Sample records for laboratory pnnl site

  1. EMP Attachment 3 DOE-SC PNNL Site Dose Assessment Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Sandra F.

    2011-12-21

    This Dose Assessment Guidance (DAG) describes methods to use to determine the Maximally-Exposed Individual (MEI) location and to estimate dose impact to that individual under the U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest National Laboratory (PNNL) Site Environmental Monitoring Plan (EMP). This guidance applies to public dose from radioactive material releases to the air from PNNL Site operations. This document is an attachment to the Pacific Northwest National Laboratory (PNNL) Environmental Monitoring Plan (EMP) and describes dose assessment guidance for radiological air emissions. The impact of radiological air emissions from the U.S. Department of Energy Office ofmore » Science (DOE-SC) PNNL Site is indicated by dose estimates to a maximally exposed member of the public, referred to as the maximally exposed individual (MEI). Reporting requirements associated with dose to members of the public from radiological air emissions are in 40 CFR Part 61.94, WAC 246-247-080, and DOE Order 458.1. The DOE Order and state standards for dose from radioactive air emissions are consistent with U.S. Environmental Protection Agency (EPA) dose standards in 40 CFR 61.92 (i.e., 10 mrem/yr to a MEI). Despite the fact that the current Contract Requirements Document (CRD) for the DOE-SC PNNL Site operations does not include the requirement to meet DOE CRD 458.1, paragraph 2.b, public dose limits, the DOE dose limits would be met when EPA limits are met.« less

  2. Leadership and Stewardship of the Laboratory (Objective 4.1) Notable Outcome - Phase II Alternative Analysis and PNNL Site Plan Recommendation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pittman, Jeffery P.; Cassidy, Stephen R.; Mosey, Whitney LC

    2013-07-31

    Pacific Northwest National Laboratory (PNNL) and the Pacific Northwest Site Office (PNSO) have recently completed an effort to identify the current state of the campus and gaps that exist with regards to space needs, facilities and infrastructure. This effort has been used to establish a campus strategy to ensure PNNL is ready to further the United States (U.S.) Department of Energy (DOE) mission. Ten-year business projections and the impacts on space needs were assessed and incorporated into the long-term facility plans. In identifying/quantifying the space needs for PNNL, the following categories were addressed: Multi-purpose Programmatic (wet chemistry and imaging laboratorymore » space), Strategic (Systems Engineering and Computation Analytics, and Collaboration space), Remediation (space to offset the loss of the Research Technology Laboratory [RTL] Complex due to decontamination and demolition), and Optimization (the exit of older and less cost-effective facilities). The findings of the space assessment indicate a need for wet chemistry space, imaging space, and strategic space needs associated with systems engineering and collaboration space.« less

  3. Radiochemical Processing Laboratory (RPL) at PNNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peurrung, Tony; Clark, Sue; Bryan, Sam

    2017-03-23

    Nuclear research is one of the core components of PNNL's mission. The centerpiece of PNNL's nuclear research is the Radiochemical Processing Laboratory (RPL), a Category 2 nuclear facility with state-of-the-art instrumentation, scientific expertise, and specialized capabilities that enable research with significant quantities of fissionable materials and other radionuclides—from tritium to plutonium. High impact radiological research has been conducted in the RPL since the 1950's, when nuclear weapons and energy production at Hanford were at the forefront of national defense. Since then, significant investments have been made in the RPL to maintain it as a premier nuclear science research facility supportingmore » multiple programs. Most recently, PNNL is developing a world-class analytical electron microscopy facility dedicated to the characterization of radiological materials.« less

  4. 2010 Ecological Survey of the Pacific Northwest National Laboratory Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamness, Michele A.; Perry, Christopher; Downs, Janelle L.

    The U.S. Department of Energy (DOE) Pacific Northwest Site Office (PNSO) oversees and manages the DOE contract for the Pacific Northwest National Laboratory (PNNL), a DOE Office of Science multi-program laboratory located in Richland, Washington. PNSO is responsible for ensuring that all activities conducted on the PNNL Site comply with applicable laws, policies, and DOE orders. The DOE Pacific Northwest Site Office Cultural and Biological Resources Management Plan (DOE/PNSO 2008) addresses the requirement for annual surveys and monitoring for species of concern and to identify and map invasive species. In addition to the requirement for an annual survey, proposed projectmore » activities must be reviewed to assess any potential environmental consequences of conducting the project. The assessment process requires a thorough understanding of the resources present, the potential impacts of a proposed action to those resources, and the ultimate consequences of those actions. The PNNL Site is situated on the southeastern corner of the DOE Hanford Site, located at the north end of the city of Richland in south-central Washington. The site is bordered on the east by the Columbia River, on the west by Stevens Drive, and on the north by the Hanford Site 300 Area (Figure 1). The environmental setting of the PNNL Site is described in Larson and Downs (2009). There are currently two facilities on the PNNL Site: the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), and the recently completed Physical Sciences Facility (PSF). This report describes the results of the annual survey of the biological resources found on the undeveloped portions of the PNNL Site in 2010. A brief description of the methods PNNL ecologists used to conduct the surveys and the results of the surveys are presented. Actions taken to fully delineate noxious weed populations discovered in 2009 and efforts in 2010 to control those weeds also are described. Appendix A provides a list of

  5. 2011 Annual Ecological Survey: Pacific Northwest National Laboratory Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, James M.; Chamness, Michele A.

    The U.S. Department of Energy (DOE) Pacific Northwest Site Office (PNSO) oversees and manages the DOE contract for the Pacific Northwest National Laboratory (PNNL), a DOE Office of Science multi-program laboratory located in Richland, Washington. PNSO is responsible for ensuring that all activities conducted on the PNNL site comply with applicable laws, policies, and DOE Orders. The DOE Pacific Northwest Site Office Cultural and Biological Resources Management Plan (DOE/PNSO 2008) addresses the requirement for annual surveys and monitoring for species of concern and to identify and map invasive species. In addition to the requirement for an annual survey, proposed projectmore » activities must be reviewed to assess any potential environmental consequences of conducting the project. The assessment process requires a thorough understanding of the resources present, the potential impacts of a proposed action to those resources, and the ultimate consequences of those actions. The PNNL site is situated on the southeastern corner of the DOE Hanford Site, located at the north end of the city of Richland in south-central Washington. The site is bordered on the east by the Columbia River, on the west by Stevens Drive, and on the north by the Hanford Site 300 Area (Figure 1). The environmental setting of the PNNL site is described in Larson and Downs (2009). There are currently two facilities on the PNNL site: the William R. Wiley Environmental Molecular Sciences Laboratory and the Physical Sciences Facility. This report describes the annual survey of biological resources found on the undeveloped upland portions of the PNNL site. The annual survey is comprised of a series of individual field surveys conducted on various days in late May and throughout June 2011. A brief description of the methods PNNL ecologists used to conduct the baseline surveys and a summary of the results of the surveys are presented. Appendix A provides a list of plant and animal species identified

  6. Pacific Northwest National Laboratory Annual Site Environmental Report for Calendar Year 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Joanne P.; Sackschewsky, Michael R.; Tilden, Harold T.

    2014-09-30

    Pacific Northwest National Laboratory (PNNL), one of the U.S. Department of Energy (DOE) Office of Science’s 10 national laboratories, provides innovative science and technology development in the areas of energy and the environment, fundamental and computational science, and national security. DOE’s Pacific Northwest Site Office (PNSO) is responsible for oversight of PNNL at its Campus in Richland, Washington, as well as its facilities in Sequim, Seattle, and North Bonneville, Washington, and Corvallis and Portland, Oregon.

  7. PNNL Results from 2010 CALIBAN Criticality Accident Dosimeter Intercomparison Exercise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Robin L.; Conrady, Matthew M.

    2011-10-28

    This document reports the results of the Hanford personnel nuclear accident dosimeter (PNAD) and fixed nuclear accident dosimeter (FNAD) during a criticality accident dosimeter intercomparison exercise at the CEA Valduc Center on September 20-23, 2010. Pacific Northwest National Laboratory (PNNL) participated in a criticality accident dosimeter intercomparison exercise at the Commissariat a Energie Atomique (CEA) Valduc Center near Dijon, France on September 20-23, 2010. The intercomparison exercise was funded by the U.S. Department of Energy, Nuclear Criticality Safety Program, with Lawrence Livermore National Laboratory as the lead Laboratory. PNNL was one of six invited DOE Laboratory participants. The other participatingmore » Laboratories were: Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Savannah River Site (SRS), the Y-12 National Security Complex at Oak Ridge, and Sandia National Laboratory (SNL). The goals of PNNL's participation in the intercomparison exercise were to test and validate the procedures and algorithm currently used for the Hanford personnel nuclear accident dosimeters (PNADs) on the metallic reactor, CALIBAN, to test exposures to PNADs from the side and from behind a phantom, and to test PNADs that were taken from a historical batch of Hanford PNADs that had varying degrees of degradation of the bare indium foil. Similar testing of the PNADs was done on the Valduc SILENE test reactor in 2009 (Hill and Conrady, 2010). The CALIBAN results are reported here.« less

  8. PNNL Supports Hanford Waste Treatment

    ScienceCinema

    None

    2018-04-16

    For more than 40 years, technical assistance from PNNL has supported the operations and processing of Hanford tank waste. Our expertise in tank waste chemistry, fluid dynamics and scaling, waste forms, and safety bases has helped to shape the site’s waste treatment baseline and solve operational challenges. The historical knowledge and unique scientific and technical expertise at PNNL are essential to the success of the Hanford mission.

  9. PNNL Hoisting and Rigging Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haynie, Todd O.; Fullmer, Michael W.

    2008-12-29

    This manual describes the safe and cost effective operation, inspection, maintenance, and repair requirements for cranes, hoists, fork trucks, slings, rigging hardware, and hoisting equipment. It is intended to be a user's guide to requirements, codes, laws, regulations, standards, and practices that apply to Pacific Northwest National Laboratory (PNNL) and its subcontractors.

  10. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the PNNL Richland Campus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Sandra F.; Moleta, Donna Grace L.; Meier, Kirsten M.

    This is the second revision of the DQO Supporting Radiological Air Emissions Monitoring for the Pacific Northwest National Laboratory Richland Campus. In January 2017, the PNNL Richland Campus expanded to the north by 0.35 km 2 (85.6 acres). Under the requirements of Washington State Department of Health Radioactive Air Emissions License (RAEL)-005, the PNNL Campus operates and maintains a radiological air monitoring program. This revision documents and evaluates the newly acquired acreage while also removing recreational land at the southwest, and also re-examines all active radioactive emission units on the PNNL Campus. No buildings are located on this new Campusmore » land, which was transferred from the U.S. DOE Hanford Site. Additionally, this revision includes information regarding the background monitoring station PNL-5 in Benton City, Washington, which became active in October 2016. The key purpose of this revision is to determine the adequacy of the existing environmental surveillance stations to monitor radiological air emissions in light of this northern boundary change.« less

  11. From Dr. Steven Ashby, Director of PNNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashby, Steven

    Powered by the creativity and imagination of more than 4,000 exceptional scientists, engineers and support professionals, at PNNL we advance the frontiers of science and address some of the most challenging problems in energy, the environment and national security. As DOE’s premier chemistry, environmental sciences and data analytics laboratory, we provide national leadership in four areas: deepening our understanding of climate science; inventing the future power grid; preventing nuclear proliferation; and speeding environmental remediation. Other areas where we make important contributions include energy storage, microbial biology and cyber security. PNNL also is home to EMSL (the Environmental Molecular Sciences Laboratory),more » one of DOE’s scientific user facilities. We apply these science strengths to address both national and international problems in complex adaptive systems that are too difficult for one institution to tackle alone. Take earth systems, for instance. The earth is a complex adaptive system because it involves everything from climate and microbial communities in the soil to emissions from cars and coal-powered industrial plants. All of these factors and others ultimately influence not only our environment and overall quality of life, but cause the earth to adapt in ways that must be further addressed. PNNL researchers are playing a vital role in finding solutions across every area of this complex adaptive system.« less

  12. Changing Safety Culture, One Step at a Time: The Value of the DOE-VPP Program at PNNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Patrick A.; Isern, Nancy G.

    2005-02-01

    The primary value of the Pacific Northwest National Laboratory (PNNL) Voluntary Protection Program (VPP) is the ongoing partnership between management and staff committed to change Laboratory safety culture one step at a time. VPP enables PNNL's safety and health program to transcend a top-down, by-the-book approach to safety, and it also raises grassroots safety consciousness by promoting a commitment to safety and health 24 hours a day, 7 days a week. PNNL VPP is a dynamic, evolving program that fosters innovative approaches to continuous improvement in safety and health performance at the Laboratory.

  13. PNNL Measurement Results for the 2016 Criticality Accident Dosimetry Exercise at the Nevada National Security Stite (IER-148)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathbone, Bruce A.; Morley, Shannon M.; Stephens, John A.

    The Pacific Northwest National Laboratory (PNNL) participated in a criticality accident dosimetry intercomparison exercise held at the Nevada National Security Site (NNSS) May 24-27, 2016. The exercise was administered by Lawrence Livermore National Laboratory (LLNL) and consisted of three exposures performed using the Godiva-IV critical assembly housed in the Device Assembly Facility (DAF) located on the NNSS site. The exercise allowed participants to test the ability of their nuclear accident dosimeters to meet the performance criteria in ANSI/HPS N13.3-2013, Dosimetry for Criticality Accidents and to obtain new measurement data for use in revising dose calculation methods and quick sort screeningmore » methods where appropriate. PNNL participated with new prototype Personal Nuclear Accident Dosimeter (PNAD) and Fixed Nuclear Accident Dosimeter (FNAD) designs as well as the existing historical PNAD design. The new prototype designs incorporate optically stimulated luminescence (OSL) dosimeters in place of thermoluminescence dosimeters (TLDs), among other design changes, while retaining the same set of activation foils historically used. The default dose calculation methodology established decades ago for use with activation foils in PNNL PNADs and FNADs was used to calculate neutron dose results for both the existing and prototype dosimeters tested in the exercise. The results indicate that the effective cross sections and/or dose conversion factors used historically need to be updated to accurately measure the operational quantities recommended for nuclear accident dosimetry in ANSI/HPS N13.3-2013 and to ensure PNAD and FNAD performance meets the ANSI/HPS N13.3-2013 performance criteria. The operational quantities recommended for nuclear accident dosimetry are personal absorbed dose, Dp(10), and ambient absorbed dose, D*(10).« less

  14. Technical Basis for PNNL Beryllium Inventory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Michelle Lynn

    2014-07-09

    The Department of Energy (DOE) issued Title 10 of the Code of Federal Regulations Part 850, “Chronic Beryllium Disease Prevention Program” (the Beryllium Rule) in 1999 and required full compliance by no later than January 7, 2002. The Beryllium Rule requires the development of a baseline beryllium inventory of the locations of beryllium operations and other locations of potential beryllium contamination at DOE facilities. The baseline beryllium inventory is also required to identify workers exposed or potentially exposed to beryllium at those locations. Prior to DOE issuing 10 CFR 850, Pacific Northwest Nuclear Laboratory (PNNL) had documented the beryllium characterizationmore » and worker exposure potential for multiple facilities in compliance with DOE’s 1997 Notice 440.1, “Interim Chronic Beryllium Disease.” After DOE’s issuance of 10 CFR 850, PNNL developed an implementation plan to be compliant by 2002. In 2014, an internal self-assessment (ITS #E-00748) of PNNL’s Chronic Beryllium Disease Prevention Program (CBDPP) identified several deficiencies. One deficiency is that the technical basis for establishing the baseline beryllium inventory when the Beryllium Rule was implemented was either not documented or not retrievable. In addition, the beryllium inventory itself had not been adequately documented and maintained since PNNL established its own CBDPP, separate from Hanford Site’s program. This document reconstructs PNNL’s baseline beryllium inventory as it would have existed when it achieved compliance with the Beryllium Rule in 2001 and provides the technical basis for the baseline beryllium inventory.« less

  15. PNNL Apatite Investigation at 100-NR-2 Quality Assurance Project Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, N. J.

    In 2004, the U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory (PNNL), and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at the 100-N Area would include apatite sequestration as the primary treatment, followed by a secondary treatment if necessary. Since then, the agencies have worked together to agree on which apatite sequestration technology has the greatest chance of reducing strontium-90 flux to the Columbia River. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by staff working on the PNNL Apatite Investigation at 100-NR-2more » Project. The plan is designed to be used exclusively by project staff.« less

  16. CBB Portal @ PNNL

    Science.gov Websites

    Search PNNL Home About Research Publications Jobs News Contacts Computational Biology and Bioinformatics , and engineering to transform the data into knowledge. This new quantitative, predictive biology is to empirical modeling and physics-based simulations. CBB research seeks to: Understand. Understanding

  17. Preparing PNNL Reports with LaTeX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waichler, Scott R.

    2005-06-01

    LaTeX is a mature document preparation system that is the standard in many scientific and academic workplaces. It has been used extensively by scattered individuals and research groups within PNNL for years, but until now there have been no centralized or lab-focused resources to help authors and editors. PNNL authors and editors can produce correctly formatted PNNL or PNWD reports using the LaTeX document preparation system and the available template files. Please visit the PNNL-LaTeX Project (http://stidev.pnl.gov/resources/latex/, inside the PNNL firewall) for additional information and files. In LaTeX, document content is maintained separately from document structure for the most part.more » This means that the author can easily produce the same content in different formats and, more importantly, can focus on the content and write it in a plain text file that doesn't go awry, is easily transferable, and won't become obsolete due to software changes. LaTeX produces the finest print quality output; its typesetting is noticeably better than that of MS Word. This is particularly true for mathematics, tables, and other types of special text. Other benefits of LaTeX: easy handling of large numbers of figures and tables; automatic and error-free captioning, citation, cross-referencing, hyperlinking, and indexing; excellent published and online documentation; free or low-cost distributions for Windows/Linux/Unix/Mac OS X. This document serves two purposes: (1) it provides instructions to produce reports formatted to PNNL requirements using LaTeX, and (2) the document itself is in the form of a PNNL report, providing examples of many solved formatting challenges. Authors can use this document or its skeleton version (with formatting examples removed) as the starting point for their own reports. The pnnreport.cls class file and pnnl.bst bibliography style file contain the required formatting specifications for reports to the Department of Energy. Options are also

  18. PNNL Delivers Expertise, Technology to Biofuels Start-up, InEnTec

    ScienceCinema

    Surma, Jeff

    2017-12-09

    Initially through its Entrepreneurial Leave of Absence Program, PNNL gives biofuels innovators a start in opening up a new business based on technology developed for incinerating waste on the Hanford Site. Today, the companies Plasma Enhanced Melters are in operation around the world converting organic waste into valuable, clean fuels.

  19. International Safeguards and the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Khris B.; Smith, Leon E.; Frazar, Sarah L.

    Established in 1965, Pacific Northwest National Laboratory’s (PNNL) strong technical ties and shared heritage with the nearby U.S. Department of Energy Hanford Site were central to the early development of expertise in nuclear fuel cycle signatures, separations chemistry, plutonium chemistry, environmental monitoring, modeling and analysis of reactor systems, and nuclear material safeguards and security. From these Hanford origins, PNNL has grown into a multi-program science and engineering enterprise that utilizes this diversity to strengthen the international safeguards regime. Today, PNNL supports the International Atomic Energy Agency (IAEA) in its mission to provide assurances to the international community that nations domore » not use nuclear materials and equipment outside of peaceful uses. PNNL also serves in the IAEA’s Network of Analytical Laboratories (NWAL) by providing analysis of environmental samples gathered around the world. PNNL is involved in safeguards research and development activities in support of many U.S. Government programs such as the National Nuclear Security Administration’s (NNSA) Office of Research and Development, NNSA Office of Nonproliferation and Arms Control, and the U.S. Support Program to IAEA Safeguards. In addition to these programs, PNNL invests internal resources including safeguards-specific training opportunities for staff, and laboratory-directed research and development funding to further ideas that may grow into new capabilities. This paper and accompanying presentation highlight some of PNNL’s contributions in technology development, implementation concepts and approaches, policy, capacity building, and human capital development, in the field of international safeguards.« less

  20. Methods and Models of the Hanford Internal Dosimetry Program, PNNL-MA-860

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2009-09-30

    The Hanford Internal Dosimetry Program (HIDP) provides internal dosimetry support services for operations at the Hanford Site. The HIDP is staffed and managed by the Radiation and Health Technology group, within the Pacific Northwest National Laboratory (PNNL). Operations supported by the HIDP include research and development, the decontamination and decommissioning of facilities formerly used to produce and purify plutonium, and waste management activities. Radioelements of particular interest are plutonium, uranium, americium, tritium, and the fission and activation product radionuclides 137Cs, 90Sr, and 60Co. This manual describes the technical basis for the design of the routine bioassay monitoring program and formore » assessment of internal dose. The purposes of the manual are as follows: • Provide assurance that the HIDP derives from a sound technical base. • Promote the consistency and continuity of routine program activities. • Provide a historical record. • Serve as a technical reference for radiation protection personnel. • Aid in identifying and planning for future needs.« less

  1. Germanium detectors in homeland security at PNNL

    DOE PAGES

    Stave, S.

    2015-05-01

    Neutron and gamma-ray detection is used for non-proliferation and national security applications. While lower energy resolution detectors such as NaI(Tl) have their place, high purity germanium (HPGe) also has a role to play. A detection with HPGe is often a characterization due to the very high energy resolution. However, HPGe crystals remain small and expensive leaving arrays of smaller crystals as an excellent solution. PNNL has developed two similar HPGe arrays for two very different applications. One array, the Multisensor Aerial Radiation Survey (MARS) detector is a fieldable array that has been tested on trucks, boats, and helicopters. The CASCADESmore » HPGe array is an array designed to assay samples in a low background environment. The history of HPGe arrays at PNNL and the development of MARS and CASCADES will be detailed in this paper along with some of the other applications of HPGe at PNNL.« less

  2. PNNL Development and Analysis of Material-Based Hydrogen Storage Systems for the Hydrogen Storage Engineering Center of Excellence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Alvine, Kyle J.; Johnson, Kenneth I.

    The Hydrogen Storage Engineering Center of Excellence is a team of universities, industrial corporations, and federal laboratories with the mandate to develop lower-pressure, materials-based, hydrogen storage systems for hydrogen fuel cell light-duty vehicles. Although not engaged in the development of new hydrogen storage materials themselves, it is an engineering center that addresses engineering challenges associated with the currently available hydrogen storage materials. Three material-based approaches to hydrogen storage are being researched: 1) chemical hydrogen storage materials 2) cryo-adsorbents, and 3) metal hydrides. As a member of this Center, Pacific Northwest National Laboratory (PNNL) has been involved in the design andmore » evaluation of systems developed with each of these three hydrogen storage materials. This report is a compilation of the work performed by PNNL for this Center.« less

  3. Energy and Water Conservation Assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Stephanie R.; Koehler, Theresa M.; Boyd, Brian K.

    2014-05-31

    This report summarizes the results of an energy and water conservation assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory (PNNL). The assessment was performed in October 2013 by engineers from the PNNL Building Performance Team with the support of the dedicated RPL staff and several Facilities and Operations (F&O) department engineers. The assessment was completed for the Facilities and Operations (F&O) department at PNNL in support of the requirements within Section 432 of the Energy Independence and Security Act (EISA) of 2007.

  4. Pacific Northwest National Laboratory Annual Site Environmental Report for Calendar Year 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Joanne P.; Ballinger, Marcel Y.; Fritz, Brad G.

    The PNNL Annual Site Environmental Report for Calendar Year 2012 was prepared pursuant to the requirements of Department of Energy (DOE) Order 231.1B, "Environment, Safety and Health Reporting" to provide a synopsis of calendar year 2012 information related to environmental management performance and compliance efforts. It summarizes site compliance with federal, state, and local environmental laws, regulations, policies, directives, permits, and orders and environmental management performance.

  5. Least-Squares Neutron Spectral Adjustment with STAYSL PNNL

    NASA Astrophysics Data System (ADS)

    Greenwood, L. R.; Johnson, C. D.

    2016-02-01

    The STAYSL PNNL computer code, a descendant of the STAY'SL code [1], performs neutron spectral adjustment of a starting neutron spectrum, applying a least squares method to determine adjustments based on saturated activation rates, neutron cross sections from evaluated nuclear data libraries, and all associated covariances. STAYSL PNNL is provided as part of a comprehensive suite of programs [2], where additional tools in the suite are used for assembling a set of nuclear data libraries and determining all required corrections to the measured data to determine saturated activation rates. Neutron cross section and covariance data are taken from the International Reactor Dosimetry File (IRDF-2002) [3], which was sponsored by the International Atomic Energy Agency (IAEA), though work is planned to update to data from the IAEA's International Reactor Dosimetry and Fusion File (IRDFF) [4]. The nuclear data and associated covariances are extracted from IRDF-2002 using the third-party NJOY99 computer code [5]. The NJpp translation code converts the extracted data into a library data array format suitable for use as input to STAYSL PNNL. The software suite also includes three utilities to calculate corrections to measured activation rates. Neutron self-shielding corrections are calculated as a function of neutron energy with the SHIELD code and are applied to the group cross sections prior to spectral adjustment, thus making the corrections independent of the neutron spectrum. The SigPhi Calculator is a Microsoft Excel spreadsheet used for calculating saturated activation rates from raw gamma activities by applying corrections for gamma self-absorption, neutron burn-up, and the irradiation history. Gamma self-absorption and neutron burn-up corrections are calculated (iteratively in the case of the burn-up) within the SigPhi Calculator spreadsheet. The irradiation history corrections are calculated using the BCF computer code and are inserted into the SigPhi Calculator

  6. Customer Satisfaction Survey of Pacific Northwest National Laboratory's Technical Assistance Partners -- FY 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conger, Robin L.; Spanner, Gary E.

    2011-11-02

    The businesses that have utilized PNNL's Technology Assistance Program were sent a survey to solicit feedback about the program and to determine what, if any, outcomes resulted from the assistance provided. As part of its small business outreach, Pacific Northwest National Laboratory (PNNL) offers technology assistance to businesses with fewer than 500 employees throughout the nation and to businesses of any size in the 2 counties that contain the Hanford site. Upon request, up to 40 staff-hours of a researcher's time can be provided to address technology issues at no charge to the requesting firm. During FY 2011, PNNL completedmore » assistance for 54 firms. Topics of the technology assistance covered a broad range, including environment, energy, industrial processes, medical, materials, computers and software, and sensors. In FY 2011, PNNL's Technology Assistance Program (TAP) was funded by PNNL Overheads. Over the past 16 years, the Technology Assistance Program has received total funding of nearly $2.8 million from several federal and private sources.« less

  7. PNNL Tests Fish Passage System

    ScienceCinema

    Colotelo, Alison

    2018-01-16

    Scientists from PNNL are testing a fish transportation system developed by Whooshh Innovations. The Whooshh system uses a flexible tube that works a bit like a vacuum, guiding fish over hydroelectric dams or other structures. Compared to methods used today, this system could save money while granting fish quicker, safer passage through dams and hatcheries.

  8. PNNL Tests Fish Passage System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colotelo, Alison

    2015-03-13

    Scientists from PNNL are testing a fish transportation system developed by Whooshh Innovations. The Whooshh system uses a flexible tube that works a bit like a vacuum, guiding fish over hydroelectric dams or other structures. Compared to methods used today, this system could save money while granting fish quicker, safer passage through dams and hatcheries.

  9. PNNL streamlines energy-guzzling computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckman, Mary T.; Marquez, Andres

    In a room the size of a garage, two rows of six-foot-tall racks holding supercomputer hard drives sit back-to-back. Thin tubes and wires snake off the hard drives, slithering into the corners. Stepping between the rows, a rush of heat whips around you -- the air from fans blowing off processing heat. But walk farther in, between the next racks of hard drives, and the temperature drops noticeably. These drives are being cooled by a non-conducting liquid that runs right over the hardworking processors. The liquid carries the heat away in tubes, saving the air a few degrees. This ismore » the Energy Smart Data Center at Pacific Northwest National Laboratory. The bigger, faster, and meatier supercomputers get, the more energy they consume. PNNL's Andres Marquez has developed this test bed to learn how to train the behemoths in energy efficiency. The work will help supercomputers perform better as well. Processors have to keep cool or suffer from "thermal throttling," says Marquez. "That's the performance threshold where the computer is too hot to run well. That threshold is an industry secret." The center at EMSL, DOE's national scientific user facility at PNNL, harbors several ways of experimenting with energy usage. For example, the room's air conditioning is isolated from the rest of EMSL -- pipes running beneath the floor carry temperature-controlled water through heat exchangers to cooling towers outside. "We can test whether it's more energy efficient to cool directly on the processing chips or out in the water tower," says Marquez. The hard drives feed energy and temperature data to a network server running specially designed software that controls and monitors the data center. To test the center’s limits, the team runs the processors flat out – not only on carefully controlled test programs in the Energy Smart computers, but also on real world software from other EMSL research, such as regional weather forecasting models. Marquez's group is also

  10. PNNL Provides Catalyst for Sustainable Propylene Glycol Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madison, Alison L.; Lund, Eric C.

    2012-02-28

    Submission for annual FLC magazine publication, Technology for Today, featuring technologies transferred by federal labs. Subject: PNNL transfer of Propylene Glycol from Renewable Sources catalytic process to Archer Daniels Midland Company.

  11. Economic Impact of Pacific Northwest National Laboratory on the State of Washington in Fiscal Year 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Michael J.; Niemeyer, Jackie M.

    Pacific Northwest National Laboratory (PNNL) is a large economic entity, with $1.06 billion in annual funding, $936 million in total spending, and 4,344 employees in fiscal year (FY) 2013. Four thousand, one hundred and one (4,101) employees live in Washington State. The Laboratory directly and indirectly supports almost $1.31 billion in economic output, 6,802 jobs, and $514 million in Washington State wage income from current operations. The state also gains more than $1.21 billion in output, more than 6,400 jobs, and $459 million in income through closely related economic activities, such as visitors, health care spending, spending by resident retirees,more » and spinoff companies. PNNL affects Washington’s economy through commonly recognized economic channels, including spending on payrolls and other goods and services that support Laboratory operations. Less-commonly recognized channels also have their own impacts and include company-supported spending on health care for its staff members and retirees, spending of its resident retirees, Laboratory visitor spending, and the economic activities in a growing constellation of “spinoff” companies founded on PNNL research, technology, and managerial expertise. PNNL also has a significant impact on science and technology education and community nonprofit organizations. PNNL is an active participant in the future scientific enterprise in Washington with the state’s K-12 schools, colleges, and universities. The Laboratory sends staff members to the classroom and brings hundreds of students to the PNNL campus to help train the next generation of scientists, engineers, mathematicians, and technicians. This investment in human capital, though difficult to measure in terms of current dollars of economic output, is among the important lasting legacies of the Laboratory. Finally, PNNL contributes to the local community with millions of dollars’ worth of cash and in-kind corporate and staff contributions, all of

  12. Task 6 - Subtask 1: PNNL Visit by JAEA Researchers to Evaluate the Feasibility of the FLESCOT Code for the Future JAEA Use for the Fukushima Surface Water Environmental Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Yasuo

    Four Japan Atomic Energy Agency (JAEA) researchers visited Pacific Northwest National Laboratory (PNNL) for seven working days and have evaluated the suitability and adaptability of FLESCOT to a JAEA’s supercomputer system to effectively simulate cesium behavior in dam reservoirs, river mouths, and coastal areas in Fukushima contaminated by the Fukushima Daiichi nuclear accident. PNNL showed the following to JAEA visitors during the seven-working day period: FLESCOT source code; User’s manual; FLESCOT description – Program structure – Algorism – Solver – Boundary condition handling – Data definition – Input and output methods – How to run. During the visit, JAEA hadmore » access to FLESCOT to run with an input data set to evaluate the capacity and feasibility of adapting it to a JAEA super computer with massive parallel processors. As a part of this evaluation, PNNL ran FLESCOT for sample cases of the contaminant migration simulation to further describe FLESCOT in action. JAEA and PNNL researchers also evaluated time spent for each subroutine of FLESCOT, and the JAEA researcher implemented some initial parallelization schemes to FLESCOT. Based on this code evaluation, JAEA and PNNL determined that FLESCOT is: applicable to Fukushima lakes/dam reservoirs, river mouth areas, and coastal water; and feasible to implement parallelization for the JAEA supercomputer. In addition, PNNL and JAEA researchers discussed molecular modeling approaches on cesium adsorption mechanisms to enhance the JAEA molecular modeling activities. PNNL and JAEA also discussed specific collaboration of molecular and computational modeling activities.« less

  13. Radiation and Health Technology Laboratory Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bihl, Donald E.; Lynch, Timothy P.; Murphy, Mark K.

    2005-07-09

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrumentmore » calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.« less

  14. Development of a laboratory niche Web site.

    PubMed

    Dimenstein, Izak B; Dimenstein, Simon I

    2013-10-01

    This technical note presents the development of a methodological laboratory niche Web site. The "Grossing Technology in Surgical Pathology" (www.grossing-technology.com) Web site is used as an example. Although common steps in creation of most Web sites are followed, there are particular requirements for structuring the template's menu on methodological laboratory Web sites. The "nested doll principle," in which one object is placed inside another, most adequately describes the methodological approach to laboratory Web site design. Fragmentation in presenting the Web site's material highlights the discrete parts of the laboratory procedure. An optimally minimal triad of components can be recommended for the creation of a laboratory niche Web site: a main set of media, a blog, and an ancillary component (host, contact, and links). The inclusion of a blog makes the Web site a dynamic forum for professional communication. By forming links and portals, cloud computing opens opportunities for connecting a niche Web site with other Web sites and professional organizations. As an additional source of information exchange, methodological laboratory niche Web sites are destined to parallel both traditional and new forms, such as books, journals, seminars, webinars, and internal educational materials. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Customer satisfaction assessment at the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DN Anderson; ML Sours

    2000-03-23

    The Pacific Northwest National Laboratory (PNNL) is developing and implementing a customer satisfaction assessment program (CSAP) to assess the quality of research and development provided by the laboratory. This report presents the customer survey component of the PNNL CSAP. The customer survey questionnaire is composed of two major sections: Strategic Value and Project Performance. Both sections contain a set of questions that can be answered with a 5-point Likert scale response. The strategic value section consists of five questions that are designed to determine if a project directly contributes to critical future national needs. The project Performance section consists ofmore » nine questions designed to determine PNNL performance in meeting customer expectations. A statistical model for customer survey data is developed and this report discusses how to analyze the data with this model. The properties of the statistical model can be used to establish a gold standard or performance expectation for the laboratory, and then to assess progress. The gold standard is defined using laboratory management input--answers to four questions, in terms of the information obtained from the customer survey: (1) What should the average Strategic Value be for the laboratory project portfolio? (2) What Strategic Value interval should include most of the projects in the laboratory portfolio? (3) What should average Project Performance be for projects with a Strategic Value of about 2? (4) What should average Project Performance be for projects with a Strategic Value of about 4? To be able to provide meaningful answers to these questions, the PNNL customer survey will need to be fully implemented for several years, thus providing a link between management perceptions of laboratory performance and customer survey data.« less

  16. Evaluation of Cellular Shades in the PNNL Lab Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, Joseph M.; Sullivan, Greg; Cort, Katherine A.

    This report examines the energy performance of cellular shade window coverings in a matched pair of all-electric, factory-built “Lab Homes” located on the Pacific Northwest National Laboratory (PNNL) campus in Richland, Washington. The 1500-square-foot homes were identical in construction and baseline performance, which allowed any difference in energy and thermal performance between the baseline home and the experimental home to be attributed to the retrofit technology installed in the experimental home. To assess the performance of high efficiency window attachments in a residential retrofit application, the building shell air leakage, energy use, and interior temperatures of each home were comparedmore » during the 2015 -2016 winter heating and summer cooling seasons. Hunter Douglas Duette® Architella® Trielle™ opaque honeycomb “cellular” shades were installed over double-pane clear-glass, aluminum-frame primary windows in the experimental home and were compared to identical primary windows with no window coverings and with standard typical white vinyl horizontal blind window coverings in the baseline home.« less

  17. How PNNL Extracts Rare Earth Elements from Geothermal Brine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-07-12

    By looking at a problem at a nanoscale level, PNNL researchers are developing an economic way to extract valuable rare earth elements from geothermal fluids. This novel approach may help meet the high demand for rare earth elements that are used in many clean energy technologies.

  18. Economic Impact of Pacific Northwest National Laboratory on the State of Washington in Fiscal Year 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Michael J.; Niemeyer, Jackie M.

    PNNL is a large economic entity with a total of 4,308 employees, $939 million (M) in total funding, and $1.02 billion (B) in total spending during FY 2014. The number of employees that live in Washington State is 4,026 or 93 percent of the Laboratory staff. he Laboratory directly and indirectly supported $1.45 billion in economic output, 6,832 jobs, and $517 million in Washington State wage income from current operations. The state also gained more than $1.19 billion in output, over 6,200 jobs, and $444 million in income through closely related economic activities such as visitors, health care spending, spendingmore » by resident retirees, and spinoff companies. PNNL affects Washington’s economy through commonly recognized economic channels, including spending on payrolls and other goods and services that support Laboratory operations. Less commonly recognized channels also have their own impacts and include company-supported spending on health care for its staff members and retirees, spending of its resident retirees, Laboratory visitor spending, and the economic activities in a growing constellation of “spinoff” companies founded on PNNL research, technology, and managerial expertise. PNNL also has a significant impact on science and technology education and community not-for-profit organizations. PNNL is an active participant in the future scientific enterprise in Washington with the state’s K-12 schools, colleges, and universities. The Laboratory sends staff members to the classroom and brings hundreds of students to the PNNL campus to help train the next generation of scientists, engineers, mathematicians, and technicians. This investment in human capital, though difficult to measure in terms of current dollars of economic output, is among the important lasting legacies of the Laboratory. Finally, PNNL contributes to the local community with millions of dollars’ worth of cash and in-kind corporate and staff contributions, all of which strengthen

  19. PNNL Data-Intensive Computing for a Smarter Energy Grid

    ScienceCinema

    Carol Imhoff; Zhenyu (Henry) Huang; Daniel Chavarria

    2017-12-09

    The Middleware for Data-Intensive Computing (MeDICi) Integration Framework, an integrated platform to solve data analysis and processing needs, supports PNNL research on the U.S. electric power grid. MeDICi is enabling development of visualizations of grid operations and vulnerabilities, with goal of near real-time analysis to aid operators in preventing and mitigating grid failures.

  20. PNNL Strategic Goods Testbed: A Data Library for Illicit Nuclear Trafficking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, Jennifer B.; Erikson, Luke E.; Toomey, Christopher M.

    2014-05-12

    Pacific Northwest National Laboratory (PNNL) has put significant effort into nonproliferation activities as an institution, both in terms of the classical nuclear material focused approach and in the examination of other strategic goods necessary to implement a nuclear program. To assist in these efforts, several projects in the Analysis in Motion (AIM) and Signature Discovery (SDI) Initiatives at PNNL are developing machine learning methodology for human-computer interaction in real time environments to assist analysts in this domain. All of these technical projects require access to data – whether it is in terms of detector data, shipping records, financial information, companymore » relations, or other communications. The first question that mathematical and computational researchers come up with when asked to build analyst assist or automated tools is “What does the data look like? ” They become frustrated when basic questions like this can not be easily answered and this can have the effect of pushing researchers away from the nuclear trafficking domain, especially in strategic commodity and export control areas where data sets can not easily be generated through standard experimental techniques. For small projects that are building a proof of concept for their methodology, obtaining this data can be arduous and expensive. To relieve the burden of data collection from these projects and grow a lab-wide capability, the Strategic Goods Testbed Team has taken over data collection and placed subscriptions and access to flat data files in a centralized location so that all projects can benefit from these items. We have collected shipping data in the form of PIERS records, judicial information about export control cases, NAC data on the nuclear fuel industry, and financial data from Dun and Bradstreet and our data sets are continuing to expand. With a single access agreement, researchers in data-mining and other fields can utilize all of the records that

  1. Uncertainty Analysis Framework - Hanford Site-Wide Groundwater Flow and Transport Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Charles R.; Bergeron, Marcel P.; Murray, Christopher J.

