Elaborate details are provided regarding the configuration of the fuel-feeding systems, the fluidized bed, the convector section, and the APC device. This laboratory reactor enables detailed studies of the formation mechanisms of OMP, such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), poly-chlorinated biphenyls (PCBs), and polychlorinated benzenes (PCBzs). With this system formation mechanisms of OMP occurring in both the combustion

  9. IARC - Illinois Accelerator Research Center | Pilot Program

    Science.gov Websites

    Toggle navigation Pilot Program Agenda Directions Registration Illinois Accelerator Research Center National Laboratory present Accelerator Stewardship Test Facility Pilot Program Use accelerator technology , energy and environment. With this pilot program, the DOE Office of Science National Laboratories are

  10. Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater.

    PubMed

    Cusick, Roland D; Bryan, Bill; Parker, Denny S; Merrill, Matthew D; Mehanna, Maha; Kiely, Patrick D; Liu, Guangli; Logan, Bruce E

    2011-03-01

    A pilot-scale (1,000 L) continuous flow microbial electrolysis cell was constructed and tested for current generation and COD removal with winery wastewater. The reactor contained 144 electrode pairs in 24 modules. Enrichment of an exoelectrogenic biofilm required ~60 days, which is longer than typically needed for laboratory reactors. Current generation was enhanced by ensuring adequate organic volatile fatty acid content (VFA/SCOD ≥ 0.5) and by raising the wastewater temperature (31 ± 1°C). Once enriched, SCOD removal (62 ± 20%) was consistent at a hydraulic retention time of 1 day (applied voltage of 0.9 V). Current generation reached a maximum of 7.4 A/m(3) by the planned end of the test (after 100 days). Gas production reached a maximum of 0.19 ± 0.04 L/L/day, although most of the product gas was converted to methane (86 ± 6%). In order to increase hydrogen recovery in future tests, better methods will be needed to isolate hydrogen gas produced at the cathode. These results show that inoculation and enrichment procedures are critical to the initial success of larger-scale systems. Acetate amendments, warmer temperatures, and pH control during startup were found to be critical for proper enrichment of exoelectrogenic biofilms and improved reactor performance.

  11. Composting in small laboratory pilots: performance and reproducibility.

    PubMed

    Lashermes, G; Barriuso, E; Le Villio-Poitrenaud, M; Houot, S

    2012-02-01

    Small-scale reactors (<10 l) have been employed in composting research, but few attempts have assessed the performance of composting considering the transformations of organic matter. Moreover, composting at small scales is often performed by imposing a fixed temperature, thus creating artificial conditions, and the reproducibility of composting has rarely been reported. The objectives of this study are to design an innovative small-scale composting device safeguarding self-heating to drive the composting process and to assess the performance and reproducibility of composting in small-scale pilots. The experimental setup included six 4-l reactors used for composting a mixture of sewage sludge and green wastes. The performance of the process was assessed by monitoring the temperature, O(2) consumption and CO(2) emissions, and characterising the biochemical evolution of organic matter. A good reproducibility was found for the six replicates with coefficients of variation for all parameters generally lower than 19%. An intense self-heating ensured the existence of a spontaneous thermophilic phase in all reactors. The average loss of total organic matter (TOM) was 46% of the initial content. Compared to the initial mixture, the hot water soluble fraction decreased by 62%, the hemicellulose-like fraction by 68%, the cellulose-like fraction by 50% and the lignin-like fractions by 12% in the final compost. The TOM losses, compost stabilisation and evolution of the biochemical fractions were similar to observed in large reactors or on-site experiments, excluding the lignin degradation, which was less important than in full-scale systems. The reproducibility of the process and the quality of the final compost make it possible to propose the use of this experimental device for research requiring a mass reduction of the initial composted waste mixtures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Students' Pilot Laboratory for Homogeneous Chemical Reactor Analysis and Design in Olive Mill Wastewater Treatment

    ERIC Educational Resources Information Center

    Ochando-Pulido, J. M.

    2017-01-01

    The Chemical Engineering Department at the University of Granada have endeavored to make a number of high quality experiments to familiarize our students with our latest research and also scale-up of processes. A pilot-scale wastewater treatment plant was set-up to give students a close practical view of the treatments of effluents by-produced in…

  13. The Poverty and Housing Scale: report on a pilot study.

    PubMed

    Galambos, Colleen M; MacMaster, Samuel A

    2004-01-01

    The measurement of beliefs and attitudes on poverty and housing is important to researchers and social workers interested in examining the role that belief structures have on the development of policy and programs in these areas. This article reports pilot study findings of a new scale, The Poverty and Housing Scale (PHS), that measures this concept and evaluates its psychometric properties. Preliminary reliability was in the very good range. Examinations of content and face validity provided support of the instrument as a valid measure of beliefs and attitudes on poverty and housing. The factor analysis emerged a one factor, 13-item scale. Unlike other related scales, the PHS attempts to link the social factor of poverty and housing together. Theoretical and methodological strengths and weaknesses are considered and the implications for social work practice are discussed. The authors provide recommendations for additional testing of the instrument.

  14. Fracture induced electromagnetic emissions: extending laboratory findings by observations at the geophysical scale

    NASA Astrophysics Data System (ADS)

    Potirakis, Stelios M.; Contoyiannis, Yiannis; Kopanas, John; Kalimeris, Anastasios; Antonopoulos, George; Peratzakis, Athanasios; Eftaxias, Konstantinos; Nomicos, Constantinos

    2014-05-01

    Under natural conditions, it is practically impossible to install an experimental network on the geophysical scale using the same instrumentations as in laboratory experiments for understanding, through the states of stress and strain and their time variation, the laws that govern the friction during the last stages of EQ generation, or to monitor (much less to control) the principal characteristics of a fracture process. Fracture-induced electromagnetic emissions (EME) in a wide range of frequency bands are sensitive to the micro-structural chances. Thus, their study constitutes a nondestructive method for the monitoring of the evolution of damage process at the laboratory scale. It has been suggested that fracture induced MHz-kHz electromagnetic (EM) emissions, which emerge from a few days up to a few hours before the main seismic shock occurrence permit a real time monitoring of the damage process during the last stages of earthquake preparation, as it happens at the laboratory scale. Since the EME are produced both in the case of the laboratory scale fracture and the EQ preparation process (geophysical scale fracture) they should present similar characteristics in these two scales. Therefore, both the laboratory experimenting scientists and the experimental scientists studying the pre-earthquake EME could benefit from each- other's results. Importantly, it is noted that when studying the fracture process by means of laboratory experiments, the fault growth process normally occurs violently in a fraction of a second. However, a major difference between the laboratory and natural processes is the order-of-magnitude differences in scale (in space and time), allowing the possibility of experimental observation at the geophysical scale for a range of physical processes which are not observable at the laboratory scale. Therefore, the study of fracture-induced EME is expected to reveal more information, especially for the last stages of the fracture process, when it

  15. Evaluation of pilot-scale pulse-corona-induced plasma device to remove NO{sub x} from combustion exhausts from a subscale combustor and from a hush house at Nellis AFB, Nevada. Final report, August 1994--January 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haythornthwaite, S.M.; Durham, M.D.; Anderson, G.L.

    1997-05-01

    Jet engine test cells (JETCs) are used to test-fire new, installed, and reworked jet engines. Because JETCs have been classified as stationary sources of pollutant emissions, they are subject to possible regulation under Title 1 of the Clean Air Act (CAA) as amended in 1990. In Phase 1 of the Small Business Innovation Research (SBIR) program, a novel NOx-control approach utilizing pulsed-corona-induced plasma successfully showed 90% removal of NOx in the laboratory. The objective of Phase 2 was to reproduce the laboratory-scale results in a pilot-scale system. The technology was successfully demonstrated at pilot scale in the field, on amore » slipstream of JETC flue gas at Nellis Air Force Base. Based on the field data, cost projections were made for a system to treat the full JETC exhaust. The technology efficiently converted NO into ONO, and a wet scrubber was required to achieve the treatment goal of 50-percent removal and destruction of NOx. The plasma simultaneously removes hydrocarbons from the flue gas stream. This project demonstrated that pulse-corona-induced plasma technology is scalable to practical industrial dimensions.« less

  16. Using minced horseradish roots and peroxides for the deodorization of swine manure: a pilot scale study.

    PubMed

    Govere, Ephraim M; Tonegawa, Masami; Bruns, Mary Ann; Wheeler, Eileen F; Kephart, Kenneth B; Voigt, Jean W; Dec, Jerzy

    2007-04-01

    Enzymes that have proven to be capable of removing toxic compounds from water and soil may also be useful in the deodorization of animal manures. Considering that pork production in the US is a $40-billion industry with over half a million workers, odor control to protect air quality in the neighboring communities must be considered an essential part of managing livestock facilities. This pilot scale (20-120 L) study tested the use of minced horseradish (Armoracia rusticana L.) roots (1:10 roots to swine slurry ratio), with calcium peroxide (CaO(2) at 34 mM) or hydrogen peroxide (H(2)O(2) at 68 mM), to deodorize swine slurry taken from a 40,000-gallon storage pit at the Pennsylvania State University's Swine Center. Horseradish is known to contain large amounts of peroxidase, an enzyme that, in the presence of peroxides, can polymerize phenolic odorants and thus reduce the malodor. Twelve compounds commonly associated with malodor (seven volatile fatty acids or VFAs, three phenolic compounds and two indolic compounds) were used as odor indicators. Their concentration in swine slurry before and after treatment was determined by gas chromatography (GC) to assess the deodorization effect. The pilot scale testing demonstrated a complete removal of phenolic odorants (with a detection limit of 0.5 mg L(-1)) from the swine slurry, which was consistent with our previous laboratory experiments using 30-mL swine slurry samples. Horseradish could be recycled (reused) five times while retaining significant reduction in the concentration of phenolic odorants. In view of these findings, inexpensive plant materials, such as horseradish, represent a promising tool for eliminating phenolic odorants from swine slurry.

  17. DESIGN OF A SURFACTANT REMEDIATION FIELD DEMONSTRATION BASED ON LABORATORY AND MODELINE STUDIES

    EPA Science Inventory

    Surfactant-enhanced subsurface remediation is being evaluated as an innovative technology for expediting ground-water remediation. This paper reports on laboratory and modeling studies conducted in preparation for a pilot-scale field test of surfactant-enhanced subsurface remedia...

  18. Optimization of the inter-tablet coating uniformity for an active coating process at lab and pilot scale.

    PubMed

    Just, Sarah; Toschkoff, Gregor; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes; Knop, Klaus; Kleinebudde, Peter

    2013-11-30

    The objective of this study was to enhance the inter-tablet coating uniformity in an active coating process at lab and pilot scale by statistical design of experiments. The API candesartan cilexetil was applied onto gastrointestinal therapeutic systems containing the API nifedipine to obtain fixed dose combinations of these two drugs with different release profiles. At lab scale, the parameters pan load, pan speed, spray rate and number of spray nozzles were examined. At pilot scale, the parameters pan load, pan speed, spray rate, spray time, and spray pressure were investigated. A low spray rate and a high pan speed improved the coating uniformity at both scales. The number of spray nozzles was identified as the most influential variable at lab scale. With four spray nozzles, the highest CV value was equal to 6.4%, compared to 13.4% obtained with two spray nozzles. The lowest CV of 4.5% obtained with two spray nozzles was further reduced to 2.3% when using four spray nozzles. At pilot scale, CV values between 2.7% and 11.1% were achieved. Since the test of uniformity of dosage units accepts CV values of up to 6.25%, this active coating process is well suited to comply with the pharmacopoeial requirements. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Composting in small laboratory pilots: Performance and reproducibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lashermes, G.; Barriuso, E.; Le Villio-Poitrenaud, M.

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer We design an innovative small-scale composting device including six 4-l reactors. Black-Right-Pointing-Pointer We investigate the performance and reproducibility of composting on a small scale. Black-Right-Pointing-Pointer Thermophilic conditions are established by self-heating in all replicates. Black-Right-Pointing-Pointer Biochemical transformations, organic matter losses and stabilisation are realistic. Black-Right-Pointing-Pointer The organic matter evolution exhibits good reproducibility for all six replicates. - Abstract: Small-scale reactors (<10 l) have been employed in composting research, but few attempts have assessed the performance of composting considering the transformations of organic matter. Moreover, composting at small scales is often performed by imposing a fixed temperature, thus creatingmore » artificial conditions, and the reproducibility of composting has rarely been reported. The objectives of this study are to design an innovative small-scale composting device safeguarding self-heating to drive the composting process and to assess the performance and reproducibility of composting in small-scale pilots. The experimental setup included six 4-l reactors used for composting a mixture of sewage sludge and green wastes. The performance of the process was assessed by monitoring the temperature, O{sub 2} consumption and CO{sub 2} emissions, and characterising the biochemical evolution of organic matter. A good reproducibility was found for the six replicates with coefficients of variation for all parameters generally lower than 19%. An intense self-heating ensured the existence of a spontaneous thermophilic phase in all reactors. The average loss of total organic matter (TOM) was 46% of the initial content. Compared to the initial mixture, the hot water soluble fraction decreased by 62%, the hemicellulose-like fraction by 68%, the cellulose-like fraction by 50% and the lignin-like fractions by 12% in the

  20. Stable operation during pilot-scale anaerobic digestion of nutrient-supplemented maize/sugar beet silage.

    PubMed

    Nges, Ivo Achu; Björn, Annika; Björnsson, Lovisa

    2012-08-01

    Biogas production from maize/sugar beet silage was studied under mesophilic conditions in a continuous stirred tank reactor pilot-scale process. While energy crop mono-digestion is often performed with very long hydraulic retention times (HRTs), the present study demonstrated an efficient process operating with a 50-day HRT and a corrected total solids (TS(corr)) based organic loading rate of 3.4 kg/m(3)d. The good performance was attributed to supplementation with both macro- and micronutrients and was evidenced by good methane yields (318 m(3)/ton TS(corr)), which were comparable to laboratory maximum expected yields, plus low total volatile fatty acid concentrations (<0.8 g/L). A viscoplastic and thixotropic digester fluid behaviour was observed, and the viscosity problems common in crop mono-digestion were not seen in this study. The effluent also complied with Swedish certification standards for bio-fertilizer for farmland application. Nutrient addition thus rendered a stable biogas process, while the effluent was a good quality bio-fertilizer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Effects of cadmium on the performance and microbiology of laboratory-scale lagoons treating domestic sewage.

    PubMed

    Bonnet, J L; Bohatier, J; Pépin, D

    1999-06-01

    Two experiments were performed to assess the impact of cadmium on the sewage lagoon wastewater treatment process. For each one, three laboratory-scale pilot plants with one tank receiving the same raw effluent were used; one plant served as control and the other two were contaminated once only with cadmium. In the first study, the effects of a shock load of two concentrations of cadmium chloride (60 and 300 micrograms/l) on the plant performance, microbial populations (protists and bacteria) and enzyme activities were determined. Initially, most of the performance parameters were affected concentration-dependently. A reduction in the protist population density and some influence on the total bacterial population were observed, and the potential enzymatic activities were also modified. A second experiment with a lower cadmium concentration (30 micrograms/l), supplied as chloride or sulphate, still perturbed most of the parameters studied, and the effects of the two cadmium salts were identical.

  2. Beyond-laboratory-scale prediction for channeling flows through subsurface rock fractures with heterogeneous aperture distributions revealed by laboratory evaluation

    NASA Astrophysics Data System (ADS)

    Ishibashi, Takuya; Watanabe, Noriaki; Hirano, Nobuo; Okamoto, Atsushi; Tsuchiya, Noriyoshi

    2015-01-01

    The present study evaluates aperture distributions and fluid flow characteristics for variously sized laboratory-scale granite fractures under confining stress. As a significant result of the laboratory investigation, the contact area in fracture plane was found to be virtually independent of scale. By combining this characteristic with the self-affine fractal nature of fracture surfaces, a novel method for predicting fracture aperture distributions beyond laboratory scale is developed. Validity of this method is revealed through reproduction of the results of laboratory investigation and the maximum aperture-fracture length relations, which are reported in the literature, for natural fractures. The present study finally predicts conceivable scale dependencies of fluid flows through joints (fractures without shear displacement) and faults (fractures with shear displacement). Both joint and fault aperture distributions are characterized by a scale-independent contact area, a scale-dependent geometric mean, and a scale-independent geometric standard deviation of aperture. The contact areas for joints and faults are approximately 60% and 40%. Changes in the geometric means of joint and fault apertures (µm), em, joint and em, fault, with fracture length (m), l, are approximated by em, joint = 1 × 102 l0.1 and em, fault = 1 × 103 l0.7, whereas the geometric standard deviations of both joint and fault apertures are approximately 3. Fluid flows through both joints and faults are characterized by formations of preferential flow paths (i.e., channeling flows) with scale-independent flow areas of approximately 10%, whereas the joint and fault permeabilities (m2), kjoint and kfault, are scale dependent and are approximated as kjoint = 1 × 10-12 l0.2 and kfault = 1 × 10-8 l1.1.

  3. EFFECTS OF LARVAL STOCKING DENSITY ON LABORATORY-SCALE AND COMMERICAL-SCALE PRODUCTION OF SUMMER FLOUNDER, PARALICHTHYS DENTATUS

    EPA Science Inventory

    Three experiments investigating larval stocking densities of summer flounder from hatch to metamorphosis, Paralichthys dentatus, were conducted at laboratory-scale (75-L aquaria) and at commercial scale (1,000-L tanks). Experiments 1 and 2 at commercial scale tested the densities...

  4. Transformation of Bisphenol A in Water Distribution Systems, A Pilot-scale Study

    EPA Science Inventory

    Halogenations of bisphenol A (BPA) in a pilot-scale water distribution system (WDS) of cement-lined ductile cast iron pipe were investigated under the condition: pH 7.3±0.3, water flow velocity of 1.0 m/s, and 25 °C ± 1 °C in water temperature. The testing water was chlorinated f...

  5. Ultra scale-down device to predict dewatering levels of solids recovered in a continuous scroll decanter centrifuge.

    PubMed

    Lopes, A G; Keshavarz-Moore, E

    2013-01-01

    During centrifugation operation, the major challenge in the recovery of extracellular proteins is the removal of the maximum liquid entrapped within the spaces between the settled solids-dewatering level. The ability of the scroll decanter centrifuge (SDC) to process continuously large amounts of feed material with high concentration of solids without the need for resuspension of feeds, and also to achieve relatively high dewatering, could be of great benefit for future use in the biopharmaceutical industry. However, for reliable prediction of dewatering in such a centrifuge, tests using the same kind of equipment at pilot-scale are required, which are time consuming and costly. To alleviate the need of pilot-scale trials, a novel USD device, with reduced amounts of feed (2 mL) and to be used in the laboratory, was developed to predict the dewatering levels of a SDC. To verify USD device, dewatering levels achieved were plotted against equivalent compression (Gtcomp ) and decanting (Gtdec ) times, obtained from scroll rates and feed flow rates operated at pilot-scale, respectively. The USD device was able to successfully match dewatering trends of the pilot-scale as a function of both Gtcomp and Gtdec , particularly for high cell density feeds, hence accounting for all key variables that influenced dewatering in a SDC. In addition, it accurately mimicked the maximum dewatering performance of the pilot-scale equipment. Therefore the USD device has the potential to be a useful tool at early stages of process development to gather performance data in the laboratory thus minimizing lengthy and costly runs with pilot-scale SDC. © 2013 American Institute of Chemical Engineers.

  6. Pilot scale demonstration of D-lactic acid fermentation facilitated by Ca(OH)2 using a metabolically engineered Escherichia coli.

    PubMed

    Liu, Ye; Gao, Wa; Zhao, Xiao; Wang, Jinhua; Garza, Erin; Manow, Ryan; Zhou, Shengde

    2014-10-01

    In this study, a genetically engineered Escherichia coli strain, HBUT-D (ΔpflB Δpta ΔfrdABCD ΔadhE Δald ΔcscR), was initially evaluated on a laboratory scale (7 L) in a glucose (130 g L(-1)) mineral salts medium for d-lactic acid fermentation using 6N KOH, Ca(OH)2 or NH4OH as the neutralizing agent. Fermentations neutralized by Ca(OH) 2 achieved a volumetric productivity of 6.35 g L(-1) h(-1), tripling that achieved by KOH (1.71 g L(-1) h(-1)) and NH4OH (1.5 g L(-1) h(-1)). The facilitative effect of Ca(OH)2 neutralization was then demonstrated on a pilot scale (6 ton vessel, 130 kg glucose ton(-1)), resulting in a volumetric productivity of 6 kg ton(-1) h(-1), a titer of 126 kg ton(-1), a yield of 97%, and an optical purity of 99.5%. These results demonstrated that E. coli HBUT-D is a promising strain for large scale d-lactic acid fermentation using mineral salts medium and Ca(OH)2 for neutralization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Performance of a pilot-scale constructed wetland system for treating simulated ash basin water.

    PubMed

    Dorman, Lane; Castle, James W; Rodgers, John H

    2009-05-01

    A pilot-scale constructed wetland treatment system (CWTS) was designed and built to decrease the concentration and toxicity of constituents of concern in ash basin water from coal-burning power plants. The CWTS was designed to promote the following treatment processes for metals and metalloids: precipitation as non-bioavailable sulfides, co-precipitation with iron oxyhydroxides, and adsorption onto iron oxides. Concentrations of Zn, Cr, Hg, As, and Se in simulated ash basin water were reduced by the CWTS to less than USEPA-recommended water quality criteria. The removal efficiency (defined as the percent concentration decrease from influent to effluent) was dependent on the influent concentration of the constituent, while the extent of removal (defined as the concentration of a constituent of concern in the CWTS effluent) was independent of the influent concentration. Results from toxicity experiments illustrated that the CWTS eliminated influent toxicity with regard to survival and reduced influent toxicity with regard to reproduction. Reduction in potential for scale formation and biofouling was achieved through treatment of the simulated ash basin water by the pilot-scale CWTS.

  8. A Flexible Pilot-Scale Setup for Real-Time Studies in Process Systems Engineering

    ERIC Educational Resources Information Center

    Panjapornpon, Chanin; Fletcher, Nathan; Soroush, Masoud

    2006-01-01

    This manuscript describes a flexible, pilot-scale setup that can be used for training students and carrying out research in process systems engineering. The setup allows one to study a variety of process systems engineering concepts such as design feasibility, design flexibility, control configuration selection, parameter estimation, process and…

  9. Performance evaluation of a pilot-scale anaerobic membrane bioreactor (AnMBR) treating ethanol thin stillage.

    PubMed

    Dereli, R K; Urban, D R; Heffernan, B; Jordan, J A; Ewing, J; Rosenberger, G T; Dunaev, T I

    2012-01-01

    The ethanol industry has grown rapidly during the past ten years, mainly due to increasing oil prices. However, efficient and cost-effective solutions for treating thin stillage wastewater have still to be developed. The anaerobic membrane bioreactor (AnMBR) technology combines classical anaerobic treatment in a completely-stirred tank reactor (CSTR) with membrane separation. The combination of these two technologies can achieve a superior effluent quality and also increase biogas production compared to conventional anaerobic solutions. A pilot-scale AnMBR treating thin stillage achieved very high treatment efficiencies in terms of chemical oxygen demand (COD) and total suspended solids (TSS) removal (>98%). An average permeate flux of 4.3 L/m2 x h was achieved at relatively low transmembrane pressure (TMP) values (0.1-0.2 bars) with flat-sheet membranes. Experience gained during the pilot-scale studies provides valuable information for scaling up of AnMBRs treating complex and high-strength wastewaters.

  10. FATE OF SEX HORMONES IN TWO PILOT-SCALE MUNICIPAL WASTEWATER TREATMENT PLANTS: CONVENTIONAL TREATMENT

    EPA Science Inventory

    The fate of seven sex hormones (estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), testosterone, androstenedione, and progesterone) was determined in two pilot-scale wastewater treatment plants operated under conventional loading conditions. The levels of hormon...

  11. Surplus activated sludge dewatering in pilot-scale sludge drying reed beds.

    PubMed

    Stefanakis, A I; Akratos, C S; Melidis, P; Tsihrintzis, V A

    2009-12-30

    A pilot-scale experiment on dewatering of surplus activated sludge (SAS) is presented, where two pilot-scale vertical flow, sludge drying reed beds (SDRBs), planted with Phragmites australis are used. The bottom of the beds is filled with cobbles, connected to the atmosphere through perforated PVC ventilation tubes, in order to achieve oxygen diffusion through the overlying porous medium that is colonized by roots and an abundant nitrifying biomass. Two layers of gravel, of decreasing size from bottom to top, make the drainage layer where the reeds are planted. The two beds were fed according to the following cycle: one week feeding with SAS at rates one 30 kg/m(2)/year and the other 75 kg/m(2)/year, and resting for three weeks. The results show that planted SDRBs can effectively dewater SAS from domestic sewage, the produced residual sludge presents a high dry weight content, the degree of volume reduction depends upon the initial SAS concentration and can be of the order of 90%, and decomposition of organic matter and high levels of mineralization can be achieved. Furthermore, the percolating water is not septic. The fertilizer value of the treated SAS, which contains no added chemicals, is comparable to that of SAS treated by other methods.

  12. Accuracy and precision of Legionella isolation by US laboratories in the ELITE program pilot study.

    PubMed

    Lucas, Claressa E; Taylor, Thomas H; Fields, Barry S

    2011-10-01

    A pilot study for the Environmental Legionella Isolation Techniques Evaluation (ELITE) Program, a proficiency testing scheme for US laboratories that culture Legionella from environmental samples, was conducted September 1, 2008 through March 31, 2009. Participants (n=20) processed panels consisting of six sample types: pure and mixed positive, pure and mixed negative, pure and mixed variable. The majority (93%) of all samples (n=286) were correctly characterized, with 88.5% of samples positive for Legionella and 100% of negative samples identified correctly. Variable samples were incorrectly identified as negative in 36.9% of reports. For all samples reported positive (n=128), participants underestimated the cfu/ml by a mean of 1.25 logs with standard deviation of 0.78 logs, standard error of 0.07 logs, and a range of 3.57 logs compared to the CDC re-test value. Centering results around the interlaboratory mean yielded a standard deviation of 0.65 logs, standard error of 0.06 logs, and a range of 3.22 logs. Sampling protocol, treatment regimen, culture procedure, and laboratory experience did not significantly affect the accuracy or precision of reported concentrations. Qualitative and quantitative results from the ELITE pilot study were similar to reports from a corresponding proficiency testing scheme available in the European Union, indicating these results are probably valid for most environmental laboratories worldwide. The large enumeration error observed suggests that the need for remediation of a water system should not be determined solely by the concentration of Legionella observed in a sample since that value is likely to underestimate the true level of contamination. Published by Elsevier Ltd.

  13. Catalytic thermal cracking of postconsumer waste plastics to fuels. 2. Pilot-scale thermochemical conversion

    USDA-ARS?s Scientific Manuscript database

    Synthetic gasoline and diesel fuels were prepared via catalytic and noncatalytic pyrolysis of waste polyethylene and polypropylene plastics followed by distillation of plastic crude oils. Reaction conditions optimized using a 2 L batch reactor were applied to pilot-scale production of plastic crude ...

  14. SHIRCO PILOT-SCALE INFRARED INCINERATION SYSTEM AT THE ROSE TOWNSHIP DEMODE ROAD SUPERFUND SITE

    EPA Science Inventory

    Under the Superfund Innovative Technology Evaluation or SITE Program, an evaluation was made of the Shirco Pilot-Scale Infrared Incineration System during 17 separate test runs under varying operating conditions. The tests were conducted at the Demode Road Superfund site in Ros...

  15. A pilot-scale study of wet torrefaction treatment for upgrading palm oil empty fruit bunches as clean solid fuel

    NASA Astrophysics Data System (ADS)

    Gusman, M. H.; Sastroredjo, P. N. E.; Prawisudha, P.; Hardianto, T.; Pasek, A. D.

    2017-05-01

    Less utilized empty fruit bunch (EFB) is seldom used as solid biofuel due to its high alkali content that potentially cause ash deposit called slagging and fouling. This phenomenon could harm biomass-fired power plant equipment. Some pre-treatment of EFB is needed to reduce EFB ash deposit potential. The effect of wet torrefaction pre-treatment in laboratory scale was successfully proven in decreasing slagging and fouling potential while increasing EFB calorific value that could fulfill clean solid fuel criteria. This research focuses on wet torrefaction process that conducted on a pilot scale with the capacity of 250 liters. It was found that wet torrefaction process can improve the product’s calorific value up to 9.41% while reduce its ash content down to 1.01% comparing to the raw EFB. The reduction of ash content also leads to the reduction of slagging and fouling tendency that presents in terms of alkali index. Alkali index is a quantitative method that can be calculated after obtaining metal oxides fraction on solid fuel. Metal oxides could be obtained by using energy dispersive x-ray spectroscopy.

  16. Comparison of lab, pilot, and industrial scale low consistency mechanical refining for improvements in enzymatic digestibility of pretreated hardwood.

    PubMed

    Jones, Brandon W; Venditti, Richard; Park, Sunkyu; Jameel, Hasan

    2014-09-01

    Mechanical refining has been shown to improve biomass enzymatic digestibility. In this study industrial high-yield sodium carbonate hardwood pulp was subjected to lab, pilot and industrial refining to determine if the mechanical refining improves the enzymatic hydrolysis sugar conversion efficiency differently at different refining scales. Lab, pilot and industrial refining increased the biomass digestibility for lignocellulosic biomass relative to the unrefined material. The sugar conversion was increased from 36% to 65% at 5 FPU/g of biomass with industrial refining at 67.0 kWh/t, which was more energy efficient than lab and pilot scale refining. There is a maximum in the sugar conversion with respect to the amount of refining energy. Water retention value is a good predictor of improvements in sugar conversion for a given fiber source and composition. Improvements in biomass digestibility with refining due to lab, pilot plant and industrial refining were similar with respect to water retention value. Published by Elsevier Ltd.

  17. A pilot scale electrical infrared dry-peeling system for tomatoes: design and performance evaluation

    USDA-ARS?s Scientific Manuscript database

    A pilot scale infrared dry-peeling system for tomatoes was designed and constructed. The system consisted of three major sections including the IR heating, vacuum, and pinch roller sections. The peeling performance of the system was examined under different operational conditions using tomatoes with...

  18. EPOS-WP16: A coherent and collaborative network of Solid Earth Multi-scale laboratories

    NASA Astrophysics Data System (ADS)

    Calignano, Elisa; Rosenau, Matthias; Lange, Otto; Spiers, Chris; Willingshofer, Ernst; Drury, Martyn; van Kan-Parker, Mirjam; Elger, Kirsten; Ulbricht, Damian; Funiciello, Francesca; Trippanera, Daniele; Sagnotti, Leonardo; Scarlato, Piergiorgio; Tesei, Telemaco; Winkler, Aldo

    2017-04-01

    Laboratory facilities are an integral part of Earth Science research. The diversity of methods employed in such infrastructures reflects the multi-scale nature of the Earth system and is essential for the understanding of its evolution, for the assessment of geo-hazards and for the sustainable exploitation of geo-resources. In the frame of EPOS (European Plate Observing System), the Working Package 16 represents a developing community of European Geoscience Multi-scale laboratories. The participant and collaborating institutions (Utrecht University, GFZ, RomaTre University, INGV, NERC, CSIC-ICTJA, CNRS, LMU, C4G-UBI, ETH, CNR*) embody several types of laboratory infrastructures, engaged in different fields of interest of Earth Science: from high temperature and pressure experimental facilities, to electron microscopy, micro-beam analysis, analogue tectonic and geodynamic modelling and paleomagnetic laboratories. The length scales encompassed by these infrastructures range from the nano- and micrometre levels (electron microscopy and micro-beam analysis) to the scale of experiments on centimetres-sized samples, and to analogue model experiments simulating the reservoir scale, the basin scale and the plate scale. The aim of WP16 is to provide two services by the year 2019: first, providing virtual access to data from laboratories (data service) and, second, providing physical access to laboratories (transnational access, TNA). Regarding the development of a data service, the current status is such that most data produced by the various laboratory centres and networks are available only in limited "final form" in publications, many data remain inaccessible and/or poorly preserved. Within EPOS the TCS Multi-scale laboratories is collecting and harmonizing available and emerging laboratory data on the properties and process controlling rock system behaviour at all relevant scales, in order to generate products accessible and interoperable through services for supporting

  19. NOX REMOVAL WITH COMBINED SELECTIVE CATALYTIC REDUCTION AND SELECTIVE NONCATALYTIC REDUCTION: PILOT- SCALE TEST RESULTS

    EPA Science Inventory

    Pilot-scale tests were conducted to develop a combined nitrogen oxide (NOx) reduction technology using both selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR). A commercially available vanadium-and titatnium-based composite honeycomb catalyst and enh...

  20. Pilot-scale studies on biological treatment of hypersaline wastewater at low temperature.

    PubMed

    Peng, Y Z; Zhu, G B; Wang, S Y; Yu, D S; Cui, Y W; Meng, X S

    2005-01-01

    In order to investigate the feasibility of biological treatment of hypersaline wastewater produced from toilet flushing with seawater at low temperature, pilot-scale studies were established with plug-flow activated sludge process at low temperature (5-9 degrees C) based on bench-scale experiments. The critical salinity concentration of 30 g/L, which resulted from the cooperation results of the non-halophilic bacteria and the halophilic bacteria, was drawn in bench-scale experiments. Pilot-scale studies showed that high COD removal efficiency, higher than 80%, was obtained at low temperature when 30 percent seawater was introduced. The salinity improved the settleability of activated sludge, and average sludge value dropped down from 38% to 22.5% after adding seawater. Seawater salinity had a strong negative effect on notronomonas and nitrobacter growth, but much more on the nitrobacter. The nitrification action was mainly accomplished by nitrosomonas. Bench-scale experiments using two SBRs were carried out for further investigation under different conditions of salinities, ammonia loadings and temperatures. Biological nitrogen removal via nitrite pathway from wastewater containing 30 percent seawater was achieved, but the ammonia removal efficiency was strongly related not only to the influent ammonia loading at different salinities but also to temperature. When the ratio of seawater to wastewater was 30 percent, and the ammonia loading was below the critical value of 0.15 kgNH4+-N/(kgMLSS.d), the ammonia removal efficiency via nitrite pathway was above 90%. The critical level of ammonia loading was 0.15, 0.08 and 0.03 kgNH4+-N/(kgMLSS.d) respectively at the different temperature 30 degrees C, 25 degrees C and 20 degrees C when the influent ammonia concentration was 60-80 mg/L and pH was 7.5-8.0.

  1. Pilot-scale treatability test plan for the 200-BP-5 operable unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This document presents the treatability test plan for pilot-scale pump and treat testing at the 200-BP-5 Operable Unit. This treatability test plan has been prepared in response to an agreement between the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA), and the State of Washington Department of Ecology (Ecology), as documented in Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et al. 1989a) Change Control Form M-13-93-03 (Ecology et al. 1994) and a recent 200 NPL Agreement Change Control Form (Appendix A). The agreement also requires that, following completion of the activities described in thismore » test plan, a 200-BP-5 Operable Unit Interim Remedial Measure (IRM) Proposed Plan be developed for use in preparing an Interim Action Record of Decision (ROD). The IRM Proposed Plan will be supported by the results of this treatability test plan, as well as by other 200-BP-5 Operable Unit activities (e.g., development of a qualitative risk assessment). Once issued, the Interim Action ROD will specify the interim action(s) for groundwater contamination at the 200-BP-5 Operable Unit. The treatability test approach is to conduct a pilot-scale pump and treat test for each of the two contaminant plumes associated with the 200-BP-5 Operable Unit. Primary contaminants of concern are {sup 99}Tc and {sup 60}Co for underwater affected by past discharges to the 216-BY Cribs, and {sup 90}Sr, {sup 239/240}Pu, and Cs for groundwater affected by past discharges to the 216-B-5 Reverse Well. The purpose of the pilot-scale treatability testing presented in this testplan is to provide the data basis for preparing an IRM Proposed Plan. To achieve this objective, treatability testing must: Assess the performance of groundwater pumping with respect to the ability to extract a significant amount of the primary contaminant mass present in the two contaminant plumes.« less

  2. Pilot-scale biopesticide production by Bacillus thuringiensis subsp. kurstaki using starch industry wastewater as raw material.

    PubMed

    Ndao, Adama; Sellamuthu, Balasubramanian; Gnepe, Jean R; Tyagi, Rajeshwar D; Valero, Jose R

    2017-09-02

    Pilot-scale Bacillus thuringiensis based biopesticide production (2000 L bioreactor) was conducted using starch industry wastewater (SIW) as a raw material using optimized operational parameters obtained in 15 L and 150 L fermenters. In pilot scale fermentation process the oxygen transfer rate is a major limiting factor for high product yield. Thus, the volumetric mass transfer coefficient (K L a) remains a tool to determine the oxygen transfer capacity [oxygen utilization rate (OUR) and oxygen transfer rate (OTR)] to obtain better bacterial growth rate and entomotoxicity in new bioreactor process optimization and scale-up. This study results demonstrated that the oxygen transfer rate in 2000 L bioreactor was better than 15 L and 150 L fermenters. The better oxygen transfer in 2000 L bioreactor augmented the bacterial growth [total cell (TC) and viable spore count (SC)] and delta-endotoxin yield. Prepared a stable biopesticide formulation for field use and its entomotoxicity was also evaluated. This study result corroborates the feasibility of industrial scale operation of biopesticide production using starch industry wastewater as raw material.

  3. Fate of estrone in laboratory-scale constructed wetlands

    USDA-ARS?s Scientific Manuscript database

    A horizontal, subsurface, laboratory-scale constructed wetland (CW) consisting of four cells in series was used to determine the attenuation of the steroid hormone estrone (E1) present in animal wastewater. Liquid swine manure diluted 1:80 with farm pond water and dosed with [14C]E1 flowed through ...

  4. Can current analytical quality performance of UK clinical laboratories support evidence-based guidelines for diabetes and ischaemic heart disease?--A pilot study and a proposal.

    PubMed

    Jassam, Nuthar; Yundt-Pacheco, John; Jansen, Rob; Thomas, Annette; Barth, Julian H

    2013-08-01

    The implementation of national and international guidelines is beginning to standardise clinical practice. However, since many guidelines have decision limits based on laboratory tests, there is an urgent need to ensure that different laboratories obtain the same analytical result on any sample. A scientifically-based quality control process will be a pre-requisite to provide this level of analytical performance which will support evidence-based guidelines and movement of patients across boundaries while maintaining standardised outcomes. We discuss the finding of a pilot study performed to assess UK clinical laboratories readiness to work to a higher grade quality specifications such as biological variation-based quality specifications. Internal quality control (IQC) data for HbA1c, glucose, creatinine, cholesterol and high density lipoprotein (HDL)-cholesterol were collected from UK laboratories participating in the Bio-Rad Unity QC programme. The median of the coefficient of variation (CV%) of the participating laboratories was evaluated against the CV% based on biological variation. Except creatinine, the other four analytes had a variable degree of compliance with the biological variation-based quality specifications. More than 75% of the laboratories met the biological variation-based quality specifications for glucose, cholesterol and HDL-cholesterol. Slightly over 50% of the laboratories met the analytical goal for HBA1c. Only one analyte (cholesterol) had a performance achieving the higher quality specifications consistent with 5σ. Our data from IQC do not consistently demonstrate that the results from clinical laboratories meet evidence-based quality specifications. Therefore, we propose that a graded scale of quality specifications may be needed at this stage.

  5. Coaching as Part of a Pilot Quality Rating Scale Initiative: Challenges to--and Supports for--the Change-Making Process

    ERIC Educational Resources Information Center

    Ackerman, Debra J.

    2008-01-01

    Several nonprofit agencies in a large Midwestern city provide assistance to early care and education programs participating in a pilot Quality Rating Scale (QRS) initiative by pairing them with itinerant consultants, who are known as coaches. Despite this assistance, not all programs improve their QRS score. Furthermore, while pilot stakeholders…

  6. Assessing Arsenic Removal by Metal (Hydr)Oxide Adsorptive Media Using Rapid Small Scale Column Tests

    EPA Science Inventory

    The rapid small scale column test (RSSCT) was use to evaluate the the performance of eight commercially available adsorptive media for the removal of arsenic. Side-by-side tests were conducted using RSSCTs and pilot/full-scale systems either in the field or in the laboratory. ...

  7. Determining the Influence of Groundwater Composition on the Performance of Arsenic Adsorption Columns Using Rapid Small-Scale Column Tests

    NASA Astrophysics Data System (ADS)

    Aragon, A. R.; Siegel, M.

    2004-12-01

    The USEPA has established a more stringent drinking water standard for arsenic, reducing the maximum contaminant level (MCL) from 50 μ g/L to 10 μ g/L. This will affect many small communities in the US that lack the appropriate treatment infrastructure and funding to reduce arsenic to such levels. For such communities, adsorption systems are the preferred technology based on ease of operation and relatively lower costs. The performance of adsorption media for the removal of arsenic from drinking water is dependent on site-specific water quality. At certain concentrations, co-occurring solutes will compete effectively with arsenic for sorption sites, potentially reducing the sorption capacity of the media. Due to the site-specific nature of water quality and variations in media properties, pilot scale studies are typically carried out to ensure that a proposed treatment technique is cost effective before installation of a full-scale system. Sandia National Laboratories is currently developing an approach to utilize rapid small-scale columns in lieu of pilot columns to test innovative technologies that could significantly reduce the cost of treatment in small communities. Rapid small-scale column tests (RSSCTs) were developed to predict full-scale treatment of organic contaminants by adsorption onto granular activated carbon (GAC). This process greatly reduced the time and costs required to verify performance of GAC adsorption columns. In this study, the RSSCT methodology is used to predict the removal of inorganic arsenic using mixed metal oxyhydroxide adsorption media. The media are engineered and synthesized from materials that control arsenic behavior in natural and disturbed systems. We describe the underlying theory and application of RSSCTs for the performance evaluation of novel media in several groundwater compositions. Results of small-scale laboratory columns are being used to predict the performance of pilot-scale systems and ultimately to design full-scale

  8. The Sulcis Storage Project: Status of the First Italian Initiative for Pilot-Scale Geological Sequestration of CO2

    NASA Astrophysics Data System (ADS)

    Plaisant, A.; Maggio, E.; Pettinau, A.

    2016-12-01

    The deep aquifer located at a depth of about 1000-1500 m within fractured carbonate in the Sulcis coal basin (South-West Sardinia, Italy) constitutes a potential reservoir to develop a pilot-scale CO2 storage site. The occurrence of several coal mines and the geology of the basin also provide favourable condition to install a permanent infrastructures where advanced CO2 storage technologies can be developed. Overall, the Sulcis project will allow to characterize the Sulcis coal basin (South West Sardinia, Italy) and to develop a permanent infrastructure (know-how, equipment, laboratories, etc.) for advanced international studies on CO2 storage. The research activities are structured in two different phases: (i) site characterization, including the construction of an underground and a fault laboratories and (ii) the installation of a test site for small-scale injection of CO2. In particular, the underground laboratory will host geochemical and geophysical experiments on rocks, taking advantages of the buried environment and the very well confined conditions in the galleries; in parallel, the fault laboratory will be constructed to study CO2 leakage phenomena in a selected fault. The project is currently ongoing and some preliminary results will be presented in this work as well as the structure of the project as a whole. More in detail, preliminary activities comprise: (i) geochemical monitoring; (ii) the minero-petrographycal, physical and geophysical characterization of the rock samples; (iii) the development of both static and dynamic geological models of the reservoir; (iv) the structural geology and fault analysis; (v) the assessment of natural seismicity through a monitoring network (vi) the re-processing and the analysis of the reflection seismic data. Future activities will comprise: (i) the drilling of shallow exploration wells near the faults; (ii) the construction of both the above mentioned laboratories; (iii) drilling of a deep exploration well (1,500 m

  9. Performance of a system with full- and pilot-scale sludge drying reed bed units treating septic tank sludge in Brazil.

    PubMed

    Calderón-Vallejo, Luisa Fernanda; Andrade, Cynthia Franco; Manjate, Elias Sete; Madera-Parra, Carlos Arturo; von Sperling, Marcos

    2015-01-01

    This study investigated the performance of sludge drying reed beds (SDRB) at full- and pilot-scale treating sludge from septic tanks in the city of Belo Horizonte, Brazil. The treatment units, planted with Cynodon spp., were based on an adaptation of the first-stage of the French vertical-flow constructed wetland, originally developed for treating sewage. Two different operational phases were investigated; in the first one, the full-scale unit was used together with six pilot-scale columns in order to test different feeding strategies. For the second phase, only the full-scale unit was used, including a recirculation of the filtered effluent (percolate) to one of the units of the French vertical wetland. Sludge application was done once a week emptying a full truck, during 25 weeks. The sludge was predominantly diluted, leading to low solids loading rates (median values of 18 kgTS m(-2) year(-1)). Chemical oxygen demand removal efficiency in the full-scale unit was reasonable (median of 71%), but the total solids removal was only moderate (median of 44%) in the full-scale unit without recirculation. Recirculation did not bring substantial improvements in the overall performance. The other loading conditions implemented in the pilot columns also did not show statistically different performances.

  10. An automated laboratory-scale methodology for the generation of sheared mammalian cell culture samples.

    PubMed

    Joseph, Adrian; Goldrick, Stephen; Mollet, Michael; Turner, Richard; Bender, Jean; Gruber, David; Farid, Suzanne S; Titchener-Hooker, Nigel

    2017-05-01

    Continuous disk-stack centrifugation is typically used for the removal of cells and cellular debris from mammalian cell culture broths at manufacturing-scale. The use of scale-down methods to characterise disk-stack centrifugation performance enables substantial reductions in material requirements and allows a much wider design space to be tested than is currently possible at pilot-scale. The process of scaling down centrifugation has historically been challenging due to the difficulties in mimicking the Energy Dissipation Rates (EDRs) in typical machines. This paper describes an alternative and easy-to-assemble automated capillary-based methodology to generate levels of EDRs consistent with those found in a continuous disk-stack centrifuge. Variations in EDR were achieved through changes in capillary internal diameter and the flow rate of operation through the capillary. The EDRs found to match the levels of shear in the feed zone of a pilot-scale centrifuge using the experimental method developed in this paper (2.4×10 5 W/Kg) are consistent with those obtained through previously published computational fluid dynamic (CFD) studies (2.0×10 5 W/Kg). Furthermore, this methodology can be incorporated into existing scale-down methods to model the process performance of continuous disk-stack centrifuges. This was demonstrated through the characterisation of culture hold time, culture temperature and EDRs on centrate quality. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Pilot-scale demonstration of SPORL for bioconversion of lodgepole pine to bioethanol and lignosulfonate

    Treesearch

    Haifeng Zhou; Junyong Zhu; Roland Gleisner; Xueqing Qiu; Eric Horn; Jose Negron

    2016-01-01

    The process sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL) has been the focus of this study. Pilot-scale (50 kg) pretreatment of wood chips of lodgepole pine (Pinus contorta Douglas ex Loudon) killed by mountain pine beetle (Dendroctonus ponderosae Hopkins) were conducted at 165°C...

  12. A human laboratory pilot study with baclofen in alcoholic individuals

    PubMed Central

    Leggio, Lorenzo; Zywiak, William H.; McGeary, John E.; Edwards, Steven; Fricchione, Samuel R.; Shoaff, Jessica R.; Addolorato, Giovanni; Swift, Robert M.; Kenna, George A.

    2015-01-01

    Preclinical and clinical studies show that the GABAB receptor agonist baclofen may represent a pharmacotherapy for alcohol dependence (AD). However, the mechanisms by which baclofen affects drinking are not well characterized; thus this pilot study investigated possible baclofen’s biobehavioral mechanisms. The design was a double-blind controlled randomized human laboratory pilot study. Fourteen non-treatment seeking alcohol-dependent heavy drinking subjects received either baclofen 10 mg t.i.d. or an active placebo (cyproheptadine 2 mg t.i.d., to control for sedation) for a 7-day period. At day 8, participants performed an alcohol cue-reactivity (CR) followed by an alcohol self-administration (ASA). Additionally, we explored possible moderators that might guide future larger studies, i.e. anxiety, family history and onset of alcoholism, and D4 dopamine receptor (DRD4) and 5-HTTLPR polymorphisms. The main results were a significant effect of baclofen for increasing stimulation (p=.001) and sedation (p<.01). Furthermore, when drinking during the ASA and the 2 days before was analyzed as a composite variable, there was a significant effect of baclofen to reduce alcohol consumption (p<.01). As for the exploratory analyses, baclofen’s effects to increase alcohol sedation and to reduce alcohol consumption were limited to those individuals with DRD4 ≥7 repeats (DRD4L). Yet, baclofen’s effects on alcohol consumption were also moderated by 5-HTTLPR LL genotype. In conclusion, baclofen’s ability to reduce alcohol drinking may be related to its effects on the biphasic effects of alcohol, but larger studies are needed to confirm these preliminary findings. PMID:23262301

  13. [Integrated skills laboratory concept for undergraduate training in internal medicine].

    PubMed

    Nikendei, C; Schilling, T; Nawroth, P; Hensel, M; Ho, A D; Schwenger, V; Zeier, M; Herzog, W; Schellberg, D; Katus, H A; Dengler, T; Stremmel, W; Müller, M; Jünger, J

    2005-05-06

    An amendment to the German medical curriculum in April 2002 will place basic practical skills at the centre of medical training. We report here on the implementation and evaluation of an obligatory, tutor-guided, and integrated skills laboratory concept in the field of internal medicine. To test the effectiveness of a skills laboratory training on OSCE performance a pilot study was carried out. The experimental group, of 77 students, participated in seven sessions of communication training, skills laboratory training, and bedside teaching, each lasting one and a half hours. The control group of 66 students had as many sessions but was only offered bedside-teaching. The evaluation of acceptance of skills' training as well as the related increase in individual competence is on-going (summer term 2004: n = 176 students). The integrated skills laboratory concept was rated at 3.5 (SD = 1.2) on a 5-point scale and was acknowledged as practice-oriented (M = 4.2; SD = 1.0) and relevant for doctors' everyday lives (M = 3.6; SD = 1.1). Increased levels of competence according to individual self-evaluations proved to be highly significant (p<.001), and results of the pilot study showed that the experimental group had a significantly better OSCE performance than the control group (p<.001). This pilot study shows that curriculum changes promoting basic clinical skills are effective and lead to an improved practical education of tomorrow's physicians. The integrated skills laboratory concept is well accepted and leads to a relevant increase in competence in the practice of internal medical. The presented skills laboratory concept in internal medicine is proving to be a viable and efficient learning tool.

  14. Characterization of seismic properties across scales: from the laboratory- to the field scale

    NASA Astrophysics Data System (ADS)

    Grab, Melchior; Quintal, Beatriz; Caspari, Eva; Maurer, Hansruedi; Greenhalgh, Stewart

    2016-04-01

    When exploring geothermal systems, the main interest is on factors controlling the efficiency of the heat exchanger. This includes the energy state of the pore fluids and the presence of permeable structures building part of the fluid transport system. Seismic methods are amongst the most common exploration techniques to image the deep subsurface in order to evaluate such a geothermal heat exchanger. They make use of the fact that a seismic wave caries information on the properties of the rocks in the subsurface through which it passes. This enables the derivation of the stiffness and the density of the host rock from the seismic velocities. Moreover, it is well-known that the seismic waveforms are modulated while propagating trough the subsurface by visco-elastic effects due to wave induced fluid flow, hence, delivering information about the fluids in the rock's pore space. To constrain the interpretation of seismic data, that is, to link seismic properties with the fluid state and host rock permeability, it is common practice to measure the rock properties of small rock specimens in the laboratory under in-situ conditions. However, in magmatic geothermal systems or in systems situated in the crystalline basement, the host rock is often highly impermeable and fluid transport predominately takes place in fracture networks, consisting of fractures larger than the rock samples investigated in the laboratory. Therefore, laboratory experiments only provide the properties of relatively intact rock and an up-scaling procedure is required to characterize the seismic properties of large rock volumes containing fractures and fracture networks and to study the effects of fluids in such fractured rock. We present a technique to parameterize fractured rock volumes as typically encountered in Icelandic magmatic geothermal systems, by combining laboratory experiments with effective medium calculations. The resulting models can be used to calculate the frequency-dependent bulk

  15. Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale.

    PubMed

    Oller, I; Gernjak, W; Maldonado, M I; Pérez-Estrada, L A; Sánchez-Pérez, J A; Malato, S

    2006-12-01

    The technical feasibility and performance of photocatalytic degradation of six water-soluble pesticides (cymoxanil, methomyl, oxamyl, dimethoate, pyrimethanil and telone) have been studied at pilot-plant scale in two well-defined systems which are of special interest because natural solar UV light can be used: heterogeneous photocatalysis with titanium dioxide and homogeneous photocatalysis by photo-Fenton. TiO(2) photocatalysis tests were performed in a 35L solar pilot plant with three Compound Parabolic Collectors (CPCs) under natural illumination and a 75L solar pilot plant with four CPC units was used for homogeneous photocatalysis tests. The initial pesticide concentration studied was 50 mg L(-1) and the catalyst concentrations employed were 200 mg L(-1) of TiO(2) and 20 mg L(-1) of iron. Both toxicity (Vibrio fischeri, Biofix) and biodegradability (Zahn-Wellens test) of the initial pesticide solutions were also measured. Total disappearance of the parent compounds and nearly complete mineralization were attained with all pesticides tested. Treatment time, hydrogen peroxide consumption and release of heteroatoms are discussed.

  16. Odour in composting processes at pilot scale: monitoring and biofiltration.

    PubMed

    Gutiérrez, M C; Serrano, A; Martín, M A; Chica, A F

    2014-08-01

    Although odour emissions associated with the composting process, especially during the hydrolytic stage, are widely known, their impact on surrounding areas is not easily quantifiable, For this reason, odour emissions during the first stage ofcomposting were evaluated by dynamic olfactometry at pilot scale in order to obtain results which can be extrapolated to industrial facilities. The composting was carried out in a commercial dynamic respirometer equipped with two biofilters at pilot scale filled with prunings (Populus) and mature compost obtained from the organic fraction of municipal solid waste. Given that the highest odour emissions occur in the first stage of the composting process, this stage was carried out in a closed system to better control the odour emissions, whose maximum value was estimated to be 2.78 ouF S-1 during the experiments. Odour concentration, the dynamic respiration index and temperature showed the same evolution during composting, thus indicating that odour could be a key variable in the monitoring process. Other variables such as total organic carbon (CTOC) and pH were also found to be significant in this study due to their influence over odour emissions. The efficiency of the biofilters (empty bed residence time of 86 s) was determined by quantifying the odour emissions at the inlet and outlet of both biofilters. The moisture content in the biofilters was found to be an important variable for improving odour removal efficiency, while the minimum moisture percentage to obtain successful results was found to be 55% (odour removal efficiency of 95%).

  17. Argonne National Laboratory's Recycling Pilot Plant

    ScienceCinema

    Spangenberger, Jeff; Jody, Sam

    2018-05-30

    Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills. For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

  18. Development and operation of innovative scum to biodiesel pilot-system for the treatment of floatable wastewater scum.

    PubMed

    Anderson, Erik; Addy, Min; Chen, Paul; Ruan, Roger

    2018-02-01

    A novel process was developed for the biorefining of floatable wastewater scum and other waste oils from water treatment facilities into biodiesel and other value-added bio-products. To test the scalability and commercial potential of the technology, a 7000 l/year pilot-scale system was designed and built. Scum from a wastewater treatment facility, located in St. Paul, Mn, was collected and converted into methyl esters (biodiesel) according to the process chemistry. All of the incoming and outgoing process streams were sampled, tested, weighed and recorded to calculate both the process efficiency and product quality. Data from the pilot-scale system operation was compared to laboratory results and the theoretically expected values for each individual unit operation. The biodiesel was tested using a third party laboratory and confirmed it met all of the US EPA's test requirements for commercial-grade biodiesel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. SIMILARITY PROPERTIES AND SCALING LAWS OF RADIATION HYDRODYNAMIC FLOWS IN LABORATORY ASTROPHYSICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falize, E.; Bouquet, S.; Michaut, C., E-mail: emeric.falize@cea.fr

    The spectacular recent development of modern high-energy density laboratory facilities which concentrate more and more energy in millimetric volumes allows the astrophysical community to reproduce and to explore, in millimeter-scale targets and during very short times, astrophysical phenomena where radiation and matter are strongly coupled. The astrophysical relevance of these experiments can be checked from the similarity properties and especially scaling law establishment, which constitutes the keystone of laboratory astrophysics. From the radiating optically thin regime to the so-called optically thick radiative pressure regime, we present in this paper, for the first time, a complete analysis of the main radiatingmore » regimes that we encountered in laboratory astrophysics with the same formalism based on Lie group theory. The use of the Lie group method appears to be a systematic method which allows us to construct easily and systematically the scaling laws of a given problem. This powerful tool permits us to unify the recent major advances on scaling laws and to identify new similarity concepts that we discuss in this paper, and suggests important applications for present and future laboratory astrophysics experiments. All these results enable us to demonstrate theoretically that astrophysical phenomena in such radiating regimes can be explored experimentally thanks to powerful facilities. Consequently, the results presented here are a fundamental tool for the high-energy density laboratory astrophysics community in order to quantify the astrophysics relevance and justify laser experiments. Moreover, relying on Lie group theory, this paper constitutes the starting point of any analysis of the self-similar dynamics of radiating fluids.« less

  20. Bench-Scale and Pilot-Scale Treatment Technologies for the ...

    EPA Pesticide Factsheets

    Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have established TDS wastewater regulations and the US EPA has proposed a benchmark conductivity limit to reduce TDS impacts in streams near mining sites. Traditional CMW treatment effectively removes some TDS components, but is not effective in removing major salt ions due to their higher solubility. This paper describes the basic principles, effectiveness, advantages and disadvantages of various TDS removal technologies (adsorption, bioremediation, capacitive deionization, desalination, electro-chemical ion exchange, electrocoagulation, electrodialysis, ion exchange, membrane filtration, precipitation, and reverse osmosis) that have at least been tested in bench- and pilot-scale experiments. Recent discussions about new regulations to include total dissolved solids TDS) limits would propel interest in the TDS removal technologies focused on coal mine water. TDS removal is not a new concept and has been developed using different technologies for a number of applications, but coal mine water has unique characteristics (depending on the site, mining process, and solid-water-oxygen interactions), which make it unlikely to have a single technology predominating over others. What are some novel technolog

  1. Preliminary investigation of the STBBI Stigma Scale: Description and pilot results.

    PubMed

    Wagner, Anne C; MacLean, Rachel

    2017-11-09

    Sexually transmitted and blood-borne infections (STBBIs) are associated with stigmatizing attitudes and beliefs, which can affect the quality of and access to health care, as well as mental health and quality of life. The current study describes the adaptation from an HIV-related stigma scale and pilot testing of a new STBBI Stigma Scale, assessing the stigmatizing attitudes and beliefs of health and social service providers in Canada. 144 health and social service providers from across Canada completed the newly adapted scale assessing stigma associated with HIV, hepatitis C, other viral STBBIs and bacterial STBBIs, as well as demographic information, a scale of social desirability and measures of convergent and divergent validity. Participants were recruited through listservs and completed the scale online. The new scale, consisting of 21 items for each category, demonstrated excellent internal consistency, reliability, and convergent and divergent validity. The factor structure of the scale supports a tripartite model of stigma consisting of stereotyping, prejudice and discrimination. Stereotyping had the highest relative scores on the subscales, and attitudes regarding other viral STBBIs differed significantly from the other STBBI categories. The new scale provides a contextually relevant and applicable psychometrically valid tool to assess STBBI-related stigma among health and social service providers in Canada. The tool can be used to assess attitudes and beliefs, as well as guide self-assessment and possible trainings for providers.

  2. Development of a method for reliable power input measurements in conventional and single‐use stirred bioreactors at laboratory scale

    PubMed Central

    Werner, Sören; Jossen, Valentin; Kraume, Matthias; Eibl, Dieter

    2016-01-01

    Power input is an important engineering and scale‐up/down criterion in stirred bioreactors. However, reliably measuring power input in laboratory‐scale systems is still challenging. Even though torque measurements have proven to be suitable in pilot scale systems, sensor accuracy, resolution, and errors from relatively high levels of friction inside bearings can become limiting factors at smaller scales. An experimental setup for power input measurements was developed in this study by focusing on stainless steel and single‐use bioreactors in the single‐digit volume range. The friction losses inside the air bearings were effectively reduced to less than 0.5% of the measurement range of the torque meter. A comparison of dimensionless power numbers determined for a reference Rushton turbine stirrer (N P = 4.17 ± 0.14 for fully turbulent conditions) revealed good agreement with literature data. Hence, the power numbers of several reusable and single‐use bioreactors could be determined over a wide range of Reynolds numbers between 100 and >104. Power numbers of between 0.3 and 4.5 (for Re = 104) were determined for the different systems. The rigid plastic vessels showed similar power characteristics to their reusable counterparts. Thus, it was demonstrated that the torque‐based technique can be used to reliably measure power input in stirred reusable and single‐use bioreactors at the laboratory scale. PMID:28579937

  3. Complexity and Pilot Workload Metrics for the Evaluation of Adaptive Flight Controls on a Full Scale Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Schaefer, Jacob; Burken, John J.; Larson, David; Johnson, Marcus

    2014-01-01

    Flight research has shown the effectiveness of adaptive flight controls for improving aircraft safety and performance in the presence of uncertainties. The National Aeronautics and Space Administration's (NASA)'s Integrated Resilient Aircraft Control (IRAC) project designed and conducted a series of flight experiments to study the impact of variations in adaptive controller design complexity on performance and handling qualities. A novel complexity metric was devised to compare the degrees of simplicity achieved in three variations of a model reference adaptive controller (MRAC) for NASA's F-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Full-Scale Advanced Systems Testbed (Gen-2A) aircraft. The complexity measures of these controllers are also compared to that of an earlier MRAC design for NASA's Intelligent Flight Control System (IFCS) project and flown on a highly modified F-15 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). Pilot comments during the IRAC research flights pointed to the importance of workload on handling qualities ratings for failure and damage scenarios. Modifications to existing pilot aggressiveness and duty cycle metrics are presented and applied to the IRAC controllers. Finally, while adaptive controllers may alleviate the effects of failures or damage on an aircraft's handling qualities, they also have the potential to introduce annoying changes to the flight dynamics or to the operation of aircraft systems. A nuisance rating scale is presented for the categorization of nuisance side-effects of adaptive controllers.

  4. CHLORINE DECAY AND BIOFILM STUDIES IN A PILOT SCALE DRINKING WATER DISTRIBUTION DEAD END PIPE SYSTEM

    EPA Science Inventory

    Chlorine decay experiments using a pilot-scale water distribution dead end pipe system were conducted to define relationships between chlorine decay and environmental factors. These included flow rate, biomass concentration and biofilm density, and initial chlorine concentrations...

  5. Bioreactor Scalability: Laboratory-Scale Bioreactor Design Influences Performance, Ecology, and Community Physiology in Expanded Granular Sludge Bed Bioreactors

    PubMed Central

    Connelly, Stephanie; Shin, Seung G.; Dillon, Robert J.; Ijaz, Umer Z.; Quince, Christopher; Sloan, William T.; Collins, Gavin

    2017-01-01

    Studies investigating the feasibility of new, or improved, biotechnologies, such as wastewater treatment digesters, inevitably start with laboratory-scale trials. However, it is rarely determined whether laboratory-scale results reflect full-scale performance or microbial ecology. The Expanded Granular Sludge Bed (EGSB) bioreactor, which is a high-rate anaerobic digester configuration, was used as a model to address that knowledge gap in this study. Two laboratory-scale idealizations of the EGSB—a one-dimensional and a three- dimensional scale-down of a full-scale design—were built and operated in triplicate under near-identical conditions to a full-scale EGSB. The laboratory-scale bioreactors were seeded using biomass obtained from the full-scale bioreactor, and, spent water from the distillation of whisky from maize was applied as substrate at both scales. Over 70 days, bioreactor performance, microbial ecology, and microbial community physiology were monitored at various depths in the sludge-beds using 16S rRNA gene sequencing (V4 region), specific methanogenic activity (SMA) assays, and a range of physical and chemical monitoring methods. SMA assays indicated dominance of the hydrogenotrophic pathway at full-scale whilst a more balanced activity profile developed during the laboratory-scale trials. At each scale, Methanobacterium was the dominant methanogenic genus present. Bioreactor performance overall was better at laboratory-scale than full-scale. We observed that bioreactor design at laboratory-scale significantly influenced spatial distribution of microbial community physiology and taxonomy in the bioreactor sludge-bed, with 1-D bioreactor types promoting stratification of each. In the 1-D laboratory bioreactors, increased abundance of Firmicutes was associated with both granule position in the sludge bed and increased activity against acetate and ethanol as substrates. We further observed that stratification in the sludge-bed in 1-D laboratory-scale

  6. A comparison of relative toxicity rankings by some small-scale laboratory tests

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Small-scale laboratory tests for fire toxicity, suitable for use in the average laboratory hood, are needed for screening and ranking materials on the basis of relative toxicity. The performance of wool, cotton, and aromatic polyamide under several test procedures is presented.

  7. RECYCLING A NONIONIC AQUEOUS-BASED METAL-CLEANING SOLUTION WITH A CERAMIC MEMBRANE: PILOT SCALE EVALUATION

    EPA Science Inventory

    The effectiveness of a zirconium dioxide (ZrO2) membrane filter was evaluated for recycling a nonionic aqueous metal cleaning bath under real-world conditions. The pilot-scale study consisted of four 7- to 16-day filtration runs, each processed a portion of the cleaning bath duri...

  8. Large Pilot-Scale Carbon Dioxide (CO2) Capture Project Using Aminosilicone Solvent.Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hancu, Dan

    GE Global Research has developed, over the last 8 years, a platform of cost effective CO2 capture technologies based on a non-aqueous aminosilicone solvent (GAP-1m). As demonstrated in previous funded DOE projects (DE-FE0007502 and DEFE0013755), the GAP-1m solvent has increased CO2 working capacity, lower volatility and corrosivity than the benchmark aqueous amine technology. Performance of the GAP-1m solvent was recently demonstrated in a 0.5 MWe pilot at National Carbon Capture Center, AL with real flue gas for over 500 hours of operation using a Steam Stripper Column (SSC). The pilot-scale PSTU engineering data were used to (i) update the techno-economicmore » analysis, and EH&S assessment, (ii) perform technology gap analysis, and (iii) conduct the solvent manufacturability and scale-up study.« less

  9. CFD Modeling of Flow, Temperature, and Concentration Fields in a Pilot-Scale Rotary Hearth Furnace

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Su, Fu-Yong; Wen, Zhi; Li, Zhi; Yong, Hai-Quan; Feng, Xiao-Hong

    2014-01-01

    A three-dimensional mathematical model for simulation of flow, temperature, and concentration fields in a pilot-scale rotary hearth furnace (RHF) has been developed using a commercial computational fluid dynamics software, FLUENT. The layer of composite pellets under the hearth is assumed to be a porous media layer with CO source and energy sink calculated by an independent mathematical model. User-defined functions are developed and linked to FLUENT to process the reduction process of the layer of composite pellets. The standard k-ɛ turbulence model in combination with standard wall functions is used for modeling of gas flow. Turbulence-chemistry interaction is taken into account through the eddy-dissipation model. The discrete ordinates model is used for modeling of radiative heat transfer. A comparison is made between the predictions of the present model and the data from a test of the pilot-scale RHF, and a reasonable agreement is found. Finally, flow field, temperature, and CO concentration fields in the furnace are investigated by the model.

  10. Treatment of duck house wastewater by a pilot-scale sequencing batch reactor system for sustainable duck production.

    PubMed

    Su, Jung-Jeng; Huang, Jeng-Fang; Wang, Yi-Lei; Hong, Yu-Ya

    2018-06-15

    The objective of this study is trying to solve water pollution problems related to duck house wastewater by developing a novel duck house wastewater treatment technology. A pilot-scale sequencing batch reactor (SBR) system using different hydraulic retention times (HRTs) for treating duck house wastewater was developed and applied in this study. Experimental results showed that removal efficiency of chemical oxygen demand in untreated duck house wastewater was 98.4, 98.4, 87.8, and 72.5% for the different HRTs of 5, 3, 1, and 0.5 d, respectively. In addition, removal efficiency of biochemical oxygen demand in untreated duck house wastewater was 99.6, 99.3, 90.4, and 58.0%, respectively. The pilot-scale SBR system was effective and deemed capable to be applied to treat duck house wastewater. It is feasible to apply an automatic SBR system on site based on the previous case study of the farm-scale automatic SBR systems for piggery wastewater treatment.

  11. Preliminary Evaluation of the Control of Microbial Fouling by Laboratory and Pilot-Scale Air-Stripping Columns

    DTIC Science & Technology

    1985-03-01

    used to remove trichloroethylene (TCE) from contaminated well water. 7 MATERIALS Chemicals: Trichloroethylene (Aldrich chemical, Milwaukee, WI), sodium ...Cleveland, OH), sodium hydrcxide (J.T. Baker, Phillipsburg, NJ), potassium dichloroisocyanurate (Dorex Inc., Frankfort, IL), potassium iodide starch...NJ). Media and Reagents: Plate count agar (Difco Laboratories, Detroit, MI), lauryl tryptose broth (Difco Laboratories, Detroit, MI), motility medium

  12. Replicating the microbial community and water quality performance of full-scale slow sand filters in laboratory-scale filters.

    PubMed

    Haig, Sarah-Jane; Quince, Christopher; Davies, Robert L; Dorea, Caetano C; Collins, Gavin

    2014-09-15

    Previous laboratory-scale studies to characterise the functional microbial ecology of slow sand filters have suffered from methodological limitations that could compromise their relevance to full-scale systems. Therefore, to ascertain if laboratory-scale slow sand filters (L-SSFs) can replicate the microbial community and water quality production of industrially operated full-scale slow sand filters (I-SSFs), eight cylindrical L-SSFs were constructed and were used to treat water from the same source as the I-SSFs. Half of the L-SSFs sand beds were composed of sterilized sand (sterile) from the industrial filters and the other half with sand taken directly from the same industrial filter (non-sterile). All filters were operated for 10 weeks, with the microbial community and water quality parameters sampled and analysed weekly. To characterize the microbial community phyla-specific qPCR assays and 454 pyrosequencing of the 16S rRNA gene were used in conjunction with an array of statistical techniques. The results demonstrate that it is possible to mimic both the water quality production and the structure of the microbial community of full-scale filters in the laboratory - at all levels of taxonomic classification except OTU - thus allowing comparison of LSSF experiments with full-scale units. Further, it was found that the sand type composing the filter bed (non-sterile or sterile), the water quality produced, the age of the filters and the depth of sand samples were all significant factors in explaining observed differences in the structure of the microbial consortia. This study is the first to the authors' knowledge that demonstrates that scaled-down slow sand filters can accurately reproduce the water quality and microbial consortia of full-scale slow sand filters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Research Pilot C. Gordon Fullerton in Cockpit of TU-144LL SST Flying Laboratory

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA Research pilot C. Gordon Fullerton sits in cockpit of TU-144LL SST Flying Laboratory. Fullerton was one of two NASA pilots who flew the aircraft as part of a joint high speed research program. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in

  14. Nitrosamines in pilot-scale and full-scale wastewater treatment plants with ozonation.

    PubMed

    Gerrity, Daniel; Pisarenko, Aleksey N; Marti, Erica; Trenholm, Rebecca A; Gerringer, Fred; Reungoat, Julien; Dickenson, Eric

    2015-04-01

    Ozone-based treatment trains offer a sustainable option for potable reuse applications, but nitrosamine formation during ozonation poses a challenge for municipalities seeking to avoid reverse osmosis and high-dose ultraviolet (UV) irradiation. Six nitrosamines were monitored in full-scale and pilot-scale wastewater treatment trains. The primary focus was on eight treatment trains employing ozonation of secondary or tertiary wastewater effluents, but two treatment trains with chlorination or UV disinfection of tertiary wastewater effluent and another with full advanced treatment (i.e., reverse osmosis and advanced oxidation) were also included for comparison. N-nitrosodimethylamine (NDMA) and N-nitrosomorpholine (NMOR) were the most prevalent nitrosamines in untreated (up to 89 ng/L and 67 ng/L, respectively) and treated wastewater. N-nitrosomethylethylamine (NMEA) and N-nitrosodiethylamine (NDEA) were detected at one facility each, while N-nitrosodipropylamine (NDPrA) and N-nitrosodibutylamine (NDBA) were less than their method reporting limits (MRLs) in all samples. Ozone-induced NDMA formation ranging from <10 to 143 ng/L was observed at all but one site, but the reasons for the variation in formation remain unclear. Activated sludge, biological activated carbon (BAC), and UV photolysis were effective for NDMA mitigation. NMOR was also removed with activated sludge but did not form during ozonation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. PILOT-SCALE DEMONSTRATION OF A SLURRY-PHASE BIOLOGICAL REACTOR FOR CREOSOTE-CONTAMINATED SOIL - APPLICATION ANALYSIS REPORT

    EPA Science Inventory

    In support of the U.S. Environmental Protection Agency’s (EPA) Superfund Innovative Technology Evaluation (SITE) Program, a pilot-scale demonstration of a slurry-phase bioremediation process was performed May 1991 at the EPA’s Test & Evaluation Facility in Cincinnati, OH. In this...

  16. Energy performance evaluation of ultrasonic pretreatment of organic solid waste in a pilot-scale digester.

    PubMed

    Rasapoor, Mazdak; Adl, Mehrdad; Baroutian, Saeid; Iranshahi, Zeynab; Pazouki, Mohammad

    2018-04-30

    It has been proven that ultrasonic pretreatment (UP) has positive effect on biogas generation from previous lab-scale studies. However, that is not always the case in larger scale processes. The purpose of this study was to evaluate the effectiveness of UP to biogas generation in terms of anaerobic digestion process and energy efficiency. Parameters including total solids (TS) and ultrasonic treatment operational parameters of organic solid waste (OSW) resulted from our past lab scale UP studies were applied in this study. OSW with 6-10% TS was treated using a lab-scale ultrasonic processor using various power densities (0.2-0.6 W/mL) at different time periods up to 30 min. Results of lab scale confirmed that OSW with 6% TS sonicated with 0.2 W/mL power density in 30 min gave the best outcome for the pilot scale experiment. To simulate the condition of an actual scale, in addition to energy analysis, two different organic loading rates (OLR), namely 500 and 1500 gVS/m 3 day were examined. The pilot digester was fed with OSW with or without the pretreatment based on the aforementioned specifications. The results showed that UP effectively improves biogas generation in terms of quantity and quality (CH 4 /CO 2 ). Furthermore, it decreases the time to reach the maximum cumulative biogas volume comparing to the untreated feed. The key achievement of this research has confirmed that although the relative increase in the energy gain by the influence of UP was more remarkable under the 500 gVS/m 3 day OLR, energy analysis showed a better energy gain and energy benefit as well as jumping in biogas yield up to 80% for UP treated OSW under 1500 gVS/m 3 day OLR. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Pilot Comparison of Radiance Temperature Scale Realization Between NIMT and NMIJ

    NASA Astrophysics Data System (ADS)

    Keawprasert, T.; Yamada, Y.; Ishii, J.

    2015-03-01

    A pilot comparison of radiance temperature scale realizations between the National Institute of Metrology Thailand (NIMT) and the National Metrology Institute of Japan (NMIJ) was conducted. At the two national metrology institutes (NMIs), a 900 nm radiation thermometer, used as the transfer artifact, was calibrated by a means of a multiple fixed-point method using the fixed-point blackbody of Zn, Al, Ag, and Cu points, and by means of relative spectral responsivity measurements according to the International Temperature Scale of 1990 (ITS-90) definition. The Sakuma-Hattori equation is used for interpolating the radiance temperature scale between the four fixed points and also for extrapolating the ITS-90 temperature scale to 2000 C. This paper compares the calibration results in terms of fixed-point measurements, relative spectral responsivity, and finally the radiance temperature scale. Good agreement for the fixed-point measurements was found in case a correction for the change of the internal temperature of the artifact was applied using the temperature coefficient measured at the NMIJ. For the realized radiance temperature range from 400 C to 1100 C, the resulting scale differences between the two NMIs are well within the combined scale comparison uncertainty of 0.12 C (). The resulting spectral responsivity measured at the NIMT has a comparable curve to that measured at the NMIJ especially in the out-of-band region, yielding a ITS-90 scale difference within 1.0 C from the Cu point to 2000 C, whereas the realization comparison uncertainty of NIMT and NMIJ combined is 1.2 C () at 2000 C.

  18. Design and fabrication of a fixed-bed batch type pyrolysis reactor for pilot scale pyrolytic oil production in Bangladesh

    NASA Astrophysics Data System (ADS)

    Aziz, Mohammad Abdul; Al-khulaidi, Rami Ali; Rashid, MM; Islam, M. R.; Rashid, MAN

    2017-03-01

    In this research, a development and performance test of a fixed-bed batch type pyrolysis reactor for pilot scale pyrolysis oil production was successfully completed. The characteristics of the pyrolysis oil were compared to other experimental results. A solid horizontal condenser, a burner for furnace heating and a reactor shield were designed. Due to the pilot scale pyrolytic oil production encountered numerous problems during the plant’s operation. This fixed-bed batch type pyrolysis reactor method will demonstrate the energy saving concept of solid waste tire by creating energy stability. From this experiment, product yields (wt. %) for liquid or pyrolytic oil were 49%, char 38.3 % and pyrolytic gas 12.7% with an operation running time of 185 minutes.

  19. Laboratory-Scale Evidence for Lightning-Mediated Gene Transfer in Soil

    PubMed Central

    Demanèche, Sandrine; Bertolla, Franck; Buret, François; Nalin, Renaud; Sailland, Alain; Auriol, Philippe; Vogel, Timothy M.; Simonet, Pascal

    2001-01-01

    Electrical fields and current can permeabilize bacterial membranes, allowing for the penetration of naked DNA. Given that the environment is subjected to regular thunderstorms and lightning discharges that induce enormous electrical perturbations, the possibility of natural electrotransformation of bacteria was investigated. We demonstrated with soil microcosm experiments that the transformation of added bacteria could be increased locally via lightning-mediated current injection. The incorporation of three genes coding for antibiotic resistance (plasmid pBR328) into the Escherichia coli strain DH10B recipient previously added to soil was observed only after the soil had been subjected to laboratory-scale lightning. Laboratory-scale lightning had an electrical field gradient (700 versus 600 kV m−1) and current density (2.5 versus 12.6 kA m−2) similar to those of full-scale lightning. Controls handled identically except for not being subjected to lightning produced no detectable antibiotic-resistant clones. In addition, simulated storm cloud electrical fields (in the absence of current) did not produce detectable clones (transformation detection limit, 10−9). Natural electrotransformation might be a mechanism involved in bacterial evolution. PMID:11472916

  20. Method for Hot Real-Time Analysis of Pyrolysis Vapors at Pilot Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomeroy, Marc D

    Pyrolysis oils contain more than 400 compounds, up to 60% of which do not re-volatilize for subsequent chemical analysis. Vapor chemical composition is also complicated as additional condensation reactions occur during quenching and collection of the product. Due to the complexity of the pyrolysis oil, and a desire to catalytically upgrade the vapor composition before condensation, online real-time analytical techniques such as Molecular Beam Mass Spectrometry (MBMS) are of great use. However, in order to properly sample hot pyrolysis vapors at the pilot scale, many challenges must be overcome.

  1. Scale-Up of GRCop: From Laboratory to Rocket Engines

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2016-01-01

    GRCop is a high temperature, high thermal conductivity copper-based series of alloys designed primarily for use in regeneratively cooled rocket engine liners. It began with laboratory-level production of a few grams of ribbon produced by chill block melt spinning and has grown to commercial-scale production of large-scale rocket engine liners. Along the way, a variety of methods of consolidating and working the alloy were examined, a database of properties was developed and a variety of commercial and government applications were considered. This talk will briefly address the basic material properties used for selection of compositions to scale up, the methods used to go from simple ribbon to rocket engines, the need to develop a suitable database, and the issues related to getting the alloy into a rocket engine or other application.

  2. Thermal/structural modeling of a large scale in situ overtest experiment for defense high level waste at the Waste Isolation Pilot Plant Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, H.S.; Stone, C.M.; Krieg, R.D.

    Several large scale in situ experiments in bedded salt formations are currently underway at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, USA. In these experiments, the thermal and creep responses of salt around several different underground room configurations are being measured. Data from the tests are to be compared to thermal and structural responses predicted in pretest reference calculations. The purpose of these comparisons is to evaluate computational models developed from laboratory data prior to fielding of the in situ experiments. In this paper, the computational models used in the pretest reference calculation for one of themore » large scale tests, The Overtest for Defense High Level Waste, are described; and the pretest computed thermal and structural responses are compared to early data from the experiment. The comparisons indicate that computed and measured temperatures for the test agree to within ten percent but that measured deformation rates are between two and three times greater than corresponsing computed rates. 10 figs., 3 tabs.« less

  3. Accumulation and fate of microorganisms and microspheres in biofilms formed in a pilot-scale water distribution system.

    PubMed

    Långmark, Jonas; Storey, Michael V; Ashbolt, Nicholas J; Stenström, Thor-Axel

    2005-02-01

    The accumulation and fate of model microbial "pathogens" within a drinking-water distribution system was investigated in naturally grown biofilms formed in a novel pilot-scale water distribution system provided with chlorinated and UV-treated water. Biofilms were exposed to 1-mum hydrophilic and hydrophobic microspheres, Salmonella bacteriophages 28B, and Legionella pneumophila bacteria, and their fate was monitored over a 38-day period. The accumulation of model pathogens was generally independent of the biofilm cell density and was shown to be dependent on particle surface properties, where hydrophilic spheres accumulated to a larger extent than hydrophobic ones. A higher accumulation of culturable legionellae was measured in the chlorinated system compared to the UV-treated system with increasing residence time. The fate of spheres and fluorescence in situ hybridization-positive legionellae was similar and independent of the primary disinfectant applied and water residence time. The more rapid loss of culturable legionellae compared to the fluorescence in situ hybridization-positive legionellae was attributed to a loss in culturability rather than physical desorption. Loss of bacteriophage 28B plaque-forming ability together with erosion may have affected their fate within biofilms in the pilot-scale distribution system. The current study has demonstrated that desorption was one of the primary mechanisms affecting the loss of microspheres, legionellae, and bacteriophage from biofilms within a pilot-scale distribution system as well as disinfection and biological grazing. In general, two primary disinfection regimens (chlorination and UV treatment) were not shown to have a measurable impact on the accumulation and fate of model microbial pathogens within a water distribution system.

  4. Study of occupational stress among railway engine pilots

    PubMed Central

    Kumar, Devesh; Singh, Jai Vir; Kharwar, Poonam S.

    2011-01-01

    Background: Traffic volume and speed is going to be increased in Indian Railways successively, leading to higher stress in staff connected with train operations. The jobs of railway engine pilots come under the category of high-strain jobs, necessitating a need to conduct multicentric study to unfold the factors associated with occupational stress and organizational strategies. Materials and Methods: Present study covered 185 railway engine pilots and office clerks working in various railway zones by incidental method. Occupational Stress Index (OSI) test developed by Srivastva and Singh, questionnaire of specific stressors constructed by authors and laboratory test battery for psychological screening of high-speed train pilots were used as tools. Results: Means of OSI and all the 12 occupational stressors of railway engine pilots were found significantly higher to that of office clerks. Means of OSI and occupational stressors of goods train pilots were significantly higher in comparison to high-speed train pilots and passenger train pilots. Study revealed positive correlation of speed perception and complex reaction time tests and negative correlation of other constituent tests of laboratory test battery to OSI test. Highest subgroup of stressor observedwas role overload followed by role conflict. Conclusions: These findings provide a prima facie evidence of higher occupational stress among railway engine pilots because of identified specific stressors prevalent in their job and explore the possible intervention strategies for its reduction. Significant correlation is noticed between OSI and laboratory test results, indicating its relevant utility in preliminary psychological screening. PMID:21808497

  5. INACTIVATION OF CRYPTOSPORIDIUM OOCYSTS IN A PILOT-SCALE OZONE BUBBLE-DIFFUSER CONTACTOR - II: MODEL VALIDATION AND APPLICATION

    EPA Science Inventory

    The ADR model developed in Part I of this study was successfully validated with experimenta data obtained for the inactivation of C. parvum and C. muris oocysts with a pilot-scale ozone-bubble diffuser contactor operated with treated Ohio River water. Kinetic parameters, required...

  6. Geophysical monitoring of a field-scale biostimulation pilot project

    USGS Publications Warehouse

    Lane, J.W.; Day-Lewis, F. D.; Casey, C.C.

    2006-01-01

    The USGS conducted a geophysical investigation in support of a U.S. Naval Facilities Engineering Command, Southern Division field-scale biostimulation pilot project at Anoka County Riverfront Park (ACP), downgradient of the Naval Industrial Reserve Ordnance Plant, Fridley, Minnesota. The goal of the pilot project is to evaluate subsurface injection of vegetable oil emulsion (VOE) to stimulate microbial degradation of chlorinated hydrocarbons. To monitor the emplacement and movement of the VOE and changes in water chemistry resulting from VOE dissolution and/or enhanced biological activity, the USGS acquired cross-hole radar zero-offset profiles, traveltime tomograms, and borehole geophysical logs during five site visits over 1.5 years. Analysis of pre- and postinjection data sets using petrophysical models developed to estimate VOE saturation and changes in total dissolved solids provides insights into the spatial and temporal distribution of VOE and ground water with altered chemistry. Radar slowness-difference tomograms and zero-offset slowness profiles indicate that the VOE remained close to the injection wells, whereas radar attenuation profiles and electromagnetic induction logs indicate that bulk electrical conductivity increased downgradient of the injection zone, diagnostic of changing water chemistry. Geophysical logs indicate that some screened intervals were located above or below zones of elevated dissolved solids; hence, the geophysical data provide a broader context for interpretation of water samples and evaluation of the biostimulation effort. Our results include (1) demonstration of field and data analysis methods for geophysical monitoring of VOE biostimulation and (2) site-specific insights into the spatial and temporal distributions of VOE at the ACP. ?? 2006 National Ground Water Association.

  7. Geophysical monitoring of a field-scale biostimulation pilot project.

    PubMed

    Lane, John W; Day-Lewis, Frederick D; Casey, Clifton C

    2006-01-01

    The USGS conducted a geophysical investigation in support of a U.S. Naval Facilities Engineering Command, Southern Division field-scale biostimulation pilot project at Anoka County Riverfront Park (ACP), down-gradient of the Naval Industrial Reserve Ordnance Plant, Fridley, Minnesota. The goal of the pilot project is to evaluate subsurface injection of vegetable oil emulsion (VOE) to stimulate microbial degradation of chlorinated hydrocarbons. To monitor the emplacement and movement of the VOE and changes in water chemistry resulting from VOE dissolution and/or enhanced biological activity, the USGS acquired cross-hole radar zero-offset profiles, travel-time tomograms, and borehole geophysical logs during five site visits over 1.5 years. Analysis of pre- and postinjection data sets using petrophysical models developed to estimate VOE saturation and changes in total dissolved solids provides insights into the spatial and temporal distribution of VOE and ground water with altered chemistry. Radar slowness-difference tomograms and zero-offset slowness profiles indicate that the VOE remained close to the injection wells, whereas radar attenuation profiles and electromagnetic induction logs indicate that bulk electrical conductivity increased down-gradient of the injection zone, diagnostic of changing water chemistry. Geophysical logs indicate that some screened intervals were located above or below zones of elevated dissolved solids; hence, the geophysical data provide a broader context for interpretation of water samples and evaluation of the biostimulation effort. Our results include (1) demonstration of field and data analysis methods for geophysical monitoring of VOE biostimulation and (2) site-specific insights into the spatial and temporal distributions of VOE at the ACP.

  8. Pilot-scale electrokinetic movement of HCB and Zn in real contaminated sediments enhanced with hydroxypropyl-beta-cyclodextrin.

    PubMed

    Li, Taiping; Yuan, Songhu; Wan, Jinzhong; Lin, Li; Long, Huayun; Wu, Xiaofeng; Lu, Xiaohua

    2009-08-01

    This study deals with the efficiency of a pilot-scale electrokinetic (EK) treatment on real aged sediments contaminated with hexachlorobenzene (HCB) and Zn. A total of 0.5m(3) of sediments were treated under a constant voltage in a polyvinyl chloride reactor. The changes of sediment pH, electrical conductivity (EC), organic content (OC), the transport of contaminants in sediments and the consumption of electric energy were evaluated. After 100 d processing, sediment pH slightly increased compared with the initial values, particularly in the bottom layer close to cathodic section, while sediment EC in most sections significantly decreased. Sediment OC in all sections increased, which implied that hydroxypropyl-beta-cyclodextrin (HPCD) was successfully penetrated across sediments by electroosmosis. Significant movement of contaminants was observed across sediments with negligible removals. Both HCB and Zn generally moved from sections near anode and accumulated near cathode. Upon the completion of treatment, the electric energy consumption was calculated as 563 kWhm(-3). This pilot-scale EK test indicates that it is difficult to achieve great removal of hydrophobic organic compounds (HOCs), or HOCs and heavy metal mixed contaminants, by EK treatment in large scale with the use of HPCD.

  9. Polyhydroxyalkanoate as a slow-release carbon source for in situ bioremediation of contaminated aquifers: From laboratory investigation to pilot-scale testing in the field.

    PubMed

    Pierro, Lucia; Matturro, Bruna; Rossetti, Simona; Sagliaschi, Marco; Sucato, Salvatore; Alesi, Eduard; Bartsch, Ernst; Arjmand, Firoozeh; Papini, Marco Petrangeli

    2017-07-25

    A pilot-scale study aiming to evaluate the potential use of poly-3-hydroxy-butyrate (PHB) as an electron donor source for in situ bioremediation of chlorinated hydrocarbons in groundwater was conducted. Compared with commercially available electron donors, PHB offers a restricted fermentation pathway (i.e., through acetic acid and molecular hydrogen) by avoiding the formation of any residual carbon that could potentially spoil groundwater quality. The pilot study was carried out at an industrial site in Italy, heavily contaminated by different chlorinated aliphatic hydrocarbons (CAHs). Prior to field testing, PHB was experimentally verified as a suitable electron donor for biological reductive dechlorination processes at the investigated site by microcosm studies carried out on site aquifer material and measuring the quantitative transformation of detected CAHs to ethene. Owing to the complex geological characteristics of the aquifer, the use of a groundwater circulation well (GCW) was identified as a potential strategy to enable effective delivery and distribution of electron donors in less permeable layers and to mobilise contaminants. A 3-screened, 30-m-deep GCW coupled with an external treatment unit was installed at the site. The effect of PHB fermentation products on the in situ reductive dechlorination processes were evaluated by quantitative real-time polymerase chain reaction (qPCR). The results from the first 4 months of operation clearly demonstrated that the PHB fermentation products were effectively delivered to the aquifer and positively influenced the biological dechlorination activity. Indeed, an increased abundance of Dehalococcoides mccartyi (up to 6.6 fold) and reduced CAH concentrations at the installed monitoring wells were observed. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Pilot scale dilute acid pretreatment of rice straw and fermentable sugar recovery at high solid loadings.

    PubMed

    Kapoor, Manali; Soam, Shveta; Agrawal, Ruchi; Gupta, Ravi P; Tuli, Deepak K; Kumar, Ravindra

    2017-01-01

    The aim of this work was to study the dilute acid pretreatment of rice straw (RS) and fermentable sugar recovery at high solid loadings at pilot scale. A series of pretreatment experiments were performed on RS resulting in >25wt% solids followed by enzymatic hydrolysis without solid-liquid separation at 20 and 25wt% using 10FPU/g of the pretreated residue. The overall sugar recovery including the sugars released in pretreatment and enzymatic hydrolysis was calculated along with a mass balance. Accordingly, the optimized conditions, i.e. 0.35wt% acid, 162°C and 10min were identified. The final glucose and xylose concentrations obtained were 83.3 and 31.9g/L respectively resulting in total concentration of 115.2g/L, with a potential to produce >50g/L of ethanol. This is the first report on pilot scale study on acid pretreatment of RS in a screw feeder horizontal reactor followed by enzymatic hydrolysis at high solid loadings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. PILOT-SCALE STUDIES ON THE EFFECT OF BROMINE ADDITION ON THE EMISSIONS OF CHLORINATED ORGANIC COMBUSTION BY-PRODUCTS

    EPA Science Inventory

    The addition of brominated organic compounds to the feed of a pilot-scale incinerator burning chlorinated waste has been found previously, under some circumstances, to enhance emissions of volatile and semivolatile organic chlorinated products of incomplete combustion (PiCs) incl...

  12. Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: Bench-scale research and pilot-scale verification.

    PubMed

    Li, Chunxing; Wang, Xingdong; Zhang, Guangyi; Yu, Guangwei; Lin, Jingjiang; Wang, Yin

    2017-06-15

    To test the feasibility and practicability of the process combing hydrothermal pretreatment for dewatering with biogas production for full utilization of sewage sludge, hydrothermal/alkaline hydrothermal pretreatments and in turn anaerobic digestion of the filtrates obtained after dewatering the pretreated sludge were performed at bench- and pilot-scales. The hydrothermal temperature fell within the range of 140 °C-220 °C and the pretreatment time varied from 30 min to 120 min. For the alkaline hydrothermal pretreatment the pH value of the sludge was adjusted to 9.0-11.0 by adding Ca(OH) 2 . The results showed that the dewaterability of the sewage sludge was improved with increasing pretreatment temperature but the impact of the pretreatment time was not significant. The addition of Ca(OH) 2 gave better performance on the subsequent mechanical dewatering of the pretreated sludge compared to pure hydrothermal pretreatment, and the higher the pH value was, the better the dewaterability of the pretreated sludge was. The conditions of 180 °C/30 min and 160 °C/60 min/pH = 10.0 (for hydrothermal and alkaline hydrothermal pretreatments, respectively) resulted in relatively good results in the theoretical energy balance, which were verified in the pilot-scale tests. Based on the data from the pilot tests, the alkaline hydrothermal process realized self-sufficiency in energy at the cost of a proper amount of CaO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Treatment of radioactive liquid effluents by reverse osmosis membranes: From lab-scale to pilot-scale.

    PubMed

    Combernoux, Nicolas; Schrive, Luc; Labed, Véronique; Wyart, Yvan; Carretier, Emilie; Moulin, Philippe

    2017-10-15

    The recent use of the reverse osmosis (RO) process at the damaged Fukushima-Daiichi nuclear power plant generated a growing interest in the application of this process for decontamination purposes. This study focused on the development of a robust RO process for decontamination of two kinds of liquid effluents: a contaminated groundwater after a nuclear disaster and a contaminated seawater during a nuclear accident. The SW30 HR membrane was selected among other in this study due to higher retentions (96% for Cs and 98% for Sr) in a true groundwater. Significant fouling and scaling phenomenon, attributed to calcium and strontium precipitation, were evidenced in this work: this underscored the importance of the lab scale experiment in the process. Validation of the separation performances on trace radionuclides concentration was performed with similar retention around 96% between surrogates Cs (inactive) and 137 Cs (radioactive). The scale up to a 2.6 m 2 spiral wound membrane led to equivalent retentions (around 96% for Cs and 99% for Sr) but lower flux values: this underlined that the hydrodynamic parameters (flowrate/cross-flow velocity) should be optimized. This methodology was also applied on the reconstituted seawater effluent: retentions were slightly lower than for the groundwater and the same hydrodynamic effects were observed on the pilot scale. Then, ageing of the membrane through irradiation experiments were performed. Results showed that the membrane active layer composition influenced the membrane resistance towards γ irradiation: the SW30 HR membrane performances (retention and permeability) were better than the Osmonics SE at 1 MGy. Finally, to supplement the scale up approach, the irradiation of a spiral wound membrane revealed a limited effect on the permeability and retention. This indicated that irradiation conditions need to be controlled for a further development of the process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Potential for improved radiation thermometry measurement uncertainty through implementing a primary scale in an industrial laboratory

    NASA Astrophysics Data System (ADS)

    Willmott, Jon R.; Lowe, David; Broughton, Mick; White, Ben S.; Machin, Graham

    2016-09-01

    A primary temperature scale requires realising a unit in terms of its definition. For high temperature radiation thermometry in terms of the International Temperature Scale of 1990 this means extrapolating from the signal measured at the freezing temperature of gold, silver or copper using Planck’s radiation law. The difficulty in doing this means that primary scales above 1000 °C require specialist equipment and careful characterisation in order to achieve the extrapolation with sufficient accuracy. As such, maintenance of the scale at high temperatures is usually only practicable for National Metrology Institutes, and calibration laboratories have to rely on a scale calibrated against transfer standards. At lower temperatures it is practicable for an industrial calibration laboratory to have its own primary temperature scale, which reduces the number of steps between the primary scale and end user. Proposed changes to the SI that will introduce internationally accepted high temperature reference standards might make it practicable to have a primary high temperature scale in a calibration laboratory. In this study such a scale was established by calibrating radiation thermometers directly to high temperature reference standards. The possible reduction in uncertainty to an end user as a result of the reduced calibration chain was evaluated.

  15. The analysis of the pilot's cognitive and decision processes

    NASA Technical Reports Server (NTRS)

    Curry, R. E.

    1975-01-01

    Articles are presented on pilot performance in zero-visibility precision approach, failure detection by pilots during automatic landing, experiments in pilot decision-making during simulated low visibility approaches, a multinomial maximum likelihood program, and a random search algorithm for laboratory computers. Other topics discussed include detection of system failures in multi-axis tasks and changes in pilot workload during an instrument landing.

  16. Accumulation and Fate of Microorganisms and Microspheres in Biofilms Formed in a Pilot-Scale Water Distribution System

    PubMed Central

    Långmark, Jonas; Storey, Michael V.; Ashbolt, Nicholas J.; Stenström, Thor-Axel

    2005-01-01

    The accumulation and fate of model microbial “pathogens” within a drinking-water distribution system was investigated in naturally grown biofilms formed in a novel pilot-scale water distribution system provided with chlorinated and UV-treated water. Biofilms were exposed to 1-μm hydrophilic and hydrophobic microspheres, Salmonella bacteriophages 28B, and Legionella pneumophila bacteria, and their fate was monitored over a 38-day period. The accumulation of model pathogens was generally independent of the biofilm cell density and was shown to be dependent on particle surface properties, where hydrophilic spheres accumulated to a larger extent than hydrophobic ones. A higher accumulation of culturable legionellae was measured in the chlorinated system compared to the UV-treated system with increasing residence time. The fate of spheres and fluorescence in situ hybridization-positive legionellae was similar and independent of the primary disinfectant applied and water residence time. The more rapid loss of culturable legionellae compared to the fluorescence in situ hybridization-positive legionellae was attributed to a loss in culturability rather than physical desorption. Loss of bacteriophage 28B plaque-forming ability together with erosion may have affected their fate within biofilms in the pilot-scale distribution system. The current study has demonstrated that desorption was one of the primary mechanisms affecting the loss of microspheres, legionellae, and bacteriophage from biofilms within a pilot-scale distribution system as well as disinfection and biological grazing. In general, two primary disinfection regimens (chlorination and UV treatment) were not shown to have a measurable impact on the accumulation and fate of model microbial pathogens within a water distribution system. PMID:15691920

  17. Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction.

    PubMed

    Liu, Xiaowei; Saydah, Benjamin; Eranki, Pragnya; Colosi, Lisa M; Greg Mitchell, B; Rhodes, James; Clarens, Andres F

    2013-11-01

    Life cycle assessment (LCA) has been used widely to estimate the environmental implications of deploying algae-to-energy systems even though no full-scale facilities have yet to be built. Here, data from a pilot-scale facility using hydrothermal liquefaction (HTL) is used to estimate the life cycle profiles at full scale. Three scenarios (lab-, pilot-, and full-scale) were defined to understand how development in the industry could impact its life cycle burdens. HTL-derived algae fuels were found to have lower greenhouse gas (GHG) emissions than petroleum fuels. Algae-derived gasoline had significantly lower GHG emissions than corn ethanol. Most algae-based fuels have an energy return on investment between 1 and 3, which is lower than petroleum biofuels. Sensitivity analyses reveal several areas in which improvements by algae bioenergy companies (e.g., biocrude yields, nutrient recycle) and by supporting industries (e.g., CO2 supply chains) could reduce the burdens of the industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Reclamation of grey water for non-potable purposes using pilot-scale solar photocatalytic tubular reactors.

    PubMed

    Saran, Sarangapany; Arunkumar, Patchaiyappan; Manjari, Gangarapu; Devipriya, Suja P

    2018-05-05

    Application of pilot-scale slurry-type tubular photocatalytic reactor was tested for the decentralized treatment of actual grey water. The reactors were fabricated by reusing the locally available materials at low cost, operated in batch recycle mode with 25 L of grey water. The influence of operational parameters such as catalysts' concentration, initial slurry pH and addition of H 2 O 2 on COD abatement were optimized. The results show that Ag-decorated TiO 2 showed a two-fold increase in COD abatement than did pure TiO 2 . Better COD abatement was observed under acidic conditions, and addition of H 2 O 2 significantly increases the rate of COD abatement. Within 2 h, 99% COD abatement was observed when the reactor was operated with optimum operational conditions. Silver ion lixiviate was also monitored during the experiment and is five times less than the permissible limits. The catalyst shows good stability even after five cycles without much loss in its photocatalytic activity. The results clearly reveal that pilot-scale slurry tubular solar photocatalytic reactors could be used as a cost-effective method to treat grey water and the resulting clean water could be reused for various non-potable purposes, thus conserving precious water resource. This study favours decentralized grey water treatment and possible scaling up of solar photocatalytic reactor using locally available materials for the potential reuse of treated water.

  19. Development of the Military Women's Attitudes Toward Menstrual Suppression Scale: from construct definition to pilot testing.

    PubMed

    Trego, Lori L

    2009-01-01

    The Military Women's Attitudes Toward Menstrual Suppression scale (MWATMS) was created to measure attitudes toward menstrual suppression during deployment. The human health and social ecology theories were integrated to conceptualize an instrument that accounts for military-unique aspects of the environment on attitudes toward suppression. A three-step instrument development process was followed to develop the MWATMS. The instrument was pilot tested on a convenience sample of 206 military women with deployment experience. Reliability was tested with measures of internal consistency (alpha = .97); validity was tested with principal components analysis with varimax rotation. Four components accounted for 65% of variance: Benefits/Interest, Hygiene, Convenience, and Soldier/Stress. The pilot test of the MWATMS supported its reliability and validity. Further testing is warranted for validation of this instrument.

  20. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis and Catalytic Hydroconversion - Wastewater Cleanup by Catalytic Hydrothermal Gasification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.; Olarte, Mariefel V.; Hart, Todd R.

    2015-06-19

    DOE-EE Bioenergy Technologies Office has set forth several goals to increase the use of bioenergy and bioproducts derived from renewable resources. One of these goals is to facilitate the implementation of the biorefinery. The biorefinery will include the production of liquid fuels, power and, in some cases, products. The integrated biorefinery should stand-alone from an economic perspective with fuels and power driving the economy of scale while the economics/profitability of the facility will be dependent on existing market conditions. UOP LLC proposed to demonstrate a fast pyrolysis based integrated biorefinery. Pacific Northwest National Laboratory (PNNL) has expertise in an importantmore » technology area of interest to UOP for use in their pyrolysis-based biorefinery. This CRADA project provides the supporting technology development and demonstration to allow incorporation of this technology into the biorefinery. PNNL developed catalytic hydrothermal gasification (CHG) for use with aqueous streams within the pyrolysis biorefinery. These aqueous streams included the aqueous phase separated from the fast pyrolysis bio-oil and the aqueous byproduct streams formed in the hydroprocessing of the bio-oil to finished products. The purpose of this project was to demonstrate a technically and economically viable technology for converting renewable biomass feedstocks to sustainable and fungible transportation fuels. To demonstrate the technology, UOP constructed and operated a pilot-scale biorefinery that processed one dry ton per day of biomass using fast pyrolysis. Specific objectives of the project were to: The anticipated outcomes of the project were a validated process technology, a range of validated feedstocks, product property and Life Cycle data, and technical and operating data upon which to base the design of a full-scale biorefinery. The anticipated long-term outcomes from successful commercialization of the technology were: (1) the replacement of a

  1. Pilot-scale production of conjugated linoleic acid-rich soy oil by photoirradiation.

    PubMed

    Jain, V P; Proctor, A; Lall, R

    2008-05-01

    Conjugated linoleic acid (CLA) is found naturally in dairy and beef products at levels of 0.2% to 2% of the total fat. A more concentrated source of dietary CLA, low in saturated fat, would be highly desirable to obtain optimum CLA levels of about 3 g/d. We recently reported photoisomerization of soy oil with iodine catalysis to be a simple way of producing CLA in laboratory without high-energy input or expensive enzymes and microorganisms. However, a long irradiation time of 144 h has been a limitation for this technique to be of practical value. The objectives of this study were to build a pilot plant unit to rapidly produce high-CLA soy oil by photoirradiation and optimize the processing parameters to obtain high-CLA soy oil. Degassed oil with dissolved-iodine catalyst was irradiated by UV lamps in an illuminated laminar flow unit (ILFU). The ILFU consists of 2 borosilicate glass plates in a silicone lined stainless steel frame. The static mode of operation yielded 5.7% of total CLA isomers and performed twice as well than the continuous mode with 2.5% of total CLA. Irradiating oil in a static mode with reflective surfaces increased the CLA yields 3-fold to 16.4%. About 22% of total CLA isomers can be rapidly produced from soy oil linoleic acid with 0.35% iodine catalyst in a 0.5-cm-thick oil layer maintained at 48 degrees C for 12 h. The peroxide value and GC-MS analysis did not identify any volatile compounds characteristic of lipid oxidation. This study is a definitive step toward the commercialization of large-scale production of CLA-rich soy oil.