    2001-11-09

    Pacific Northwest National Laboratory (PNNL) embarked on a new initiative to strengthen the technical defensibility of the predictions being made with a site-wide groundwater flow and transport model at the U.S. Department of Energy Hanford Site in southeastern Washington State. In FY 2000, the focus of the initiative was on the characterization of major uncertainties in the current conceptual model that would affect model predictions. The long-term goals of the initiative are the development and implementation of an uncertainty estimation methodology in future assessments and analyses using the site-wide model. This report focuses on the development and implementation of anmore » uncertainty analysis framework.« less

  2. From Chaos to Content: An Integrated Approach to Government Web Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demuth, Nora H.; Knudson, Christa K.

    2005-01-03

    The web development team of the Environmental Technology Directorate (ETD) at the U.S. Department of Energy’s Pacific Northwest National Laboratory (PNNL) redesigned the ETD website as a database-driven system, powered by the newly designed ETD Common Information System (ETD-CIS). The ETD website was redesigned in response to an analysis that showed the previous ETD websites were inefficient, costly, and lacking in a consistent focus. Redesigned and newly created websites based on a new ETD template provide a consistent image, meet or exceed accessibility standards, and are linked through a common database. The protocols used in developing the ETD website supportmore » integration of further organizational sites and facilitate internal use by staff and training on ETD website development and maintenance. Other PNNL organizations have approached the ETD web development team with an interest in applying the methods established by the ETD system. The ETD system protocol could potentially be used by other DOE laboratories to improve their website efficiency and content focus. “The tools by which we share science information must be as extraordinary as the information itself.[ ]” – DOE Science Director Raymond Orbach« less

  3. Apel - Applied Process Engineering Laboratory

    Science.gov Websites

    startup and testing Equipment can be quickly connected to building services and effluent systems. A professional, regulated environment for bringing forth new product processes and services. Testing shortens the support Pacific Northwest National Laboratory (PNNL) scientists, engineers, and other professional staff

  4. Task 3: PNNL Visit by JAEA Researchers to Participate in TODAM Code Applications to Fukushima Rivers and to Evaluate the Feasibility of Adaptation of FLESCOT Code to Simulate Radionuclide Transport in the Pacific Ocean Coastal Water Around Fukushima

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Yasuo

    Four JAEA researchers visited PNNL for two weeks in February, 2013 to learn the PNNL-developed, unsteady, one-dimensional, river model, TODAM and the PNNL-developed, time-dependent, three dimensional, coastal water model, FLESCOT. These codes predict sediment and contaminant concentrations by accounting sediment-radionuclide interactions, e.g., adsorption/desorption and transport-deposition-resuspension of sediment-sorbed radionuclides. The objective of the river and coastal water modeling is to simulate • 134Cs and 137Cs migration in Fukushima rivers and the coastal water, and • their accumulation in the river and ocean bed along the Fukushima coast. Forecasting the future cesium behavior in the river and coastal water under various scenariosmore » would enable JAEA to assess the effectiveness of various on-land remediation activities and if required, possible river and coastal water clean-up operations to reduce the contamination of the river and coastal water, agricultural products, fish and other aquatic biota. PNNL presented the following during the JAEA visit to PNNL: • TODAM and FLESCOT’s theories and mathematical formulations • TODAM and FLESCOT model structures • Past TODAM and FLESCOT applications • Demonstrating these two codes' capabilities by applying them to simple hypothetical river and coastal water cases. • Initial application of TODAM to the Ukedo River in Fukushima and JAEA researchers' participation in its modeling. PNNL also presented the relevant topics relevant to Fukushima environmental assessment and remediation, including • PNNL molecular modeling and EMSL computer facilities • Cesium adsorption/desorption characteristics • Experiences of connecting molecular science research results to macro model applications to the environment • EMSL tour • Hanford Site road tour. PNNL and JAEA also developed future course of actions for joint research projects on the Fukushima environmental and remediation assessments.« less

  5. Laboratory and clinical evaluation of on-site urine drug testing.

    PubMed

    Beck, Olof; Carlsson, Sten; Tusic, Marinela; Olsson, Robert; Franzen, Lisa; Hulten, Peter

    2014-11-01

    Products for on-site urine drug testing offer the possibility to perform screening for drugs of abuse directly at the point-of-care. This is a well-established routine in emergency and dependency clinics but further evaluation of performance is needed due to inherent limitations with the available products. Urine drug testing by an on-site product was compared with routine laboratory methods. First, on-site testing was performed at the laboratory in addition to the routine method. Second, the on-site testing was performed at a dependency clinic and urine samples were subsequently sent to the laboratory for additional analytical investigation. The on-site testing products did not perform with assigned cut-off levels. The subjective reading between the presence of a spot (i.e. negative test result) being present or no spot (positive result) was difficult in 3.2% of the cases, and occurred for all parameters. The tests performed more accurately in drug negative samples (specificity 96%) but less accurately for detecting positives (sensitivity 79%). Of all incorrect results by the on-site test the proportion of false negatives was 42%. The overall agreement between on-site and laboratory testing was 95% in the laboratory study and 98% in the clinical study. Although a high degree of agreement was observed between on-site and routine laboratory urine drug testing, the performance of on-site testing was not acceptable due to significant number of false negative results. The limited sensitivity of on-site testing compared to laboratory testing reduces the applicability of these tests.

  6. Radiation Detection Material Discovery Initiative at PNNL

    NASA Astrophysics Data System (ADS)

    Milbrath, Brian

    2006-05-01

    Today's security threats are being met with 30-year old radiation technology. Discovery of new radiation detection materials is currently a slow and Edisonian process. With heightened concerns over nuclear proliferation, terrorism and unconventional warfare, an alternative strategy for identification and development of potential radiation detection materials must be adopted. Through the Radiation Detection Materials Discovery Initiative, PNNL focuses on the science-based discovery of next generation materials for radiation detection by addressing three ``grand challenges'': fundamental understanding of radiation detection, identification of new materials, and accelerating the discovery process. The new initiative has eight projects addressing these challenges, which will be described, including early work, paths forward and the opportunities for collaboration.

  7. Customer Satisfaction Assessment at the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Dale N.; Sours, Mardell L.

    2000-03-20

    The Pacific Northwest National Laboratory (PNNL) is developing and implementing a customer satisfaction assessment program (CSAP) to assess the quality of research and development provided by the laboratory. We present the customer survey component of the PNNL CSAP. The customer survey questionnaire is composed of 2 major sections, Strategic Value and Project Performance. The Strategic Value section of the questionnaire consists of 5 questions that can be answered with a 5 point Likert scale response. These questions are designed to determine if a project is directly contributing to critical future national needs. The Project Performance section of the questionnaire consistsmore » of 9 questions that can be answered with a 5 point Likert scale response. These questions determine PNNL performance in meeting customer expectations. Many approaches could be used to analyze customer survey data. We present a statistical model that can accurately capture the random behavior of customer survey data. The properties of this statistical model can be used to establish a "gold standard'' or performance expectation for the laboratory, and then assess progress. The gold standard is defined from input from laboratory management --- answers to 4 simple questions, in terms of the information obtained from the CSAP customer survey, define the standard: *What should the average Strategic Value be for the laboratory project portfolio? *What Strategic Value interval should include most of the projects in the laboratory portfolio? *What should average Project Performance be for projects with a Strategic Value of about 2? *What should average Project Performance be for projects with a Strategic Value of about 4? We discuss how to analyze CSAP customer survey data with this model. Our discussion will include "lessons learned" and issues that can invalidate this type of assessment.« less

  8. Ames Laboratory site environmental report, calendar year 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathison, L.K.

    1989-05-01

    The summarized data and conclusions from the Ames Laboratory environmental monitoring program are presented in this Annual Site Environmental Report. Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies several buildings owned by the Department of Energy. A study is being conducted to identify environmental sampling methods which can characterize and separate the impact of Ames Laboratory's campus activities and that of ISU. This will enable the Laboratory to determine what possible impact it's operations may be having to the environment, if any. Two Pollution Abatement projects were begun in 1988. They were: removal ofmore » thorium contaminated soil resulting from a historical release of thorium at the Laboratory, to the Ames, Iowa Water Pollution Control (sewage) Plant and demolition of a small Blockhouse'' constructed of concrete block which had been used for low level radioactive waste handling. The contaminated soil has been removed and transported to Hanford, WA for disposal. A final site radiological survey for thorium is pending. In addition, contaminated debris was transported to Hanford, WA for disposal and a final site survey is pending. 7 refs., 4 figs., 1 tab.« less

  9. Opportune Landing Site CBR and Low-Density Laboratory Database

    DTIC Science & Technology

    2008-05-01

    Program Opportune Landing Site CBR and Low- Density Laboratory Database Larry S. Danyluk, Sally A. Shoop, Rosa T. Affleck, and Wendy L. Wieder...Opportune Landing Site Program ERDC/CRREL TR-08-9 May 2008 Opportune Landing Site CBR and Low- Density Laboratory Database Larry S. Danyluk, Sally A...reproduce in-situ density , moisture, and CBR values and therefore do not accurately repre- sent the complete range of these values measured in the field

  10. Laboratory Directed Research and Development Annual Report for 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Pamela J.

    This report documents progress made on all LDRD-funded projects during fiscal year 2009. As a US Department of Energy (DOE) Office of Science (SC) national laboratory, Pacific Northwest National Laboratory (PNNL) has an enduring mission to bring molecular and environmental sciences and engineering strengths to bear on DOE missions and national needs. Their vision is to be recognized worldwide and valued nationally for leadership in accelerating the discovery and deployment of solutions to challenges in energy, national security, and the environment. To achieve this mission and vision, they provide distinctive, world-leading science and technology in: (1) the design and scalablemore » synthesis of materials and chemicals; (2) climate change science and emissions management; (3) efficient and secure electricity management from generation to end use; and (4) signature discovery and exploitation for threat detection and reduction. PNNL leadership also extends to operating EMSL: the Environmental Molecular Sciences Laboratory, a national scientific user facility dedicated to providing itnegrated experimental and computational resources for discovery and technological innovation in the environmental molecular sciences.« less

  11. Communicating laboratory results through a Web site: Patients' priorities and viewpoints.

    PubMed

    Sabahi, Azam; Ahmadian, Leila; Mirzaee, Moghademeh

    2018-02-28

    Patients can access laboratory results using various technologies. The aim of this study was to integrate the laboratory results into the hospital Web site based on patients' viewpoints and priorities and to measure patients' satisfaction. This descriptive-analytical study was conducted in 2015. First, a questionnaire was distributed among 200 patients to assess patients' priorities to receive laboratory results through the Web site. Second, those who agreed (n = 95) to receive their laboratory results through the Web site were identified. Then, the required changes were made to the hospital Web site based on patients' viewpoints and priorities. Third, patients were divided into two groups. The first group received their laboratory results through the Web site on the date had been announced during their visit to the laboratory. The second group was informed by SMS once their results were shown on the Web site. After receiving laboratory results, patients' satisfaction was evaluated. More than half of the participants (n = 53, 55.8%) were highly satisfied with receiving the results electronically. The higher number of people in SMS group (n = 9, 20.9%) reported that they were satisfied with time-saving compared to other group (n = 2, 3.8%) (P = .04). Participants after receiving the results through the Web site considered the functionalities of reprinting (P < .0001) and timeliness (P = .017) more important. Integrating laboratory results into the hospital Web site based on the patients' viewpoints and priorities can improve patient satisfaction and lower the patients' concern regarding confidentiality of their results. © 2018 Wiley Periodicals, Inc.

  12. Site environmental report for 2009 : Sandia National Laboratories, California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    2010-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2009 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2009. General site and environmental program information is also included. The Site Environmental Report is divided into tenmore » chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2009. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2009. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.« less

  13. Site Environmental Report for 2010 Sandia National Laboratories, California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    2011-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, manages and operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2010 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2010. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chaptermore » 1, the Executive Summary, highlights compliance and monitoring results obtained in 2010. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2010. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.« less

  14. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Sandra F.; Barnett, J. Matthew; Ballinger, Marcel Y.

    2014-05-01

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office (PNSO) has oversight and stewardship duties associated with the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) located on Battelle Land – Sequim (Sequim). This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.” The EDE to the Sequimmore » MEI due to routine operations in 2013 was 5E-05 mrem (5E-07 mSv). No non-routine emissions occurred in 2013. The MSL is in compliance with the federal and state 10 mrem/yr standard.« less

  15. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Sandra F.; Barnett, J. Matthew

    2015-05-04

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office (PNSO) has oversight and stewardship duties associated with the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) located on Battelle Land – Sequim.This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.'' The EDE to the MSL MEI duemore » to routine operations in 2014 was 9E-05 mrem (9E-07 mSv). No non-routine emissions occurred in 2014. The MSL is in compliance with the federal and state 10 mrem/yr standard.« less

  16. Picatinny Arsenal 3000 Area Laboratory Complex Energy Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Daryl R.; Goddard, James K.

    2010-05-01

    In response to a request by Picatinny Arsenal, the Pacific Northwest National Laboratory (PNNL) was asked by the Army to conduct an energy audit of the Arsenal’s 3000 Area Laboratory Complex. The objective of the audit was to identify life-cycle cost-effective measures that the Arsenal could implement to reduce energy costs. A “walk-through” audit of the facilities was conducted on December 7-8, 2009. Findings and recommendations are included in this document.

  17. The uranium from seawater program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James

    The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing

  18. The uranium from seawater program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    DOE PAGES

    Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James; ...

    2016-02-07

    The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing

  19. Statistical Methods and Tools for Uxo Characterization (SERDP Final Technical Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pulsipher, Brent A.; Gilbert, Richard O.; Wilson, John E.

    2004-11-15

    The Strategic Environmental Research and Development Program (SERDP) issued a statement of need for FY01 titled Statistical Sampling for Unexploded Ordnance (UXO) Site Characterization that solicited proposals to develop statistically valid sampling protocols for cost-effective, practical, and reliable investigation of sites contaminated with UXO; protocols that could be validated through subsequent field demonstrations. The SERDP goal was the development of a sampling strategy for which a fraction of the site is initially surveyed by geophysical detectors to confidently identify clean areas and subsections (target areas, TAs) that had elevated densities of anomalous geophysical detector readings that could indicate the presencemore » of UXO. More detailed surveys could then be conducted to search the identified TAs for UXO. SERDP funded three projects: those proposed by the Pacific Northwest National Laboratory (PNNL) (SERDP Project No. UXO 1199), Sandia National Laboratory (SNL), and Oak Ridge National Laboratory (ORNL). The projects were closely coordinated to minimize duplication of effort and facilitate use of shared algorithms where feasible. This final report for PNNL Project 1199 describes the methods developed by PNNL to address SERDP's statement-of-need for the development of statistically-based geophysical survey methods for sites where 100% surveys are unattainable or cost prohibitive.« less

  20. Four Finalist Landing Site Candidates for Mars Science Laboratory

    NASA Image and Video Library

    2008-11-19

    Out of more than 30 sites considered as possible landing targets for NASA Mars Science Laboratory mission, by November 2008 four of the most intriguing places on Mars rose to the final round of the site-selection process.

  1. Impact of zeolite aging in hot liquid water on activity for acid-catalyzed dehydration of alcohols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vjunov, Aleksei; Derewinski, Miroslaw A.; Fulton, John L.

    The catalytic performance of zeolite in aqueous medium depends on a multitude of factors, such as the concentration and distribution of active sites and framework integrity. Al K–edge extended X–ray absorption fine structure and 27Al MAS NMR spectroscopies in combination with DFT calculations are used to determine the distribution of tetrahedral Al sites both qualitatively and quantitatively for both parent and 48 h 160 ºC water treated HBEA catalysts. There is no evidence of Al coordination modification after aging in water. The distribution and concentration of Al T–sites, active centers for the dehydration of cyclohexanol, do not markedly impact themore » catalytic performance in water, because the Brønsted acidic protons are present in the form of hydrated hydronium ions and thus have very similar acid properties. The results suggest that all Brønsted acid sites are equally active in aqueous medium. The decrease of zeolite catalytic performance after water treatment is attributed to the reduced concentration of Brønsted acid sites. Increasing the stability of pore walls and decreasing the rate of Si–O–Si group hydrolysis may result in improved apparent zeolite catalytic performance in aqueous medium. Authors thank B. W. Arey (PNNL) for HIM measurements, T. Huthwelker for support during Al XAFS measurements at the Swiss Light Source (PSI, Switzerland), J. Z. Hu and S. D. Burton (PNNL) for support during NMR experiments. This work was supported by the U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MD acknowledges support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under Laboratory Directed Research & Development Program at PNNL. HIM imaging and NMR experiments were performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE Office of Science, Office of

  2. AFRL Solid Propellant Laboratory Explosive Siting and Renovation Lessons Learned

    DTIC Science & Technology

    2010-05-19

    AFRL Solid Propellant Laboratory Explosive Siting and Renovation Lessons Learned Daniel F. Schwartz Air Force Research Laboratory ...9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL /RZS...provide the United States Air Force with advanced rocket propulsion technologies, the Air Force Research

  3. Characterization of Offgas Generated During Calcination of Incinerator Ash Surrogates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wigent, H.L.; Vienna, J.D.; Darab, J.G.

    1999-01-28

    The Pacific Northwest National Laboratory (PNNL), in cooperation with the Los Alamos National Laboratory (LANL) and Safe Sites of Colorado (SSOC), developed a recommended flowsheet for the processing of plutonium-bearing incinerator ash stored at the Rocky Flats Environmental Technology Site (RFETS) (Lucy et al. 1998). This flowsheet involves a calcination pretreatment step, the purpose of which is to remove carbonaceous material from the incinerator ash. Removal of this material reduced the probability of process upsets, improved product quality, and increases ash waste loading. As part of the continued development of the recommended flowsheet, PNNL performed a series of tests tomore » characterize the offgas generated during the calcination process.« less

  4. Evaluations of Mechanisms for Pu Uptake and Retention within Spherical Resorcinol-Formaldehyde Resin Columns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.; Levitskaia, Tatiana G.; Fiskum, Sandra K.

    The unexpected uptake and retention of plutonium (Pu) onto columns containing spherical resorcinol-formaldehyde (sRF) resin during ion exchange testing of Cs (Cs) removal from alkaline tank waste was observed in experiments at both the Pacific Northwest National Laboratory (PNNL) and the Savannah River National Laboratory (SRNL). These observations have raised concern regarding the criticality safety of the Cs removal unit operation within the low-activity waste pretreatment system (LAWPS). Accordingly, studies have been initiated at Washington River Protection Solutions (WRPS), who manages the operations of the Hanford Site tank farms, including the LAWPS, PNNL, and elsewhere to investigate these findings. Asmore » part of these efforts, PNNL has prepared the present report to summarize the laboratory testing observations, evaluate these phenomena in light of published and unpublished technical information, and outline future laboratory testing, as deemed appropriate based on the literature studies, with the goal to elucidate the mechanisms for the observed Pu uptake and retention.« less

  5. Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Potable Water System Operations Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocampo, Ruben P.; Bellah, Wendy

    The existing Lawrence Livermore National Laboratory (LLNL) Site 300 drinking water system operation schematic is shown in Figures 1 and 2 below. The sources of water are from two Site 300 wells (Well #18 and Well #20) and San Francisco Public Utilities Commission (SFPUC) Hetch-Hetchy water through the Thomas shaft pumping station. Currently, Well #20 with 300 gallons per minute (gpm) pump capacity is the primary source of well water used during the months of September through July, while Well #18 with 225 gpm pump capacity is the source of well water for the month of August. The well watermore » is chlorinated using sodium hypochlorite to provide required residual chlorine throughout Site 300. Well water chlorination is covered in the Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Chlorination Plan (“the Chlorination Plan”; LLNL-TR-642903; current version dated August 2013). The third source of water is the SFPUC Hetch-Hetchy Water System through the Thomas shaft facility with a 150 gpm pump capacity. At the Thomas shaft station the pumped water is treated through SFPUC-owned and operated ultraviolet (UV) reactor disinfection units on its way to Site 300. The Thomas Shaft Hetch- Hetchy water line is connected to the Site 300 water system through the line common to Well pumps #18 and #20 at valve box #1.« less

  6. Laboratory Directed Research and Development Annual Report - Fiscal Year 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Darrell R.; Hughes, Pamela J.; Pearson, Erik W.

    The projects described in this report represent the Laboratory's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides, a) a director's statement, b) an overview of the laboratory's LDRD program, including PNNL's management process and a self-assessment of the program, c) a five-year project funding table, and d) project summaries for each LDRD project.

  7. Site Description for the University of Nebraska's Sandhills Agricultural Laboratory

    NASA Technical Reports Server (NTRS)

    Gardner, B. R.; Blad, B. L.

    1985-01-01

    The Sandhills Agricultural Laboratory is operated by the University of Nebraska. The laboratory is located in the south-central part of the Nebraska Sandhills near Tryon, Nebraska (41 deg. 37' N; 100 deg. 50' W). The laboratory is surrounded on the west and south by native rangeland vegetation, on the south by a large field of corn irrigated by a center pivot, and on the east by wheat stubble. This site is appropriate for moisture stress studies since rainfall is almost always inadequate to meet evaporative demands of agricultural crops during most of the growing season and the sandy soils (Valentine fine sand) at the site do not store large quantities of water. Various levels of water stress are achieved through irrigation from solid set sprinklers.

  8. AmeriFlux US-IB2 Fermi National Accelerator Laboratory- Batavia (Prairie site)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matamala, Roser

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-IB2 Fermi National Accelerator Laboratory- Batavia (Prairie site). Site Description - Two eddy correlation systems are installed at Fermi National Accelerator Laboratory: one on a restored prairie (established October 2004) and one on a corn/soybean rotation agricultural field (established in July 2005). The prairie site had been farmed for more than 100 years, but was converted to prairie in 1989. April annual to bi-annual prescribed burns have taken place from 1994 - 2007.

  9. 77 FR 4368 - Abbott Laboratories, Diagnostics Division, Including On-Site Leased Workers From Manpower...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-75,201] Abbott Laboratories..., applicable to workers of Abbott Laboratories, Diagnostics Division, including on-site leased workers from... (clerical) were employed on-site at the Irving, Texas location of Abbott Laboratories, Diagnostics Division...

  10. Collaboratory=Collaborate+Laboratory: The Mid-Columbia STEM Education Collaboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willcuts, Meredith H.; Kennedy, Cathleen A.

    Pacific Northwest National Laboratory created a network focused on collaboration in STEM education to design and deliver projects, resources, and professional learning opportunities in a testbed environment. How do you uncover and fill gaps in equitable access to high-quality science, technology, engineering, and math (STEM) education offerings in your local region? Where might you deploy strategies to improve STEM workforce preparation and increase public understanding of STEM-oriented issues? And how can you help to ensure that students, educators, parents, and the community are aware of these programs and know how to access them in schools, colleges, and community venues? Ifmore » you are the Pacific Northwest National Laboratory (PNNL), you take on the huge goal of designing and implementing an innovative STEM education collaboration project that impacts all levels of local education, both inside and outside of school settings. PNNL is one of the 17 national laboratories funded by the U.S. Department of Energy. Operated by Battelle, PNNL has a vested interest in preparing the next generation of scientists and engineers for their future careers, thus building a STEM-capable workforce and creating a STEM-literate community. One of Battelle’s core principles is a commitment to STEM education and its role in business competitiveness and quality of life. PNNL has been active in STEM education for decades, providing internships for future scientists, giving educators in-house lab experiences, and engaging its researchers in STEM outreach activities in classrooms and the community. The Collaboratory is a relatively recent outcome of Battelle’s longstanding efforts in STEM education. The original Collaboratory planning documents, developed by PNNL’s Office of STEM Education (OSE), state the objective to “design, implement, and mature a local STEM education collaboration zone that highlights the power of PNNL and Battelle to impact the educational ecosystem

  11. Canada Geese at the Hanford Site – Trends in Reproductive Success, Migration Patterns, and Contaminant Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Mary Ann; Poston, Ted M.; Tiller, Brett L.

    2010-05-25

    Pacific Northwest National Laboratory (PNNL) has conducted several studies for the U.S. Department of Energy (DOE) to evaluate the status and condition of Canada geese on the Hanford Reach of the Columbia River. This report summarizes results of studies of Canada geese (Branta canadensis moffitti) at the Hanford Site dating back to the 1950s. Results include information on the nesting (reproductive) success of Canada geese using the Hanford Reach, review of the local and regional migration of this species using data from bird banding studies, and summary data describing monitoring and investigations of the accumulation of Hanford-derived and environmental contaminantsmore » by resident goose populations.« less

  12. PNNL Future Power Grid Initiative-developed GridOPTICS Software System (GOSS)

    ScienceCinema

    None

    2018-01-16

    The power grid is changing and evolving. One aspect of this change is the growing use of smart meters and other devices, which are producing large volumes of useful data. However, in many cases, the data can’t be translated quickly into actionable guidance to improve grid performance. There's a need for innovative tools. The GridOPTICS(TM) Software System, or GOSS, developed through PNNL's Future Power Grid Initiative, is open source and became publicly available in spring 2014. The value of this middleware is that it easily integrates grid applications with sources of data and facilitates communication between them. Such a capability provides a foundation for developing a range of applications to improve grid management.

  13. 75 FR 82004 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... Laboratory AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory...--Radioactive Waste Management. Public Participation: The EM SSAB, Idaho National Laboratory, welcomes the...

  14. 78 FR 12747 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... Laboratory AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... Management System Public Participation: The EM SSAB, Idaho National Laboratory, welcomes the attendance of...

  15. Web-Based Geographic Information System Tool for Accessing Hanford Site Environmental Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triplett, Mark B.; Seiple, Timothy E.; Watson, David J.

    Data volume, complexity, and access issues pose severe challenges for analysts, regulators and stakeholders attempting to efficiently use legacy data to support decision making at the U.S. Department of Energy’s (DOE) Hanford Site. DOE has partnered with the Pacific Northwest National Laboratory (PNNL) on the PHOENIX (PNNL-Hanford Online Environmental Information System) project, which seeks to address data access, transparency, and integration challenges at Hanford to provide effective decision support. PHOENIX is a family of spatially-enabled web applications providing quick access to decades of valuable scientific data and insight through intuitive query, visualization, and analysis tools. PHOENIX realizes broad, public accessibilitymore » by relying only on ubiquitous web-browsers, eliminating the need for specialized software. It accommodates a wide range of users with intuitive user interfaces that require little or no training to quickly obtain and visualize data. Currently, PHOENIX is actively hosting three applications focused on groundwater monitoring, groundwater clean-up performance reporting, and in-tank monitoring. PHOENIX-based applications are being used to streamline investigative and analytical processes at Hanford, saving time and money. But more importantly, by integrating previously isolated datasets and developing relevant visualization and analysis tools, PHOENIX applications are enabling DOE to discover new correlations hidden in legacy data, allowing them to more effectively address complex issues at Hanford.« less

  16. 76 FR 39080 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management, and...

  17. 10 CFR 26.715 - Recordkeeping requirements for collection sites, licensee testing facilities, and laboratories...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Recordkeeping requirements for collection sites, licensee testing facilities, and laboratories certified by the Department of Health and Human Services. 26.715... laboratories certified by the Department of Health and Human Services. (a) Collection sites providing services...

  18. Four Finalist Landing Site Candidates for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Out of more than 30 sites considered as possible landing targets for NASA's Mars Science Laboratory mission, by November 2008 four of the most intriguing places on Mars rose to the final round of the site-selection process.

    The four finalists are, alphabetically: Eberswalde, where an ancient river deposited a delta in a possible lake; Gale, with a mountain of stacked layers including clays and sulfates; Holden, a crater containing alluvial fans, flood deposits, possible lake beds and clay-rich deposits; and Mawrth, which shows exposed layers containing at least two types of clay.

    The locations of these four candidates are indicated here on a background map of color-coded topographical data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor. Red is higher elevation; blue is lower elevation. In latitude, the map extends from 70 degrees (north) to minus 70 degrees (south). The east-west axis is labeled at the top in degrees of east longitude, with the zero meridian at the center.

    The Mars Science Laboratory mission's capabilities for landing more precisely and at higher elevation than ever before, for driving farther, and for generating electricity without reliance on sunshine have enabled consideration of a wider range of possible landing sites than for any previous Mars mission. During the past two years, multiple observations of dozens of candidate sites by NASA's Mars Reconnaissance Orbiter have augmented data from earlier orbiters for evaluating sites' scientific attractions and engineering risks.

    More than 100 Mars scientists have participated in a series of open workshops presenting and assessing data that the orbiters have provided about the candidate sites. The four sites rated highest by researchers at a September 2008 workshop were the same ones chosen by mission leaders after a subsequent round of safety evaluations and analysis of terrain for rover driving.

    As a clay-bearing site where a river once flowed

  19. 77 FR 65374 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... management in the areas of environmental restoration, waste management, and related activities. Tentative...

  20. 76 FR 68179 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... November 14, 2011, of the Environmental Management Site-Specific Advisory Board, Idaho National Laboratory...: Robert L. Pence, Federal Coordinator, Department of Energy, Idaho Operations Office, 1955 Fremont Avenue...

  1. 75 FR 24685 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... prior to the meeting. ADDRESSES: Hilton Garden Inn, 700 Lindsay Boulevard, Idaho Falls, Idaho 83402. FOR...

  2. 75 FR 56527 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... prior to the meeting. ADDRESSES: Coeur d'Alene Resort, 115 South Second Street, Coeur d'Alene, Idaho...

  3. Transformation of Active Sites in Fe/SSZ-13 SCR Catalysts during Hydrothermal Aging: A Spectroscopic, Microscopic, and Kinetics Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovarik, Libor; Washton, Nancy M.; Kukkadapu, Ravi

    Fe/SSZ-13 catalysts (Si/Al = 12, Fe loadings 0.37% and 1.20%) were prepared via solution ion-exchange, and hydrothermally aged at 600, 700 and 800 C. The fresh and aged catalysts were characterized with surface area/pore volume analysis, Mössbauer, solid-state MAS NMR, NO titration FTIR spectroscopies, and TEM and APT imaging. Hydrothermal aging causes dealumination of the catalysts, and transformation of various Fe sites. The latter include conversion of free Fe2+ ions to dimeric Fe(III) species, the agglomeration of isolated Fe-ions to Fe-oxide clusters, and incorporation of Al into the Fe-oxide species. These changes result in complex influences on standard SCR andmore » NO/NH3 oxidation reactions. In brief, mild aging causes catalyst performance enhancement for SCR, while harsh aging at 800 C deteriorates SCR performance. In comparison to Fe/zeolites more prone to hydrothermal degradation, this study demonstrates that via the utilization of highly hydrothermally stable Fe/SSZ-13 catalysts, more accurate correlations between various Fe species and their roles in SCR related chemistries can be made. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.« less

  4. 75 FR 11872 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... Site- Specific Advisory Board, Idaho National Laboratory to be held on March 16, 2010 75 FR 9590. In that notice, the meeting address was Hilton Garden Inn, 700 Lindsay Boulevard, Idaho Falls, Idaho 83402...

  5. Walla Walla River Basin Fish Screen Evaluations; Nursery Bridge Fishway and Garden City/Lowden II Sites, 2005-2006 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamness, Mickie

    2006-06-01

    Pacific Northwest National Laboratory (PNNL) evaluated two fish screen facilities in the Walla Walla River basin in 2005 and early 2006. The Garden City/Lowden screen site was evaluated in April and June 2005 to determine whether the fish screens met National Marine Fisheries Service criteria to provide safe passage for juvenile salmonids. Louvers behind the screens at the Nursery Bridge Fishway were modified in fall 2005 in an attempt to minimize high approach velocities. PNNL evaluated the effects of those modifications in March 2006. Results of the Garden City/Lowden evaluations indicate the site performs well at varying river levels andmore » canal flows. Approach velocities did not exceed 0.4 feet per second (fps) at any time. Sweep velocities increased toward the fish ladder in March but not in June. The air-burst mechanism appears to keep large debris off the screens, although it does not prevent algae and periphyton from growing on the screen face, especially near the bottom of the screens. At Nursery Bridge, results indicate all the approach velocities were below 0.4 fps under the moderate river levels and operational conditions encountered on March 7, 2006. Sweep did not consistently increase toward the fish ladder, but the site generally met the criteria for safe passage of juvenile salmonids. Modifications to the louvers seem to allow more control over the amount of water moving through the screens. We will measure approach velocities when river levels are higher to determine whether the louver modifications can help correct excessive approach velocities under a range of river levels and auxiliary water supply flows.« less

  6. PNNL Researchers Collect Permafrost Cores in Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-11-23

    Permafrost is ground that is frozen for two or more years. In the Arctic, discontinuous regions of this saturated admixture of soil and rock store a large fraction of the Earth’s carbon – about 1672 petagrams (1672 trillion kilograms). As temperatures increase in the Northern Hemisphere, a lot of that carbon may be released to the atmosphere, making permafrost an important factor to represent accurately in global climate models. At Pacific Northwest National Laboratory, a group led by James C. Stegen periodically extracts permafrost core samples from a site near Fairbanks, Alaska. Back at the lab in southeastern Washington State,more » they study the cores for levels of microbial activity, carbon fluxes, hydrologic patterns, and other factors that reveal the dynamics of this consequential layer of soil and rock.« less

  7. Nuclear Proliferation: A Historical Overview

    DTIC Science & Technology

    2008-03-01

    Talbert, “Nuclear Proliferation Technology Trends Analysis ,” Pacific Northwest National Laboratory, PNNL -14480 (September 2005), p. 92. 1973: Closed...L. Coles, and R. J. Talbert, “Nuclear Proliferation Technology Trends Analysis ,” Pacific Northwest National Laboratory, PNNL -14480 (September 2005...D. Zentner, G. L. Coles, and R. J. Talbert, “Nuclear Proliferation Technology Trends Analysis ,” Pacific Northwest National Laboratory, PNNL -14480

  8. PNNL Aviation Biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plaza, John; Holladay, John; Hallen, Rich

    2014-10-23

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  9. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deborah L. Layton; Kimberly Frerichs

    2011-12-01

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and themore » results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).« less

  10. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deborah L. Layton; Kimberly Frerichs

    2010-07-01

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and themore » results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).« less

  11. Idaho National Laboratory Site Pollution Prevention Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. D. Sellers

    2007-03-01

    It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Managementmore » System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is

  12. PNNL Aviation Biofuels

    ScienceCinema

    Plaza, John; Holladay, John; Hallen, Rich

    2018-06-06

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  13. Site Environmental Report for 2016 Sandia National Laboratories California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    Sandia National Laboratories, California (SNL/CA) is a Department of Energy (DOE) facility. The management and operations of the facility are under a contract with the DOE’s National Nuclear Security Administration (NNSA). On May 1, 2017, the name of the management and operating contractor changed from Sandia Corporation to National Technology and Engineering Solutions of Sandia, LLC (NTESS). The DOE, NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2016 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2012). The report provides a summary ofmore » environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2016, unless noted otherwise. General site and environmental program information is also included.« less

  14. Monitoring CCS Sites: Lessons Learned Studying Natural Laboratories.

    NASA Astrophysics Data System (ADS)

    Tartarello, M. C.; Beaubien, S. E.; Graziani, S.; Lombardi, S.; Ruggiero, L.

    2016-12-01

    Monitoring is one of the most important aspects of Carbon Capture and Storage (CCS), both for early recognition of leaks from the reservoir and for public safety. Natural analogues could be useful to understand the potential impact of a leakage on the local ecosystem and to develop new techniques of monitoring. These sites, called also "natural laboratories", are characterized by natural, geologically-produced CO2 constantly leaking from the seafloor or from the groundsurface. In the last 10 years, our group as partner of some EC funded projects focused on CCS (NASCENT (2000-2003), CO2GeoNet (2004-2009), CO2ReMoVe (2006-2011), RISCS (2010-2013), and ECO2 (2011-2015)), studied gas migration mechanisms in these "natural laboratories", applying near-surface geochemistry to monitoring. This method provides one of the most powerful tools to assess whether a CCS site is leaking and, if it is, to quantify that leakage. This is because rather than being a remote method that estimates amounts based on proxy associations, such as some geophysical tools, it is an exact measurement of the item of interest (in this case CO2) in the accessible biosphere where there is concern regarding its potential impact. In particular, we have been studied two sites in Italy, characterized by significant emissions of CO2, related to volcanic emissions: the Latera Caldera (in Central Italy) and the offshore emissions near Panarea Island. We combined continuous and discontinuous monitoring, structural surveys and gas flux measurements. The results show a strong correlation between fault architecture and leakage rates. Moreover, the monitoring of an area for long periods allows defining the baseline, which is the fluctuation of gas concentrations both spatially and temporally as a function of biological, chemical, geological, land-use and meteorological processes.

  15. Site safety plan for Lawrence Livermore National Laboratory CERCLA investigations at site 300. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilmer, J.

    Various Department of Energy Orders incorporate by reference, health and safety regulations promulgated by the Occupational Safety and Health Administration (OSHA). One of the OSHA regulations, 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response, requires that site safety plans are written for activities such as those covered by work plans for Site 300 environmental investigations. Based upon available data, this Site Safety Plan (Plan) for environmental restoration has been prepared specifically for the Lawrence Livermore National Laboratory Site 300, located approximately 15 miles east of Livermore, California. As additional facts, monitoring data, or analytical data on hazards are provided,more » this Plan may need to be modified. It is the responsibility of the Environmental Restoration Program and Division (ERD) Site Safety Officer (SSO), with the assistance of Hazards Control, to evaluate data which may impact health and safety during these activities and to modify the Plan as appropriate. This Plan is not `cast-in-concrete.` The SSO shall have the authority, with the concurrence of Hazards Control, to institute any change to maintain health and safety protection for workers at Site 300.« less

  16. Materials and Methods for Streamlined Laboratory Analysis of Environmental Samples, FY 2016 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addleman, Raymond S.; Naes, Benjamin E.; McNamara, Bruce K.

    The International Atomic Energy Agency (IAEA) relies upon laboratory analysis of environmental samples (typically referred to as “swipes”) collected during on-site inspections of safeguarded facilities to support the detection and deterrence of undeclared activities. Unfortunately, chemical processing and assay of the samples is slow and expensive. A rapid, effective, and simple extraction process and analysis method is needed to provide certified results with improved timeliness at reduced costs (principally in the form of reduced labor), while maintaining or improving sensitivity and efficacy. To address these safeguard needs the Pacific Northwest National Laboratory (PNNL) explored and demonstrated improved methods for environmentalmore » sample (ES) analysis. Improvements for both bulk and particle analysis were explored. To facilitate continuity and adoption, the new sampling materials and processing methods will be compatible with existing IAEA protocols for ES analysis. PNNL collaborated with Oak Ridge National Laboratory (ORNL), which performed independent validation of the new bulk analysis methods and compared performance to traditional IAEA’s Network of Analytical Laboratories (NWAL) protocol. ORNL efforts are reported separately. This report describes PNNL’s FY 2016 progress, which was focused on analytical application supporting environmental monitoring of uranium enrichment plants and nuclear fuel processing. In the future the technology could be applied to other safeguard applications and analytes related to fuel manufacturing, reprocessing, etc. PNNL’s FY 2016 efforts were broken into two tasks and a summary of progress, accomplishments and highlights are provided below. Principal progress and accomplishments on Task 1, Optimize Materials and Methods for ICP-MS Environmental Sample Analysis, are listed below. • Completed initial procedure for rapid uranium extraction from ES swipes based upon carbonate-peroxide chemistry (delivered to

  17. Lower Columbia River and Estuary Ecosystem Restoration Program Reference Site Study: 2011 Restoration Analysis - FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borde, Amy B.; Cullinan, Valerie I.; Diefenderfer, Heida L.