  2. A PILOT-SCALE STUDY OF THE PRECURSORS LEADING TO THE FORMATION OF MIXED BROMO-CHLORO DIOXINS AND FURANS

    EPA Science Inventory

    The paper gives results of experiments in a pilot-scale rotary kiln incinerator simulator where a mixture of chlorinated and brominated surrogate waste was burned in the presence of injected fly-ash from a coal-fired utility boiler. Measurements were made of semivolatile products...

  3. Development of a Pilot Scale Process to Sequester Aflatoxin and Release Bioactive Peptides from Highly Contaminated Peanut Meal

    USDA-ARS?s Scientific Manuscript database

    Peanut meal (PM) is the high protein by-product remaining after commercial extraction of peanut oil. PM applications are limited because of typical high concentrations of aflatoxin. For the first time, pilot-scale extraction of protein and sequestration of aflatoxin from PM were evaluated. Aqueous...

  4. Hydrometallurgical recovery of germanium from coal gasification fly ash: pilot plant scale evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arroyo, F.; Fernandez-Pereira, C.; Olivares, J.

    2009-04-15

    In this article, a hydrometallurgical method for the selective recovery of germanium from fly ash (FA) has been tested at pilot plant scale. The pilot plant flowsheet comprised a first stage of water leaching of FA, and a subsequent selective recovery of the germanium from the leachate by solvent extraction method. The solvent extraction method was based on Ge complexation with catechol in an aqueous solution followed by the extraction of the Ge-catechol complex (Ge(C{sub 6}H{sub 4}O{sub 2}){sub 3}{sup 2-}) with an extracting organic reagent (trioctylamine) diluted in an organic solvent (kerosene), followed by the subsequent stripping of the organicmore » extract. The process has been tested on a FA generated in an integrated gasification with combined cycle (IGCC) process. The paper describes the designed 5 kg/h pilot plant and the tests performed on it. Under the operational conditions tested, approximately 50% of germanium could be recovered from FA after a water extraction at room temperature. Regarding the solvent extraction method, the best operational conditions for obtaining a concentrated germanium-bearing solution practically free of impurities were as follows: extraction time equal to 20 min; aqueous phase/organic phase volumetric ratio equal to 5; stripping with 1 M NaOH, stripping time equal to 30 min, and stripping phase/organic phase volumetric ratio equal to 5. 95% of germanium were recovered from water leachates using those conditions.« less

  5. Waste Isolation Pilot Plant Technical Assessment Team Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This report provides the results of the Waste Isolation Pilot Plant (WIPP) technical assessment led by the Savannah River National Laboratory and conducted by a team of experts in pertinent disciplines from SRNL and Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories (SNL).

  6. Pilot Personality and Training Outcomes

    DTIC Science & Technology

    2012-08-31

    AFRL-SA-WP-TR-2012-0013 PILOT PERSONALITY AND TRAINING OUTCOMES Raymond E. King U.S. Air Force School of Aerospace Medicine...September 2011 – August 2012 4. TITLE AND SUBTITLE Pilot Personality and Training Outcomes 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...training outcomes . Two computerized tests were used, the NEO Personality Inventory-Revised and the Armstrong Laboratory Aviation Personality Survey. In

  7. Pilot scale thin film plate reactors for the photocatalytic treatment of sugar refinery wastewater.

    PubMed

    Saran, S; Kamalraj, G; Arunkumar, P; Devipriya, S P

    2016-09-01

    Pilot scale thin film plate reactors (TFPR) were fabricated to study the solar photocatalytic treatment of wastewater obtained from the secondary treatment plant of a sugar refinery. Silver-impregnated titanium dioxide (TiO2) was prepared by a facile chemical reduction method, characterized, and immobilized onto the surface of ceramic tiles used in the pilot scale reactors. On 8 h of solar irradiation, percentage reduction of chemical oxygen demand (COD) of the wastewater by Ag/TiO2, pure TiO2, and control (without catalyst) TFPR was about 95, 86, and 22 % respectively. The effects of operational parameters such as, flow rate, pH, and addition of hydrogen peroxide (H2O2) were optimized as they influence the rate of COD reduction. Under 3 h of solar irradiation, 99 % COD reduction was observed at an optimum flow rate of 15 L h(-1), initial pH of 2, and addition of 5 mM of H2O2. The results show that Ag/TiO2 TFPR could be effectively used for the tertiary treatment of sugar refinery effluent using sunlight as the energy source. The treated water could be reused for industrial purposes, thus reducing the water footprint of the industry. Graphical Abstract Sugar refinery effluent treatment by solar photocatalytic TFPR.

  8. Development and validation of the client engagement and service use scale: A pilot study.

    PubMed

    Kline, Emily R; DeTore, Nicole R; Keefe, Kristen; Seidman, Larry J; Srihari, Vinod H; Keshavan, Matcheri S; Guyer, Margaret

    2018-05-12

    Specialized treatment for first episode psychosis offers clients a menu of services coordinated within a specialized treatment team. To enhance the impact of these services, promoting engagement and preventing early treatment drop-out is critical. However, engagement is poorly tracked and typically quantified through proxy variables such as session attendance, medication adherence, or working alliance. The aim of this study is to introduce and pilot a new measure of engagement for first episode psychosis coordinated specialty care, the Client Engagement and Service Use Scale (CENSUS). The CENSUS was evaluated for reliability and validated against the Service Engagement Scale and an appointment count for a small sample (N = 10) of first episode clients. The measure was also evaluated for acceptability by a consumer advocacy group. Clinicians achieved high inter-rater reliability after minimal training. CENSUS items demonstrated medium to large correlations with other measures of engagement. Feedback from the consumer group emphasized that clinicians should ask questions in a way that is nonjudgmental and successfully elicits authentic client feedback about their service preferences. This pilot study yielded preliminary evidence of reliability and validity, suggesting that the CENSUS is a useful and novel tool for tracking and differentiating degrees of client engagement across multiple intervention components and for facilitating structured discussions regarding clients' service utilization and preferences. Copyright © 2018. Published by Elsevier B.V.

  9. Evaluation of flow hydrodynamics in a pilot-scale dissolved air flotation tank: a comparison between CFD and experimental measurements.

    PubMed

    Lakghomi, B; Lawryshyn, Y; Hofmann, R

    2015-01-01

    Computational fluid dynamics (CFD) models of dissolved air flotation (DAF) have shown formation of stratified flow (back and forth horizontal flow layers at the top of the separation zone) and its impact on improved DAF efficiency. However, there has been a lack of experimental validation of CFD predictions, especially in the presence of solid particles. In this work, for the first time, both two-phase (air-water) and three-phase (air-water-solid particles) CFD models were evaluated at pilot scale using measurements of residence time distribution, bubble layer position and bubble-particle contact efficiency. The pilot-scale results confirmed the accuracy of the CFD model for both two-phase and three-phase flows, but showed that the accuracy of the three-phase CFD model would partly depend on the estimation of bubble-particle attachment efficiency.

  10. Transformation of bisphenol A in water distribution systems: a pilot-scale study.

    PubMed

    Li, Cong; Wang, Zilong; Yang, Y Jeffrey; Liu, Jingqing; Mao, Xinwei; Zhang, Yan

    2015-04-01

    Halogenations of bisphenol A (BPA) in a pilot-scale water distribution system (WDS) of a cement-lined ductile cast iron pipe were investigated. The water in the pilot-scale WDS was chlorinated with a free chlorine concentration of 0.7 mg L(-1) using sodium hypochlorite, and with an initial BPA concentration of 100 μg L(-1) was spiked in the WDS. Halogenated compounds in the BPA experiments were identified using EI/GC/MS and GC. Several BPA congeners, including 2-chlorobisphenol A (MCBPA), dichlorobisphenol A (D2-CBPA), 2,2',6-trichlorobisphenol A (T3CBPA), 2,2',6,6'-tetrachlorobisphenol A (T4CBPA), 2-bromobisphenol A (MBBPA), and bromochlorobisphenol A (MBMCBPA) were found. Moreover, further halogenation yielded other reaction intermediates, including 2,4,6-trichlorophenol (T3CP), dichlorobisphenol A, bromodichlorophenol, and dibromochlorophenol. After halogenation for 120min, most of the abovementioned reaction intermediates disappeared and were replaced by trihalomethanes (THMs). Based on these experimental findings, the halogenation process of BPA oxidation in a WDS includes three stages: (1) halogenation on the aromatic ring; (2) chlorine or bromine substitution followed by cleavage of the α-C bond on the isopropyl moiety with a positive partial charge and a β'-C bond on the benzene moiety with a negative partial charge; and (3) THMs and a minor HAA formation from phenolic intermediates through the benzene ring opening with a chlorine and bromine substitution of the hydrogen on the carbon atoms. The oxidation mechanisms of the entire transformation from BPA to THM/HAA in the WDS were proposed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Removal of volatile organic compounds at extreme shock-loading using a scaled-up pilot rotating drum biofilter.

    PubMed

    Sawvel, Russell A; Kim, Byung; Alvarez, Pedro J J

    2008-11-01

    A pilot-scale rotating drum biofilter (RDB), which is a novel biofilter design that offers flexible flow-through configurations, was used to treat complex and variable volatile organic compound (VOC) emissions, including shock loadings, emanating from paint drying operations at an Army ammunition plant. The RDB was seeded with municipal wastewater activated sludge. Removal efficiencies up to 86% and an elimination capacity of 5.3 g chemical oxygen demand (COD) m(-3) hr(-1) were achieved at a filter-medium contact time of 60 sec. Efficiency increased at higher temperatures that promote higher biological activity, and decreased at lower pH, which dropped down to pH 5.5 possibly as a result of carbon dioxide and volatile fatty acid production and ammonia consumption during VOC degradation. In comparison, other studies have shown that a bench-scale RDB could achieve a removal efficiency of 95% and elimination capacity of 331 g COD m(-3) hr(-1). Sustainable performance of the pilot-scale RDB was challenged by the intermittent nature of painting operations, which typically resulted in 3-day long shutdown periods when bacteria were not fed. This challenge was overcome by adding sucrose (2 g/L weekly) as an auxiliary substrate to sustain metabolic activity during shutdown periods.

  12. High power Nb-doped LiFePO4 Li-ion battery cathodes; pilot-scale synthesis and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Johnson, Ian D.; Blagovidova, Ekaterina; Dingwall, Paul A.; Brett, Dan J. L.; Shearing, Paul R.; Darr, Jawwad A.

    2016-09-01

    High power, phase-pure Nb-doped LiFePO4 (LFP) nanoparticles are synthesised using a pilot-scale continuous hydrothermal flow synthesis process (production rate of 6 kg per day) in the range 0.01-2.00 at% Nb with respect to total transition metal content. EDS analysis suggests that Nb is homogeneously distributed throughout the structure. The addition of fructose as a reagent in the hydrothermal flow process, followed by a post synthesis heat-treatment, affords a continuous graphitic carbon coating on the particle surfaces. Electrochemical testing reveals that cycling performance improves with increasing dopant concentration, up to a maximum of 1.0 at% Nb, for which point a specific capacity of 110 mAh g-1 is obtained at 10 C (6 min for the charge or discharge). This is an excellent result for a high power cathode LFP based material, particularly when considering the synthesis was performed on a large pilot-scale apparatus.

  13. DETERMINATION OF SEX HORMONES AND NONYLPHENOL ETHOXYLATES IN THE AQUEOUS MATRIXES OF TWO PILOT-SCALE MUNICIPAL WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    Two analytical methods were developed and refined for the detection and quantitation of two groups of endocrine-disrupting chemicals (EDCs) in the liquid matrixes of two pilot-scale municipal wastewater treatment plants. The targeted compounds are seven sex hormones (estradiol, ...

  14. Design and testing of a pilot scale magnetic separator for the treatment of textile dyeing wastewater.

    PubMed

    Salinas, Tobías; Durruty, Ignacio; Arciniegas, Lorena; Pasquevich, Gustavo; Lanfranconi, Matías; Orsi, Isabela; Alvarez, Vera; Bonanni, Sebastian

    2018-07-15

    Iron nanoparticles can be incorporated on the structure of natural clays to obtain magnetic clays, an adsorbent that be easily removed from a wastewater by magnetic means. Magnetic clays have high adsorption capacities of different contaminants such as heavy metals, fungicides, aromatic compounds and colorants and show rapid adsorption kinetics, but crucial data for achieving its full or pilot scale application is still lacking. In this work, magnetic bentonites with different amounts of magnetite (iron fractions on the clay of 0.55, 0.6 and 0.6) were used to remove color from a real textile wastewater. On a first stage the optimal conditions for the adsorption of the dye, including pH, temperature and clay dosage were determined. Also design parameters for the separation process such as residence time, distance from magnet to magnetic clay and magnet strength were obtained. Finally a pilot scale magnetic drum separator was constructed and tested. A removal of 60% of the dye from a wastewater that contained more than 250 ppm of azo dye was achieved with only 10 min of residence time inside the separator. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Pilot-Scale Demonstration of In-Situ Chemical Oxidation Involving Chlorinated Volatile Organic Compounds - Design and Deployment Guidelines (Parris Island, SC, U.S. Marine Corp Recruit Depot, Site 45 Pilot Study)

    EPA Science Inventory

    A pilot-scale in situ chemical oxidation (ISCO) demonstration, involving subsurface injections of sodium permanganate (NaMnO4), was performed at the US Marine Corp Recruit Depot (MCRD), site 45 (Parris Island (PI), SC). The ground water was originally contaminated with perchloroe...

  16. Large Pilot Scale Testing of Linde/BASF Post-Combustion CO 2 Capture Technology at the Abbott Coal-Fired Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Kevin C.

    The work summarized in this report is the first step towards a project that will re-train and create jobs for personnel in the coal industry and continue regional economic development to benefit regions impacted by previous downturns. The larger project is aimed at capturing ~300 tons/day (272 metric tonnes/day) CO 2 at a 90% capture rate from existing coal- fired boilers at the Abbott Power Plant on the campus of University of Illinois (UI). It will employ the Linde-BASF novel amine-based advanced CO 2 capture technology, which has already shown the potential to be cost-effective, energy efficient and compact atmore » the 0.5-1.5 MWe pilot scales. The overall objective of the project is to design and install a scaled-up system of nominal 15 MWe size, integrate it with the Abbott Power Plant flue gas, steam and other utility systems, and demonstrate the viability of continuous operation under realistic conditions with high efficiency and capacity. The project will also begin to build a workforce that understands how to operate and maintain the capture plants by including students from regional community colleges and universities in the operation and evaluation of the capture system. This project will also lay the groundwork for follow-on projects that pilot utilization of the captured CO 2 from coal-fired power plants. The net impact will be to demonstrate a replicable means to (1) use a standardized procedure to evaluate power plants for their ability to be retrofitted with a pilot capture unit; (2) design and construct reliable capture systems based on the Linde-BASF technology; (3) operate and maintain these systems; (4) implement training programs with local community colleges and universities to establish a workforce to operate and maintain the systems; and (5) prepare to evaluate at the large pilot scale level various methods to utilize the resulting captured CO 2. Towards the larger project goal, the UI-led team, together with Linde, has completed a

  17. Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field.

    PubMed

    Albertazzi, B; Ciardi, A; Nakatsutsumi, M; Vinci, T; Béard, J; Bonito, R; Billette, J; Borghesi, M; Burkley, Z; Chen, S N; Cowan, T E; Herrmannsdörfer, T; Higginson, D P; Kroll, F; Pikuz, S A; Naughton, K; Romagnani, L; Riconda, C; Revet, G; Riquier, R; Schlenvoigt, H-P; Skobelev, I Yu; Faenov, A Ya; Soloviev, A; Huarte-Espinosa, M; Frank, A; Portugall, O; Pépin, H; Fuchs, J

    2014-10-17

    Although bipolar jets are seen emerging from a wide variety of astrophysical systems, the issue of their formation and morphology beyond their launching is still under study. Our scaled laboratory experiments, representative of young stellar object outflows, reveal that stable and narrow collimation of the entire flow can result from the presence of a poloidal magnetic field whose strength is consistent with observations. The laboratory plasma becomes focused with an interior cavity. This gives rise to a standing conical shock from which the jet emerges. Following simulations of the process at the full astrophysical scale, we conclude that it can also explain recently discovered x-ray emission features observed in low-density regions at the base of protostellar jets, such as the well-studied jet HH 154. Copyright © 2014, American Association for the Advancement of Science.

  18. Pilot-Reported Beta-Blockers Identified by Forensic Toxicology Analysis of Postmortem Specimens.

    PubMed

    Canfield, Dennis V; Dubowski, Kurt M; Whinnery, James M; Forster, Estrella M

    2018-01-01

    This study compared beta-blockers reported by pilots with the medications found by postmortem toxicology analysis of specimens received from fatal aviation accidents between 1999 and 2015. Several studies have compared drugs using the standard approach: Compare the drug found by toxicology analysis with the drug reported by the pilot. This study uniquely examined first the pilot-reported medication and then compared it to that detected by toxicology analysis. This study will serve two purposes: (i) to determine the capability of a toxicology laboratory to detect reported medications, and (ii) to identify pilots with medications below detectable limits. All information required for this study was extracted from the Toxicology Data Base system and was searched using ToxFlo or SQL Server Management Studio. The following information was collected and analyzed: pilot-reported trade and/or generic drug, date specimens received, time of accident, type of aviation operations (CFR), state, pilot level, age, class of medical, specimen type, specimen concentration, dose reported, frequency reported associated with the accident, quantity reported, National Transportation Safety Board (NTSB) accident event number, and all NTSB reports. There were 319 pilots that either reported taking a beta-blocker or were found to be taking a beta-blocker by postmortem toxicology analysis. Time of death, therapeutic concentration and specimen type were found to be factors in the ability of the laboratory to detect beta-blockers. Beta-blockers taken by pilots will, in most cases, be found by a competent postmortem forensic toxicology laboratory at therapeutic concentrations. The dose taken by the pilot was not found to be a factor in the ability of the laboratory to identify beta-blockers. Time of dose, route of administration, specimen tested and therapeutic concentration of the drug were found to be factors in the ability of the laboratory to identify beta-blockers in postmortem specimens

  19. Research and development in pilot plant production of granular NPK fertilizer

    NASA Astrophysics Data System (ADS)

    Failaka, Muhamad Fariz; Firdausi, Nadia Zahrotul; Chairunnisa, Altway, Ali

    2017-05-01

    PT Pupuk Kaltim (Pupuk Kaltim) as one of the biggest fertilizer manufacturer in Indonesia, always striving to improve the product quality and achieve the optimal performance while facing the challenges of global competition NPK (Nitrogen, Phosphorus, Potassium) market. In order to continuously improve operations and processes of two units NPK compound plant, Pupuk Kaltim has successfully initiated a new facility which is referred to as a NPK pilot-scale research facility with design capacity of 30 kg/hr. This mini-plant is used to assist in the scale up of new innovations from laboratory research to better understand the effect of using new raw materials and experiment with process changes to improve quality and efficiency. The pilot installation is composed of the following main parts: mixer, screw feeder, granulator, dryer and cooler. The granulator is the equipment where NPK granules is formed by spraying appropriate steam and water onto raw materials in a rotating drum. The rotary dryer and cooler are intended for the drying process where temperature reduction and the final moisture are obtained. As a part of innovations project since 2014, the pilot plant has conducted many of experiments such as trials using Ammonium Sulfate (ZA) as a new raw material, alternative raw materials of Diammonium Phosphate (DAP), Potassium Chloride (KCl) and clay, and using a novel material of fly ash. In addition, the process engineering staff also conduct the trials of raw materials ratio so that an ideal formulation with lower cost can be obtained especially when it is applied in the existing full-scale plant.

  20. Laboratory evaluation of a pilot cell battery protection system for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.; Thomas, R. D.

    1981-01-01

    An energy storage method for the 3.5 kW battery power system was investigated. The Pilot Cell Battery Protection System was tested for use in photovoltaic power systems and results show that this is a viable method of storage battery control. The method of limiting battery depth of discharge has the following advantages: (1) temperature sensitivity; (2) rate sensitivity; and (3) state of charge indication. The pilot cell concept is of interest in remote stand alone photovoltaic power systems. The battery can be protected from damaging overdischarge by using the proper ratio of pilot cell capacities to main battery capacity.

  1. A specific pilot-scale membrane hybrid treatment system for municipal wastewater treatment.

    PubMed

    Nguyen, Dinh Duc; Ngo, Huu Hao; Kim, Sa Dong; Yoon, Yong Soo

    2014-10-01

    A specifically designed pilot-scale hybrid wastewater treatment system integrating an innovative equalizing reactor (EQ), rotating hanging media bioreactor (RHMBR) and submerged flat sheet membrane bioreactor (SMBR) was evaluated for its effectiveness in practical, long-term, real-world applications. The pilot system was operated at a constant flux, but with different internal recycle flow rates (Q) over a long-term operating of 475 days. At 4 Q internal recycle flow rate, BOD5, CODCr, NH4(+)-N, T-N, T-P and TSS was highly removed with efficiencies up to 99.88 ± 0.05%, 95.01 ± 1.62%, 100%, 90.42 ± 2.43%, 73.44 ± 6.03%, and 99.93 ± 0.28%, respectively. Furthermore, the effluent quality was also superior in terms of turbidity (<1 NTU), color (<15 TCU) and taste (inoffensive). The results indicated that with providing only chemically cleaned-in-place (CIP) during the entire period of operation, the membrane could continuously maintain a constant permeate flux of 22.77 ± 2.19 L/m(2)h. In addition, the power consumption was also found to be reasonably low (0.92-1.62 k Wh/m(3)). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Scale-out of a community-based behavioral intervention for childhood obesity: pilot implementation evaluation.

    PubMed

    Heerman, William J; Schludnt, David; Harris, Dawn; Teeters, Leah; Apple, Rachel; Barkin, Shari L

    2018-04-13

    Expanding the use of evidence-based behavioral interventions in community settings has met with limited success in various health outcomes as fidelity and dose of clinical interventions are often diluted when translated to communities. We conducted a pilot implementation study to examine adoption of the rigorously evaluated Healthier Families Program by Parks and Recreation centers in 3 cities across the country (MI, GA, NV) with diverse socio-cultural environments. Using the RE-AIM framework, we evaluated the program both quantitatively (pre/post surveys of health behavior change; attendance & fidelity) and qualitatively (interviews with Parks and Recreation staff and participants following the program). The 3 partner sites recruited a total of 26 parent-child pairs. Among the 24 participants who completed pre/post surveys, 62.5% were 25-34 years old, and average child age was 3.6 (SD 0.7) years. The distribution of self-reported race/ethnicity was 54% non-Hispanic White, 38% non-Hispanic Black, and 8% Latino. Qualitative interviews with participants demonstrated increased use of the built environment for physical activity and continued use of key strategies for health behavior change. Three of five (60%) collaborating sites proceeded with implementation of the program. The average attendance for the 12-week program was 7.6 (SD 3.9) sessions, with 71% attending > 50% of sessions. Average fidelity for the 12 weekly sessions was 25.2 (SD 1.2; possible range 9-27). All 3 partner sites continued offering the program after grant funding was complete. This pilot is among the first attempts to scale-out an evidence-based childhood obesity intervention in community Parks and Recreation centers. While this pilot was not intended to confirm the efficacy of the original trial on Body Mass Index (BMI) reduction, the effective and sustained behavior change among a geographically and ethnically diverse population with high attendance and fidelity demonstrates an effective

  3. Scaling up microbial fuel cells and other bioelectrochemical systems.

    PubMed

    Logan, Bruce E

    2010-02-01

    Scientific research has advanced on different microbial fuel cell (MFC) technologies in the laboratory at an amazing pace, with power densities having reached over 1 kW/m(3) (reactor volume) and to 6.9 W/m(2) (anode area) under optimal conditions. The main challenge is to bring these technologies out of the laboratory and engineer practical systems for bioenergy production at larger scales. Recent advances in new types of electrodes, a better understanding of the impact of membranes and separators on performance of these systems, and results from several new pilot-scale tests are all good indicators that commercialization of the technology could be possible within a few years. Some of the newest advances and future challenges are reviewed here with respect to practical applications of these MFCs for renewable energy production and other applications.

  4. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britt, Phillip F

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions basedmore » on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.« less

  5. Pilot-scale cultivation of wall-deficient transgenic Chlamydomonas reinhardtii strains expressing recombinant proteins in the chloroplast.

    PubMed

    Zedler, Julie A Z; Gangl, Doris; Guerra, Tiago; Santos, Edgar; Verdelho, Vitor V; Robinson, Colin

    2016-08-01

    Microalgae have emerged as potentially powerful platforms for the production of recombinant proteins and high-value products. Chlamydomonas reinhardtii is a potentially important host species due to the range of genetic tools that have been developed for this unicellular green alga. Transformation of the chloroplast genome offers important advantages over nuclear transformation, and a wide range of recombinant proteins have now been expressed in the chloroplasts of C. reinhardtii strains. This is often done in cell wall-deficient mutants that are easier to transform. However, only a single study has reported growth data for C. reinhardtii grown at pilot scale, and the growth of cell wall-deficient strains has not been reported at all. Here, we report the first pilot-scale growth study for transgenic, cell wall-deficient C. reinhardtii strains. Strains expressing a cytochrome P450 (CYP79A1) or bifunctional diterpene synthase (cis-abienol synthase, TPS4) were grown for 7 days under mixotrophic conditions in a Tris-acetate-phosphate medium. The strains reached dry cell weights of 0.3 g/L within 3-4 days with stable expression levels of the recombinant proteins during the whole upscaling process. The strains proved to be generally robust, despite the cell wall-deficient phenotype, but grew poorly under phototrophic conditions. The data indicate that cell wall-deficient strains may be highly amenable for transformation and suitable for commercial-scale operations under mixotrophic growth regimes.

  6. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale.

    PubMed

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  7. Improving laboratory efficiencies to scale-up HIV viral load testing.

    PubMed

    Alemnji, George; Onyebujoh, Philip; Nkengasong, John N

    2017-03-01

    Viral load measurement is a key indicator that determines patients' response to treatment and risk for disease progression. Efforts are ongoing in different countries to scale-up access to viral load testing to meet the Joint United Nations Programme on HIV and AIDS target of achieving 90% viral suppression among HIV-infected patients receiving antiretroviral therapy. However, the impact of these initiatives may be challenged by increased inefficiencies along the viral load testing spectrum. This will translate to increased costs and ineffectiveness of scale-up approaches. This review describes different parameters that could be addressed across the viral load testing spectrum aimed at improving efficiencies and utilizing test results for patient management. Though progress is being made in some countries to scale-up viral load, many others still face numerous challenges that may affect scale-up efficiencies: weak demand creation, ineffective supply chain management systems; poor specimen referral systems; inadequate data and quality management systems; and weak laboratory-clinical interface leading to diminished uptake of test results. In scaling up access to viral load testing, there should be a renewed focus to address efficiencies across the entire spectrum, including factors related to access, uptake, and impact of test results.

  8. Laboratory scale studies on gaseous emissions generated by the incineration of an artificial automotive shredder residue presenting a critical composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanoir, D.; Trouve, G.; Delfosse, L.

    1998-09-01

    Car manufacturers must eliminate automotive shredder residues (ASR). Two ways of incineration are of interest: at 850 C in municipal waste incinerators or at higher temperatures, above 1,100 C in cement plants. These processes reduce the mass and the volume of waste to be disposed of in landfills and energy recovery might be possible. Regulations govern the emission of gaseous effluents to control environmental risk. To determine gaseous effluents from a pilot scale or an industrial incineration plant, an artificial ASR was made by mixing three representative organic polymers present in the real ASR, namely polyvinylchloride, polyurethane and rubber. Thismore » mixture was incinerated at 850 and 1,100 C in laboratory experiments and the analyses of the principal gaseous effluents such as carbon oxides, nitrogen oxides, volatile organic compounds, hydrochloric and hydrocyanic acids and sulfur compounds are presented and discussed. Lastly, in order to simulate artificial ASR behavior, the composition of the combustion gases at equilibrium was calculated using a Gibbs energy minimization code.« less

  9. SLIPTA e-Tool improves laboratory audit process in Vietnam and Cambodia.

    PubMed

    Nguyen, Thuong T; McKinney, Barbara; Pierson, Antoine; Luong, Khue N; Hoang, Quynh T; Meharwal, Sandeep; Carvalho, Humberto M; Nguyen, Cuong Q; Nguyen, Kim T; Bond, Kyle B

    2014-01-01

    The Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist is used worldwide to drive quality improvement in laboratories in developing countries and to assess the effectiveness of interventions such as the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme. However, the paper-based format of the checklist makes administration cumbersome and limits timely analysis and communication of results. In early 2012, the SLMTA team in Vietnam developed an electronic SLIPTA checklist tool. The e-Tool was pilot tested in Vietnam in mid-2012 and revised. It was used during SLMTA implementation in Vietnam and Cambodia in 2012 and 2013 and further revised based on auditors' feedback about usability. The SLIPTA e-Tool enabled rapid turn-around of audit results, reduced workload and language barriers and facilitated analysis of national results. Benefits of the e-Tool will be magnified with in-country scale-up of laboratory quality improvement efforts and potential expansion to other countries.

  10. SLIPTA e-Tool improves laboratory audit process in Vietnam and Cambodia

    PubMed Central

    Nguyen, Thuong T.; McKinney, Barbara; Pierson, Antoine; Luong, Khue N.; Hoang, Quynh T.; Meharwal, Sandeep; Carvalho, Humberto M.; Nguyen, Cuong Q.; Nguyen, Kim T.

    2014-01-01

    Background The Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist is used worldwide to drive quality improvement in laboratories in developing countries and to assess the effectiveness of interventions such as the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme. However, the paper-based format of the checklist makes administration cumbersome and limits timely analysis and communication of results. Development of e-Tool In early 2012, the SLMTA team in Vietnam developed an electronic SLIPTA checklist tool. The e-Tool was pilot tested in Vietnam in mid-2012 and revised. It was used during SLMTA implementation in Vietnam and Cambodia in 2012 and 2013 and further revised based on auditors’ feedback about usability. Outcomes The SLIPTA e-Tool enabled rapid turn-around of audit results, reduced workload and language barriers and facilitated analysis of national results. Benefits of the e-Tool will be magnified with in-country scale-up of laboratory quality improvement efforts and potential expansion to other countries. PMID:29043190

  11. Laboratory Testing of Waste Isolation Pilot Plant Surrogate Waste Materials

    NASA Astrophysics Data System (ADS)

    Broome, S.; Bronowski, D.; Pfeifle, T.; Herrick, C. G.

    2011-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below the ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. WIPP Performance Assessment modeling of the underground material response requires a full and accurate understanding of coupled mechanical, hydrological, and geochemical processes and how they evolve with time. This study was part of a broader test program focused on room closure, specifically the compaction behavior of waste and the constitutive relations to model this behavior. The goal of this study was to develop an improved waste constitutive model. The model parameters are developed based on a well designed set of test data. The constitutive model will then be used to realistically model evolution of the underground and to better understand the impacts on repository performance. The present study results are focused on laboratory testing of surrogate waste materials. The surrogate wastes correspond to a conservative estimate of the degraded containers and TRU waste materials after the 10,000 year regulatory period. Testing consists of hydrostatic, uniaxial, and triaxial tests performed on surrogate waste recipes that were previously developed by Hansen et al. (1997). These recipes can be divided into materials that simulate 50% and 100% degraded waste by weight. The percent degradation indicates the anticipated amount of iron corrosion, as well as the decomposition of cellulosics, plastics, and rubbers. Axial, lateral, and volumetric strain and axial and lateral stress measurements were made. Two unique testing techniques were developed during the course of the experimental program. The first involves the use of dilatometry to measure sample volumetric strain under a hydrostatic condition. Bulk

  12. A Pilot-Scale Evaluation of a New Technology to Control NO(x) Emissions from Boilers at KSC: Hydrogen Peroxide Injection into Boiler Flue Gases Followed by Wet Scrubbing of Acid Gases

    NASA Technical Reports Server (NTRS)

    Cooper, C. David

    1997-01-01

    Emissions of nitrogen oxides NO(x) are a significant problem in the United States. NO(x) are formed in any combustion process, therefore it is not surprising that NO(x) are emitted from the boilers at KSC. Research at UCF has shown (in the laboratory) that injecting H2O2 into hot simulated flue gases can oxidize the NO and NO2 to their acid gas forms, HNO2 and HNO3, respectively. These acid gases are much more water soluble than their counterparts, and theoretically can be removed easily by wet scrubbing. This technology was of interest to NASA, both for their boilers at KSC, and for their combustion sources elsewhere. However, it was necessary to field test the technology and to provide pilot-scale data to aid in design of full-scale facilities. Hence this project was initiated in May of 1996.

  13. 46 CFR 163.003-7 - Independent laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Independent laboratory. 163.003-7 Section 163.003-7...: SPECIFICATIONS AND APPROVAL CONSTRUCTION Pilot Ladder § 163.003-7 Independent laboratory. The approval and production tests in this subpart must be conducted by or under the supervision of an independent laboratory...

  14. 46 CFR 163.003-7 - Independent laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Independent laboratory. 163.003-7 Section 163.003-7...: SPECIFICATIONS AND APPROVAL CONSTRUCTION Pilot Ladder § 163.003-7 Independent laboratory. The approval and production tests in this subpart must be conducted by or under the supervision of an independent laboratory...

  15. Demonstration-scale evaluation of a novel high-solids anaerobic digestion process for converting organic wastes to fuel gas and compost.

    PubMed

    Rivard, C J; Duff, B W; Dickow, J H; Wiles, C C; Nagle, N J; Gaddy, J L; Clausen, E C

    1998-01-01

    Early evaluations of the bioconversion potential for combined wastes such as tuna sludge and sorted municipal solid waste (MSW) were conducted at laboratory scale and compared conventional low-solids, stirred-tank anaerobic systems with the novel, high-solids anaerobic digester (HSAD) design. Enhanced feedstock conversion rates and yields were determined for the HSAD system. In addition, the HSAD system demonstrated superior resiliency to process failure. Utilizing relatively dry feedstocks, the HSAD system is approximately one-tenth the size of conventional low-solids systems. In addition, the HSAD system is capable of organic loading rates (OLRs) on the order of 20-25 g volatile solids per liter digester volume per d (gVS/L/d), roughly 4-5 times those of conventional systems. Current efforts involve developing a demonstration-scale (pilot-scale) HSAD system. A two-ton/d plant has been constructed in Stanton, CA and is currently in the commissioning/startup phase. The purposes of the project are to verify laboratory- and intermediate-scale process performance; test the performance of large-scale prototype mechanical systems; demonstrate the long-term reliability of the process; and generate the process and economic data required for the design, financing, and construction of full-scale commercial systems. This study presents conformational fermentation data obtained at intermediate-scale and a snapshot of the pilot-scale project.

  16. Subsonic stability and control derivatives for an unpowered, remotely piloted 3/8-scale F-15 airplane model obtained from flight test

    NASA Technical Reports Server (NTRS)

    Iliff, K. W.; Maine, R. E.; Shafer, M. F.

    1976-01-01

    In response to the interest in airplane configuration characteristics at high angles of attack, an unpowered remotely piloted 3/8-scale F-15 airplane model was flight tested. The subsonic stability and control characteristics of this airplane model over an angle of attack range of -20 to 53 deg are documented. The remotely piloted technique for obtaining flight test data was found to provide adequate stability and control derivatives. The remotely piloted technique provided an opportunity to test the aircraft mathematical model in an angle of attack regime not previously examined in flight test. The variation of most of the derivative estimates with angle of attack was found to be consistent, particularly when the data were supplemented by uncertainty levels.

  17. Formulation and development of tablets based on Ludipress and scale-up from laboratory to production scale.

    PubMed

    Heinz, R; Wolf, H; Schuchmann, H; End, L; Kolter, K

    2000-05-01

    In spite of the wealth of experience available in the pharmaceutical industry, tablet formulations are still largely developed on an empirical basis, and the scale-up from laboratory to production is a time-consuming and costly process. Using Ludipress greatly simplifies formulation development and the manufacturing process because only the active ingredient Ludipress and a lubricant need to be mixed briefly before being compressed into tablets. The studies described here were designed to investigate the scale-up of Ludipress-based formulations from laboratory to production scale, and to predict changes in tablet properties due to changes in format, compaction pressure, and the use of different tablet presses. It was found that the tensile strength of tablets made of Ludipress increased linearly with compaction pressures up to 300 MPa. It was also independent of the geometry of the tablets (diameter, thickness, shape). It is therefore possible to give an equation with which the compaction pressure required to achieve a given hardness can be calculated for a given tablet form. The equation has to be modified slightly to convert from a single-punch press to a rotary tableting machine. Tablets produced in the rotary machine at the same pressure have a slightly higher tensile strength. The rate of increase in pressure, and therefore the throughput, has no effect on the tensile strength of Ludipress tablets. It is thought that a certain minimum dwell time is responsible for this difference. The production of tablets based on Ludipress can be scaled up from one rotary press to another without problem if the powder mixtures are prepared with the same mixing energy. The tensile strength curve determined for tablets made with Ludipress alone can also be applied to tablets with a small quantity (< 10%) of an active ingredient.

  18. Full-scale and laboratory-scale anaerobic treatment of citric acid production wastewater.

    PubMed

    Colleran, E; Pender, S; Philpott, U; O'Flaherty, V; Leahy, B

    1998-01-01

    This paper reviews the operation of a full-scale, fixed-bed digester treating a citric acid production wastewater with a COD:sulphate ratio of 3-4:1. Support matrix pieces were removed from the digester at intervals during the first 5 years of operation in order to quantify the vertical distribution of biomass within the digester. Detailed analysis of the digester biomass after 5 years of operation indicated that H2 and propionate-utilising SRB had outcompeted hydrogenophilic methanogens and propionate syntrophs. Acetoclastic methanogens were shown to play the dominant role in acetate conversion. Butyrate and ethanol-degrading syntrophs also remained active in the digester after 5 years of operation. Laboratory-scale hybrid reactor treatment at 55 degrees C of a diluted molasses influent, with and without sulphate supplementation, showed that the reactors could be operated with high stability at volumetric loading rates of 24 kgCOD.m-3.d-1 (12 h HRT). In the presence of sulphate (2 g/l-1; COD/sulphate ratio of 6:1), acetate conversion was severely inhibited, resulting in effluent acetate concentrations of up to 4000 mg.l-1.

  19. Determination of sex hormones and nonylphenol ethoxylates in the aqueous matrixes of two pilot-scale municipal wastewater treatment plants.

    PubMed

    Esperanza, Mar; Suidan, Makram T; Nishimura, Fumitake; Wang, Zhong-Min; Sorial, George A; Zaffiro, Alan; McCauley, Paul; Brenner, Richard; Sayles, Gregory

    2004-06-01

    Two analytical methods were developed and refined for the detection and quantitation of two groups of endocrine-disrupting chemicals (EDCs) in the liquid matrixes of two pilot-scale municipal wastewater treatment plants. The targeted compounds are seven sex hormones (estradiol, ethinylestradiol, estrone, estriol, testosterone, progesterone, and androstenedione), a group of nonionic surfactants (nonylphenol polyethoxylates), and their biodegradation byproducts nonylphenol and nonylphenol ethoxylates with one, two, and three ethoxylates. Solid phase extraction using C-18 for steroids and graphitized carbon black for the surfactants were used for extraction. HPLC-DAD and GC/MS were used for quantification. Each of the two 20 L/h pilot-scale plants consists of a primary settling tank followed by a three-stage aeration tank and final clarification. The primary and the waste-activated sludge are digested anaerobically in one plant and aerobically in the other. The pilot plants are fed with a complex synthetic wastewater spiked with the EDCs. Once steady state was reached, liquid samples were collected from four sampling points to obtain the profile for all EDCs along the treatment system. Complete removal from the aqueous phase was obtained for testosterone, androstenedione, and progesterone. Removals for nonylphenol polyethoxylates, estradiol, estrone, and ethinylestradiol from the aqueous phase exceeded 96%, 94%, 52%, and 50%, respectively. Levels of E3 in the liquid phase were low, and no clear conclusions could be drawn concerning its removal.

  20. Pilot testing of a membrane system for postcombustion CO 2 capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkel, Tim; Kniep, Jay; Wei, Xiaotong

    2015-09-30

    This final report summarizes work conducted for the U.S. Department of Energy, National Energy Technology Laboratory (DOE) to scale up an efficient post-combustion CO 2 capture membrane process to the small pilot test stage (award number DE-FE0005795). The primary goal of this research program was to design, fabricate, and operate a membrane CO 2 capture system to treat coal-derived flue gas containing 20 tonnes CO 2/day (20 TPD). Membrane Technology and Research (MTR) conducted this project in collaboration with Babcock and Wilcox (B&W), the Electric Power Research Institute (EPRI), WorleyParsons (WP), the Illinois Sustainable Technology Center (ISTC), Enerkem (EK), andmore » the National Carbon Capture Center (NCCC). In addition to the small pilot design, build and slipstream testing at NCCC, other project efforts included laboratory membrane and module development at MTR, validation field testing on a 1 TPD membrane system at NCCC, boiler modeling and testing at B&W, a techno-economic analysis (TEA) by EPRI/WP, a case study of the membrane technology applied to a ~20 MWe power plant by ISTC, and an industrial CO 2 capture test at an Enerkem waste-to-biofuel facility. The 20 TPD small pilot membrane system built in this project successfully completed over 1,000 hours of operation treating flue gas at NCCC. The Polaris™ membranes used on this system demonstrated stable performance, and when combined with over 10,000 hours of operation at NCCC on a 1 TPD system, the risk associated with uncertainty in the durability of postcombustion capture membranes has been greatly reduced. Moreover, next-generation Polaris membranes with higher performance and lower cost were validation tested on the 1 TPD system. The 20 TPD system also demonstrated successful operation of a new low-pressure-drop sweep module that will reduce parasitic energy losses at full scale by as much as 10 MWe. In modeling and pilot boiler testing, B&W confirmed the viability of CO 2 recycle to the

  1. Fluid dynamics structures in a fire environment observed in laboratory-scale experiments

    Treesearch

    J. Lozano; W. Tachajapong; D.R. Weise; S. Mahalingam; M. Princevac

    2010-01-01

    Particle Image Velocimetry (PIV) measurements were performed in laboratory-scale experimental fires spreading across horizontal fuel beds composed of aspen (Populus tremuloides Michx) excelsior. The continuous flame, intermittent flame, and thermal plume regions of a fire were investigated. Utilizing a PIV system, instantaneous velocity fields for...

  2. Pilot-Scale Test of Dephosphorization in Steelmaking Using Red Mud-Based Flux

    NASA Astrophysics Data System (ADS)

    Li, Fengshan; Zhang, Yanling; Guo, Zhancheng

    2017-09-01

    Bayer red mud is characterized by its highly oxidizing nature and high alkalinity. It can act as an ideal flux and dephosphorizer in steelmaking. In this study, pilot-scale tests applying the Bayer red mud-based flux in steelmaking have been conducted in a 200-kg, medium-frequency induction furnace. Good slag fluidity and no rephosphorization phenomena are observed. High dephosphorization rates ( 90%) and low final [P] (<0.02%) are obtained in the situation of high [C] of 2.0-3.0%, which are of great importance for the production of clean steel. The P2O5 content in the P-rich phase in the red mud-based slag can reach as high as 34.05 wt.%, far higher than the 6.73 wt.% in ordinary industrial slag. This suggests that the Al2O3, TiO2 in Bayer red mud can enhance the solid solubility of phosphorus in the P-rich phase. The data obtained are important for promoting the large-scale application of red mud in steelmaking.

  3. 46 CFR 163.002-7 - Independent laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Independent laboratory. 163.002-7 Section 163.002-7...: SPECIFICATIONS AND APPROVAL CONSTRUCTION Pilot Hoist § 163.002-7 Independent laboratory. (a) The approval and production tests in this subpart must be conducted by, or under the supervision of, an independent laboratory...

  4. 46 CFR 163.002-7 - Independent laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Independent laboratory. 163.002-7 Section 163.002-7...: SPECIFICATIONS AND APPROVAL CONSTRUCTION Pilot Hoist § 163.002-7 Independent laboratory. (a) The approval and production tests in this subpart must be conducted by, or under the supervision of, an independent laboratory...

  5. On the dominant noise components of tactical aircraft: Laboratory to full scale

    NASA Astrophysics Data System (ADS)

    Tam, Christopher K. W.; Aubert, Allan C.; Spyropoulos, John T.; Powers, Russell W.

    2018-05-01

    This paper investigates the dominant noise components of a full-scale high performance tactical aircraft. The present study uses acoustic measurements of the exhaust jet from a single General Electric F414-400 turbofan engine installed in a Boeing F/A-18E Super Hornet aircraft operating from flight idle to maximum afterburner. The full-scale measurements are to the ANSI S12.75-2012 standard employing about 200 microphones. By comparing measured noise spectra with those from hot supersonic jets observed in the laboratory, the dominant noise components specific to the F/A-18E aircraft at different operating power levels are identified. At intermediate power, it is found that the dominant noise components of an F/A-18E aircraft are essentially the same as those of high temperature supersonic laboratory jets. However, at military and afterburner powers, there are new dominant noise components. Their characteristics are then documented and analyzed. This is followed by an investigation of their origin and noise generation mechanisms.

  6. Effect of nacelle on wake meandering in a laboratory scale wind turbine using LES

    NASA Astrophysics Data System (ADS)

    Foti, Daniel; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis

    2015-11-01

    Wake meandering, large scale motion in the wind turbine wakes, has considerable effects on the velocity deficit and turbulence intensity in the turbine wake from the laboratory scale to utility scale wind turbines. In the dynamic wake meandering model, the wake meandering is assumed to be caused by large-scale atmospheric turbulence. On the other hand, Kang et al. (J. Fluid Mech., 2014) demonstrated that the nacelle geometry has a significant effect on the wake meandering of a hydrokinetic turbine, through the interaction of the inner wake of the nacelle vortex with the outer wake of the tip vortices. In this work, the significance of the nacelle on the wake meandering of a miniature wind turbine previously used in experiments (Howard et al., Phys. Fluid, 2015) is demonstrated with large eddy simulations (LES) using immersed boundary method with fine enough grids to resolve the turbine geometric characteristics. The three dimensionality of the wake meandering is analyzed in detail through turbulent spectra and meander reconstruction. The computed flow fields exhibit wake dynamics similar to those observed in the wind tunnel experiments and are analyzed to shed new light into the role of the energetic nacelle vortex on wake meandering. This work was supported by Department of Energy DOE (DE-EE0002980, DE-EE0005482 and DE-AC04-94AL85000), and Sandia National Laboratories. Computational resources were provided by Sandia National Laboratories and the University of Minnesota Supercomputing.

  7. Pilot-scale study of efficient vermicomposting of agro-industrial wastes.

    PubMed

    Kumar, Vaidyanathan Vinoth; Shanmugaprakash, M; Aravind, J; Namasivayam, S Karthick Raja

    2012-01-01

    Pilot-scale vermicomposting was explored using Eudrilus eugeniae for 90 days with 45 days preliminary decomposition using different agro-industrial wastes as substrates. Spent wash and pressmud were mixed together (referred to as PS) and then combined with cow dung (CD) at five different ratios of PS:CD, namely, 25:75 (T1), 50:50 (T2), 75:25 (T3), 85:15 (T4) and 100 (T5), with two replicates for each treatment. All vermibeds expressed a significant decrease in pH (11.4-14.8%), organic carbon (4.2-30.5%) and an increase in total nitrogen (6-29%), AP (5-29%), exchangeable potash (6-21%) and turnover rate (52-66%). Maximum mortality (18.10%) of worms was recorded in T5 treatment. A high manurial value and a matured product was achieved in T3 treatment. The data reveal that pressmud mixed with spent wash can be decomposed through vermicomposting and can help to enhance the quality of vermicompost.

  8. A Simple Laboratory Scale Model of Iceberg Dynamics and its Role in Undergraduate Education

    NASA Astrophysics Data System (ADS)

    Burton, J. C.; MacAyeal, D. R.; Nakamura, N.

    2011-12-01

    Lab-scale models of geophysical phenomena have a long history in research and education. For example, at the University of Chicago, Dave Fultz developed laboratory-scale models of atmospheric flows. The results from his laboratory were so stimulating that similar laboratories were subsequently established at a number of other institutions. Today, the Dave Fultz Memorial Laboratory for Hydrodynamics (http://geosci.uchicago.edu/~nnn/LAB/) teaches general circulation of the atmosphere and oceans to hundreds of students each year. Following this tradition, we have constructed a lab model of iceberg-capsize dynamics for use in the Fultz Laboratory, which focuses on the interface between glaciology and physical oceanography. The experiment consists of a 2.5 meter long wave tank containing water and plastic "icebergs". The motion of the icebergs is tracked using digital video. Movies can be found at: http://geosci.uchicago.edu/research/glaciology_files/tsunamigenesis_research.shtml. We have had 3 successful undergraduate interns with backgrounds in mathematics, engineering, and geosciences perform experiments, analyze data, and interpret results. In addition to iceberg dynamics, the wave-tank has served as a teaching tool in undergraduate classes studying dam-breaking and tsunami run-up. Motivated by the relatively inexpensive cost of our apparatus (~1K-2K dollars) and positive experiences of undergraduate students, we hope to serve as a model for undergraduate research and education that other universities may follow.

  9. Pilot scale production of the vaccine adjuvant Proteoliposome derived Cochleates (AFCo1) from Neisseria meningitidis serogroup B

    PubMed Central

    2013-01-01

    The use of new adjuvants in vaccine formulations is a subject of current research. Only few parenteral adjuvants have been licensed. We have developed a mucosal and parenteral adjuvant known as AFCo1 (Adjuvant Finlay Cochleate 1, derived from proteoliposomes of N. meningitidis B) using a dialysis procedure to produce them on lab scale. The immunogenicity of the AFCo1 produced by dialysis has been already evaluated, but it was necessary to demonstrate the feasibility of a larger-scale manufacturing process. Therefore, we used a crossflow diafiltration system (CFS) that allows easy scale up to obtain large batches in an aseptic environment. The aim of this work was to produce AFCo1 on pilot scale, while conserving the adjuvant properties. The proteoliposomes (raw material) were resuspended in a buffer containing sodium deoxycholate and were transformed into AFCo1 under the action of a calcium forming buffer. The detergent was removed from the protein solution by diafiltration to a constant volume. In this CFS, we used a hollow fiber cartridge from Amicon (polysulfona cartridge of 10 kDa porosity, 1mm channel diameter of fiber and 0.45 m2 area of filtration), allowing production of a batch of up to 20 L. AFCo1 were successfully produced by tangential filtration to pilot scale. The batch passed preliminary stability tests. Nasal immunization of BALB/c mice, induced specific saliva IgA and serum IgG. The induction of Th1 responses were demonstrated by the induction of IgG2a, IFNγ and not IL-5. The adjuvant action over Neisseria (self) antigens and with co-administered (heterologous) antigens such as ovalbumin and a synthetic peptide from haemolytic Streptococcus B was also demonstrated. PMID:23458578

  10. Pilot-scale production of biodiesel from waste fats and oils using tetramethylammonium hydroxide.

    PubMed

    Šánek, Lubomír; Pecha, Jiří; Kolomazník, Karel; Bařinová, Michaela

    2016-02-01

    Annually, a great amount of waste fats and oils not suitable for human consumption or which cannot be further treated are produced around the world. A potential way of utilizing this low-cost feedstock is its conversion into biodiesel. The majority of biodiesel production processes today are based on the utilization of inorganic alkali catalysts. However, it has been proved that an organic base - tetramethylammonium hydroxide - can be used as a very efficient transesterification catalyst. Furthermore, it can be employed for the esterification of free fatty acids - reducing even high free fatty acid contents to the required level in just one step. The work presented herein, is focused on biodiesel production from waste frying oils and animal fats using tetramethylammonium hydroxide at the pilot-plant level. The results showed that the process performance in the pilot unit - using methanol and TMAH as a catalyst, is comparable to the laboratory procedure, even when the biodiesel is produced from waste vegetable oils or animal fats with high free fatty acid content. The reaction conditions were set at: 1.5% w/w of TMAH, reaction temperature 65°C, the feedstock to methanol molar ratio to 1:6, and the reaction time to 120min. The conversion of triglycerides to FAME was approximately 98%. The cloud point of the biodiesel obtained from waste animal fat was also determined. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. ISO 50001 for Commercial Buildings: Lessons Learned From U.S. DOE Pilot Project: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deru, M.; Field, K.; Punjabi, S.