    The Reference Site (RS) study is part of the research, monitoring, and evaluation (RME) effort developed by the Action Agencies (Bonneville Power Administration [BPA], U.S. Army Corps of Engineers, Portland District [USACE], and U.S. Bureau of Reclamation) in response to Federal Columbia River Power System (FCRPS) Biological Opinions (BiOp). While the RS study was initiated in 2007, data have been collected at relatively undisturbed reference wetland sites in the LCRE by PNNL and collaborators since 2005. These data on habitat structural metrics were previously summarized to provide baseline characterization of 51 wetlands throughout the estuarine and tidal freshwater portions ofmore » the 235-km LCRE; however, further analysis of these data has been limited. Therefore, in 2011, we conducted additional analyses of existing field data previously collected for the Columbia Estuary Ecosystem Restoration Program (CEERP) - including data collected by PNNL and others - to help inform the multi-agency restoration planning and ecosystem management work underway in the LCRE.« less

  18. Review of Natural Phenomena Hazard (NPH) Assessments for the DOE Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, Robert L.; Ross, Steven B.

    2011-09-15

    The purpose of this review is to assess the need for updating Natural Phenomena Hazard (NPH) assessments for the DOE's Hanford Site, as required by DOE Order 420.1B Chapter IV, Natural Phenomena Hazards Mitigation, based on significant changes in state-of-the-art NPH assessment methodology or site-specific information. This review is an update and expansion to the September 2010 review of PNNL-19751, Review of Natural Phenomena Hazard (NPH) Assessments for the Hanford 200 Areas (Non-Seismic).

  19. Selection of the Mars Science Laboratory landing site

    USGS Publications Warehouse

    Golombek, M.; Grant, J.; Kipp, D.; Vasavada, A.; Kirk, Randolph L.; Fergason, Robin L.; Bellutta, P.; Calef, F.; Larsen, K.; Katayama, Y.; Huertas, A.; Beyer, R.; Chen, A.; Parker, T.; Pollard, B.; Lee, S.; Hoover, R.; Sladek, H.; Grotzinger, J.; Welch, R.; Dobrea, E. Noe; Michalski, J.; Watkins, M.

    2012-01-01

    The selection of Gale crater as the Mars Science Laboratory landing site took over five years, involved broad participation of the science community via five open workshops, and narrowed an initial >50 sites (25 by 20 km) to four finalists (Eberswalde, Gale, Holden and Mawrth) based on science and safety. Engineering constraints important to the selection included: (1) latitude (±30°) for thermal management of the rover and instruments, (2) elevation (<-1 km) for sufficient atmosphere to slow the spacecraft, (3) relief of <100-130 m at baselines of 1-1000 m for control authority and sufficient fuel during powered descent, (4) slopes of <30° at baselines of 2-5 m for rover stability at touchdown, (5) moderate rock abundance to avoid impacting the belly pan during touchdown, and (6) a radar-reflective, load-bearing, and trafficable surface that is safe for landing and roving and not dominated by fine-grained dust. Science criteria important for the selection include the ability to assess past habitable environments, which include diversity, context, and biosignature (including organics) preservation. Sites were evaluated in detail using targeted data from instruments on all active orbiters, and especially Mars Reconnaissance Orbiter. All of the final four sites have layered sedimentary rocks with spectral evidence for phyllosilicates that clearly address the science objectives of the mission. Sophisticated entry, descent and landing simulations that include detailed information on all of the engineering constraints indicate all of the final four sites are safe for landing. Evaluation of the traversabilty of the landing sites and target “go to” areas outside of the ellipse using slope and material properties information indicates that all are trafficable and “go to” sites can be accessed within the lifetime of the mission. In the final selection, Gale crater was favored over Eberswalde based on its greater diversity and potential habitability.

  20. New insights into Cu/SSZ-13 SCR catalyst acidity. Part I: Nature of acidic sites probed by NH 3 titration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jinyong; Gao, Feng; Kamasamudram, Krishna

    measurements. FG and CHFP gratefully acknowledge supports from the United States Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Part of the research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.« less

  1. 78 FR 58294 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  2. 78 FR 30910 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  3. 77 FR 53192 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  4. Mobile laboratories: An innovative and efficient solution for radiological characterization of sites under or after decommissioning.

    PubMed

    Goudeau, V; Daniel, B; Dubot, D

    2017-04-21

    During the operation and the decommissioning of a nuclear site the operator must assure the protection of the workers and the environment. It must furthermore identify and classify the various wastes, while optimizing the associated costs. At all stages of the decommissioning radiological measurements are performed to determine the initial situation, to monitor the demolition and clean-up, and to verify the final situation. Radiochemical analysis is crucial for the radiological evaluation process to optimize the clean-up operations and to the respect limits defined with the authorities. Even though these types of analysis are omnipresent in activities such as the exploitation, the monitoring, and the cleaning up of nuclear plants, some nuclear sites do not have their own radiochemical analysis laboratory. Mobile facilities can overcome this lack when nuclear facilities are dismantled, when contaminated sites are cleaned-up, or in a post-accident situation. The current operations for the characterization of radiological soils of CEA nuclear facilities, lead to a large increase of radiochemical analysis. To manage this high throughput of samples in a timely manner, the CEA has developed a new mobile laboratory for the clean-up of its soils, called SMaRT (Shelter for Monitoring and nucleAR chemisTry). This laboratory is dedicated to the preparation and the radiochemical analysis (alpha, beta, and gamma) of potentially contaminated samples. In this framework, CEA and Eichrom laboratories has signed a partnership agreement to extend the analytical capacities and bring on site optimized and validated methods for different problematic. Gamma-emitting radionuclides can usually be measured in situ as little or no sample preparation is required. Alpha and beta-emitting radionuclides are a different matter. Analytical chemistry laboratory facilities are required. Mobile and transportable laboratories equipped with the necessary tools can provide all that is needed. The main

  5. STP K Basin Sludge Sample Archive at the Pacific Northwest National Laboratory FY2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiskum, Sandra K.; Smoot, Margaret R.; Schmidt, Andrew J.

    2014-06-01

    The Pacific Northwest National Laboratory (PNNL) currently houses 88 samples (~10.5 kg) of K Basin sludge (81 wet and seven dry samples) on behalf of the Sludge Treatment Project (STP), which is managed for the U.S. Department of Energy (DOE) by the CH2M Hill Plateau Remediation Company (CHPRC). Selected samples are intended to serve, in part, as sentinels to enhance understanding of sludge properties after long-term storage, and thus enhance understanding of sludge behavior following transfer to sludge transfer and storage containers (STSCs) and storage at the Hanford 200 Area central plateau. In addition, remaining samples serve in contingency formore » future testing requirements. At PNNL, the samples are tracked and maintained under a prescriptive and disciplined monthly sample-monitoring program implemented by PNNL staff. This report updates the status of the K Basin archive sludge sample inventory to April 2014. The previous inventory status report, PNNL 22245 (Fiskum et al. 2013, limited distribution report), was issued in February of 2013. This update incorporates changes in the inventory related to repackaging of 17 samples under test instructions 52578 TI052, K Basin Sludge Sample Repackaging for Continued Long Term Storage, and 52578 TI053, K Basin Sludge Sample Repackaging Post-2014 Shear Strength Measurements. Note that shear strength measurement results acquired in 2014 are provided separately. Specifically, this report provides the following: • a description of the K Basin sludge sample archive program and the sample inventory • a summary and images of the samples that were repackaged in April 2014 • up-to-date images and plots of the settled density and water loss from all applicable samples in the inventory • updated sample pedigree charts, which provide a roadmap of the genesis and processing history of each sample in the inventory • occurrence and deficiency reports associated with sample storage and repackaging« less

  6. Decision Document for the Storm Water Outfalls/Industrial Wastewater Treatment Plant, Pesticide Rinse Area, Old Fire Fighting Training Pit, Illicit PCB Dump Site, and the Battery Acid Pit Fort Lewis, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J; Liikala, Terry L; Strenge, Dennis L

    PNNL conducted independent site evaluations for four sites at Fort Lewis, Washington, to determine their suitability for closure on behalf of the installation. These sites were recommended for ''No Further Action'' by previous investigators and included the Storm Water Outfalls/Industrial Waste Water Treatment Plant (IWTP), the Pesticide Rinse Area, the Old Fire Fighting Training Pit, and the Illicit PCB Dump Site.

  7. Decision Document for the Storm Water Outfalls/Industrial Wastewater Treatment Plant, Pesticide Rinse Area, Old Fire Fighting Training Pit, Illicit PCB Dump Site, and the Battery Acid Pit Fort Lewis, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.; Liikala, Terry L.; Strenge, Dennis L.

    PNNL conducted independent site evaluations for four sites at Fort Lewis, Washington, to determine their suitability for closure on behalf of the installation. These sites were recommended for "No Further Action" by previous invesitgators and included the Storm Water Outfalls/Industrial Waste Water Treatment Plant (IWTP), the Pesticide Rinse Area, the Old Fire Fighting Training Pit, and the Illicit PCB Dump Site.

  8. [Useful web sites for information about the recommendations of good practices in laboratory medicine].

    PubMed

    Szymanowicz, A; Watine, J

    2010-12-01

    In this paper are presented some useful web sites to find updated reference tables concerning the recommendations of professional practices in laboratory medicine. The knowledge of these reference tables can allow the biologist to develop its role of advice to the clinicians. It can also help him to assure a relevant interpretation of the laboratory results and to value the interest for the patient.

  9. Central Core Laboratory versus Site Interpretation of Coronary CT Angiography: Agreement and Association with Cardiovascular Events in the PROMISE Trial.

    PubMed

    Lu, Michael T; Meyersohn, Nandini M; Mayrhofer, Thomas; Bittner, Daniel O; Emami, Hamed; Puchner, Stefan B; Foldyna, Borek; Mueller, Martin E; Hearne, Steven; Yang, Clifford; Achenbach, Stephan; Truong, Quynh A; Ghoshhajra, Brian B; Patel, Manesh R; Ferencik, Maros; Douglas, Pamela S; Hoffmann, Udo

    2018-04-01

    Purpose To assess concordance and relative prognostic utility between central core laboratory and local site interpretation for significant coronary artery disease (CAD) and cardiovascular events. Materials and Methods In the Prospective Multicenter Imaging Study for Evaluation of Chest Pain (PROMISE) trial, readers at 193 North American sites interpreted coronary computed tomographic (CT) angiography as part of the clinical evaluation of stable chest pain. Readers at a central core laboratory also interpreted CT angiography blinded to clinical data, site interpretation, and outcomes. Significant CAD was defined as stenosis greater than or equal to 50%; cardiovascular events were defined as a composite of cardiovascular death or myocardial infarction. Results In 4347 patients (51.8% women; mean age ± standard deviation, 60.4 years ± 8.2), core laboratory and site interpretations were discordant in 16% (683 of 4347), most commonly because of a finding of significant CAD by site but not by core laboratory interpretation (80%, 544 of 683). Overall, core laboratory interpretation resulted in 41% fewer patients being reported as having significant CAD (14%, 595 of 4347 vs 23%, 1000 of 4347; P < .001). Over a median follow-up period of 25 months, 1.3% (57 of 4347) sustained myocardial infarction or cardiovascular death. The C statistic for future myocardial infarction or cardiovascular death was 0.61 (95% confidence interval [CI]: 0.54, 0.68) for the core laboratory and 0.63 (95% CI: 0.56, 0.70) for the sites. Conclusion Compared with interpretation by readers at 193 North American sites, standardized core laboratory interpretation classified 41% fewer patients as having significant CAD. © RSNA, 2017 Online supplemental material is available for this article. Clinical trial registration no. NCT01174550.

  10. The Subsurface Flow and Transport Laboratory: A New Department of Energy User's Facility for Intermediate-Scale Experimentation

    NASA Astrophysics Data System (ADS)

    Wietsma, T. W.; Oostrom, M.; Foster, N. S.

    2003-12-01

    Intermediate-scale experiments (ISEs) for flow and transport are a valuable tool for simulating subsurface features and conditions encountered in the field at government and private sites. ISEs offer the ability to study, under controlled laboratory conditions, complicated processes characteristic of mixed wastes and heterogeneous subsurface environments, in multiple dimensions and at different scales. ISEs may, therefore, result in major cost savings if employed prior to field studies. A distinct advantage of ISEs is that researchers can design physical and/or chemical heterogeneities in the porous media matrix that better approximate natural field conditions and therefore address research questions that contain the additional complexity of processes often encountered in the natural environment. A new Subsurface Flow and Transport Laboratory (SFTL) has been developed for ISE users in the Environmental Spectroscopy & Biogeochemistry Facility in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The SFTL offers a variety of columns and flow cells, a new state-of-the-art dual-energy gamma system, a fully automated saturation-pressure apparatus, and analytical equipment for sample processing. The new facility, including qualified staff, is available for scientists interested in collaboration on conducting high-quality flow and transport experiments, including contaminant remediation. Close linkages exist between the SFTL and numerical modelers to aid in experimental design and interpretation. This presentation will discuss the facility and outline the procedures required to submit a proposal to use this unique facility for research purposes. The W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility, is sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  11. Dehydration of 1-octadecanol over H-BEA: A combined experimental and computational study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Wenji; Liu, Yuanshuai; Barath, Eszter

    Liquid phase dehydration of 1-octdecanol, which is intermediately formed during the hydrodeoxygenation of microalgae oil, has been explored in a combined experimental and computational study. The alkyl chain of C18 alcohol interacts with acid sites during diffusion inside the zeolite pores, resulting in an inefficient utilization of the Brønsted acid sites for samples with high acid site concentrations. The parallel intra- and inter- molecular dehydration pathways having different activation energies pass through alternative reaction intermediates. Formation of surface-bound alkoxide species is the rate-limiting step during intramolecular dehydration, whereas intermolecular dehydration proceeds via a bulky dimer intermediate. Octadecene is the primarymore » dehydration product over H-BEA at 533 K. Despite of the main contribution of Brønsted acid sites towards both dehydration pathways, Lewis acid sites are also active in the formation of dioctadecyl ether. The intramolecular dehydration to octadecene and cleavage of the intermediately formed ether, however, require strong BAS. L. Wang, D. Mei and J. A. Lercher, acknowledge the partial support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less

  12. PNNL Technical Support to The Implementation of EMTA and EMTA-NLA Models in Autodesk® Moldflow® Packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Wang, Jin

    2012-12-01

    Under the Predictive Engineering effort, PNNL developed linear and nonlinear property prediction models for long-fiber thermoplastics (LFTs). These models were implemented in PNNL’s EMTA and EMTA-NLA codes. While EMTA is a standalone software for the computation of the composites thermoelastic properties, EMTA-NLA presents a series of nonlinear models implemented in ABAQUS® via user subroutines for structural analyses. In all these models, it is assumed that the fibers are linear elastic while the matrix material can exhibit a linear or typical nonlinear behavior depending on the loading prescribed to the composite. The key idea is to model the constitutive behavior ofmore » the matrix material and then to use an Eshelby-Mori-Tanaka approach (EMTA) combined with numerical techniques for fiber length and orientation distributions to determine the behavior of the as-formed composite. The basic property prediction models of EMTA and EMTA-NLA have been subject for implementation in the Autodesk® Moldflow® software packages. These models are the elastic stiffness model accounting for fiber length and orientation distributions, the fiber/matrix interface debonding model, and the elastic-plastic models. The PNNL elastic-plastic models for LFTs describes the composite nonlinear stress-strain response up to failure by an elastic-plastic formulation associated with either a micromechanical criterion to predict failure or a continuum damage mechanics formulation coupling damage to plasticity. All the models account for fiber length and orientation distributions as well as fiber/matrix debonding that can occur at any stage of loading. In an effort to transfer the technologies developed under the Predictive Engineering project to the American automotive and plastics industries, PNNL has obtained the approval of the DOE Office of Vehicle Technologies to provide Autodesk, Inc. with the technical support for the implementation of the basic property prediction models of EMTA

  13. 2016 Annual Site Environmental Report Sandia National Laboratories/New Mexico.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salas, Angela Maria; Griffith, Stacy R.

    Sandia National Laboratories (SNL) is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s (DOE’s), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at SNL, New Mexico. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of sustainability, environmental protection, and monitoring programs at SNL/NM during calendar year 2016. Major environmental programs include air quality, water quality, groundwater protection, terrestrial and ecological surveillance, waste management, pollution prevention, environmentalmore » restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. This ASER is prepared in accordance with and required by DOE O 231.1B, Admin Change 1, Environment, Safety, and Health Reporting.« less

  14. Version 2.0 Visual Sample Plan (VSP): UXO Module Code Description and Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Richard O.; Wilson, John E.; O'Brien, Robert F.

    2003-05-06

    The Pacific Northwest National Laboratory (PNNL) is developing statistical methods for determining the amount of geophysical surveys conducted along transects (swaths) that are needed to achieve specified levels of confidence of finding target areas (TAs) of anomalous readings and possibly unexploded ordnance (UXO) at closed, transferring and transferred (CTT) Department of Defense (DoD) ranges and other sites. The statistical methods developed by PNNL have been coded into the UXO module of the Visual Sample Plan (VSP) software code that is being developed by PNNL with support from the DoD, the U.S. Department of Energy (DOE, and the U.S. Environmental Protectionmore » Agency (EPA). (The VSP software and VSP Users Guide (Hassig et al, 2002) may be downloaded from http://dqo.pnl.gov/vsp.) This report describes and documents the statistical methods developed and the calculations and verification testing that have been conducted to verify that VSPs implementation of these methods is correct and accurate.« less

  15. Comparison of Fracture Gradient Methods for the FutureGen 2.0 Carbon Storage Site, Ill., USA.

    NASA Astrophysics Data System (ADS)

    Appriou, D.; Spane, F.; Wurstner White, S.; Kelley, M. E.; Sullivan, E. C.; Bonneville, A.; Gilmore, T. J.

    2014-12-01

    As part of a first-of-its-kind carbon dioxide storage project, FutureGen Industrial Alliance is planning to inject 1.1 MMt/yr of supercritical CO2 over a 20-year period within a 1240 m deep saline aquifer (Mount Simon Sandstone) located in Morgan County, Illinois, USA. Numerous aspects of the design and operational activities of the CO2 storage site are dependent on the geomechanical properties of the targeted reservoir zone, as well as of the overlying confining zone and the underlying crystalline Precambrian basement. Detailed determination of the state-of-stress within the subsurface is of paramount importance in successfully designing well drilling/completion aspects, as well as assessing the risk of induced seismicity and the potential for creating and/or reopening pre-existing fractures; all of which help ensure the safe long-term storage of injected CO2. The quantitative determination of the subsurface fracture gradient is one of the key geomechanical parameters for the site injection design and operational limits (e.g., maximum safe injection pressure). A characterization well drilled in 2011 provides subsurface geomechanical characterization information for the FutureGen 2.0 site, and includes: 1) continuous elastic properties inferred from sonic/acoustic wireline logs 2) discrete depth geomechanical laboratory core measurements and 3) results obtained from hydraulic fracturing tests of selected borehole/depth-intervals. In this paper, the precise fracture gradients derived from borehole geomechanical test results are compared with semi-empirical, fracture gradient calculation/relationships based on elastic property wireline surveys and laboratory geomechanical core test results. Implications for using various fracture-gradients obtained from the different methods are assessed using PNNL's subsurface multiphase flow and transport simulator STOMP-CO2. The implications for operational activities at the site (based on using different fracture gradients) are

  16. Annual Site Environmental Report Sandia National Laboratories, Albuquerque, New Mexico, Calendar year 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agogino, Karen; Sanchez, Rebecca

    2008-09-30

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractor-operated facility. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s environmental protection and monitoring programs through December 31, 2007. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention,more » and implementation of the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting (DOE 2007).« less

  17. Summary of the Graduate Mentoring Assistance Program for PNNL PNNL.12.006 (April 2012 – May 31, 2013)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwantes, Jon M.

    2013-05-01

    multivariate data analysis to detect anomalies in operation. Last year, Mr. Dayman investigated methods to classify spent nuclear fuel according to both reactor type and burn up based on the constituent nuclide activities, which may be used to more accurately calibrate other models in an analysis scheme in order to improve the accuracy and precision of predictions. He is currently writing up his results for publication and has transitioned to another project with Dr. Derrick Haas at PNNL.« less

  18. Mechanistic Insights into the Structure-Dependent Selectivity of Catalytic Furfural Conversion on Platinum Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Qiuxia; Wang, Jianguo; Wang, Yang-Gang

    The effects of structure and size on the selectivity of catalytic furfural conversion over supported Pt catalysts in the presence of hydrogen have been studied using first principles density functional theory (DFT) calculations and microkinetic modeling. Four Pt model systems, i.e., periodic Pt(111), Pt(211) surfaces, as well as small nanoclusters (Pt13 and Pt55) are chosen to represent the terrace, step, and corner sites of Pt nanoparticles. Our DFT results show that the reaction routes for furfural hydrogenation and decarbonylation are strongly dependent on the type of reactive sites, which lead to the different selectivity. On the basis of the size-dependentmore » site distribution rule, we correlate the site distributions as a function of the Pt particle size. Our microkinetic results indicate the critical particle size that controls the furfural selectivity is about 1.0 nm, which is in good agreement with the reported experimental value under reaction conditions. This work was supported by National Basic Research Program of China (973 Program) (2013CB733501) and the National Natural Science Foundation of China (NSFC-21306169, 21176221, 21136001, 21101137 and 91334103). This work was also partially supported by the US Department of Energy (DOE), the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less

  19. Hanford Site National Environmental Policy Act (NEPA) Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohay, A.C.; Fosmire, C.J.; Neitzel, D.A.

    1999-09-28

    '' published by the DOE Office of NEPA Oversight. Pacific Northwest National Laboratory (PNNL) staff prepared individual sections of this document, with input from other Site contractors. More detailed data are available from reference sources cited or from the authors. The following sections of the document were reviewed by the authors and updated with the best available information through June 1999: Climate and Meteorology; Ecology; Cultural, Archaeological, and Historical Resources; Socioeconomics; and All of Chapter 6.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russo, Bryan J.; Hoffman, Michael G.; Chvala, William D.

    Pacific Northwest National Laboratory provided assistance to Fort Hunter Liggett to determine the opportunities for solar energy development on the site. Increasing use of renewable energy is mandated by several executive orders and legislation. Fort Hunter Liggett has many attributes that enhance its suitability for renewable energy development. First, the site is located south of San Francisco in a remote portion of the costal foothills. Brush and forest fires are frequent and often result in power outages, which subsequently impacts the site’s training mission. In addition, the site’s blended electric rate during fiscal year (FY) 2010 was high at 12more » ¢/kWh. Lastly, the solar resource is moderately high; the site receives nearly 5.7 kWh/m2/day on a south facing, latitude-tilted surface. In light of these factors, the site is a clear candidate for a solar photovoltaic array. Prior to Pacific Northwest National Laboratory’s (PNNL) involvement, the site secured funding for a 1 megawatt (MW) photovoltaic (PV) array that will also provide shading for site vehicles. To best implement this project, PNNL conducted a site visit and was tasked with providing the site technical guidance and support regarding module selection, array siting, and other ancillary issues.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Case study describes Pacific Northwest National Laboratory's (PNNL) three-month Rock the Watt campaign to reduce energy use at its main campus in Richland, Washington. The campaign objectives were to educate PNNL employees about energy conservation opportunities in their workplace and to motivate them to help PNNL save energy and costs and to reduce greenhouse gas emissions.

  2. AN INNOVATIVE APPROACH FOR CONSTRUCTING AN IN-SITU BARRIER FOR STRONTIUM-90 AT THE HANFORD SITE WASHINGTON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FABRE RJ

    2008-12-08

    Efforts to reduce the flux of Sr-90 to the Columbia River from Hanford Site 100-N Area past-practice liquid waste disposal sites have been underway since the early 1990s. Termination of all liquid discharges to the ground in 1993 was a major step toward meeting this goal. However, Sr-90 adsorbed on aquifer solids beneath liquid waste disposal sites and extending beneath the near-shore riverbed remains a continuing contaminant source to groundwater and the Columbia River. The initial pump-and-treat system proved to be ineffective as a long-term solution because of the geochemical characteristics of Sr-90. Following an evaluation of potential Sr-90 treatmentmore » technologies and their applicability under 100-NR-2 Operable Unit hydrogeologic conditions, the U.S. Department of Energy and the Washington State Department of Ecology agreed to evaluate apatite sequestration as the primary remedial technology, combined with a secondary polishing step utilizing phytoextraction if necessary. Aqueous injection was initiated in July 2005 to assess the efficacy of in-situ apatite along the 100 m of shoreline where Sr-90 concentrations are highest. The remedial technology is being developed by Pacific Northwest National Laboratory. CH2M Hill Plateau Remediation Company is implementing this technology in the field with support from PNNL.« less

  3. Argonne National Laboratory-East site environmental report for calendar year 1998.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golchert, N.W.; Kolzow, R.G.

    1999-08-26

    This report discusses the results of the environmental protection program at Argonne National Laboratory-East (ANL-E) for 1998. To evaluate the effects of ANL-E operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the ANL-E site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and ANL-E effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups wasmore » estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, fallout, ANL-E, and other) and are compared with applicable environmental quality standards. A US Department of Energy dose calculation methodology, based on International Commission on Radiological Protection recommendations and the US Environmental Protection Agency's CAP-88 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report. The status of ANL-E environmental protection activities with respect to the various laws and regulations that govern waste handling and disposal is discussed, along with the progress of environmental corrective actions and restoration projects.« less

  4. Tank vapor characterization project. Headspace vapor characterization of Hanford waste tank 241-BY-108: Second comparison study results from samples collected on 3/28/96

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, B.L.; Pool, K.H.; Evans, J.C.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Site in Washington State. The results described in this report is the second in a series comparing vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling (ISVS) system without high efficiency particulate air (HEPA) prefiltration. The results include air concentrations of water (H{sub 2}O) and ammonia (NH{sub 3}), permanent gases, total non-methane organic compounds (TO-12), and individual organic analytes collected in SUMMA{trademark} canisters and on triple sorbent traps (TSTs).more » Samples were collected by Westinghouse Hanford Company (WHC) and analyzed by Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volume measurements provided by WHC.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solana, Amy E.; Warwick, William M.; Orrell, Alice C.

    This report presents the results of Pacific Northwest National Laboratory's (PNNL) follow-on renewable energy (RE) assessment of Fort Hood. Fort Hood receives many solicitations from renewable energy vendors who are interested in doing projects on site. Based on specific requests from Fort Hood staff so they can better understand these proposals, and the results of PNNL's 2008 RE assessment of Fort Hood, the following resources were examined in this assessment: (1) Municipal solid waste (MSW) for waste-to-energy (WTE); (2) Wind; (3) Landfill gas; (4) Solar photovoltaics (PV); and (5) Shale gas. This report also examines the regulatory issues, development options,more » and environmental impacts for the promising RE resources, and includes a review of the RE market in Texas.« less

  6. Comparison of on-site field measured inorganic arsenic in rice with laboratory measurements using a field deployable method: Method validation.

    PubMed

    Mlangeni, Angstone Thembachako; Vecchi, Valeria; Norton, Gareth J; Raab, Andrea; Krupp, Eva M; Feldmann, Joerg

    2018-10-15

    A commercial arsenic field kit designed to measure inorganic arsenic (iAs) in water was modified into a field deployable method (FDM) to measure iAs in rice. While the method has been validated to give precise and accurate results in the laboratory, its on-site field performance has not been evaluated. This study was designed to test the method on-site in Malawi in order to evaluate its accuracy and precision in determination of iAs on-site by comparing with a validated reference method and giving original data on inorganic arsenic in Malawian rice and rice-based products. The method was validated by using the established laboratory-based HPLC-ICPMS. Statistical tests indicated there were no significant differences between on-site and laboratory iAs measurements determined using the FDM (p = 0.263, ά = 0.05) and between on-site measurements and measurements determined using HPLC-ICP-MS (p = 0.299, ά = 0.05). This method allows quick (within 1 h) and efficient screening of rice containing iAs concentrations on-site. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. EPA/OFFICE OF RESEARCH AND DEVELOPMENT'S NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS LABORATORY'S ASSOCIATE DIRECTOR FOR HEALTH INTERNET SITE

    EPA Science Inventory

    This Internet site provides information about the Office of Research and Development's National Health and Environmental Effects Laboratory's Associate Director for Health (ADH) Internet site. The ADH is responsible for providing leadership for the health effects research program...

  8. Evaluating three trace metal contaminated sites: a field and laboratory investigation.

    PubMed

    Murray, P; Ge, Y; Hendershot, W H

    2000-01-01

    Selecting guidelines to evaluate elevated metals in urban brownfields is hindered by the lack of information for these sites on ecosystem structure and function. A study was performed to compare three trace metal-contaminated sites in the metropolitan Montreal area. The goal was to obtain an idea of the organisms that may be present on urban brownfields and to measure if elevated metals alter the presence and activity of the indigenous biota. Field and laboratory studies were conducted using simple methodologies to determine the extent to which microbial activity affected by trace metal content, to assess diversity of plant and soil invertebrate communities and to measure phytoaccumulation of trace metals. It was found that microbial activity, as measured by substrate-induced respiration (SIR) and nitrification, was not affected by the levels of soil Cd, Cu, Ni, Pb and Zn recorded on the sites. Seven of the 12 invertebrate groups collected were sampled on soils with similar Cd, Cu, Ni, Pb and Zn concentrations. Diversity of plant species increased as a function of the length of time the sites had been inactive. Levels of metals in plant tissue were influenced by soil characteristics and not by total soil Cd, Cu, Ni, Pb and Zn.

  9. Remaining Sites Verification Package for the 331 Life Sciences Laboratory Drain Field Septic System, Waste Site Reclassification Form 2008-020

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. M. Capron

    2008-10-16

    The 331 Life Sciences Laboratory Drain Field (LSLDF) septic system waste site consists of a diversion chamber, two septic tanks, a distribution box, and a drain field. This septic system was designed to receive sanitary waste water, from animal studies conducted in the 331-A and 331-B Buildings, for discharge into the soil column. However, field observations and testing suggest the 331 LSLDF septic system did not receive any discharges. In accordance with this evaluation, the confirmatory sampling results support a reclassification of the 331 LSLDF waste site to No Action. This site does not have a deep zone or othermore » condition that would warrant an institutional control in accordance with the 300-FF-2 ROD under the industrial land use scenario.« less

  10. An Innovative Approach for Constructing an In-Situ Barrier for Strontium-90 at the Hanford Site, Washington - 9325

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, K. M.; Fabre, Russel J.; Vermeul, Vincent R.

    2008-12-10

    Efforts to reduce the flux of Sr-90 to the Columbia River from Hanford Site 100-N Area past-practice liquid waste disposal sites have been underway since the early 1990s. Termination of all liquid discharges to the ground in 1993 was a major step toward meeting this goal. However, Sr 90 adsorbed on aquifer solids beneath liquid waste disposal sites and extending beneath the near-shore riverbed remains a continuing contaminant source to groundwater and the Columbia River. The initial pump-and treat system proved to be ineffective as a long-term solution because of the geochemical characteristics of Sr-90. Following an evaluation of potentialmore » Sr-90 treatment technologies and their applicability under 100 NR-2 Operable Unit hydrogeologic conditions, the U.S. Department of Energy and the Washington State Department of Ecology agreed to evaluate apatite sequestration as the primary remedial technology, combined with a secondary polishing step utilizing phytoextraction if necessary. Aqueous injection was initiated in July 2005 to assess the efficacy of in-situ apatite along the 100 m of shoreline where Sr-90 concentrations are highest. The remedial technology is being developed by Pacific Northwest National Laboratory. CH2M Hill Plateau Remediation Company is implementing this technology in the field with support from PNNL.« less

  11. Recharge Data Package for Hanford Single-Shell Tank Waste Management Areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fayer, Michael J.; Keller, Jason M.

    2007-09-24

    Pacific Northwest National Laboratory (PNNL) assists CH2M HILL Hanford Group, Inc., in its preparation of the Resource Conservation and Recovery Act (RCRA) Facility Investigation report. One of the PNNL tasks is to use existing information to estimate recharge rates for past and current conditions as well as future scenarios involving cleanup and closure of tank farms. The existing information includes recharge-relevant data collected during activities associated with a host of projects, including those of RCRA, the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the CH2M HILL Tank Farm Vadose Zone Project, and the PNNL Remediation and Closure Science Project.more » As new information is published, the report contents can be updated. The objective of this data package was to use published data to provide recharge estimates for the scenarios being considered in the RCRA Facility Investigation. Recharge rates were estimated for areas that remain natural and undisturbed, areas where the vegetation has been disturbed, areas where both the vegetation and the soil have been disturbed, and areas that are engineered (e.g., surface barrier). The recharge estimates supplement the estimates provided by PNNL researchers in 2006 for the Hanford Site using additional field measurements and model analysis using weather data through 2006.« less

  12. A comparison between on-site immunoassay drug-testing devices and laboratory results.

    PubMed

    Grönholm, M; Lillsunde, P

    2001-09-15

    The aim with this study was to evaluate the accuracy of several on-site testing devices on the market. A part of this study is included in the European Union's (EU's) roadside testing assessment project (ROSITA). An other request for this kind of study came from the Finnish prison department in the Ministry of Justice. The evaluation was performed on both urine assays and oral fluid assays. The on-site test results were compared with laboratory results (gas chromatography-mass spectrometry (GC/MS)). The samples were tested on amphetamines (AMP), cannabinoids (THC), opiates (OPI) and cocaine metabolites (COC). Some of the tests also included a metamphetamine (MET) and a benzodiazepine (BZO) test. Both positive and negative samples were tested. A total of 800 persons and eight on-site devices for urine and two for oral fluid testing were included in this study. Good results were obtained for the urine on-site devices, with accuracies of 93-99% for amphetamines, 97-99% for cannabinoids, 94-98% for opiates and 90-98% for benzodiazepines. However, differences in the ease of performance and interpretation of test result were observed. It was possible to detect amphetamines and opiates in oral fluid by the used on-site devices, but the benzodiazepines and cannabinoids did not fulfil the needs of sensitivity.

  13. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment. Erratum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Gary L.

    2016-09-06

    This report refers to or contains K g values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected K g values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Feng; Zheng, Yang; Kukkadapu, Ravi K.

    Using a traditional aqueous solution ion-exchange method under a protecting atmosphere of N2, a series of Fe/SSZ-13 catalysts with various Fe loadings were synthesized. UV-Vis, EPR and Mössbauer spectroscopies, coupled with temperature programmed reduction and desorption techniques, were used to probe the nature of the Fe sites. The major monomeric and dimeric Fe species are extra-framework [Fe(OH)2]+ and [HO-Fe-O-Fe-OH]2+. Larger oligomers with unknown nuclearity, poorly crystallized Fe2O3 particles, together with isolated Fe2+ ions, are minor Fe-containing moieties. Reaction rate and Fe loading correlations suggest that isolated Fe3+ ions are the active sites for standard SCR while the dimeric sites aremore » the active centers for NO oxidation. NH3 oxidation, on the other hand, is catalyzed by sites with higher nuclearity. A low-temperature standard SCR reaction network is proposed that includes redox cycling of both monomeric and dimeric Fe species, for SCR and NO2 generation, respectively. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.« less

  15. Comprehensive Energy and Water Master Plan, Redstone Arsenal

    DTIC Science & Technology

    2009-01-01

    Facility Energy Decision System (FEDS) analysis completed by the Pacific Northwest National Laboratory ( PNNL ). This model presents a clear picture of...steam options analysis conducted by Pacific Northwest National Laboratory ( PNNL ) giving priority to strategies that maximize the use of waste for...0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing

  16. Lamprey Tagging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colotelo, Alison; Deters, Kate

    2017-05-26

    Pacific Northwest National Laboratory has developed a super-small acoustic tracking tag designed just for juvenile lamprey. In this video, PNNL researcher Alison Colotelo describes how she and her colleague Kate Deters inject young lamprey with the PNNL tag.

  17. Pacific Northwest National Laboratory’s Climate Resiliency Planning Process and Lessons Learned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Kimberly M.; Judd, Kathleen S.; Brandenberger, Jill M.

    2016-02-22

    In 2015, the Pacific Northwest National Laboratory (PNNL) developed its first Climate Resilience Plan for its Richland Campus. PNNL has performed Climate Resilience Planning for the Department of Defense, Nuclear Regulatory Commission, and Department of Energy (DOE) over the past 5 years. The assessment team included climate scientists, social scientists, engineers, and operations managers. A multi-disciplinary team was needed to understand the potential exposures to future changes at the site, the state of the science on future impacts, and the best process for “mainstreaming” new actions into existing activities. The team uncovered that the site’s greatest vulnerabilities, and therefore prioritiesmore » for climate resilience planning, are high temperature due to degraded infrastructure, increased wildfire frequency, and intense precipitation impacts on stormwater conveyance systems.« less

  18. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorries, Alison M

    2010-11-09

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledgemore » (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.« less

  19. The Idaho National Engineering Laboratory Site environmental report for calendar Year 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoff, D.L.; Mitchell, R.G.; Moore, R.

    1991-06-01

    The results of the various monitoring programs for 1990 indicate that most radioactivity from the Idaho National Engineering Laboratory (INEL) operations could not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEL Site. Although some radioactive materials were discharged during Site operations, concentrations and doses to the surrounding population were of no health consequence and were far less than State of Idaho and Federal health protection guidelines. The first section of the report summarizes Calendar Year 1990 and January 1 through April 1, 1991, INEL activities related to compliance with environmental regulations and laws. Themore » balance of the report describes the surveillance program, the collection of foodstuffs at the INEL boundary and distant offsite locations, and the collection of air and water samples at onsite locations and offsite boundary and distant locations. The report also compares and evaluates the sample results and discusses implications, if any. Nonradioactive and radioactive effluent monitoring at the Site, and the US Geological Survey (USGS) ground-water monitoring program are also summarized. 33 refs., 18 figs., 29 tabs.« less

  20. Initial characterization of unequal-length, low-background proportional counters for absolute gas-counting applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, E. K.; Aalseth, C. E.; Bonicalzi, R.