    In the U.S., the ISO 50001 Standard, which establishes energy management systems (EnMSs) and processes, has shown uptake primarily in the industrial sector. The U.S. Department of Energy (DOE) undertook a pilot program to explore ISO 50001 implementation in commercial buildings. Eight organizations participated as pilots, with technical assistance provided by DOE, the National Renewable Energy Laboratory (NREL), the Lawrence Berkeley National Laboratory (LBNL), and the Georgia Institute of Technology (Georgia Tech). This paper shares important lessons learned from the pilot. Staff time was the most critical resource required to establish effective EnMSs in commercial buildings. The pilot also revealedmore » that technical support and template/example materials were essential inputs. Crucial activities included evaluating performance, identifying goals, making connections, communicating operational controls, and tracking/reviewing progress. Benefits realized included enhanced intra-organizational connections, greater energy awareness, increased process efficiencies, and improved ability to make business cases. Incremental benefits for ISO 50001 certification were greater accountability, assurance of best practices, public relations opportunities, and potential to unlock verified savings credits or incentive money. Incremental certification costs included more staff/consultant time, money for certification, and a tendency to limit EnMS scope in order to ensure favorable audit results. Five best practices were identified - utilizing expert technical assistance, training, and other resources; focusing on implementation over documentation; keeping top management involved; considering organizational structure when selecting EnMS scope; and matching the implementation level to an EnMS's scope and scale. The last two practices are particularly relevant to the commercial buildings sector.« less

  12. DEVELOPMENT AND DEMONSTRATION OF A PILOT SCALE FACILITY FOR FABRICATION AND MARKETING OF LIGHTWEIGHT-COAL COMBUSTION BYPRODUCTS-BASED SUPPORTS AND MINE VENTILATION BLOCKS FOR UNDERGROUND MINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginder P. Chugh

    2002-10-01

    The overall goal of this program was to develop a pilot scale facility, and design, fabricate, and market CCBs-based lightweight blocks for mine ventilation control devices, and engineered crib elements and posts for use as artificial supports in underground mines to replace similar wooden elements. This specific project was undertaken to (1) design a pilot scale facility to develop and demonstrate commercial production techniques, and (2) provide technical and marketing support to Fly Lite, Inc to operate the pilot scale facility. Fly Lite, Inc is a joint venture company of the three industrial cooperators who were involved in research intomore » the development of CCBs-based structural materials. The Fly-Lite pilot scale facility is located in McLeansboro, Illinois. Lightweight blocks for use in ventilation stoppings in underground mines have been successfully produced and marketed by the pilot-scale facility. To date, over 16,000 lightweight blocks (30-40 pcf) have been sold to the mining industry. Additionally, a smaller width (6-inch) full-density block was developed in August-September 2002 at the request of a mining company. An application has been submitted to Mine Safety and Health Administration for the developed block approval for use in mines. Commercialization of cribs and posts has also been accomplished. Two generations of cribs have been developed and demonstrated in the field. MSHA designated them suitable for use in mines. To date, over 2,000 crib elements have been sold to mines in Illinois. Two generations of posts were also demonstrated in the field and designated as suitable for use in mines by MSHA. Negotiations are currently underway with a mine in Illinois to market about 1,000 posts per year based on a field demonstration in their mine. It is estimated that 4-5 million tons CCBs (F-fly ash or FBC fly ash) may be utilized if the developed products can be commercially implemented in U.S. coal and non-coal mines.« less

  13. Influence of high gas production during thermophilic anaerobic digestion in pilot-scale and lab-scale reactors on survival of the thermotolerant pathogens Clostridium perfringens and Campylobacter jejuni in piggery wastewater.

    PubMed

    Skillman, L C; Bajsa, O; Ho, L; Santhanam, B; Kumar, M; Ho, G

    2009-07-01

    Safe reuse of animal wastes to capture energy and nutrients, through anaerobic digestion processes, is becoming an increasingly desirable solution to environmental pollution. Pathogen decay is the most important safety consideration and is in general, improved at elevated temperatures and longer hydraulic residence times. During routine sampling to assess pathogen decay in thermophilic digestion, an inversely proportional relationship between levels of Clostridium perfringens and gas production was observed. Further samples were collected from pilot-scale, bench-scale thermophilic reactors and batch scale vials to assess whether gas production (predominantly methane) could be a useful indicator of decay of the thermotolerant pathogens C. perfringens and Campylobacter jejuni. Pathogen levels did appear to be lower where gas production and levels of methanogens were higher. This was evident at each operating temperature (50, 57, 65 degrees C) in the pilot-scale thermophilic digesters, although higher temperatures also reduced the numbers of pathogens detected. When methane production was higher, either when feed rate was increased, or pH was lowered from 8.2 (piggery wastewater) to 6.5, lower numbers of pathogens were detected. Although a number of related factors are known to influence the amount and rate of methane production, it may be a useful indicator of the removal of the pathogens C. perfringens and C. jejuni.

  14. PILOT PEAT-BED TREATMENT SYSTEM FOR NPDES OUTFALL H-12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halverson, N; Ralph Nichols, R; Topher Berry, T

    2007-10-22

    requested a larger-scale study to investigate key design and operation parameters/issues, such as the possibility of rapid plugging of the piping or clogging of the peat bed, the effectiveness of the treatment, hydraulic conductivity, etc. The resulting pilot-scale facility was constructed adjacent to Outfall H-12 with SCDHEC approval (Mullinax 2007). The pilot-scale study was performed by the Savannah River National Laboratory's (SRNL) Environmental Science and Biotechnology Directorate personnel. Since the construction and operation of the pilot-scale peat bed facility, however, a new strategy for achieving compliance of Outfall H-12 effluent with the new permit limits has been selected. This new strategy incorporates a variety of efforts including source reduction, recalculation of limits using an aquatic species that is indigenous to the area instead of a standard species, and dissolved organic carbon addition to reduce copper toxicity. This report documents the construction and operation of the pilot-scale treatment system, the results obtained, and recommendations on the usefulness of this technology for Outfall H-12 or other outfalls at SRS.« less

  15. The small-scale treatability study sample exemption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coalgate, J.

    1991-01-01

    In 1981, the Environmental Protection Agency (EPA) issued an interim final rule that conditionally exempted waste samples collected solely for the purpose of monitoring or testing to determine their characteristics or composition'' from RCRA Subtitle C hazardous waste regulations. This exemption (40 CFR 261.4(d)) apples to the transportation of samples between the generator and testing laboratory, temporary storage of samples at the laboratory prior to and following testing, and storage at a laboratory for specific purposes such as an enforcement action. However, the exclusion did not include large-scale samples used in treatability studies or other testing at pilot plants ormore » other experimental facilities. As a result of comments received by the EPA subsequent to the issuance of the interim final rule, the EPA reopened the comment period on the interim final rule on September 18, 1987, and specifically requested comments on whether or not the sample exclusion should be expanded to include waste samples used in small-scale treatability studies. Almost all responders commented favorably on such a proposal. As a result, the EPA issued a final rule (53 FR 27290, July 19, 1988) conditionally exempting waste samples used in small-scale treatability studies from full regulation under Subtitle C of RCRA. The question of whether or not to extend the exclusion to larger scale as proposed by the Hazardous Waste Treatment Council was deferred until a later date. This information Brief summarizes the requirements of the small-scale treatability exemption.« less

  16. [The prevalence of snoring in male pilots].

    PubMed

    Wang, Wan-er; Zhu, Guang-qing; Zhang, Ji-dong; Li, Rong; Wang, Yan-yan; Zhang, Yu-zhen; Liu, Ju-qin; He, Quan-ying

    2008-09-01

    To investigate and analysis the prevalence and risk factors of snoring and excessive daytime sleepiness among male pilots. 1108 subjects were derived from a random sample of pilots. They were asked to answer the questions from a questionnaire concerning their snoring and daytime sleepiness, etc. 1054 questionnaire were available for evaluation. The overall prevalence of snoring among male pilots was 51.04% (538/1054), while moderate and severe snorers accounted for 26.28% (227/1054). The prevalence of snoring among male pilots aged over 30 yr was 63.68% (426/669). The prevalence and severity of snoring increase with age and BMI. Age, overweight and obesity, alcohol ingestion and family history of snoring were associated with the prevalence and severity of snoring. There was significant difference in Epworth sleepiness scale scores among without snoring group and various severity of snoring groups (chi2 = 16.948, P < 0.05). The prevalence of snoring is high in male pilots. The Epworth sleepiness scale score increase with increasing degree of snoring. Doctors should pay more attention to snoring in male pilot.

  17. Development of a Social Skills Assessment Screening Scale for Psychiatric Rehabilitation Settings: A Pilot Study.

    PubMed

    Bhola, Poornima; Basavarajappa, Chethan; Guruprasad, Deepti; Hegde, Gayatri; Khanam, Fatema; Thirthalli, Jagadisha; Chaturvedi, Santosh K

    2016-01-01

    Deficits in social skills may present in a range of psychiatric disorders, particularly in the more serious and persistent conditions, and have an influence on functioning across various domains. This pilot study aimed at developing a brief measure, for structured evaluation and screening for social skills deficits, which can be easily integrated into routine clinical practice. The sample consisted of 380 inpatients and their accompanying caregivers, referred to Psychiatric Rehabilitation Services at a tertiary care government psychiatric hospital. The evaluation included an Inpatient intake Proforma and the 20-item Social Skills Assessment Screening Scale (SSASS). Disability was assessed using the Indian Disability Evaluation and Assessment Scale (IDEAS) for a subset of 94 inpatients. The analysis included means and standard deviations, frequency and percentages, Cronbach's alpha to assess internal consistency, t -tests to assess differences in social skills deficits between select subgroups, and correlation between SSASS and IDEAS scores. The results indicated the profile of social skills deficits assessed among the inpatients with varied psychiatric diagnoses. The "psychosis" group exhibited significantly higher deficits than the "mood disorder" group. Results indicated high internal consistency of the SSASS and adequate criterion validity demonstrated by correlations with select IDEAS domains. Modifications were made to the SSASS following the pilot study. The SSASS has potential value as a measure for screening and individualised intervention plans for social skills training in mental health and rehabilitation settings. The implications for future work on the psychometric properties and clinical applications are discussed.

  18. The design of dapog rice seeder model for laboratory scale

    NASA Astrophysics Data System (ADS)

    Purba, UI; Rizaldi, T.; Sumono; Sigalingging, R.

    2018-02-01

    The dapog system is seeding rice seeds using a special nursery tray. Rice seedings with dapog systems can produce seedlings in the form of higher quality and uniform seed rolls. This study aims to reduce the cost of making large-scale apparatus by designing models for small-scale and can be used for learning in the laboratory. Parameters observed were soil uniformity, seeds and fertilizers, soil looses, seeds and fertilizers, effective capacity of apparatus, and power requirements. The results showed a high uniformity in soil, seed and fertilizer respectively 92.8%, 1-3 seeds / cm2 and 82%. The scattered materials for soil, seed and fertilizer were respectively 6.23%, 2.7% and 2.23%. The effective capacity of apparatus was 360 boxes / hour with 237.5 kWh of required power.

  19. Pilot scale system for the production of palm-based Monoester-OH

    NASA Astrophysics Data System (ADS)

    Ngah, Muhammad Syukri; Badri, Khairiah Haji

    2016-11-01

    A mechanically agitate reactor vessel in a moderate scale size of 500 L has been developed. This vessel was constructed to produce palm-based polyurethane polyol with a capacity of maximum 400 L. This is to accomodate the demand required for marketing trial run as part of the commercialization intention. The chemistry background of the process design was thoroughly studied. The esterification and condensation in batch process was maintained from the laboratory scale. Only RBD palm kernel oil was used in this study. This paper will describe the engineering design for the reactor vessel development beginning at the stoichiometric equations for the production process to the detail engineering including the equipment selection and fabrication in order to meet the design and objective specifications.

  20. Pilots using selective serotonin reuptake inhibitors compared to other fatally injured pilots.

    PubMed

    Rogers, Paul; Hileman, Christy; Salazar, Guillermo; Cliburn, Kacey; Paskoff, Lawrence; Hathaway, William; Gildea, Kevin; Tejera Villalaz, Victor Hugo

    2017-10-01

    Selective Serotonin Reuptake Inhibitors (SSRI) were a disqualifying medication for U.S. civil pilots before April 5, 2010. After this date, a Federal Aviation Administration policy was created that allowed airmen, on select SSRIs, a pathway to hold a valid medical certificate. The purpose of this study was to provide a detailed look at SSRIs in the U.S. pilot population since the inception of this new policy. We examined the toxicology results from fatally injured airmen in addition to outcomes concerning pilots who are participating in the program. This study examined data from the Civil Aerospace Medical Institute's Bioaeronautical Sciences Research Laboratory in conjunction with the Medical Analysis Tracking Registry and the Document Imaging and Workflow System. A count-based regression model quantified the relationships between positive SSRI findings with additional factors of interest. These factors included pilot rating, ethanol, and first generation antihistamines. There were 1484 fatally injured airmen over the six year study period, of which 44-tested positive for an SSRI. First-generation antihistamines were statistically associated with positive findings of SSRIs. Published by Elsevier Ltd.

  1. Effect on orange juice of batch pasteurization in an improved pilot-scale microwave oven.

    PubMed

    Cinquanta, L; Albanese, D; Cuccurullo, G; Di Matteo, M

    2010-01-01

    The effects on orange juice batch pasteurization in an improved pilot-scale microwave (MW) oven was evaluated by monitoring pectin methyl-esterase (PME) activity, color, carotenoid compounds and vitamin C content. Trials were performed on stirred orange juice heated at different temperatures (60, 70, 75, and 85 degrees C) during batch process. MW pilot plant allowed real-time temperature control of samples using proportional integrative derivative (PID) techniques based on the infrared thermography temperature read-out. The inactivation of heat sensitive fraction of PME, that verifies orange juice pasteurization, showed a z-value of 22.1 degrees C. Carotenoid content, responsible for sensorial and nutritional quality in fresh juices, decreased by about 13% after MW pasteurization at 70 degrees C for 1 min. Total of 7 carotenoid compounds were quantified during MW heating: zeaxanthin and beta-carotene content decreased by about 26%, while no differences (P < 0.05) were found for beta-cryptoxanthin in the same trial. A slight decrease in vitamin C content was monitored after MW heating. Results showed that MW heating with a fine temperature control could result in promising stabilization treatments.

  2. Culture scale-up and immobilisation of a mixed methanotrophic consortium for methane remediation in pilot-scale bio-filters.

    PubMed

    Karthikeyan, Obulisamy Parthiba; Saravanan, Nadarajan; Cirés, Samuel; Alvarez-Roa, Carlos; Razaghi, Ali; Chidambarampadmavathy, Karthigeyan; Velu, Chinnathambi; Subashchandrabose, Gobalakrishnan; Heimann, Kirsten

    2017-02-01

    Robust methanotrophic consortia for methane (CH 4 ) remediation and by-product development are presently not readily available for industrial use. In this study, a mixed methanotrophic consortium (MMC), sequentially enriched from a marine sediment, was assessed for CH 4 removal efficiency and potential biomass-generated by-product development. Suitable packing material for bio-filters to support MMC biofilm establishment and growth was also evaluated. The enriched MMC removed ∼7-13% CH 4 under a very high gas flow rate (2.5 L min -1 ; 20-25% CH 4 ) in continuous-stirred tank reactors (∼10 L working volume) and the biomass contained long-chain fatty acids (i.e. C 16 and C 18 ). Cultivation of the MMC on plastic bio-balls abated ∼95-97% CH 4 in pilot-scale non-sterile outdoor-operated bio-filters (0.1 L min -1 ; 1% CH 4 ). Contamination by cyanobacteria had beneficial effects on treating low-level CH 4 , by providing additional oxygen for methane oxidation by MMC, suggesting that the co-cultivation of MMC with cyanobacterial mats does not interfere with and may actually be beneficial for remediation of CH 4 and CO 2 at industrial scale.

  3. Nonthermal processing of orange juice using a pilot-plant scale supercritical carbon dioxide system with a gas-liquid metal contactor

    USDA-ARS?s Scientific Manuscript database

    To evaluate the effect of pilot-plant scale, non-thermal supercritical carbon dioxide (SCCO2) processing on the safety and the quality of orange juice (OJ), SCCO2 processed juice was compared with untreated fresh juice and equivalently thermal processed juice in terms of lethality. SCCO2 processing ...

  4. Pilot-scale testing of renewable biocatalyst for swine manure treatment and mitigation of odorous VOCs, ammonia and hydrogen sulfide emissions

    USDA-ARS?s Scientific Manuscript database

    Comprehensive control of odors, hydrogen sulfide (H2S), ammonia (NH3), and greenhouse gas (GHG) emissions associated with swine production is a critical need. A pilot-scale experiment was conducted to evaluate the topical application of soybean peroxidase (SBP) and calcium peroxide (CaO2) as a manu...

  5. Efficacy of chlorine dioxide on Escherichia coli inactivation during pilot-scale fresh-cut lettuce processing.

    PubMed

    Banach, J L; van Overbeek, L S; Nierop Groot, M N; van der Zouwen, P S; van der Fels-Klerx, H J

    2018-03-23

    Controlling water quality is critical in preventing cross-contamination during fresh produce washing. Process wash water (PWW) quality can be controlled by implementing chemical disinfection strategies. The aim of this study was to evaluate the pilot-scale efficacy of chlorine dioxide (ClO 2 ) during processing on the reduction of Escherichia coli in the PWW and on processed fresh-cut 'Lollo Rossa' lettuce. The objective was to have a residual target concentration of either 5 or 3 mg/L ClO 2 in the washing tank (3.5 m 3 ) before and during 800 kg of lettuce processing (90 min). After 90 min., a nonpathogenic, non-Extended Spectrum Beta-Lactamase (ESBL) E. coli inoculum from an overnight culture broth (37 °C) was added to the tank resulting in an approximate final level of 10 6  CFU/mL. PWW and lettuce samples for microbiological and chemical analyses were taken before and after the input and supply halted. ClO 2 concentrations quickly decreased after ClO 2 input halted, yet a residual concentration of ≥2.5 mg/L and ≥2.1 mg/L ClO 2 , respectively for 5 and 3 mg/L pilots, was present 12 min after the supply halted. No detectable levels of E. coli (limit of detection 5 log) were determined in the water within 1 min after E. coli was added to the ClO 2 containing wash water. Results demonstrated that ClO 2 use at the semi-commercial pilot scale was able to reduce the E. coli peak contamination in the PWW. After storage (5 days, 4 °C), background microbial communities (i.e., fluorescent Pseudomonads and total heterotrophic bacteria) grew out on lettuce. Overall, ClO 2 decreased the potential for cross-contamination between batches compared to when no sanitizer was used. Chlorate levels of the lettuce sampled before entering the wash water ranged from 7.3-11.6 μg/kg. The chlorate levels of the lettuce sampled after being washed in the ClO 2 containing wash water, as well as after rinsing and centrifugation, ranged from 22.8-60.4

  6. WIPP (Waste Isolation Pilot Plant) intermediate scale borehole test: A pretest analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argueello, J.G.

    A three-dimensional finite element structural analysis of the Intermediate Scale Borehole Test at the Waste Isolation Pilot Plant (WIPP) has been performed. The analysis provides insight into how a relatively new excavation in a creeping medium responds when introduced into an existing pillar which has been undergoing stress redistribution for 5.7 years. The stress field of the volume of material in the immediate vicinity of the borehole changes significantly when the hole is drilled. Closure of the hole is predicted to be larger in the vertical direction than in the horizontal direction, leading to an ovaling of the hole. Themore » relatively high stresses near the hole persist even at the end of the simulation, 2 years after the hole is drilled. 12 ref., 10 figs.« less

  7. Pilot-scale steam aging of steel slags.

    PubMed

    Kumar, Praveen; Satish Kumar, D; Marutiram, K; Prasad, Smr

    2017-06-01

    Solid waste management has gained importance in the steel industry in view of rising environmental concerns and scarcity of raw materials. In spite of significant developments in reducing waste generation and development of recycling technologies, steel slag is still a concern for the industry as most of it is dumped. Steel slag is similar to stone aggregates in strength, but its volumetric instability in contact with water hinders its application as aggregates in construction. A part of steel slag is normally exposed to rain and sun for natural aging and stabilization for months before use. The natural aging process is slow and time-consuming, and thus restricts its usage. The steelmaking slag can be put to effective use as coarse aggregates if quickly aged and stabilized by pre-reacting the free expansive phases. In the present work, a new process has been developed to accelerate the steel slag aging process using steam in a 30 T pilot scale facility. The setup has controlled steam injection, distribution, and process control system for steam, temperature, flow, and pressure. Steam percolates through the minute pores in the slag lumps and hydrates the expansive free lime and MgO phases, making it stable. The aged slag expansion properties were tested using an in-house developed expansion testing apparatus. The process is capable of reducing the expansion of steel slag from 3.5% to <1.5% (standard requirement) in 7 days. The aged steel slag is currently being used in roads at JSW Steel, Vijayanagar Works.

  8. Fast laboratory-based micro-computed tomography for pore-scale research: Illustrative experiments and perspectives on the future

    NASA Astrophysics Data System (ADS)

    Bultreys, Tom; Boone, Marijn A.; Boone, Matthieu N.; De Schryver, Thomas; Masschaele, Bert; Van Hoorebeke, Luc; Cnudde, Veerle

    2016-09-01

    Over the past decade, the wide-spread implementation of laboratory-based X-ray micro-computed tomography (micro-CT) scanners has revolutionized both the experimental and numerical research on pore-scale transport in geological materials. The availability of these scanners has opened up the possibility to image a rock's pore space in 3D almost routinely to many researchers. While challenges do persist in this field, we treat the next frontier in laboratory-based micro-CT scanning: in-situ, time-resolved imaging of dynamic processes. Extremely fast (even sub-second) micro-CT imaging has become possible at synchrotron facilities over the last few years, however, the restricted accessibility of synchrotrons limits the amount of experiments which can be performed. The much smaller X-ray flux in laboratory-based systems bounds the time resolution which can be attained at these facilities. Nevertheless, progress is being made to improve the quality of measurements performed on the sub-minute time scale. We illustrate this by presenting cutting-edge pore scale experiments visualizing two-phase flow and solute transport in real-time with a lab-based environmental micro-CT set-up. To outline the current state of this young field and its relevance to pore-scale transport research, we critically examine its current bottlenecks and their possible solutions, both on the hardware and the software level. Further developments in laboratory-based, time-resolved imaging could prove greatly beneficial to our understanding of transport behavior in geological materials and to the improvement of pore-scale modeling by providing valuable validation.

  9. Pilot-Scale Demonstration of In-Situ Chemical Oxidation ...

    EPA Pesticide Factsheets

    A pilot-scale in situ chemical oxidation (ISCO) demonstration, involving subsurface injections of sodium permanganate (NaMnO4), was performed at the US Marine Corp Recruit Depot (MCRD), site 45 (Parris Island (PI), SC). The ground water was originally contaminated with perchloroethylene (PCE) (also known as tetrachloroethylene), a chlorinated solvent used in dry cleaner operations. High resolution site characterization involved multiple iterations of soil core sampling and analysis. Nested micro-wells and conventional wells were also used to sample and analyze ground water for PCE and decomposition products (i.e., trichloroethyelene (TCE), dichloroethylene (c-DCE, t-DCE), and vinyl chloride (VC)), collectively referred to as chlorinated volatile organic compounds (CVOC). This characterization methodology was used to develop and refine the conceptual site model and the ISCO design, not only by identifying CVOC contamination but also by eliminating uncontaminated portions of the aquifer from further ISCO consideration. Direct-push injection was selected as the main method of NaMnO4 delivery due to its flexibility and low initial capital cost. Site impediments to ISCO activities in the source area involved subsurface utilities, including a high pressure water main, a high voltage power line, a communication line, and sanitary and stormwater sewer lines. Utility markings were used in conjunction with careful planning and judicious selection of injection locations. A

  10. Laboratory-based respiratory virus surveillance pilot project on select cruise ships in Alaska, 2013-15.

    PubMed

    Rogers, Kimberly B; Roohi, Shahrokh; Uyeki, Timothy M; Montgomery, David; Parker, Jayme; Fowler, Nisha H; Xu, Xiyan; Ingram, Deandra J; Fearey, Donna; Williams, Steve M; Tarling, Grant; Brown, Clive M; Cohen, Nicole J

    2017-09-01

    Influenza outbreaks can occur among passengers and crews during the Alaska summertime cruise season. Ill travellers represent a potential source for introduction of novel or antigenically drifted influenza virus strains to the United States. From May to September 2013-2015, the Alaska Division of Public Health, the Centers for Disease Control and Prevention (CDC), and two cruise lines implemented a laboratory-based public health surveillance project to detect influenza and other respiratory viruses among ill crew members and passengers on select cruise ships in Alaska. Cruise ship medical staff collected 2-3 nasopharyngeal swab specimens per week from passengers and crew members presenting to the ship infirmary with acute respiratory illness (ARI). Specimens were tested for respiratory viruses at the Alaska State Virology Laboratory (ASVL); a subset of specimens positive for influenza virus were sent to CDC for further antigenic characterization. Of 410 nasopharyngeal specimens, 83% tested positive for at least one respiratory virus; 71% tested positive for influenza A or B virus. Antigenic characterization of pilot project specimens identified strains matching predominant circulating seasonal influenza virus strains, which were included in the northern or southern hemisphere influenza vaccines during those years. Results were relatively consistent across age groups, recent travel history, and influenza vaccination status. Onset dates of illness relative to date of boarding differed between northbound (occurring later in the voyage) and southbound (occurring within the first days of the voyage) cruises. The high yield of positive results indicated that influenza was common among passengers and crews sampled with ARI. This finding reinforces the need to bolster influenza prevention and control activities on cruise ships. Laboratory-based influenza surveillance on cruise ships may augment inland influenza surveillance and inform control activities. However, these

  11. International Safeguards Technology and Policy Education and Training Pilot Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreicer, M; Anzelon, G A; Essner, J T

    2009-06-16

    A major focus of the National Nuclear Security Administration-led Next Generation Safeguards Initiative (NGSI) is the development of human capital to meet present and future challenges to the safeguards regime. An effective university-level education in safeguards and related disciplines is an essential element in a layered strategy to rebuild the safeguards human resource capacity. NNSA launched two pilot programs in 2008 to develop university level courses and internships in association with James, Martin Center for Nonproliferation Studies (CNS) at the Monterey Institute of International Studies (MIIS) and Texas A&M University (TAMU). These pilot efforts involved 44 students in total andmore » were closely linked to hands-on internships at Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). The Safeguards and Nuclear Material Management pilot program was a collaboration between TAMU, LANL, and LLNL. The LANL-based coursework was shared with the students undertaking internships at LLNL via video teleconferencing. A weeklong hands-on exercise was also conducted at LANL. A second pilot effort, the International Nuclear Safeguards Policy and Information Analysis pilot program was implemented at MIIS in cooperation with LLNL. Speakers from MIIS, LLNL, and other U.S. national laboratories (LANL, BNL) delivered lectures for the audience of 16 students. The majority of students were senior classmen or new master's degree graduates from MIIS specializing in nonproliferation policy studies. The two pilots programs concluded with an NGSI Summer Student Symposium, held at LLNL, where 20 students participated in LLNL facility tours and poster sessions. The value of bringing together the students from the technical and policy pilots was notable and will factor into the planning for the continued refinement of the two programs in the coming years.« less

  12. Home-Based Versus Laboratory-Based Robotic Ankle Training for Children With Cerebral Palsy: A Pilot Randomized Comparative Trial.

    PubMed

    Chen, Kai; Wu, Yi-Ning; Ren, Yupeng; Liu, Lin; Gaebler-Spira, Deborah; Tankard, Kelly; Lee, Julia; Song, Weiqun; Wang, Maobin; Zhang, Li-Qun

    2016-08-01

    To examine the outcomes of home-based robot-guided therapy and compare it to laboratory-based robot-guided therapy for the treatment of impaired ankles in children with cerebral palsy. A randomized comparative trial design comparing a home-based training group and a laboratory-based training group. Home versus laboratory within a research hospital. Children (N=41) with cerebral palsy who were at Gross Motor Function Classification System level I, II, or III were randomly assigned to 2 groups. Children in home-based and laboratory-based groups were 8.7±2.8 (n=23) and 10.7±6.0 (n=18) years old, respectively. Six-week combined passive stretching and active movement intervention of impaired ankle in a laboratory or home environment using a portable rehabilitation robot. Active dorsiflexion range of motion (as the primary outcome), mobility (6-minute walk test and timed Up and Go test), balance (Pediatric Balance Scale), Selective Motor Control Assessment of the Lower Extremity, Modified Ashworth Scale (MAS) for spasticity, passive range of motion (PROM), strength, and joint stiffness. Significant improvements were found for the home-based group in all biomechanical outcome measures except for PROM and all clinical outcome measures except the MAS. The laboratory-based group also showed significant improvements in all the biomechanical outcome measures and all clinical outcome measures except the MAS. There were no significant differences in the outcome measures between the 2 groups. These findings suggest that the translation of repetitive, goal-directed, biofeedback training through motivating games from the laboratory to the home environment is feasible. The benefits of home-based robot-guided therapy were similar to those of laboratory-based robot-guided therapy. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. Comparative research on phosphorus removal by pilot-scale vertical flow constructed wetlands using steel slag and modified steel slag as substrates.

    PubMed

    Yun, Yupan; Zhou, Xiaoqin; Li, Zifu; Uddin, Sayed Mohammad Nazim; Bai, Xiaofeng

    2015-01-01

    This research mainly focused on the phosphorus removal performance of pilot-scale vertical flow constructed wetlands with steel slag (SS) and modified steel slag (MSS). First, bench-scale experiments were conducted to evaluate the phosphorus adsorption capacity. Results showed that the Langmuir model could better describe the adsorption characteristics of the two materials; the maximum adsorption of MSS reached 12.7 mg/g, increasing by 34% compared to SS (9.5 mg/g). Moreover, pilot-scale constructed wetlands with SS and MSS were set up outdoors. Then, the influence of hydraulic retention time (HRT) and phosphorus concentration in phosphorus removal for two wetlands were investigated. Results revealed that better performance of the two systems could be achieved with an HRT of 2 d and phosphorus concentration in the range of 3-4.5 mg/L; the system with MSS had a better removal efficiency than the one with SS in the same control operation. Finally, the study implied that MSS could be used as a promising substrate for wetlands to treat wastewater with a high phosphorus concentration. However, considering energy consumption, SS could be regarded as a better alternative for substrate when treating sewage with a low phosphorus concentration.

  14. TECHNOLOGY EVALUATION REPORT, SITE PROGRAM DEMONSTRATION TEST: SHIRCO PILOT-SCALE INFRARED INCINERATION SYSTEM ROSE TOWNSHIP DEMODE ROAD SUPERFUND SITE - VOLUME II

    EPA Science Inventory

    The performance of the Shirco pilot-scale infrared thermal destruction system has been evaluated at the Rose Township, Demode Road Superfund Site and is presented in the report. The waste tested consisted of solvents, organics and heavy metals in an illegal dump site. Volume I gi...

  15. SCALE-UP OF RAPID SMALL-SCALE ADSORPTION TESTS TO FIELD-SCALE ADSORBERS: THEORETICAL AND EXPERIMENTAL BASIS

    EPA Science Inventory

    Design of full-scale adsorption systems typically includes expensive and time-consuming pilot studies to simulate full-scale adsorber performance. Accordingly, the rapid small-scale column test (RSSCT) was developed and evaluated experimentally. The RSSCT can simulate months of f...

  16. [The pilot program in Mexican clinical laboratories. II. The characterization of the operating processes].

    PubMed

    de Gortari, E; Herrera, M; Loría, A; Terrés, A; González-Salayandia, M A; Hernández, M A

    1994-01-01

    To evaluate a questionnaire for operating procedures in Mexican clinical laboratories. A group of 18 hospital laboratories (described in the first paper of this series). The questionnaire had 132 items exploring nine sections (bacteriology, clinical chemistry, general hematology, immunology, microbacteriology, mycology, parasitology and urine analysis) and it was filled by the participants and modified if necessary in an audit visit. The questions were scored in the range of zero to one, and the participants in a scale of zero to 100 points. the answers had scores ranging from zero (N = 3) to one (N = 11) and a distribution with a clear shift to high scores. This led to a partition in three categories (low: < 0.3, medium: 03.-0.7, high: > 0.7) and to calculate a low/high ratio which enabled us to identify poor procedures in the sections. This ratio was also used to evaluate the type of procedure involved, i.e. management (N = 51), resources (N = 36), quality control (N = 23), and type and number of tests performed (N = 16). In the evaluation of the laboratories, the global score was 60. As expected, the private laboratories had the highest scores (73 to 84) as they were chosen because of their good resources. In the public ones only the State laboratories had more members above the mean score than below, whereas most of the Federal laboratories were below the global mean. The questionnaire performed reasonably well in spite of some deficiencies, i.e. it should include more questions on the specialized sections and on procedures other than management. The specialized sections (immunology, microbacteriology, mycology and parasitology) had lower scores than the more traditional ones (chemistry, hematology and bacteriology). Resources and quality control had lower scores than management; and the laboratory scores of the auditors tended to be lower than the autoevaluation of the public hospitals.

  17. Development of a Social Skills Assessment Screening Scale for Psychiatric Rehabilitation Settings: A Pilot Study

    PubMed Central

    Bhola, Poornima; Basavarajappa, Chethan; Guruprasad, Deepti; Hegde, Gayatri; Khanam, Fatema; Thirthalli, Jagadisha; Chaturvedi, Santosh K.

    2016-01-01

    Context: Deficits in social skills may present in a range of psychiatric disorders, particularly in the more serious and persistent conditions, and have an influence on functioning across various domains. Aims: This pilot study aimed at developing a brief measure, for structured evaluation and screening for social skills deficits, which can be easily integrated into routine clinical practice. Settings and Design: The sample consisted of 380 inpatients and their accompanying caregivers, referred to Psychiatric Rehabilitation Services at a tertiary care government psychiatric hospital. Materials and Methods: The evaluation included an Inpatient intake Proforma and the 20-item Social Skills Assessment Screening Scale (SSASS). Disability was assessed using the Indian Disability Evaluation and Assessment Scale (IDEAS) for a subset of 94 inpatients. Statistical Analysis Used: The analysis included means and standard deviations, frequency and percentages, Cronbach's alpha to assess internal consistency, t-tests to assess differences in social skills deficits between select subgroups, and correlation between SSASS and IDEAS scores. Results: The results indicated the profile of social skills deficits assessed among the inpatients with varied psychiatric diagnoses. The “psychosis” group exhibited significantly higher deficits than the “mood disorder” group. Results indicated high internal consistency of the SSASS and adequate criterion validity demonstrated by correlations with select IDEAS domains. Modifications were made to the SSASS following the pilot study. Conclusions: The SSASS has potential value as a measure for screening and individualised intervention plans for social skills training in mental health and rehabilitation settings. The implications for future work on the psychometric properties and clinical applications are discussed. PMID:27833220

  18. Short-Term Operations Plan for Collection of Bulk Quantity CBP Liquid in Support of a Pilot-Scale Treatabilty Evaluation with Water Recovery Inc

    EPA Pesticide Factsheets

    June 3, 2011 work plan for a pilot-scale treatability evaluation with a commercial wastewater treatment facility, Water Recovery Inc. (WRI) located in Jacksonville, Florida. Region ID: 04 DocID: 10749927, DocDate: 06-03-2011

  19. X-ray Production in a Laboratory Streamer Discharge

    NASA Astrophysics Data System (ADS)

    Lehtinen, N. G.; Kochkin, P.; Ostgaard, N.

    2016-12-01

    A 1D model of a 1-m scale laboratory discharge streamer system [Lehtinen et al, 2016, http://meetingorganizer.copernicus.org/EGU2016/EGU2016-6180.pdf] has reproduced the experimentally-observed [Kochkin et al, 2014, doi:10.1088/0022-3727/47/14/145203] detached streamer systems (pilots). The pilots grow in both directions and thus produce counter-streamers which collide with forward-moving streamers, a mechanism which was proposed to lead to the production of x-rays [Cooray, 2009, doi:10.1016/j.jastp.2009.07.010]. However, the 1D model is insufficient to analyse this process because in this model the electric field between the colliding streamers is averaged in the transverse direction and therefore the maximum fields are underestimated. In this presentation, we include the microscopic processes in the modeling of streamer propagation in order to calculate accurately the electric field enhancement between colliding streamers of opposite polarity. We evaluate the temporal and spatial characteristics of the enhanced electric field, which define the production of relativistic runaway electrons and x-rays. The x-ray output for the conditions occuring in a laboratory discharge is compared to the experimental data [Kochkin et al, 2012, doi:10.1088/0022-3727/45/42/425202; 2015, doi:10.1088/0022-3727/48/2/025205]. We note that the previous modeling of streamer collisions [Ihaddadene and Celestin, 2015, doi:10.1002/2015GL064623] obtained the field enhancements which are insufficient for the observed x-ray production.

  20. DEMONSTRATION OF PILOT-SCALE PERVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. II. HOLLOW FIBER MEMBRANE MODULES

    EPA Science Inventory

    Pilot-scale demonstration of pervaporation-based removal of volatile organic compounds from a surfactant enhanced aquifer remediation (SEAR) fluid has been conducted at USEPA's Test & Evaluation Facility using hollow fiber membrane modules. The membranes consisted of microporous...

  1. Scale-up synthesis of zinc borate from the reaction of zinc oxide and boric acid in aqueous medium

    NASA Astrophysics Data System (ADS)

    Kılınç, Mert; Çakal, Gaye Ö.; Yeşil, Sertan; Bayram, Göknur; Eroğlu, İnci; Özkar, Saim

    2010-11-01

    Synthesis of zinc borate was conducted in a laboratory and a pilot scale batch reactor to see the influence of process variables on the reaction parameters and the final product, 2ZnO·3B 2O 3·3.5H 2O. Effects of stirring speed, presence of baffles, amount of seed, particle size and purity of zinc oxide, and mole ratio of H 3BO 3:ZnO on the zinc borate formation reaction were examined at a constant temperature of 85 °C in a laboratory (4 L) and a pilot scale (85 L) reactor. Products obtained from the reaction in both reactors were characterized by chemical analysis, X-ray diffraction, particle size distribution analysis, thermal gravimetric analysis and scanning electron microscopy. The kinetic data for the zinc borate production reaction was fit by using the logistic model. The results revealed that the specific reaction rate, a model parameter, decreases with increase in particle size of zinc oxide and the presence of baffles, but increases with increase in stirring speed and purity of zinc oxide; however, it is unaffected with the changes in the amount of seed and reactants ratio. The reaction completion time is unaffected by scaling-up.

  2. Application of Titration-Based Screening for the Rapid Pilot Testing of High-Throughput Assays.

    PubMed

    Zhang, Ji-Hu; Kang, Zhao B; Ardayfio, Ophelia; Ho, Pei-i; Smith, Thomas; Wallace, Iain; Bowes, Scott; Hill, W Adam; Auld, Douglas S

    2014-06-01

    Pilot testing of an assay intended for high-throughput screening (HTS) with small compound sets is a necessary but often time-consuming step in the validation of an assay protocol. When the initial testing concentration is less than optimal, this can involve iterative testing at different concentrations to further evaluate the pilot outcome, which can be even more time-consuming. Quantitative HTS (qHTS) enables flexible and rapid collection of assay performance statistics, hits at different concentrations, and concentration-response curves in a single experiment. Here we describe the qHTS process for pilot testing in which eight-point concentration-response curves are produced using an interplate asymmetric dilution protocol in which the first four concentrations are used to represent the range of typical HTS screening concentrations and the last four concentrations are added for robust curve fitting to determine potency/efficacy values. We also describe how these data can be analyzed to predict the frequency of false-positives, false-negatives, hit rates, and confirmation rates for the HTS process as a function of screening concentration. By taking into account the compound pharmacology, this pilot-testing paradigm enables rapid assessment of the assay performance and choosing the optimal concentration for the large-scale HTS in one experiment. © 2013 Society for Laboratory Automation and Screening.

  3. Selection of starter cultures for the production of sour cassava starch in a pilot-scale fermentation process.

    PubMed

    Penido, Fernanda Corrêa Leal; Piló, Fernanda Barbosa; Sandes, Sávio Henrique de Cicco; Nunes, Álvaro Cantini; Colen, Gecernir; Oliveira, Evelyn de Souza; Rosa, Carlos Augusto; Lacerda, Inayara Cristina Alves

    2018-02-28

    Sour cassava starch (Polvilho azedo) is obtained from a spontaneous fermentation conducted by microorganisms from raw materials and fermentation tanks. This product is traditionally used in the baking industry for the manufacture of biscuits and Brazilian cheese breads. However, the end of fermentation is evaluated empirically, and the process occurs without standardization, which results in products of inconsistent quality. Predominant microbiota from a cassava flour manufacturer was isolated in order to select starter cultures for the production of sour cassava starch in a pilot-scale fermentation process. Lactic acid bacteria and yeasts were isolated, enumerated and grouped by Restriction Fragment Length Polymorphism, and PCR fingerprinting, respectively. One isolate of each molecular profile was identified by sequencing of the rRNA gene. LAB were prevalent throughout the entire process. Lactobacillus brevis (21.5%), which produced the highest values of acidity, and Lactobacillus plantarum (13.9%) were among the most frequent species. Pichia scutulata (52.2%) was the prevalent yeast and showed amylolytic activity. The aforementioned species were tested as single and mixed starter cultures in a pilot-scale fermentation process for 28 days. L. plantarum exhibited better performance as a starter culture, which suggests its potential for the production of sour cassava starch. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  4. Conducting pilot and feasibility studies.

    PubMed

    Cope, Diane G

    2015-03-01

    Planning a well-designed research study can be tedious and laborious work. However, this process is critical and ultimately can produce valid, reliable study findings. Designing a large-scale randomized, controlled trial (RCT)-the gold standard in quantitative research-can be even more challenging. Even the most well-planned study potentially can result in issues with research procedures and design, such as recruitment, retention, or methodology. One strategy that may facilitate sound study design is the completion of a pilot or feasibility study prior to the initiation of a larger-scale trial. This article will discuss pilot and feasibility studies, their advantages and disadvantages, and implications for oncology nursing research. 
.

  5. Solar photocatalytic treatment of trimethoprim in four environmental matrices at a pilot scale: transformation products and ecotoxicity evaluation.

    PubMed

    Michael, I; Hapeshi, E; Osorio, V; Perez, S; Petrovic, M; Zapata, A; Malato, S; Barceló, D; Fatta-Kassinos, D

    2012-07-15

    The pilot-scale solar degradation of trimethoprim (TMP) in different water matrices (demineralized water: DW, simulated natural freshwater: SW; simulated wastewater: SWW; and real effluent: RE) was investigated in this study. DOC removal was lower in the case of SW compared to DW, which can be attributed to the presence of inorganic anions which may act as scavengers of the HO·. Furthermore, the presence of organic carbon and higher salt content in SWW and RE led to lower mineralization per dose of hydrogen peroxide compared to DW and SW. Toxicity assays in SWW and RE were also performed indicating that toxicity is attributed to the compounds present in RE and their by-products formed during solar Fenton treatment and not to the intermediates formed by the oxidation of TMP. A large number of compounds generated by the photocatalytic transformation of TMP were identified by UPLC-QToF/MS. The degradation pathway revealed differences among the four matrices; however hydroxylation, demethylation and cleavage reactions were observed in all matrices. To the best of our knowledge this is the first time that TMP degradation products have been identified by adopting a solar Fenton process at a pilot-scale set-up, using four different aqueous matrices. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Bruxism in military pilots and non-pilots: tooth wear and psychological stress.

    PubMed

    Lurie, Orit; Zadik, Yehuda; Einy, Shmuel; Tarrasch, Ricardo; Raviv, Gil; Goldstein, Liav

    2007-02-01

    Bruxism is the diurnal or nocturnal para-functional habit of clenching or grinding the teeth and affects 5-10% of the general western population. Bruxism can cause pain and irreversible damage to the teeth, periodontium, masticatory muscles, and temporo-mandibular joint. Variables such as general stress, work-related stress, and personality traits have been increasingly considered as initiating, predisposing, and perpetuating factors for bruxism. We sought to evaluate the potential of work-related stress and personality factors to induce bruxism among military pilots and non-pilot officers. Subjects were 57 healthy male Israel Air Force officers (mean age 25.8+/-4.3 yr). Of these, 17 were jet-pilots, 18 helicopter-pilots, and 22 non-pilot officers. Tooth-wear was classified according to a six-point scale. In addition, the subjects responded to a battery of psychological questionnaires for self-assessment of stress at the workplace and their coping behavior. Bruxism of clinical importance (i.e., with dentin exposure) was found in 69% of the aircrew members but only 27% of the non-pilot group. No difference was found between groups regarding stress levels. Military aircrews may be relatively vulnerable to deleterious bruxism as well as other signs of chronic stress. Among bruxers, pilots tended to show coping strategies that were significantly more emotional and less task-oriented than non-pilots, whereas non-bruxers showed no significant differences in coping behavior. This study suggest that integrating dental and psychological preventive intervention may be helpful.

  7. Biogasification of community-derived biomass and solid wastes in a pilot-scale SOLCON reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, V.J.; Biljetina, R.; Isaacson, H.R.

    1988-01-01

    The Institute of Gas Technology has developed a novel, solids- concentrating (SOLCON) bioreactor to convert a variety of individual or mixed feedstocks (biomass and wastes) to methane at higher rates and efficiencies than those obtained from conventional high-rate anaerobic digesters. The biogasification studies are being conducted in a pilot-scale experimental test unit (ETU) located in the Walt Disney World Resort Complex, Orlando, Florida. This paper describes the ETU facility, the logistics of feedstock integration, the SOLCON reactor design and operating techniques, and the results obtained during 4 years of stable, uninterrupted operation with different feedstocks. The SOLCON reactor consistently outperformedmore » the conventional stirred-tank reactor by 20% to 50%.« less

  8. Neural Network Modeling of UH-60A Pilot Vibration

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi

    2003-01-01

    Full-scale flight-test pilot floor vibration is modeled using neural networks and full-scale wind tunnel test data for low speed level flight conditions. Neural network connections between the wind tunnel test data and the tlxee flight test pilot vibration components (vertical, lateral, and longitudinal) are studied. Two full-scale UH-60A Black Hawk databases are used. The first database is the NASMArmy UH-60A Airloads Program flight test database. The second database is the UH-60A rotor-only wind tunnel database that was acquired in the NASA Ames SO- by 120- Foot Wind Tunnel with the Large Rotor Test Apparatus (LRTA). Using neural networks, the flight-test pilot vibration is modeled using the wind tunnel rotating system hub accelerations, and separately, using the hub loads. The results show that the wind tunnel rotating system hub accelerations and the operating parameters can represent the flight test pilot vibration. The six components of the wind tunnel N/rev balance-system hub loads and the operating parameters can also represent the flight test pilot vibration. The present neural network connections can significandy increase the value of wind tunnel testing.

  9. Pilot scale test of a produced water-treatment system for initial removal of organic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Enid J; Kwon, Soondong; Katz, Lynn

    A pilot-scale test to remove polar and non-polar organics from produced water was performed at a disposal facility in Farmington NM. We used surfactant-modified zeolite (SMZ) adsorbent beds and a membrane bioreactor (MBR) in combination to reduce the organic carbon content of produced water prior to reverse osmosis (RO). Reduction of total influent organic carbon (TOC) to 5 mg/L or less is desirable for efficient RO system operation. Most water disposed at the facility is from coal-bed gas production, with oil production waters intermixed. Up to 20 gal/d of produced water was cycled through two SMZ adsorbent units to removemore » volatile organic compounds (BTEX, acetone) and semivolatile organic compounds (e.g., napthalene). Output water from the SMZ units was sent to the MBR for removal of the organic acid component of TOC. Removal of inorganic (Mn and Fe oxide) particulates by the SMZ system was observed. The SMZ columns removed up to 40% of the influent TOC (600 mg/L). BTEX concentrations were reduced from the initial input of 70 mg/L to 5 mg/L by the SMZ and to an average of 2 mg/L after the MBR. Removal rates of acetate (input 120-170 mg/L) and TOC (input up to 45 mg/L) were up to 100% and 92%, respectively. The water pH rose from 8.5 to 8.8 following organic acid removal in the MBR; this relatively high pH was likely responsible for observed scaling of the MBR internal membrane. Additional laboratory studies showed the scaling can be reduced by metered addition of acid to reduce the pH. Significantly, organic removal in the MBR was accomplished with a very low biomass concentration of 1 g/L throughout the field trial. An earlier engineering evaluation shows produced water treatment by the SMZ/MBR/RO system would cost from $0.13 to $0.20 per bbl at up to 40 gpm. Current estimated disposal costs for produced water are $1.75 to $4.91 per bbl when transportation costs are included, with even higher rates in some regions. Our results suggest that treatment by

  10. Assessment of dyspnoea in the emergency department by numeric and visual scales: A pilot study.

    PubMed

    Placido, Rui; Gigaud, Carine; Gayat, Etienne; Ferry, Axelle; Cohen-Solal, Alain; Plaisance, Patrick; Mebazaa, Alexandre; Laribi, Said

    2015-04-01

    Dyspnoea is a common and often debilitating symptom that affects up to 50% of patients admitted to acute tertiary care hospitals. The primary purpose of this study was to compare the numeric rating scale (NRS) and the visual analogue scale (VAS) for dyspnoea evaluation in the ED setting. This was a cohort study of patients admitted to the ED in a university hospital, with dyspnoea as the chief complaint. The agreement of the two dyspnoea scales was assessed using the intraclass correlation coefficient (ICC). One hundred and seventeen patients were included in this analysis. The median age for the whole study population was 67 years and 42% of patients were male. The aetiology of dyspnoea was acute heart failure (AHF) in 35% of patients. There was good agreement between the two scores (ICC=0.795; 95% CI=0.717-0.853; P<0.001). This pilot study demonstrated that numerical rating and visual analogue scales agree well when assessing the severity of dyspnoea in the ED. Further studies with larger cohorts of patients are needed to confirm these preliminary results. Copyright © 2015 Société française d’anesthésie et de réanimation (Sfar). All rights reserved.

  11. A pilot-scale steam autoclave system for treating municipal solid waste for recovery of renewable organic content: Operational results and energy usage

    USDA-ARS?s Scientific Manuscript database

    A pilot-scale (1800'kg per batch capacity) autoclave used in this study reduces municipal solid waste to a debris contaminated pulp product that is efficiently separated into its renewable organic content and non-renewable organic content fractions using a rotary trommel screen. The renewable organi...

  12. Combustion characteristics of paper and sewage sludge in a pilot-scale fluidized bed.

    PubMed

    Yu, Yong-Ho; Chung, Jinwook

    2015-01-01

    This study characterizes the combustion of paper and sewage sludge in a pilot-scale fluidized bed. The highest temperature during combustion within the system was found at the surface of the fluidized bed. Paper sludge containing roughly 59.8% water was burned without auxiliary fuel, but auxiliary fuel was required to incinerate the sewage sludge, which contained about 79.3% water. The stability of operation was monitored based on the average pressure and the standard deviation of pressure fluctuations. The average pressure at the surface of the fluidized bed decreased as the sludge feed rate increased. However, the standard deviation of pressure fluctuations increased as the sludge feed rate increased. Finally, carbon monoxide (CO) emissions decreased as oxygen content increased in the flue gas, and nitrogen oxide (NOx) emissions were also tied with oxygen content.

  13. Performance of a pilot-scale submerged membrane bioreactor (MBR) in treating bathing wastewater.

    PubMed

    Xia, Siqing; Guo, Jifeng; Wang, Rongchang

    2008-10-01

    Bathing wastewater was treated by a pilot-scale submerged membrane bioreactor (MBR) for more than 60 days. The results showed that the removal rates of main pollutants of wastewater such as COD(Cr), LAS, NH(4)(+)-N and total nitrogen (TN) were above 93%, 99%, 99%, and 90%, respectively. The results of denaturing gel gradient electrophoresis (DGGE) and fluorescent in situ hybridization (FISH) indicated that the bacteria were stable. The abundant nitrobacteria intercepted by the membrane led to the high removal rate of ammonia and TN. FISH and 16S rDNA gene sequence analysis revealed that some specific phylogenetic group of bacteria, the Pseudomonas sp. Ochrobactrum anthropi sp. and Enterobacter sp. probably played a major role in the development of the mature biofilms, which led to the severe irreversible membrane biofouling.

  14. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01

    EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), whichmore » identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements

  15. Design and analysis of a pilot scale biofiltration system for odorous air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Classen, J.J.; Young, J.S.; Bottcher, R.W.

    2000-02-01

    Three pilot-scale biofilters and necessary peripheral equipment were built to clean odorous air from the pit of a swine gestation building at North Carolina State University. A computer measured temperatures, flow rates, and pressure drops. It also controlled and measured the moisture content of a biofilter medium comprised of a 3:1 mixture of yard waste compost to wood chips mixture (by volume). The system was evaluated to ensure that the biofilters would be useful for performing scientific experiments concerning the reduction of swine odor on future research projects. The capability of the biofilters to remove odor was measured using amore » cotton swatch absorption method and an odor panel. The average odor reductions measured by odor intensity, irritation intensity, and unpleasantness for five tests were 61%, 58%, and 84%, respectively. No significant differences in odor reduction performance were found between the biofilters.« less

  16. Disinfection of bacterial biofilms in pilot-scale cooling tower systems

    PubMed Central

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P.; Packman, Aaron I.

    2015-01-01

    The impact of continuous chlorination and periodic glutaraldehyde treatment on planktonic and biofilm microbial communities was evaluated in pilot-scale cooling towers operated continuously for 3 months. The system was operated at a flow rate of 10,080 l day−1. Experiments were performed with a well-defined microbial consortium containing three heterotrophic bacteria: Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. The persistence of each species was monitored in the recirculating cooling water loop and in biofilms on steel and PVC coupons in the cooling tower basin. The observed bacterial colonization in cooling towers did not follow trends in growth rates observed under batch conditions and, instead, reflected differences in the ability of each organism to remain attached and form biofilms under the high-through flow conditions in cooling towers. Flavobacterium was the dominant organism in the community, while P. aeruginosa and K. pneumoniae did not attach well to either PVC or steel coupons in cooling towers and were not able to persist in biofilms. As a result, the much greater ability of Flavobacterium to adhere to surfaces protected it from disinfection, whereas P. aeruginosa and K. pneumoniae were subject to rapid disinfection in the planktonic state. PMID:21547755

  17. Disinfection of bacterial biofilms in pilot-scale cooling tower systems.

    PubMed

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P; Packman, Aaron I

    2011-04-01

    The impact of continuous chlorination and periodic glutaraldehyde treatment on planktonic and biofilm microbial communities was evaluated in pilot-scale cooling towers operated continuously for 3 months. The system was operated at a flow rate of 10,080 l day(-1). Experiments were performed with a well-defined microbial consortium containing three heterotrophic bacteria: Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. The persistence of each species was monitored in the recirculating cooling water loop and in biofilms on steel and PVC coupons in the cooling tower basin. The observed bacterial colonization in cooling towers did not follow trends in growth rates observed under batch conditions and, instead, reflected differences in the ability of each organism to remain attached and form biofilms under the high-through flow conditions in cooling towers. Flavobacterium was the dominant organism in the community, while P. aeruginosa and K. pneumoniae did not attach well to either PVC or steel coupons in cooling towers and were not able to persist in biofilms. As a result, the much greater ability of Flavobacterium to adhere to surfaces protected it from disinfection, whereas P. aeruginosa and K. pneumoniae were subject to rapid disinfection in the planktonic state.

  18. PILOT-SCALE SUBCRITICAL WATER REMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBON- AND PESTICIDE-CONTAMINATED SOIL. (R825394)

    EPA Science Inventory

    Subcritical water (hot water under enough pressure to maintain the liquid
    state) was used to remove polycyclic aromatic hydrocarbons (PAHs) and pesticides
    from highly contaminated soils. Laboratory-scale (8 g of soil) experiments were
    used to determine conditions f...

  19. Crew in U.S. laboratory

    NASA Image and Video Library

    2005-08-05

    S114-E-7129 (5 August 2005) --- Astronaut James M. Kelly, STS-114 pilot, works with the Mobile Service System (MSS) and Canadarm2 controls in the Destiny laboratory of the International Space Station while Space Shuttle Discovery was docked to the Station.

  20. Effect of Diuron on aquatic bacteria in laboratory-scale wastewater treatment ponds with special reference to Aeromonas species studied by colony hybridization.

    PubMed

    Sumpono; Perotti, P; Belan, A; Forestier, C; Lavedrine, B; Bohatier, J

    2003-01-01

    Six laboratory-scale wastewater treatment ponds were filled with sediment and water obtained from a reference pond (a wastewater treatment plant located in a rural environment at Montel-de-Gelat, Puy-de-Dôme, France). They were kept at 20 degrees C, with alternative light and dark periods (12 h-12 h), and fed with raw effluent supplied weekly. Three of them were treated with Diuron (dissolved in DMSO) at a final concentration 10 mg/l, while the other three received only DMSO. Physico-chemical parameters, total bacteria, cultivable bacteria, and Aeromonas spp. were measured periodically until 41 days after the Diuron contamination. Total bacteria were treated with 4,6-diamidino 2-phenylindole (DAPI) and counted by epifluoroscence microscopy. The cultivable bacteria were quantified on plate count agar medium and Aeromonas spp. using colony hybridization. In the contaminated pilots, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), volatile suspended solids (VSS), ammonium, phosphorus, and bacteria increased, but dissolved oxygen decreased. The abundance of total bacteria, cultivable bacteria (multiplied by 30), and Aeromonas spp. increased for two weeks after Diuron introduction, reverting to initial values three weeks later. The percentage of cultivable bacteria relative to total bacteria was 0.2% in controls and 1.2% in treated pilots, while the percentage of Aeromonas spp. relative to cultivable bacteria decreased from 6-10% to 2%. Our results suggest that Diuron, which acts on the photosystem II of phototrophs, supports the development of cultivable bacteria through new carbon sources derived from the decomposition of photosynthetic micro-organisms, but does not specifically support Aeromonas spp.

  1. Culture Condition Optimization and Pilot Scale Production of the M12 Metalloprotease Myroilysin Produced by the Deep-Sea Bacterium Myroides profundi D25.

    PubMed

    Shao, Xuan; Ran, Li-Yuan; Liu, Chang; Chen, Xiu-Lan; Zhang, Xi-Ying; Qin, Qi-Long; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2015-06-29

    The protease myroilysin is the most abundant protease secreted by marine sedimental bacterium Myroides profundi D25. As a novel elastase of the M12 family, myroilysin has high elastin-degrading activity and strong collagen-swelling ability, suggesting its promising biotechnological potential. Because myroilysin cannot be maturely expressed in Escherichia coli, it is important to be able to improve the production of myroilysin in the wild strain D25. We optimized the culture conditions of strain D25 for protease production by using single factor experiments. Under the optimized conditions, the protease activity of strain D25 reached 1137 ± 53.29 U/mL, i.e., 174% of that before optimization (652 ± 23.78 U/mL). We then conducted small scale fermentations of D25 in a 7.5 L fermentor. The protease activity of strain D25 in small scale fermentations reached 1546.4 ± 82.65 U/mL after parameter optimization. Based on the small scale fermentation results, we further conducted pilot scale fermentations of D25 in a 200 L fermentor, in which the protease production of D25 reached approximately 1100 U/mL. These results indicate that we successfully set up the small and pilot scale fermentation processes of strain D25 for myroilysin production, which should be helpful for the industrial production of myroilysin and the development of its biotechnological potential.

  2. Laboratory Scale Coal And Biomass To Drop-In Fuels (CBDF) Production And Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lux, Kenneth; Imam, Tahmina; Chevanan, Nehru

    This Final Technical Report describes the work and accomplishments of the project entitled, “Laboratory Scale Coal and Biomass to Drop-In Fuels (CBDF) Production and Assessment.” The main objective of the project was to fabricate and test a lab-scale liquid-fuel production system using coal containing different percentages of biomass such as corn stover and switchgrass at a rate of 2 liters per day. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. The system was designed, fabricated, tested, and assessed for economic and environmental feasibility relative to competing technologies.

  3. Process engineering and scale-up of autotrophic Clostridium strain P11 syngas fermentation

    NASA Astrophysics Data System (ADS)

    Kundiyana, Dimple Kumar Aiyanna

    Scope and Method of Study. Biomass gasification followed by fermentation of syngas to ethanol is a potential process to produce bioenergy. The process is currently being researched under laboratory- and pilot-scale in an effort to optimize the process conditions and make the process feasible for commercial production of ethanol and other biofuels such as butanol and propanol. The broad research objectives for the research were to improve ethanol yields during syngas fermentation and to design a economical fermentation process. The research included four statistically designed experimental studies in serum bottles, bench-scale and pilot-scale fermentors to screen alternate fermentation media components, to determine the effect of process parameters such as pH, temperature and buffer on syngas fermentation, to determine the effect of key limiting nutrients of the acetyl-CoA pathway in a continuous series reactor design, and to scale-up the syngas fermentation in a 100-L pilot scale fermentor. Findings and Conclusions. The first experimental study identified cotton seed extract (CSE) as a feasible medium for Clostridium strain P11 fermentation. The study showed that CSE at 0.5 g L-1 can potentially replace all the standard Clostridium strain P11 fermentation media components while using a media buffer did not significantly improve the ethanol production when used in fermentation with CSE. Scale-up of the CSE fermentation in 2-L and 5-L stirred tank fermentors showed 25% increase in ethanol yield. The second experimental study showed that syngas fermentation at 32°C without buffer was associated with higher ethanol concentration and reduced lag time in switching to solventogenesis. Conducting fermentation at 40°C or by lowering incubation pH to 5.0 resulted in reduced cell growth and no production of ethanol or acetic acid. The third experiment studied the effect of three limiting nutrients, calcium pantothenate, vitamin B12 and CoCl2 on syngas fermentation. Results

  4. Phosphate removal in agro-industry: pilot- and full-scale operational considerations of struvite crystallization.

    PubMed

    Moerman, Wim; Carballa, Marta; Vandekerckhove, Andy; Derycke, Dirk; Verstraete, Willy

    2009-04-01

    Pilot-scale struvite crystallization tests using anaerobic effluent from potato processing industries were performed at three different plants. Two plants (P1 & P2) showed high phosphate removal efficiencies, 89+/-3% and 75+/-8%, resulting in final effluent levels of 12+/-3 mg PO(4)(3-)-PL(-1) and 11+/-3mg PO(4)(3-)-PL(-1), respectively. In contrast, poor phosphate removal (19+/-8%) was obtained at the third location (P3). Further investigations at P3 showed the negative effect of high Ca(2+)/PO(4)(3-)-P molar ratio (ca. 1.25+/-0.11) on struvite formation. A full-scale struvite plant treating anaerobic effluent from a dairy industry showed the same Ca(2+) interference. A shift in the influent Ca(2+)/PO(4)(3-)-P molar ratio from 2.69 to 1.36 resulted in average total phosphorus removal of 78+/-7%, corresponding with effluent levels of 14+/-4 mg P(total)L(-1) (9+/-3 mg PO(4)(3-)-PL(-1)). Under these conditions high quality spherical struvite crystals of 2-6mm were produced.

  5. Pilot-scale demonstration of phytofiltration for treatment of arsenic in New Mexico drinking water.

    PubMed

    Elless, Mark P; Poynton, Charissa Y; Willms, Cari A; Doyle, Mike P; Lopez, Alisa C; Sokkary, Dale A; Ferguson, Bruce W; Blaylock, Michael J

    2005-10-01

    Arsenic contamination of drinking water poses serious health risks to millions of people worldwide. To reduce such risks, the United States Environmental Protection Agency recently lowered the Maximum Contaminant Level for arsenic in drinking water from 50 to 10 microgL(-1). The majority of water systems requiring compliance are small systems that serve less than 10,000 people. Current technologies used to clean arsenic-contaminated water have significant drawbacks, particularly for small treatment systems. In this pilot-scale demonstration, we investigated the use of arsenic-hyperaccumulating ferns to remove arsenic from drinking water using a continuous flow phytofiltration system. Over the course of a 3-month demonstration period, the system consistently produced water having an arsenic concentration less than the detection limit of 2 microgL(-1), at flow rates as high as 1900 L day(-1) for a total treated water volume of approximately 60,000 L. Our results demonstrate that phytofiltration provides the basis for a solar-powered hydroponic technique to enable small-scale cleanup of arsenic-contaminated drinking water.

  6. Dust exposure during small-scale mining in Tanzania: a pilot study.

    PubMed

    Bratveit, Magne; Moen, Bente E; Mashalla, Yohana J S; Maalim, Hatua

    2003-04-01

    Small-scale mining in developing countries is generally labour-intensive and carried out with low levels of mechanization. In the Mererani area in the northern part of Tanzania, there are about 15000 underground miners who are constantly subjected to a poor working environment. Gemstones are found at depths down to 500 m. The objectives of this pilot study were to monitor the exposure to dust during work processes, which are typical of small-scale mining in developing countries, and to make a rough estimation of whether there is a risk of chronic pulmonary diseases for the workers. Personal sampling of respirable dust (n = 15) and 'total' dust (n = 5) was carried out during three consecutive days in one mine, which had a total of 50 workers in two shifts. Sampling started immediately before the miners entered the shaft, and lasted until they reappeared at the mine entrance after 5-8 h. The median crystalline silica content and the combustible content of the respirable dust samples were 14.2 and 5.5%, respectively. When drilling, blasting and shovelling were carried out, the exposure measurements showed high median levels of respirable dust (15.5 mg/m(3)), respirable crystalline silica (2.4 mg/m(3)), respirable combustible dust (1.5 mg/m(3)) and 'total' dust (28.4 mg/m(3)). When only shovelling and loading of sacks took place, the median exposures to respirable dust and respirable crystalline silica were 4.3 and 1.1 mg/m(3). This study shows that the exposure to respirable crystalline silica was high during underground small-scale mining. In the absence of personal protective equipment, the miners in the Mererani area are presumably at a high risk of developing chronic silicosis.

  7. Validation of mathematical model for CZ process using small-scale laboratory crystal growth furnace

    NASA Astrophysics Data System (ADS)

    Bergfelds, Kristaps; Sabanskis, Andrejs; Virbulis, Janis

    2018-05-01

    The present material is focused on the modelling of small-scale laboratory NaCl-RbCl crystal growth furnace. First steps towards fully transient simulations are taken in the form of stationary simulations that deal with the optimization of material properties to match the model to experimental conditions. For this purpose, simulation software primarily used for the modelling of industrial-scale silicon crystal growth process was successfully applied. Finally, transient simulations of the crystal growth are presented, giving a sufficient agreement to experimental results.

  8. Simulation of large scale motions and small scale structures in planetary atmospheres and oceans: From laboratory to space experiments on ISS

    NASA Astrophysics Data System (ADS)

    Egbers, Christoph; Futterer, Birgit; Zaussinger, Florian; Harlander, Uwe

    2014-05-01

    Baroclinic waves are responsible for the transport of heat and momentum in the oceans, in the Earth's atmosphere as well as in other planetary atmospheres. The talk will give an overview on possibilities to simulate such large scale as well as co-existing small scale structures with the help of well defined laboratory experiments like the baroclinic wave tank (annulus experiment). The analogy between the Earth's atmosphere and the rotating cylindrical annulus experiment only driven by rotation and differential heating between polar and equatorial regions is obvious. From the Gulf stream single vortices seperate from time to time. The same dynamics and the co-existence of small and large scale structures and their separation can be also observed in laboratory experiments as in the rotating cylindrical annulus experiment. This experiment represents the mid latitude dynamics quite well and is part as a central reference experiment in the German-wide DFG priority research programme ("METSTRÖM", SPP 1276) yielding as a benchmark for lot of different numerical methods. On the other hand, those laboratory experiments in cylindrical geometry are limited due to the fact, that the surface and real interaction between polar and equatorial region and their different dynamics can not be really studied. Therefore, I demonstrate how to use the very successful Geoflow I and Geoflow II space experiment hardware on ISS with future modifications for simulations of small and large scale planetary atmospheric motion in spherical geometry with differential heating between inner and outer spheres as well as between the polar and equatorial regions. References: Harlander, U., Wenzel, J., Wang, Y., Alexandrov, K. & Egbers, Ch., 2012, Simultaneous PIV- and thermography measurements of partially blocked flow in a heated rotating annulus, Exp. in Fluids, 52 (4), 1077-1087 Futterer, B., Krebs, A., Plesa, A.-C., Zaussinger, F., Hollerbach, R., Breuer, D. & Egbers, Ch., 2013, Sheet-like and

  9. DEMONSTRATION OF PILOT-SCALE PREVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. I. SPIRAL WOUND MEMBRANE MODULES

    EPA Science Inventory

    During the summer of 1996, a pilot-scale demonstration of a surfactant enhanced aquifer remediation (SEAR) process for removal of dense non-aqueous phase liquids (DNAPLs) from soils was conducted at Hill Air Force Base in Layton, Utah. Five thousand gallons of the extracted DNAP...

  10. Regeneration of barium carbonate from barium sulphide in a pilot-scale bubbling column reactor and utilization for acid mine drainage.

    PubMed

    Mulopo, J; Zvimba, J N; Swanepoel, H; Bologo, L T; Maree, J

    2012-01-01

    Batch regeneration of barium carbonate (BaCO(3)) from barium sulphide (BaS) slurries by passing CO(2) gas into a pilot-scale bubbling column reactor under ambient conditions was used to assess the technical feasibility of BaCO(3) recovery in the Alkali Barium Calcium (ABC) desalination process and its use for sulphate removal from high sulphate Acid Mine Drainage (AMD). The effect of key process parameters, such as BaS slurry concentration and CO(2) flow rate on the carbonation, as well as the extent of sulphate removal from AMD using the recovered BaCO(3) were investigated. It was observed that the carbonation reaction rate for BaCO(3) regeneration in a bubbling column reactor significantly increased with increase in carbon dioxide (CO(2)) flow rate whereas the BaS slurry content within the range 5-10% slurry content did not significantly affect the carbonation rate. The CO(2) flow rate also had an impact on the BaCO(3) morphology. The BaCO(3) recovered from the pilot-scale bubbling column reactor demonstrated effective sulphate removal ability during AMD treatment compared with commercial BaCO(3).

  11. Pilot-scale testing membrane bioreactor for wastewater reclamation in industrial laundry.

    PubMed

    Andersen, M; Kristensen, G H; Brynjolf, M; Grüttner, H

    2002-01-01

    A pilot-scale study of membrane bioreactor treatment for reclamation of wastewater from Berendsen Textile Service industrial laundry in Søborg, Denmark was carried out over a 4 month period. A satisfactory COD degradation was performed resulting in a low COD in the permeate (< 50 mg/l). To obtain satisfactory treatment, addition of nitrogen was necessary. The biodegradability of the permeate was very low (BOD5 < 2 mg/l). A hydraulic retention time of 1 d turned out to be sufficient at a sludge concentration of 10 g MLSS/l. Through addition of a cationic polymer, a satisfactory dewaterability of the sludge was reached. Membrane tests showed that operating at a trans-membrane pressure of 3 bar and a cross-flow velocity of 4 m/s, a flux of 120 l/m2h can be expected without using chemicals for membrane cleaning. The quality of the permeate was very good when comparing to the reuse quality demands of water to the wash processes. Reuse of the permeate in all rinsing steps requires additional treatment through reverse osmosis.

  12. Effect of pilot-scale aseptic processing on tomato soup quality parameters.

    PubMed

    Colle, Ines J P; Andrys, Anna; Grundelius, Andrea; Lemmens, Lien; Löfgren, Anders; Buggenhout, Sandy Van; Loey, Ann; Hendrickx, Marc Van

    2011-01-01

    Tomatoes are often processed into shelf-stable products. However, the different processing steps might have an impact on the product quality. In this study, a model tomato soup was prepared and the impact of pilot-scale aseptic processing, including heat treatment and high-pressure homogenization, on some selected quality parameters was evaluated. The vitamin C content, the lycopene isomer content, and the lycopene bioaccessibility were considered as health-promoting attributes. As a structural characteristic, the viscosity of the tomato soup was investigated. A tomato soup without oil as well as a tomato soup containing 5% olive oil were evaluated. Thermal processing had a negative effect on the vitamin C content, while lycopene degradation was limited. For both compounds, high-pressure homogenization caused additional losses. High-pressure homogenization also resulted in a higher viscosity that was accompanied by a decrease in lycopene bioaccessibility. The presence of lipids clearly enhanced the lycopene isomerization susceptibility and improved the bioaccessibility. The results obtained in this study are of relevance for product formulation and process design of tomato-based food products. © 2011 Institute of Food Technologists®

  13. Design of experiments reveals critical parameters for pilot-scale freeze-and-thaw processing of L-lactic dehydrogenase.

    PubMed

    Roessl, Ulrich; Humi, Sebastian; Leitgeb, Stefan; Nidetzky, Bernd

    2015-09-01

    Freezing constitutes an important unit operation of biotechnological protein production. Effects of freeze-and-thaw (F/T) process parameters on stability and other quality attributes of the protein product are usually not well understood. Here a design of experiments (DoE) approach was used to characterize the F/T behavior of L-lactic dehydrogenase (LDH) in a 700-mL pilot-scale freeze container equipped with internal temperature and pH probes. In 24-hour experiments, target temperature between -10 and -38°C most strongly affected LDH stability whereby enzyme activity was retained best at the highest temperature of -10°C. Cooling profile and liquid fill volume also had significant effects on LDH stability and affected the protein aggregation significantly. Parameters of the thawing phase had a comparably small effect on LDH stability. Experiments in which the standard sodium phosphate buffer was exchanged by Tris-HCl and the non-ionic surfactant Tween 80 was added to the protein solution showed that pH shift during freezing and protein surface exposure were the main factors responsible for LDH instability at the lower freeze temperatures. Collectively, evidence is presented that supports the use of DoE-based systematic analysis at pilot scale in the identification of F/T process parameters critical for protein stability and in the development of suitable process control strategies. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Turbulence radiation interaction in Reynolds-averaged Navier-Stokes simulations of nonpremixed piloted turbulent laboratory-scale flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habibi, A.; Merci, B.; Roekaerts, D.

    2007-10-15

    Numerical simulation results are presented for two axisymmetric, nonluminous turbulent piloted jet diffusion flames: Sandia Flame D (SFD) and Delft Flame III (DFIII). Turbulence is represented by a Reynolds stress transport model, while chemistry is modeled by means of steady laminar flamelets. We use the preassumed PDF approach for turbulence-chemistry interaction. A weighted sum of gray gases model is used for the gas radiative properties. The radiative transfer equation is solved using the discrete ordinates method in the conservative finite-volume formulation. The radiative loss leads to a decrease in mean temperature, but does not significantly influence the flow and mixingmore » fields, in terms either of mean values or of rms values of fluctuations. A systematic analysis of turbulence-radiation interaction (TRI) is carried out. By considering five different TRI formulations, and comparing also with a simple optically thin model, individual TRI contributions are isolated and quantified. For both flames, effects are demonstrated of (1) influence of temperature fluctuations on the mean Planck function, (2) temperature and composition fluctuations on the mean absorption coefficient, and (3) correlation between absorption coefficient and Planck function. The strength of the last effect is stronger in DFIII than in SFD, because of stronger turbulence-chemistry interaction and lower mean temperature in DFIII. The impact of the choice of TRI model on the prediction of the temperature-sensitive minor species NO is determined in a postprocessing step with fixed flow and mixing fields. Best agreement for NO is obtained using the most complete representation of TRI. (author)« less

  15. Final report from VFL Technologies for the pilot-scale thermal treatment of lower East Fork Poplar Creek floodplain soils. LEFPC appendices, Volume 4, Appendix V-C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-09-01

    This is the the final verification run data package for pilot scale thermal treatment of lower East Fork Poplar Creek floodplain soils. Included are data on volatiles, semivolatiles, and TCLP volatiles.

  16. Patent foramen ovale and asymptomatic brain lesions in military fighter pilots.

    PubMed

    Kang, Kyung Wook; Kim, Joon-Tae; Choi, Won-Ho; Park, Won-Ju; Shin, Young Ho; Choi, Kang-Ho

    2014-10-01

    Previous studies have reported higher incidence of white matter lesions (WMLs) in military pilots. The anti-gravity straining maneuver, which fighter military pilots perform numerously during a flight is identical to the valsalva maneuver. We sought to investigate the prevalence of right-to-left shunt (RLS) associated with WMLs in military pilots. A prospective study was performed involving military pilots who visited the Airomedical Center. The pilots underwent brain magnetic resonance imaging (MRI) scan and transcranial Doppler (TCD) with intravenous injection of agitated saline solution for the detection of RLS. Periventricular WMLs (PVWMLs) on MRI were graded using Fazeka's scale, and deep WMLs (DWMLs) were graded using Scheltens's scale. This study included 81 military pilots. RLS on TCD was observed less frequently in non-fighter pilots than in fighter pilots (35.5% vs. 64.5%, p=0.011). Fighter pilot was an independently associated factor with RLS on the TCD. DWMLs were independently associated with RLSs through a patent foramen ovale (PFO) (OR 3.507, 95% CI 1.223-10.055, p=0.02). The results suggest that DWMLs in military pilots may significantly be associated with RLS via PFO. Additional investigations are warranted. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Residence time distribution measurements in a pilot-scale poison tank using radiotracer technique.

    PubMed

    Pant, H J; Goswami, Sunil; Samantray, J S; Sharma, V K; Maheshwari, N K

    2015-09-01

    Various types of systems are used to control the reactivity and shutting down of a nuclear reactor during emergency and routine shutdown operations. Injection of boron solution (borated water) into the core of a reactor is one of the commonly used methods during emergency operation. A pilot-scale poison tank was designed and fabricated to simulate injection of boron poison into the core of a reactor along with coolant water. In order to design a full-scale poison tank, it was desired to characterize flow of liquid from the tank. Residence time distribution (RTD) measurement and analysis was adopted to characterize the flow dynamics. Radiotracer technique was applied to measure RTD of aqueous phase in the tank using Bromine-82 as a radiotracer. RTD measurements were carried out with two different modes of operation of the tank and at different flow rates. In Mode-1, the radiotracer was instantaneously injected at the inlet and monitored at the outlet, whereas in Mode-2, the tank was filled with radiotracer and its concentration was measured at the outlet. From the measured RTD curves, mean residence times (MRTs), dead volume and fraction of liquid pumped in with time were determined. The treated RTD curves were modeled using suitable mathematical models. An axial dispersion model with high degree of backmixing was found suitable to describe flow when operated in Mode-1, whereas a tanks-in-series model with backmixing was found suitable to describe flow of the poison in the tank when operated in Mode-2. The results were utilized to scale-up and design a full-scale poison tank for a nuclear reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Development and psychometric evaluation of the Primary Health Care Engagement (PHCE) Scale: a pilot survey of rural and remote nurses.

    PubMed

    Kosteniuk, Julie G; Wilson, Erin C; Penz, Kelly L; MacLeod, Martha L P; Stewart, Norma J; Kulig, Judith C; Karunanayake, Chandima P; Kilpatrick, Kelley

    2016-01-01

    To report the development and psychometric evaluation of a scale to measure rural and remote (rural/remote) nurses' perceptions of the engagement of their workplaces in key dimensions of primary health care (PHC). Amidst ongoing PHC reforms, a comprehensive instrument is needed to evaluate the degree to which rural/remote health care settings are involved in the key dimensions that characterize PHC delivery, particularly from the perspective of professionals delivering care. This study followed a three-phase process of instrument development and psychometric evaluation. A literature review and expert consultation informed instrument development in the first phase, followed by an iterative process of content evaluation in the second phase. In the final phase, a pilot survey was undertaken and item discrimination analysis employed to evaluate the internal consistency reliability of each subscale in the preliminary 60-item Primary Health Care Engagement (PHCE) Scale. The 60-item scale was subsequently refined to a 40-item instrument. The pilot survey sample included 89 nurses in current practice who had experience in rural/remote practice settings. Participants completed either a web-based or paper survey from September to December, 2013. Following item discrimination analysis, the 60-item instrument was refined to a 40-item PHCE Scale consisting of 10 subscales, each including three to five items. Alpha estimates of the 10 refined subscales ranged from 0.61 to 0.83, with seven of the subscales demonstrating acceptable reliability (α ⩾ 0.70). The refined 40-item instrument exhibited good internal consistency reliability (α=0.91). The 40-item PHCE Scale may be considered for use in future studies regardless of locale, to measure the extent to which health care professionals perceive their workplaces to be engaged in key dimensions of PHC.

  19. Realizing a Framework for Enhancing the Laboratory Experiences of Non-Physics Majors: From Pilot to Large-Scale Implementation

    ERIC Educational Resources Information Center

    Kirkup, Les; Pizzica, Jenny; Waite, Katrina; Srinivasan, Lakshmi

    2010-01-01

    Physics experiments for students not majoring in physics may have little meaning for those students and appear to them unconnected in any way to their majors. This affects student engagement and influences the extent to which they regard their experiences in the physics laboratory as positive. We apply a framework for the development and…

  20. Fate of estrogens in a pilot-scale step-feed anoxic/oxic wastewater treatment system controlling by nitrogen and phosphorus removal.

    PubMed

    Chen, Qingcai; Li, Zebing; Hua, Xiaoyu

    2018-05-01

    The control measures for estrogens in the aquatic environment are topics of growing concern. It is a meaningful issue to finding optimal process parameters for efficient removal of estrogens with the purpose of efficient total nitrogen (TN) or total phosphorus (TP) removal in sewage treatment plants. The present paper is concerned with the relationships between the estrogen removal and TN or TP removal in a pilot-scale three-stage anoxic/oxic (A/O) system treating real municipal wastewater. The total removal efficiency for estrone (E1) and 17β-estradiol (E2) and their sulfate and glucuronide conjugates were on average 87% in the pilot-scale system. The concentrations of the sulfate and glucuronide conjugates of estrogens (E1 and E2) in the system were much lower than the estrogens, which might be caused by the rapid degradation of conjugates in the pilot-scale system. The average removal efficiencies of E1 and E2 and their sulfate and glucuronide conjugates were significantly lower under high TP removal conditions than those under high TN removal conditions that suggested that the ammonia oxidation promotes estrogen degradation. When the system achieved efficient TN removal, the concentrations of both E1 and E2 were generally lower in the aerobic zones than those in the anoxic zones. Instead, when the system achieved efficient TP removal conditions, the estrogen concentrations were higher in the aerobic zones than in the anoxic zones. However, it was thought that the variation of the concentrations of the estrogen conjugates had weak influence on concentrations of the free estrogens. The increase of the free estrogens in the aerobic zones could be attributed to the release of the estrogens adsorbed on the sludge. The variation of estrogens in a three-stage A/O system can be properly estimated and measured by a binary linear regression model with the variables of TP and TON (NO 2 - -N and NO 3 - -N), which is probably the important information for the improvement

  1. Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, Charles; Beery, Kyle; Orth, Rick

    2007-09-28

    The purpose of the Department of Energy (DOE)-supported corn fiber conversion project, “Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation” is to develop and demonstrate an integrated, economical process for the separation of corn fiber into its principal components to produce higher value-added fuel (ethanol and biodiesel), nutraceuticals (phytosterols), chemicals (polyols), and animal feed (corn fiber molasses). This project has successfully demonstrated the corn fiber conversion process on the pilot scale, and ensured that the process will integrate well into existing ADM corn wet-mills. This process involves hydrolyzing the corn fiber to solubilize 50%more » of the corn fiber as oligosaccharides and soluble protein. The solubilized fiber is removed and the remaining fiber residue is solvent extracted to remove the corn fiber oil, which contains valuable phytosterols. The extracted oil is refined to separate the phytosterols and the remaining oil is converted to biodiesel. The de-oiled fiber is enzymatically hydrolyzed and remixed with the soluble oligosaccharides in a fermentation vessel where it is fermented by a recombinant yeast, which is capable of fermenting the glucose and xylose to produce ethanol. The fermentation broth is distilled to remove the ethanol. The stillage is centrifuged to separate the yeast cell mass from the soluble components. The yeast cell mass is sold as a high-protein yeast cream and the remaining sugars in the stillage can be purified to produce a feedstock for catalytic conversion of the sugars to polyols (mainly ethylene glycol and propylene glycol) if desirable. The remaining materials from the purification step and any materials remaining after catalytic conversion are concentrated and sold as a corn fiber molasses. Additional high-value products are being investigated for the use of the corn fiber as a dietary fiber sources.« less

  2. SUPPLEMENTARY COMPARISON: Final report of the bilateral comparison APMP.M.H-S2 of hardness measurement for Rockwell scales A and B between PTB and NIMT

    NASA Astrophysics Data System (ADS)

    Sanponpute, Tassanai; Meesaplak, Apichaya; Herrmann, Konrad; Menelao, Febo

    2009-01-01

    The bilateral comparison APMP.M.H-S2 of hardness measurement for Rockwell scales A and B was arranged by the National Institute of Metrology of Thailand, NIMT, as the pilot laboratory, comparing with Physikalisch-Technische Bundesanstalt of Germany, PTB. The objective of this comparison was to confirm the calibration and measurement capabilities of NIMT in hardness measurement. The period of measurement covered March to August 2009. There were two sets of artefacts: scale A artefact set and scale B artefact set. The scale A artefact set consisted of seven hardness blocks: 35 HRA, 40 HRA, 55 HRA, 60 HRA, 70 HRA, 80 HRA, 85 HRA. The artefact set for scale B consisted of nine hardness blocks: 25 HRB, 30 HRB, 40 HRB, 50 HRB, 60 HRB, 70 HRB, 80 HRB, 90 HRB, 100 HRB. Laboratories had to ensure that the primary Rockwell hardness machines passed the verification process according to ISO 6508-3. Then participants measured the hardness value by making ten indentations in a designated area of each artefact block. Hardness measurement results and uncertainty budget were then reported to the pilot laboratory and were used to compute the degrees of equivalence in terms of the Comparison Reference Value (CRV) and En ratio. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by APMP, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  3. Instrument development and validation of a quality scale for historical research papers (QSHRP): a pilot study.

    PubMed

    Kelly, Jacinta; Watson, Roger

    2014-12-01

    To report a pilot study for the development and validation of an instrument to measure quality in historical research papers. There are no set criteria to assess historical papers published in nursing journals. A three phase mixed method sequential confirmatory design. In 2012, we used a three-phase approach to item generation and content evaluation. In phase 1, we consulted nursing historians using an online survey comprising three open-ended questions and revised the items. In phase 2, we evaluated the revised items for relevance with expert historians using a 4-point Likert scale and Content Validity Index calculation. In phase 3, we conducted reliability testing of the instrument using a 3-point Likert scale. In phase 1, 121 responses were generated via the online survey and revised to 40 interrogatively phrased items. In phase 2, five items with an Item Content Validity Index score of ≥0·7 remained. In phase 3, responses from historians resulted in 100% agreement to questions 1, 2 and 4 and 89% and 78%, respectively, to questions 3 and 5. Items for the QSHRP have been identified, content validated and reliability tested. This scale improves on previous scales, which over-emphasized source criticism. However, a full-scale study is needed with nursing historians to increase its robustness. © 2014 John Wiley & Sons Ltd.

  4. On the relation between personality and job performance of airline pilots.

    PubMed

    Hormann, H J; Maschke, P

    1996-01-01

    The validity of a personality questionnaire for the prediction of job success of airline pilots is compared to validities of a simulator checkflight and of flying experience data. During selection, 274 pilots applying for employment with a European charter airline were examined with a multidimensional personality questionnaire (Temperature Structure Scales; TSS). Additionally, the applicants were graded in a simulator checkflight. On the basis of training records, the pilots were classified as performing at standard or below standard after about 3 years of employment in the hiring company. In a multiple-regression model, this dichotomous criterion for job success can be predicted with 73.8% accuracy through the simulator checkflight and flying experience prior to employment. By adding the personality questionnaire to the regression equation, the number of correct classifications increases to 79.3%. On average, successful pilots score substantially higher on interpersonal scales and lower on emotional scales of the TSS.

  5. Comparison of corrosion scales in full and partially replaced ...

    EPA Pesticide Factsheets

    Preliminary results from scales formed 38 weeks following the LSL replacement simulations revealed differences in scale formations amongst varying water qualities and pipe sequence. Rigs fed with dechlorinated tap water show distinct pH gradients between the galvanic and the background zones. Hydrocerussite and litharge are found both in field and pilot rigs. However, plumbonacrite, massicot, scrutinyite and plattnerite are only present in pipes harvested directly from the field. Laurionite, leadhillite, cerussite and calcite are found in rigs from the pilot. Cerussite is mostly present in the galvanic zones, close to the connection to the Cu pipe. Different types of scales are present in the rigs from the pilot and from the field, suggesting that differences in the formation in the scales and therefore differences in lead release from the pipes. The particulate Pb fraction in water samples is more important in samples from the pilot than from the field, median concentrations are 85X higher in partial LSL and 10X higher in full LSL in the pilot. Lead phosphates are present in the scales from the rigs treated with orthophosphate. Complete results will be obtained by the end of July 2016. The main objective is to compare scales from full and partial LSLs harvested from the field and from a pilot setup fed with water from the same distribution system and subjected to water quality changes.

  6. [Development of an activity of daily living scale for patients with COPD: the Activity of Daily Living Dyspnea scale].

    PubMed

    Yoza, Yoshiyasu; Ariyoshi, Koya; Honda, Sumihisa; Taniguchi, Hiroyuki; Senjyu, Hideaki

    2009-10-01

    Patients with COPD often experience restriction in their activities of daily living (ADL) due to dyspnea. This type of restriction is unique to patients with COPD and cannot be adequately evaluated by the generic ADL scales. This study developed an ADL scale (the Activity of Daily Living Dyspnea scale [ADL-D scale]) for patients with COPD and investigated its validity and internal consistency. Patients with stable COPD were recruited and completed a pilot 26-item questionnaire. Patients also performed the Incremental Shuttle Walk Test (ISWT), and completed the St George's Respiratory Questionnaire (SGRQ), and Medical Research Council (MRC) dyspnea grade. There were 83 male participants who completed the pilot questionnaire. Following the pilot, 8 items that were not undertaken by the majority of subjects, and 3 items judged to be of low clinical importance by physical therapists were removed from the pilot questionnaire. The final ADL-D scale contained 15 items. Scores obtained with the ADL-D scale were significantly correlated with the MRC dyspnea grades, distance walked on the ISWT and SGRQ scores. The ADL-D scores were significantly different across the five grades of the MRC dyspnea grade. The ADL-D scale showed high consistency (Chronbach's alpha coefficient of 0.96). The ADL-D scale is a useful scale for assessing impairments in ADL in Japanese male patients with COPD.

  7. Wellbore Completion Systems Containment Breach Solution Experiments at a Large Scale Underground Research Laboratory : Sealant placement & scale-up from Lab to Field

    NASA Astrophysics Data System (ADS)

    Goodman, H.

    2017-12-01

    This investigation seeks to develop sealant technology that can restore containment to completed wells that suffer CO2 gas leakages currently untreatable using conventional technologies. Experimentation is performed at the Mont Terri Underground Research Laboratory (MT-URL) located in NW Switzerland. The laboratory affords investigators an intermediate-scale test site that bridges the gap between the laboratory bench and full field-scale conditions. Project focus is the development of CO2 leakage remediation capability using sealant technology. The experimental concept includes design and installation of a field scale completion package designed to mimic well systems heating-cooling conditions that may result in the development of micro-annuli detachments between the casing-cement-formation boundaries (Figure 1). Of particular interest is to test novel sealants that can be injected in to relatively narrow micro-annuli flow-paths of less than 120 microns aperture. Per a special report on CO2 storage submitted to the IPCC[1], active injection wells, along with inactive wells that have been abandoned, are identified as one of the most probable sources of leakage pathways for CO2 escape to the surface. Origins of pressure leakage common to injection well and completions architecture often occur due to tensile cracking from temperature cycles, micro-annulus by casing contraction (differential casing to cement sheath movement) and cement sheath channel development. This discussion summarizes the experiment capability and sealant testing results. The experiment concludes with overcoring of the entire mock-completion test site to assess sealant performance in 2018. [1] IPCC Special Report on Carbon Dioxide Capture and Storage (September 2005), section 5.7.2 Processes and pathways for release of CO2 from geological storage sites, page 244

  8. Pilot-scale production and liquid formulation of Rhodotorula minuta, a potential biocontrol agent of mango anthracnose.

    PubMed

    Patiño-Vera, M; Jiménez, B; Balderas, K; Ortiz, M; Allende, R; Carrillo, A; Galindo, E

    2005-01-01

    To develop a pilot-plant fermentation process for the production of the yeast Rhodotorula minuta, to be used as a biocontrol agent of mango anthracnose, using a low-cost culture medium. To develop a stable liquid formulation that preserve high viability of the yeast stored at 4 degrees C. Keeping constant the volumetric power input, a fermentation process was scaled-up from shake flasks to a 100 l bioreactor. Preharvest applications of the yeast resulted in postharvest anthracnose severity equal or lower than that observed with a chemical fungicide. Glycerol was added to the formulation as water activity reducer and xanthan gum as a viscosity-enhancing agent. Yeast initial concentration of 10(10) CFU ml(-1) resulted in 4-5 orders of magnitude decrease after 1 month of storage at 4 degrees C, whereas when it was formulated at 10(9) CFU ml(-1), the decrease was of two orders of magnitude in 6 months. The fermentation process was successfully scaled-up using a low-cost culture medium. Postharvest anthracnose severity could be considerably reduced using this yeast. Formulating the yeast at 10(9) CFU ml(-1) and adding glycerol (20%) and xanthan (5 g l(-1)) avoided both contamination and yeast sedimentation and it was able to preserve up to 10(7) CFU ml(-1) after 6 months at 4 degrees C. The yeast R. minuta is reported as a novel antagonistic micro-organism against the pathogen Colletotrichum gloeosporioides. Pilot plant production of this yeast allowed us to conduct field tests in commercial orchards during three harvest seasons. Yeast suspensions applied to mango trees reduced the fruit anthracnose severity in levels similar or better than chemical fungicides.

  9. Superfund Technology Evaluation Report: SITE Program Demonstration Test Shirco Pilot-Scale Infrared Incineration System at the Rose Township Demode Road Superfund Site Volume I

    EPA Science Inventory

    The Shirco Pilot-Scale Infrared Incineration System was evaluated during a series of seventeen test runs under varied operating conditions at the Demode Road Superfund Site located in Rose Township, Michigan. The tests sought to demonstrate the effectiveness of the unit and the t...

  10. Pilot Project on Women and Science. A report on women scientists at the University of New Mexico and Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvaggio, R.

    In the fall of 1991, through the coordinating efforts of the University of New Mexico and Los Alamos National Laboratory, the Pilot Project on Women and Science was initiated as a year-long study of women scientists at both the university and the laboratory. Its purpose was to gather information directly from women scientists in an attempt to analyze and make recommendations concerning the professional and cultural environment for women in the sciences. This report is an initial attempt to understand the ways in which women scientists view themselves, their profession, and the scientific culture they inhabit. By recording what thesemore » women say about their backgrounds and educational experiences, their current positions, the difficult negotiations many have made between their personal and professional lives, and their relative positions inside and outside the scientific community, the report calls attention both to the individual perspectives offered by these women and to the common concerns they share.« less

  11. Non-destructive evaluation of laboratory scale hydraulic fracturing using acoustic emission

    NASA Astrophysics Data System (ADS)

    Hampton, Jesse Clay

    The primary objective of this research is to develop techniques to characterize hydraulic fractures and fracturing processes using acoustic emission monitoring based on laboratory scale hydraulic fracturing experiments. Individual microcrack AE source characterization is performed to understand the failure mechanisms associated with small failures along pre-existing discontinuities and grain boundaries. Individual microcrack analysis methods include moment tensor inversion techniques to elucidate the mode of failure, crack slip and crack normal direction vectors, and relative volumetric deformation of an individual microcrack. Differentiation between individual microcrack analysis and AE cloud based techniques is studied in efforts to refine discrete fracture network (DFN) creation and regional damage quantification of densely fractured media. Regional damage estimations from combinations of individual microcrack analyses and AE cloud density plotting are used to investigate the usefulness of weighting cloud based AE analysis techniques with microcrack source data. Two granite types were used in several sample configurations including multi-block systems. Laboratory hydraulic fracturing was performed with sample sizes ranging from 15 x 15 x 25 cm3 to 30 x 30 x 25 cm 3 in both unconfined and true-triaxially confined stress states using different types of materials. Hydraulic fracture testing in rock block systems containing a large natural fracture was investigated in terms of AE response throughout fracture interactions. Investigations of differing scale analyses showed the usefulness of individual microcrack characterization as well as DFN and cloud based techniques. Individual microcrack characterization weighting cloud based techniques correlated well with post-test damage evaluations.

  12. Using sulfite chemistry for robust bioconversion of Douglas-fir forest residue to bioethanol at high titer and lignosulfonate: A pilot-scale evaluation

    Treesearch

    J.Y. Zhu; M. Subhosh Chandra; Feng Gu; Roland Gleisner; J.Y. Zhu; John Sessions; Gevan Marrs; Johnway Gao; Dwight Anderson

    2015-01-01

    This study demonstrated at the pilot-scale (50 kg) use of Douglas-fir forest harvest residue, an underutilized forest biomass, for the production of high titer and high yield bioethanol using sulfite chemistry without solid–liquor separation and detoxification. Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL) was directly applied to the...

  13. Pilot-Scale Batch Alkaline Pretreatment of Corn Stover

    DOE PAGES

    Kuhn, Erik M.; O’Brien, Marykate H.; Ciesielski, Peter N.; ...

    2015-12-18

    The goal of biomass pretreatment is to increase the enzymatic digestibility of the plant cell wall polysaccharides to produce sugars for upgrading to biofuels. Alkaline pretreatment has the ability to solubilize much of the lignin in biomass while the carbohydrates remain insoluble. With an increased research focus to produce high-value products from lignin, a low molecular weight, lignin-rich stream in a biorefinery is desirable. Here, this work reports on batch alkaline pretreatment of corn stover conducted using a three-factor, two-level central composite experimental design in a pilot-scale reactor to determine the relationship between sodium hydroxide (NaOH) loading, temperature, and anthraquinonemore » (AQ) charge on solids solubilization, component yields, and enzymatic digestibility of the residual solids. Operating conditions were 100 to 140 °C, 40 to 70 mg NaOH/g dry corn stover, and 0.05% to 0.2% (w/w) AQ loading. An enzymatic hydrolysis screening study was performed at 2% cellulose loading. Empirical modeling results showed that NaOH loading and temperature are both significant factors, solubilizing 15% to 35% of the solids and up to 54% of the lignin. Enzymatic hydrolysis of the residual solids produced good monomeric glucose (>90%) and xylose (>70%) yields at the more severe pretreatment conditions. We also found that the AQ charge was not a significant factor at the conditions studied, so efforts to reduce xylan and increase lignin solubilization using this compound were not successful. Lastly, while good lignin solubilization was achieved, effectively recovering this stream remains a challenge, and demonstrating performance in continuous reactors is still needed.« less

  14. Pilot-Scale Batch Alkaline Pretreatment of Corn Stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhn, Erik M.; O’Brien, Marykate H.; Ciesielski, Peter N.

    The goal of biomass pretreatment is to increase the enzymatic digestibility of the plant cell wall polysaccharides to produce sugars for upgrading to biofuels. Alkaline pretreatment has the ability to solubilize much of the lignin in biomass while the carbohydrates remain insoluble. With an increased research focus to produce high-value products from lignin, a low molecular weight, lignin-rich stream in a biorefinery is desirable. Here, this work reports on batch alkaline pretreatment of corn stover conducted using a three-factor, two-level central composite experimental design in a pilot-scale reactor to determine the relationship between sodium hydroxide (NaOH) loading, temperature, and anthraquinonemore » (AQ) charge on solids solubilization, component yields, and enzymatic digestibility of the residual solids. Operating conditions were 100 to 140 °C, 40 to 70 mg NaOH/g dry corn stover, and 0.05% to 0.2% (w/w) AQ loading. An enzymatic hydrolysis screening study was performed at 2% cellulose loading. Empirical modeling results showed that NaOH loading and temperature are both significant factors, solubilizing 15% to 35% of the solids and up to 54% of the lignin. Enzymatic hydrolysis of the residual solids produced good monomeric glucose (>90%) and xylose (>70%) yields at the more severe pretreatment conditions. We also found that the AQ charge was not a significant factor at the conditions studied, so efforts to reduce xylan and increase lignin solubilization using this compound were not successful. Lastly, while good lignin solubilization was achieved, effectively recovering this stream remains a challenge, and demonstrating performance in continuous reactors is still needed.« less

  15. Vermicomposting of a lignocellulosic waste from olive oil industry: a pilot scale study.

    PubMed

    Benítez, E; Sainz, H; Melgar, R; Nogales, R

    2002-04-01

    The vermicomposting with Eisenia andrei of dry olive cake, a lignocellulosic waste produced during the extraction of olive oil, either alone or mixed with municipal biosolids, was studied in a nine-month pilot scale experiment. Number and biomass of earthworms and enzyme activities were periodically monitored and relevant properties of the final products were determined. In the assayed substrates, the total biomass of earthworms increased at the end of the experimental period between 9 and 12-fold respectively in comparison with the earthworm biomass initially inoculated. The increase in hydrolytic enzymes and overall microbial activity during the vermicomposting process indicated the biodegradation of the olive cake and resulted in the disappearance of the initial phytotoxicity of the substrate. However, the recalcitrant lignocellulosic nature of the dry olive cake prevented suitable humification during the vermicomposting process. For this reason, in addition to organic amendments, other management procedures should be considered.

  16. [Pilot-scale opposite folded plate hybrid anaerobic reactor (OFPHAR) in treatment of sewage].

    PubMed

    Han, Xiang-Kui; Ye, Chang-Bing; Zhuang, Jin-Peng; Bi, Dong; Wang, Lei

    2008-11-01

    Based on the theories of mass-transfer and two-double integrated staged multi-phase anaerobe (TSMPA), a pilot-scale opposite folded plate hybrid anaerobic reactor (OFPHAR) was designed to treat low concentration sewage. All the trial lasted 12 months and the results indicated that the optimal HRT was 6h. At this HRT, the COD, TP and TN removal rate were 78.58%, 35.15%, 39.17%, respectively, at 25 degrees C +/- 2 degrees C. The optimal rate of anaerobic section was 45%-65%. Controlled HRT = 6 h, the COD, TP and TN removal rate were 64.37%, 20.72%, 23.65%, respectively, and the specific methane production capacity were 1.85 mL/(g x h) when the temperature decreased to 7 degrees C. The results of trial indicated that apply this OFPHAR to treat low concentration sewage at low temperature in north China is feasible.

  17. Designing for Scale: Reflections on Rolling Out Reading Improvement in Kenya and Liberia.

    PubMed

    Gove, Amber; Korda Poole, Medina; Piper, Benjamin

    2017-03-01

    Since 2008, the Ministries of Education in Liberia and Kenya have undertaken transitions from small-scale pilot programs to improve reading outcomes among primary learners to the large-scale implementation of reading interventions. The effects of the pilots on learning outcomes were significant, but questions remained regarding whether such large gains could be sustained at scale. In this article, the authors dissect the Liberian and Kenyan experiences with implementing large-scale reading programs, documenting the critical components and conditions of the program designs that affected the likelihood of successfully transitioning from pilot to scale. They also review the design, deployment, and effectiveness of each pilot program and the scale, design, duration, enabling conditions, and initial effectiveness results of the scaled programs in each country. The implications of these results for the design of both pilot and large-scale reading programs are discussed in light of the experiences of both the Liberian and Kenyan programs. © 2017 Wiley Periodicals, Inc.

  18. Manufacturing of High-Concentration Monoclonal Antibody Formulations via Spray Drying-the Road to Manufacturing Scale.

    PubMed

    Gikanga, Benson; Turok, Robert; Hui, Ada; Bowen, Mayumi; Stauch, Oliver B; Maa, Yuh-Fun

    2015-01-01

    Spray-dried monoclonal antibody (mAb) powders may offer applications more versatile than the freeze-dried cake, including preparing high-concentration formulations for subcutaneous administration. Published studies on this topic, however, are generally scarce. This study evaluates a pilot-scale spray dryer against a laboratory-scale dryer to spray-dry multiple mAbs in consideration of scale-up, impact on mAb stability, and feasibility of a high-concentration preparation. Under similar conditions, both dryers produced powders of similar properties-for example, water content, particle size and morphology, and mAb stability profile-despite a 4-fold faster output by the pilot-scale unit. All formulations containing arginine salt or a combination of arginine salt and trehalose were able to be spray-dried with high powder collection efficiency (>95%), but yield was adversely affected in formulations with high trehalose content due to powder sticking to the drying chamber. Spray-drying production output was dictated by the size of the dryer operated at an optimal liquid feed rate. Spray-dried powders could be reconstituted to high-viscosity liquids, >300 cP, substantially beyond what an ultrafiltration process can achieve. The molar ratio of trehalose to mAb needed to be reduced to 50:1 in consideration of isotonicity of the formulation with mAb concentration at 250 mg/mL. Even with this low level of sugar protection, long-term stability of spray-dried formulations remained superior to their liquid counterparts based on size variant and potency data. This study offers a commercially viable spray-drying process for biological bulk storage and an option for high-concentration mAb manufacturing. This study evaluates a pilot-scale spray dryer against a laboratory-scale dryer to spray-dry multiple monoclonal antibodies (mAbs) from the perspective of scale-up, impact on mAb stability, and feasibility of a high-concentration preparation. The data demonstrated that there is no

  19. Characterization and partitioning of the char ash collected after the processing of pine wood chips in a pilot-scale gasification unit

    Treesearch

    Thomas L. Eberhardt; Hui Pan; Leslie H. Groom; Chi-Leung So

    2011-01-01

    Southern yellow pine wood chips were used as the feedstock for a pilot-scale gasification unit coupled with a 25 kW generator. The pulp-grade wood chips were relatively free of bark and low in ash content. Processing this feedstock yielded a black/sooty by-product that upon combustion in a muffle furnace resulted in an ash content of about 48%. The term "char ash...

  20. Pretreatment of corn stover by low moisture anhydrous ammonia (LMMA) in a pilot-scale reactor and bioconversion to fuel ethanol and industrial chemicals

    USDA-ARS?s Scientific Manuscript database

    Corn stover (CS) adjusted to 50%, 66% and 70% moisture was pretreated by the low moisture anhydrous ammonia (LMAA) process in a pilot-scale ammoniation reactor. After ammoniation, the 70% moisture CS was treated at 90 degree C and 100 degree C whereas the others were treated at 90 degree C only. The...

  1. Chemical additive to maximize antimicrobial effect of chlorine during pilot scale immersion chilling of broiler carcasses

    USDA-ARS?s Scientific Manuscript database

    A prior laboratory scale study demonstrated the potential for T-128, a proprietary blend including propylene glycol and phosphoric acid, to enhance the antimicrobial efficacy of chlorine during immersion chilling of broiler parts. The objective of the current study was to test the addition of T-128...