    Characterization of two sets of custom unequal length proportional counters is underway at Pacific Northwest National Laboratory (PNNL). These detectors will be used in measurements to determine the absolute activity concentration of gaseous radionuclides (e.g., {sup 37}Ar). A set of three detectors has been fabricated based on previous PNNL ultra-low-background proportional counter designs and now operate in PNNL's shallow underground counting laboratory. A second set of four counters has also been fabricated using clean assembly of Oxygen-Free High-Conductivity copper components for use in a shielded above-ground counting laboratory. Characterization of both sets of detectors is underway with measurements of backgroundmore » rates, gas gain, and energy resolution. These results will be presented along with a shielding study for the above-ground cave.« less

  1. Pacific Northwest National Laboratory Potential Impact Categories for Radiological Air Emission Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballinger, Marcel Y.; Gervais, Todd L.; Barnett, J. Matthew

    2012-06-05

    In 2002, the EPA amended 40 CFR 61 Subpart H and 40 CFR 61 Appendix B Method 114 to include requirements from ANSI/HPS N13.1-1999 Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities for major emission points. Additionally, the WDOH amended the Washington Administrative Code (WAC) 246-247 Radiation protection-air emissions to include ANSI/HPS N13.1-1999 requirements for major and minor emission points when new permitting actions are approved. A result of the amended regulations is the requirement to prepare a written technical basis for the radiological air emission sampling and monitoring program. A keymore » component of the technical basis is the Potential Impact Category (PIC) assigned to an emission point. This paper discusses the PIC assignments for the Pacific Northwest National Laboratory (PNNL) Integrated Laboratory emission units; this revision includes five PIC categories.« less

  2. Strontium-90 at the Hanford Site and its ecological implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RE Peterson; TM Poston

    2000-05-22

    Strontium-90, a radioactive contaminant from historical operations at the U.S. Department of Energy (DOE) Hanford Site, enters the Columbia River at several locations associated with former plutonium production reactors at the Site. Strontium-90 is of concern to humans and the environment because of its moderately long half-life (29.1 years), its potential for concentrating in bone tissue, and its relatively high energy of beta decay. Although strontium-90 in the environment is not a new issue for the Hanford Site, recent studies of near-river vegetation along the shoreline near the 100 Areas raised public concern about the possibility of strontium-90-contaminated groundwater reachingmore » the riverbed and fall chinook salmon redds. To address these concerns, DOE asked Pacific Northwest National Laboratory (PNNL) to prepare this report on strontium-90, its distribution in groundwater, how and where it enters the river, and its potential ecological impacts, particularly with respect to fall chinook salmon. The purpose of the report is to characterize groundwater contaminants in the near-shore environment and to assess the potential for ecological impact using salmon embryos, one of the most sensitive ecological indicators for aquatic organisms. Section 2.0 of the report provides background information on strontium-90 at the Hanford Site related to historical operations. Public access to information on strontium-90 also is described. Section 3.0 focuses on key issues associated with strontium-90 contamination in groundwater that discharges in the Hanford Reach. The occurrence and distribution of fall chinook salmon redds in the Hanford Reach and characteristics of salmon spawning are described in Section 4.0. Section 5.0 describes the regulatory standards and criteria used to set action levels for strontium-90. Recommendations for initiating additional monitoring and remedial action associated with strontium-90 contamination at the Hanford Site are presented in

  3. Data Quality Objectives Supporting the Environmental Soil Monitoring Program for the Idaho National Laboratory Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haney, Thomas Jay

    This document describes the process used to develop data quality objectives for the Idaho National Laboratory (INL) Environmental Soil Monitoring Program in accordance with U.S. Environmental Protection Agency guidance. This document also develops and presents the logic that was used to determine the specific number of soil monitoring locations at the INL Site, at locations bordering the INL Site, and at locations in the surrounding regional area. The monitoring location logic follows the guidance from the U.S. Department of Energy for environmental surveillance of its facilities.

  4. CALiPER Report 24: OLED Luminaires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, N. J.; Leon, F. A.; Davis, J. L.

    2017-08-01

    This report documents an initial investigation of OLED luminaires and summarizes the key features of those products. In addition to photometric testing of four commercial products in independent laboratories, PNNL examined many of the products through teardown testing (disassemblies to identify parts and functionality) in PNNL laboratories. Results of these tests as well as results of stress testing of several OLED luminaires at RTI International have been included.

  5. Air Quality Modeling and Forecasting over the United States Using WRF-Chem

    NASA Astrophysics Data System (ADS)

    Boxe, C.; Hafsa, U.; Blue, S.; Emmanuel, S.; Griffith, E.; Moore, J.; Tam, J.; Khan, I.; Cai, Z.; Bocolod, B.; Zhao, J.; Ahsan, S.; Gurung, D.; Tang, N.; Bartholomew, J.; Rafi, R.; Caltenco, K.; Rivas, M.; Ditta, H.; Alawlaqi, H.; Rowley, N.; Khatim, F.; Ketema, N.; Strothers, J.; Diallo, I.; Owens, C.; Radosavljevic, J.; Austin, S. A.; Johnson, L. P.; Zavala-Gutierrez, R.; Breary, N.; Saint-Hilaire, D.; Skeete, D.; Stock, J.; Salako, O.

    2016-12-01

    WRF-Chem is the Weather Research and Forecasting (WRF) model coupled with Chemistry. The model simulates the emission, transport, mixing, and chemical transformation of trace gases and aerosols simultaneously with the meteorology. The model is used for investigation of regional-scale air quality, field program analysis, and cloud-scale interactions between clouds and chemistry. The development of WRF-Chem is a collaborative effort among the community led by NOAA/ESRL scientists. The Official WRF-Chem web page is located at the NOAA web site. Our model development is closely linked with both NOAA/ESRL and DOE/PNNL efforts. Description of PNNL WRF-Chem model development is located at the PNNL web site as well as the PNNL Aerosol Modeling Testbed. High school and undergraduate students, representative of academic institutions throughout USA's Tri-State Area (New York, New Jersey, Connecticut), set up WRF-Chem on CUNY CSI's High Performance Computing Center. Students learned the back-end coding that governs WRF-Chems structure and the front-end coding that displays visually specified weather simulations and forecasts. Students also investigated the impact, to select baseline simulations/forecasts, due to the reaction, NO2 + OH + M → HOONO + M (k = 9.2 × 10-12 cm3 molecule-1 s-1, Mollner et al. 2010). The reaction of OH and NO2 to form gaseous nitric acid (HONO2) is among the most influential and in atmospheric chemistry. Till a few years prior, its rate coefficient remained poorly determined under tropospheric conditions because of difficulties in making laboratory measurements at 760 torr. These activities fosters student coding competencies and deep insights into weather forecast and air quality.

  6. Mechanistic insights into aqueous phase propanol dehydration in H-ZSM-5 zeolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Donghai; Lercher, Johannes A.

    Aqueous phase dehydration of 1-propanol over H-ZSM-5 zeolite was investigated using density functional theory (DFT) calculations. The water molecules in the zeolite pores prefer to aggregate via the hydrogen bonding network and be protonated at the Brønsted acidic sites (BAS). Two typical configurations, i.e., dispersed and clustered, of water molecules were identified by ab initio molecular dynamics simulation of the mimicking aqueous phase H-ZSM-5 zeolite unit cell with 20 water molecules per unit cell. DFT calculated Gibbs free energies suggest that the dimeric propanol-propanol, the propanol-water complex, and the trimeric propanol-propanol-water are formed at high propanol concentrations, which provide amore » kinetically feasible dehydration reaction channel of 1-propanol to propene. However, calculation results also indicate that the propanol dehydration via the unimolecular mechanism becomes kinetically discouraged due to the enhanced stability of the protonated dimeric propanol and the protonated water cluster acting as the BAS site for alcohol dehydration reaction. This work was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less

  7. Field metabolomics and laboratory assessments of anaerobic intrinsic bioremediation of hydrocarbons at a petroleum‐contaminated site

    PubMed Central

    Parisi, Victoria A.; Brubaker, Gaylen R.; Zenker, Matthew J.; Prince, Roger C.; Gieg, Lisa M.; Da Silva, Marcio L.B.; Alvarez, Pedro J. J.; Suflita, Joseph M.

    2009-01-01

    Summary Field metabolomics and laboratory assays were used to assess the in situ anaerobic attenuation of hydrocarbons in a contaminated aquifer underlying a former refinery. Benzene, ethylbenzene, 2‐methylnaphthalene, 1,2,4‐ and 1,3,5‐trimethylbenzene were targeted as contaminants of greatest regulatory concern (COC) whose intrinsic remediation has been previously reported. Metabolite profiles associated with anaerobic hydrocarbon decay revealed the microbial utilization of alkylbenzenes, including the trimethylbenzene COC, PAHs and several n‐alkanes in the contaminated portions of the aquifer. Anaerobic biodegradation experiments designed to mimic in situ conditions showed no loss of exogenously amended COC; however, a substantive rate of endogenous electron acceptor reduction was measured (55 ± 8 µM SO4 day−1). An assessment of hydrocarbon loss in laboratory experiments relative to a conserved internal marker revealed that non‐COC hydrocarbons were being metabolized. Purge and trap analysis of laboratory assays showed a substantial loss of toluene, m‐ and o‐xylene, as well as several alkanes (C6–C12). Multiple lines of evidence suggest that benzene is persistent under the prevailing site anaerobic conditions. We could find no in situ benzene intermediates (phenol or benzoate), the parent molecule proved recalcitrant in laboratory assays and low copy numbers of Desulfobacterium were found, a genus previously implicated in anaerobic benzene biodegradation. This study also showed that there was a reasonable correlation between field and laboratory findings, although with notable exception. Thus, while the intrinsic anaerobic bioremediation was clearly evident at the site, non‐COC hydrocarbons were preferentially metabolized, even though there was ample literature precedence for the biodegradation of the target molecules. PMID:21261914

  8. Idaho National Laboratory 2015-2023 Ten-Year Site Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheryl Morton; Elizabeth Connell; Bill Buyers

    2013-09-01

    This Idaho National Laboratory (INL) Ten-Year Site Plan (TYSP) describes the strategy for accomplishing the long-term objective of sustaining the INL infrastructure to meet the Department of Energy Office of Nuclear Energy (DOE-NE) mission: to promote nuclear power as a resource capable of making major contributions in meeting the nation’s energy supply, environmental and energy security needs. This TYSP provides the strategy for INL to accomplish its mission by: (1) linking R&D mission goals to core capabilities and infrastructure requirements; (2) establishing a ten-year end-state vision for INL facility complexes; (3) identifying and prioritizing infrastructure needs and capability gaps; (4)more » establishing maintenance and repair strategies that allow for sustainment of mission-critical (MC) facilities; and (5) applying sustainability principles to each decision and action. The TYSP serves as the infrastructure-planning baseline for INL; and, though budget formulation documents are informed by the TYSP, it is not itself a budget document.« less

  9. Creation of 0.10-cm-1 resolution quantitative infrared spectral libraries for gas samples

    NASA Astrophysics Data System (ADS)

    Sharpe, Steven W.; Sams, Robert L.; Johnson, Timothy J.; Chu, Pamela M.; Rhoderick, George C.; Guenther, Franklin R.

    2002-02-01

    The National Institute of Standards and Technology (NIST) and the Pacific Northwest National Laboratory (PNNL) are independently creating quantitative, approximately 0.10 cm-1 resolution, infrared spectral libraries of vapor phase compounds. The NIST library will consist of approximately 100 vapor phase spectra of volatile hazardous air pollutants (HAPs) and suspected greenhouse gases. The PNNL library will consist of approximately 400 vapor phase spectra associated with DOE's remediation mission. A critical part of creating and validating any quantitative work involves independent verification based on inter-laboratory comparisons. The two laboratories use significantly different sample preparation and handling techniques. NIST uses gravimetric dilution and a continuous flowing sample while PNNL uses partial pressure dilution and a static sample. Agreement is generally found to be within the statistical uncertainties of the Beer's law fit and less than 3 percent of the total integrated band areas for the 4 chemicals used in this comparison. There does appear to be a small systematic difference between the PNNL and NIST data, however. Possible sources of the systematic difference will be discussed as well as technical details concerning the sample preparation and the procedures for overcoming instrumental artifacts.

  10. Conceptual Site Treatment Plan Laboratory for Energy-Related Health Research Environmental Restoration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, T.E.

    1993-10-01

    The Federal Facilities Compliance Act (the Act) of 1992 waives sovereign immunity for federal facilities for fines and penalties under the provisions of the Resource Recovery and Conservation Act, state, interstate, and local hazardous and solid waste management requirements. However, for three years the Act delays the waiver for violations involving US Department of Energy (DOE) facilities. The Act, however, requires that the DOE prepare a Conceptual Site Treatment Plan (CSTP) for each of its sites that generate or store mixed wastes (MWs). The purpose of the CSTP is to present DOE`s preliminary evaluations of the development of treatment capacitiesmore » and technologies for treating a site`s MW. This CSTP presents the preliminary capacity and technology evaluation for the Laboratory for Energy-Related Health Research (LEHR). The five identified MW streams at LEHR are evaluated to the extent possible given available information. Only one MW stream is sufficiently well defined to permit a technology evaluation to be performed. Two other MW streams are in the process of being characterized so that an evaluation can be performed. The other two MW streams will be generated by the decommissioning of inactive facilities onsite within the next five years.« less

  11. Novel Methods to Explore Building Energy Sensitivity to Climate and Heat Waves Using PNNL's BEND Model

    NASA Astrophysics Data System (ADS)

    Burleyson, C. D.; Voisin, N.; Taylor, T.; Xie, Y.; Kraucunas, I.

    2017-12-01

    The DOE's Pacific Northwest National Laboratory (PNNL) has been developing the Building ENergy Demand (BEND) model to simulate energy usage in residential and commercial buildings responding to changes in weather, climate, population, and building technologies. At its core, BEND is a mechanism to aggregate EnergyPlus simulations of a large number of individual buildings with a diversity of characteristics over large spatial scales. We have completed a series of experiments to explore methods to calibrate the BEND model, measure its ability to capture interannual variability in energy demand due to weather using simulations of two distinct weather years, and understand the sensitivity to the number and location of weather stations used to force the model. The use of weather from "representative cities" reduces computational costs, but often fails to capture spatial heterogeneity that may be important for simulations aimed at understanding how building stocks respond to a changing climate (Fig. 1). We quantify the potential reduction in temperature and load biases from using an increasing number of weather stations across the western U.S., ranging from 8 to roughly 150. Using 8 stations results in an average absolute summertime temperature bias of 4.0°C. The mean absolute bias drops to 1.5°C using all available stations. Temperature biases of this magnitude translate to absolute summertime mean simulated load biases as high as 13.8%. Additionally, using only 8 representative weather stations can lead to a 20-40% bias of peak building loads under heat wave or cold snap conditions, a significant error for capacity expansion planners who may rely on these types of simulations. This analysis suggests that using 4 stations per climate zone may be sufficient for most purposes. Our novel approach, which requires no new EnergyPlus simulations, could be useful to other researchers designing or calibrating aggregate building model simulations - particularly those looking at

  12. Calendar Year 2013 Annual Site Environmental Report for Sandia National Laboratories, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, Stacy

    2014-09-01

    Sandia National Laboratories, New Mexico is a government-owned/contractor-operated facility. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s sustainability, environmental protection, and monitoring programs through December 31, 2013. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of themore » National Environmental Policy Act. Environmental monitoring and surveillance programs are required by DOE Order 231.1B, Environment, Safety, and Health Reporting (DOE 2012).« less

  13. Pacific Northwest National Laboratory Campus Radionuclide Air Emissions Report for Calendar Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Sandra F.; Barnett, J. Matthew; Bisping, Lynn E.

    This report documents radionuclide air emissions that result in the 2015 highest effective dose equivalent (EDE) to an offsite member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.” The dose to the PNNL Campus MEI from routine major and minormore » point source emissions in 2015 from PNNL Campus sources is 2.6E-4 mrem (2.6E-6 mSv) EDE. The dose from all fugitive sources is 1.8E-6 mrem (1.8E-8 mSv) EDE. The dose from radon emissions is 4.4E-8 mrem (4.4E-10 mSv) EDE. No nonroutine emissions occurred in 2015. The total radiological dose to the MEI from all PNNL Campus radionuclide emissions, including fugitive emissions and radon, is 2.6E-4 mrem (2.6E-6 mSv) EDE, or more than 10,000 times less than the federal and state standard of 10 mrem/yr, with which the PNNL Campus is in compliance.« less

  14. Program helps pick site for renewable energy generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madison, Alison L.

    Monthly economic diversity column for Tri-City Herald - excerpt pasted below: Sunshine and wind are two things we know well in the Tri-Cities area and beyond. My own backyard is a perpetual vortex of breezy fun, for example, to the point that it almost seems silly not to harness it for something useful. But I recently learned that when we're talking about building renewable energy generation capacity, it's not quite as simple as 'If you build it, they will come.' In fact, according to renewable energy expert and Pacific Northwest National Laboratory researcher John DeSteese, there are several criteria thatmore » make a piece of property suitable for this kind of development. DeSteese and his team recently completed an assessment regarding the use of specific land for renewable power generation through PNNL's Technology Assistance Program.« less

  15. Sandia National Laboratories site-wide hydrogeologic characterization project calendar year 1992 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowson, D.; Gibson, J.D.; Haase, C.S.

    1993-10-01

    The Sandia National Laboratories, New Mexico (SNL/NM) Site-Wide Hydrogeologic Characterization (SWHC) project has been implemented as part of the SNL/NM Environmental Restoration (ER) Program to develop the regional hydrogeologic framework and baseline for the approximately 100 mi of Kirtland Air Force Base (KAFB) and adjacent withdrawn public lands upon which SNL/NM has performed research and development activities. Additionally, the SWHC project will investigate and characterize generic hydrogeologic issues associated with the 172 ER sites owned by SNL/NM across its facilities on KAFB. As called for in the Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Actmore » (RCRA) Part B permit agreement between the U.S. Environmental Protection Agency (EPA) as the permitter and the U.S. Department of Energy (DOE) and SNL/NM as the permittees, an annual report is to be prepared by the SWHC project team. This document serves two primary purposes: (1) to identify and describe the conceptual framework for the hydrogeologic system underlying SNL/NM and (2) to describe characterization activities undertaken in the preceding year that add to our understanding (reduce our uncertainties) regarding the conceptual and quantitative hydrogeologic framework. This SWHC project annual report focuses primarily on purpose 1, providing a summary description of the current {open_quotes}state of knowledge{close_quotes} of the Sandia National Laboratories/Kirtland Air Force Base (SNL/KAFB) hydrogeologic setting.« less

  16. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the Marine Sciences Laboratory, Sequim Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, J. Matthew; Meier, Kirsten M.; Snyder, Sandra F.

    2012-12-27

    This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006), as well as several other published DQOs. The intent of this report is to determine the necessary steps required to ensure that radioactive emissions to the air from the Marine Sciences Laboratory (MSL) headquartered at the Pacific Northwest National Laboratory’s Sequim Marine Research Operations (Sequim Site) on Washington State’s Olympic Peninsula are managed in accordance with regulatory requirements and best practices. The Sequim Site was transitioned in Octobermore » 2012 from private operation under Battelle Memorial Institute to an exclusive use contract with the U.S. Department of Energy, Office of Science, Pacific Northwest Site Office.« less

  17. Superfund record of decision (EPA Region 3): Allegany Ballistics Laboratory (USNavy) Site 10, Mineral, WV, June 30, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    This decision document presents the selected remedial action for Site 10 (the Site) Groundwater at the Allegany Ballistics Laboratory (ABL), Rocket Center, West Virginia. The major components of the selected remedy are: Institutional controls, including land use restrictions imposed through appropriate administrative mechanisms to prevent groundwater use; Groundwater pumping from a minimum of three extraction wells to capture the hot spot of the VOC contaminant plume; Installation of a pipeline to transport groundwater from Site 10 to the Site 1 treatment plant; Discharge to the North Branch Potomac River; and Groundwater monitoring on a timely basis, quarterly to semi-annually, willmore » evaluate groundwater quality, contaminant migration, and degradation for inclusion in the 5-year site reviews.« less

  18. Environmental analysis of the operation of Oak Ridge National Laboratory (X-10 site)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, J.W.; Blumberg, R.; Cotter, S.J.

    1982-11-01

    An environmental analysis of the operation of the Oak Ridge National Laboratory (ORNL) facilities in Bethel Valley and Melton Valley was conducted to present to the public information concerning the extent to which recognizable effects, or potential effects, on the environment may occur. The analysis addresses current operations of the ORNL X-10 site and completed operations that may continue to have residual effects. Solid wastes from ORNL operations at the Y-12 site which are transported to the X-10 site for burial (e.g., Biology Division animal wastes) are included as part of X-10 site operation. Socioeconomic effects are associated primarily withmore » the communities where employees live and with the Knoxville Bureau of Economic Analysis economic area as a whole. Therefore, ORNL employees at both Y-12 and X-10 sites are included in the ORNL socioeconomic impact analysis. An extensive base of environmental data was accumulated for this report. Over 80 reports related to ORNL facilities and/or operations are cited as well as many open-literature citations. Environmental effects of the operation of ORNL result from operational discharges from the onsite facilities; construction and/or modification of facilities, transportation to and from the site of persons, goods and services; socioeconomic impacts to the local, regional, and general population; and accidental discharges if they should occur. Operational discharges to the environnment are constrained by federal, state, and local regulations and by criteria established by the US Department of Energy to minimize adverse impacts. It is the purpose of this document to evaluate the operation of the ORNL insofar as impacts beyond the site boundary may occur or have the potential for occurrence.« less

  19. Comparative assessment of laparoscopic single-site surgery instruments to conventional laparoscopic in laboratory setting.

    PubMed

    Stolzenburg, Jens-Uwe; Kallidonis, Panagiotis; Oh, Min-A; Ghulam, Nabi; Do, Minh; Haefner, Tim; Dietel, Anja; Till, Holger; Sakellaropoulos, George; Liatsikos, Evangelos N

    2010-02-01

    Laparoendoscopic single-site surgery (LESS) represents the latest innovation in laparoscopic surgery. We compare in dry and animal laboratory the efficacy of recently introduced pre-bent instruments with conventional laparoscopic and flexible instruments in terms of time requirement, maneuverability, and ease of handling. Participants of varying laparoscopic experience were included in the study and divided in groups according to their experience. The participants performed predetermined tasks in dry laboratory using all sets of instruments. An experienced laparoscopic surgeon performed 24 nephrectomies in 12 pigs using all sets of instruments. Single port was used for all instrument sets except for the conventional instruments, which were inserted through three ports. The time required for the performance of dry laboratory tasks and the porcine nephrectomies was recorded. Errors in the performance of dry laboratory tasks of each instrument type were also recorded. Pre-bent instruments had a significant advantage over flexible instruments in terms of time requirement to accomplish tasks and procedures as well as maneuverability. Flexible instruments were more time consuming in comparison to the conventional laparoscopic instruments during the performance of the tasks. There were no significant differences in the time required for the accomplishment of dry laboratory tasks or steps of nephrectomy using conventional instruments through appropriate number of ports in comparison to pre-bent instruments through single port. Pre-bent instruments were less time consuming and with better maneuverability in comparison to flexible instruments in experimental single-port access surgery. Further clinical investigations would elucidate the efficacy of pre-bent instruments.

  20. Physical Property Analysis and Report for Sediments at 100-BC-5 Operable Unit, Boreholes C7505, C7506, C7507, and C7665

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindberg, Michael J.

    2010-09-28

    Between October 14, 2009 and February 22, 2010 sediment samples were received from 100-BC Decision Unit for geochemical studies. This is an analytical data report for sediments received from CHPRC at the 100 BC 5 OU. The analyses for this project were performed at the 325 building located in the 300 Area of the Hanford Site. The analyses were performed according to Pacific Northwest National Laboratory (PNNL) approved procedures and/or nationally recognized test procedures. The data sets include the sample identification numbers, analytical results, estimated quantification limits (EQL), and quality control data. The preparatory and analytical quality control requirements, calibrationmore » requirements, acceptance criteria, and failure actions are defined in the on-line QA plan 'Conducting Analytical Work in Support of Regulatory Programs' (CAW). This QA plan implements the Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD) for PNNL.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, T.A.

    This is the final sample analysis report for tank 241-BX-104 (BX-104), cores 126 and 127. Two segments from each core yielded a total of 11 samples which were analyzed. The data quality objectives (DQOs) applicable to this sampling event were the Safety Screening DQO (Dukelow et al. 1995) and the Organic Safety DQO (Turner et al. 1995). The samples were received, extruded and analyzed at PNNL 325 Analytical Chemistry Laboratory (ACL). The analyses were performed in accordance with the Sample Analysis Plan (Gretsinger 1996) and indicated that the tank is safe with respect to the criteria in the Safety Screeningmore » and Organic DQO. Detailed analytical results were described in the analytical laboratory 45-day Report (Attachment 1, WHC-SD-WM-DP-171, REV. 0) and final report (Attachment 2, PNL-BX-104 REV.1) prepared by PNNL, 325 Laboratory. Corrections and/or exceptions to the PNNL final report are provided.« less

  2. Side-by-Side Field Evaluation of Highly Insulating Windows in the PNNL Lab Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widder, Sarah H.; Parker, Graham B.; Baechler, Michael C.

    2012-08-01

    To examine the energy, air leakage, and thermal performance of highly insulating windows, a field evaluation was undertaken in a matched pair of all-electric, factory-built “Lab Homes” located on the Pacific Northwest National Laboratory (PNNL) campus in Richland, Washington. The “baseline” Lab Home B was retrofitted with “standard” double-pane clear aluminum-frame slider windows and patio doors, while the “experimental” Lab Home A was retrofitted with Jeld-Wen® triple-pane vinyl-frame slider windows and patio doors with a U-factor of 0.2 and solar heat gain coefficient of 0.19. To assess the window, the building shell air leakage, energy use, and interior temperatures ofmore » each home were compared during the 2012 winter heating and summer cooling seasons. The measured energy savings in Lab Home B averaged 5,821 watt-hours per day (Wh/day) during the heating season and 6,518 Wh/day during the cooling season. The overall whole-house energy savings of Lab Home B compared to Lab Home A are 11.6% ± 1.53% for the heating season and 18.4 ± 2.06% for the cooling season for identical occupancy conditions with no window coverings deployed. Extrapolating these energy savings numbers based on typical average heating degree days and cooling degree days per year yields an estimated annual energy savings of 12.2%, or 1,784 kWh/yr. The data suggest that highly insulating windows are an effective energy-saving measure that should be considered for high-performance new homes and in existing retrofits. However, the cost effectiveness of the measure, as determined by the simple payback period, suggests that highly insulating window costs continue to make windows difficult to justify on a cost basis alone. Additional reductions in costs via improvements in manufacturing and/or market penetration that continue to drive down costs will make highly insulating windows much more viable as a cost-effective energy efficiency measure. This study also illustrates that

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arntzen, Evan V.; Hand, Kristine D.; Carter, Kathleen M.

    At the request of the U.S. Army Corps of Engineers (USACE; Portland District), Pacific Northwest National Laboratory (PNNL) undertook a project in 2006 to look further into issues of total dissolved gas (TDG) supersaturation in the lower Columbia River downstream of Bonneville Dam. In FY 2008, the third year of the project, PNNL conducted field monitoring and laboratory toxicity testing to both verify results from 2007 and answer some additional questions about how salmonid sac fry respond to elevated TDG in the field and the laboratory. For FY 2008, three objectives were 1) to repeat the 2006-2007 field effort tomore » collect empirical data on TDG from the Ives Island and Multnomah Falls study sites; 2) to repeat the static laboratory toxicity tests on hatchery chum salmon fry to verify 2007 results and to expose wild chum salmon fry to incremental increases in TDG, above those of the static test, until external symptoms of gas bubble disease were clearly present; and 3) to assess physiological responses to TDG levels in wild chum salmon sac fry incubating below Bonneville Dam during spill operations. This report summarizes the tasks conducted and results obtained in pursuit of the three objectives. Chapter 1 discusses the field monitoring, Chapter 2 reports the findings of the laboratory toxicity tests, and Chapter 3 describes the field-sampling task. Each chapter contains an objective-specific introduction, description of the study site and methods, results of research, and discussion of findings. Literature cited throughout this report is listed in Chapter 4. Additional details on the monitoring methodology and results are provided in Appendices A and B included on the compact disc bound inside the back cover of the printed version of this report.« less

  4. 2002 Small Mammal Inventory at Lawrence Livermore National Laboratory, Site 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, E; Woollett, J

    2004-11-16

    To assist the University of California in obtaining biological assessment information for the ''2004 Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory (LLNL)'', Jones & Stokes conducted an inventory of small mammals in six major vegetation communities at Site 300. These communities were annual grassland, native grassland, oak savanna, riparian corridor, coastal scrub, and seep/spring wetlands. The principal objective of this study was to assess the diversity and abundance of small mammal species in these communities, as well as the current status of any special-status small mammal species found in these communities. Surveys in the native grasslandmore » community were conducted before and after a controlled fire management burn of the grasslands to qualitatively evaluate any potential effects of fire on small mammals in the area.« less

  5. Implementation of a DOD ELAP Conforming Quality System at a FUSRAP Site Field Temporary Radiological Screening Laboratory - 13500

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winters, M.S.; McElheny, G.; Houston, L.M.

    2013-07-01

    A case study is presented on specific program elements that supported the transition of a temporary field radiological screening lab to an accredited operation capable of meeting client quality objectives for definitive results data. The temporary field lab is located at the Formerly Utilized Sites Remedial Action Program Linde Site in Tonawanda, NY. The site is undergoing remediation under the direction of the United States Army Corps of Engineers - Buffalo District, with Cabrera Services Inc. as the remediation contractor and operator of the on-site lab. Analysis methods employed in the on-site lab include gross counting of alpha and betamore » particle activity on swipes and air filters and gamma spectroscopy of soils and other solid samples. A discussion of key program elements and lessons learned may help other organizations considering pursuit of accreditation for on-site screening laboratories. (authors)« less

  6. 2005 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barlow, Stephan E.

    2005-11-15

    The Pacific Northwest National Laboratory (PNNL) hosted its second annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2005. During this period, sixteen PNNL scientists hosted fourteen young scientists from eleven different universities. Of the fourteen participants, twelve were graduate students; one was a postdoctoral fellow; and one was a university faculty member.

  7. Conceptual design of new metrology laboratories for the National Physical Laboratory, United Kingdom

    NASA Astrophysics Data System (ADS)

    Manning, Christopher J.

    1994-10-01

    The National Physical Laboratory is planning to house the Division of Mechanical and Optical Metrology and the Division of Material Metrology in a new purpose built laboratory building on its site at Teddington, London, England. The scientific staff were involved in identifying and agreeing the vibration performance requirements of the conceptual design. This was complemented by an extensive surgery of vibration levels within the existing facilities and ambient vibration studies at the proposed site. At one end of the site there is significant vibration input from road traffic. Some of the test equipment is also in itself a source of vibration input. These factors, together with normal occupancy inputs, footfalls and door slams, and a highly serviced building led to vibration being dominant in influencing the structural form. The resulting structural concept comprises three separate structural elements for vibration and geotechnical reasons. The laboratories most sensitive to disturbance by vibration are located at the end of the site farthest from local roads on a massive ground bearing slab. Less sensitive laboratories and those containing vibration sources are located on a massive slab in deep, piled foundations. A common central plant area is located alongside on its own massive slab. Medium sensitivity laboratories and offices are located at first floor level on a reinforced concrete suspended floor of maximum stiffness per unit mass. The whole design has been such as to permit upgrading of areas, eg office to laboratory; laboratory to `high sensitivity' laboratory, to cater for changes in future use of the building.

  8. Post-Remediation Biomonitoring of Pesticides in Marine Waters Near the United Heckathorn Superfund Site, Richmond, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LD Antrim; NP Kohn

    This report, PNNL-11911 Rev. 1, was published in July 2000 and replaces PNNL-11911, which was published in September 1998. The revision corrects tissue concentration units that were reported as dry weight but were actually wet weight, and updates conclusions based on the correct reporting units. Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in January 1998 from four stations near Lauritzen Canal in Richmond, California, for the first post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and DDT were analyzed in water samples, tissue samplesmore » from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared to pre-remediation data available from the California State Mussel Watch program (tissues) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Chlorinated pesticide concentrations in water samples were similar to pre-remediation levels and did not meet remediation goals. Mean dieldrin concentrations in water ranged from 0.65 ng/L to 18.1 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 0.65 ng/L to 103 ng/L and exceeded the remediation goal of 0.59 ng/L. The highest concentrations of both pesticides were found in Lauritzen Canal, and the lowest levels were from the Richmond Inner Harbor Channel water. Unusual amounts of detritus in the water column at the time of sampling, particularly in Lauritzen Canal, could have contributed to the elevated pesticide concentrations and poor analytical precision.« less

  9. Multi-site Field Verification of Laboratory Derived FDOM Sensor Corrections: The Good, the Bad and the Ugly

    NASA Astrophysics Data System (ADS)

    Saraceno, J.; Shanley, J. B.; Aulenbach, B. T.

    2014-12-01

    Fluorescent dissolved organic matter (FDOM) is an excellent proxy for dissolved organic carbon (DOC) in natural waters. Through this relationship, in situ FDOM can be utilized to capture both high frequency time series and long term fluxes of DOC in small streams. However, in order to calculate accurate DOC fluxes for comparison across sites, in situ FDOM data must be compensated for matrix effects. Key matrix effects, include temperature, turbidity and the inner filter effect due to color. These interferences must be compensated for to develop a reasonable relationship between FDOM and DOC. In this study, we applied laboratory-derived correction factors to real time data from the five USGS WEBB headwater streams in order to gauge their effectiveness across a range of matrix effects. The good news is that laboratory derived correction factors improved the predicative relationship (higher r2) between DOC and FDOM when compared to uncorrected data. The relative importance of each matrix effect (i.e. temperature) varied by site and by time, implying that each and every matrix effect should be compensated for when available. In general, temperature effects were more important on longer time scales, while corrections for turbidity and DOC inner filter effects were most prevalent during hydrologic events, when the highest instantaneous flux of DOC occurred. Unfortunately, even when corrected for matrix effects, in situ FDOM is a weaker predictor of DOC than A254, a common surrogate for DOC, implying that either DOC fluoresces at varying degrees (but should average out over time), that some matrix effects (e.g. pH) are either unaccounted for or laboratory-derived correction factors do not encompass the site variability of particles and organics. The least impressive finding is that the inherent dependence on three variables in the FDOM correction algorithm increases the likelihood of record data gaps which increases the uncertainty in calculated DOC flux values.

  10. Methods for using clinical laboratory test results as baseline confounders in multi-site observational database studies when missing data are expected.

    PubMed

    Raebel, Marsha A; Shetterly, Susan; Lu, Christine Y; Flory, James; Gagne, Joshua J; Harrell, Frank E; Haynes, Kevin; Herrinton, Lisa J; Patorno, Elisabetta; Popovic, Jennifer; Selvan, Mano; Shoaibi, Azadeh; Wang, Xingmei; Roy, Jason

    2016-07-01

    Our purpose was to quantify missing baseline laboratory results, assess predictors of missingness, and examine performance of missing data methods. Using the Mini-Sentinel Distributed Database from three sites, we selected three exposure-outcome scenarios with laboratory results as baseline confounders. We compared hazard ratios (HRs) or risk differences (RDs) and 95% confidence intervals (CIs) from models that omitted laboratory results, included only available results (complete cases), and included results after applying missing data methods (multiple imputation [MI] regression, MI predictive mean matching [PMM] indicator). Scenario 1 considered glucose among second-generation antipsychotic users and diabetes. Across sites, glucose was available for 27.7-58.9%. Results differed between complete case and missing data models (e.g., olanzapine: HR 0.92 [CI 0.73, 1.12] vs 1.02 [0.90, 1.16]). Across-site models employing different MI approaches provided similar HR and CI; site-specific models provided differing estimates. Scenario 2 evaluated creatinine among individuals starting high versus low dose lisinopril and hyperkalemia. Creatinine availability: 44.5-79.0%. Results differed between complete case and missing data models (e.g., HR 0.84 [CI 0.77, 0.92] vs. 0.88 [0.83, 0.94]). HR and CI were identical across MI methods. Scenario 3 examined international normalized ratio (INR) among warfarin users starting interacting versus noninteracting antimicrobials and bleeding. INR availability: 20.0-92.9%. Results differed between ignoring INR versus including INR using missing data methods (e.g., RD 0.05 [CI -0.03, 0.13] vs 0.09 [0.00, 0.18]). Indicator and PMM methods gave similar estimates. Multi-site studies must consider site variability in missing data. Different missing data methods performed similarly. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Active Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenation on In2O3(110): A DFT Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Jingyun; Liu, Changjun; Mei, Donghai

    2013-06-03

    Methanol synthesis from CO2 hydrogenation on the defective In2O3(110) surface with surface oxygen vacancies has been investigated using periodic density functional theory calculations. The relative stabilities of six possible surface oxygen vacancies numbered from Ov1 to Ov6 on the perfect In2O3(110) surface were examined. The calculated oxygen vacancy formation energies show that the D1 surface with the Ov1 defective site is the most thermodynamically favorable while the D4 surface with the Ov4 defective site is the least stable. Two different methanol synthesis routes from CO2 hydrogenation over both D1 and D4 surfaces were studied and the D4 surface was foundmore » to be more favorable for CO2 activation and hydrogenation. On the D4 surface, one of the O atoms of the CO2 molecule fills in the Ov4 site upon adsorption. Hydrogenation of CO2 to HCOO on the D4 surface is both thermodynamically and kinetically favorable. Further hydrogenation of HCOO involves both forming the C-H bond and breaking the C-O bond, resulting in H2CO and hydroxyl. The HCOO hydrogenation is slightly endothermic with an activation barrier of 0.57 eV. A high barrier of 1.14 eV for the hydrogenation of H2CO to H3CO indicates that this step is the rate-limiting step in the methanol synthesis on the defective In2O3(110) surface. We gratefully acknowledge the supports from the National Natural Science Foundation of China (#20990223) and from US Department of Energy, Basic Energy Science program (DE-FG02-05ER46231). D. Mei was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The computations were performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), which is a U.S. Department of Energy national scientific user facility located at Pacific Northwest National Laboratory in Richland, Washington. PNNL is a multiprogram national

  12. Plume Delineation in the BC Cribs and Trenches Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rucker, Dale F.; Sweeney, Mark D.

    2004-11-30

    HydroGEOPHYSICS, Inc. and Pacific Northwest National Laboratory (PNNL) were contracted by Fluor Hanford Group, Inc. to conduct a geophysical investigation in the area of the BC Cribs and Trenches (subject site) at the Hanford Site in Richland, Washington. The BC Cribs and Trenches are located south of the 200 East Area. This document provides the details of the investigation to identify existing infrastructure from legacy disposal activities and to delineate the edges of a groundwater plume that contains radiological and heavy metal constituents beneath the 216-B-26 and 216-B-52 Trenches, and the 216-B-14 through 216-B-19 Cribs.

  13. CRADA with Beckman Instruments and Pacific Northwest National Laboratory (PNL-013): Development and commercialization of the Unsaturated Flow Apparatus (UFA) using characterization of aridisols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, J.; Conca, J.

    1996-10-01

    The objective of this Cooperative Research and Development Agreement (CRADA) was to develop and commercialize a technology conceived by scientists at Pacific Northwest National Laboratory (PNNL) and manufactured by Beckman Instruments, Inc. (Beckman), and to apply this technology to the characterization of and soils. The technology is the Unsaturated Flow Apparatus (UFA). The UFA provides a highly efficient method of direct, rapid measurement of hydraulic conductivity and other flow properties according to Darcy-Buckingham principles because the operator controls both the fluid driving force, using an ultracentrifuge, and the flow into the sample while it is spinning, with a rotating sealmore » assembly. The concept of using centrifugation to significantly decrease the time needed, from years or months to days, for study of subsurface transport, particularly under unsaturated conditions, was conceived by James Conca, Ph.D., and Judith Wright, Ph.D., in 1986. The prototype UFA was developed in 1988 because there was a need to rapidly and accurately determine transport parameters in soils, sediments, and rocks for the Grout Waste Disposal Program. Transport parameters are critical to modeling outcomes for site-specific solutions to environmental remediation and waste disposal problems.« less

  14. 2012 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central facilities Area Sewage Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2011, through October 31, 2012. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2012 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant.

  15. Secondary Waste Simulant Development for Cast Stone Formulation Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Renee L.; Westsik, Joseph H.; Rinehart, Donald E.

    Washington River Protection Solutions, LLC (WRPS) funded Pacific Northwest National Laboratory (PNNL) to conduct a waste form testing program to implement aspects of the Secondary Liquid Waste Treatment Cast Stone Technology Development Plan (Ashley 2012) and the Hanford Site Secondary Waste Roadmap (PNNL 2009) related to the development and qualification of Cast Stone as a potential waste form for the solidification of aqueous wastes from the Hanford Site after the aqueous wastes are treated at the Effluent Treatment Facility (ETF). The current baseline is that the resultant Cast Stone (or grout) solid waste forms would be disposed at the Integratedmore » Disposal Facility (IDF). Data and results of this testing program will be used in the upcoming performance assessment of the IDF and in the design and operation of a solidification treatment unit planned to be added to the ETF. The purpose of the work described in this report is to 1) develop simulants for the waste streams that are currently being fed and future WTP secondary waste streams also to be fed into the ETF and 2) prepare simulants to use for preparation of grout or Cast Stone solid waste forms for testing.« less

  16. Catalytic N 2O decomposition and reduction by NH 3 over Fe/Beta and Fe/SSZ-13 catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Aiyong; Wang, Yilin; Walter, Eric D.

    Fe/zeolites are important N 2O abatement catalysts, efficient in direct N 2O decomposition and (selective) catalytic N 2O reduction. In this study, Fe/Beta and Fe/SSZ-13 were synthesized via solution ion-exchange and used to catalyze these two reactions. Nature of the Fe species was probed with UV-vis, Mössbauer and EPR spectroscopies and H2-TPR. The characterizations collectively indicate that isolated and dinuclear Fe sites dominate in Fe/SSZ-13, whereas Fe/Beta contains higher concentrations of oligomeric Fe xO y species. H 2-TPR results suggest that Fe-O interactions are weaker in Fe/SSZ-13, as evidenced by the lower reduction temperatures and higher extents of autoreduction duringmore » high-temperature pretreatments in inert gas. Kinetic measurements show that Fe/SSZ-13 has higher activity in catalytic N 2O decomposition, thus demonstrating a positive correlation between activity and Fe-O binding, consistent with O 2 desorption being rate-limiting for this reaction. However, Fe/Beta was found to be more active in catalyzing N 2O reduction by NH 3. This indicates that larger active ensembles (i.e., oligomers) are more active for this reaction, consistent with the fact that both N 2O and NH 3 need to be activated in this case. The authors from PNNL gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle. Aiyong Wang gratefully acknowledges the China Scholarship Council for the Joint-Training Scholarship Program with the Pacific Northwest National Laboratory (PNNL). The authors from East China University of Science and Technology acknowledge

  17. Transient Inverse Calibration of Hanford Site-Wide Groundwater Model to Hanford Operational Impacts - 1943 to 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Charles R.; Bergeron, Marcel P.; Wurstner, Signe K.

    2001-05-31

    This report describes a new initiative to strengthen the technical defensibility of predictions made with the Hanford site-wide groundwater flow and transport model. The focus is on characterizing major uncertainties in the current model. PNNL will develop and implement a calibration approach and methodology that can be used to evaluate alternative conceptual models of the Hanford aquifer system. The calibration process will involve a three-dimensional transient inverse calibration of each numerical model to historical observations of hydraulic and water quality impacts to the unconfined aquifer system from Hanford operations since the mid-1940s.

  18. Aquifer recharge with reclaimed water in the Llobregat Delta. Laboratory batch experiments and field test site.

    NASA Astrophysics Data System (ADS)

    Tobella, J.

    2010-05-01

    Summary Spain, as most other Mediterranean countries, faces near future water shortages, generalized pollution and loss of water dependent ecosystems. Aquifer recharge represents a promising option to become a source for indirect potable reuse purposes but presence of pathogens as well as organic and inorganic pollutants should be avoided. To this end, understanding the processes of biogeochemical degradation occurring within the aquifer during infiltration is capital. A set of laboratory batch experiments has been assembled in order to assess the behaviour of selected pesticides, drugs, estrogens, surfactant degradation products, biocides and phthalates under different redox conditions. Data collected during laboratory experiments and monitoring activities at the Sant Vicenç dels Horts test site will be used to build and calibrate a numerical model (i) of the physical-chemical-biochemical processes occurring in the batches and (ii) of multicomponent reactive transport in the unsaturated/saturated zone at the test site. Keywords Aquifer recharge, batch experiments, emerging micropollutants, infiltration, numerical model, reclaimed water, redox conditions, Soil Aquifer Treatment (SAT). 1. Introduction In Spain, the Llobregat River and aquifers, which supply water to Barcelona, have been overexploited for years and therefore, suffer from serious damages: the river dries up on summer, riparian vegetation has disappeared and seawater has intruded the aquifer. In a global context, solutions to water stress problems are urgently needed yet must be sustainable, economical and safe. Recent developments of analytical techniques detect the presence of the so-called "emerging" organic micropollutants in water and soils. Such compounds may affect living organisms when occurring in the environment at very low concentrations (microg/l or ng/l). In wastewater and drinking water treatment plants, a remarkable removal of these chemicals from water can be obtained only using

  19. Scientists View Battery Under Microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-04-10

    PNNL researchers use a special microscope setup that shows the inside of a battery as it charges and discharges. This battery-watching microscope is located at EMSL, DOE's Environmental Molecular Sciences Laboratory that resides at PNNL. Researchers the world over can visit EMSL and use special instruments like this, many of which are the only one of their kind available to scientists.

  20. The Value of Green to the Army

    DTIC Science & Technology

    2011-03-16

    of Management and Budget OSD Office of the Secretary of Defense PBS Public Building Service PEMS Portable Emissions Measurement System PNNL ...Buildings. Pacific Northwest National Laboratory ( PNNL ). July 2008. Eichholtz, Piet, Nils Kok, and John Quigley. Doing well by doing good? An analysis of...M. Jenicek, and Dahtzen Chu March 2011 Approved for public release; distribution is unlimited. ERDC/CERL SR-11-2

  1. Scientists View Battery Under Microscope

    ScienceCinema

    None

    2018-01-16

    PNNL researchers use a special microscope setup that shows the inside of a battery as it charges and discharges. This battery-watching microscope is located at EMSL, DOE's Environmental Molecular Sciences Laboratory that resides at PNNL. Researchers the world over can visit EMSL and use special instruments like this, many of which are the only one of their kind available to scientists.

  2. Requirements for Xenon International

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, James C.; Ely, James H.; Haas, Derek A.

    2015-12-30

    This document defines the requirements for the new Xenon International radioxenon system. The output of this project will be a Pacific Northwest National Laboratory (PNNL) developed prototype and a manufacturer-developed production prototype. The two prototypes are intended to be as close to matching as possible; this will be facilitated by overlapping development cycles and open communication between PNNL and the manufacturer.

  3. Candidate Landing Site for the Mars Science Laboratory: Vernal Crater, S.W. ARabia Terra

    NASA Technical Reports Server (NTRS)

    Paris, K. N.; Allen, C. C.; Oehler, D. Z.

    2007-01-01

    In the fall of 2009, the Mars Science Laboratory (MSL) will be launched to Mars. The purpose of this mission is to assess biologic potential and geology and to investigate planetary processes of relevance to past habitability. MSL will be able to provide visual, chemical, radiation, and environmental data with its suite of instruments [1]. In order to be selected for the MSL landing site, certain engineering requirements must be met [1] and the area should contain geologic features suggestive of past habitability, so that the overriding science goal of the mission will be attained. There are a total of 33 proposed landing sites as of the first MSL Landing Site Workshop held in Pasadena, CA from May 31st to June 2nd, 2006 [1]. There will be an opportunity to gather high resolution visual and hyperspectral data on all proposed landing sites from the now-orbiting Mars Reconnaissance Orbiter (MRO) which entered martian orbit and began its main science phase in November of 2006 [2]. The data being gathered are from: the high resolution imaging science experiment (HiRISE), the context (CTX) camera and the compact reconnaissance imaging spectrometer (CRISM) onboard the spacecraft. The footprints of these instruments are centered on a single point, and each proposer must submit these coordinates, along with the coordinates of the proposed landing ellipse. Data from these instruments, along with new MOC images and THEMIS mosaics, will be used to enhance our understanding of the geologic and engineering parameters of each site.

  4. Calibration of an Ultra-Low-Background Proportional Counter for Measuring 37Ar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seifert, Allen; Aalseth, Craig E.; Bonicalzi, Ricco

    Abstract. An ultra-low-background proportional counter (ULBPC) design has been developed at Pacific Northwest National Laboratory (PNNL) using clean materials, primarily electrochemically-purified copper. This detector, along with an ultra-low-background counting system (ULBCS), was developed to complement a new shallow underground laboratory (30 meters water-equivalent) constructed at PNNL. The ULBCS design includes passive neutron and gamma shielding, along with an active cosmic-veto system. This system provides a capability for making ultra-sensitive measurements to support applications like age-dating soil hydrocarbons with 14C/3H, age-dating of groundwater with 39Ar, and soil-gas assay for 37Ar to support On-Site Inspection (OSI). On-Site Inspection is a key componentmore » of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Measurements of radionuclides created by an underground nuclear explosion are valuable signatures of a Treaty violation. For OSI, the 35-day half-life of 37Ar, produced from neutron interactions with calcium in soil, provides both high specific activity and sufficient time for inspection before decay limits sensitivity. This work describes the calibration techniques and analysis methods developed to enable quantitative measurements of 37Ar samples over a broad range of pressures. These efforts, along with parallel work in progress on gas chemistry separation, are expected to provide a significant new capability for 37Ar soil gas background studies.« less

  5. 1996 Site environmental report Sandia National Laboratories Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fink, C.H.; Duncan, D.; Sanchez, R.

    1997-08-01

    Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the U.S. Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs, and to conduct fundamental research and development (R&D) to advance technology in energy research, computer science, waste management, electronics, materials science, and transportation safety for hazardous and nuclear components. In support of this mission, the Environmental Safety and Health (ES&H) Center at SNL/NM conducts extensive environmental monitoring, surveillance, and compliance activities to assist SNL`s line organizations in meeting all applicable environmental regulations applicable to the site including those regulating radiological and nonradiologicalmore » effluents and emissions. Also herein are included, the status of environmental programs that direct and manage activities such as terrestrial surveillance; ambient air and meteorological monitoring; hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental restoration (ER); oil and chemical spill prevention; and National Environmental Policy Act (NEPA) documentation. This report has been prepared in compliance with DOE order 5400.1, General Environmental Protection.« less

  6. Delineation of Waters of the United States for Lawrence Livermore National Laboratory, Site 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, R E

    2006-09-25

    This report presents the results of a delineation of waters of the United States, including wetlands, for Lawrence Livermore National Laboratory's Site 300 in Alameda and San Joaquin Counties, California. Jones & Stokes mapped vegetation at Site 300 in August, 2001, using Global Positioning System (GPS) data recorders to collect point locations and to record linear features and map unit polygons. We identified wetlands boundaries in the field on the basis of the plant community present. We returned to collect additional information on wetland soils on July 3, 2002. Forty-six wetlands were identified, with a total area of 3.482 hectaresmore » (8.605 acres). The wetlands include vernal pools, freshwater seeps, and seasonal ponds. Wetlands appearing to meet the criteria for federal jurisdictional total 1.776 hectares (4.388 acres). A delineation map is presented and a table is provided with information on the type, size, characteristic plant species of each wetland, and a preliminary jurisdictional assessment.« less

  7. Evaluation of Vitrification Processing Step for Rocky Flats Incinerator Ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wigent, W.L.; Luey, J.K.; Scheele, R.D.

    In 1997, Pacific Northwest National Laboratory (PNNL) staff developed a processing option for incinerator ash at the Rocky Flats Environmental Technology Sites (RFETS). This work was performed with support from Los Alamos National Laboratory (LANL) and Safe Sites of Colorado (SSOC). A description of the remediation needs for the RFETS incinerator ash is provided in a report summarizing the recommended processing option for treatment of the ash (Lucy et al. 1998). The recommended process flowsheet involves a calcination pretreatment step to remove carbonaceous material followed by a vitrification processing step for a mixture of glass tit and calcined incinerator ash.more » Using the calcination pretreatment step to remove carbonaceous material reduced process upsets for the vitrification step, allowed for increased waste loading in the final product, and improved the quality of the final product. Figure 1.1 illustrates the flow sheet for the recommended processing option for treatment of RFETS incinerator ash. In 1998, work at PNNL further developed the recommended flow sheet through a series of studies to better define the vitrification operating parameters and to address secondary processing issues (such as characterizing the offgas species from the calcination process). Because a prototypical rotary calciner was not available for use, studies to evaluate the offgas from the calcination process were performed using a benchtop rotary calciner and laboratory-scale equipment (Lucy et al. 1998). This report focuses on the vitrification process step after ash has been calcined. Testing with full-scale containers was performed using ash surrogates and a muffle furnace similar to that planned for use at RFETS. Small-scale testing was performed using plutonium-bearing incinerator ash to verify performance of the waste form. Ash was not obtained from RFETS because of transportation requirements to calcine the incinerator ash prior to shipment of the material. Because

  8. Mechanisms and Dynamics of Abiotic and Biotic Interactions at Environmental Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roso, Kevin M.

    The Stanford EMSI (SEMSI) was established in 2004 through joint funding by the National Science Foundation and the OBER-ERSD. It encompasses a number of universities and national laboratories. The PNNL component of the SEMSI is funded by ERSD and is the focus of this report. This component has the objective of providing theory support to the SEMSI by bringing computational capabilities and expertise to bear on important electron transfer problems at mineral/water and mineral/microbe interfaces. PNNL staff member Dr. Kevin Rosso, who is also ''matrixed'' into the Environmental Molecular Sciences Laboratory (EMSL) at PNNL, is a co-PI on the SEMSImore » project and the PNNL lead. The EMSL computational facilities being applied to the SEMSI project include the 11.8 teraflop massively-parallel supercomputer. Science goals of this EMSL/SEMSI partnership include advancing our understanding of: (1) The kinetics of U(VI) and Cr(VI) reduction by aqueous and solid-phase Fe(II), (2) The structure of mineral surfaces in equilibrium with solution, and (3) Mechanisms of bacterial electron transfer to iron oxide surfaces via outer-membrane cytochromes.« less

  9. Removal site evaluation report for the Isotope Facilities at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This removal site evaluation (RmSE) report of the Isotope Facilities at Oak Ridge National Laboratory (ORNL) was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the Isotopes Facility pose a substantial risk to human health or the environment and if remedial site evaluations (RSEs) or removal actions are required. The scope of the project included: (1) a review of historical evidence regarding operations and use of the facility; (2) interviews with facility personnel concerning current and past operating practices; (3) a site inspection; and (4) identification of hazardmore » areas requiring maintenance, removal, or remedial actions. The results of RmSE indicate that no substantial risks exist from contaminants present in the Isotope Facilities because adequate controls and practices exist to protect human health and the environment. The recommended correction from the RmSE are being conducted as maintenance actions; accordingly, this RmSE is considered complete and terminated.« less

  10. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance Federal Aviation Administration – Project 209 Control Tower and Support Building, Reno, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arends, J.; Sandusky, William F.

    2010-06-30

    Pacific Northwest National Laboratory (PNNL) and Redhorse Corporation (Redhorse) conducted an energy audit on the Federal Aviation Administration (FAA) control tower and base building in Reno, Nevada. This report presents the findings of the energy audit team that evaluated construction documents and operating specifications (at the 100% level) and completed a site visit. The focus of the review was to identify measures that could be incorporated into the final design and operating specifications that would result in additional energy savings for the FAA that would not have otherwise occurred.

  11. Electron-Scavenging Chemistry of Benzoquinone on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A.; Shen, Mingmin

    The chemistry of benzoquinone (BQ) on TiO2(110) was examined using temperature programmed desorption (TPD), electron energy loss spectroscopy (EELS) and Auger electron spectroscopy (AES). BQ adsorbs mostly molecularly on the clean surface, although EELS demonstrates that electrons from surface Ti3+ sites at oxygen vacancy sites (VO) are readily oxidized by the high electron scavenging ability of the molecule. In contrast, when the surface is covered with water, subsequently adsorbed BQ molecules that scavenge surface electrons also abstract H from surface OHbr groups to form hydroquinone (HQ), which desorbs at ~450 K. This work was supported by the US Department ofmore » Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less

  12. Vascular Plants of the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sackschewsky, Michael R.; Downs, Janelle L.

    This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Bringham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years.more » Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations on the biological environment, including impacts to rare habitats and to species listed as endangered or\\ threatened. This document includes a listing of plants currently listed as endangered, threatened, or otherwise of concern to the Washington Natural Heritage Program or the U.S. Fish and Wildlife Service, as well as those that are currently listed as noxious weeds by the State of Washington. Also provided is an overview of how plants on the Hanford Site can be used by people. This information may be useful in developing risk assessment models, and as supporting information for clean-up level and remediation decisions.« less

  13. 2006 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avery, Nikki B.; Barlow, Stephan E.

    2006-11-10

    The Pacific Northwest National Laboratory (PNNL) hosted its third annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2006. During this period, twenty PNNL scientists hosted twenty-seven scientists from twenty-five different universities. Of the twenty-seven participants, one was a graduating senior; twenty-one were graduate students; one was a postdoctoral fellow; and four were university faculty members.

  14. EMSL Quarterly Highlights Report Second Quarter, Fiscal Year 2010 (January 1, 2010 through March 31, 2010)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Staci A.; Showalter, Mary Ann; Manke, Kristin L.

    2010-04-20

    The Environmental Molecular Sciences Laboratory (EMSL) is a U.S. Department of Energy (DOE) national scientific user facility located at Pacific Northwest National Laboratory (PNNL) in Richland, Washington. EMSL is operated by PNNL for the DOE-Office of Biological and Environmental Research. At one location, EMSL offers a comprehensive array of leading-edge resources and expertise. Access to the instrumentation and expertise is obtained on a peer-reviewed proposal basis. Staff members work with researchers to expedite access to these capabilities. The "EMSL Quarterly Highlights Report" documents current research and activities of EMSL staff and users.

  15. Toward Rational Design of Cu/SSZ-13 Selective Catalytic Reduction Catalysts: Implications from Atomic-Level Understanding of Hydrothermal Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, James; Wang, Yilin; Walter, Eric D.

    The hydrothermal stability of Cu/SSZ-13 SCR catalysts has been extensively studied, yet atomic level understanding of changes to the zeolite support and the Cu active sites during hydrothermal aging are still lacking. In this work, via the utilization of spectroscopic methods including solid-state 27Al and 29Si NMR, EPR, DRIFTS, and XPS, together with imaging and elemental mapping using STEM, detailed kinetic analyses, and theoretical calculations with DFT, various Cu species, including two types of isolated active sites and CuOx clusters, were precisely quantified for samples hydrothermally aged under varying conditions. This quantification convincingly confirms the exceptional hydrothermal stability of isolatedmore » Cu2+-2Z sites, and the gradual conversion of [Cu(OH)]+-Z to CuOx clusters with increasing aging severity. This stability difference is rationalized from the hydrolysis activation barrier difference between the two isolated sites via DFT. Discussions are provided on the nature of the CuOx clusters, and their possible detrimental roles on catalyst stability. Finally, a few rational design principles for Cu/SSZ-13 are derived rigorously from the atomic-level understanding of this catalyst obtained here. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. Computing time was granted by a user proposal at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC). The experimental studies described in this paper were performed in the EMSL, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.« less

  16. Attenuation and Transport Mechanisms of Depleted Uranium in Groundwater at Lawrence Livermore National Laboratory Site 300

    NASA Astrophysics Data System (ADS)

    Danny, K. R.; Taffet, M. J.; Brusseau, M. L. L.; Chorover, J.

    2015-12-01

    Lawrence Livermore National Laboratory (LLNL) Site 300 was established in 1955 to support weapons research and development. Depleted uranium was used as a proxy for fissile uranium-235 (235U) in open-air explosives tests conducted at Building 812. As a result, oxidized depleted uranium was deposited on the ground, eventually migrating to the underlying sandstone aquifer. Uranium (U) groundwater concentrations exceed the California and Federal Maximum Contaminant Level of 20 pCi L-1 (30 ug L-1). However, the groundwater plume appears to attenuate within 60 m of the source, beyond which no depleted U is detected. This study will determine the relative contribution of physical (e.g. dilution), chemical (e.g. surface adsorption, mineral precipitation), and biological (e.g. biotransformation) processes that contribute to the apparent attenuation of U, which exists as uranyl (UO22+) complexes, at the site. Methods of investigation include evaluating 15 yr of hydrogeologic and chemical data, creating a site conceptual model, and applying equilibrium (e.g. aqueous species complexation, mineral saturation indices) and reactive transport models using Geochemist's WorkbenchTM. Reactive transport results are constrained by direct field observations, including U major ion, and dissolved O2 concentrations, pH, and others, under varying chemical and hydraulic conditions. Aqueous speciation calculations indicate that U primarily exists as anionic CaUO2(CO3)32- or neutral Ca2UO2(CO3)30 species. Additionally, nucleation and growth of Ca/Mg uranyl carbonate solids are predicted to affect attenuation. Initial reactive transport results suggest surface adsorption (e.g. ion exchange, surface complexation) to layer silicate clays is limited under the aqueous geochemical conditions of the site. Current and future work includes XRD analysis of aquifer solids to constrain iron and aluminum (oxy)hydroxides, and coupling advective-dispersive transport with the chemical and physical processes

  17. Tank Vapor Characterization Project: Tank 241-S-102 fourth temporal study: Headspace gas and vapor characterization results from samples collected on December 19, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pool, K.H.; Evans, J.C.; Olsen, K.B.

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit of 150 ppm as specified by the sampling and analysis planmore » (SAP). Hydrogen was the principal flammable constituent of the Tank S-102 headspace, determined to be present at approximately 2.410% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.973% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.973% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.« less

  18. Vegetation studies, National Training Center, Fort Irwin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, C.A.; Rickard, W.H.; Cadoret, N.A.

    1997-09-01

    During the spring of 1992, the Pacific Northwest National Laboratory (PNNL) conducted surveys of the Avawatz and Granite mountains springs for the National Training Center (NTC) to evaluate the occurrence of sensitive plant species in these areas. PNNL also conducted a survey of the eastern outwash of the Paradise Range for the occurrence of Lane Mountain milk vetch (Astragalus jaegerianus). In spring of 1993, PNNL conducted an additional study of Lane Mountain milk vetch on the NTC to determine habitat characteristics for this plant and to develop a method for predicting its potential occurrence, based on simple habitat attributes. Themore » results of these studies are itemized.« less

  19. Data Report for Monitoring at Six West Virginia Marcellus Shale Development Sites using NETL’s Mobile Air Monitoring Laboratory (July–November 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pekney, Natalie J.; Reeder, Matthew; Veloski, Garret A.

    The West Virginia Department of Environmental Protection’s Office of Oil and Gas was directed according to the Natural Gas Horizontal Well Control Act of December 14, 2011 (West Virginia Code §22-6A) to conduct studies of horizontal well drilling activities related to air quality. The planned study, “Noise, Light, Dust, Volatile Organic Compounds Related to Well Location Restrictions,” required determination of the effectiveness of a 625 ft minimum set-back from the center of the pad of a horizontal well drilling site to the nearest occupied dwelling. An investigation was conducted at seven drilling sites by West Virginia University (WVU) and themore » National Energy Technology Laboratory (NETL) to collect data on dust, hydrocarbon compounds and on noise, radiation, and light levels. NETL’s role in this study was to collect measurements of ambient pollutant concentrations at six of the seven selected sites using NETL’s Mobile Air Monitoring Laboratory. The trailer-based laboratory was situated a distance of 492–1,312 ft from each well pad, on which activities included well pad construction, vertical drilling, horizontal drilling, hydraulic fracturing, and flaring, with the objective of evaluating the air quality impact of each activity for 1–4 weeks per site. Measured pollutants included volatile organic compounds (VOCs), coarse and fine particulate matter (PM 10 and PM 2.5, respectively), ozone, methane (CH 4), carbon dioxide (CO 2), carbon isotopes of CH 4 and CO 2, organic carbon (OC), elemental carbon (EC), oxides of nitrogen (NOx), and sulfur dioxide (SO 2).« less

  20. Hanford Site National Environmental Policy Act (NEPA) Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Joanne P.; Burk, Kenneth W.; Chamness, Mickie A.

    2007-09-27

    specific information covering statutory and regulatory requirements for use in an environmental assessment or environmental impact statement. When preparing environmental assessments and EISs, authors should consult Recommendations for the Preparation of Environmental Assessments and Environmental Impact Statements published by the DOE Office of NEPA Oversight (DOE 2004). Additional direction and guidance on the preparation of DOE NEPA documents can be found at http://tis.eh.doe.gov/nepa/guidance.html. Individuals seeking baseline data on the Hanford Site and its past activities may also use the information contained in this document to evaluate projected activities and their impacts. Pacific Northwest National Laboratory (PNNL) staff prepared individual sections of this document, with input from other Hanford Site contractors with the best available information through May 2007. More detailed data are available from reference sources cited or from the authors. For this 2007 revision, the following sections of the document were reviewed by the authors and updated with the best available information through May 2005: Climate and Meteorology Air Quality Geology – Seismicity section only Hydrology – Flow charts for the Columbia and Yakima rivers only Ecology – Threatened and Endangered Species subsection only Socioeconomics Occupational Safety All of Chapter 6.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Sandra F.; Barnett, J. Matthew; Bisping, Lynn E.

    This report documents radionuclide air emissions that result in the highest effective dose equivalent (EDE) to a member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and Washington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. The dose to the PNNL Site MEI due to routine major and minormore » point source emissions in 2013 from PNNL Site sources is 2E-05 mrem (2E-07 mSv) EDE. The dose from fugitive emissions (i.e., unmonitored sources) is 2E-6 mrem (2E-8 mSv) EDE. The dose from radon emissions is 1E-11 mrem (1E-13 mSv) EDE. No nonroutine emissions occurred in 2013. The total radiological dose for 2013 to the MEI from all PNNL Site radionuclide emissions, including fugitive emissions and radon, is 2E-5 mrem (2E-7 mSv) EDE, or 100,000 times smaller than the federal and state standard of 10 mrem/yr, to which the PNNL Site is in compliance« less

  2. Waste Isolation Pilot Plant Technical Assessment Team Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This report provides the results of the Waste Isolation Pilot Plant (WIPP) technical assessment led by the Savannah River National Laboratory and conducted by a team of experts in pertinent disciplines from SRNL and Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories (SNL).

  3. Capturing Energy-Saving Opportunities: Improving Building Efficiency in Rajasthan through Energy Code Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Qing; Yu, Sha; Evans, Meredydd

    2016-05-01

    India adopted the Energy Conservation Building Code (ECBC) in 2007. Rajasthan is the first state to make ECBC mandatory at the state level. In collaboration with Malaviya National Institute of Technology (MNIT) Jaipur, Pacific Northwest National Laboratory (PNNL) has been working with Rajasthan to facilitate the implementation of ECBC. This report summarizes milestones made in Rajasthan and PNNL's contribution in institutional set-ups, capacity building, compliance enforcement and pilot building construction.

  4. 2007 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, Kenneth M.

    2007-10-31

    The Pacific Northwest National Laboratory (PNNL) hosted its fourth annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from April through September 2007. During this time, 21 PNNL scientists hosted 23 participants from 20 different universities. Of the 23 participants, 20 were graduate students, 1 was a postdoctoral fellow, and 2 were university faculty members. This report covers the essense of the program and the research the participants performed.

  5. 2016 Annual Site Environmental report Sandia National Laboratories Tonopah Test Range Nevada & Kaua'i Test Facility Hawai'i.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salas, Angela Maria; Griffith, Stacy R.

    Sandia National Laboratories (SNL) is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s (DOE’s), National Nuclear Security Administration (NNSA) under contract DE-NA0003525. The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at the SNL, Tonopah Test Range (SNL/TTR) in Nevada and the SNL, Kaua‘i Test Facility (SNL/KTF) in Hawai‘i. SNL personnel manage and conduct operations at SNL/TTR in support of the DOE/NNSA’s Weapons Ordnance Program and have operated the site since 1957. Navarro Research and Engineeringmore » personnel perform most of the environmental programs activities at SNL/TTR. The DOE/NNSA/Nevada Field Office retains responsibility for cleanup and management of SNL/TTR Environmental Restoration sites. SNL personnel operate SNL/KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of sustainability, environmental protection, and monitoring programs at SNL/TTR and SNL/KTF during calendar year 2016. Major environmental programs include air quality, water quality, groundwater protection, terrestrial and biological surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. This ASER is prepared in accordance with and as required by DOE O 231.1B, Admin Change 1, Environment, Safety, and Health Reporting.« less

  6. PNNL researcher explores behavior of complex molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manke, Kristin L.

    2007-11-19

    From cold winters in St. Petersburg, Russia, to sweltering summers in southeastern Washington State, Dr. Julia Laskin’s career in science has been an interesting journey. Her latest trip landed her on the steps of the White House for a photo-op with the President. Laskin received the Presidential Early Career Award for Scientists and Engineers for her research on the fundamental aspects of the reaction kinetics and dynamics of activating and dissociating complex molecular ions. Her work at Pacific Northwest National Laboratory provides a basis for the development of analytical techniques for improved characterization of synthetic and natural polymers, petroleum, biofuelsmore » and other complex samples using mass spectrometry.« less

  7. Assessment of Cable Aging Equipment, Status of Acquired Materials, and Experimental Matrix at the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Leonard S.; Westman, Matthew P.; Zwoster, Andy

    2015-03-30

    The need for increased understanding of the aging and degradation behavior for polymer components of nuclear power plant electrical cables is described in this report. The highest priority materials for study and the resources available at PNNL for these studies are also described. The anticipated outcomes of the PNNL work described are : improved understanding of appropriate accelerated aging conditions, improved knowledge of correlation between observable aging indicators and cable condition in support of advanced non-destructive evaluation methods, and practical knowledge of condition-based cable lifetime prediction.

  8. Milestone Report - Complete New Adsorbent Materials for Marine Testing to Demonstrate 4.5 g-U/kg Adsorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janke, Christopher James; Das, Sadananda; Oyola, Yatsandra

    2014-08-01

    This report describes work on the successful completion of Milestone M2FT-14OR03100115 (8/20/2014) entitled, “Complete new adsorbent materials for marine testing to demonstrate 4.5 g-U/kg adsorbent”. This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed two new families of fiber adsorbents that have demonstrated uranium adsorption capacities greater than 4.5 g-U/kg adsorbent after marine testing at PNNL. One adsorbent wasmore » synthesized by radiation-induced graft polymerization of itaconic acid and acrylonitrile onto high surface area polyethylene fibers followed by amidoximation and base conditioning. This fiber showed a capacity of 4.6 g-U/kg adsorbent in marine testing at PNNL. The second adsorbent was prepared by atom-transfer radical polymerization of t-butyl acrylate and acrylonitrile onto halide-functionalized round fibers followed by amidoximation and base hydrolysis. This fiber demonstrated uranium adsorption capacity of 5.4 g-U/kg adsorbent in marine testing at PNNL.« less

  9. Pretreatment Engineering Platform Phase 1 Final Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurath, Dean E.; Hanson, Brady D.; Minette, Michael J.

    2009-12-23

    Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to conduct testing to demonstrate the performance of the WTP Pretreatment Facility (PTF) leaching and ultrafiltration processes at an engineering-scale. In addition to the demonstration, the testing was to address specific technical issues identified in Issue Response Plan for Implementation of External Flowsheet Review Team (EFRT) Recommendations - M12, Undemonstrated Leaching Processes.( ) Testing was conducted in a 1/4.5-scale mock-up of the PTF ultrafiltration system, the Pretreatment Engineering Platform (PEP). Parallel laboratory testing wasmore » conducted in various PNNL laboratories to allow direct comparison of process performance at an engineering-scale and a laboratory-scale. This report presents and discusses the results of those tests.« less

  10. RIVER CORRIDOR BUILDINGS 324 & 327 CLEANUP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAZZELL, K.D.; SMITH, B.A.

    2006-02-09

    A major challenge in the recently awarded River Corridor Closure (RCC) Contract at the U.S. Department of Energy's (DOE) Hanford Site is decontaminating and demolishing (D&D) facilities in the 300 Area. Located along the banks of the Columbia River about one mile north of Richland, Washington, the 2.5 km{sup 2} (1 mi{sup 2})300 Area comprises only a small part of the 1517 km{sup 2} (586 mi{sup 2}) Hanford Site. However, with more than 300 facilities ranging from clean to highly contaminated, D&D of those facilities represents a major challenge for Washington Closure Hanford (WCH), which manages the new RCC Projectmore » for DOE's Richland Operations Office (RL). A complicating factor for this work is the continued use of nearly a dozen facilities by the DOE's Pacific Northwest National Laboratory (PNNL). Most of the buildings will not be released to WCH until at least 2009--four years into the seven-year, $1.9 billion RCC Contract. The challenge will be to deactivate, decommission, decontaminate and demolish (D4) highly contaminated buildings, such as 324 and 327, without interrupting PNNL's operations in adjacent facilities. This paper focuses on the challenges associated with the D4 of the 324 Building and the 327 Building.« less

  11. REGENERATIVE SITE LEARNING LABORATORY: A SITE INTERVENTION FOR SUSTAINABILITY EDUCATION

    EPA Science Inventory

    The project will indicate strategies that can be used to mitigate the negative impact of an existing developed site on a watershed and natural habitats. Additionally, the project design will inspire interest in ecological sustainability in an educational context. The project ...

  12. Sulfur Solubility Testing and Characterization of LAW Phase 1 Matrix Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.

    In this report, the Savannah River National Laboratory (SRNL) provides chemical analysis results for a series of simulated low-activity waste (LAW) glass compositions. These data will be used in the development of improved sulfur solubility models for LAW glass. A procedure developed at Pacific Northwest National Laboratory (PNNL) for producing sulfur saturated melts (SSMs) was carried out at both SRNL and PNNL to fabricate the glasses characterized in this report. This method includes triplicate melting steps with excess sodium sulfate, followed by grinding and washing to remove unincorporated sulfur salts. The wash solutions were also analyzed as part of thismore » study.« less

  13. Improvement of capabilities of the Distributed Electrochemistry Modeling Tool for investigating SOFC long term performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez Galdamez, Rinaldo A.; Recknagle, Kurtis P.

    2012-04-30

    This report provides an overview of the work performed for Solid Oxide Fuel Cell (SOFC) modeling during the 2012 Winter/Spring Science Undergraduate Laboratory Internship at Pacific Northwest National Laboratory (PNNL). A brief introduction on the concept, operation basics and applications of fuel cells is given for the general audience. Further details are given regarding the modifications and improvements of the Distributed Electrochemistry (DEC) Modeling tool developed by PNNL engineers to model SOFC long term performance. Within this analysis, a literature review on anode degradation mechanisms is explained and future plans of implementing these into the DEC modeling tool are alsomore » proposed.« less

  14. International Intercomparison Exercise for Nuclear Accident Dosimetry at the DAF Using GODIVA-IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickman, David; Hudson, Becka

    The Nuclear Criticality Safety Program operated under the direction of Dr. Jerry McKamy completed the first NNSA Nuclear Accident Dosimetry exercise on May 27, 2016. Participants in the exercise were from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), Savanah River Site (SRS), Pacific Northwest National Laboratory (PNNL), US Navy, the Atomic Weapons Establishment (United Kingdom) under the auspices of JOWOG 30, and the Institute for Radiological Protection and Nuclear Safety (France) by special invitation and NCSP memorandum of understanding. This exercise was the culmination of a series of Integral Experiment Requests (IER) thatmore » included the establishment of the Nuclear Criticality Experimental Research Center, (NCERC) the startup of the Godiva Reactor (IER-194), the establishment of a the Nuclear Accident Dosimetry Laboratory (NAD LAB) in Mercury, NV, and the determination of reference dosimetry values for the mixed neutron and photon radiation field of Godiva within NCERC.« less

  15. CPTAC Team Releases Targeted Proteomic Assays for Ovarian Cancer | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Pacific Northwest National Laboratory (PNNL) investigators in the Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI), announces the public release of 98 targeted mass spectrometry-based assays for ovarian cancer research studies.  Chosen based on proteogenomic observations from the recently published multi-institutional collaborative project between PNNL and Johns Hopkins University that comprehensively examined the collections of proteins in the tumors of ovarian cancer patients (highlighted in a paper in

  16. The School Site in Environmental Education.

    ERIC Educational Resources Information Center

    MacGown, Richard H.

    Realizing that school sites can play an important role in enhancing the educational process, guidelines dealing with the development of a school site for environmental education purposes are presented. First, the roles of this site for environmental studies are explained as: (1) an ecology laboratory, (2) an environmental management laboratory,…

  17. Wide Area Recovery and Resiliency Program (WARRP) Knowledge Enhancement Events: CBR Workshop After Action Report

    DTIC Science & Technology

    2012-01-01

    Laboratories Walker Ray Walker Engineering Solutions, LLC Williams Patricia Denver Office of Emergency Management Wood- Zika Annmarie Lawrence Livermore...llnl.gov AnnMarie Wood- Zika woodzika1@llnl.gov Pacific Northwest National Laboratory Ann Lesperance ann.lesperance@pnnl.gov Jessica Sandusky

  18. Mars-GRAM Applications for Mars Science Laboratory Mission Site Selection Processes

    NASA Technical Reports Server (NTRS)

    Justh, Hilary; Justus, C. G.

    2007-01-01

    An overview is presented of the Mars-Global Reference Atmospheric Model (Mars-GRAM 2005) and its new features. One important new feature is the "auxiliary profile" option, whereby a simple input file is used to replace mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. An auxiliary profile can be generated from any source of data or alternate model output. Results are presented using auxiliary profiles produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5) model) for three candidate Mars Science Laboratory (MSL) landing sites (Terby Crater, Melas Chasma, and Gale Crater). A global Thermal Emission Spectrometer (TES) database has also been generated for purposes of making 'Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components, averaged over 5-by-5 degree latitude bins and 15 degree L(sub S) bins, for each of three Mars years of TES nadir data. Comparisons show reasonably good consistency between Mars-GRAM with low dust optical depth and both TES observed and mesoscale model simulated density at the three study sites. Mean winds differ by a more significant degree. Comparisons of mesoscale and TES standard deviations' with conventional Mars-GRAM values, show that Mars-GRAM density perturbations are somewhat conservative (larger than observed variability), while mesoscale-modeled wind variations are larger than Mars-GRAM model estimates. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.

  19. Problems Related to the Siting of the Laboratory Building for Civil Engineering Department at the University of Warmia and Mazury in Olsztyn, Poland

    NASA Astrophysics Data System (ADS)

    Zagroba, Marek

    2016-10-01

    This paper deals with the conditions underlying and the problems arising from the siting of a building with specialist laboratories in a developed part of the university campus in Olsztyn, Poland. The topography of the terrain and the need to house civil engineering laboratories in the planned building had an immense impact on the shape of the building and consequently on its foundations, whose dimensions responded to the ground conditions and the specification of various loads they would have to support, including the equipment for the laboratories. The siting of a building as a step in the construction process entails several problems, which are first taken into consideration at the stage of making preliminary concept plans and are subsequently verified while working on the final construction plan. The required information included geotechnical documentation, survey of the ground conditions and the data regarding the predicted loads on the building, necessary to select the right type of foundations. All these problems grow in importance when dealing with such unique buildings like the discussed example of a laboratory building for the Civil Engineering Department, built on a site within a conservation zone on the campus of the University of Warmia and Mazury in Olsztyn, Poland. The specific character of the building and the specialist equipment with which it was to be furnished (a resistance testing machine, a 17-meter-long wave flume) necessitated a series of analyses prior to the siting of the building and selecting suitable foundations. In turn, the fact that the new building was to be erected in the conservation zone meant that collaboration with the Heritage Conservation Office had to be undertaken at the stage of making the plan and continued during the construction works. The Heritage Officer's recommendations concerning the building's shape, divisions, dimensions, materials used, etc., created a situation where the team of designers and architects had to

  20. Application of portable X-ray fluorescence spectrometry in environmental investigation of heavy metal-contaminated sites and comparison with laboratory analysis

    NASA Astrophysics Data System (ADS)

    Ding, Liang; Wang, Shui; Cai, Bingjie; Zhang, Mancheng; Qu, Changsheng

    2018-02-01

    In this study, portable X-ray fluorescence spectrometry (pXRF) was used to measure the heavy metal contents of As, Cu, Cr, Ni, Pb and Zn in the soils of heavy metal-contaminated sites. The precision, accuracy and system errors of pXRF were evaluated and compared with traditional laboratory methods to examine the suitability of in situ pXRF. The results show that the pXRF analysis achieved satisfactory accuracy and precision in measuring As, Cr, Cu, Ni, Pb, and Zn in soils, and meets the requirements of the relevant detection technology specifications. For the certified reference soil samples, the pXRF results of As, Cr, Cu, Ni, Pb, and Zn show good linear relationships and coefficients of determination with the values measured using the reference analysis methods; with the exception of Ni, all the measured values were within the 95% confidence level. In the soil samples, the coefficients of determination between Cu, Zn, Pb, and Ni concentrations measured laboratory pXRF and the values measured with laboratory analysis all reach 0.9, showing a good linear relationship; however, there were large deviations between methods for Cr and As. This study provides reference data and scientific support for rapid detection of heavy metals in soils using pXRF in site investigation, which can better guide the practical application of pXRF.