  2. Consumer Perceptions About Pilot Training: An Emotional Response

    NASA Astrophysics Data System (ADS)

    Rosser, Timothy G.

    Civilian pilot training has followed a traditional path for several decades. With a potential pilot shortage approaching, ICAO proposed a new paradigm in pilot training methodology called the Multi-Crew Pilot License. This new methodology puts a pilot in the cockpit of an airliner with significantly less flight time experience than the traditional methodology. The purpose of this study was to determine to what extent gender, country of origin and pilot training methodology effect an aviation consumer's willingness to fly. Additionally, this study attempted to determine what emotions mediate a consumer's decision. This study surveyed participants from India and the United States to measure their willingness to fly using the Willingness to Fly Scale shown to be valid and reliable by Rice et al. (2015). The scale uses a five point Likert-type scale. In order to determine the mediating emotions, Ekman and Friesen's (1979) universal emotions, which are happiness, surprise, fear, disgust, anger, and sadness were used. Data were analyzed using SPSS. Descriptive statistics are provided for respondent's age and willingness to fly values. An ANOVA was conducted to test the first four hypotheses and Hayes (2004, 2008) bootstrapping process was used for the mediation analysis. Results indicated a significant main effect for training, F(1,972) = 227.76, p . .001, etap 2 = 0.190, country of origin, F(1, 972) = 28.86, p < .001, .p 2 = 0.029, and a two-way interaction was indicated between training and country of origin, F(7, 972) = 46.71, p < .001, etap 2 = 0.252. Mediation analysis indicated the emotions anger, fear, happiness, and surprise mediated the relationship between training and country of origin, and training. The findings of this study are important to designers of MPL training programs and airline marketers.

  3. Laboratory and theoretical models of planetary-scale instabilities and waves

    NASA Technical Reports Server (NTRS)

    Hart, John E.; Toomre, Juri

    1990-01-01

    Meteorologists and planetary astronomers interested in large-scale planetary and solar circulations recognize the importance of rotation and stratification in determining the character of these flows. In the past it has been impossible to accurately model the effects of sphericity on these motions in the laboratory because of the invariant relationship between the uni-directional terrestrial gravity and the rotation axis of an experiment. Researchers studied motions of rotating convecting liquids in spherical shells using electrohydrodynamic polarization forces to generate radial gravity, and hence centrally directed buoyancy forces, in the laboratory. The Geophysical Fluid Flow Cell (GFFC) experiments performed on Spacelab 3 in 1985 were analyzed. Recent efforts at interpretation led to numerical models of rotating convection with an aim to understand the possible generation of zonal banding on Jupiter and the fate of banana cells in rapidly rotating convection as the heating is made strongly supercritical. In addition, efforts to pose baroclinic wave experiments for future space missions using a modified version of the 1985 instrument led to theoretical and numerical models of baroclinic instability. Rather surprising properties were discovered, which may be useful in generating rational (rather than artificially truncated) models for nonlinear baroclinic instability and baroclinic chaos.

  4. Improving quality management systems of laboratories in developing countries: an innovative training approach to accelerate laboratory accreditation.

    PubMed

    Yao, Katy; McKinney, Barbara; Murphy, Anna; Rotz, Phil; Wafula, Winnie; Sendagire, Hakim; Okui, Scolastica; Nkengasong, John N

    2010-09-01

    The Strengthening Laboratory Management Toward Accreditation (SLMTA) program was developed to promote immediate, measurable improvement in laboratories of developing countries. The laboratory management framework, a tool that prescribes managerial job tasks, forms the basis of the hands-on, activity-based curriculum. SLMTA is implemented through multiple workshops with intervening site visits to support improvement projects. To evaluate the effectiveness of SLMTA, the laboratory accreditation checklist was developed and subsequently adopted by the World Health Organization Regional Office for Africa (WHO AFRO). The SLMTA program and the implementation model were validated through a pilot in Uganda. SLMTA yielded observable, measurable results in the laboratories and improved patient flow and turnaround time in a laboratory simulation. The laboratory staff members were empowered to improve their own laboratories by using existing resources, communicate with clinicians and hospital administrators, and advocate for system strengthening. The SLMTA program supports laboratories by improving management and building preparedness for accreditation.

  5. Pilot Bill Brockett (left) and Chilean Air Force Captain Saez with school children in the cockpit of NASA Dryden's DC-8 flying laboratory

    NASA Image and Video Library

    2004-03-10

    Pilot Bill Brockett (left) and Chilean Air Force Captain Saez with school children in the cockpit of NASA Dryden's DC-8 flying laboratory. Brockett explained NASA's AirSAR 2004 mission in Chile. AirSAR 2004 is a three-week expedition by an international team of scientists that uses an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central and South America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. In South America and Antarctica, AirSAR collected imagery and data to help determine the contribution of Southern Hemisphere glaciers to sea level rise due to climate change. In Patagonia, researchers found this contribution had more than doubled from 1995 to 2000, compared to the previous 25 years. AirSAR data will make it possible to determine whether that trend is continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  6. Cross-flow turbines: progress report on physical and numerical model studies at large laboratory scale

    NASA Astrophysics Data System (ADS)

    Wosnik, Martin; Bachant, Peter

    2016-11-01

    Cross-flow turbines show potential in marine hydrokinetic (MHK) applications. A research focus is on accurately predicting device performance and wake evolution to improve turbine array layouts for maximizing overall power output, i.e., minimizing wake interference, or taking advantage of constructive wake interaction. Experiments were carried with large laboratory-scale cross-flow turbines D O (1 m) using a turbine test bed in a large cross-section tow tank, designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. Several turbines of varying solidity were employed, including the UNH Reference Vertical Axis Turbine (RVAT) and a 1:6 scale model of the DOE-Sandia Reference Model 2 (RM2) turbine. To improve parameterization in array simulations, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier-Stokes models. Results are presented for the simulation of performance and wake dynamics of cross-flow turbines and compared with experiments and body-fitted mesh, blade-resolving CFD. Supported by NSF-CBET Grant 1150797, Sandia National Laboratories.

  7. Scaling of Sediment Dynamics in a Reach-Scale Laboratory Model of a Sand-Bed Stream with Riparian Vegetation

    NASA Astrophysics Data System (ADS)

    Gorrick, S.; Rodriguez, J. F.

    2011-12-01

    A movable bed physical model was designed in a laboratory flume to simulate both bed and suspended load transport in a mildly sinuous sand-bed stream. Model simulations investigated the impact of different vegetation arrangements along the outer bank to evaluate rehabilitation options. Preserving similitude in the 1:16 laboratory model was very important. In this presentation the scaling approach, as well as the successes and challenges of the strategy are outlined. Firstly a near-bankfull flow event was chosen for laboratory simulation. In nature, bankfull events at the field site deposit new in-channel features but cause only small amounts of bank erosion. Thus the fixed banks in the model were not a drastic simplification. Next, and as in other studies, the flow velocity and turbulence measurements were collected in separate fixed bed experiments. The scaling of flow in these experiments was simply maintained by matching the Froude number and roughness levels. The subsequent movable bed experiments were then conducted under similar hydrodynamic conditions. In nature, the sand-bed stream is fairly typical; in high flows most sediment transport occurs in suspension and migrating dunes cover the bed. To achieve similar dynamics in the model equivalent values of the dimensionless bed shear stress and the particle Reynolds number were important. Close values of the two dimensionless numbers were achieved with lightweight sediments (R=0.3) including coal and apricot pips with a particle size distribution similar to that of the field site. Overall the moveable bed experiments were able to replicate the dominant sediment dynamics present in the stream during a bankfull flow and yielded relevant information for the analysis of the effects of riparian vegetation. There was a potential conflict in the strategy, in that grain roughness was exaggerated with respect to nature. The advantage of this strategy is that although grain roughness is exaggerated, the similarity of

  8. Single-pilot workload management in entry-level jets.

    DOT National Transportation Integrated Search

    2013-09-01

    Researchers from the NASA Ames Flight Cognition Lab and the FAAs Flight Deck Human Factors Research Laboratory at the Civil Aerospace Medical Institute (CAMI) examined task and workload management by single pilots in Very Light Jets (VLJs), also c...

  9. [External quality assessment in clinical biochemistry laboratories: pilot study in 11 laboratories of Lomé (Togo)].

    PubMed

    Kouassi, Kafui; Fétéké, Lochina; Assignon, Selom; Dorkenoo, Ameyo; Napo-Koura, Gado

    2015-01-01

    This study aims to evaluate the performance of a few biochemistry analysis and make recommendations to the place of the stakeholders. It is a cross-sectional study conducted between the October 1(st), 2012 and the July 31, 2013 bearing on the results of 5 common examinations of clinical biochemistry, provided by 11 laboratories volunteers opening in the public and private sectors. These laboratories have analysed during the 3 cycles, 2 levels (medium and high) of serum concentration of urea, glucose, creatinine and serum aminotransferases. The performance of laboratories have been determined from the acceptable limits corresponding to the limits of total errors, defined by the French Society of Clinical Biology (SFBC). A system of internal quality control is implemented by all laboratories and 45% of them participated in international programs of external quality assessment (EQA). The rate of acceptable results for the entire study was of 69%. There was a significant difference (p<0.002) between the performance of the group of laboratories engaged in a quality approach and the group with default implementation of the quality approach. Also a significant difference was observed between the laboratories of the central level and those of the peripheral level of our health system (p<0.047). The performance of the results provided by the laboratories remains relatively unsatisfactory. It is important that the Ministry of Health put in place a national program of EQA with mandatory participation.

  10. Laboratory quality improvement in Tanzania.

    PubMed

    Andiric, Linda R; Massambu, Charles G

    2015-04-01

    The article describes the implementation and improvement in the first groups of medical laboratories in Tanzania selected to participate in the training program on Strengthening Laboratory Management Toward Accreditation (SLMTA). As in many other African nations, the selected improvement plan consisted of formalized hands-on training (SLMTA) that teaches the tasks and skills of laboratory management and provides the tools for implementation of best laboratory practice. Implementation of the improvements learned during training was verified before and after SLMTA with the World Health Organization African Region Stepwise Laboratory Improvement Process Towards Accreditation checklist. During a 4-year period, the selected laboratories described in this article demonstrated improvement with a range of 2% to 203% (cohort I) and 12% to 243% (cohort II) over baseline scores. The article describes the progress made in Tanzania's first cohorts, the obstacles encountered, and the lessons learned during the pilot and subsequent implementations. Copyright© by the American Society for Clinical Pathology.

  11. Measurements of liquid phase residence time distributions in a pilot-scale continuous leaching reactor using radiotracer technique.

    PubMed

    Pant, H J; Sharma, V K; Shenoy, K T; Sreenivas, T

    2015-03-01

    An alkaline based continuous leaching process is commonly used for extraction of uranium from uranium ore. The reactor in which the leaching process is carried out is called a continuous leaching reactor (CLR) and is expected to behave as a continuously stirred tank reactor (CSTR) for the liquid phase. A pilot-scale CLR used in a Technology Demonstration Pilot Plant (TDPP) was designed, installed and operated; and thus needed to be tested for its hydrodynamic behavior. A radiotracer investigation was carried out in the CLR for measurement of residence time distribution (RTD) of liquid phase with specific objectives to characterize the flow behavior of the reactor and validate its design. Bromine-82 as ammonium bromide was used as a radiotracer and about 40-60MBq activity was used in each run. The measured RTD curves were treated and mean residence times were determined and simulated using a tanks-in-series model. The result of simulation indicated no flow abnormality and the reactor behaved as an ideal CSTR for the range of the operating conditions used in the investigation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Development of a New Punch Head Shape to Replicate Scale-Up Issues on a Laboratory Tablet Press III: Replicating sticking phenomenon using the SAS punch and evaluation by checking the tablet surface using 3D laser scanning microscope.

    PubMed

    Ito, Manabu; Aoki, Shigeru; Uchiyama, Jumpei; Yamato, Keisuke

    2018-04-20

    Sticking is a common observation in the scale-up stage on the punch tip using a commercial tableting machine. The difference in the total compression time between a laboratory and a commercial tableting machine is considered one of the main root causes of scale up issues in the tableting processes. The proposed Size Adjusted for Scale-up (SAS) punch can be used to adjust the consolidation and dwell times for commercial tableting machine. As a result, the sticking phenomenon is able to be replicated at the pilot scale stage. As reported in this paper, the quantification of sticking was measured using a 3D laser scanning microscope to check the tablet surface. It was shown that the sticking area decreased with the addition of magnesium stearate in the formulation, but the sticking depth was not affected by the additional amount of magnesium stearate. It is proposed that use of a 3D laser scanning microscope can be applied to evaluate sticking as a process analytical technology (PAT) tool and so sticking can be monitored continuously without stopping the machine. Copyright © 2018. Published by Elsevier Inc.

  13. Modeling of pilot's visual behavior for low-level flight

    NASA Astrophysics Data System (ADS)

    Schulte, Axel; Onken, Reiner

    1995-06-01

    Developers of synthetic vision systems for low-level flight simulators deal with the problem to decide which features to incorporate in order to achieve most realistic training conditions. This paper supports an approach to this problem on the basis of modeling the pilot's visual behavior. This approach is founded upon the basic requirement that the pilot's mechanisms of visual perception should be identical in simulated and real low-level flight. Flight simulator experiments with pilots were conducted for knowledge acquisition. During the experiments video material of a real low-level flight mission containing different situations was displayed to the pilot who was acting under a realistic mission assignment in a laboratory environment. Pilot's eye movements could be measured during the replay. The visual mechanisms were divided into rule based strategies for visual navigation, based on the preflight planning process, as opposed to skill based processes. The paper results in a model of the pilot's planning strategy of a visual fixing routine as part of the navigation task. The model is a knowledge based system based upon the fuzzy evaluation of terrain features in order to determine the landmarks used by pilots. It can be shown that a computer implementation of the model selects those features, which were preferred by trained pilots, too.

  14. Investigation of biotransformation, sorption, and desorption of multiple chemical contaminants in pilot-scale drinking water biofilters.

    PubMed

    Greenstein, Katherine E; Lew, Julia; Dickenson, Eric R V; Wert, Eric C

    2018-06-01

    The evolving demands of drinking water treatment necessitate processes capable of removing a diverse suite of contaminants. Biofiltration can employ biotransformation and sorption to remove various classes of chemicals from water. Here, pilot-scale virgin anthracite-sand and previously used biological activated carbon (BAC)-sand dual media filters were operated for ∼250 days to assess removals of 0.4 mg/L ammonia as nitrogen, 50-140 μg/L manganese, and ∼100 ng/L each of trace organic compounds (TOrCs) spiked into pre-ozonated Colorado River water. Anthracite achieved complete nitrification within 200 days and started removing ibuprofen at 85 days. Limited manganese (10%) removal occurred. In contrast, BAC completely nitrified ammonia within 113 days, removed all manganese at 43 days, and exhibited steady state removal of most TOrCs by 140 days. However, during the first 140 days, removal of caffeine, DEET, gemfibrozil, naproxen, and trimethoprim decreased, suggesting a shift from sorption to biotransformation. Acetaminophen and sulfamethoxazole were removed at consistent levels, with complete removal of acetaminophen achieved throughout the study; ibuprofen removal increased with time. When subjected to elevated (1 μg/L) concentrations of TOrCs, BAC removed larger masses of chemicals; with a subsequent decrease and ultimate cease in the TOrCs spike, caffeine, DEET, gemfibrozil, and trimethoprim notably desorbed. By the end of operation, anthracite and BAC exhibited equivalent quantities of biomass measured as adenosine triphosphate, but BAC harbored greater microbial diversity (examined with 16S rRNA sequencing). Improved insight was gained regarding concurrent biotransformation, sorption, and desorption of multiple organic and inorganic contaminants in pilot-scale drinking water biofilters. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. High-rate composting of barley dregs with sewage sludge in a pilot scale bioreactor.

    PubMed

    Lu, Li-An; Kumar, Mathava; Tsai, Jen-Chieh; Lin, Jih-Gaw

    2008-05-01

    The feasibility of high-rate composting of barley dregs and sewage sludge was examined using a pilot scale bioreactor. A central composite design (CCD) was used to optimize the mix ratio of barley dregs/sewage sludge and moisture content. The performance of the bioreactor was monitored as a function of carbon decomposition rate (CDR) and total volatile solids (TVS) loss rate. The optimum range of mix ratio and moisture content was found to be 35-40% and 55-60%, respectively. High CO2 evolution rate (CER) and TVS loss rate were observed after 3 days of the composting and the compost was matured/stable after 7 days. Cardinal temperature model with inflection (CTMI) was used to analyze the compost stability with respect to CER as a parameter of composting efficiency. After examining the phytotoxicity, the compost can be promoted for land application.

  16. NATO/CCMS PILOT STUDY ON CLEAN PRODUCTS & PROCESSES

    EPA Science Inventory

    Led by the United States, represented by the U.S. Environmental Protection Agency's (EPA's) National Risk Management Research Laboratory, the Pilot Study on Clean Products and Processes was instituted to create an international forum where current trends, developments, and expert...

  17. The Subsurface Flow and Transport Laboratory: A New Department of Energy User's Facility for Intermediate-Scale Experimentation

    NASA Astrophysics Data System (ADS)

    Wietsma, T. W.; Oostrom, M.; Foster, N. S.

    2003-12-01

    Intermediate-scale experiments (ISEs) for flow and transport are a valuable tool for simulating subsurface features and conditions encountered in the field at government and private sites. ISEs offer the ability to study, under controlled laboratory conditions, complicated processes characteristic of mixed wastes and heterogeneous subsurface environments, in multiple dimensions and at different scales. ISEs may, therefore, result in major cost savings if employed prior to field studies. A distinct advantage of ISEs is that researchers can design physical and/or chemical heterogeneities in the porous media matrix that better approximate natural field conditions and therefore address research questions that contain the additional complexity of processes often encountered in the natural environment. A new Subsurface Flow and Transport Laboratory (SFTL) has been developed for ISE users in the Environmental Spectroscopy & Biogeochemistry Facility in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The SFTL offers a variety of columns and flow cells, a new state-of-the-art dual-energy gamma system, a fully automated saturation-pressure apparatus, and analytical equipment for sample processing. The new facility, including qualified staff, is available for scientists interested in collaboration on conducting high-quality flow and transport experiments, including contaminant remediation. Close linkages exist between the SFTL and numerical modelers to aid in experimental design and interpretation. This presentation will discuss the facility and outline the procedures required to submit a proposal to use this unique facility for research purposes. The W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility, is sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  18. Removal of Giardia and Cryptosporidium in drinking water treatment: a pilot-scale study.

    PubMed

    Hsu, Bing Mu; Yeh, Hsuan Hsien

    2003-03-01

    Giardia and Cryptosporidium have emerged as waterborne pathogens of concern for public health. The aim of this study is to examine both parasites in the water samples taken from three pilot-scale plant processes located in southern Taiwan, to upgrade the current facilities. Three processes include: conventional process without prechlorination (Process 1), conventional process plus ozonation and pellet softening (Process 2), and integrated membrane process (MF plus NF) followed conventional process (Process 3). The detection methods of both parasites are modified from USEPA Methods 1622 and 1623. Results indicated that coagulation, sedimentation and filtration removed the most percentage of both protozoan parasites. The pre-ozonation step can destruct both parasites, especially for Giardia cysts. The microfiltration systems can intercept Giardia cysts and Cryptosporidium oocysts completely. A significant correlation between water turbidity and Cryptosporidium oocysts was found in this study. The similar results were also found between three kinds of particles (phi=3-5,5-8 and 8-10 microm) and Cryptosporidium oocysts.

  19. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor

    PubMed Central

    Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Li, Xu-Dong

    2015-01-01

    Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m3 of biogas per m3 of POME which was utilized for electricity generation. PMID:26167485

  20. Production of drinking water from raw water containing cyanobacteria--pilot plant studies for assessing the risk of microcystin breakthrough.

    PubMed

    Schmidt, Wido; Willmitzer, Hartmut; Bornmann, Katrin; Pietsch, Jörg

    2002-01-01

    Toxins in cyanobacteria are a recognized risk in the treatment of drinking-water treatment. Cyanotoxins can occur in two modifications: cell bound and dissolved in water. The process of toxin release may occur naturally, but it also may be induced through the processes of drinking-water treatment. Both causes of release are relevant to the safety of drinking water. This study investigated cyanotoxin release and elimination through different treatment trains in systematic pilot-scale studies with water from the Weida Reservoir, in Thuringia, Germany. The Weida Reservoir is a dimictic mesoeutrophic reservoir typical for a number of mountainous areas in Europe, with Planktothrix rubescens as the dominant phytoplankton species, and shows a characteristic seasonal pattern of population development and microcystin occurrence. To assess the risk of microcystin breakthrough, the pilot-scale results as well as results of laboratory-scale experiments were used for developing a kinetic model of toxin release in relation to elimination. By calculating removal efficiency of total microcystins (cell bound and dissolved) for different treatment trains, raw water quality was related to the quality targets for finished water, and breakthrough risks could be calculated for given treatment trains and varying cyanobacterial population densities in the reservoir. Copyright 2002 Wiley Periodicals, Inc.

  1. Reactive barrier system for nitrate removal from mine effluents in northern Sweden: Laboratory experiments

    NASA Astrophysics Data System (ADS)

    Herbert, Roger

    2010-05-01

    Laboratory column experiments have been conducted to determine nitrate removal rates from mine effluents by denitrification, with the purpose of providing initial data for the construction of a pilot scale reactive barrier system at the Malmberget iron mine, Sweden. Experiments were conducted at several different flow rates at 5C, 10C and room temperature; annual mean temperatures at the Malmberget site lie close to 0C. Columns were filled with an organic substrate consisting of sawdust mixed with sewage sludge, the source of denitrifying bacteria, supported by oven-dried clay pellets. Apparent denitrification rates, calculated from inflow and outflow nitrate concentrations and column hydraulic residence time, ranged from 5 to 13 mg N/L/d, with the lowest rates corresponding to the 5C experiments. These rates are, however, limited to a certain degree by the low flow rate and the supply of electrons acceptors (i.e. nitrate) to denitrifying bacteria. Results from the column experiment have been used to construct a barrier system in Malmberget, Sweden. Trial runs with the pilot-scale barrier will be conducted during 2010, with the purpose of determining the performance of the barrier as mean air temperatures increase from below to above 0C and saturated flow commences in the barrier. The barrier system is constructed as a rectangular container with steel sheet walls (9m length in flow direction, 1.5m deep), and the flow rate will be adjusted to a hydraulic residence time of 1 day. The pilot-scale barrier system currently lies above ground, but a permanent barrier system would be installed below the ground surface so that the system can be maintained at positive temperatures throughout the year.

  2. CSC Tip Sheets: Conducting and Evaluating Pilot Projects

    EPA Pesticide Factsheets

    Learn how to conduct and evaluate pilot projects, which are opportunities to “test the waters” for your project on a small scale, provide insight and data on what works, and adjust your strategy for full-scale implementation.

  3. Developing eThread pipeline using SAGA-pilot abstraction for large-scale structural bioinformatics.

    PubMed

    Ragothaman, Anjani; Boddu, Sairam Chowdary; Kim, Nayong; Feinstein, Wei; Brylinski, Michal; Jha, Shantenu; Kim, Joohyun

    2014-01-01

    While most of computational annotation approaches are sequence-based, threading methods are becoming increasingly attractive because of predicted structural information that could uncover the underlying function. However, threading tools are generally compute-intensive and the number of protein sequences from even small genomes such as prokaryotes is large typically containing many thousands, prohibiting their application as a genome-wide structural systems biology tool. To leverage its utility, we have developed a pipeline for eThread--a meta-threading protein structure modeling tool, that can use computational resources efficiently and effectively. We employ a pilot-based approach that supports seamless data and task-level parallelism and manages large variation in workload and computational requirements. Our scalable pipeline is deployed on Amazon EC2 and can efficiently select resources based upon task requirements. We present runtime analysis to characterize computational complexity of eThread and EC2 infrastructure. Based on results, we suggest a pathway to an optimized solution with respect to metrics such as time-to-solution or cost-to-solution. Our eThread pipeline can scale to support a large number of sequences and is expected to be a viable solution for genome-scale structural bioinformatics and structure-based annotation, particularly, amenable for small genomes such as prokaryotes. The developed pipeline is easily extensible to other types of distributed cyberinfrastructure.

  4. Developing eThread Pipeline Using SAGA-Pilot Abstraction for Large-Scale Structural Bioinformatics

    PubMed Central

    Ragothaman, Anjani; Feinstein, Wei; Jha, Shantenu; Kim, Joohyun

    2014-01-01

    While most of computational annotation approaches are sequence-based, threading methods are becoming increasingly attractive because of predicted structural information that could uncover the underlying function. However, threading tools are generally compute-intensive and the number of protein sequences from even small genomes such as prokaryotes is large typically containing many thousands, prohibiting their application as a genome-wide structural systems biology tool. To leverage its utility, we have developed a pipeline for eThread—a meta-threading protein structure modeling tool, that can use computational resources efficiently and effectively. We employ a pilot-based approach that supports seamless data and task-level parallelism and manages large variation in workload and computational requirements. Our scalable pipeline is deployed on Amazon EC2 and can efficiently select resources based upon task requirements. We present runtime analysis to characterize computational complexity of eThread and EC2 infrastructure. Based on results, we suggest a pathway to an optimized solution with respect to metrics such as time-to-solution or cost-to-solution. Our eThread pipeline can scale to support a large number of sequences and is expected to be a viable solution for genome-scale structural bioinformatics and structure-based annotation, particularly, amenable for small genomes such as prokaryotes. The developed pipeline is easily extensible to other types of distributed cyberinfrastructure. PMID:24995285

  5. Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins

    PubMed Central

    Kennedy, Jacob J.; Abbatiello, Susan E.; Kim, Kyunggon; Yan, Ping; Whiteaker, Jeffrey R.; Lin, Chenwei; Kim, Jun Seok; Zhang, Yuzheng; Wang, Xianlong; Ivey, Richard G.; Zhao, Lei; Min, Hophil; Lee, Youngju; Yu, Myeong-Hee; Yang, Eun Gyeong; Lee, Cheolju; Wang, Pei; Rodriguez, Henry; Kim, Youngsoo; Carr, Steven A.; Paulovich, Amanda G.

    2014-01-01

    The successful application of MRM in biological specimens raises the exciting possibility that assays can be configured to measure all human proteins, resulting in an assay resource that would promote advances in biomedical research. We report the results of a pilot study designed to test the feasibility of a large-scale, international effort in MRM assay generation. We have configured, validated across three laboratories, and made publicly available as a resource to the community 645 novel MRM assays representing 319 proteins expressed in human breast cancer. Assays were multiplexed in groups of >150 peptides and deployed to quantify endogenous analyte in a panel of breast cancer-related cell lines. Median assay precision was 5.4%, with high inter-laboratory correlation (R2 >0.96). Peptide measurements in breast cancer cell lines were able to discriminate amongst molecular subtypes and identify genome-driven changes in the cancer proteome. These results establish the feasibility of a scaled, international effort. PMID:24317253

  6. Ekofisk waterflood pilot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, L.K.; Dixon, T.N.; Evans, C.E.

    1987-02-01

    This paper describes the evaluation of a waterflood pilot in the highly fractured Maastrichtian reservoir of the Ekofisk field in the Norwegian sector of the North Sea. A four-well pilot consisting of one water injector and three producers was initiated in Spring 1981 and was concluded in mid-1984. A total of 21 x 10/sup 6/ bbl(3.3 x 10/sup 6/ m/sup 3/) of water was injected, and water breakthrough occurred in two of the production wells. Simulation of waterflood performance in the pilot was conducted with a three-dimensional (3D), three-phase dual-porosity model. Initial and boundary conditions were taken from a fullmore » 3D single-porosity model of the reservoir. The pilot was conducted to determine the following information for the Maastrichtian: water-cut performance vs. time, water imbibition characteristics, and anisotropy. Results from this work have been incorporated into a full-field waterflood study. Reservoir description included the determination of fractured areas, matrix block sizes, water/oil capillary imbibition, matrix permeability and porosity, and effective permeability. These data were derived from fracture core analysis, pressure transient tests, laboratory water/oil imbibition studies, repeat formation pressure test results, and open- and cased-hole logs. An excellent match of waterflood performance was obtained with the dual-porosity model. Of particular interest are the imbibition characteristics of the Maastrichtian in the Ekofisk field and the character of the water-cut performance of the producing wells following injector shutdowns and startups.« less

  7. Molecular genetics external quality assessment pilot scheme for KRAS analysis in metastatic colorectal cancer.

    PubMed

    Deans, Zandra C; Tull, Justyna; Beighton, Gemma; Abbs, Stephen; Robinson, David O; Butler, Rachel

    2011-11-01

    Laboratories are increasingly required to perform molecular tests for the detection of mutations in the KRAS gene in metastatic colorectal cancers to allow better clinical management and more effective treatment for these patients. KRAS mutation status predicts a patient's likely response to the monoclonal antibody cetuximab. To provide a high standard of service, these laboratories require external quality assessment (EQA) to monitor the level of laboratory output and measure the performance of the laboratory against other service providers. National External Quality Assurance Services for Molecular Genetics provided a pilot EQA scheme for KRAS molecular analysis in metastatic colorectal cancers during 2009. Very few genotyping errors were reported by participating laboratories; however, the reporting nomenclature of the genotyping results varied considerably between laboratories. The pilot EQA scheme highlighted the need for continuing EQA in this field which will assess the laboratories' ability not only to obtain accurate, reliable results but also to interpret them safely and correctly ensuring that the referring clinician has the correct information to make the best clinical therapeutic decision for their patient.

  8. Fabrication Method for Laboratory-Scale High-Performance Membrane Electrode Assemblies for Fuel Cells.

    PubMed

    Sassin, Megan B; Garsany, Yannick; Gould, Benjamin D; Swider-Lyons, Karen E

    2017-01-03

    Custom catalyst-coated membranes (CCMs) and membrane electrode assemblies (MEAs) are necessary for the evaluation of advanced electrocatalysts, gas diffusion media (GDM), ionomers, polymer electrolyte membranes (PEMs), and electrode structures designed for use in next-generation fuel cells, electrolyzers, or flow batteries. This Feature provides a reliable and reproducible fabrication protocol for laboratory scale (10 cm 2 ) fuel cells based on ultrasonic spray deposition of a standard Pt/carbon electrocatalyst directly onto a perfluorosulfonic acid PEM.

  9. Fortification of Indonesian unbranded vegetable oil: public-private initiative, from pilot to large scale.

    PubMed

    Soekirman; Soekarjo, Damayanti; Martianto, Drajat; Laillou, Arnaud; Moench-Pfanner, Regina

    2012-12-01

    Despite improved economic conditions, vitamin A deficiency remains a public health problem in Indonesia. This paper aims to describe the development of the Indonesian unbranded cooking oil fortification program and to discuss lessons learned to date and future steps necessary for implementation of mandatory, large-scale oil fortification with vitamin A. An historic overview of the steps involved in developing the Indonesian unbranded cooking oil fortification program is given, followed by a discussion of lessons learned and next steps needed. Indonesia's low-income groups generally consume unbranded vegetable oil, with an average consumption of approximately 25 g/day. Unbranded oil constitutes approximately 70% of the total oil traded in the country. In 2007-10, a pilot project to fortify unbranded vegetable oil was carried out in Makassar, and an effectiveness study found that the project significantly improved the serum retinol concentrations of schoolchildren. In 2010, the pilot was expanded to two provinces (West Java and North Sumatra) involving the biggest two national refineries. In 2011, a draft national standard for fortified oil was developed, which is currently under review by the National Standard Body and is expected to be mandated nationally in 2013 as announced officially by the Government of Indonesia in national and international meetings. Indonesia is a leading world supplier of cooking oil. With stakeholder support, the groundwork has been laid and efforts are moving forward to implement mandatory fortification. This project could encourage Indonesian industry to fortify more edible oils for export, thus expanding their market potential and potentially reducing vitamin A deficiency in the region.

  10. Crew in U.S. laboratory

    NASA Image and Video Library

    2005-08-05

    S114-E-7127 (5 August 2005) --- Three STS-114 crewmembers work at various tasks in the Destiny laboratory of the International Space Station while Space Shuttle Discovery was docked to the Station. From the left are astronauts Stephen K. Robinson, Soichi Noguchi representing Japan Aerospace Exploration Agency (JAXA), both mission specialists; and James M. Kelly, pilot.

  11. Laboratory-Scale Internal Wave Apparatus for Studying Copepod Behavior

    NASA Astrophysics Data System (ADS)

    Jung, S.; Webster, D. R.; Haas, K. A.; Yen, J.

    2016-02-01

    Internal waves are ubiquitous features in coastal marine environments and have been observed to mediate vertical distributions of zooplankton in situ. Internal waves create fine-scale hydrodynamic cues that copepods and other zooplankton are known to sense, such as fluid density gradients and velocity gradients (quantified as shear deformation rate). The role of copepod behavior in response to cues associated with internal waves is largely unknown. The objective is to provide insight to the bio-physical interaction and the role of biological versus physical forcing in mediating organism distributions. We constructed a laboratory-scale internal wave apparatus to facilitate fine-scale observations of copepod behavior in flows that replicate in situ conditions of internal waves in two-layer stratification. Two cases were chosen with density jump of 1 and 1.5 sigma-t units. Analytical analysis of the two-layer system provided guidance to the target forcing frequency needed to generate a standing internal wave with a single dominate frequency of oscillation. Flow visualization and signal processing of the interface location were used to quantify the wave characteristics. The results show a close match to the target wave parameters. Marine copepod (mixed population of Acartia tonsa, Temora longicornis, and Eurytemora affinis) behavior assays were conducted for three different physical arrangements: (1) no density stratification, (2) stagnant two-layer density stratification, and (3) two-layer density stratification with internal wave motion. Digitized trajectories of copepod swimming behavior indicate that in the control (case 1) the animals showed no preferential motion in terms of direction. In the stagnant density jump treatment (case 2) copepods preferentially moved horizontally, parallel to the density interface. In the internal wave treatment (case 3) copepods demonstrated orbital trajectories near the density interface.

  12. Laboratory and in-flight experiments to evaluate 3-D audio display technology

    NASA Technical Reports Server (NTRS)

    Ericson, Mark; Mckinley, Richard; Kibbe, Marion; Francis, Daniel

    1994-01-01

    Laboratory and in-flight experiments were conducted to evaluate 3-D audio display technology for cockpit applications. A 3-D audio display generator was developed which digitally encodes naturally occurring direction information onto any audio signal and presents the binaural sound over headphones. The acoustic image is stabilized for head movement by use of an electromagnetic head-tracking device. In the laboratory, a 3-D audio display generator was used to spatially separate competing speech messages to improve the intelligibility of each message. Up to a 25 percent improvement in intelligibility was measured for spatially separated speech at high ambient noise levels (115 dB SPL). During the in-flight experiments, pilots reported that spatial separation of speech communications provided a noticeable improvement in intelligibility. The use of 3-D audio for target acquisition was also investigated. In the laboratory, 3-D audio enabled the acquisition of visual targets in about two seconds average response time at 17 degrees accuracy. During the in-flight experiments, pilots correctly identified ground targets 50, 75, and 100 percent of the time at separation angles of 12, 20, and 35 degrees, respectively. In general, pilot performance in the field with the 3-D audio display generator was as expected, based on data from laboratory experiments.

  13. The impact of manufacturing variables on in vitro release of clobetasol 17-propionate from pilot scale cream formulations.

    PubMed

    Fauzee, Ayeshah Fateemah Beebee; Khamanga, Sandile Maswazi; Walker, Roderick Bryan

    2014-12-01

    The purpose of the study was to evaluate the effect of different homogenization speeds and times, anchor speeds and cooling times on the viscosity and cumulative % clobetasol 17-propionate released per unit area at 72 h from pilot scale cream formulations. A 2(4) full factorial central composite design for four independent variables were investigated. Thirty pilot scale batches of cream formulations were manufactured using a Wintech® cream/ointment plant. The viscosity and in vitro release of CP were monitored and compared to an innovator product that is commercially available on the South African market, namely, Dermovate® cream. Contour and three-dimensional response surface plots were produced and the viscosity and cumulative % CP released per unit area at 72 h were found to be primarily dependent on the homogenization and anchor speeds. An increase in the homogenization and anchor speeds appeared to exhibit a synergistic effect on the resultant viscosity of the cream whereas an antagonistic effect was observed for the in vitro release of CP from the experimental cream formulations. The in vitro release profiles were best fitted to a Higuchi model and diffusion proved to be the dominant mechanism of drug release that was confirmed by use of the Korsmeyer-Peppas model. The research was further validated and confirmed by the high prognostic ability of response surface methodology (RSM) with a resultant mean percentage error of (±SD) 0.17 ± 0.093 suggesting that RSM may be an efficient tool for the development and optimization of topical formulations.

  14. Performance evaluation of pilot scale sulfur-oxidizing denitrification for treatment of metal plating wastewater.

    PubMed

    Flores, Angel S P; Gwon, Eun-Mi; Sim, Dong-Min; Nisola, Grace; Galera, Melvin M; Chon, Seung-Se; Chung, Wook-Jin; Pak, Dae-Won; Ahn, Zou Sam

    2006-01-01

    A full-scale and two pilot-scale upflow sulfur-oxidizing denitrification (SOD) columns were evaluated using metal plating wastewater as feed. The sludge was autotrophically enriched, and inoculated in the SOD columns attached to the effluent line of three metal plating wastewater treatment facilities. The effects of activated carbon and aeration were also studied, and found effective for the removal of suspended solids and ammonia, respectively. The results showed that the constituents, such as the total nitrogen, nitrates, nitrites, ammonia, chemical oxygen demand (COD), and heavy metals, were effectively removed. The pH was observed to be maintained at 7-8 due to the alkalinity supplied by the sulfur-calcium carbonate (SC) pellet. The denitrification efficiency and start-up period were observed to be affected by the influent quality. Chromium, iron, nickel, copper, and zinc--the major heavy metal components of the influent--were effectively reduced at certain concentrations. Other metal ions were also detected and reduced to undetectable concentrations, but no trends in the comparison with denitrification were observed. From the results it can be concluded that SOD is effective for the removal of nitrogen, particularly nitrates, without a drastic pH change, and can effectively remove minute concentrations of heavy metals and COD in metal plating wastewaters.

  15. Streamlining workflow and automation to accelerate laboratory scale protein production.

    PubMed

    Konczal, Jennifer; Gray, Christopher H

    2017-05-01

    Protein production facilities are often required to produce diverse arrays of proteins for demanding methodologies including crystallography, NMR, ITC and other reagent intensive techniques. It is common for these teams to find themselves a bottleneck in the pipeline of ambitious projects. This pressure to deliver has resulted in the evolution of many novel methods to increase capacity and throughput at all stages in the pipeline for generation of recombinant proteins. This review aims to describe current and emerging options to accelerate the success of protein production in Escherichia coli. We emphasize technologies that have been evaluated and implemented in our laboratory, including innovative molecular biology and expression vectors, small-scale expression screening strategies and the automation of parallel and multidimensional chromatography. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Leaching behaviour of different scrap materials at recovery and recycling companies: full-, pilot- and lab-scale investigation.

    PubMed

    Blondeel, E; Chys, M; Depuydt, V; Folens, K; Du Laing, G; Verliefde, A; Van Hulle, S W H

    2014-12-01

    Scrap material recovery and recycling companies are confronted with waste water that has a highly fluctuating flow rate and composition. Common pollutants, such as COD, nutrients and suspended solids, potentially toxic metals, polyaromatic hydrocarbons and poly chlorinated biphenyls can exceed the discharge limits. An analysis of the leaching behaviour of different scrap materials and scrap yard sweepings was performed at full-scale, pilot-scale and lab-scale in order to find possible preventive solutions for this waste water problem. The results of these leaching tests (with concentrations that frequently exceeded the Flemish discharge limits) showed the importance of regular sweeping campaigns at the company, leak proof or covered storage of specific scrap materials and oil/water separation on particular leachates. The particulate versus dissolved fraction was also studied for the pollutants. For example, up to 98% of the polyaromatic hydrocarbons, poly chlorinated biphenyls and some metals were in the particulate form. This confirms the (potential) applicability of sedimentation and filtration techniques for the treatment of the majority of the leachates, and as such the rainwater run-off as a whole. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Development of USPS Laboratory and pilot-scale testing protocols

    Treesearch

    Carl Houtman; Nancy Ross Sutherland; David Bormett; Donald Donermeyer

    2000-01-01

    The ultimate goal of the US Postal Service (USPS) Environmentally Benign Stamp Program is to develop stamp adhesives that can be removed by unit operations found in recycling mills. The maintenance of final product quality specifications for a recycling mill while loading the feedstock with a significant quantity of adhesive is the criterion for success of this program...

  18. The ATLAS PanDA Pilot in Operation

    NASA Astrophysics Data System (ADS)

    Nilsson, P.; Caballero, J.; De, K.; Maeno, T.; Stradling, A.; Wenaus, T.; ATLAS Collaboration

    2011-12-01

    The Production and Distributed Analysis system (PanDA) [1-2] was designed to meet ATLAS [3] requirements for a data-driven workload management system capable of operating at LHC data processing scale. Submitted jobs are executed on worker nodes by pilot jobs sent to the grid sites by pilot factories. This paper provides an overview of the PanDA pilot [4] system and presents major features added in light of recent operational experience, including multi-job processing, advanced job recovery for jobs with output storage failures, gLExec [5-6] based identity switching from the generic pilot to the actual user, and other security measures. The PanDA system serves all ATLAS distributed processing and is the primary system for distributed analysis; it is currently used at over 100 sites worldwide. We analyze the performance of the pilot system in processing real LHC data on the OSG [7], EGI [8] and Nordugrid [9-10] infrastructures used by ATLAS, and describe plans for its evolution.

  19. Final report from VFL Technologies for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils. LEFPC appendices. Volume 5. Appendix V-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-09-01

    This final report from VFL Technologies for the pilot-scale thermal treatment of lower East Fork Poplar Creek floodplain soils dated September 1994 contains LEFPC Appendices, Volume 5, Appendix V - D. This appendix includes the final verification run data package (PAH, TCLP herbicides, TCLP pesticides).

  20. Validation and cross-cultural pilot testing of compliance with standard precautions scale: self-administered instrument for clinical nurses.

    PubMed

    Lam, Simon C

    2014-05-01

    To perform detailed psychometric testing of the compliance with standard precautions scale (CSPS) in measuring compliance with standard precautions of clinical nurses and to conduct cross-cultural pilot testing and assess the relevance of the CSPS on an international platform. A cross-sectional and correlational design with repeated measures. Nursing students from a local registered nurse training university, nurses from different hospitals in Hong Kong, and experts in an international conference. The psychometric properties of the CSPS were evaluated via internal consistency, 2-week and 3-month test-retest reliability, concurrent validation, and construct validation. The cross-cultural pilot testing and relevance check was examined by experts on infection control from various developed and developing regions. Among 453 participants, 193 were nursing students, 165 were enrolled nurses, and 95 were registered nurses. The results showed that the CSPS had satisfactory reliability (Cronbach α = 0.73; intraclass correlation coefficient, 0.79 for 2-week test-retest and 0.74 for 3-month test-retest) and validity (optimum correlation with criterion measure; r = 0.76, P < .001; satisfactory results on known-group method and hypothesis testing). A total of 19 experts from 16 countries assured that most of the CSPS findings were relevant and globally applicable. The CSPS demonstrated satisfactory results on the basis of the standard international criteria on psychometric testing, which ascertained the reliability and validity of this instrument in measuring the compliance of clinical nurses with standard precautions. The cross-cultural pilot testing further reinforced the instrument's relevance and applicability in most developed and developing regions.

  1. Air purification from a mixture VOCs in the pilot-scale trickle-bed bioreactor (TBB)

    NASA Astrophysics Data System (ADS)

    Sarzyński, Rafał; Gąszczak, Agnieszka; Janecki, Daniel; Bartelmus, Grażyna

    2017-10-01

    The efficiency of the air bio-purification from the mixture of two volatile organic compounds (styrene and p-xylene) was studied. The process was carried out in a pilot-scale trickle-bed bioreactor installation designed to purify ˜200 m3h-1 of the polluted air. The bioreactor operated at concurrent flow of gas and liquid (mineral salt solution) through packing (polypropylene Ralu rings) covered with a thin layer of microorganisms (bacterial consortium of Pseudomonas sp. E-022150 and Pseudomonas putida mt-2). The experiments, carried out for various values of a reactor load with pollutant, confirmed the great efficiency of the investigated process. At the tested bed load with pollution (inlet specific pollutant load was changed within the range of 41 - 84 gm-3 h -1), styrene conversion degree changed within the range of 80-87% and p-xylene conversion degree within the range of 42-48%.

  2. Laboratory System Improvement Program: first in the nation--New Hampshire reassessment.

    PubMed

    Power, Jill J; Bean, Christine L; Cosser, Amanda; Vazquez, Alma

    2013-01-01

    The New Hampshire Public Health Laboratories (NH PHL) conducted an initial Laboratory System Improvement Program (L-SIP) assessment in March 2007 and a reassessment in May 2011. New Hampshire was a pilot state for the initial L-SIP assessment in 2007 and was the first laboratory system in the United States to conduct an L-SIP reassessment. The New Hampshire reassessment was also used as a pilot for revising the assessment tool. The NH PHL performed a high-level comparison benchmarking the work done between the two assessments. This comparison revealed areas of improvement and other areas that needed continued focus to align with model standards of the 10 Essential Public Health Services. This article outlines achievements, improvements, and outcomes made since 2007, as well as participants, activities, plans, resources, and other factors that contributed to the change in scores between assessments.

  3. Slipstream pilot-scale demonstration of a novel amine-based post-combustion technology for carbon dioxide capture from coal-fired power plant flue gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamurthy, Krish R.

    Post-combustion CO 2 capture (PCC) technology offers flexibility to treat the flue gas from both existing and new coal-fired power plants and can be applied to treat all or a portion of the flue gas. Solvent-based technologies are today the leading option for PCC from commercial coal-fired power plants as they have been applied in large-scale in other applications. Linde and BASF have been working together to develop and further improve a PCC process incorporating BASF’s novel aqueous amine-based solvent technology. This technology offers significant benefits compared to other solvent-based processes as it aims to reduce the regeneration energy requirementsmore » using novel solvents that are very stable under the coal-fired power plant feed gas conditions. BASF has developed the desired solvent based on the evaluation of a large number of candidates. In addition, long-term small pilot-scale testing of the BASF solvent has been performed on a lignite-fired flue gas. In coordination with BASF, Linde has evaluated a number of options for capital cost reduction in large engineered systems for solvent-based PCC technology. This report provides a summary of the work performed and results from a project supported by the US DOE (DE-FE0007453) for the pilot-scale demonstration of a Linde-BASF PCC technology using coal-fired power plant flue gas at a 1-1.5 MWe scale in Wilsonville, AL at the National Carbon Capture Center (NCCC). Following a project kick-off meeting in November 2011 and the conclusion of pilot plant design and engineering in February 2013, mechanical completion of the pilot plant was achieved in July 2014, and final commissioning activities were completed to enable start-up of operations in January 2015. Parametric tests were performed from January to December 2015 to determine optimal test conditions and evaluate process performance over a variety of operation parameters. A long-duration 1500-hour continuous test campaign was performed from May to

  4. Performance of a pilot-scale biotrickling filter in controlling the volatile organic compound emissions in a furniture manufacturing facility.

    PubMed

    Martínez-Soria, Vicente; Gabaldón, Carmen; Penya-Roja, Josep M; Palau, Jordi; Alvarez-Hornos, F Javier; Sempere, Feliu; Soriano, Carlos

    2009-08-01

    A 0.75-m3 pilot-scale biotrickling filter was run for over 1 yr in a Spanish furniture company to evaluate its performance in the removal of volatile organic compounds (VOCs) contained in the emission of two different paint spray booths. The first one was an open front booth used to manually paint furniture, and the second focus was an automatically operated closed booth operated to paint pieces of furniture. In both cases, the VOC emissions were very irregular, with rapid and extreme fluctuations. The pilot plant was operated at an empty bed residence time (EBRT) ranging from 10 to 40 sec, and good removal efficiencies of VOCs were usually obtained. When a buffering activated carbon prefilter was installed, the system performance was improved considerably, so a much better compliance with legal constraints was reached. After different shutdowns in the factory, the period to recover the previous performance of the biotrickling reactor was minimal. A weekend dehydration strategy was developed and implemented to control the pressure drop associated with excessive biomass accumulation.

  5. Single-pilot workload management in entry-level jets : appendices.

    DOT National Transportation Integrated Search

    2013-09-01

    Researchers from the NASA Ames Flight Cognition Lab and the FAAs Flight Deck Human Factors Research Laboratory at the Civil Aerospace Medical Institute (CAMI) examined task and workload management by single pilots in Very Light Jets (VLJs), also c...

  6. Astronaut Kenneth Reightler, STS-60 pilot, during egress training

    NASA Image and Video Library

    1993-12-10

    Astronaut Kenneth S. Reightler, pilot for the STS-60 mission, prepares to simulate egress from a troubled Space Shuttle using Crew Escape System (CES) pole. The action came during emergency egress training in JSC's Shuttle mockup and integration laboratory.

  7. Laboratory study of sonic booms and their scaling laws. [ballistic range simulation

    NASA Technical Reports Server (NTRS)

    Toong, T. Y.

    1974-01-01

    This program undertook to seek a basic understanding of non-linear effects associated with caustics, through laboratory simulation experiments of sonic booms in a ballistic range and a coordinated theoretical study of scaling laws. Two cases of superbooms or enhanced sonic booms at caustics have been studied. The first case, referred to as acceleration superbooms, is related to the enhanced sonic booms generated during the acceleration maneuvers of supersonic aircrafts. The second case, referred to as refraction superbooms, involves the superbooms that are generated as a result of atmospheric refraction. Important theoretical and experimental results are briefly reported.

  8. Assessment of sleepiness, fatigue, and depression among Gulf Cooperation Council commercial airline pilots.

    PubMed

    Aljurf, Tareq M; Olaish, Awad H; BaHammam, Ahmed S

    2018-05-01

    No studies have assessed the prevalence of fatigue, depression, sleepiness, and the risk of obstructive sleep apnea (OSA) among commercial airlines pilots in the Gulf Cooperation Council (GCC). This was a quantitative cross-sectional study conducted among pilots who were on active duty and had flown during the past 6 months for one of three commercial airline companies. We included participants with age between 20 and 65 years. Data were collected using a predesigned electronic questionnaire composed of questions related to demographic information in addition to the Fatigue Severity Scale (FSS), the Berlin Questionnaire, the Epworth Sleepiness Scale (ESS), and the Hospital Anxiety and Depression Scale (HADS). The study included 328 pilots with a mean age ± standard deviation of 41.4 ± 9.7 years. Overall, 224 (68.3%) pilots had an FSS score ≥ 36 indicating severe fatigue and 221 (67.4%) reported making mistakes in the cockpit because of fatigue. One hundred and twelve (34.1%) pilots had an ESS score ≥ 10 indicating excessive daytime sleepiness and 148 (45.1%) reported falling asleep at the controls at least once without previously agreeing with their colleagues. One hundred and thirteen (34.5%) pilots had an abnormal HADS depression score (≥ 8), and 96 (29.3%) pilots were at high risk for OSA requiring further assessment. Fatigue, sleepiness, risk of OSA, and depression are prevalent among GCC commercial airline pilots. Regular assessment by aviation authorities is needed to detect and treat these medical problems.

  9. A pilot-scale study on PVA gel beads based integrated fixed film activated sludge (IFAS) plant for municipal wastewater treatment.

    PubMed

    Kumar Singh, Nitin; Singh, Jasdeep; Bhatia, Aakansha; Kazmi, A A

    2016-01-01

    In the present study, a pilot-scale reactor incorporating polyvinyl alcohol gel beads as biomass carrier and operating in biological activated sludge mode (a combination of moving bed biofilm reactor (MBBR) and activated sludge) was investigated for the treatment of actual municipal wastewater. The results, during a monitoring period of 4 months, showed effective removal of chemical oxygen demand (COD), biological oxygen demand (BOD) and NH3-N at optimum conditions with 91%, ∼92% and ∼90% removal efficiencies, respectively. Sludge volume index (SVI) values of activated sludge varied in the range of 25-72 mL/g, indicating appreciable settling characteristics. Furthermore, soluble COD and BOD in the effluent of the pilot plant were reduced to levels well below discharge limits of the Punjab Pollution Control Board, India. A culture dependent method was used to enrich and isolate abundant heterotrophic bacteria in activated sludge. In addition to this, 16S rRNA genes analysis was performed to identify diverse dominant bacterial species in suspended and attached biomass. Results revealed that Escherichia coli, Pseudomonas sp. and Nitrosomonas communis played a significant role in biomass carrier, while Acinetobactor sp. were dominant in activated sludge of the pilot plant. Identification of ciliated protozoa populations rendered six species of ciliates in the plant, among which Vorticella was the most dominant.