  1. Aqueous-Phase Acetic Acid Ketonization over Monoclinic Zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Qiuxia; Lopez-Ruiz, Juan A.; Cooper, Alan R.

    The effect of aqueous phase on the acetic acid ketonization over monoclinic zirconia has been investigated using first-principles based density functional theory (DFT) calculations. To capture the aqueous phase chemistry over the solid zirconia catalyst surface, the aqueous phase is represented by 111 explicit water molecules with a liquid water density of 0.93 g/cm3 and the monoclinic zirconia is modeled by the most stable surface structure . The dynamic nature of aqueous phase/ interface was studied using ab initio molecular dynamics simulation, indicating that nearly half of the surface Zr sites are occupied by either adsorbed water molecules or hydroxylmore » groups at 550 K. DFT calculations show that the adsorption process of acetic acid from the liquid water phase to the surface is nearly thermodynamically neutral with a Gibbs free energy of -2.3 kJ/mol although the adsorption strength of acetic acid on the surface in aqueous phase is much stronger than in vapor phase. Therefore it is expected that the adsorption of acetic acid will dramatically affects aqueous phase ketonization reactivity over the monoclinic zirconia catalyst. Using the same ketonization mechanism via the β-keto acid intermediate, we have compared acetic acid ketonization to acetone in both vapor and aqueous phases. Our DFT calculation results show although the rate-determining step of the β-keto acid formation via the C-C coupling is not pronouncedly affected, the presence of liquid water molecules will dramatically affect dehydrogenation and hydrogenation steps via proton transfer mechanism. This work was financially supported by the United States Department of Energy (DOE)’s Bioenergy Technologies Office (BETO) and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Computing time and advanced catalyst characterization use was granted by a user proposal at the William R. Wiley

  2. American Recovery and Reinvestment Act (ARRA) - FEMP Technical Assistance - Federal Aviation Administration - Project 209 - Control Tower and Support Building, Boise, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arends, J.; Sandusky, William F.

    2010-06-28

    This report documents an energy audit performed by Pacific Northwest National Laboratory (PNNL) and Redhorse Corporation (Redhorse) conducted on the Federal Aviation Administration (FAA) control tower and base building in Boise, Idaho. This report presents findings of the energy audit team that evaluated construction documents and operating specifications (at the 100% level) followed by a site visit of the facility under construction. The focus of the review was to identify measures that could be incorporated into the final design and operating specifications that would result in additional energy savings for FAA that would not have otherwise occurred.

  3. Initial Characterization of Unequal-Length, Low-Background Proportional Counters for Absolute Gas-Counting Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, Emily K.; Aalseth, Craig E.; Bonicalzi, Ricco

    Abstract. Characterization of two sets of custom unequal length proportional counters is underway at Pacific Northwest National Laboratory (PNNL). These detectors will be used in measurements to determine the absolute activity concentration of gaseous radionuclides (e.g., 37Ar). A set of three detectors has been fabricated based on previous PNNL ultra-low-background proportional counters (ULBPC) designs and now operate in PNNL’s shallow underground counting laboratory. A second set of four counters has also been fabricated using clean assembly of OFHC copper components for use in an above-ground counting laboratory. Characterization of both sets of detectors is underway with measurements of background rates,more » gas gain, energy resolution, and shielding considerations. These results will be presented along with uncertainty estimates of future absolute gas counting measurements.« less

  4. Calendar year 2003 annual site environmental report for Sandia National Laboratories, New Mexico.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie

    2004-09-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned, contractor-operated facility owned by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and managed by the Sandia Site Office (SSO), Albuquerque, New Mexico. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL/NM. This annual report summarizes data and the compliance status of Sandia Corporation's environmental protection and monitoring programs through December 31, 2003. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and the National Environmental Policy Act (NEPA). Environmentalmore » monitoring and surveillance programs are required by DOE Order 450.1, ''Environmental Protection Program'' (DOE 2003a) and DOE Order 231.1 Chg.2, ''Environment, Safety, and Health Reporting'' (DOE 1996).« less

  5. Interpretation of stable isotope, denitrification, and groundwater age data for samples collected from Sandia National Laboratories /New Mexico (SNL/NM) Burn Site Groundwater Area of Concern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madrid, V.; Singleton, M. J.; Visser, A.

    This report combines and summarizes results for two groundwater-sampling events (October 2012 and October/November 2015) from the Sandia National Laboratories/New Mexico (SNL/NM) Burn Site Groundwater (BSG) Area of Concern (AOC) located in the Lurance Canyon Arroyo southeast of Albuquerque, NM in the Manzanita Mountains. The first phase of groundwater sampling occurred in October 2012 including samples from 19 wells at three separate sites that were analyzed by the Environmental Radiochemistry Laboratory at Lawrence Livermore National Laboratory as part of a nitrate Monitored Natural Attenuation (MNA) evaluation. The three sites (BSG, Technical Area-V, and Tijeras Arroyo) are shown on the regionalmore » hydrogeologic map and described in the Sandia Annual Groundwater Monitoring Report. The first phase of groundwater sampling included six monitoring wells at the Burn Site, eight monitoring wells at Technical Area-V, and five monitoring wells at Tijeras Arroyo. Each groundwater sample was analyzed using the two specialized analytical methods, age-dating and denitrification suites. In September 2015, a second phase of groundwater sampling took place at the Burn Site including 10 wells sampled and analyzed by the same two analytical suites. Five of the six wells sampled in 2012 were resampled in 2015. This report summarizes results from two sampling events in order to evaluate evidence for in situ denitrification, the average age of the groundwater, and the extent of recent recharge of the bedrock fracture system beneath the BSG AOC.« less

  6. Final report: survey and removal of radioactive surface contamination at environmental restoration sites, Sandia National Laboratories/New Mexico. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, K.A.; Mitchell, M.M.; Jean, D.

    1997-09-01

    This report contains the Appendices A-L including Voluntary Corrective Measure Plans, Waste Management Plans, Task-Specific Health and Safety Plan, Analytical Laboratory Procedures, Soil Sample Results, In-Situ Gamma Spectroscopy Results, Radionuclide Activity Summary, TCLP Soil Sample Results, Waste Characterization Memoranda, Waste Drum Inventory Data, Radiological Risk Assessment, and Summary of Site-Specific Recommendations.

  7. Safety | Argonne National Laboratory

    Science.gov Websites

    laboratory's ongoing effort to provide a safe and productive environment for employees, users, other site Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Environment Careers Education Community Diversity Directory Energy Environment National Security User Facilities

  8. Standardization of Laboratory Methods for the PERCH Study

    PubMed Central

    Karron, Ruth A.; Morpeth, Susan C.; Bhat, Niranjan; Levine, Orin S.; Baggett, Henry C.; Brooks, W. Abdullah; Feikin, Daniel R.; Hammitt, Laura L.; Howie, Stephen R. C.; Knoll, Maria Deloria; Kotloff, Karen L.; Madhi, Shabir A.; Scott, J. Anthony G.; Thea, Donald M.; Adrian, Peter V.; Ahmed, Dilruba; Alam, Muntasir; Anderson, Trevor P.; Antonio, Martin; Baillie, Vicky L.; Dione, Michel; Endtz, Hubert P.; Gitahi, Caroline; Karani, Angela; Kwenda, Geoffrey; Maiga, Abdoul Aziz; McClellan, Jessica; Mitchell, Joanne L.; Morailane, Palesa; Mugo, Daisy; Mwaba, John; Mwansa, James; Mwarumba, Salim; Nyongesa, Sammy; Panchalingam, Sandra; Rahman, Mustafizur; Sawatwong, Pongpun; Tamboura, Boubou; Toure, Aliou; Whistler, Toni; O’Brien, Katherine L.; Murdoch, David R.

    2017-01-01

    Abstract The Pneumonia Etiology Research for Child Health study was conducted across 7 diverse research sites and relied on standardized clinical and laboratory methods for the accurate and meaningful interpretation of pneumonia etiology data. Blood, respiratory specimens, and urine were collected from children aged 1–59 months hospitalized with severe or very severe pneumonia and community controls of the same age without severe pneumonia and were tested with an extensive array of laboratory diagnostic tests. A standardized testing algorithm and standard operating procedures were applied across all study sites. Site laboratories received uniform training, equipment, and reagents for core testing methods. Standardization was further assured by routine teleconferences, in-person meetings, site monitoring visits, and internal and external quality assurance testing. Targeted confirmatory testing and testing by specialized assays were done at a central reference laboratory. PMID:28575358

  9. Productivity of Veterans Health Administration laboratories: a College of American Pathologists Laboratory Management Index Program (LMIP) study.

    PubMed

    Valenstein, Paul N; Wang, Edward; O'Donohue, Tom

    2003-12-01

    The Veterans Health Administration (VA) operates the largest integrated laboratory network in the United States. To assess whether the unique characteristics of VA laboratories impact efficiency of operations, we compared the productivity of VA and non-VA facilities. Financial and activity data were prospectively collected from 124 VA and 131 non-VA laboratories enrolled in the College of American Pathologists Laboratory Management Index Program (LMIP) during 2002. In addition, secular trends in 5 productivity ratios were calculated for VA and non-VA laboratories enrolled in LMIP from 1997 through 2002. Veterans Health Administration and non-VA facilities did not differ significantly in size. Inpatients accounted for a lower percentage of testing at VA facilities than non-VA facilities (21.7% vs 37.3%; P <.001). Technical staff at the median VA facility were paid more than at non-VA facilities (28.11/h dollars vs 22.60/h dollars, salaries plus benefits; P <.001), VA laboratories employed a smaller percentage of nontechnical staff (30.0% vs 41.9%; P <.001), and workers at VA laboratories worked less time per hour paid (85.5% vs 88.5%; P <.001). However, labor productivity was significantly higher at VA than at non-VA facilities (30 448 test results/total full-time equivalent (FTE)/y vs 19 260 results/total FTE; P <.001), resulting in lower labor expense per on-site test at VA sites than at non-VA sites (1.79 dollars/result vs 2.08 dollars/result; P <.001). Veterans Health Administration laboratories paid less per test for consumables (P =.003), depreciation, and maintenance than their non-VA counterparts (all P <.001), resulting in lower overall cost per on-site test result (2.64 dollars vs 3.40 dollars; P <.001). Cost per referred (sent-out) test did not differ significantly between the 2 groups. Analysis of 6-year trends showed significant increases in both VA (P <.001) and non-VA (P =.02) labor productivity (on-site tests/total FTE). Expenses at VA laboratories

  10. Adaption of Machine Fluid Analysis for Manufacturing - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pardini, Allan F.

    2005-08-16

    Pacific Northwest National Laboratory (PNNL: Operated by Battelle Memorial Institute for the Department of Energy) is working with the Department of Energy (DOE) to develop technology for the US mining industry. Filtration and lubricant suppliers to the pulp and paper industry had noted the recent accomplishments by PNNL and its industrial partners in the DOE OIT Mining Industry of the Future Program, and asked for assistance in adapting this DOE-funded technology to the pulp and paper industry.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, Christopher A.; Martinez, Alonzo; McNamara, Bruce K.

    International Atom Energy Agency (IAEA) safeguard verification measures in gaseous centrifuge enrichment plants (GCEPs) rely on environmental sampling, non-destructive assay (NDA), and destructive assay (DA) sampling and analysis to determine uranium enrichment. UF6 bias defect measurements are made by DA sampling and analysis to assure that enrichment is consistent with declarations. DA samples are collected from a limited number of cylinders for high precision, offsite mass spectrometer analysis. Samples are typically drawn from a sampling tap into a UF6 sample bottle, then packaged, sealed, and shipped under IAEA chain of custody to an offsite analytical laboratory. Future DA safeguard measuresmore » may require improvements in efficiency and effectiveness as GCEP capacities increase and UF6 shipping regulations become increasingly more restrictive. The Pacific Northwest National Laboratory (PNNL) DA sampler concept and Laser Ablation Absorption Ratio Spectrometry (LAARS) assay method are under development to potentially provide DA safeguard tools that increase inspection effectiveness and reduce sample shipping constraints. The PNNL DA sampler concept uses a handheld sampler to collect DA samples for either onsite LAARS assay or offsite laboratory analysis. The DA sampler design will use a small sampling planchet that is coated with an adsorptive film to collect controlled quantities of UF6 gas directly from a cylinder or process sampling tap. Development efforts are currently underway at PNNL to enhance LAARS assay performance to allow high-precision onsite bias defect measurements. In this paper, we report on the experimental investigation to develop adsorptive films for the PNNL DA sampler concept. These films are intended to efficiently capture UF6 and then stabilize the collected DA sample prior to onsite LAARS or offsite laboratory analysis. Several porous material composite films were investigated, including a film designed to maximize the chemical

  12. PNNL pushing scientific discovery through data intensive computing breakthroughs

    ScienceCinema

    Deborah Gracio; David Koppenaal; Ruby Leung

    2018-05-18

    The Pacific Northwest National Laboratory's approach to data intensive computing (DIC) is focused on three key research areas: hybrid hardware architectures, software architectures, and analytic algorithms. Advancements in these areas will help to address, and solve, DIC issues associated with capturing, managing, analyzing and understanding, in near real time, data at volumes and rates that push the frontiers of current technologies.

  13. Sulfur Solubility Testing and Characterization of Hanford LAW Phase 2, Inner Layer Matrix Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.; Edwards, T. B.; Caldwell, M. E.

    In this report, the Savannah River National Laboratory (SRNL) provides chemical analyses and Product Consistency Test (PCT) results for a series of simulated low activity waste (LAW) glass compositions. A procedure developed at the Pacific Northwest National Laboratory (PNNL) for producing sulfur saturated melts (SSMs) was carried out at both SRNL and PNNL to fabricate the glasses characterized in this report. This method includes triplicate melting steps with excess sodium sulfate, followed by grinding and washing to remove unincorporated sulfur salts. The wash solutions were also analyzed as part of this study. These data will be used in the developmentmore » of improved sulfur solubility models for LAW glass.« less

  14. SWEIS Yearbook-2012 Comparison of 2012 Data to Projections of the 2008 Site-Wide Environmental Impact Statement for Continued Operation of Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahowald, Hallie B.; Wright, Marjorie Alys

    2014-01-16

    Los Alamos National Laboratory (LANL or the Laboratory) operations data for Calendar Year (CY) 2012 mostly fell within the 2008 Site-Wide Environmental Impact Statement (SWEIS) projections. Operation levels for one LANL facility exceeded the 2008 SWEIS capability projections—Radiochemistry Facility; however, none of the capability increases caused exceedances in radioactive air emissions, waste generation, or National Pollutant Discharge Elimination System (NPDES) discharge. Several facilities exceeded the2008 SWEIS levels for waste generation quantities; however, all were one-time, non-routine events that do not reflect the day-to-day operations of the Laboratory. In addition, total site-wide waste generation quantities were below SWEIS projections for allmore » waste types, reflecting the overall levels of operations at both the Key and Non-Key Facilities. Although gas and electricity consumption have remained within the 2008 SWEIS limits for utilities, water consumption exceeded the 2008 SWEIS projections by 27 million gallons in CY 2012.« less

  15. Measurement and Analysis Plan for Investigation of Spent-Fuel Assay Using Lead Slowing-Down Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Leon E.; Haas, Derek A.; Gavron, Victor A.

    2009-09-25

    Under funding from the Department of Energy Office of Nuclear Energy’s Materials, Protection, Accounting, and Control for Transmutation (MPACT) program (formerly the Advanced Fuel Cycle Initiative Safeguards Campaign), Pacific Northwest National Laboratory (PNNL) and Los Alamos National Laboratory (LANL) are collaborating to study the viability of lead slowing-down spectroscopy (LSDS) for spent-fuel assay. Based on the results of previous simulation studies conducted by PNNL and LANL to estimate potential LSDS performance, a more comprehensive study of LSDS viability has been defined. That study includes benchmarking measurements, development and testing of key enabling instrumentation, and continued study of time-spectra analysis methods.more » This report satisfies the requirements for a PNNL/LANL deliverable that describes the objectives, plans and contributing organizations for a comprehensive three-year study of LSDS for spent-fuel assay. This deliverable was generated largely during the LSDS workshop held on August 25-26, 2009 at Rensselaer Polytechnic Institute (RPI). The workshop itself was a prominent milestone in the FY09 MPACT project and is also described within this report.« less

  16. A Drop in the Bucket or a Pebble in a Pond: Commercial Building Partners’ Replication of EEMs Across Their Portfolios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonopoulos, Chrissi A.; Baechler, Michael C.; Dillon, Heather E.

    This study presents findings from questionnaire and interview data investigating replication efforts of Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered with 12 organizations on new and retrofit construction projects as part of the U.S. Department of Energy (DOE) CBP program. PNNL and other national laboratories collaborate with industry leaders that own large portfolios of buildings to develop high performance projects for new construction and renovation. This project accelerates market adoption of commercially available energy saving technologies into the design process for new and upgraded commercial buildings. The labs provide assistancemore » to the partners’ design teams and make a business case for energy investments. From the owner’s perspective, a sound investment results in energy savings based on corporate objectives and design. Through a feedback questionnaire, along with personal interviews, PNNL gathered qualitative and quantitative information relating to replication efforts by each organization. Data through this process were analyzed to provide insight into two primary research areas: 1) CBP partners’ replication efforts of technologies and approaches used in the CBP project to the rest of the organization’s building portfolio (including replication verification), and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP entire program.« less

  17. Calendar year 2004 annual site environmental report:Sandia National Laboratories, Albuquerque, New Mexico.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montoya, Amber L.; Goering, Teresa Lynn; Wagner, Katrina

    2005-09-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned, contractor-operated facility owned by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and managed by the Sandia Site Office (SSO), Albuquerque, New Mexico. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL/NM. This annual report summarizes data and the compliance status of Sandia Corporation's environmental protection and monitoring programs through December 31, 2004. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and the National Environmental Policy Act (NEPA). Environmentalmore » monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004a). (DOE 2004a).« less

  18. Headspace vapor characterization of Hanford Waste Tank 241-S-102: Results from samples collected on January 26, 1996. Tank Vapor Characterization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, J.C.; Thomas, B.L.; Pool, K.H.

    1996-07-01

    This report describes the results of vapor samples obtained to compare vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling System (ISVS) with and without particulate prefiltration. Samples were collected from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) was contracted by Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for water, ammonia, permanent gases, total nonmethane hydrocarbons (TNMHCs, also known as TO-12), and organic analytes in samples collected in SUMMA{trademark} canisters and on triple sorbentmore » traps (TSTs) from the tank headspace. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sampling and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Sampling and Analysis Plan for Tank Vapor Sampling Comparison Test{close_quote}, and the sample jobs were designated S6007, S6008, and S6009. Samples were collected by WHC on January 26, 1996, using the VSS, a truck-based sampling method using a heated probe; and the ISVS with and without particulate prefiltration.« less

  19. Headspace vapor characterization of Hanford Waste Tank 241-BY-108: Results from samples collected January 23, 1996. Tank Vapor Characterization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pool, K.H.; Evans, J.C.; Thomas, B.L.

    1996-07-01

    This report describes the results of vapor samples obtained to compare vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling System (ISVS) with and without particulate prefiltration. Samples were collected from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) was contracted by Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for water, ammonia, permanent gases, total nonmethane hydrocarbons (TNMHCs, also known as TO-12), and organic analytes in samples collected in SUMMA{trademark} canisters and on triple sorbentmore » traps (TSTs) from the tank headspace. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sampling and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Sampling and Analysis Plan for Tank Vapor Sampling Comparison Test{close_quotes}, and the sample jobs were designated S6004, S6005, and S6006. Samples were collected by WHC on January 23, 1996, using the VSS, a truck-based sampling method using a heated probe; and the ISVS with and without particulate prefiltration.« less

  20. Rolling Process Modeling Report. Finite-Element Model Validation and Parametric Study on various Rolling Process parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soulami, Ayoub; Lavender, Curt A.; Paxton, Dean M.

    2015-06-15

    Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum alloy plate-type fuel for high-performance research reactors in the United States. This work supports the U.S. Department of Energy National Nuclear Security Administration’s Office of Material Management and Minimization Reactor Conversion Program. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll-separating forces for various rolling mill geometries for PNNL, Babcock & Wilcox Co., Y-12 National Security Complex, Los Alamos National Laboratory, and Idaho National Laboratory. The model developed and presented in a previous report has been subjected to further validationmore » study using new sets of experimental data generated from a rolling mill at PNNL. Simulation results of both hot rolling and cold rolling of uranium-10% molybdenum coupons have been compared with experimental results. The model was used to predict roll-separating forces at different temperatures and reductions for five rolling mills within the National Nuclear Security Administration Fuel Fabrication Capability project. This report also presents initial results of a finite-element model microstructure-based approach to study the surface roughness at the interface between zirconium and uranium-10% molybdenum.« less

  1. HTO and OBT activity concentrations in soil at the historical atmospheric HT release site (Chalk River Laboratories).

    PubMed

    Kim, S B; Bredlaw, M; Korolevych, V Y

    2012-01-01

    Tritium is routinely released by the Chalk River Laboratories (CRL) nuclear facilities. Three International HT release experiments have been conducted at the CRL site in the past. The site has not been disturbed since the last historical atmospheric testing in 1994 and presents an opportunity to assess the retention of tritium in soil. This study is devoted to the measurement of HTO and OBT activity concentration profiles in the subsurface 25 cm of soil. In terms of soil HTO, there is no evidence from the past HT release experiments that HTO was retained. The HTO activity concentration in the soil pore water appears similar to concentrations found in background areas in Ontario. In contrast, OBT activity concentrations in soil at the same site were significantly higher than HTO activity concentrations in soil. Elevated OBT appears to reside in the top layer of the soil (0-5 cm). In addition, OBT activity concentrations in the top soil layer did not fluctuate much with season, again, quite in contrast with soil HTO. This result suggests that OBT activity concentrations retained the signature of the historical tritium releases. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  2. Real-time Data Center Energy Efficiency At Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sisk, Daniel R.; Khaleel, Mohammad A.; Marquez, Andres

    2009-05-26

    The escalating consumption of power in data centers worldwide has brought the issue of data center energy efficiency to the forefront. Data center owners and operators now regard detailed knowledge of the energy efficiencies of their data centers as a competitive advantage. With funding from the Department of Energy (NNSA), PNNL has undertaken an in-depth analysis of the real-time energy efficiency for its Energy Smart Data Center Test Bed(ESDC-TB), which is housed in the mixed-use EMSL. The analysis is centered around the real-time display of The Green Grid’s proposed DCiE metric. To calculate this metric, PNNL relies on a varietymore » of sources of data. At the ESDC-TB level, the data center is instrumented to the 100% level (all power consumption, and water temperatures and flow rates are measured). Most of this data is monitored in real-time, but the exception to this is with the CRAHs, which rely on a one-time power consumption measurement for the blowers (these are single speed blowers, so a one-time measurement suffices.). Outside of the data center (EMSL facility level), PNNL relies on the following: • Real-time data from the entire chiller plant (five chillers), six chilled water pumps, and one of four cooling towers (blowers only). • One-time power measurements for a single fixed speed pump that is representative of each grouping of pumps (the other pumps are assumed to possess the same power consumption levels). • One-time power measurements for a single two-speed cooling tower blower. This same blower model is deployed in three of the four cooling towers, so is assumed to be representative for all these blowers. • One-time power measurements for a single fixed speed cooling tower pump. This same pump model is deployed in all four cooling towers, so is assumed to be representative for all these pumps. A software tool named FRED was developed by PNNL to acquire, reduce, display, and archive all the data acquired from the ESDC-TB and EMSL

  3. Promoting early exposure monitoring for respirable crystalline silica: Taking the laboratory to the mine site

    PubMed Central

    Cauda, Emanuele; Miller, Arthur; Drake, Pamela

    2017-01-01

    The exposure to respirable crystalline silica (RCS) in the mining industry is a recognized occupational hazard. The assessment and monitoring of the exposure to RCS is limited by two main factors: (1) variability of the silica percent in the mining dust and (2) lengthy off-site laboratory analysis of collected samples. The monitoring of respirable dust via traditional or real-time techniques is not adequate. A solution for on-site quantification of RCS in dust samples is being investigated by the Office of Mine Safety and Health Research, a division of the National Institute for Occupational Safety and Health. The use of portable Fourier transform infrared analyzers in conjunction with a direct-on-filter analysis approach is proposed. The progress made so far, the necessary steps in progress, and the application of the monitoring solution to a small data set is presented. When developed, the solution will allow operators to estimate RCS immediately after sampling, resulting in timelier monitoring of RCS for self-assessment of compliance at the end of the shift, more effective engineering monitoring, and better evaluation of control technologies. PMID:26558490

  4. Argonne National Laboratory summary site environmental report for calendar year 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golchert, N. W.; ESH /QA Oversight

    This booklet is designed to inform the public about what Argonne National Laboratory is doing to monitor its environment and to protect its employees and neighbors from any adverse environmental impacts from Argonne research. The Downers Grove South Biology II class was selected to write this booklet, which summarizes Argonne's environmental monitoring programs for 2006. Writing this booklet also satisfies the Illinois State Education Standard, which requires that students need to know and apply scientific concepts to graduate from high school. This project not only provides information to the public, it will help students become better learners. The Biology IImore » class was assigned to condense Argonne's 300-page, highly technical Site Environmental Report into a 16-page plain-English booklet. The site assessment relates to the class because the primary focus of the Biology II class is ecology and the environment. Students developed better learning skills by working together cooperatively, writing and researching more effectively. Students used the Argonne Site Environmental Report, the Internet, text books and information from Argonne scientists to help with their research on their topics. The topics covered in this booklet are the history of Argonne, groundwater, habitat management, air quality, Argonne research, Argonne's environmental non-radiological program, radiation, and compliance. The students first had to read and discuss the Site Environmental Report and then assign topics to focus on. Dr. Norbert Golchert and Mr. David Baurac, both from Argonne, came into the class to help teach the topics more in depth. The class then prepared drafts and wrote a final copy. Ashley Vizek, a student in the Biology class stated, 'I reviewed my material and read it over and over. I then took time to plan my paper out and think about what I wanted to write about, put it into foundation questions and started to write my paper. I rewrote and revised so I think the

  5. Lawrence Livermore National Laboratory Site Seismic Safety Program: Summary of Findings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savy, J B; Foxall, W

    The Lawrence Livermore National Laboratory (LLNL) Site Seismic Safety Program was conceived in 1979 during the preparation of the site Draft Environmental Impact Statement. The impetus for the program came from the development of new methodologies and geologic data that affect assessments of geologic hazards at the LLNL site; it was designed to develop a new assessment of the seismic hazard to the LLNL site and LLNL employees. Secondarily, the program was also intended to provide the technical information needed to make ongoing decisions about design criteria for future construction at LLNL and about the adequacy of existing facilities. Thismore » assessment was intended to be of the highest technical quality and to make use of the most recent and accepted hazard assessment methodologies. The basic purposes and objectives of the current revision are similar to those of the previous studies. Although all the data and experience assembled in the previous studies were utilized to their fullest, the large quantity of new information and new methodologies led to the formation of a new team that includes LLNL staff and outside consultants from academia and private consulting firms. A peer-review panel composed of individuals from academia (A. Cornell, Stanford University), the Department of Energy (DOE; Jeff Kimball), and consulting (Kevin Coppersmith), provided review and guidance. This panel was involved from the beginning of the project in a ''participatory'' type of review. The Senior Seismic Hazard Analysis Committee (SSHAC, a committee sponsored by the U.S. Nuclear Regulatory Commission, DOE, and the Electric Power Research Institute) strongly recommends the use of participatory reviews, in which the reviewers follow the progress of a project from the beginning, rather than waiting until the end to provide comments (Budnitz et al., 1997). Following the requirements for probabilistic seismic hazard analysis (PSHA) stipulated in the DOE standard DOE-STD-1023-95, a

  6. A qualitative case study of instructional support for web-based simulated laboratory exercises in online college chemistry laboratory courses

    NASA Astrophysics Data System (ADS)

    Schulman, Kathleen M.

    This study fills a gap in the research literature regarding the types of instructional support provided by instructors in online introductory chemistry laboratory courses that employ chemistry simulations as laboratory exercises. It also provides information regarding students' perceptions of the effectiveness of that instructional support. A multiple case study methodology was used to carry out the research. Two online introductory chemistry courses were studied at two community colleges. Data for this study was collected using phone interviews with faculty and student participants, surveys completed by students, and direct observation of the instructional designs of instructional support in the online Blackboard web sites and the chemistry simulations used by the participating institutions. The results indicated that the instructors provided multiple types of instructional support that correlated with forms of effective instructional support identified in the research literature, such as timely detailed feedback, detailed instructions for the laboratory experiments, and consistency in the instructional design of lecture and laboratory course materials, including the chemistry lab simulation environment. The students in one of these courses identified the following as the most effective types of instructional support provided: the instructor's feedback, opportunities to apply chemistry knowledge in the chemistry lab exercises, detailed procedures for the simulated laboratory exercises, the organization of the course Blackboard sites and the chemistry lab simulation web sites, and the textbook homework web sites. Students also identified components of instructional support they felt were missing. These included a desire for more interaction with the instructor, more support for the simulated laboratory exercises from the instructor and the developer of the chemistry simulations, and faster help with questions about the laboratory exercises or experimental

  7. Results of Surveys for Special Status Reptiles at the Site 300 Facilities of Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woollett, J J

    2008-09-18

    The purpose of this report is to present the results of a live-trapping and visual surveys for special status reptiles at the Site 300 Facilities of Lawrence Livermore National Laboratory (LLNL). The survey was conducted under the authority of the Federal recovery permit of Swaim Biological Consulting (PRT-815537) and a Memorandum of Understanding issued from the California Department of Fish and Game. Site 300 is located between Livermore and Tracy just north of Tesla road (Alameda County) and Corral Hollow Road (San Joaquin County) and straddles the Alameda and San Joaquin County line (Figures 1 and 2). It encompasses portionsmore » of the USGS 7.5 minute Midway and Tracy quadrangles (Figure 2). Focused surveys were conducted for four special status reptiles including the Alameda whipsnake (Masticophis lateralis euryxanthus), the San Joaquin Whipsnake (Masticophis Hagellum ruddock), the silvery legless lizard (Anniella pulchra pulchra), and the California horned lizard (Phrynosoma coronanum frontale).« less

  8. Terminology modeling for an enterprise laboratory orders catalog.

    PubMed

    Zhou, Li; Goldberg, Howard; Pabbathi, Deepika; Wright, Adam; Goldman, Debora S; Van Putten, Cheryl; Barley, Amanda; Rocha, Roberto A

    2009-11-14

    Laboratory test orders are used in a variety of clinical information systems at Partners HealthCare. At present, each site at Partners manages its own set of laboratory orders with locally defined codes. Our current plan is to implement an enterprise catalog, where laboratory test orders are mapped to reference terminologies and codes from different sites are mapped to each other. This paper describes the terminology modeling effort that preceded the implementation of the enterprise laboratory orders catalog. In particular, we present our experience in adapting HL7's "Common Terminology Services 2 - Upper Level Class Model" as a terminology metamodel for guiding the development of fully specified laboratory orders and related services.

  9. Terminology Modeling for an Enterprise Laboratory Orders Catalog

    PubMed Central

    Zhou, Li; Goldberg, Howard; Pabbathi, Deepika; Wright, Adam; Goldman, Debora S.; Van Putten, Cheryl; Barley, Amanda; Rocha, Roberto A.

    2009-01-01

    Laboratory test orders are used in a variety of clinical information systems at Partners HealthCare. At present, each site at Partners manages its own set of laboratory orders with locally defined codes. Our current plan is to implement an enterprise catalog, where laboratory test orders are mapped to reference terminologies and codes from different sites are mapped to each other. This paper describes the terminology modeling effort that preceded the implementation of the enterprise laboratory orders catalog. In particular, we present our experience in adapting HL7’s “Common Terminology Services 2 – Upper Level Class Model” as a terminology metamodel for guiding the development of fully specified laboratory orders and related services. PMID:20351950

  10. Post-Remediation Biomonitoring of Pesticides and Other Contaminants in Marine Waters and Sediment Near the United Heckathorn Superfund Site, Richmond, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LD Antrim; NP Kohn

    This report, PNNL-1 3059 Rev. 1, was published in July 2000 and replaces PNNL-1 3059 which is dated October 1999. The revision corrects tissue concentration units that were reported as dry weight but were actually wet weight, and updates conclusions based on the correct reporting units. Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in February 1999 from four stations near Lauritzen Canal in Richmond, California, for Year 2 of post-remediation monitoring of marine areas near the United Heckathom Site. Dieldrin and dichlorodiphenyl trichloroethane (DDT) were analyzed inmore » water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared with Year 1 of post-remediation monitoring, and with preremediation data from the California State Mussel Watch program (tissue s) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples. Chlorinated pesticide concentrations in water samples were similar to preremediation levels and did not meet remediation goals. Mean dieldrin concentrations in water ranged from 0.62 ng/L to 12.5 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 14.4 ng/L to 62.3 ng/L and exceeded the remediation goal (0.59 ng/L) at all stations. The highest concentrations of both DDT and dieldrin were found at the Lauritzen Canal/End station. Despite exceedence of the remediation goals, chlorinated pesticide concentrations in Lauritzen Canal water samples were notably lower in 1999 than in 1998. PCBS were not detected in water samples in 1999.« less

  11. Towards adaptive, streaming analysis of x-ray tomography data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Mathew; Kleese van Dam, Kerstin; Marshall, Matthew J.

    2015-03-04

    Temporal and spatial resolution of chemical imaging methodologies such as x-ray tomography are rapidly increasing, leading to more complex experimental procedures and fast growing data volumes. Automated analysis pipelines and big data analytics are becoming essential to effectively evaluate the results of such experiments. Offering those data techniques in an adaptive, streaming environment can further substantially improve the scientific discovery process, by enabling experimental control and steering based on the evaluation of emerging phenomena as they are observed by the experiment. Pacific Northwest National Laboratory (PNNL)’ Chemical Imaging Initiative (CII - http://imaging.pnnl.gov/ ) has worked since 2011 towards developing amore » framework that allows users to rapidly compose and customize high throughput experimental analysis pipelines for multiple instrument types. The framework, named ‘Rapid Experimental Analysis’ (REXAN) Framework [1], is based on the idea of reusable component libraries and utilizes the PNNL developed collaborative data management and analysis environment ‘Velo’, to provide a user friendly analysis and data management environment for experimental facilities. This article will, discuss the capabilities established for X-Ray tomography, discuss lessons learned, and provide an overview of our more recent work in the Analysis in Motion Initiative (AIM - http://aim.pnnl.gov/ ) at PNNL to provide REXAN capabilities in a streaming environment.« less

  12. The Mawrth Vallis region of Mars: A potential landing site for the Mars Science Laboratory (MSL) mission.

    PubMed

    Michalski, Joseph R; Jean-PierreBibring; Poulet, François; Loizeau, Damien; Mangold, Nicolas; Dobrea, Eldar Noe; Bishop, Janice L; Wray, James J; McKeown, Nancy K; Parente, Mario; Hauber, Ernst; Altieri, Francesca; Carrozzo, F Giacomo; Niles, Paul B

    2010-09-01

    The primary objective of NASA's Mars Science Laboratory (MSL) mission, which will launch in 2011, is to characterize the habitability of a site on Mars through detailed analyses of the composition and geological context of surface materials. Within the framework of established mission goals, we have evaluated the value of a possible landing site in the Mawrth Vallis region of Mars that is targeted directly on some of the most geologically and astrobiologically enticing materials in the Solar System. The area around Mawrth Vallis contains a vast (>1 × 10⁶ km²) deposit of phyllosilicate-rich, ancient, layered rocks. A thick (>150 m) stratigraphic section that exhibits spectral evidence for nontronite, montmorillonite, amorphous silica, kaolinite, saponite, other smectite clay minerals, ferrous mica, and sulfate minerals indicates a rich geological history that may have included multiple aqueous environments. Because phyllosilicates are strong indicators of ancient aqueous activity, and the preservation potential of biosignatures within sedimentary clay deposits is high, martian phyllosilicate deposits are desirable astrobiological targets. The proposed MSL landing site at Mawrth Vallis is located directly on the largest and most phyllosilicate-rich deposit on Mars and is therefore an excellent place to explore for evidence of life or habitability.

  13. Nuclear Science User Facilities (NSUF) Monthly Report March 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Renae

    Nuclear Science User Facilities (NSUF) Formerly: Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report February 2015 Highlights; Jim Cole attended the OECD NEA Expert Group on Innovative Structural Materials meeting in Paris, France; Jim Lane and Doug Copsey of Writers Ink visited PNNL to prepare an article for the NSUF annual report; Brenden Heidrich briefed the Nuclear Energy Advisory Committee-Facilities Subcommittee on the Nuclear Energy Infrastructure Database project and provided them with custom reports for their upcoming visits to Argonne National Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory and the Massachusetts Institute of Technology; and Universitymore » of California-Berkeley Principal Investigator Mehdi Balooch visited PNNL to observe measurements and help finalize plans for completing the desired suite of analyses. His visit was coordinated to coincide with the visit of Jim Lane and Doug Copsey.« less

  14. An Application of the SSHAC Level 3 Process to the Probabilistic Seismic Hazard Analysis for Nuclear Facilities at the Hanford Site, Eastern Washington, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppersmith , Kevin J.; Bommer, Julian J.; Bryce, Robert W.

    Under the sponsorship of the US Department of Energy (DOE) and the electric utility Energy Northwest, the Pacific Northwest National Laboratory (PNNL) is conducting a probabilistic seismic hazard analysis (PSHA) within the framework of a SSHAC Level 3 procedure (Senior Seismic Hazard Analysis Committee; Budnitz et al., 1997). Specifically, the project is being conducted following the guidelines and requirements specified in NUREG-2117 (USNRC, 2012b) and consistent with approach given in the American Nuclear Standard ANSI/ANS-2.29-2008 Probabilistic Seismic Hazard Analysis. The collaboration between DOE and Energy Northwest is spawned by the needs of both organizations for an accepted PSHA with highmore » levels of regulatory assurance that can be used for the design and safety evaluation of nuclear facilities. DOE committed to this study after performing a ten-year review of the existing PSHA, as required by DOE Order 420.1C. The study will also be used by Energy Northwest as a basis for fulfilling the NRC’s 10CFR50.54(f) requirement that the western US nuclear power plants conduct PSHAs in conformance with SSHAC Level 3 procedures. The study was planned and is being carried out in conjunction with a project Work Plan, which identifies the purpose of the study, the roles and responsibilities of all participants, tasks and their associated schedules, Quality Assurance (QA) requirements, and project deliverables. New data collection and analysis activities are being conducted as a means of reducing the uncertainties in key inputs to the PSHA. It is anticipated that the results of the study will provide inputs to the site response analyses at multiple nuclear facility sites within the Hanford Site and at the Columbia Generating Station.« less

  15. Business Case for Nonintrusive Load Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baechler, Michael C.; Hao, He

    This report explores how utilities, researchers, and consumers could benefit from a lower cost approach to submetering using non-intrusive load monitoring (NILM). NILM is a process of using data from a single point of monitoring, such as a utility smart meter, to provide an itemized accounting of end use energy consumption in residential and small commercial buildings. Pacific Northwest National Laboratory (PNNL) prepared this report for the Bonneville Power Administration (BPA). PNNL participated in an advisory group as part of a research project sponsored by the U.S. Department of Energy (DOE), the Bonneville Power Administration, and the State of Washington.more » The Electric Power Research Institute (EPRI) convened the advisory committee for two workshops held to identify ways in which NILM may be used. PNNL, on behalf of DOE, helped to cosponsor the first of these workshops. Results of an end-use monitoring study of a bank branch conducted by PNNL are also presented for purposes of illustrating the need for better data in energy savings modeling (DOE 2013a).« less

  16. Technical Review of Retrieval and Closure Plans for the INEEL INTEC Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamberger, Judith A; Burks, Barry L; Quigley, Keith D

    2001-09-28

    The purpose of this report is to document the conclusions of a technical review of retrieval and closure plans for the Idaho National Energy and Environmental Laboratory (INEEL) Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility. In addition to reviewing retrieval and closure plans for these tanks, the review process served as an information exchange mechanism so that staff in the INEEL High Level Waste (HLW) Program could become more familiar with retrieval and closure approaches that have been completed or are planned for underground storage tanks at the Oak Ridge National Laboratory (ORNL) and Hanford sites. Thismore » review focused not only on evaluation of the technical feasibility and appropriateness of the approach selected by INEEL but also on technology gaps that could be addressed through utilization of technologies or performance data available at other DOE sites and in the private sector. The reviewers, Judith Bamberger of Pacific Northwest National Laboratory (PNNL) and Dr. Barry Burks of The Providence Group Applied Technology, have extensive experience in the development and application of tank waste retrieval technologies for nuclear waste remediation.« less

  17. Structuring Historic Site-Based History Laboratories for Teacher Education

    ERIC Educational Resources Information Center

    Baron, Christine

    2014-01-01

    Providing training for pre-service teachers at historic sites necessitates a reorientation for historic site-based teacher education programs away from strict content learning towards programs that emphasize the modeling of disciplinary problem solving and transfer learning. Outlined here is a History Lab model for teacher education that uses the…

  18. Argonne National Laboratory summary site environmental report for calendar year 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golchert, N. W.

    2009-05-22

    This summary of Argonne National Laboratory's Site Environmental Report for calendar year 2007 was written by 20 students at Downers Grove South High School in Downers Grove, Ill. The student authors are classmates in Mr. Howard's Bio II course. Biology II is a research-based class that teaches students the process of research by showing them how the sciences apply to daily life. For the past seven years, Argonne has worked with Biology II students to create a short document summarizing the Site Environmental Report to provide the public with an easy-to-read summary of the annual 300-page technical report on themore » results of Argonne's on-site environmental monitoring program. The summary is made available online and given to visitors to Argonne, researchers interested in collaborating with Argonne, future employees, and many others. In addition to providing Argonne and the public with an easily understandable short summary of a large technical document, the participating students learn about professional environmental monitoring procedures, achieve a better understanding of the time and effort put forth into summarizing and publishing research, and gain confidence in their own abilities to express themselves in writing. The Argonne Summary Site Environmental Report fits into the educational needs for 12th grade students. Illinois State Educational Goal 12 states that a student should understand the fundamental concepts, principles, and interconnections of the life, physical, and earth/space sciences. To create this summary booklet, the students had to read and understand the larger technical report, which discusses in-depth many activities and programs that have been established by Argonne to maintain a safe local environment. Creating this Summary Site Environmental Report also helps students fulfill Illinois State Learning Standard 12B5a, which requires that students be able to analyze and explain biodiversity issues, and the causes and effects of

  19. Golden Laboratories and Offices | NREL

    Science.gov Websites

    most research laboratories are located at our campus in Golden, Colorado, north of highway I-70 and Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 GPS Coordinates 39 your trip. Security Procedures Visitors must check in at the Site Entrance Building. Please see

  20. A Radar-like Iron based Nanohybrid as an Efficient and Stable Electrocatalyst for Oxygen Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, X. Y.; Liu, Lin; Wang, Xinde

    2014-05-21

    The present study shows a design concept for fabricating Fe-PyNG hybrid via strong coupling between FePc and pyridine-N. The prominent features of the Fe-PyNG hybrid include high electrocatalytic activity, superior durability, and better performance than Pt/C toward ORR in alkaline media. These features potentially make Fe-PyNG an outstanding nonprecious metal cathode catalyst for fuel cells. The incorporation of Fe ion and pyridine-N afforded effective bonding and synergetic coupling effects, which lead to significant electrocatalytic performance. DFT calculations indicate that N-modified Fe is a superior site for OOH adsorption and ORR reaction. Meanwhile, the strong chemical bonding between FePc and pyridynemore » in PyNG leads to its superior stability. We believe that our present synthetic strategy can be further extended to develop other metal complexes/N-doped carbon materials for broad applications in the field of catalysts, batteries, and supercapacitors. This work was supported by National Basic Research Program of China (973 Program) (2013CB733501), the National Natural Science Foundation of China (NSFC-21306169, 21176221, 21136001 and 21101137), Zhejiang Provincial Natural Science Foundation of China (ZJNSF-R4110345) and the New Century Excellent Talents in University Program (NCET-10-0979). We thank Prof. Youqun Zhu for Instruments support. D. Mei is supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less

  1. Laboratory study on metal attenuation capacity of fine grained soil near ash pond site.

    PubMed

    Ghosh, Sudipta; Mukherjee, Somnath; Sarkar, Sujoy; Kumar, Sunil

    2008-10-01

    Waste settling tanks of earthen containment nature are common in India for disposal of solid waste in slurry form. For a large pond system, e.g. ash slurry disposal tank of coal base thermal power plant, leachate generation and its migration pose a serious problem. A natural attenuation of controlling the migratory leachate is to use locally available clay material as lining system due to the adsorption properties of soil for reducing some metallic ions. The present investigation was carried out to explore the Ni2+ and Cr6+ removal capacity of surrounding soil of the ash pond site of Super Thermal Power Plant in West Bengal, India through some laboratory scale and field studies. The soil and water samples collected from the site showed the existence of Ni2+ and Cr6+ in excess to permissible limit. A two-dimensional adsorption behaviour of these pollutants through soil was assessed. The results showed that more than 80% of nickel and 72% of chromium were found to be sorbed by the soil corresponding to initial concentrations of two ions, i.e. 1.366 mg/L and 0.76 mg/L respectively. The batch adsorption data are tested Langmuir and Freundlich isotherm models and found reasonably fit. Breakthrough adsorption study uptake also showed a good adsorption capacity of the soil. The experimental results found to fit well with the existing two dimensional (2D) mathematical models as proposed by Fetter (1999).

  2. AFRL Solid Propellant Laboratory Explosive Siting and Renovation Lessons Learned

    DTIC Science & Technology

    2010-07-01

    Area 1-30A explosive facility and provide consultation/support during the review process for each of the site plans. • Applied Engineering Services...provided consultation/support during the siting review process. • Applied Engineering Services (AES) Inc. performed a detailed structural, blast, thermal... Applied Engineering Services (AES) Inc. structural, blast, thermal and fragment hazard analysis to determine the appropriate siting values based on

  3. Surface properties of the Mars Science Laboratory candidate landing sites: characterization from orbit and predictions

    USGS Publications Warehouse

    Fergason, R.L.; Christensen, P.R.; Golombek, M.P.; Parker, T.J.

    2012-01-01

    This work describes the interpretation of THEMIS-derived thermal inertia data at the Eberswalde, Gale, Holden, and Mawrth Vallis Mars Science Laboratory (MSL) candidate landing sites and determines how thermophysical variations correspond to morphology and, when apparent, mineralogical diversity. At Eberswalde, the proportion of likely unconsolidated material relative to exposed bedrock or highly indurated surfaces controls the thermal inertia of a given region. At Gale, the majority of the landing site region has a moderate thermal inertia (250 to 410 J m-2 K-1 s-1/2), which is likely an indurated surface mixed with unconsolidated materials. The primary difference between higher and moderate thermal inertia surfaces may be due to the amount of mantling material present. Within the mound of stratified material in Gale, layers are distinguished in the thermal inertia data; the MSL rover could be traversing through materials that are both thermophysically and compositionally diverse. The majority of the Holden ellipse has a thermal inertia of 340 to 475 J m-2 K-1 s-1/2 and consists of bed forms with some consolidated material intermixed. Mawrth Vallis has a mean thermal inertia of 310 J m-2 K-1 s-1/2 and a wide variety of materials is present contributing to the moderate thermal inertia surfaces, including a mixture of bedrock, indurated surfaces, bed forms, and unconsolidated fines. Phyllosilicates have been identified at all four candidate landing sites, and these clay-bearing units typically have a similar thermal inertia value (400 to 500 J m-2 K-1 s-1/2), suggesting physical properties that are also similar.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hund, Gretchen

    For the past decade, a team at the Pacific Northwest National Laboratory (PNNL) has engaged industry to “go beyond compliance” in controlling and securing their supply chains to ensure their goods are not diverted to nuclear weapons programs. This work has focused on dual-use industries that manufacture products that can be used in both commercial applications and in the development of a nuclear weapon. The team encourages industry to self-regulate to reduce proliferation risks. As part of that work, PNNL interviewed numerous companies about their compliance practices in order to understand their business and to build awareness around best practicesmore » to ensure security of goods and information along their supply chains. As a result, PNNL has identified seven indicators that a company can adopt as part of their commitment to nonproliferation ideals.« less

  5. Walk the Talk: Progress in Building a Supply Chain Security Culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hund, Gretchen

    Pacific Northwest National Laboratory (PNNL) has engaged industry to “go beyond compliance” for over a decade in controlling and securing their supply chains to ensure their goods are not diverted to nuclear weapons programs. This work has focused on dual-use industries that manufacture products that can be used in both commercial applications and in the development of a nuclear weapon. The team encourages industry to self-regulate to reduce proliferation risks. As part of that work, PNNL interviewed numerous companies about their compliance practices to understand their business and to build awareness around best practices to ensure security of goods, technology,more » and information along their supply chains. From conducting this work, PNNL identified indicators that a company can adopt as part of its commitment to nonproliferation ideals with a focus on supply chain security.« less

  6. Uncertainty and variability in laboratory derived sorption parameters of sediments from a uranium in situ recovery site

    NASA Astrophysics Data System (ADS)

    Dangelmayr, Martin A.; Reimus, Paul W.; Johnson, Raymond H.; Clay, James T.; Stone, James J.

    2018-06-01

    This research assesses the ability of a GC SCM to simulate uranium transport under variable geochemical conditions typically encountered at uranium in-situ recovery (ISR) sites. Sediment was taken from a monitoring well at the SRH site at depths 192 and 193 m below ground and characterized by XRD, XRF, TOC, and BET. Duplicate column studies on the different sediment depths, were flushed with synthesized restoration waters at two different alkalinities (160 mg/l CaCO3 and 360 mg/l CaCO3) to study the effect of alkalinity on uranium mobility. Uranium breakthrough occurred 25% - 30% earlier in columns with 360 mg/l CaCO3 over columns fed with 160 mg/l CaCO3 influent water. A parameter estimation program (PEST) was coupled to PHREEQC to derive site densities from experimental data. Significant parameter fittings were produced for all models, demonstrating that the GC SCM approach can model the impact of carbonate on uranium in flow systems. Derived site densities for the two sediment depths were between 141 and 178 μmol-sites/kg-soil, demonstrating similar sorption capacities despite heterogeneity in sediment mineralogy. Model sensitivity to alkalinity and pH was shown to be moderate compared to fitted site densities, when calcite saturation was allowed to equilibrate. Calcite kinetics emerged as a potential source of error when fitting parameters in flow conditions. Fitted results were compared to data from previous batch and column studies completed on sediments from the Smith-Ranch Highland (SRH) site, to assess variability in derived parameters. Parameters from batch experiments were lower by a factor of 1.1 to 3.4 compared to column studies completed on the same sediments. The difference was attributed to errors in solid-solution ratios and the impact of calcite dissolution in batch experiments. Column studies conducted at two different laboratories showed almost an order of magnitude difference in fitted site densities suggesting that experimental methodology

  7. LLNL Experimental Test Site (Site 300) Potable Water System Operations Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocampo, R. P.; Bellah, W.

    The existing Lawrence Livermore National Laboratory (LLNL) Site 300 drinking water system operation schematic is shown in Figures 1 and 2 below. The sources of water are from two Site 300 wells (Well #18 and Well #20) and San Francisco Public Utilities Commission (SFPUC) Hetch-Hetchy water through the Thomas shaft pumping station. Currently, Well #20 with 300 gallons per minute (gpm) pump capacity is the primary source of well water used during the months of September through July, while Well #18 with 225 gpm pump capacity is the source of well water for the month of August. The well watermore » is chlorinated using sodium hypochlorite to provide required residual chlorine throughout Site 300. Well water chlorination is covered in the Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Chlorination Plan (“the Chlorination Plan”; LLNL-TR-642903; current version dated August 2013). The third source of water is the SFPUC Hetch-Hetchy Water System through the Thomas shaft facility with a 150 gpm pump capacity. At the Thomas shaft station the pumped water is treated through SFPUC-owned and operated ultraviolet (UV) reactor disinfection units on its way to Site 300. The Thomas Shaft Hetch- Hetchy water line is connected to the Site 300 water system through the line common to Well pumps #18 and #20 at valve box #1.« less

  8. Structure, dynamics and stability of water/scCO 2/mineral interfaces from ab initio molecular dynamics simulations

    DOE PAGES

    Lee, Mal -Soon; Peter McGrail, B.; Rousseau, Roger; ...

    2015-10-12

    , Geosciences and Biosciences (R.R.), and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle. Computational resources were provided by PNNL’s Platform for Institutional Computing (PIC), the W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at PNNL and the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory.« less

  9. Uranium from Seawater Marine Testing Program at the University of Miami’s Broad Key Island Research Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Gary A.; Kuo, Li-Jung; Strivens, Jonathan E.

    Marine testing at Broad Key Island (BKI), Florida was conducted to validate adsorption capacity and adsorption kinetics results obtained for several formulations of the ORNL amidoxime-based polymeric adsorbents in Sequim Bay, Washington in another location with different oceanographic and water quality conditions (e.g. temperature, dissolved organic carbon, salinity and trace element content). Broad Key is a small island off the southeast coast of Florida at the southern end of Biscayne Bay. Flow-through column and recirculating flume experiments were conducted at BKI using ambient filtered seawater and identical exposure systems as were used at the Pacific Northwest National Laboratory’s (PNNL) Marinemore » Sciences laboratory (MSL). Testing was conducted in two periods in FY 2015 and FY 2016 with five different amidoxime-based adsorbent materials, four produced by ORNL (AF1, AI8, AF8, and AF1-DMSO) and one by LCW technologies (LCW-10). All exposures were conducted at ambient seawater temperatures, with moderate temperature control on the ambient seawater to mitigate large daily swings in the seawater temperature. The ORNL adsorbents AF1, AI8 and AF1-AO-DMSO all had fairly similar adsorption capacities (6.0 to 6.6 g U/ kg adsorbent) after 56 days of exposure at ambient temperature (26 to 31 °C) and salinity (35.7 to 37.4), but the AF8 adsorbent was considerably lower at 4.4 g U/kg adsorbent. All the adsorbents tested at BKI had higher capacities than was observed at PNNL, with the higher temperatures likely a major factor contributing to this difference. In general, the elemental distribution (expressed as a relative percentage) on all the adsorbents agreed well, including good agreement with the elemental distribution pattern for AF1 adsorbent exposed at PNNL. The most notable exception to a uniform elemental distributional pattern across the various adsorbents occurs with vanadium. The relative mass percentage for vanadium retained by the adsorbents ranged

  10. Isotope hydrology of the Chalk River Laboratories site, Ontario, Canada

    USGS Publications Warehouse

    Peterman, Zell; Neymark, Leonid; King-Sharp, K.J.; Gascoyne, Mel

    2016-01-01

    This paper presents results of hydrochemical and isotopic analyses of groundwater (fracture water) and porewater, and physical property and water content measurements of bedrock core at the Chalk River Laboratories (CRL) site in Ontario. Density and water contents were determined and water-loss porosity values were calculated for core samples. Average and standard deviations of density and water-loss porosity of 50 core samples from four boreholes are 2.73 ± 12 g/cc and 1.32 ± 1.24 percent. Respective median values are 2.68 and 0.83 indicating a positive skewness in the distributions. Groundwater samples from four deep boreholes were analyzed for strontium (87Sr/86Sr) and uranium (234U/238U) isotope ratios. Oxygen and hydrogen isotope analyses and selected solute concentrations determined by CRL are included for comparison. Groundwater from borehole CRG-1 in a zone between approximately +60 and −240 m elevation is relatively depleted in δ18O and δ2H perhaps reflecting a slug of water recharged during colder climatic conditions. Porewater was extracted from core samples by centrifugation and analyzed for major dissolved ions and for strontium and uranium isotopes. On average, the extracted water contains 15 times larger concentration of solutes than the groundwater. 234U/238U and correlation of 87Sr/86Sr with Rb/Sr values indicate that the porewater may be substantially older than the groundwater. Results of this study show that the Precambrian gneisses at Chalk River are similar in physical properties and hydrochemical aspects to crystalline rocks being considered for the construction of nuclear waste repositories in other regions.

  11. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - FY 2014 First Quarterly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Sanborn, Scott E.; Simmons, Kevin L.

    2014-02-19

    The CRADA between PNNL, Autodesk, Toyota and Magna has been effective since October 28th, 2013. The whole team including CRADA and subcontract partners kicked off the project technically on November 1st, 2013. This report describes work performed during the first quarter of FY 2014. The following technical progresses have been made toward project milestones: 1) The project kickoff meeting was organized at PlastiComp, Inc. in Winona on November 13th, 2013 involving all the project partners. During this meeting the research plan and Gantt chart were discussed and refined. The coordination of the research activities among the partners was also discussedmore » to ensure that the deliverables and timeline will be met. 2) Autodesk delivered a research version of ASMI to PNNL for process modeling using this tool under the project. PNNL installed this research version on a PNNL computer and tested it. Currently, PNNL is using ASMI to prepare the models for PlastiComp plaques. 3) PlastiComp has compounded long carbon-fiber reinforced polypropylene and polyamide 6,6 compounds for rheological and thermal characterization tests by the Autodesk laboratories in Melbourne, Australia. 4) Initial mold flow analysis was carried out by PlastiComp to confirm that the 3D complex part selected by Toyota as a representative automotive part is moldable. 5) Toyota, Magna, PlastiComp and PNNL finalized the planning for molding the Toyota 3D complex part. 6) Purdue University worked with PNNL to update and specify the test matrix for characterization of fiber length/orientation. 7) Purdue University developed tools to automate the data collection and analysis of fiber length and orientation measurements. 8) Purdue University designed and specified equipment to replace the need for equipment using the technology established by the University of Leeds at General Motors.« less

  12. Report on the Threatened Valley Elderberry Longhorn Beetle and its Elderberry Food Plant at the Lawrence Livermore National Laboratory--Site 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Ph.D., R A; Woollett, J

    2004-11-16

    This report describes the results of an entomological survey in 2002 to determine the presence of the federally-listed, threatened Valley Elderberry Longhorn Beetle or ''VELB'' (Desmocerus culifornicus dimorphus: Coleoptera, Cerambycidae) and its elderberry food plant (Sumbucus mexicana: Caprifoliaceae) on the Lawrence Livermore National Laboratory's (LLNL) Experimental Test Site, known as Site 300. In addition, an area located immediately southeast of Site 300, which is owned and managed by the California Department of Fish and Game (CDFG), but secured by LLNL, was also included in this survey. This report will refer to the survey areas as the LLNL-Site 300 and themore » CDFG site. The 2002 survey included mapping the locations of elderberry plants that were observed using a global positioning system (GPS) to obtain positional coordinates for every elderberry plant at Site 300. In addition, observations of VELB adults and signs of their infestation on elderberry plants were also mapped using GPS technology. LLNL requested information on the VELB and its elderberry food plants to update earlier information that had been collected in 1991 (Arnold 1991) as part of the 1992 EIS/EIR for continued operation of LLNL. No VELB adults were observed as part of this prior survey. The findings of the 2002 survey reported herein will be used by LLNL as it updates the expected 2004 Environmental Impact Statement for ongoing operations at LLNL, including Site 300.« less

  13. PHILIS (PORTABLE HIGH-THROUGHPUT INTEGRATED LABORATORY IDENTIFICATION SYSTEM)

    EPA Pesticide Factsheets

    These mobile laboratory assets, for the on-site analysis of chemical warfare agent (CWA) and toxic industrial compound (TIC) contaminated environmental samples, are part of the evolving Environmental Response Laboratory Network (ERLN).

  14. Simulation of outdoor pond cultures using indoor LED-lighted and temperature-controlled raceway ponds and Phenometrics photobioreactors

    DOE PAGES

    Huesemann, Michael; Dale, T.; Chavis, A.; ...

    2016-12-02

    Two innovative culturing systems, the LED-lighted and temperature-controlled 800 liter indoor raceways at Pacific Northwest National Laboratory (PNNL) and the Phenometrics environmental Photobioreactors™ (ePBRs) were evaluated in terms of their ability to accurately simulate the microalgae growth performance of outdoor cultures subjected to fluctuating sunlight and water temperature conditions. When repeating a 60-day outdoor pond culture experiment (batch and semi-continuous at two dilution rates) conducted in Arizona with the freshwater strain Chlorella sorokiniana DOE 1412 in these two indoor simulators, it was found that ash-free dry weight based biomass growth and productivity in the PNNL climate-simulation ponds was comparatively slightlymore » higher (8–13%) but significantly lower (44%) in the ePBRs. The difference in biomass productivities between the indoor and outdoor ponds was not statistically significant. When the marine Picochlorum soloecismus was cultured in five replicate ePBRs at Los Alamos National Laboratory (LANL) and in duplicate indoor climate-simulation ponds at PNNL, using the same inoculum, medium, culture depth, and light and temperature scripts, the optical density based biomass productivity and the rate of increase in cell counts in the ePBRs was about 35% and 66%, respectively, lower compared than in the indoor ponds. Potential reasons for the divergence in growth performance in these pond simulators, relative to outdoor raceways, are discussed. In conclusion, the PNNL climate-simulation ponds provide reasonably reliable biomass productivity estimates for microalgae strains cultured in outdoor raceways under different climatic conditions.« less

  15. Joint Institute for Nanoscience Annual Report 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Donald R.; Campbell, Charles

    2004-02-01

    The Joint Institute for Nanoscience (JIN) is a cooperative venture of the University of Washington and Pacific Northwest National Laboratory to encourage and enhance high-impact and high-quality nanoscience and nanotechnology of all types. This first annual report for the JIN summarizes activities beginning in 2001 and ending at the close of fiscal year 2003 and therefore represents somewhat less than two years of activities. Major portions of the JIN resources are dedicated to funding graduate students and postdoctoral research associates to perform research in collaborations jointly directed by Pacific Northwest National Laboratory (PNNL) staff scientists and University of Washington (UW)more » professors. These fellowships were awarded on the basis of applications that included research proposals. JIN co-sponsors an annual Nanoscale Science and Technology Workshop held in Seattle. In addition to involving PNNL staff in various UW nanoscience courses and seminars, a National Science Foundation grant Development of UW-PNL Collaborative Curriculums in Nano-Science and Technology has allowed the development of three intensive short courses that are taught by UW faculty, PNNL staff, and faculty from other institutions, including Washington State University, the University of Idaho, Stanford University, and the University of Alaska. The initial JIN agreement recognized that expansion of cooperation beyond UW and PNNL would be highly valuable. Starting in early 2003, efforts were initiated to form a regional communication link called the Northwest Nanoscience and Nanotechnology Network (N₄). In concept, N₄ is a tool to encourage communication and help identify regional resources and nanoscience and technology activities.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huesemann, Michael; Dale, T.; Chavis, A.

    Two innovative culturing systems, the LED-lighted and temperature-controlled 800 liter indoor raceways at Pacific Northwest National Laboratory (PNNL) and the Phenometrics environmental Photobioreactors™ (ePBRs) were evaluated in terms of their ability to accurately simulate the microalgae growth performance of outdoor cultures subjected to fluctuating sunlight and water temperature conditions. When repeating a 60-day outdoor pond culture experiment (batch and semi-continuous at two dilution rates) conducted in Arizona with the freshwater strain Chlorella sorokiniana DOE 1412 in these two indoor simulators, it was found that ash-free dry weight based biomass growth and productivity in the PNNL climate-simulation ponds was comparatively slightlymore » higher (8–13%) but significantly lower (44%) in the ePBRs. The difference in biomass productivities between the indoor and outdoor ponds was not statistically significant. When the marine Picochlorum soloecismus was cultured in five replicate ePBRs at Los Alamos National Laboratory (LANL) and in duplicate indoor climate-simulation ponds at PNNL, using the same inoculum, medium, culture depth, and light and temperature scripts, the optical density based biomass productivity and the rate of increase in cell counts in the ePBRs was about 35% and 66%, respectively, lower compared than in the indoor ponds. Potential reasons for the divergence in growth performance in these pond simulators, relative to outdoor raceways, are discussed. In conclusion, the PNNL climate-simulation ponds provide reasonably reliable biomass productivity estimates for microalgae strains cultured in outdoor raceways under different climatic conditions.« less

  17. X-ray scan detection for cargo integrity

    NASA Astrophysics Data System (ADS)

    Valencia, Juan; Miller, Steve

    2011-04-01

    The increase of terrorism and its global impact has made the determination of the contents of cargo containers a necessity. Existing technology allows non-intrusive inspections to determine the contents of a container rapidly and accurately. However, some cargo shipments are exempt from such inspections. Hence, there is a need for a technology that enables rapid and accurate means of detecting whether such containers were non-intrusively inspected. Non-intrusive inspections are most commonly performed utilizing high powered X-ray equipment. The challenge is creating a device that can detect short duration X-ray scans while maintaining a portable, battery powered, low cost, and easy to use platform. The Pacific Northwest National Laboratory (PNNL) has developed a methodology and prototype device focused on this challenge. The prototype, developed by PNNL, is a battery powered electronic device that continuously measures its X-ray and Gamma exposure, calculates the dose equivalent rate, and makes a determination of whether the device has been exposed to the amount of radiation experienced during an X-ray inspection. Once an inspection is detected, the device will record a timestamp of the event and relay the information to authorized personnel via a visual alert, USB connection, and/or wireless communication. The results of this research demonstrate that PNNL's prototype device can be effective at determining whether a container was scanned by X-ray equipment typically used for cargo container inspections. This paper focuses on laboratory measurements and test results acquired with the PNNL prototype device using several X-ray radiation levels.

  18. 14. "SITE WORK, CIVIL, SITE PLAN." Test Area 1120. Specifications ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. "SITE WORK, CIVIL, SITE PLAN." Test Area 1-120. Specifications No. OC2-55-72; Drawing No. 60-09-12; sheet 7 of 148; file no. 1320/58, Rev. C. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338 Rev. C, Date: 16 April 1957. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA

  19. 40 CFR 262.214 - Laboratory management plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Waste Determination and Accumulation of Unwanted Material for Laboratories Owned by Eligible Academic Entities § 262.214 Laboratory management plan. An eligible academic entity must develop and retain a... a site-specific document that describes how the eligible academic entity will manage unwanted...

  20. 40 CFR 262.214 - Laboratory management plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Waste Determination and Accumulation of Unwanted Material for Laboratories Owned by Eligible Academic Entities § 262.214 Laboratory management plan. An eligible academic entity must develop and retain a... a site-specific document that describes how the eligible academic entity will manage unwanted...

  1. 40 CFR 262.214 - Laboratory management plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Waste Determination and Accumulation of Unwanted Material for Laboratories Owned by Eligible Academic Entities § 262.214 Laboratory management plan. An eligible academic entity must develop and retain a... a site-specific document that describes how the eligible academic entity will manage unwanted...

  2. A Living Laboratory for Building-Grid Integration

    ScienceCinema

    Shankle, Steve; Goyal, Siddharth

    2018-01-16

    At PNNL we’re developing a test bed for control of how buildings interact with the grid—an important step toward helping buildings achieve their potential for reducing energy use and improving the management of the nation’s power systems. The test bed works by allowing researchers to conduct experiments on PNNL’s specially-equipped Systems Engineering Building. This unique resource will help the Department of Energy achieve its mission of reducing buildings energy use by 50 percent by 2030.

  3. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory EnergyX Macroencapsulated Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, Gregory J.

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) EnergyX Macroencapsulated waste stream (B LAMACRONCAP, Revision 1) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL EnergyX Macroencapsulated waste stream is macroencapsulated mixed waste generated during research laboratory operations and maintenance (LLNL 2015). The LLNL EnergyX Macroencapsulated waste stream required a special analysis due to tritium (3H), cobalt-60 (60Co), cesium-137 (137Cs), and radium-226 (226Ra) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclearmore » Security Administration Nevada Field Office [NNSA/NFO] 2015).The results indicate that all performance objectives can be met with disposal of the waste stream in a SLB trench. Addition of the LLNL EnergyX Macroencapsulated inventory slightly increases multiple performance assessment results, with the largest relative increase occurring for the all-pathways annual total effective dose (TED). The maximum mean and 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The LLNL EnergyX Macroencapsulated waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.« less

  4. Environmental waste site characterization utilizing aerial photographs and satellite imagery: Three sites in New Mexico, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Eeckhout, E.; Pope, P.; Becker, N.

    1996-04-01

    The proper handling and characterization of past hazardous waste sites is becoming more and more important as world population extends into areas previously deemed undesirable. Historical photographs, past records, current aerial satellite imagery can play an important role in characterizing these sites. These data provide clear insight into defining problem areas which can be surface samples for further detail. Three such areas are discussed in this paper: (1) nuclear wastes buried in trenches at Los Alamos National Laboratory, (2) surface dumping at one site at Los Alamos National Laboratory, and (3) the historical development of a municipal landfill near Lasmore » Cruces, New Mexico.« less

  5. 2016 Results for Avian Monitoring at the TA-36 Minie Site, TA-39 Point 6, and TA-16 Burn Ground at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles Dean; Thompson, Brent E.; Berryhill, Jesse Tobias

    Los Alamos National Security, LLC (LANS) biologists in the Environmental Compliance and Protection Division at Los Alamos National Laboratory (LANL) initiated a multi-year program in 2013 to monitor avifauna at two open detonation sites and one open burn site on LANL property. Monitoring results from these efforts are compared among years and with avifauna monitoring conducted at other areas across LANL. The objectives of this study are to determine whether LANL firing site operations impact bird abundance or diversity. LANS biologists completed the fourth year of this effort in 2016. The overall results from 2016 continue to indicate that operationsmore » are not negatively affecting bird populations. Data suggest that community structure may be changing at some sites and this trend will continue to be monitored.« less

  6. Quantifying Silica Reactivity in Subsurface Environments: Reaction Affinity and Solute Matrix Controls on Quartz and SiO2 Glass Dissolution Kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patricia M. Dove

    2000-12-13

    group. With the Icenhower move from postdoc in the Dove lab to a senior scientist position at PNNL, we directly facilitated information transfer from the ''university to user'' environment. Icenhower brought experience in silica-water reactivity and the experimental expertise in high-quality methods of mineral-water reaction kinetics to the PNNL waste clean-up effort. In a further interaction, M.S. student Troy Lorier was hired at the Savannah River Laboratory for a staff position with the Bill Holtzcheiter glass group. His research meshed well with on-going efforts at SRL. In short, our EMSP project went well beyond the academic goals of producing high quality scientific knowledge to establish connections with on-site users to solve problems in TFA. This project also produced new talent for the waste immobilization effort. This EMSP project was highly successful and we thank our sponsors for the opportunity to advance scientific knowledge in this important area of research.« less

  7. Air Force Research Laboratory Preparation for Year 2000.

    DTIC Science & Technology

    1998-10-05

    Air Force Research Laboratory , Phillips Research Site , Kirkland Air Force Base, New...Pentagon, Washington, D.C. 20301-1900. The identity of each writer and caller is fully protected. Acronym AFRL Air Force Research Laboratory INSPECTOR...completion of the implementation phase was May 31, 1999. Air Force Research Laboratory . The Air Force Research

  8. VIEW OF STEEL PLATE DOOR IN NUCLEAR PHYSICS LABORATORY, BETWEEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF STEEL PLATE DOOR IN NUCLEAR PHYSICS LABORATORY, BETWEEN LABORATORY AND SP-SE REACTOR ROOM,LEVEL -15’, LOOKING NORTHWEST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  9. Laboratory Study of Polychlorinated Biphenyl Contamination and Mitigation in Buildings -- Part 4. Evaluation of the Activated Metal Treatment System (AMTS) for On-site Destruction of PCBs

    EPA Science Inventory

    This is the fourth, also the last, report of the report series entitled “Laboratory Study of Polychlorinated Biphenyl (PCB) Contamination and Mitigation in Buildings.” This report evaluates the performance of an on-site PCB destruction method, known as the AMTS method...

  10. Lawrence Livermore National Laboratory Environmental Report 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Henry E.; Armstrong, Dave; Blake, Rick G.

    community by soliciting citizens’ input on matters of significant public interest and through various communications. The Laboratory also provides public access to information on its ES&H activities. LLNL consists of two sites—an urban site in Livermore, California, referred to as the “Livermore Site,” which occupies 1.3 square miles; and a rural Experimental Test Site, referred to as “Site 300,” near Tracy, California, which occupies 10.9 square miles. In 2012 the Laboratory had a staff of approximately 7000.« less

  11. Lawrence Livermore National Laboratory Environmental Report 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H. E.; Bertoldo, N. A.; Blake, R. G.

    community by soliciting citizens’ input on matters of significant public interest and through various communications. The Laboratory also provides public access to information on its ES&H activities. LLNL consists of two sites—an urban site in Livermore, California, referred to as the “Livermore Site,” which occupies 1.3 square miles; and a rural Experimental Test Site, referred to as “Site 300,” near Tracy, California, which occupies 10.9 square miles. In 2013 the Laboratory had a staff of approximately 6,300.« less

  12. Site Environmental Report for Calendar Year 2004. DOE Operations at The Boeing Company Santa Susana Field Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Lee, Majelle

    2005-09-01

    This Annual Site Environmental Report (ASER) for 2004 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated inmore » 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2004 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  13. Non-Cooperative Facial Recognition Video Dataset Collection Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Marcia L.; Erikson, Rebecca L.; Lombardo, Nicholas J.

    The Pacific Northwest National Laboratory (PNNL) will produce a non-cooperative (i.e. not posing for the camera) facial recognition video data set for research purposes to evaluate and enhance facial recognition systems technology. The aggregate data set consists of 1) videos capturing PNNL role players and public volunteers in three key operational settings, 2) photographs of the role players for enrolling in an evaluation database, and 3) ground truth data that documents when the role player is within various camera fields of view. PNNL will deliver the aggregate data set to DHS who may then choose to make it available tomore » other government agencies interested in evaluating and enhancing facial recognition systems. The three operational settings that will be the focus of the video collection effort include: 1) unidirectional crowd flow 2) bi-directional crowd flow, and 3) linear and/or serpentine queues.« less

  14. Uncertainty and variability in laboratory derived sorption parameters of sediments from a uranium in situ recovery site.

    PubMed

    Dangelmayr, Martin A; Reimus, Paul W; Johnson, Raymond H; Clay, James T; Stone, James J

    2018-06-01

    This research assesses the ability of a GC SCM to simulate uranium transport under variable geochemical conditions typically encountered at uranium in-situ recovery (ISR) sites. Sediment was taken from a monitoring well at the SRH site at depths 192 and 193 m below ground and characterized by XRD, XRF, TOC, and BET. Duplicate column studies on the different sediment depths, were flushed with synthesized restoration waters at two different alkalinities (160 mg/l CaCO 3 and 360 mg/l CaCO 3 ) to study the effect of alkalinity on uranium mobility. Uranium breakthrough occurred 25% - 30% earlier in columns with 360 mg/l CaCO 3 over columns fed with 160 mg/l CaCO 3 influent water. A parameter estimation program (PEST) was coupled to PHREEQC to derive site densities from experimental data. Significant parameter fittings were produced for all models, demonstrating that the GC SCM approach can model the impact of carbonate on uranium in flow systems. Derived site densities for the two sediment depths were between 141 and 178 μmol-sites/kg-soil, demonstrating similar sorption capacities despite heterogeneity in sediment mineralogy. Model sensitivity to alkalinity and pH was shown to be moderate compared to fitted site densities, when calcite saturation was allowed to equilibrate. Calcite kinetics emerged as a potential source of error when fitting parameters in flow conditions. Fitted results were compared to data from previous batch and column studies completed on sediments from the Smith-Ranch Highland (SRH) site, to assess variability in derived parameters. Parameters from batch experiments were lower by a factor of 1.1 to 3.4 compared to column studies completed on the same sediments. The difference was attributed to errors in solid-solution ratios and the impact of calcite dissolution in batch experiments. Column studies conducted at two different laboratories showed almost an order of magnitude difference in fitted site densities suggesting that experimental

  15. Homogeneous Hydrogenation of CO₂ to Methyl Formate Utilizing Switchable Ionic Liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Mahendra; Linehan, John C.; Karkamkar, Abhijeet J.

    2014-09-15

    Capture of CO₂ and subsequent hydrogenation allows for base/alcohol-catalyzed conversion of CO₂ to methylformate in one pot. The conversion of CO₂ proceeds via alkylcarbonates, to formate salts and then formate esters, which can be catalyzed by base and alcohol with the only byproduct being water. The system operates at mild conditions (300 psi H₂, 140 °C). Reactivity is strongly influenced by temperature and choice of solvent. In the presence of excess of base (DBU) formate is predominant product while in excess of methanol methyl formate is major product. 110 °C yields formate salts, 140 °C promotes methylformate. The authors acknowledgemore » internal Laboratory Directed Re-search and Development (LDRD) funding from Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy.« less

  16. Final Report - IHLW PCT, Spinel T1%, Electrical Conductivity, and Viscosity Model Development, VSL-07R1240-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Piepel, Gregory F.; Landmesser, S. M.

    2013-11-13

    This report is the last in a series of currently scheduled reports that presents the results from the High Level Waste (HLW) glass formulation development and testing work performed at the Vitreous State Laboratory (VSL) of the Catholic University of America (CUA) and the development of IHLW property-composition models performed jointly by Pacific Northwest National Laboratory (PNNL) and VSL for the River Protection Project-Waste Treatment and Immobilization Plant (RPP-WTP). Specifically, this report presents results of glass testing at VSL and model development at PNNL for Product Consistency Test (PCT), one-percent crystal fraction temperature (T1%), electrical conductivity (EC), and viscosity ofmore » HLW glasses. The models presented in this report may be augmented and additional validation work performed during any future immobilized HLW (IHLW) model development work. Completion of the test objectives is addressed.« less

  17. Microwave remote sensing laboratory design

    NASA Technical Reports Server (NTRS)

    Friedman, E.

    1979-01-01

    Application of active and passive microwave remote sensing to the study of ocean pollution is discussed. Previous research efforts, both in the field and in the laboratory were surveyed to derive guidance for the design of a laboratory program of research. The essential issues include: choice of radar or radiometry as the observational technique; choice of laboratory or field as the research site; choice of operating frequency; tank sizes and material; techniques for wave generation and appropriate wavelength spectrum; methods for controlling and disposing of pollutants used in the research; and pollutants other than oil which could or should be studied.