  10. FLARE: A New User Facility for Laboratory Studies of Multiple-Scale Physics of Magnetic Reconnection and Related Phenomena in Heliophysics and Astrophysics

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Goodman, A.; Prager, S.; Daughton, W.; Cutler, R.; Fox, W.; Hoffmann, F.; Kalish, M.; Kozub, T.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Sloboda, P.; Yamada, M.; Yoo, J.; Bale, S. D.; Carter, T.; Dorfman, S.; Drake, J.; Egedal, J.; Sarff, J.; Wallace, J.

    2017-10-01

    The FLARE device (Facility for Laboratory Reconnection Experiments; flare.pppl.gov) is a new laboratory experiment under construction at Princeton with first plasmas expected in the fall of 2017, based on the design of Magnetic Reconnection Experiment (MRX; mrx.pppl.gov) with much extended parameter ranges. Its main objective is to provide an experimental platform for the studies of magnetic reconnection and related phenomena in the multiple X-line regimes directly relevant to space, solar, astrophysical and fusion plasmas. The main diagnostics is an extensive set of magnetic probe arrays, simultaneously covering multiple scales from local electron scales ( 2 mm), to intermediate ion scales ( 10 cm), and global MHD scales ( 1 m). Specific example space physics topics which can be studied on FLARE will be discussed.

  11. Efficacy, Safety, and Tolerability of Armodafinil Therapy for Hypersomnia Associated With Dementia With Lewy Bodies: A Pilot Study

    PubMed Central

    Lapid, Maria I.; Kuntz, Karen M.; Mason, Sara S.; Aakre, Jeremiah A.; Lundt, Emily S.; Kremers, Walter; Allen, Laura A.; Drubach, Daniel A.; Boeve, Bradley F.

    2017-01-01

    Background/Aims Hypersomnia is common in dementia with Lewy bodies (DLB). We assessed the efficacy, safety, and tolerability of armodafinil for hypersomnia associated with DLB. Methods We performed a 12-week pilot trial of armodafinil therapy (125–250 mg orally daily) in DLB outpatients with hypersomnia. Patients underwent neurologic examinations, neuropsychological battery, laboratory testing, electrocardiography, and polysomnography. Efficacy was assessed at 2, 4, 8, and 12 weeks. Safety assessment included laboratory examinations, QTc interval, and heart rate. Tolerability was assessed by analysis of adverse events. Data were analyzed using the last-observation-carried-forward method. Results Of 20 participants, 17 completed the protocol. Median age was 72 years, most were men (80%), and most had spouses as caregivers. Epworth Sleepiness Scale (P<.001), Maintenance of Wakefulness Test (P=.003), and Clinical Global Impression of Change (P<.001) scores improved at week 12. Neuropsychiatric Inventory total score (P=.003), visual hallucinations (P=.003), and agitation (P=.02) improved at week 4. Caregiver overall quality of life improved at week 12 (P=.004). No adverse events occurred. Conclusion These pilot data suggest improvements in hypersomnia and wakefulness and reasonable safety and tolerability of armodafinil therapy in hypersomnolent patients with DLB. Our findings inform the use of pharmacologic strategies to manage hypersomnolence in these patients. PMID:28448998

  12. Adaptive control of anaerobic digestion processes-a pilot-scale application.

    PubMed

    Renard, P; Dochain, D; Bastin, G; Naveau, H; Nyns, E J

    1988-03-01

    A simple adaptive control algorithm, for which theoretical stability and convergence properties had been previously demonstrated, has been successfully implemented on a biomethanation pilot reactor. The methane digester, operated in the CSTR mode was submitted to a shock load, and successfully computer controlled during the subsequent transitory state.

  13. Indomethacin nanocrystals prepared by different laboratory scale methods: effect on crystalline form and dissolution behavior

    NASA Astrophysics Data System (ADS)

    Martena, Valentina; Censi, Roberta; Hoti, Ela; Malaj, Ledjan; Di Martino, Piera

    2012-12-01

    The objective of this study is to select very simple and well-known laboratory scale methods able to reduce particle size of indomethacin until the nanometric scale. The effect on the crystalline form and the dissolution behavior of the different samples was deliberately evaluated in absence of any surfactants as stabilizers. Nanocrystals of indomethacin (native crystals are in the γ form) (IDM) were obtained by three laboratory scale methods: A (Batch A: crystallization by solvent evaporation in a nano-spray dryer), B (Batch B-15 and B-30: wet milling and lyophilization), and C (Batch C-20-N and C-40-N: Cryo-milling in the presence of liquid nitrogen). Nanocrystals obtained by the method A (Batch A) crystallized into a mixture of α and γ polymorphic forms. IDM obtained by the two other methods remained in the γ form and a different attitude to the crystallinity decrease were observed, with a more considerable decrease in crystalline degree for IDM milled for 40 min in the presence of liquid nitrogen. The intrinsic dissolution rate (IDR) revealed a higher dissolution rate for Batches A and C-40-N, due to the higher IDR of α form than γ form for the Batch A, and the lower crystallinity degree for both the Batches A and C-40-N. These factors, as well as the decrease in particle size, influenced the IDM dissolution rate from the particle samples. Modifications in the solid physical state that may occur using different particle size reduction treatments have to be taken into consideration during the scale up and industrial development of new solid dosage forms.

  14. Laboratory Scale Electrodeposition. Practice and Applications.

    ERIC Educational Resources Information Center

    Bruno, Thomas J.

    1986-01-01

    Discusses some aspects of electrodeposition and electroplating. Emphasizes the materials, techniques, and safety precautions necessary to make electrodeposition work reliably in the chemistry laboratory. Describes some problem-solving applications of this process. (TW)

  15. Multiweek Cell Culture Project for Use in Upper-Level Biology Laboratories

    ERIC Educational Resources Information Center

    Marion, Rebecca E.; Gardner, Grant E.; Parks, Lisa D.

    2012-01-01

    This article describes a laboratory protocol for a multiweek project piloted in a new upper-level biology laboratory (BIO 426) using cell culture techniques. Human embryonic kidney-293 cells were used, and several culture media and supplements were identified for students to design their own experiments. Treatments included amino acids, EGF,…

  16. SUPERFUND TREATABILITY CLEARINGHOUSE: SOIL STABILIZATION PILOT STUDY, UNITED CHROME NPL SITE PILOT STUDY AND HEALTH AND SAFETY PROGRAM, UNITED CHROME NPL SITE PILOT STUDY

    EPA Science Inventory

    This document is a project plan for a pilot study at the United Chrome NPL site, Corvallis, Oregon and includes the health and safety and quality assurance/quality control plans. The plan reports results of a bench-scale study of the treatment process as iieasured by the ...

  17. Pilot trial on separation conditions for diaper recycling.

    PubMed

    Kim, Kyung-Shin; Cho, Hee-Sun

    2017-09-01

    By utilizing laboratory-scale tests, the optimal separation conditions for diaper recycling were identified, and then, these conditions were validated by a pilot trial. In this research, we determined the mass balances derived during various processing steps and identified the most feasible procedures to use for separating each material in the output flow. The results showed that drum screening was not able to remove all the fiber and super absorbent particles (SAP) in the plastic-rich fraction and that cellulose enzyme treatment can be a good solution. To achieve better separation of fibers and SAP, slot screening followed by a cleaner is a potential option. A feasible diaper recycling process was recommended based on these results. This process involves screening and enzymatic treatment for the plastic fraction, and screening, cleaning, and thickening for the fiber fraction. Treatment procedures were also proposed for the SAP fraction and rejected materials. Copyright © 2017. Published by Elsevier Ltd.

  18. Prevalence of fatigue in a group of airline pilots.

    PubMed

    Reis, Cátia; Mestre, Catarina; Canhão, Helena

    2013-08-01

    Fatigue is a common phenomenon in airline pilots that can impair alertness and ability of crewmembers to safely operate an aircraft and perform safety related tasks. Fatigue can increase the risk of an incident or even an accident. This study provides the first prevalence values for clinically significant fatigue in Portuguese airline pilots. The hypothesis that medium/short-haul pilots may currently present different levels of fatigue than long-haul pilots was also tested. A survey was conducted by requesting Portuguese airline pilots to complete questionnaires placed in the pilots' personal lockers from 1 April until 15 May 2012. The questionnaire included the self-response Fatigue Severity Scale (FSS) to measure subjective fatigue and some additional questions concerning perception of fatigue by pilots. The prevalence values for total and mental fatigue achieved in the Portuguese airline pilots were: 89.3% (FSS > or = 4) and 94.1% (FSS > or = 4) when splitting the sample in two subsamples, long- and medium/short-haul pilots. Levels of total and mental fatigue were higher for medium/short-haul pilots. The analysis of fatigue levels in each type of aviator showed that medium/short-haul pilots presented the highest levels of total and mental fatigue. This study produced the first prevalence values of total and mental fatigue among Portuguese airline pilots, which represents a great step to understanding and addressing this critical phenomenon.

  19. Pilot-scale resin adsorption as a means to recover and fractionate apple polyphenols.

    PubMed

    Kammerer, Dietmar R; Carle, Reinhold; Stanley, Roger A; Saleh, Zaid S

    2010-06-09

    The purification and fractionation of phenolic compounds from crude plant extracts using a food-grade acrylic adsorbent were studied at pilot-plant scale. A diluted apple juice concentrate served as a model phenolic solution for column adsorption and desorption trials. Phenolic concentrations were evaluated photometrically using the Folin-Ciocalteu assay and by HPLC-DAD. Recovery rates were significantly affected by increasing phenolic concentrations of the feed solutions applied to the column. In contrast, the flow rate during column loading hardly influenced adsorption efficiency, whereas the temperature and pH value were shown to be crucial parameters determining both total phenolic recovery rates and the adsorption behavior of individual polyphenols. As expected, the eluent composition had the greatest impact on the desorption characteristics of both total and individual phenolic compounds. HPLC analyses revealed significantly different elution profiles of individual polyphenols depending on lipophilicity. This technique allows fractionation of crude plant phenolic extracts, thus providing the opportunity to design the functional properties of the resulting phenolic fractions selectively, and the present study delivers valuable information with regard to the adjustment of individual process parameters.

  20. Professional Pilots Meteorology Training Standards Conference Held in Colorado Springs, Colorado on 13-14 April 1989

    DTIC Science & Technology

    1989-07-01

    precalculus level, which is already a requirement for many college majors. Often the pilot can satisfy the four hours of elective credit required for the minor...with precalculus mathematics courses. Pilots who have taken precalculus mathematics often take four hours of MTR 421, Forecasting Laboratory, to

  1. Using "Fremyella Diplosiphon" as a Model Organism for Genetics-Based Laboratory Exercises

    ERIC Educational Resources Information Center

    Montgomery, Beronda L.

    2011-01-01

    In this pilot study, a genetics-based laboratory exercise using the cyanobacterium Fremyella diplosiphon was developed and trialled with thirteen Natural Sciences undergraduates. Despite most students only having limited prior exposure to molecular genetics laboratory methods, this cohort confirmed that they were able to follow the protocol and…

  2. Strategy for Passivating Char Efficiently at the Pilot Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunning, Timothy C

    Fast pyrolysis is a promising pathway for the commercialization of liquid transportation fuels from biomass. Fast pyrolysis is performed at moderate heat (450-600 degrees Celcius) in an oxygen-deficient environment. One of the products of fast pyrolysis is biochar, which is often used as a heat source or as a soil amendment. Biochar is a partially reacted solid that is created in the production of bio-oil during fast pyrolysis. Biochar produced at these conditions contains significant quantities of carbon that adsorb oxygen when exposed to air. Biochar adsorption of oxygen is an exothermic process that may generate sufficient heat for combustionmore » in ambient air. Biochar is also a self-insulating material which compounds the effects of heat generated internally. These factors lead to safety concerns and material handling difficulties. The Thermochemical Process Development Unit at the National Renewable Energy Laboratory operates a pilot plant that may be configured for fast pyrolysis, gasification, and will be introducing catalytic fast pyrolysis capabilities in 2018. The TCPDU designed and installed a system to introduce oxygen to collected biochar systematically for a controlled passivation. Biochar is collected and cooled in an oxygen deficient environment during fast pyrolysis. Oxygen is then introduced to the biochar on a mass flow basis. A sparger imbedded within the biochar sample near the bottom of the bed flows air diluted with nitrogen into the char bed, and excess gasses are removed from the top of the collection drum, above the char bed. Pressure within the collection drum is measured indicating adequate flow through filters. Sample weight is recorded before and after passivation. During passivation, temperature is measured at 18 points within the char bed. Oxygen content and temperature are measured leaving the char bed. Maximum temperature parameters were established to ensure operator safety during biochar passivation. Extensive passivation

  3. Pilot-scale investigation of sludge reduction in aerobic digestion system with endospore-forming bacteria.

    PubMed

    Seo, Kyu Won; Choi, Yong-Su; Gu, Man Bock; Kwon, Eilhann E; Tsang, Yiu Fai; Rinklebe, Jörg; Park, Chanhyuk

    2017-11-01

    A pilot-scale investigation of membrane-based aerobic digestion system dominated by endospore-forming bacteria was evaluated as one of the potential sludge treatment processes (STP). Most of the organic matter in the sludge was removed (90.1%) by the particular bacteria in the STP, which consisted of mixed liquor suspended solid (MLSS) contact reactor (MCR), MLSS oxidation reactor (MOR), and membrane bioreactor (MBR). The sludge was accumulated in the MBR without wasting, and then the effluent in STP was fed into the first step in water resource recovery facility (WRRF). According to the analysis of microbial communities in all reactors, various Bacillus species were present in the STP, mainly due to their intrinsic resistance to the extreme conditions. As the surviving Bacillus species might consume degraded microorganisms for their growth, these endospore-forming bacteria-based STP could be suitable for the sludge reduction when they operated for a long time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Microbial biosafety of pilot-scale bioreactor treating MTBE and TBA-contaminated drinking water supply.

    PubMed

    Schmidt, Radomir; Klemme, David A; Scow, Kate; Hristova, Krassimira

    2012-03-30

    A pilot-scale sand-based fluidized bed bioreactor (FBBR) was utilized to treat both methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) from a contaminated aquifer. To evaluate the potential for re-use of the treated water, we tested for a panel of water quality indicator microorganisms and potential waterborne pathogens including total coliforms, Escherichia coli, Salmonella and Shigella spp., Campylobacter jejuni, Aeromonas hydrophila, Legionella pneumophila, Vibrio cholerae, Yersinia enterocolytica and Mycobacterium avium in both influent and treated waters from the bioreactor. Total bacteria decreased during FBBR treatment. E. coli, Salmonella and Shigella spp., C. jejuni, V. cholerae, Y. enterocolytica and M. avium were not detected in aquifer water or bioreactor treated water samples. For those pathogens detected, including total coliforms, L. pneumophila and A. hydrophila, numbers were usually lower in treated water than influent samples, suggesting removal during treatment. The detection of particular bacterial species reflected their presence or absence in the influent waters. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Laboratory System Improvement Program: First in the Nation— New Hampshire Reassessment

    PubMed Central

    Bean, Christine L.; Cosser, Amanda; Vazquez, Alma

    2013-01-01

    The New Hampshire Public Health Laboratories (NH PHL) conducted an initial Laboratory System Improvement Program (L-SIP) assessment in March 2007 and a reassessment in May 2011. New Hampshire was a pilot state for the initial L-SIP assessment in 2007 and was the first laboratory system in the United States to conduct an L-SIP reassessment. The New Hampshire reassessment was also used as a pilot for revising the assessment tool. The NH PHL performed a high-level comparison benchmarking the work done between the two assessments. This comparison revealed areas of improvement and other areas that needed continued focus to align with model standards of the 10 Essential Public Health Services. This article outlines achievements, improvements, and outcomes made since 2007, as well as participants, activities, plans, resources, and other factors that contributed to the change in scores between assessments. PMID:23997303

  6. Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C. K.; Tzeferacos, P.; Lamb, D.

    X-ray images from the Chandra X-ray Observatory show that the South-East jet in the Crab nebula changes direction every few years. This remarkable phenomenon is also observed in jets associated with pulsar wind nebulae and other astrophysical objects, and therefore is a fundamental feature of astrophysical jet evolution that needs to be understood. Theoretical modeling and numerical simulations have suggested that this phenomenon may be a consequence of magnetic fields (B) and current-driven magnetohydrodynamic (MHD) instabilities taking place in the jet, but until now there has been no verification of this process in a controlled laboratory environment. Here we reportmore » the first such experiments, using scaled laboratory plasma jets generated by high-power lasers to model the Crab jet and monoenergetic-proton radiography to provide direct visualization and measurement of magnetic fields and their behavior. The toroidal magnetic field embedded in the supersonic jet triggered plasma instabilities and resulted in considerable deflections throughout the jet propagation, mimicking the kinks in the Crab jet. We also demonstrated that these kinks are stabilized by high jet velocity, consistent with the observation that instabilities alter the jet orientation but do not disrupt the overall jet structure. We successfully modeled these laboratory experiments with a validated three-dimensional (3D) numerical simulation, which in conjunction with the experiments provide compelling evidence that we have an accurate model of the most important physics of magnetic fields and MHD instabilities in the observed, kinked jet in the Crab nebula. The experiments initiate a novel approach in the laboratory for visualizing fields and instabilities associated with jets observed in various astrophysical objects, ranging from stellar to extragalactic systems. We expect that future work along this line will have important impact on the study and understanding of such fundamental

  7. Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet

    DOE PAGES

    Li, C. K.; Tzeferacos, P.; Lamb, D.; ...

    2016-10-07

    X-ray images from the Chandra X-ray Observatory show that the South-East jet in the Crab nebula changes direction every few years. This remarkable phenomenon is also observed in jets associated with pulsar wind nebulae and other astrophysical objects, and therefore is a fundamental feature of astrophysical jet evolution that needs to be understood. Theoretical modeling and numerical simulations have suggested that this phenomenon may be a consequence of magnetic fields (B) and current-driven magnetohydrodynamic (MHD) instabilities taking place in the jet, but until now there has been no verification of this process in a controlled laboratory environment. Here we reportmore » the first such experiments, using scaled laboratory plasma jets generated by high-power lasers to model the Crab jet and monoenergetic-proton radiography to provide direct visualization and measurement of magnetic fields and their behavior. The toroidal magnetic field embedded in the supersonic jet triggered plasma instabilities and resulted in considerable deflections throughout the jet propagation, mimicking the kinks in the Crab jet. We also demonstrated that these kinks are stabilized by high jet velocity, consistent with the observation that instabilities alter the jet orientation but do not disrupt the overall jet structure. We successfully modeled these laboratory experiments with a validated three-dimensional (3D) numerical simulation, which in conjunction with the experiments provide compelling evidence that we have an accurate model of the most important physics of magnetic fields and MHD instabilities in the observed, kinked jet in the Crab nebula. The experiments initiate a novel approach in the laboratory for visualizing fields and instabilities associated with jets observed in various astrophysical objects, ranging from stellar to extragalactic systems. We expect that future work along this line will have important impact on the study and understanding of such fundamental

  8. Chromium removal from wastewater using HSF and VF pilot-scale constructed wetlands: Overall performance, and fate and distribution of this element within the wetland environment.

    PubMed

    Papaevangelou, Vassiliki A; Gikas, Georgios D; Tsihrintzis, Vassilios A

    2017-02-01

    The current experimental work aimed at the investigation of the overall chromium removal capacity of constructed wetlands (CWs) and the chromium fate-distribution within a wetland environment. For this purpose, the experimental setup included the parallel operation and monitoring of two horizontal subsurface flow (HSF) pilot-scale CWs and two vertical flow (VF) pilot-scale CWs treating Cr-bearing wastewater. Samples were collected from the influent, the effluent, the substrate and the plants. Apart from the continuous experiment, batch experiments (kinetics and isotherm) were conducted in order to investigate the chromium adsorption capacity of the substrate material. According to the findings, HSF-CWs demonstrated higher removal capacities in comparison to VF-CWs, while in both types the planted units indicated better performance compared to the unplanted ones. Analysis in various wetland compartments and annual mass balance calculation highlighted the exceptional contribution of substrate to chromium retention, while Cr accumulation in plant was not so high. Finally, experimental data fitted better to the pseudo-second-order and Langmuir models regarding kinetics and isotherm simulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal.

    PubMed

    Ren, Hongyan; Tuo, Jinhua; Addy, Min M; Zhang, Renchuan; Lu, Qian; Anderson, Erik; Chen, Paul; Ruan, Roger

    2017-12-01

    To improve nutrients removal from real centrate wastewater and enhance the microalgae biomass production, cultivation of Chlorella vulgaris in lab and a pilot-scale photobioreactor with waste glycerol was studied. The results showed the optimal concentration of the crude glycerol was 1.0gL -1 with the maximum biomass productivity of 460mgL -1 d -1 TVS, the maximum lipid content of 27%, the nutrient removal efficiency of all above 86%, due to more balanced C/N ratio. The synergistic relationship between the wastewater-borne bacteria and the microalgae had significant good influence on nutrient removal. In pilot-scale wastewater-based algae cultivation, with 1gL -1 waste glycerol addition, the average biomass production of 16.7gm -2 d -1 , lipid content of 23.6%, and the removal of 2.4gm -2 d -1 NH 4 + -N, 2.7gm -2 d -1 total nitrogen, 3.0gm -2 d -1 total phosphorous, and 103.0gm -2 d -1 of COD were attained for 34days semi-continuous mode. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. [Effect of pilot UASB-SFSBR-MAP process for the large scale swine wastewater treatment].

    PubMed

    Wang, Liang; Chen, Chong-Jun; Chen, Ying-Xu; Wu, Wei-Xiang

    2013-03-01

    In this paper, a treatment process consisted of UASB, step-fed sequencing batch reactor (SFSBR) and magnesium ammonium phosphate precipitation reactor (MAP) was built to treat the large scale swine wastewater, which aimed at overcoming drawbacks of conventional anaerobic-aerobic treatment process and SBR treatment process, such as the low denitrification efficiency, high operating costs and high nutrient losses and so on. Based on the treatment process, a pilot engineering was constructed. It was concluded from the experiment results that the removal efficiency of COD, NH4(+) -N and TP reached 95.1%, 92.7% and 88.8%, the recovery rate of NH4(+) -N and TP by MAP process reached 23.9% and 83.8%, the effluent quality was superior to the discharge standard of pollutants for livestock and poultry breeding (GB 18596-2001), mass concentration of COD, TN, NH4(+) -N, TP and SS were not higher than 135, 116, 43, 7.3 and 50 mg x L(-1) respectively. The process developed was reliable, kept self-balance of carbon source and alkalinity, reached high nutrient recovery efficiency. And the operating cost was equal to that of the traditional anaerobic-aerobic treatment process. So the treatment process could provide a high value of application and dissemination and be fit for the treatment pf the large scale swine wastewater in China.

  11. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture. Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hancu, Dan; Wood, Benjamin; Genovese, Sarah

    GE Global Research has developed, over the last 8 years, a platform of cost effective CO 2 capture technologies based on a non-aqueous aminosilicone solvent (GAP-1m). As demonstrated in a previous funded DOE project (DE-FE0007502), the GAP-1m solvent has increased CO 2 working capacity, lower volatility and corrosivity than the benchmark aqueous amine technology. The current report describes the cooperative program between GE Global Research (GE GRC), and the National Carbon Capture Center (NCCC) to design, construct, and operate a pilot-scale process using GAP-1m solvent to demonstrate its performance at 0.5 MWe. (i) Performance of the GAP-1m solvent was demonstratedmore » in a 0.5 MWe pilot with real flue gas for over 900 hrs. of operation using two alternative desorption designs: a Continuous Stirred Tank Reactor (CSTR), and a Steam Stripper Column (SSC). The CSTR is a one-stage separation unit with reduced space requirements, and capital cost. The alternative is a multi-stage separation column, with improved desorption efficiency. Testing the two desorber options allowed us to identify the most cost effective, and space efficient desorber solution. (ii) CSTR Campaign: The CSTR desorber unit was designed, fabricated and integrated with the pilot solvent test unit (PSTU), replacing the PSTU Steam Stripper Column at NCCC. Solvent management and waste water special procedures were implemented to accommodate operation of the non-aqueous solvent in the PSTU. Performance of the GAP-1m solvent with the CSTR was demonstrated for over 500 hrs. while varying temperature of the desorption (230 – 265 oF), solvent circulation rate (GAP-1m : CO 2 (molar) = 1.5 – 4), and flue gas flow rates (0.2 – 0.5 MWe). Solvent carry-over in the CO 2 product was minimized by maintaining water content below 5 wt.%, and desorption pressure at 7 psig. CO 2 capture efficiency achieved was 95% at 0.25 MWe (GAP-1m : CO 2 = 4 (molar), 230 oF desorption), and 65% at 0.5 MWe (GAP-1m : CO 2

  12. Energy Evaluation of a New Construction Pilot Community: Fresno, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdick, A.; Poerschke, A.; Rapport, A.

    2014-06-01

    A new construction pilot community was constructed by builder-partner Wathen-Castanos Hybrid Homes (WCHH) based on a single occupied test house that was designed to achieve greater than 30% energy savings with respect to the House Simulation Protocols (Hendron, Robert; Engebrecht, Cheryn (2010). Building America House Simulation Protocols. Golden, CO: National Renewable Energy Laboratory). Builders face several key problems when implementing a whole-house systems integrated measures package (SIMP) from a single test house into multiple houses. Although a technical solution already may have been evaluated and validated in an individual test house, the potential exists for constructability failures at the communitymore » scale. This report addresses factors of implementation and scalability at the community scale and proposes methodologies by which community-scale energy evaluations can be performed based on results at the occupied test house level. Research focused on the builder and trade implementation of a SIMP and the actual utility usage in the houses at the community scale of production. Five occupants participated in this community-scale research by providing utility bills and information on occupancy and miscellaneous gas and electric appliance use for their houses. IBACOS used these utility data and background information to analyze the actual energy performance of the houses. Verification with measured data is an important component in predictive energy modeling. The actual utility bill readings were compared to projected energy consumption using BEopt with actual weather and thermostat set points for normalization.« less

  13. Performance of a pilot demonstration-scale hybrid constructed wetland system for on-site treatment of polluted urban river water in Northwestern China.

    PubMed

    Zheng, Yucong; Wang, Xiaochang C; Dzakpasu, Mawuli; Ge, Yuan; Zhao, Yaqian; Xiong, Jiaqing

    2016-01-01

    Hybrid constructed wetland (HCW) systems have been used to treat various wastewaters across the world. However, large-scale applications of HCWs are scarce, particularly for on-site improvement of the water quality of highly polluted urban rivers in semi-arid regions. In this study, a large pilot-scale HCW system was constructed to improve the water quality of the Zaohe River in Xi'an, China. With a total area of about 8000 m(2), the pilot HCW system, composed of different configurations of surface and subsurface flow wetlands, was operated for 2 years at an average inflow volume rate of 362 m(3)/day. Local Phragmites australis and Typha orientalis from the riverbank were planted in the HCW system. Findings indicate a higher treatment efficiency for organics and suspended solids than nutrients. The inflow concentrations of 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (TN), NH3-N, and total phosphorus (TP) were 125.6, 350.9, 334.2, 38.5, 27.2, and 3.9 mg/L, respectively. Average removal efficiencies of 94.4, 74.5, 92.0, 56.3, 57.5, and 69.2%, respectively, were recorded. However, the pollutant removal rates were highly seasonal especially for nitrogen. Higher removals were recorded for all pollutants in the autumn while significantly lower removals were recorded in the winter. Plant uptake and assimilation accounted for circa 19-29 and 16-23% of the TN and TP removal, respectively. Moreover, P. australis demonstrated a higher nutrient uptake ability and competitive potential. Overall, the high efficiency of the pilot HCW for improving the water quality of such a highly polluted urban river provided practical evidence of the applicability of the HCW technology for protecting urban water environments.

  14. Effects of operation parameters on nutrient removal from wastewater and high-protein biomass production in a duckweed-based (Lemma aequinoctialis) pilot-scale system.

    PubMed

    Zhao, Yonggui; Fang, Yang; Jin, Yanling; Huang, Jun; Bao, Shu; He, Zhiming; Wang, Feng; Zhao, Hai

    2014-01-01

    The effects of water depth, coverage rate and harvest regime on nutrient removal from wastewater and high-protein biomass production were assessed in a duckweed-based (Lemna aequinoctialis) pilot-scale wastewater treatment system (10 basins × 12 m(2)) that is located near Dianchi Lake in China. The results indicated that a water depth of 50 cm, a coverage rate of 150% and a harvest regime of 4 days were preferable conditions, under which excellent records of high-protein duckweed (dry matter production of 6.65 g/m(2)/d with crude protein content of 36.16% and phosphorus content of 1.46%) were obtained at a temperature of 12-21 °C. At the same time, the system achieved a removal efficiency of 66.16, 23.1, 48.3 and 76.52% for NH4(+)-N, TN, TP and turbidity, respectively, with the considerable removal rate of 0.465 g/m(2)/d for TN and 0.134 g/m(2)/d for TP at a hydraulic retention time of 6 days. In additionally, it was found that a lower duckweed density could lead to higher dissolved oxygen in the water and then a higher removal percentage of NH4(+)-N by nitrobacteria. This study obtains the preferable operation conditions for wastewater treatment and high-protein biomass production in a duckweed-based pilot-scale system, supplying an important reference for further large-scale applications of duckweed.

  15. Laboratory and theoretical models of planetary-scale instabilities and waves

    NASA Technical Reports Server (NTRS)

    Hart, John E.; Toomre, Juri

    1991-01-01

    Meteorologists and planetary astronomers interested in large-scale planetary and solar circulations recognize the importance of rotation and stratification in determining the character of these flows. The two outstanding problems of interest are: (1) the origins and nature of chaos in baroclinically unstable flows; and (2) the physical mechanisms responsible for high speed zonal winds and banding on the giant planets. The methods used to study these problems, and the insights gained, are useful in more general atmospheric and climate dynamic settings. Because the planetary curvature or beta-effect is crucial in the large scale nonlinear dynamics, the motions of rotating convecting liquids in spherical shells were studied using electrohydrodynamic polarization forces to generate radial gravity and centrally directed buoyancy forces in the laboratory. The Geophysical Fluid Flow Cell (GFFC) experiments performed on Spacelab 3 in 1985 were analyzed. The interpretation and extension of these results have led to the construction of efficient numerical models of rotating convection with an aim to understand the possible generation of zonal banding on Jupiter and the fate of banana cells in rapidly rotating convection as the heating is made strongly supercritical. Efforts to pose baroclinic wave experiments for future space missions using a modified version of the 1985 instrument have led us to develop theoretical and numerical models of baroclinic instability. Some surprising properties of both these models were discovered.

  16. Collins and Kelly in U.S. Laboratory

    NASA Image and Video Library

    2005-08-05

    S114-E-7150 (5 August 2005) --- Astronauts Eileen M. Collins (foreground) and James M. Kelly, STS-114 commander and pilot, respectively, work with the Mobile Service System (MSS) and Canadarm2 controls in the Destiny laboratory of the International Space Station while Space Shuttle Discovery was docked to the Station.

  17. Low Activity Waste Pretreatment System Bench-Scale Testing: Supporting Integrated Testing and Facility Safety Analyses - 17171

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schonewill, Philip P.; Russell, Renee L.; Daniel, Richard C.

    The Low Activity Waste Pretreatment System (LAWPS) is being designed to enable the direct feed of waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) facility to be immobilized. Prior to construction of the LAWPS, pilot-scale integrated testing of the key unit operations (crossflow filtration, ion exchange using spherical resorcinol-formaldehyde (sRF) resin) will be conducted by a team led by Washington River Protection Solutions (WRPS) to increase the technology maturation level of the facility’s critical technology elements. As a part of this effort, Pacific Northwest National Laboratory (PNNL) has conducted a series of bench-scalemore » (or engineering-scale) tests to perform two major objectives: (1) support pilot-scale integrated testing of the LAWPS by supplying information or performance data in advance of operating the pilot-scale facility; and (2) collect data needed to establish or confirm assumptions/approaches planned for implementation in the LAWPS safety basis. The first objective was focused in two technical areas: developing simulants that are representative of expected waste feed and can be produced at larger scales, and using these simulants in a bench-scale crossflow filter to establish expected solid-liquid separation performance. The crossflow filter was also used to observe the efficacy (with respect to filter production rate) of selected operational strategies. The second objective also included two technical areas: measuring the effect of sRF resin on hydrogen generation rate under irradiation, and demonstrating that the planned hydrogen management approach is effective and robust. The hydrogen management strategy involves fluidization of the sRF resin bed in the ion exchange columns and recirculating the liquid, a scenario that is planned for testing at full column height. The full height tests at PNNL also supported full-scale IX column testing conducted as part of the technology maturation

  18. Countercurrent fixed-bed gasification of biomass at laboratory scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Blasi, C.; Signorelli, G.; Portoricco, G.

    1999-07-01

    A laboratory-scale countercurrent fixed-bed gasification plant has been designed and constructed to produce data for process modeling and to compare the gasification characteristics of several biomasses (beechwood, nutshells, olive husks, and grape residues). The composition of producer gas and spatial temperature profiles have been measured for biomass gasification at different air flow rates. The gas-heating value always attains a maximum as a function of this operating variable, associated with a decrease of the air-to-fuel ratio. Optical gasification conditions of wood and agricultural residues give rise to comparable gas-heating values, comprised in the range 5--5.5 MJ/Nm{sup 3} with 28--30% CO, 5--7%more » CO{sub 2}, 6--8% H{sub 2}, 1--2% CH{sub 4}, and small amounts of C{sub 2}- hydrocarbons (apart from nitrogen). However, gasification of agricultural residues is more difficult because of bed transport, partial ash sintering, nonuniform flow distribution, and the presence of a muddy phase in the effluents, so that proper pretreatments are needed for largescale applications.« less

  19. Carer Appraisal Scale: A Pilot Study of a Novel Carer-Based Assessment of Patient Functioning.

    PubMed

    Jeyasingam, Neil

    2018-03-01

    Measurement of patient outcomes is an integral part of mental health service evaluation, as well as guiding clinical practice to ensure best outcomes for patients. Moreover, carers have long held a need for a voice in care outcomes. Despite there existing numerous tools for quantifying patient functioning based on clinician assessments or self-reports, there is a serious paucity of tools available for the carers of patients to appraise their functioning. This tool, developed for use in a community aged care psychiatric service, involves 4 sections-a global impression of patient progress, a scorable checklist of patient functioning in multiple domains, a qualitative section for identifying the most pressing concerns from the carer's perspective, and an open-ended feedback on treatment to date. In this pilot study, the Carer Appraisal Scale was found to have a fair correlation with the Health of Nation Outcomes Scale for over 65. This tool has potential for use in community aged care psychiatric services, as it provides a framework for communication of concerns, assists in prioritizing care, and adds value to clinician treatment plans, as well as providing another dimension to assessment of the patient while empowering carers in care participation. Practical implications of its use, limitations, and potential for modifications are also discussed.

  20. Numerical Investigation of Earthquake Nucleation on a Laboratory-Scale Heterogeneous Fault with Rate-and-State Friction

    NASA Astrophysics Data System (ADS)

    Higgins, N.; Lapusta, N.

    2014-12-01

    Many large earthquakes on natural faults are preceded by smaller events, often termed foreshocks, that occur close in time and space to the larger event that follows. Understanding the origin of such events is important for understanding earthquake physics. Unique laboratory experiments of earthquake nucleation in a meter-scale slab of granite (McLaskey and Kilgore, 2013; McLaskey et al., 2014) demonstrate that sample-scale nucleation processes are also accompanied by much smaller seismic events. One potential explanation for these foreshocks is that they occur on small asperities - or bumps - on the fault interface, which may also be the locations of smaller critical nucleation size. We explore this possibility through 3D numerical simulations of a heterogeneous 2D fault embedded in a homogeneous elastic half-space, in an attempt to qualitatively reproduce the laboratory observations of foreshocks. In our model, the simulated fault interface is governed by rate-and-state friction with laboratory-relevant frictional properties, fault loading, and fault size. To create favorable locations for foreshocks, the fault surface heterogeneity is represented as patches of increased normal stress, decreased characteristic slip distance L, or both. Our simulation results indicate that one can create a rate-and-state model of the experimental observations. Models with a combination of higher normal stress and lower L at the patches are closest to matching the laboratory observations of foreshocks in moment magnitude, source size, and stress drop. In particular, we find that, when the local compression is increased, foreshocks can occur on patches that are smaller than theoretical critical nucleation size estimates. The additional inclusion of lower L for these patches helps to keep stress drops within the range observed in experiments, and is compatible with the asperity model of foreshock sources, since one would expect more compressed spots to be smoother (and hence have

  1. A review of the processes and lab-scale techniques for the treatment of spent rechargeable NiMH batteries

    NASA Astrophysics Data System (ADS)

    Innocenzi, Valentina; Ippolito, Nicolò Maria; De Michelis, Ida; Prisciandaro, Marina; Medici, Franco; Vegliò, Francesco

    2017-09-01

    The purpose of this work is to describe and review the current status of the recycling technologies of spent NiMH batteries. In the first part of the work, the structure and characterization of NiMH accumulators are introduced followed by the description of the main scientific studies and the industrial processes. Various recycling routes including physical, pyrometallurgical and hydrometallurgical ones are discussed. The hydrometallurgical methods for the recovery of base metals and rare earths are mainly developed on the laboratory and pilot scale. The operating industrial methods are pyrometallurgical ones and are efficient only on the recovery of certain components of spent batteries. In particular fraction rich in nickel and other materials are recovered; instead the rare earths are lost in the slag and must be further refined by hydrometallurgical process to recover them. Considering the actual legislation regarding the disposal of spent batteries and the preservation of raw materials issues, implementations on laboratory scale and plant optimization studies should be conducted in order to overcome the industrial problems of the scale up for the hydrometallurgical processes.

  2. Simulating flow in karst aquifers at laboratory and sub-regional scales using MODFLOW-CFP

    NASA Astrophysics Data System (ADS)

    Gallegos, Josue Jacob; Hu, Bill X.; Davis, Hal

    2013-12-01

    Groundwater flow in a well-developed karst aquifer dominantly occurs through bedding planes, fractures, conduits, and caves created by and/or enlarged by dissolution. Conventional groundwater modeling methods assume that groundwater flow is described by Darcian principles where primary porosity (i.e. matrix porosity) and laminar flow are dominant. However, in well-developed karst aquifers, the assumption of Darcian flow can be questionable. While Darcian flow generally occurs in the matrix portion of the karst aquifer, flow through conduits can be non-laminar where the relation between specific discharge and hydraulic gradient is non-linear. MODFLOW-CFP is a relatively new modeling program that accounts for non-laminar and laminar flow in pipes, like karst caves, within an aquifer. In this study, results from MODFLOW-CFP are compared to those from MODFLOW-2000/2005, a numerical code based on Darcy's law, to evaluate the accuracy that CFP can achieve when modeling flows in karst aquifers at laboratory and sub-regional (Woodville Karst Plain, Florida, USA) scales. In comparison with laboratory experiments, simulation results by MODFLOW-CFP are more accurate than MODFLOW 2005. At the sub-regional scale, MODFLOW-CFP was more accurate than MODFLOW-2000 for simulating field measurements of peak flow at one spring and total discharges at two springs for an observed storm event.

  3. Field-scale multi-phase LNAPL remediation: Validating a new computational framework against sequential field pilot trials.

    PubMed

    Sookhak Lari, Kaveh; Johnston, Colin D; Rayner, John L; Davis, Greg B

    2018-03-05

    Remediation of subsurface systems, including groundwater, soil and soil gas, contaminated with light non-aqueous phase liquids (LNAPLs) is challenging. Field-scale pilot trials of multi-phase remediation were undertaken at a site to determine the effectiveness of recovery options. Sequential LNAPL skimming and vacuum-enhanced skimming, with and without water table drawdown were trialled over 78days; in total extracting over 5m 3 of LNAPL. For the first time, a multi-component simulation framework (including the multi-phase multi-component code TMVOC-MP and processing codes) was developed and applied to simulate the broad range of multi-phase remediation and recovery methods used in the field trials. This framework was validated against the sequential pilot trials by comparing predicted and measured LNAPL mass removal rates and compositional changes. The framework was tested on both a Cray supercomputer and a cluster. Simulations mimicked trends in LNAPL recovery rates (from 0.14 to 3mL/s) across all remediation techniques each operating over periods of 4-14days over the 78day trial. The code also approximated order of magnitude compositional changes of hazardous chemical concentrations in extracted gas during vacuum-enhanced recovery. The verified framework enables longer term prediction of the effectiveness of remediation approaches allowing better determination of remediation endpoints and long-term risks. Copyright © 2017 Commonwealth Scientific and Industrial Research Organisation. Published by Elsevier B.V. All rights reserved.

  4. Modular Hydropower Engineering and Pilot Scale Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesser, Phillip C.

    Emrgy has developed, prototyped and tested a modular hydropower system for renewable energy generation. ORNL worked with Emrgy to demonstrate the use of additive manufacturing in the production of the hydrofoils and spokes for the hydrokinetic system. Specifically, during Phase 1 of this effort, ORNL printed and finished machined patterns for both the hydrofoils and spokes that were subsequently used in a sand casting manufacturing process. Emrgy utilized the sand castings for a pilot installation in Denver, CO, where the parts represented an 80% cost savings from the previous prototype build that was manufactured using subtractive manufacturing. In addition, themore » castings were completed with ORNL’s newly developed AlCeMg alloy that will be tested for performance improvements including higher corrosion resistance in a water application than the 6160 alloy used previously« less

  5. Comparison of batch sorption tests, pilot studies, and modeling for estimating GAC bed life.

    PubMed

    Scharf, Roger G; Johnston, Robert W; Semmens, Michael J; Hozalski, Raymond M

    2010-02-01

    Saint Paul Regional Water Services (SPRWS) in Saint Paul, MN experiences annual taste and odor episodes during the warm summer months. These episodes are attributed primarily to geosmin that is produced by cyanobacteria growing in the chain of lakes used to convey and store the source water pumped from the Mississippi River. Batch experiments, pilot-scale experiments, and model simulations were performed to determine the geosmin removal performance and bed life of a granular activated carbon (GAC) filter-sorber. Using batch adsorption isotherm parameters, the estimated bed life for the GAC filter-sorber ranged from 920 to 1241 days when challenged with a constant concentration of 100 ng/L of geosmin. The estimated bed life obtained using the AdDesignS model and the actual pilot-plant loading history was 594 days. Based on the pilot-scale GAC column data, the actual bed life (>714 days) was much longer than the simulated values because bed life was extended by biological degradation of geosmin. The continuous feeding of high concentrations of geosmin (100-400 ng/L) in the pilot-scale experiments enriched for a robust geosmin-degrading culture that was sustained when the geosmin feed was turned off for 40 days. It is unclear, however, whether a geosmin-degrading culture can be established in a full-scale filter that experiences taste and odor episodes for only 1 or 2 months per year. The results of this research indicate that care must be exercised in the design and interpretation of pilot-scale experiments and model simulations for predicting taste and odor removal in full-scale GAC filter-sorbers. Adsorption and the potential for biological degradation must be considered to estimate GAC bed life for the conditions of intermittent geosmin loading typically experienced by full-scale systems. (c) 2009 Elsevier Ltd. All rights reserved.

  6. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor

    PubMed Central

    Ito, Ayumi; Mensah, Lawson; Cartmell, Elise; Lester, John N.

    2016-01-01

    Anaerobic treatment of municipal wastewater offers the prospect of a new paradigm by reducing aeration costs and minimizing sludge production. It has been successfully applied in warm climates, but does not always achieve the desired outcomes in temperate climates at the biochemical oxygen demand (BOD) values of municipal crude wastewater. Recently the concept of ‘fortification' has been proposed to increase organic strength and has been demonstrated at the laboratory and pilot scale treating municipal wastewater at temperatures of 10–17°C. The process treats a proportion of the flow anaerobically by combining it with primary sludge from the residual flow and then polishing it to a high effluent standard aerobically. Energy consumption is reduced as is sludge production. However, no new treatment process is viable if it only addresses the problems of traditional pollutants (suspended solids – SS, BOD, nitrogen – N and phosphorus – P); it must also treat hazardous substances. This study compared three potential municipal anaerobic treatment regimes, crude wastewater in an expanded granular sludge blanket (EGSB) reactor, fortified crude wastewater in an EGSB and crude wastewater in an anaerobic membrane bioreactor. The benefits of fortification were demonstrated for the removal of SS, BOD, N and P. These three systems were further challenged with the removal of steroid estrogens at environmental concentrations from natural indigenous sources. All three systems removed these compounds to a significant degree, confirming that estrogen removal is not restricted to highly aerobic autotrophs, or aerobic heterotrophs, but is also a faculty of anaerobic bacteria. PMID:26212345

  7. Measuring laboratory-based influenza surveillance capacity: development of the 'International Influenza Laboratory Capacity Review' Tool.

    PubMed

    Muir-Paulik, S A; Johnson, L E A; Kennedy, P; Aden, T; Villanueva, J; Reisdorf, E; Humes, R; Moen, A C

    2016-01-01

    The 2005 International Health Regulations (IHR 2005) emphasized the importance of laboratory capacity to detect emerging diseases including novel influenza viruses. To support IHR 2005 requirements and the need to enhance influenza laboratory surveillance capacity, the Association of Public Health Laboratories (APHL) and the Centers for Disease Control and Prevention (CDC) Influenza Division developed the International Influenza Laboratory Capacity Review (Tool). Data from 37 assessments were reviewed and analyzed to verify that the quantitative analysis results accurately depicted a laboratory's capacity and capabilities. Subject matter experts in influenza and laboratory practice used an iterative approach to develop the Tool incorporating feedback and lessons learnt through piloting and implementation. To systematically analyze assessment data, a quantitative framework for analysis was added to the Tool. The review indicated that changes in scores consistently reflected enhanced or decreased capacity. The review process also validated the utility of adding a quantitative analysis component to the assessments and the benefit of establishing a baseline from which to compare future assessments in a standardized way. Use of the Tool has provided APHL, CDC and each assessed laboratory with a standardized analysis of the laboratory's capacity. The information generated is used to improve laboratory systems for laboratory testing and enhance influenza surveillance globally. We describe the development of the Tool and lessons learnt. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Chapter 1.1 Process Scale-Up of Cellulose Nanocrystal Production to 25 kg per Batch at the Forest Products Laboratory

    Treesearch

    Richard S. Reiner; Alan W. Rudie

    2013-01-01

    The Fiber and Chemical Sciences Research Work Unit at the Forest Products Laboratory began working out the preparation of cellulose nanocrystals in 2006, using the method of Dong, Revol, and Gray. Initial samples were provided to several scientists within the Forest Service. Continued requests for this material forced scale-up from the initial 20 g scale to kg...

  9. Piloted evaluation of an integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1992-01-01

    A piloted evaluation of the integrated flight and propulsion control simulator for advanced integrated propulsion and airframe control design is described. The evaluation will cover control effector gains and deadbands, control effectiveness and control authority, and heads up display functionality. For this evaluation the flight simulator is configured for transition flight using an advanced Short Take-Off and Vertical Landing fighter aircraft model, a simplified high-bypass turbofan engine model, fighter cockpit displays, and pilot effectors. The piloted tasks used for rating displays and control effector gains are described. Pilot comments and simulation results confirm that the display symbology and control gains are very adequate for the transition flight task. Additionally, it is demonstrated that this small-scale, fixed base flight simulator facility can adequately perform a real time, piloted control evaluation.

  10. Pilot-Scale Selenium Bioremediation of San Joaquin Drainage Water with Thauera selenatis

    PubMed Central

    Cantafio, A. W.; Hagen, K. D.; Lewis, G. E.; Bledsoe, T. L.; Nunan, K. M.; Macy, J. M.

    1996-01-01

    This report describes a simple method for the bioremediation of selenium from agricultural drainage water. A medium-packed pilot-scale biological reactor system, inoculated with the selenate-respiring bacterium Thauera selenatis, was constructed at the Panoche Water District, San Joaquin Valley, Calif. The reactor was used to treat drainage water (7.6 liters/min) containing both selenium and nitrate. Acetate (5 mM) was the carbon source-electron donor reactor feed. Selenium oxyanion concentrations (selenate plus selenite) in the drainage water were reduced by 98%, to an average of 12 (plusmn) 9 (mu)g/liter. Frequently (47% of the sampling days), reactor effluent concentrations of less than 5 (mu)g/liter were achieved. Denitrification was also observed in this system; nitrate and nitrite concentrations in the drainage water were reduced to 0.1 and 0.01 mM, respectively (98% reduction). Analysis of the reactor effluent showed that 91 to 96% of the total selenium recovered was elemental selenium; 97.9% of this elemental selenium could be removed with Nalmet 8072, a new, commercially available precipitant-coagulant. Widespread use of this system (in the Grasslands Water District) could reduce the amount of selenium deposited in the San Joaquin River from 7,000 to 140 lb (ca. 3,000 to 60 kg)/year. PMID:16535401

  11. Ozonation kinetics of winery wastewater in a pilot-scale bubble column reactor.

    PubMed

    Lucas, Marco S; Peres, José A; Lan, Bing Yan; Li Puma, Gianluca

    2009-04-01

    The degradation of organic substances present in winery wastewater was studied in a pilot-scale, bubble column ozonation reactor. A steady reduction of chemical oxygen demand (COD) was observed under the action of ozone at the natural pH of the wastewater (pH 4). At alkaline and neutral pH the degradation rate was accelerated by the formation of radical species from the decomposition of ozone. Furthermore, the reaction of hydrogen peroxide (formed from natural organic matter in the wastewater) and ozone enhances the oxidation capacity of the ozonation process. The monitoring of pH, redox potential (ORP), UV absorbance (254 nm), polyphenol content and ozone consumption was correlated with the oxidation of the organic species in the water. The ozonation of winery wastewater in the bubble column was analysed in terms of a mole balance coupled with ozonation kinetics modeled by the two-film theory of mass transfer and chemical reaction. It was determined that the ozonation reaction can develop both in and across different kinetic regimes: fast, moderate and slow, depending on the experimental conditions. The dynamic change of the rate coefficient estimated by the model was correlated with changes in the water composition and oxidant species.

  12. Experiments in pilot decision-making during simulated low visibility approaches

    NASA Technical Reports Server (NTRS)

    Curry, R. E.; Lauber, J. K.; Billings, C. E.

    1975-01-01

    A simulation task is reported which incorporates both kinds of variables, informational and psychological, to successfully study pilot decision making behavior in the laboratory. Preliminary experiments in the measurement of decisions and the inducement of stress in simulated low visibility approaches are described.

  13. ARCHITECTURAL SECTIONS A, B, C, D, OF HOT PILOT PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARCHITECTURAL SECTIONS A, B, C, D, OF HOT PILOT PLANT (CPP-640). INL DRAWING NUMBER 200-0640-00-279-111681. ALTERNATE ID NUMBER 8952-CPP-640-A-5. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  14. SOUTH ELEVATION OF HOT PILOT PLANT (CPP640) LOOKING NORTH. INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH ELEVATION OF HOT PILOT PLANT (CPP-640) LOOKING NORTH. INL PHOTO NUMBER HD-22-3-1. Mike Crane, Photographer, 11/1998 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  15. Research on the enhancement of biological nitrogen removal at low temperatures from ammonium-rich wastewater by the bio-electrocoagulation technology in lab-scale systems, pilot-scale systems and a full-scale industrial wastewater treatment plant.

    PubMed

    Li, Liang; Qian, Guangsheng; Ye, Linlin; Hu, Xiaomin; Yu, Xin; Lyu, Weijian

    2018-09-01

    In cold areas, nitrogen removal performance of wastewater treatment plants (WWTP) declines greatly in winter. This paper systematically describes the enhancement effect of a periodic reverse electrocoagulation technology on biological nitrogen removal at low temperatures. The study showed that in the lab-scale systems, the electrocoagulation technology improved the biomass amount, enzyme activity and the amount of nitrogen removal bacteria (Nitrosomonas, Nitrobacter, Paracoccus, Thauera and Enterobacter). This enhanced nitrification and denitrification of activated sludge at low temperatures. In the pilot-scale systems, the electrocoagulation technology increased the relative abundance of cold-adapted microorganisms (Luteimonas and Trueperaceae) at low temperatures. In a full-scale industrial WWTP, comparison of data from winter 2015 and winter 2016 showed that effluent chemical oxygen demand (COD), NH 4 + -N, and NO 3 - -N reduced by 10.37, 3.84, and 136.43 t, respectively, throughout the winter, after installation of electrocoagulation devices. These results suggest that the electrocoagulation technology is able to improve the performance of activated sludge under low-temperature conditions. This technology provides a new way for upgrading of the performance of WWTPs in cold areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Impact decapitation from laboratory to basin scales

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Gault, D. E.

    1991-01-01

    Although vertical hypervelocity impacts result in the annihilation (melting/vaporization) of the projectile, oblique impacts (less than 15 deg) fundamentally change the partitioning of energy with fragments as large as 10 percent of the original projectile surviving. Laboratory experiments reveal that both ductile and brittle projectiles produce very similar results where limiting disruption depends on stresses proportional to the vertical velocity component. Failure of the projectile at laboratory impact velocities (6 km/s) is largely controlled by stresses established before the projectile has penetrated a significant distance into the target. The planetary surface record exhibits numerous examples of oblique impacts with evidence fir projectile failure and downrange sibling collisions.

  17. Solar photocatalitycal treatment of carbofuran at lab and pilot scale: effect of classical parameters, evaluation of the toxicity and analysis of organic by-products.

    PubMed

    Lopez-Alvarez, Blady; Torres-Palma, Ricardo A; Peñuela, Gustavo

    2011-07-15

    In this work the TiO(2) solar-photocatalytical degradation of the pesticide carbofuran (CBF) in water, at lab and pilot scale, was studied. At lab scale the evaluation of CBF concentration (14-282 μmol L(-1)) showed that the system followed a Langmuir-Hinshelwood kinetics type. TiO(2) concentration (0.05-2 g L(-1)) and initial pH (3-9) were also evaluated and optimized using the surface response methodology and the Pareto diagram. In the range of variables studied, initial pH 7.60 and 1.43 g L(-1) of TiO(2) favoured the efficiency of the process. Under optimal conditions the evolution of substrate, chemical oxygen demand, dissolved organic carbon, toxicity and organics by-products were evaluated. In the pilot scale tests, using direct sunlight, 55 mg L(-1) of CBF in a commercial formulation was eliminated after 420 min; while after 900 min of treatment 80% of toxicity (1/E(50) on Vibrium Fischeri), 80% of chemical oxygen demand and 60% of dissolved organic carbon were removed. The analysis and evolution of five CBF by-products, as well the evaluation of the treatment in the presence of isopropanol or using acetonitrile as a solvent suggest that the degradation is mainly carried out by OH radical attack. Finally, a schema depicting the main degradation pathway is proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. LABORATORY-SCALE ANALYSIS OF AQUIFER REMEDIATION BY IN-WELL VAPOR STRIPPING 2. MODELING RESULTS. (R825689C061)

    EPA Science Inventory

    Abstract

    The removal of volatile organic compounds (VOCs) from groundwater through in-well vapor stripping has been demonstrated by Gonen and Gvirtzman (1997, J. Contam. Hydrol., 00: 000-000) at the laboratory scale. The present study compares experimental breakthrough...

  19. LOW OZONE-DEPLETING HALOCARBONS AS TOTAL-FLOOD AGENTS: VOLUME 2. LABORATORY-SCALE FIRE SUPPRESSION AND EXPLOSION PREVENTION TESTING

    EPA Science Inventory

    The report gives results from (1) flame suppression testing of potential Halon-1301 (CF3Br) replacement chemicals in a laboratory cup burner using n-heptane fuel and (2) explosion prevention (inertion) testing in a small-scale explosion sphere using propane and methane as fuels. ...

  20. A pilot study of the utility of a laboratory-based spinal fixation training program for neurosurgical residents.

    PubMed

    Sundar, Swetha J; Healy, Andrew T; Kshettry, Varun R; Mroz, Thomas E; Schlenk, Richard; Benzel, Edward C

    2016-05-01

    OBJECTIVE Pedicle and lateral mass screw placement is technically demanding due to complex 3D spinal anatomy that is not easily visualized. Neurosurgical and orthopedic surgery residents must be properly trained in such procedures, which can be associated with significant complications and associated morbidity. Current training in pedicle and lateral mass screw placement involves didactic teaching and supervised placement in the operating room. The objective of this study was to assess whether teaching residents to place pedicle and lateral mass screws using navigation software, combined with practice using cadaveric specimens and Sawbones models, would improve screw placement accuracy. METHODS This was a single-blinded, prospective, randomized pilot study with 8 junior neurosurgical residents and 2 senior medical students with prior neurosurgery exposure. Both the study group and the level of training-matched control group (each group with 4 level of training-matched residents and 1 senior medical student) were exposed to a standardized didactic education regarding spinal anatomy and screw placement techniques. The study group was exposed to an additional pilot program that included a training session using navigation software combined with cadaveric specimens and accessibility to Sawbones models. RESULTS A statistically significant reduction in overall surgical error was observed in the study group compared with the control group (p = 0.04). Analysis by spinal region demonstrated a significant reduction in surgical error in the thoracic and lumbar regions in the study group compared with controls (p = 0.02 and p = 0.04, respectively). The study group also was observed to place screws more optimally in the cervical, thoracic, and lumbar regions (p = 0.02, p = 0.04, and p = 0.04, respectively). CONCLUSIONS Surgical resident education in pedicle and lateral mass screw placement is a priority for training programs. This study demonstrated that compared with a

  1. HANFORD MEDIUM-LOW CURIE WASTE PRETREATMENT ALTERNATIVES PROJECT FRACTIONAL CRYSTALLIZATION PILOT SCALE TESTING FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HERTING DL

    2008-09-16

    The Fractional Crystallization Pilot Plant was designed and constructed to demonstrate that fractional crystallization is a viable way to separate the high-level and low-activity radioactive waste streams from retrieved Hanford single-shell tank saltcake. The focus of this report is to review the design, construction, and testing details of the fractional crystallization pilot plant not previously disseminated.

  2. The uncertain trajectory of a pilot-wave

    NASA Astrophysics Data System (ADS)

    Nachbin, Andre

    2015-11-01

    Yves Couder (Paris 7) and coworkers reported on walking droplets on the surface of a vibrating bath. John Bush (MIT) and coworkers also produced laboratory experiments which were compared to theoretical predictions. Both groups discussed the pilot-wave properties previously thought to be peculiar to the microscopic, quantum realm. Of particular interest is the wavelike statistics for pilot-wave dynamics in a confined domain. We present a one dimensional water wave model for a droplet bouncing in a confined domain. The mathematical model makes use of conformal mapping which allows for the presence of submerged barriers. The computational simulations produce tunneling events. Work supported by CNPq grant 454027/2008-7 and by FAPERJ Cientistas do Nosso Estado grant 102917/2011.

  3. Mesophilic biomethanation and treatment of poultry waste-water using pilot scale UASB reactor.

    PubMed

    Atuanya, Ernest I; Aigbirior, Moses

    2002-07-01

    The feasibility of applying the up-flow anaerobic sludge blanket (UASB) treatment for poultry waste (faeces) water was examined. A continuous-flow UASB pilot scale reactor of 3.50 L capacity using mixed culture was operated for 95 days to assess the treatability of poultry waste-water and its methane production. The maximum chemical oxygen demand (COD) removed was found to be 78% when organic loading rate (OLR) was 2.9 kg COD m(-3) day(-1) at hydraulic retention times (HRT) of 13.2 hr. The average biogas recovery was 0.26 m3 CH4 kg COD with an average methane content of 57% at mean temperature of 30 degrees C. Data indicate more rapid methanogenesis with higher loading rates and shorter hydraulic retention times. At feed concentration of 4.8 kg COD m(-3) day(-1), anaerobic digestion was severely retarded at all hydraulic retention time tested. This complication in the reactor operations may be linked to build-up of colloidal solids often associated with poultry waste water and ammonia toxicity. Isolates from granular sludge and effluent were found to be facultative anaerobes most of which were Pseudomonas genera.

  4. Operating a pilot-scale nitrification/distillation plant for complete nutrient recovery from urine.

    PubMed

    Fumasoli, Alexandra; Etter, Bastian; Sterkele, Bettina; Morgenroth, Eberhard; Udert, Kai M

    2016-01-01

    Source-separated urine contains most of the excreted nutrients, which can be recovered by using nitrification to stabilize the urine before concentrating the nutrient solution with distillation. The aim of this study was to test this process combination at pilot scale. The nitrification process was efficient in a moving bed biofilm reactor with maximal rates of 930 mg N L(-1) d(-1). Rates decreased to 120 mg N L(-1) d(-1) after switching to more concentrated urine. At high nitrification rates (640 mg N L(-1) d(-1)) and low total ammonia concentrations (1,790 mg NH4-N L(-1) in influent) distillation caused the main primary energy demand of 71 W cap(-1) (nitrification: 13 W cap(-1)) assuming a nitrogen production of 8.8 g N cap(-1) d(-1). Possible process failures include the accumulation of the nitrification intermediate nitrite and the selection of acid-tolerant ammonia-oxidizing bacteria. Especially during reactor start-up, the process must therefore be carefully supervised. The concentrate produced by the nitrification/distillation process is low in heavy metals, but high in nutrients, suggesting a good suitability as an integral fertilizer.

  5. ARCHITECTURAL FLOOR PLAN OF PROCESS AND ACCESS AREAS HOT PILOT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARCHITECTURAL FLOOR PLAN OF PROCESS AND ACCESS AREAS HOT PILOT PLANT (CPP-640). INL DRAWING NUMBER 200-0640-00-279-111679. ALTERNATE ID NUMBER 8952-CPP-640-A-2. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  6. ARCHITECTURAL ROOF PLAN AND WESTSOUTHEAST ELEVATIONS OF HOT PILOT PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARCHITECTURAL ROOF PLAN AND WEST-SOUTHEAST ELEVATIONS OF HOT PILOT PLANT (CPP-640). INL DRAWING NUMBER 200-0640-00-279-111680. ALTERNATE ID NUMBER 8952-CPP-640-A-3. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  7. Intro to NREL's Thermochemical Pilot Plant

    ScienceCinema

    Magrini, Kim

    2018-02-13

    NREL's Thermochemical Pilot Plant converts biomass into higher hydrocarbon fuels and chemicals.NREL is researching biomass pyrolysis. The lab is examining how to upgrade bio-oils via stabilization. Along with this, NREL is developing the engineering system requirements for producing these fuels and chemicals at larger scales.

  8. Soluble microbial products in pilot-scale drinking water biofilters with acetate as sole carbon source.

    PubMed

    Zhang, Ying; Ye, Chengsong; Gong, Song; Wei, Gu; Yu, Xin; Feng, Lin

    2013-04-01

    A comprehensive study on formation and characteristics of soluble microbial products (SMP) during drinking water biofiltration was made in four parallel pilot-scale ceramic biofilters with acetate as the substrate. Excellent treatment performance was achieved while microbial biomass and acetate carbon both declined with the depth of filter. The SMP concentration was determined by calculating the difference between the concentration of dissolved organic carbon (DOC), biodegradable dissolved organic carbon (BDOC) and acetate carbon. The results revealed that SMP showed an obvious increase from 0 to 100 cm depth of the filter. A rising specific ultraviolet absorbance (SUVA) was also found, indicating that benzene or carbonyl might exist in these compounds. SMP produced during this drinking water biological process were proved to have weak mutagenicity and were not precursors of by-products of chlorination disinfection. The volatile parts of SMP were half-quantity analyzed and most of them were dicarboxyl acids, others were hydrocarbons or benzene with 16-17 carbon atoms.

  9. Solid-state fermentation of soybean residues for bioflocculant production in a pilot-scale bioreactor system.

    PubMed

    Zulkeflee, Zufarzaana; Sánchez, Antoni

    2014-01-01

    An innovative approach using soybean residues for the production of bioflocculants through solid-state fermentation was carried out in 4.5 L near-to-adiabatic bioreactors at pilot-scale level. An added inoculum of the strain Bacillus subtilis UPMB13 was tested in comparison with control reactors without any inoculation after the thermophilic phase of the fermentation. The flocculating performances of the extracted bioflocculants were tested on kaolin suspensions, and crude bioflocculants were obtained from 20 g of fermented substrate through ethanol precipitation. The production of bioflocculants was observed to be higher during the death phase of microbial growth. The bioflocculants were observed to be granular in nature and consisted of hydroxyl, carboxyl and methoxyl groups that aid in their flocculating performance. The results show the vast potential of the idea of using wastes to produce bioactive materials that can replace the current dependence on chemicals, for future prospect in water treatment applications.

  10. Startup pattern and performance enhancement of pilot-scale biofilm process for raw water pretreatment.

    PubMed

    Yang, Guang-Feng; Feng, Li-Juan; Yang, Qi; Zhu, Liang; Xu, Jian; Xu, Xiang-Yang

    2014-11-01

    The quality of raw water is getting worse in developing countries because of the inadequate treatment of municipal sewage, industrial wastewater and agricultural runoff. Aiming at the biofilm enrichment and pollutant removal, two pilot-scale biofilm reactors were built with different biological carriers. Results showed that compared with the blank carrier, the biofilm was easily enriched on the biofilm precoated carrier and less nitrite accumulation occurred. The removal efficiencies of NH4(+)-N, DOC and UV254 increased under the aeration condition, and a optimum DO level for the adequate nitrification was 1.0-2.6mgL(-1) with the suitable temperature range of 21-22°C. Study on the trihalomethane prediction model indicated that the presentence of algae increased the risk of disinfection by-products production, which could be effectively controlled via manual algae removing and light shading. In this study, the performance of biofilm pretreatment process could be enhanced under the optimized condition of DO level and biofilm carrier. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Flight Testing the X-36: The Test Pilots Perspective

    NASA Technical Reports Server (NTRS)

    Walker, Laurence A.

    1997-01-01

    The X-36 is a 28% scale, remotely piloted research aircraft, designed to demonstrate tailless fighter agility. Powered by a modified Williams International F-112 jet engine, the X-36 uses thrust vectoring and a fly-by-wire control system. Although too small for an onboard pilot, a full-sized remote cockpit was designed to virtually place the test pilot into the aircraft using a variety of innovative techniques. To date, 22 flights have been flown, successfully completing the second phase of testing. Handling qualities have been matching predictions; the test operation is flown similarly to that for full sized manned aircraft. All takeoffs, test maneuvers and landings are flown by the test pilot, affording a greater degree of flexibility and the ability to handle the inevitable unknowns which may occur during highly experimental test programs. The cockpit environment, cues, and display techniques used in this effort have proven to enhance the 'virtual' test pilot's awareness and have helped ensure a successful RPV test program.

  12. Photocatalytic treatment of an industrial effluent using artificial and solar UV radiation: an operational cost study on a pilot plant scale.

    PubMed

    Durán, A; Monteagudo, J M; San Martín, I

    2012-05-15

    The aim of this work was to study the operation costs of treating a real effluent from an integrated gasification combined cycle (IGCC) power station located in Spain. The study compares different homogeneous photocatalytic processes on a pilot plant scale using different types of radiation (artificial UV or solar UV with a compound parabolic collector). The efficiency of the processes was evaluated by an analysis of the total organic carbon (TOC) removed. The following processes were considered in the study: (i) a photo-Fenton process at an artificial UV pilot plant (with the initial addition of H(2)O(2)), (ii) a modified photo-Fenton process with continuous addition of H(2)O(2) and O(2) to the system and (iii) a ferrioxalate-assisted solar photo-Fenton process at a compound parabolic collector (CPC) pilot plant. The efficiency of these processes in degrading pollutants has been studied previously, and the results obtained in each of those studies have been published elsewhere. The operational costs due to the consumption of electrical energy, reagents and catalysts were calculated from the optimal conditions of each process. The results showed that the solar photo-Fenton system was economically feasible, being able to achieve up to 75% mineralization with a total cost of 6 €/m(3), which can be reduced to 3.6 €/m(3) by subtracting the electrical costs because the IGCC plant is self-sufficient in terms of energy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. FY 2008 Next Generation Safeguards Initiative International Safeguards Education and Training Pilot Progerams Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreicer, M; Anzelon, G; Essner, J

    2008-10-17

    Key component of the Next Generation Safeguards Initiative (NGSI) launched by the National Nuclear Security Administration is the development of human capital to meet present and future challenges to the safeguards regime. An effective university-level education in safeguards and related disciplines is an essential element in a layered strategy to rebuild the safeguards human resource capacity. Two pilot programs at university level, involving 44 students, were initiated and implemented in spring-summer 2008 and linked to hands-on internships at LANL or LLNL. During the internships, students worked on specific safeguards-related projects with a designated Laboratory Mentor to provide broader exposure tomore » nuclear materials management and information analytical techniques. The Safeguards and Nuclear Material Management pilot program was a collaboration between the Texas A&M University (TAMU), Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). It included a 16-lecture course held during a summer internship program. The instructors for the course were from LANL together with TAMU faculty and LLNL experts. The LANL-based course was shared with the students spending their internship at LLNL via video conference. A week-long table-top (or hands-on) exercise on was also conducted at LANL. The student population was a mix of 28 students from a 12 universities participating in a variety of summer internship programs held at LANL and LLNL. A large portion of the students were TAMU students participating in the NGSI pilot. The International Nuclear Safeguards Policy and Information Analysis pilot program was implemented at the Monterey Institute for International Studies (MIIS) in cooperation with LLNL. It included a two-week intensive course consisting of 20 lectures and two exercises. MIIS, LLNL, and speakers from other U.S. national laboratories (LANL, BNL) delivered lectures for the audience of 16 students. The majority of

  14. ARCHITECTURAL WALL SECTIONS OF HOT PILOT PLANT (CPP640). INL DRAWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARCHITECTURAL WALL SECTIONS OF HOT PILOT PLANT (CPP-640). INL DRAWING NUMBER 200-0640-00-279-111682. ALTERNATE ID NUMBER 8952-CPP-640-A-5. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  15. MISCELLANEOUS ARCHITECTURAL DETAILS OF HOT PILOT PLANT (CPP640). INL DRAWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MISCELLANEOUS ARCHITECTURAL DETAILS OF HOT PILOT PLANT (CPP-640). INL DRAWING NUMBER 200-640-00-279-111684. ALTERNATE ID NUMBER 8952-CPP-640-A-7. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  16. Laboratory meter-scale seismic monitoring of varying water levels in granular media

    NASA Astrophysics Data System (ADS)

    Pasquet, S.; Bodet, L.; Bergamo, P.; Guérin, R.; Martin, R.; Mourgues, R.; Tournat, V.

    2016-12-01

    Laboratory physical modelling and non-contacting ultrasonic techniques are frequently proposed to tackle theoretical and methodological issues related to geophysical prospecting. Following recent developments illustrating the ability of seismic methods to image spatial and/or temporal variations of water content in the vadose zone, we developed laboratory experiments aimed at testing the sensitivity of seismic measurements (i.e., pressure-wave travel times and surface-wave phase velocities) to water saturation variations. Ultrasonic techniques were used to simulate typical seismic acquisitions on small-scale controlled granular media presenting different water levels. Travel times and phase velocity measurements obtained at the dry state were validated with both theoretical models and numerical simulations and serve as reference datasets. The increasing water level clearly affects the recorded wave field in both its phase and amplitude, but the collected data cannot yet be inverted in the absence of a comprehensive theoretical model for such partially saturated and unconsolidated granular media. The differences in travel time and phase velocity observed between the dry and wet models show patterns that are interestingly coincident with the observed water level and depth of the capillary fringe, thus offering attractive perspectives for studying soil water content variations in the field.

  17. Investigation of flow behaviour of coal particles in a pilot-scale fluidized bed gasifier (FBG) using radiotracer technique.

    PubMed

    Pant, H J; Sharma, V K; Kamudu, M Vidya; Prakash, S G; Krishanamoorthy, S; Anandam, G; Rao, P Seshubabu; Ramani, N V S; Singh, Gursharan; Sonde, R R

    2009-09-01

    Knowledge of residence time distribution (RTD), mean residence time (MRT) and degree of axial mixing of solid phase is required for efficient operation of coal gasification process. Radiotracer technique was used to measure the RTD of coal particles in a pilot-scale fluidized bed gasifier (FBG). Two different radiotracers i.e. lanthanum-140 and gold-198 labeled coal particles (100 gm) were independently used as radiotracers. The radiotracer was instantaneously injected into the coal feed line and monitored at the ash extraction line at the bottom and gas outlet at the top of the gasifier using collimated scintillation detectors. The measured RTD data were treated and MRTs of coal/ash particles were determined. The treated data were simulated using tanks-in-series model. The simulation of RTD data indicated good degree of mixing with small fraction of the feed material bypassing/short-circuiting from the bottom of the gasifier. The results of the investigation were found useful for optimizing the design and operation of the FBG, and scale-up of the gasification process.

  18. 14 CFR 61.94 - Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or a...

  19. 14 CFR 61.94 - Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or a...

  20. 14 CFR 61.94 - Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or a...

  1. 14 CFR 61.94 - Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or a...

  2. 14 CFR 61.94 - Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or a...

  3. 76 FR 54095 - Pilot in Command Proficiency Check and Other Changes to the Pilot and Pilot School Certification...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... Command Proficiency Check and Other Changes to the Pilot and Pilot School Certification Rules AGENCY... regulations concerning pilot, flight instructor, and pilot school certification. This rule will require pilot... and permits pilot schools and provisional pilot schools to apply for a combined private pilot...

  4. CORRELATIONS BETWEEN HOMOLOGUE CONCENTRATIONS OF PCDD/FS AND TOXIC EQUIVALENCY VALUES IN LABORATORY-, PACKAGE BOILER-, AND FIELD-SCALE INCINERATORS

    EPA Science Inventory

    The toxic equivalency (TEQ) values of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) are predicted with a model based on the homologue concentrations measured from a laboratory-scale reactor (124 data points), a package boiler (61 data points), and ...

  5. Laboratory study of biological retention for urban stormwater management.

    PubMed

    Davis, A P; Shokouhian, M; Sharma, H; Minami, C

    2001-01-01

    Urban stormwater runoff contains a broad range of pollutants that are transported to natural water systems. A practice known as biological retention (bioretention) has been suggested to manage stormwater runoff from small, developed areas. Bioretention facilities consist of porous soil, a topping layer of hardwood mulch, and a variety of different plant species. A detailed study of the characteristics and performance of bioretention systems for the removal of several heavy metals (copper, lead, and zinc) and nutrients (phosphorus, total Kjeldahl nitrogen [TKN], ammonium, and nitrate) from a synthetic urban stormwater runoff was completed using batch and column adsorption studies along with pilot-scale laboratory systems. The roles of the soil, mulch, and plants in the removal of heavy metals and nutrients were evaluated to estimate the treatment capacity of laboratory bioretention systems. Reductions in concentrations of all metals were excellent (> 90%) with specific metal removals of 15 to 145 mg/m2 per event. Moderate reductions of TKN, ammonium, and phosphorus levels were found (60 to 80%). Little nitrate was removed, and nitrate production was noted in several cases. The importance of the mulch layer in metal removal was identified. Overall results support the use of bioretention as a stormwater best management practice and indicate the need for further research and development.

  6. INTERIOR PHOTO OF HOT PILOT PLANT SECOND FLOOR WITH SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR PHOTO OF HOT PILOT PLANT SECOND FLOOR WITH SOUTH SECTION OF SHIELDED CAVE IN FOREGROUND (CPP-640) LOOKING NORTHWEST. INL PHOTO NUMBER HD-54-40-1. Mike Crane, Photographer, 7/2006 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  7. Non-local features of a hydrodynamic pilot-wave system

    NASA Astrophysics Data System (ADS)

    Nachbin, Andre; Couchman, Miles; Bush, John

    2016-11-01

    A droplet walking on the surface of a vibrating fluid bath constitutes a pilot-wave system of the form envisaged for quantum dynamics by Louis de Broglie: a particle moves in resonance with its guiding wave field. We here present an examination of pilot-wave hydrodynamics in a confined domain. Specifically, we present a one-dimensional water wave model that describes droplets walking in single and multiple cavities. The cavities are separated by a submerged barrier, and so allow for the study of tunneling. They also highlight the non-local dynamical features arising due to the spatially-extended wave field. Results from computational simulations are complemented by laboratory experiments.

  8. Laboratory Manual (For Concrete Instruction Course); Instructor's Guide, Pilot Program Edition.

    ERIC Educational Resources Information Center

    Portland Cement Association, Cleveland, OH.

    This laboratory manual, prepared for a 2-year program in junior colleges and technical institutes, is designed to accompany the instructional materials to train persons for employment as technicians in the cement and concrete industries. Included are 16 laboratory assignments for each of the following: (1) Principles of Concrete, (2) Concrete in…

  9. Cognitive models of pilot categorization and prioritization of flight-deck information

    NASA Technical Reports Server (NTRS)

    Jonsson, Jon E.; Ricks, Wendell R.

    1995-01-01

    In the past decade, automated systems on modern commercial flight decks have increased dramatically. Pilots now regularly interact and share tasks with these systems. This interaction has led human factors research to direct more attention to the pilot's cognitive processing and mental model of the information flow occurring on the flight deck. The experiment reported herein investigated how pilots mentally represent and process information typically available during flight. Fifty-two commercial pilots participated in tasks that required them to provide similarity ratings for pairs of flight-deck information and to prioritize this information under two contextual conditions. Pilots processed the information along three cognitive dimensions. These dimensions included the flight function and the flight action that the information supported and how frequently pilots refer to the information. Pilots classified the information as aviation, navigation, communications, or systems administration information. Prioritization results indicated a high degree of consensus among pilots, while scaling results revealed two dimensions along which information is prioritized. Pilot cognitive workload for flight-deck tasks and the potential for using these findings to operationalize cognitive metrics are evaluated. Such measures may be useful additions for flight-deck human performance evaluation.

  10. Acoustic Emission Patterns and the Transition to Ductility in Sub-Micron Scale Laboratory Earthquakes

    NASA Astrophysics Data System (ADS)

    Ghaffari, H.; Xia, K.; Young, R.

    2013-12-01

    We report observation of a transition from the brittle to ductile regime in precursor events from different rock materials (Granite, Sandstone, Basalt, and Gypsum) and Polymers (PMMA, PTFE and CR-39). Acoustic emission patterns associated with sub-micron scale laboratory earthquakes are mapped into network parameter spaces (functional damage networks). The sub-classes hold nearly constant timescales, indicating dependency of the sub-phases on the mechanism governing the previous evolutionary phase, i.e., deformation and failure of asperities. Based on our findings, we propose that the signature of the non-linear elastic zone around a crack tip is mapped into the details of the evolutionary phases, supporting the formation of a strongly weak zone in the vicinity of crack tips. Moreover, we recognize sub-micron to micron ruptures with signatures of 'stiffening' in the deformation phase of acoustic-waveforms. We propose that the latter rupture fronts carry critical rupture extensions, including possible dislocations faster than the shear wave speed. Using 'template super-shear waveforms' and their network characteristics, we show that the acoustic emission signals are possible super-shear or intersonic events. Ref. [1] Ghaffari, H. O., and R. P. Young. "Acoustic-Friction Networks and the Evolution of Precursor Rupture Fronts in Laboratory Earthquakes." Nature Scientific reports 3 (2013). [2] Xia, Kaiwen, Ares J. Rosakis, and Hiroo Kanamori. "Laboratory earthquakes: The sub-Rayleigh-to-supershear rupture transition." Science 303.5665 (2004): 1859-1861. [3] Mello, M., et al. "Identifying the unique ground motion signatures of supershear earthquakes: Theory and experiments." Tectonophysics 493.3 (2010): 297-326. [4] Gumbsch, Peter, and Huajian Gao. "Dislocations faster than the speed of sound." Science 283.5404 (1999): 965-968. [5] Livne, Ariel, et al. "The near-tip fields of fast cracks." Science 327.5971 (2010): 1359-1363. [6] Rycroft, Chris H., and Eran Bouchbinder

  11. A tutorial on pilot studies: the what, why and how

    PubMed Central

    2010-01-01

    Pilot studies for phase III trials - which are comparative randomized trials designed to provide preliminary evidence on the clinical efficacy of a drug or intervention - are routinely performed in many clinical areas. Also commonly know as "feasibility" or "vanguard" studies, they are designed to assess the safety of treatment or interventions; to assess recruitment potential; to assess the feasibility of international collaboration or coordination for multicentre trials; to increase clinical experience with the study medication or intervention for the phase III trials. They are the best way to assess feasibility of a large, expensive full-scale study, and in fact are an almost essential pre-requisite. Conducting a pilot prior to the main study can enhance the likelihood of success of the main study and potentially help to avoid doomed main studies. The objective of this paper is to provide a detailed examination of the key aspects of pilot studies for phase III trials including: 1) the general reasons for conducting a pilot study; 2) the relationships between pilot studies, proof-of-concept studies, and adaptive designs; 3) the challenges of and misconceptions about pilot studies; 4) the criteria for evaluating the success of a pilot study; 5) frequently asked questions about pilot studies; 7) some ethical aspects related to pilot studies; and 8) some suggestions on how to report the results of pilot investigations using the CONSORT format. PMID:20053272

  12. The Italian pilot external quality assessment program for cystic fibrosis sweat test.

    PubMed

    Salvatore, Marco; Floridia, Giovanna; Amato, Annalisa; Censi, Federica; Carta, Claudio; de Stefano, Maria Chiara; Ferrari, Gianluca; Tosto, Fabrizio; Capoluongo, Ettore; Caruso, Ubaldo; Castaldo, Giuseppe; Cirilli, Natalia; Corbetta, Carlo; Padoan, Rita; Raia, Valeria; Taruscio, Domenica

    2016-05-01

    Sweat chloride test is the gold standard test for cystic fibrosis (CF) diagnosis. In 2014 the Istituto Superiore di Sanità established the Italian pilot external quality assessment program for CF sweat test (IEQA-ST). Ten laboratories, included among the 33 Italian CF Referral Centers, were selected and enrolled on the basis of their attitude to perform sweat test (ST) analysis by using methods recommended by the Italian Guidelines. They received three different sweat-like samples (normal, borderline and pathologic chloride concentration), with mock clinical indications, for analysis according to routine procedures. Assessment, performed by a panel of experts, covered analytical performance, interpretation and reporting of results; categories of "poor" and "satisfactory" performance were not defined. All data were managed through a web utility. The program identified important areas of interest and, in some case, of concern. It is important to underline that results are referred to a small proportion, i.e. about 30%, of Italian laboratories performing CF ST in the context of the Referral Centers. Data collected highlight the importance of participation in EQA programs as it may improve laboratory/clinical performance; our study represents a model for the setting up of a large-scale EQA scheme for ST. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  13. Establishment and assessment of a novel cleaner production process of corn grain fuel ethanol.

    PubMed

    Wang, Ke; Zhang, Jianhua; Tang, Lei; Zhang, Hongjian; Zhang, Guiying; Yang, Xizhao; Liu, Pei; Mao, Zhonggui

    2013-11-01

    An integrated corn ethanol-methane fermentation system was proposed to solve the problem of stillage handling, where thin stillage was treated by anaerobic digestion and then reused to make mash for the following ethanol fermentation. This system was evaluated at laboratory and pilot scale. Anaerobic digestion of thin stillage ran steadily with total chemical oxygen demand removal efficiency of 98% at laboratory scale and 97% at pilot scale. Ethanol production was not influenced by recycling anaerobic digestion effluent at laboratory and pilot scale. Compared with dried distillers' grains with solubles produced in conventional process, dried distillers' grains in the proposed system exhibited higher quality because of increased protein concentration and decreased salts concentration. Energetic assessment indicated that application of this novel process enhanced the net energy balance ratio from 1.26 (conventional process) to 1.76. In conclusion, the proposed system possessed technical advantage over the conventional process for corn fuel ethanol production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Laboratory studies of 2H evaporator scale dissolution in dilute nitric acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L.

    The rate of 2H evaporator scale solids dissolution in dilute nitric acid has been experimentally evaluated under laboratory conditions in the SRNL shielded cells. The 2H scale sample used for the dissolution study came from the bottom of the evaporator cone section and the wall section of the evaporator cone. The accumulation rate of aluminum and silicon, assumed to be the two principal elemental constituents of the 2H evaporator scale aluminosilicate mineral, were monitored in solution. Aluminum and silicon concentration changes, with heating time at a constant oven temperature of 90 deg C, were used to ascertain the extent ofmore » dissolution of the 2H evaporator scale mineral. The 2H evaporator scale solids, assumed to be composed of mostly aluminosilicate mineral, readily dissolves in 1.5 and 1.25 M dilute nitric acid solutions yielding principal elemental components of aluminum and silicon in solution. The 2H scale dissolution rate constant, based on aluminum accumulation in 1.5 and 1.25 M dilute nitric acid solution are, respectively, 9.21E-04 ± 6.39E-04 min{sup -1} and 1.07E-03 ± 7.51E-05 min{sup -1}. Silicon accumulation rate in solution does track the aluminum accumulation profile during the first few minutes of scale dissolution. It however diverges towards the end of the scale dissolution. This divergence therefore means the aluminum-to-silicon ratio in the first phase of the scale dissolution (non-steady state conditions) is different from the ratio towards the end of the scale dissolution. Possible causes of this change in silicon accumulation in solution as the scale dissolution progresses may include silicon precipitation from solution or the 2H evaporator scale is a heterogeneous mixture of aluminosilicate minerals with several impurities. The average half-life for the decomposition of the 2H evaporator scale mineral in 1.5 M nitric acid is 12.5 hours, while the half-life for the decomposition of the 2H evaporator scale in 1.25 M nitric acid is

  15. Linking the Pilot Structural Model and Pilot Workload

    NASA Technical Reports Server (NTRS)

    Bachelder, Edward; Hess, Ronald; Aponso, Bimal; Godfroy-Cooper, Martine

    2018-01-01

    Behavioral models are developed that closely reproduced pulsive control response of two pilots using markedly different control techniques while conducting a tracking task. An intriguing find was that the pilots appeared to: 1) produce a continuous, internally-generated stick signal that they integrated in time; 2) integrate the actual stick position; and 3) compare the two integrations to either issue or cease a pulse command. This suggests that the pilots utilized kinesthetic feedback in order to sense and integrate stick position, supporting the hypothesis that pilots can access and employ the proprioceptive inner feedback loop proposed by Hess's pilot Structural Model. A Pilot Cost Index was developed, whose elements include estimated workload, performance, and the degree to which the pilot employs kinesthetic feedback. Preliminary results suggest that a pilot's operating point (parameter values) may be based on control style and index minimization.

  16. Los Alamos National Security, LLC Request for Interest (RFI) for Investment Mentors to participate in the Laboratory’s Entrepreneurial Postdoctoral Pilot.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clow, Shandra Deann

    Los Alamos National Laboratory (LANL) is committed to understanding how the role of venture funding, new investment mechanisms, and fostering the development of a culture of entrepreneurship may enhance the Laboratory and bring strength and creativity to its people. LANL, in partnership with the University of California (UC), has created the Entrepreneurial Postdoctoral Fellowship Pilot (Pilot) to provide an immersion-based learning opportunity to post-doctoral researchers to develop and practice skills in entrepreneurship and comercialization.

  17. ARCHITECTURAL FLOOR PLAN OF OPERATING AREA HOT PILOT PLANT (CPP640). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARCHITECTURAL FLOOR PLAN OF OPERATING AREA HOT PILOT PLANT (CPP-640). INL DRAWING NUMBER 200-0640-00-279-111678. ALTERNATE ID NUMBER 8952-CPP-640-A-1. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  18. WEST ELEVATION OF REMOTE ANALYTICAL FACILITY (CPP627) AND HOT PILOT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST ELEVATION OF REMOTE ANALYTICAL FACILITY (CPP-627) AND HOT PILOT PLANT (CPP-640) LOOKING NORTHEAST. INL PHOTO NUMBER HD-22-2-1. Mike Crane, Photographer, 11/1998 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  19. CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP640) OVERALL VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP-640) OVERALL VIEW LOOKING SOUTHEAST; CONSTRUCTION 34 PERCENT COMPLETE. INL PHOTO NUMBER NRTS-60-3034. Holmes, Photographer, 6/23/1960 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  20. ARCHITECTURAL DOOR DETAILS AND SCHEDULE OF HOT PILOT PLANT (CPP640). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARCHITECTURAL DOOR DETAILS AND SCHEDULE OF HOT PILOT PLANT (CPP-640). INL DRAWING NUMBER 200-640-00-279-111683. ALTERNATE ID NUMBER 8952-CPP-640-A-6. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  1. Pilot scale intensification of rubber seed (Hevea brasiliensis) oil via chemical interesterification using hydrodynamic cavitation technology.

    PubMed

    Bokhari, Awais; Yusup, Suzana; Chuah, Lai Fatt; Klemeš, Jiří Jaromír; Asif, Saira; Ali, Basit; Akbar, Majid Majeed; Kamil, Ruzaimah Nik M

    2017-10-01

    Chemical interesterification of rubber seed oil has been investigated for four different designed orifice devices in a pilot scale hydrodynamic cavitation (HC) system. Upstream pressure within 1-3.5bar induced cavities to intensify the process. An optimal orifice plate geometry was considered as plate with 1mm dia hole having 21 holes at 3bar inlet pressure. The optimisation results of interesterification were revealed by response surface methodology; methyl acetate to oil molar ratio of 14:1, catalyst amount of 0.75wt.% and reaction time of 20min at 50°C. HC is compared to mechanical stirring (MS) at optimised values. The reaction rate constant and the frequency factor of HC were 3.4-fold shorter and 3.2-fold higher than MS. The interesterified product was characterised by following EN 14214 and ASTM D 6751 international standards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A spatial disorientation predictor device to enhance pilot situational awareness regarding aircraft attitude

    NASA Technical Reports Server (NTRS)

    Chelette, T. L.; Repperger, Daniel W.; Albery, W. B.

    1991-01-01

    An effort was initiated at the Armstrong Aerospace Medical Research Laboratory (AAMRL) to investigate the improvement of the situational awareness of a pilot with respect to his aircraft's spatial orientation. The end product of this study is a device to alert a pilot to potentially disorienting situations. Much like a ground collision avoidance system (GCAS) is used in fighter aircraft to alert the pilot to 'pull up' when dangerous flight paths are predicted, this device warns the pilot to put a higher priority on attention to the orientation instrument. A Kalman filter was developed which estimates the pilot's perceived position and orientation. The input to the Kalman filter consists of two classes of data. The first class of data consists of noise parameters (indicating parameter uncertainty), conflict signals (e.g. vestibular and kinesthetic signal disagreement), and some nonlinear effects. The Kalman filter's perceived estimates are now the sum of both Class 1 data (good information) and Class 2 data (distorted information). When the estimated perceived position or orientation is significantly different from the actual position or orientation, the pilot is alerted.

  3. Final report and recommendations of the ESnet Authentication Pilot Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.R.; Moore, J.P.; Athey, C.L.

    1995-01-01

    To conduct their work, U.S. Department of Energy (DOE) researchers require access to a wide range of computing systems and information resources outside of their respective laboratories. Electronically communicating with peers using the global Internet has become a necessity to effective collaboration with university, industrial, and other government partners. DOE`s Energy Sciences Network (ESnet) needs to be engineered to facilitate this {open_quotes}collaboratory{close_quotes} while ensuring the protection of government computing resources from unauthorized use. Sensitive information and intellectual properties must be protected from unauthorized disclosure, modification, or destruction. In August 1993, DOE funded four ESnet sites (Argonne National Laboratory, Lawrence Livermoremore » National Laboratory, the National Energy Research Supercomputer Center, and Pacific Northwest Laboratory) to begin implementing and evaluating authenticated ESnet services using the advanced Kerberos Version 5. The purpose of this project was to identify, understand, and resolve the technical, procedural, cultural, and policy issues surrounding peer-to-peer authentication in an inter-organization internet. The investigators have concluded that, with certain conditions, Kerberos Version 5 is a suitable technology to enable ESnet users to freely share resources and information without compromising the integrity of their systems and data. The pilot project has demonstrated that Kerberos Version 5 is capable of supporting trusted third-party authentication across an inter-organization internet and that Kerberos Version 5 would be practical to implement across the ESnet community within the U.S. The investigators made several modifications to the Kerberos Version 5 system that are necessary for operation in the current Internet environment and have documented other technical shortcomings that must be addressed before large-scale deployment is attempted.« less

  4. Modelling high Reynolds number wall–turbulence interactions in laboratory experiments using large-scale free-stream turbulence

    PubMed Central

    Dogan, Eda; Hearst, R. Jason

    2017-01-01

    A turbulent boundary layer subjected to free-stream turbulence is investigated in order to ascertain the scale interactions that dominate the near-wall region. The results are discussed in relation to a canonical high Reynolds number turbulent boundary layer because previous studies have reported considerable similarities between these two flows. Measurements were acquired simultaneously from four hot wires mounted to a rake which was traversed through the boundary layer. Particular focus is given to two main features of both canonical high Reynolds number boundary layers and boundary layers subjected to free-stream turbulence: (i) the footprint of the large scales in the logarithmic region on the near-wall small scales, specifically the modulating interaction between these scales, and (ii) the phase difference in amplitude modulation. The potential for a turbulent boundary layer subjected to free-stream turbulence to ‘simulate’ high Reynolds number wall–turbulence interactions is discussed. The results of this study have encouraging implications for future investigations of the fundamental scale interactions that take place in high Reynolds number flows as it demonstrates that these can be achieved at typical laboratory scales. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167584

  5. Modelling high Reynolds number wall-turbulence interactions in laboratory experiments using large-scale free-stream turbulence.

    PubMed

    Dogan, Eda; Hearst, R Jason; Ganapathisubramani, Bharathram

    2017-03-13

    A turbulent boundary layer subjected to free-stream turbulence is investigated in order to ascertain the scale interactions that dominate the near-wall region. The results are discussed in relation to a canonical high Reynolds number turbulent boundary layer because previous studies have reported considerable similarities between these two flows. Measurements were acquired simultaneously from four hot wires mounted to a rake which was traversed through the boundary layer. Particular focus is given to two main features of both canonical high Reynolds number boundary layers and boundary layers subjected to free-stream turbulence: (i) the footprint of the large scales in the logarithmic region on the near-wall small scales, specifically the modulating interaction between these scales, and (ii) the phase difference in amplitude modulation. The potential for a turbulent boundary layer subjected to free-stream turbulence to 'simulate' high Reynolds number wall-turbulence interactions is discussed. The results of this study have encouraging implications for future investigations of the fundamental scale interactions that take place in high Reynolds number flows as it demonstrates that these can be achieved at typical laboratory scales.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  6. Clinical pathology accreditation: standards for the medical laboratory

    PubMed Central

    Burnett, D; Blair, C; Haeney, M R; Jeffcoate, S L; Scott, K W M; Williams, D L

    2002-01-01

    This article describes a new set of revised standards for the medical laboratory, which have been produced by Clinical Pathology Accreditation (UK) Ltd (CPA). The original standards have been in use since 1992 and it was recognised that extensive revision was required. A standards revision group was established by CPA and this group used several international standards as source references, so that the resulting new standards are compatible with the most recent international reference sources. The aim is to make the assessment of medical laboratories as objective as possible in the future. CPA plans to introduce these standards in the UK in 2003 following extensive consultation with professional bodies, piloting in selected laboratories, and training of assessors. PMID:12354795

  7. INTERIOR PHOTO OF HOT PILOT PLANT SECOND FLOOR DEPICTING DETAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR PHOTO OF HOT PILOT PLANT SECOND FLOOR DEPICTING DETAIL OF SHIELDED CAVE (CPP-640) LOOKING SOUTHWEST. PHOTO TAKEN FROM NORTH. INL PHOTO NUMBER HD-54-40-2. Mike Crane, Photographer, 7/2006 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  8. Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system.

    PubMed

    Peng, Yongzhen; Hou, Hongxun; Wang, Shuying; Cui, Youwei; Zhiguo, Yuan

    2008-01-01

    To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobic-anoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (r(SND)) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and r(SND) dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NO(x) to NH4+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified.

  9. Performance of granular activated carbon to remove micropollutants from municipal wastewater-A meta-analysis of pilot- and large-scale studies.

    PubMed

    Benstoem, Frank; Nahrstedt, Andreas; Boehler, Marc; Knopp, Gregor; Montag, David; Siegrist, Hansruedi; Pinnekamp, Johannes

    2017-10-01

    For reducing organic micropollutants (MP) in municipal wastewater effluents, granular activated carbon (GAC) has been tested in various studies. We did systematic literature research and found 44 studies dealing with the adsorption of MPs (carbamazepine, diclofenac, sulfamethoxazole) from municipal wastewater on GAC in pilot- and large-scale plants. Within our meta-analysis we plot the bed volumes (BV [m 3 water /m 3 GAC ]) until the breakthrough criterion of MP-BV20% was reached, dependent on potential relevant parameters (empty bed contact time EBCT, influent DOC DOC 0 and manufacturing method). Moreover, we performed statistical tests (ANOVAs) to check the results for significance. Single adsorbers operating time differs i.e. by 2500% until breakthrough of diclofenac-BV20% was reached (800-20,000 BV). There was still elimination of the "very well/well" adsorbable MPs such as carbamazepine and diclofenac even when the equilibrium of DOC had already been reached. No strong statistical significance of EBCT and DOC 0 on MP-BV20% could be found due to lack of data and the high heterogeneity of the studies using GAC of different qualities. In further studies, adsorbers should be operated ≫20,000 BV for exact calculation of breakthrough curves, and the following parameters should be recorded: selected MPs; DOC 0; UVA 254 ; EBCT; product name, manufacturing method and raw material of GAC; suspended solids (TSS); backwash interval; backwash program and pressure drop within adsorber. Based on our investigations we generally recommend using reactivated GAC to reduce the environmental impact and to carry out tests on pilot scale to collect reliable data for process design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Motion cue effects on human pilot dynamics in manual control

    NASA Technical Reports Server (NTRS)

    Washizu, K.; Tanaka, K.; Endo, S.; Itoko, T.

    1977-01-01

    Two experiments were conducted to study the motion cue effects on human pilots during tracking tasks. The moving-base simulator of National Aerospace Laboratory was employed as the motion cue device, and the attitude director indicator or the projected visual field was employed as the visual cue device. The chosen controlled elements were second-order unstable systems. It was confirmed that with the aid of motion cues the pilot workload was lessened and consequently the human controllability limits were enlarged. In order to clarify the mechanism of these effects, the describing functions of the human pilots were identified by making use of the spectral and the time domain analyses. The results of these analyses suggest that the sensory system of the motion cues can yield the differential informations of the signal effectively, which coincides with the existing knowledges in the physiological area.

  11. Slurry spray distribution within a simulated laboratory scale spray dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertone, P.C.

    1979-12-20

    It was found that the distribution of liquid striking the sides of a simulated room temperature spray dryer was not significantly altered by the choice of nozles, nor by a variation in nozzle operating conditions. Instead, it was found to be a function of the spray dryer's configuration. A cocurrent flow of air down the drying cylinder, not possible with PNL's closed top, favorably altered the spray distribution by both decreasing the amount of liquid striking the interior of the cylinder from 72 to 26% of the feed supplied, and by shifting the zone of maximum impact from 1.0 tomore » 1.7 feet from the nozzle. These findings led to the redesign of the laboratory scale spray dryer to be tested at the Savannah River Plant. The diameter of the drying chamber was increased from 5 to 8 inches, and a cocurrent flow of air was established with a closed recycle. Finally, this investigation suggested a drying scheme which offers all the advantages of spray drying without many of its limitations.« less

  12. Pilot Joseph Algranti entering a McDonnell F2H-2B Banshee

    NASA Image and Video Library

    1958-02-21

    Pilot Joe Algranti climbs into the cockpit of a McDonnell F2H-2B Banshee on the tarmac at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. Nine months later the laboratory became part of the new National Aeronautics and Space Administration, and the NACA logo was permanently removed from the hangar. Algranti served as a Navy fighter pilot from 1946 to 1947 and earned a Physics degree from the University of North Carolina. He joined the NACA Lewis staff in 1951 witnessed the technological transformation from high speed flight to space. At Lewis Algranti piloted icing research flights, operated the liquid-hydrogen pump system for Project Bee, and served as the primary test subject for the Multi-Axis Space Test Inertia Facility (MASTIF). The MASTIF was a device used to train the Mercury astronauts how to control a spinning capsule. In 1960, Algranti and fellow Lewis pilots Warren North and Harold Ream transferred to NASA’s Space Task Group at Langley to actively participate in the space program. Two years later, Algranti became the Chief of Aircraft Operations and Chief Test Pilot at NASA’s new Manned Space Center in Houston. Algranti earned notoriety in 1968 when he test flew the first Lunar Landing Training Vehicle. He operated the vehicle four minutes before being forced to eject moments before it impacted the ground. Algranti also flew the NASA’s modified Boeing 747 Shuttle Carrier Aircraft, the Super Guppy, and the KC-135 "Vomit Comet" training aircraft. He retired in 1992 with over 40 years of NASA service.

  13. Pilot scale aided-phytoremediation of a co-contaminated soil.

    PubMed

    Marchand, Charlotte; Mench, Michel; Jani, Yahya; Kaczala, Fabio; Notini, Peter; Hijri, Mohamed; Hogland, William

    2018-03-15

    A pilot scale experiment was conducted to investigate the aided-phytoextraction of metals and the aided-phytodegradation of petroleum hydrocarbons (PHC) in a co-contaminated soil. First, this soil was amended with compost (10% w/w) and assembled into piles (Unp-10%C). Then, a phyto-cap of Medicago sativa L. either in monoculture (MS-10%C) or co-cropped with Helianthus annuus L. as companion planting (MSHA-10%C) was sown on the topsoil. Physico-chemical parameters and contaminants in the soil and its leachates were measured at the beginning and the end of the first growth season (after five months). In parallel, residual soil ecotoxicity was assessed using the plant species Lepidium sativum L. and the earthworm Eisenia fetida Savigny, 1826, while the leachate ecotoxicity was assessed using Lemna minor L. After 5months, PH C10-C40, PAH-L, PAH-M PAH-H, Pb and Cu concentrations in the MS-10%C soil were significantly reduced as compared to the Unp-10%C soil. Metal uptake by alfalfa was low but their translocation to shoots was high for Mn, Cr, Co and Zn (transfer factor (TF) >1), except for Cu and Pb. Alfalfa in monoculture reduced electrical conductivity, total organic C and Cu concentration in the leachate while pH and dissolved oxygen increased. Alfalfa co-planting with sunflower did not affect the extraction of inorganic contaminants from the soil, the PAH (M and H) degradation and was less efficient for PH C10-C40 and PAH-L as compared to alfalfa monoculture. The co-planting reduced shoot and root Pb concentrations. The residual soil ecotoxicity after 5months showed a positive effect of co-planting on L. sativum shoot dry weight (DW) yield. However, high contaminant concentrations in soil and leachate still inhibited the L. sativum root DW yield, earthworm development, and L. minor growth rate. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Technicians assist STS-41 Pilot Cabana his parachute prior to egress training

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Technicians (training personnel) assist STS-41 Discovery, Orbiter Vehicle (OV) 103, Pilot Robert D. Cabana with his launch and entry suit (LES) parachute prior to emergency egress training exercises in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A.

  15. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects

    NASA Astrophysics Data System (ADS)

    Courtney, Amy C.; Andrusiv, Lubov P.; Courtney, Michael W.

    2012-04-01

    This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile.

  16. NORTH ELEVATION OF HOT PILOT PLANT (CPP640) LOOKING SOUTH AFTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH ELEVATION OF HOT PILOT PLANT (CPP-640) LOOKING SOUTH AFTER REMOTE ANALYTICAL FACILITY (CPP-627) WAS REMOVED. PHOTO NUMBER HD-54-33-2. Mike Crane, Photographer, 7/2006 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  17. Virtual Laboratories in Science Education: Students' Motivation and Experiences in Two Tertiary Biology Courses

    ERIC Educational Resources Information Center

    Dyrberg, Nadia Rahbek; Treusch, Alexander H.; Wiegand, Claudia

    2017-01-01

    Potential benefits of simulations and virtual laboratory exercises in natural sciences have been both theorised and studied recently. This study reports findings from a pilot study on student attitude, motivation and self-efficacy when using the virtual laboratory programme Labster. The programme allows interactive learning about the workflows and…

  18. Experimental and operational modal analysis of a laboratory scale model of a tripod support structure.

    NASA Astrophysics Data System (ADS)

    Luczak, M. M.; Mucchi, E.; Telega, J.

    2016-09-01

    The goal of the research is to develop a vibration-based procedure for the identification of structural failures in a laboratory scale model of a tripod supporting structure of an offshore wind turbine. In particular, this paper presents an experimental campaign on the scale model tested in two stages. Stage one encompassed the model tripod structure tested in air. The second stage was done in water. The tripod model structure allows to investigate the propagation of a circumferential representative crack of a cylindrical upper brace. The in-water test configuration included the tower with three bladed rotor. The response of the structure to the different waves loads were measured with accelerometers. Experimental and operational modal analysis was applied to identify the dynamic properties of the investigated scale model for intact and damaged state with different excitations and wave patterns. A comprehensive test matrix allows to assess the differences in estimated modal parameters due to damage or as potentially introduced by nonlinear structural response. The presented technique proves to be effective for detecting and assessing the presence of representative cracks.

  19. A Reverse Osmosis System for an Advanced Separation Process Laboratory.

    ERIC Educational Resources Information Center

    Slater, C. S.; Paccione, J. D.

    1987-01-01

    Focuses on the development of a pilot unit for use in an advanced separations process laboratory in an effort to develop experiments on such processes as reverse osmosis, ultrafiltration, adsorption, and chromatography. Discusses reverse osmosis principles, the experimental system design, and some experimental studies. (TW)

  20. SETTING UP A LABORATORY AB INITIO IN A REMOTE LOCATION

    EPA Science Inventory

    For many years the USEPA's National Risk Management Research Laboratory in Cincinnati, OH has operated a pilot plant approximately 5 kilometers from its main research facility. Originally, this Tet and Evaluation (T&E) facility was sited to be adjacent to the City of Cincinnati's...