  18. Survey of ecological resources at selected US Department of Energy sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAllister, C.; Beckert, H.; Abrams, C.

    The U.S. Department of Energy (DOE) owns and manages a wide range of ecological resources. During the next 30 years, DOE Headquarters and Field Offices will make land-use planning decisions and conduct environmental remediation and restoration activities in response to federal and state statutes. This document fulfills, in part, DOE`s need to know what types of ecological resources it currently owns and manages by synthesizing information on the types and locations of ecological resources at 10 DOE sites: Hanford Site, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Sandia National Laboratory, Rocky Flats Plant, Los Alamos National Laboratory, savannah Rivermore » Site, Oak Ridge National Laboratory, Argonne National Laboratory, and Fernald Environmental Management Project. This report summarizes information on ecosystems, habitats, and federally listed threatened, endangered, and candidate species that could be stressed by contaminants or physical activity during the restoration process, or by the natural or anthropogenic transport of contaminants from presently contaminated areas into presently uncontaminated areas. This report also provides summary information on the ecosystems, habitats, and threatened and endangered species that exist on each of the 10 sites. Each site chapter contains a general description of the site, including information on size, location, history, geology, hydrology, and climate. Descriptions of the major vegetation and animal communities and of aquatic resources are also provided, with discussions of the treatened or endangered plant or animal species present. Site-specific ecological issues are also discussed in each site chapter. 106 refs., 11 figs., 1 tab.« less

  19. Evaluation of Fish Passage Sites in the Walla Walla River Basin, 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamness, Mickie A.

    2008-08-29

    In 2008, Pacific Northwest National Laboratory evaluated the Hofer Dam fish screen and provided technical assistance at two other fish passage sites as requested by the Bonneville Power Administration, the Walla Walla Watershed Council, or the Confederated Tribes of the Umatilla Indian Reservation. Evaluation of new sites such as Hofer Dam focuses on their design, construction, operation, and maintenance to determine if they effectively provide juvenile salmonids with safe passage through irrigation diversions. There were two requests for technical assistance in 2008. In the first, the Confederated Tribes of the Umatilla Indian Reservation requested an evaluation of the Nursery Bridgemore » fish screens associated with the fish ladder on the east side of the Walla Walla River. One set of brushes that clean the screens was broken for an extended period. Underwater videography and water velocity measurements were used to determine there were no potential adverse effects on juvenile salmonids when the west set of screens was clean enough to pass water normally. A second request, received from the National Marine Fisheries Service and the Walla Walla Watershed Council, asked for evaluation of water velocities through relatively new head gates above and adjacent to the Eastside Ditch fish screens on the Walla Walla River. Water moving through the head gates and not taken for irrigation is diverted to provide water for the Nursery Bridge fish ladder on the east side of the river. Elevations used in the design of the head gates were incorrect, causing excessive flow through the head gates that closely approached or exceeded the maximum swimming burst speed of juvenile salmonids. Hofer Dam was evaluated in June 2008. PNNL researchers found that conditions at Hofer Dam will not cause impingement or entrainment of juvenile salmonids but may provide habitat for predators and lack strong sweeping flows to encourage juvenile salmonid passage downstream. Further evaluation of

  20. 78 FR 54487 - Abbott Laboratories; Diagnostic-Hematology; Including On-Site Leased Workers From Manpower...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-82,379] Abbott Laboratories... February 22, 2013, applicable to workers of Abbott Laboratories, Diagnostic--Hematology division, including... Clara, California location of Abbott Laboratories, Diagnostic--Hematology Division. The Department has...

  1. OVERVIEW OF NUCLEAR PHYSICS LABORATORY (IMMEDIATELY EAST OF SPSE REACTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF NUCLEAR PHYSICS LABORATORY (IMMEDIATELY EAST OF SP-SE REACTOR ROOM), LEVEL -15’, LOOKING SOUTHWEST. NOTE SLIDING STEEL PLATE DOOR BETWEEN LABORATORY AND REACTOR ROOM - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  2. Characterization of Technetium Speciation in Cast Stone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, Wooyong; Jung, Hun Bok; Wang, Guohui

    2013-11-11

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) EM-31 Support Program (EMSP) subtask, “Production and Long-Term Performance of Low Temperature Waste Forms” to provide additional information on technetium (Tc) speciation characterization in the Cast Stone waste form. To support the use of Cast Stone as an alternative to vitrification for solidifying low-activity waste (LAW) and as the current baseline waste form for secondary waste streams at the Hanford Site, additional understanding of Tc speciation in Cast Stone is needed to predict the long-term Tc leachability frommore » Cast Stone and to meet the regulatory disposal-facility performance requirements for the Integrated Disposal Facility (IDF). Characterizations of the Tc speciation within the Cast Stone after leaching under various conditions provide insights into how the Tc is retained and released. The data generated by the laboratory tests described in this report provide both empirical and more scientific information to increase our understanding of Tc speciation in Cast Stone and its release mechanism under relevant leaching processes for the purpose of filling data gaps and to support the long-term risk and performance assessments of Cast Stone in the IDF at the Hanford Site.« less

  3. Improving quality management systems of laboratories in developing countries: an innovative training approach to accelerate laboratory accreditation.

    PubMed

    Yao, Katy; McKinney, Barbara; Murphy, Anna; Rotz, Phil; Wafula, Winnie; Sendagire, Hakim; Okui, Scolastica; Nkengasong, John N

    2010-09-01

    The Strengthening Laboratory Management Toward Accreditation (SLMTA) program was developed to promote immediate, measurable improvement in laboratories of developing countries. The laboratory management framework, a tool that prescribes managerial job tasks, forms the basis of the hands-on, activity-based curriculum. SLMTA is implemented through multiple workshops with intervening site visits to support improvement projects. To evaluate the effectiveness of SLMTA, the laboratory accreditation checklist was developed and subsequently adopted by the World Health Organization Regional Office for Africa (WHO AFRO). The SLMTA program and the implementation model were validated through a pilot in Uganda. SLMTA yielded observable, measurable results in the laboratories and improved patient flow and turnaround time in a laboratory simulation. The laboratory staff members were empowered to improve their own laboratories by using existing resources, communicate with clinicians and hospital administrators, and advocate for system strengthening. The SLMTA program supports laboratories by improving management and building preparedness for accreditation.

  4. TREATABILITY STUDY REPORT OF GREEN MOUNTAIN LABORATORIES, INC.'S BIOREMEDIATION PROCESS, TREATMENT OF PCB CONTAMINATED SOILS, AT BEEDE WASTE OIL/CASH ENERGY SUPERFUND SITE, PLAISTOW, NEW HAMPSHIRE

    EPA Science Inventory

    In 1998, Green Mountain Laboratories, Inc. (GML) and the USEPA agreed to carry out a Superfund Innovative Technology Evaluation (SITE) project to evaluate the effectiveness of GML's Bioremediation Process for the treatment of PCB contaminated soils at the Beede Waste Oil/Cash Ene...

  5. Annual Status Report (Fiscal Year 2011) Composite Analysis of Low-Level Waste Disposal in the Central Plateau at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, W. E.

    2012-03-12

    In accordance with the U.S. Department of Energy (DOE) requirements in DOE O 435.1 Chg 11, and as implemented by DOE/RL-2000-29, Rev. 22, the DOE Richland Operations Office (DOE-RL) has prepared this annual summary of the composite analysis for fiscal year (FY) 2011 as originally reported in PNNL-118003 (henceforth referred to as the Composite Analysis). The main emphasis of DOE/RL-2000-29, Rev. 2 is to identify additional data and information to enhance the Composite Analysis and the subsequent PNNL-11800 Addendum 14 (hereinafter referred to as the Addendum), and to address secondary issues identified during the review of the Composite Analysis.

  6. Radiation damage and annealing in plutonium tetrafluoride

    NASA Astrophysics Data System (ADS)

    McCoy, Kaylyn; Casella, Amanda; Sinkov, Sergey; Sweet, Lucas; McNamara, Bruce; Delegard, Calvin; Jevremovic, Tatjana

    2017-12-01

    A sample of plutonium tetrafluoride that was separated prior to 1966 at the Hanford Site in Washington State was analyzed at the Pacific Northwest National Laboratory (PNNL) in 2015 and 2016. The plutonium tetrafluoride, as received, was an unusual color and considering the age of the plutonium, there were questions about the condition of the material. These questions had to be answered in order to determine the suitability of the material for future use or long-term storage. Therefore, thermogravimetric/differential thermal analysis and X-ray diffraction evaluations were conducted to determine the plutonium's crystal structure, oxide content, and moisture content; these analyses reported that the plutonium was predominately amorphous and tetrafluoride, with an oxide content near ten percent. Freshly fluorinated plutonium tetrafluoride is known to be monoclinic. During the initial thermogravimetric/differential thermal analyses, it was discovered that an exothermic event occurred within the material near 414 °C. X-ray diffraction analyses were conducted on the annealed tetrafluoride. The X-ray diffraction analyses indicated that some degree of recrystallization occurred in conjunction with the 414 °C event. The following commentary describes the series of thermogravimetric/differential thermal and X-ray diffraction analyses that were conducted as part of this investigation at PNNL.

  7. Radiation damage and annealing in plutonium tetrafluoride

    DOE PAGES

    McCoy, Kaylyn; Casella, Amanda; Sinkov, Sergey; ...

    2017-08-03

    A sample of plutonium tetrafluoride that was separated prior to 1966 at the Hanford Site in Washington State was analyzed at the Pacific Northwest National Laboratory (PNNL) in 2015 and 2016. The plutonium tetrafluoride, as received, was an unusual color and considering the age of the plutonium, there were questions about the condition of the material. These questions had to be answered in order to determine the suitability of the material for future use or long-term storage. Therefore, thermogravimetric/differential thermal analysis and X-ray diffraction evaluations were conducted to determine the plutonium's crystal structure, oxide content, and moisture content; these analysesmore » reported that the plutonium was predominately amorphous and tetrafluoride, with an oxide content near ten percent. Freshly fluorinated plutonium tetrafluoride is known to be monoclinic. And during the initial thermogravimetric/differential thermal analyses, it was discovered that an exothermic event occurred within the material near 414 °C. X-ray diffraction analyses were conducted on the annealed tetrafluoride. The X-ray diffraction analyses indicated that some degree of recrystallization occurred in conjunction with the 414 °C event. This commentary describes the series of thermogravimetric/differential thermal and X-ray diffraction analyses that were conducted as part of this investigation at PNNL.« less

  8. Low-Temperature Pd/Zeolite Passive NO x Adsorbers: Structure, Performance, and Adsorption Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yang; Kovarik, Libor; Engelhard, Mark H.

    Pd/zeolite passive NOx adsorber (PNA) materials were prepared with solution ion-exchange between NH4/zeolites (Beta, ZSM-5 and SSZ-13) and PdCl2 solutions. The nature of Pd (dispersion, distribution and oxidation states) in these materials was characterized with Na+ ion-exchange, TEM imaging, CO titration with FTIR and in situ XPS. The NOx trapping and release properties were tested using feeds with different compositions. It is concluded that multiple Pd species coexist in these materials: atomically dispersed Pd in the cationic sites of zeolites, and PdO2 and PdO particles on the external surfaces. While Pd is largely atomically dispersed in ZSM-5, the small poremore » opening for SSZ-13 inhibits Pd diffusion such that the majority of Pd stays as external surface PdO2 clusters. NOx trapping and release are not simple chemisorption and desorption events, but involve rather complex chemical reactions. In the absence of CO in the feed, cationic Pd(II) sites with oxygen ligands and PdO2 clusters are reduced by NO to Pd(I) and PdO clusters. These reduced sites are the primary NO adsorption sites. In the presence of H2O, the as-formed NO2 desorb immediately. In the presence of CO in the feed, metallic Pd, “naked” Pd2+, and Pd+ sites are responsible for NO adsorption. For Pd adsorption sites with the same oxidation states but in different zeolite frameworks, NO binding energies are not expected to vary greatly. However, NO release temperatures do vary substantially with different zeolite structures. This indicates that NO transport within these materials play an important role in determining release temperatures. Finally, some rational design principles on efficient PNA materials are suggested. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory

  9. Underground laboratories in Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Shin Ted, E-mail: linst@mails.phys.sinica.edu.tw; Yue, Qian, E-mail: yueq@mail.tsinghua.edu.cn

    2015-08-17

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  10. Underground laboratories in Asia

    NASA Astrophysics Data System (ADS)

    Lin, Shin Ted; Yue, Qian

    2015-08-01

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  11. Annual Site Environmental Report Calendar Year 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dan Kayser-Ames Laboratory

    This report summarizes the environmental status of Ames Laboratory for calendar year 2007. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring activities. Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies 11 buildings owned by the Department of Energy (DOE). See the Laboratory's Web page at www.external.ameslab.gov for locations and Laboratory overview. The Laboratory also leases space in ISU owned buildings. In 2007, the Laboratory accumulated andmore » disposed of waste under U.S. Environmental Protection Agency (EPA) issued generator numbers. All waste is handled according to all applicable EPA, State, Local and DOE Orders. In 2006 the Laboratory reduced its generator status from a Large Quantity Generator (LQG) to a Small Quantity Generator (SQG). EPA Region VII was notified of this change. The Laboratory's RCRA hazardous waste management program was inspected by EPA Region VII in April 2006. There were no notices of violations. The inspector was impressed with the improvements of the Laboratory's waste management program over the past ten years. The Laboratory was in compliance with all applicable federal, state, local and DOE regulations and orders in 2007. There were no radiological air emissions or exposures to the general public due to Laboratory activities in 2007. See U.S. Department of Energy Air Emissions Annual Report in Appendix B. As indicated in prior SERs, pollution awareness, waste minimization and recycling programs have been in practice since 1990, with improvements implemented most recently in 2003. Included in these efforts were battery and CRT recycling, waste white paper and green computer paper-recycling. Ames Laboratory also recycles/reuses salvageable metal, used oil, styrofoam

  12. USDA-ARS Southeast Watershed Laboratory at Tifton, GA:Index Site Design for the Suwannee Basin

    NASA Astrophysics Data System (ADS)

    Bosch, D.; Strickland, T.; Sheridan, J.; Lowrance, R.; Truman, C.; Hubbard, R.; Potter, T.; Wauchope, D.; Vellidis, G.; Thomas, D.

    2001-12-01

    The Southeast Watershed Hydrology Research Center (SEWHRC) was established in 1966 by order of the U.S. Senate "to identify and characterize those elements that control the flow of water from watersheds in the southeast". A 129 sq.mi. area within the headwaters of Little River Watershed (LRW) in central south Georgia was instrumented to provide data for evaluating and characterizing Coastal Plain hydrologic processes and for development and testing of prediction methodologies for use in ungaged watersheds in regions of low topographic relief. Pesticide analytical capabilities were added in 1976, and inorganic chemistry and sediment transport research were expanded. In 1980, the Center was renamed as the Southeast Watershed Research Laboratory (SEWRL), and laboratories were constructed for nutrient analysis and soil physics. A pesticide analysis laboratory was constructed in 1987. In the early 1990s, a hydraulics laboratory was established for sediment and chemical transport studies, and research on riparian buffers was expanded. The SEWRL research program continues to focus on hydrologic and environmental concerns. Major components of the program are hydrology, pesticides behavior, buffer systems, animal waste management, erosion, remote sensing of watershed condition, and relationships between site-specific agricultural management (BMPs) and small-to-large watershed response. SEWRL's program will be expanded over the next five years to include two additional watersheds comparable in size and instrumentation to the LRW; nesting the LRW within the full Little River drainage and subsequently...all three watersheds within the full Suwannee Basin; and mapping and quantifying irrigation water removals within the Suwannee Basin. We will instrument the three intensive study watersheds and the full Suwannee Basin to provide real-time characterization of precipitation, soil moisture, hydrologic flow, and water quality at a range of spatial and temporal scales. We will

  13. Biaxial Creep Specimen Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JL Bump; RF Luther

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Navalmore » Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.« less

  14. U. S. Department of Energy (DOE) Industrial Programs and Their Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weakley, Steven A.; Roop, Joseph M.

    The U.S. Department of Energy's Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environmental performance, product quality, and productivity. To help ITP determine the impacts of its programs, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP program benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commercialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the newmore » technologies, and estimates air pollution and carbon emission reductions. This paper discusses the results of the most recent PNNL review (conducted in 2003). From 1976-2002, the commercialized technologies from ITP's R&D programs and other activities have cumulatively saved 3.7 quadrillion Btu, with a net cost savings of $14.6 billion.« less

  15. U.S. Department of Energy (DOE) Industrial Programs and Their Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weakley, Steven A.; Roop, Joseph M.

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environmental performance, product quality, and productivity. To help ITP determine the impacts of its programs, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP program benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commercialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the newmore » technologies, and estimates air pollution and carbon emission reductions. This paper discusses the results of the most recent PNNL review (conducted in 2005). From 1976-2004, the commercialized technologies from ITP’s research and development (R&D) programs and other activities have cumulatively saved 4.72 quadrillion Btu, with a net cost savings of $23.1 billion.« less

  16. (Low-level waste disposal facility siting and site characterization)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezga, L.J.; Ketelle, R.H.; Pin, F.G.

    A US team consisting of representatives of Oak Ridge National Laboratory (ORNL), Savannah River Plant (SRP), Savannah river Laboratory (SRL), and the Department of Energy Office of Defense Waste and Byproducts Management participated in the fourth meeting held under the US/French Radioactive Waste Management Agreement between the US Department of Energy and the Commissariat a l'Energie Atomique. This meeting, held at Agence Nationale pour les Gestion des Dechets Radioactifs' (ANDRA's) Headquarters in Paris, was a detailed, technical topical workshop focusing on Low-Level Waste Disposal Facility Siting and Site Characterization.'' The meeting also included a visit to the Centre de lamore » Manche waste management facility operated by ANDRA to discuss and observe the French approach to low-level waste management. The final day of the meeting was spent at the offices of Societe Generale pour les Techniques Nouvelles (SGN) discussing potential areas of future cooperation and exchange. 20 figs.« less

  17. Laboratory Study of Polychlorinated Biphenyl (PCB) Contamination and Mitigation in Buildings -- Part 4. Evaluation of the Activated Metal Treatment System (AMTS) for On-site Destruction of PCBs

    EPA Science Inventory

    This is the fourth, also the last, report of the report series entitled “Laboratory Study of Polychlorinated Biphenyl (PCB) Contamination and Mitigation in Buildings.” This report evaluates the performance of an on-site PCB destruction method, known as the AMTS method, developed ...

  18. Risk perception, future land use and stewardship: comparison of attitudes about Hanford Site and Idaho National Engineering and Environmental Laboratory.

    PubMed

    Burger, J; Sanchez, J; Roush, D; Gochfeld, M

    2001-04-01

    With the ending of the Cold War, the Department of Energy (DOE) is evaluating mission, future land use and stewardship of departmental facilities. This paper compares the environmental concerns and future use preferences of 351 people interviewed at Lewiston, Idaho, about the Hanford Site and Idaho National Engineering and Environmental Laboratory (INEEL), two of DOE's largest sites. Although most subjects lived closer to Hanford than INEEL, most resided in the same state as INEEL. Therefore their economic interests might be more closely allied with INEEL, while their health concerns might be more related to Hanford. Few lived close enough to either site to be directly affected economically. We test the null hypotheses that there are no differences in environmental concerns and future land-use preferences as a function of DOE site, sex, age and education. When asked to list their major concerns about the sites, more people listed human health and safety, and environmental concerns about Hanford compared to INEEL. When asked to list their preferred future land uses, 49% of subjects did not have any for INEEL, whereas only 35% did not know for Hanford. The highest preferred land uses for both sites were as a National Environmental Research Park (NERP), and for camping, hunting, hiking, and fishing. Except for returning the land to the tribes and increased nuclear storage, subjects rated all future uses as more preferred at INEEL than Hanford. Taken together, these data suggest that the people interviewed know more about Hanford, are more concerned about Hanford, rate recreational uses and NERP as their highest preferred land use, and feel that INEEL is more suited for most land uses than Handford. Overall rankings for future land uses were remarkably similar between the sites, indicating that for these stakeholders, DOE lands should be preserved for research and recreation. These preferences should be taken into account when planning for long-term stewardship at

  19. TREATABILITY STUDIES FOR WOOD PRESERVING SITES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA), National Risk Management Research Laboratory (NRMRL), Site Management Support Branch, conducted a comprehensive treatability project for wood preserving sites in 1995 and 1996. This is a compilation report on the treatability studi...

  20. Site Environmental Report for Calendar Year 2007. DOE Operations at The Boeing Company, Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Lenox, Art

    2008-09-30

    This Annual Site Environmental Report (ASER) for 2007 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated in 1988; all subsequentmore » radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. In May 2007, the D&D operations in Area IV were suspended until DOE completes the SSFL Area IV Environmental Impact Statement (EIS). The environmental monitoring programs were continued throughout the year. Results of the radiological monitoring program for the calendar year 2007 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. All radioactive wastes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes were released into the environment in 2007.« less

  1. Site Safety Plan for Lawrence Livermore National Laboratory CERCLA investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bainer, R.; Duarte, J.

    1993-07-01

    The safety policy of LLNL is to take every reasonable precaution in the performance of work to protect the environment and the health and safety of employees and the public, and to prevent property damage. With respect to hazardous agents, this protection is provided by limiting human exposures, releases to the environment, and contamination of property to levels that are as low as reasonably achievable (ALARA). It is the intent of this Plan to supply the broad outline for completing environmental investigations within ALARA guidelines. It may not be possible to determine actual working conditions in advance of the work;more » therefore, planning must allow the opportunity to provide a range of protection based upon actual working conditions. Requirements will be the least restrictive possible for a given set of circumstances, such that work can be completed in an efficient and timely fashion. Due to the relatively large size of the LLNL Site and the different types of activities underway, site-specific Operational Safety Procedures (OSPs) will be prepared to supplement activities not covered by this Plan. These site-specific OSPs provide the detailed information for each specific activity and act as an addendum to this Plan, which provides the general plan for LLNL Main Site operation.« less

  2. Modular workcells: modern methods for laboratory automation.

    PubMed

    Felder, R A

    1998-12-01

    Laboratory automation is beginning to become an indispensable survival tool for laboratories facing difficult market competition. However, estimates suggest that only 8% of laboratories will be able to afford total laboratory automation systems. Therefore, automation vendors have developed alternative hardware configurations called 'modular automation', to fit the smaller laboratory. Modular automation consists of consolidated analyzers, integrated analyzers, modular workcells, and pre- and post-analytical automation. These terms will be defined in this paper. Using a modular automation model, the automated core laboratory will become a site where laboratory data is evaluated by trained professionals to provide diagnostic information to practising physicians. Modem software information management and process control tools will complement modular hardware. Proper standardization that will allow vendor-independent modular configurations will assure success of this revolutionary new technology.

  3. Laboratory Performance Evaluation Report of SEL 421 Phasor Measurement Unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhenyu; faris, Anthony J.; Martin, Kenneth E.

    2007-12-01

    PNNL and BPA have been in close collaboration on laboratory performance evaluation of phasor measurement units for over ten years. A series of evaluation tests are designed to confirm accuracy and determine measurement performance under a variety of conditions that may be encountered in actual use. Ultimately the testing conducted should provide parameters that can be used to adjust all measurements to a standardized basis. These tests are performed with a standard relay test set using recorded files of precisely generated test signals. The test set provides test signals at a level and in a format suitable for input tomore » a PMU that accurately reproduces the signals in both signal amplitude and timing. Test set outputs are checked to confirm the accuracy of the output signal. The recorded signals include both current and voltage waveforms and a digital timing track used to relate the PMU measured value with the test signal. Test signals include steady-state waveforms to test amplitude, phase, and frequency accuracy, modulated signals to determine measurement and rejection bands, and step tests to determine timing and response accuracy. Additional tests are included as necessary to fully describe the PMU operation. Testing is done with a BPA phasor data concentrator (PDC) which provides communication support and monitors data input for dropouts and data errors.« less

  4. Geomorphic Modeling of Macro-Tidal Embayment with Extensive Tidal Flats: Skagit Bay, Washington

    DTIC Science & Technology

    2011-09-30

    tidal flats: Skagit Bay , Washington Lyle Hibler Battelle-Pacific Northwest Division Marine Sciences Laboratory Sequim , WA 98382 phone: (360) 681...3616 fax: (360) 681-4559 email: lyle.hibler@pnnl.gov Adam Maxwell Battelle-Pacific Northwest Division Marine Sciences Laboratory Sequim , WA...Geomorphic modeling of macro-tidal embayment with extensive tidal flats: Skagit Bay , Washington 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  5. Total Copper Analyzer for Rapid In Situ Characterization of Effluent Discharges

    DTIC Science & Technology

    2008-08-01

    Building 345 Airdrome Road Wahiawa, HI 96786 SBWWTP operations superintendent Linda Bingler Battelle Sequim Operations PNNL 1529 West Sequim Bay ...concentration measurements by ICP-MS at the Battelle Marine Sciences Laboratory in Sequim , Washington, and a second sample was sent for analysis by GFAA...Road Sequim , WA 98382 Commercial laboratory liaison Steve West Orion Research, Inc. 500 Cummings Center Beverly, MA 01915 Industry partner A

  6. Chemical Composition Analysis and Product Consistency Tests of the ORP Phase 5 Nepheline Study Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.; Edwards, T. B.; Caldwell, M. E.

    In this report, the Savannah River National Laboratory (SRNL) provides chemical analyses and Product Consistency Test (PCT) results for a series of simulated high-level waste glass compositions fabricated by the Pacific Northwest National Laboratory (PNNL). These data will be used in the development of improved models for the prediction of nepheline crystallization in support of the Hanford Tank Waste Treatment and Immobilization Plant (WTP).

  7. Shallow 3-D vertical seismic profiling around a contaminant withdrawal well on the Lawrence Livermore National Laboratory Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rector, J.; Bainer, R.; Milligan, P.

    1997-01-30

    One of the major problems associated with ground water contaminant remediation is well placement. Optimal-placement of wells requires an accurate knowledge of geologic structure and stratigraphy in the near surface sediments and rock (0 to 100 m). Without the development of remote imaging provided by geophysical techniques, the required spacing between treatment wells may be less than 2 m in order to be confident that all contaminant reservoirs had been remediated. One method for characterizing geologic structure and stratigraphy in the near surface is vertical seismic profiling (VSP), a technique often used on deep exploration wells to calibrate surface seismicmore » reflection data. For near-surface applications, VSP data can be acquired efficiently using an array of hydrophones lowered into a fluid-filled borehole (Milligan et al, 1997). In this paper we discuss the acquisition and processing of a 3-D VSP collected at a shallow remediation site located on the grounds of the Lawrence Livermore National Laboratory (LLNL) near Livermore, California. The site was used by the United States Navy as an air training base. At this time, initial releases of hazardous materials to the environment occurred in the form of solvents [volatile organic compounds (VOCs)] that were used for the cleaning of airplanes and their parts. Gasoline, diesel and other petroleum-based compounds are also known to have leaked into the ground. California Research and Development Company, a subsidy of Standard Oil, occupied the southeastern portion of the site from 1950 to 1954. The first releases of radioactive materials to the environment occurred at this time, with the beginning of testing of radioactive materials at the site. In 1952, LLNL acquired the site. Additional releases of VOCS, polychlorinated biphenyls (PCBs), metals, radionuclides (primarily tritium), gasoline and pesticides have occurred since. These releases were due to localized spills, landfills, surface impoundments

  8. Marcus Theory of Ion-Pairing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Santanu; Baer, Marcel D.; Mundy, Christopher J.

    We present a theory for ion pair dissociation and association, motivated by the concepts of the Marcus theory of electron transfer. Despite the extensive research on ion-pairing in many chemical and biological processes, much can be learned from the exploration of collective reaction coordinates. To this end, we explore two reaction coordinates, ion pair distance and coordination number. The study of the correlation between these reaction coordinates provides a new insight into the mechanism and kinetics of ion pair dissociation and association in water. The potential of mean force on these 2D-surfaces computed from molecular dynamics simulations of different monovalentmore » ion pairs reveal a Marcus-like mechanism for ion-pairing: Water molecules rearrange forming an activated coordination state prior to ion pair dissociation or association, followed by relaxation of the coordination state due to further water rearrangement. Like Marcus theory, we find the existence of an inverted region where the transition rates are slower with increasing exergonicity. This study provides a new perspective for the future investigations of ion-pairing and transport. SR, CJM, and GKS were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). The research was performed using PNNL Institutional Computing. PNNL is a multi-program national laboratory operated by Battelle for the U.S. Department of Energy.« less

  9. Summary Report of Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, Gretchen M.; Terusaki, Stan H.

    2013-12-01

    An ecological risk assessment is required as part of the Resource Recovery and Conservation Act (RCRA) permit renewal process for Miscellaneous Units subject to 22 CCR 66270.23. This risk assessment is prepared in support of the RCRA permit renewal for the Explosives Waste Treatment Facility (EWTF) at Site 300 of the Lawrence Livermore National Laboratory (LLNL). LLNL collected soil samples and used the resulting data to produce a scoping-level ecological risk assessment pursuant to the Department of Toxic Substances Control, Guidance for Ecological Risk Assessment at Hazardous Waste Sites and Permitted Facilities, Part A: Overview, July 4, 1996. The scoping-levelmore » ecological risk assessment provides a framework to determine the potential interaction between ecological receptors and chemicals of concern from hazardous waste treatment operations in the area of EWTF. A scoping-level ecological risk assessment includes the step of conducting soil sampling in the area of the treatment units. The Sampling Plan in Support of the Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory, (Terusaki, 2007), outlines the EWTF project-specific soil sampling requirements. Soil samples were obtained and analyzed for constituents from four chemical groups: furans, explosives, semi-volatiles and metals. Analytical results showed that furans, explosives and semi-volatiles were not detected; therefore, no further analysis was conducted. The soil samples did show the presence of metals. Soil samples analyzed for metals were compared to site-wide background levels, which had been developed for site -wide cleanup activities pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Total metal concentrations from 28 discrete soil samples obtained in the EWTF area were all below CERCLA-developed background levels. Therefore, following DTSC

  10. Metering Plan: Intelligent Operational Strategies Through Enhanced Metering Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, Jason E.

    The Sustainability Program at Pacific Northwest National Laboratory (PNNL) has adopted a “triple-bottom-line” approach of environmental stewardship, social responsibility, and economic prosperity to its operations. Metering at PNNL works in support of all three, specifically to measure and inform building energy use and greenhouse gas emissions and minimize water use. The foundation for metering at PNNL is a core goal set, which consists of four objectives: providing accurate data without interruption, analyzing data while it is still new, providing actionable recommendations to operations management, and ensuring PNNL’s compliance with contract metering requirements. These core objectives guide the decisions that wemore » make during annual planning and as we operate throughout the year. This 2016 edition of the Metering Plan conveys the metering practices for and vision of the Sustainability Program. Changes in this plan from the 2015 edition include updated tables and an enhanced discussion on energy tracking systems used at PNNL. This plan also discusses updated benchmarking strategies using PNNL’s graphics and analytics tool, BuildingOS by Lucid Design Group. This plan presents our progress toward the metering goals shared by all federal agencies and highlights our successful completion of metering requirements. Currently, PNNL is fully compliant with the applicable legislative and Executive Order metering requirements. PNNL’s approach to the installation of new meters will be discussed. Perhaps most importantly, this plan details the analysis techniques utilized at PNNL that rely on the endless streams of data newly available as a result of increased meter deployment over the last several years. Previous Metering Plans have documented specific meter connection schemes as PNNL focused on deploying meters in a first step toward managing energy and water use. This plan serves not only to highlight PNNL’s successful completion of agency metering

  11. Visit to the Deep Underground Science and Engineering Laboratory

    ScienceCinema

    None

    2017-12-09

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  12. Visit to the Deep Underground Science and Engineering Laboratory

    ScienceCinema

    None

    2018-05-16

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  13. Clinical laboratory technician to clinical laboratory scientist articulation and distance learning.

    PubMed

    Crowley, J R; Laurich, G A; Mobley, R C; Arnette, A H; Shaikh, A H; Martin, S M

    1999-01-01

    Laboratory workers and educators alike are challenged to support access to education that is current and provides opportunities for career advancement in the work place. The clinical laboratory science (CLS) program at the Medical College of Georgia in Augusta developed a clinical laboratory technician (CLT) to CLS articulation option, expanded it through distance learning, and integrated computer based learning technology into the educational process over a four year period to address technician needs for access to education. Both positive and negative outcomes were realized through these efforts. Twenty-seven students entered the pilot articulation program, graduated, and took a CLS certification examination. Measured in terms of CLS certification, promotions, pay raises, and career advancement, the program described was a success. However, major problems were encountered related to the use of unfamiliar communication technology; administration of the program at distance sites; communication between educational institutions, students, and employers; and competition with CLT programs for internship sites. These problems must be addressed in future efforts to provide a successful distance learning program. Effective methods for meeting educational needs and career ladder expectations of CLTs and their employers are important to the overall quality and appeal of the profession. Educational technology that includes computer-aided instruction, multimedia, and telecommunications can provide powerful tools for education in general and CLT articulation in particular. Careful preparation and vigilant attention to reliable delivery methods as well as students' progress and outcomes is critical for an efficient, economically feasible, and educationally sound program.

  14. Environmental assessment for the depleted uranium testing program at the Nevada Test Site by the United States Army Ballistics Research Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-11-24

    This proposed action provides the Department of Energy (DOE) authorization to the US Army to conduct a testing program using Depleted Uranium (DU) in Area 25 at the Nevada Test Site (NTS). The US Army Ballistic Research Laboratory (BRL) would be the managing agency for the program. The proposed action site would utilize existing facilities, and human activity would be confined to areas identified as having no tortoise activity. Two classifications of tests would be conducted under the testing program: (1) open-air tests, and (2) X-Tunnel tests. A series of investigative tests would be conducted to obtain information on DUmore » use under the conditions of each classification. The open-air tests would include DU ammunition hazard classification and combat systems activity tests. Upon completion of each test or series of tests, the area would be decontaminated to meet requirements of DOE Order 5400.5, Radiation Protection of the Public and Environment. All contaminated materials would be decontaminated or disposed of as radioactive waste in an approved low-level Radioactive Waste Management Site (RWMS) by personnel trained specifically for this purpose.« less

  15. Snake River Plain FORGE Site Characterization Data

    DOE Data Explorer

    Moos, Danial; Barton, Colleen A.

    2016-04-18

    The site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. This collection includes data on seismic events, groundwater, geomechanical models, gravity surveys, magnetics, resistivity, magnetotellurics (MT), rock physics, stress, the geologic setting, and supporting documentation, including several papers. Also included are 3D models (Petrel and Jewelsuite) of the proposed site. Data for wells INEL-1, WO-2, and USGS-142 have been included as links to separate data collections. These data have been assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL). Other contributors include the National Renewable Energy Laboratory (NREL), Lawrence Livermore National Laboratory (LLNL), the Center for Advanced Energy Studies (CEAS), the University of Idaho, Idaho State University, Boise State University, University of Wyoming, University of Oklahoma, Energy and Geoscience Institute-University of Utah, US Geothermal, Baker Hughes Campbell Scientific Inc., Chena Power, US Geological Survey (USGS), Idaho Department of Water Resources, Idaho Geological Survey, and Mink GeoHydro.

  16. Diagnostic equipment outside the laboratory.

    PubMed Central

    Burrin, J M; Fyffe, J A

    1988-01-01

    A questionnaire was circulated to clinical biochemistry laboratories in the North West Thames region of the United Kingdom requesting information on extralaboratory equipment. Data on the types and numbers of instruments in use, their relationship with the laboratory, and quality assurance procedures were obtained. Laboratories were prepared to maintain equipment over which they had no responsibility for purchase, training of users, or use. The quality assurance of these instruments gave even greater cause for concern. Although internal quality control procedures were performed on many of the instruments, laboratories were involved in only a minority of these procedures. Quality control procedures and training of users were undertaken on site in less than 50% of blood gas analysers and bilirubin meters and in less than 25% of glucose meters. External quality assessment procedures were non-existent for all of the instruments in use with the exception of glucose stick meters in two laboratories. PMID:3192750

  17. Photographic copy of site plan for proposed Test Stand "D" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of site plan for proposed Test Stand "D" in 1958. The contemporary site plans of test stands "A," "B," and "C" are also visible, along with the interconnecting tunnel system. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering "Site Plan for Proposed Test Stand "D" - Edwards Test Station," drawing no. ESP/22-0, 14 November 1958 - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  18. The Savannah River Site`s Groundwater Monitoring Program: Third quarter 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, C.D.

    1993-02-04

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. Table 1 lists those well series with constituents in the groundwater above Flag 2 during third quarter 1992, organized by location. Results from all laboratory analyses are used to generate this table. Specific conductance and pH data from the field also are included in this table.

  19. An Optically Stimulated Luminescence Uranium Enrichment Monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Steven D.; Tanner, Jennifer E.; Simmons, Kevin L.

    The Pacific Northwest National Laboratory (PNNL) has pioneered the use of Optically Stimulated Luminescence (OSL) technology for use in personnel dosimetry and high dose radiation processing dosimetry. PNNL has developed and patented an alumina-based OSL dosimeter that is being used by the majority of medical X-ray and imaging technicians worldwide. PNNL has conceived of using OSL technology to passively measure the level of UF6 enrichment by attaching the prototype OSL monitor to pipes containing UF6 gas within an enrichment facility. The prototype OSL UF6 monitor utilizes a two-element approach with the first element open and unfiltered to measure both themore » low energy and high energy gammas from the UF6, while the second element utilizes a 3-mm thick tungsten filter to eliminate the low energy gammas and pass only the high energy gammas from the UF6. By placing a control monitor in the room away from the UF6 pipes and other ionizing radiation sources, the control readings can be subtracted from the UF6 pipe monitor measurements. The ratio of the shielded to the unshielded net measurements provides a means to estimate the level of uranium enrichment. PNNL has replaced the commercially available MicroStar alumina-based dosimeter elements with a composite of polyethylene plastic, high-Z glass powder, and BaFBr:Eu OSL phosphor powder at various concentrations. The high-Z glass was added in an attempt to raise the average “Z” of the composite dosimeter and increase the response. Additionally, since BaFBr:Eu OSL phosphor is optimally excited and emits light at different wavelengths compared to alumina, the commercially available MicroStar reader was modified for reading BaFBr:Eu in a parallel effort to increase reader sensitivity. PNNL will present the design and performance of our novel OSL uranium enrichment monitor based on a combination of laboratory and UF6 test loop measurements. PNNL will also report on the optimization effort to achieve the highest

  20. Site Environmental Report for Calendar Year 2005. DOE Operations at The Boeing Company, Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2006-09-30

    This annual report describes the environmental monitoring programs related to the Department of Energy’s (DOE) activities at the Santa Susana Field Laboratory (SSFL) facility located in Ventura County, California during 2005. Part of the SSFL facility, known as Area IV, had been used for DOE’s activities since the 1950s. A broad range of energy related research and development (R&D) projects, including nuclear technologies projects, was conducted at the site. All the nuclear R&D operations in Area IV ceased in 1988. Current efforts are directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and closure of facilities used formore » liquid metal research.« less

  1. Two High-Resolution, Quantitative, Infrared Spectral Libraries for Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Johnson, T. J.; Sharpe, S. W.; Sams, R. L.; Chu, P. M.

    2001-12-01

    The Pacific Northwest National Laboratory (PNNL) and the National Institute of Standards and Technology (NIST) are independently creating quantitative, 0.10 cm-1 resolution, infrared spectral libraries of vapor phase compounds. Both libraries contain many species of use to the gas-phase spectroscopist, including for atmospheric chemistry. The NIST library will consist of approximately 100 vapor phase spectra primarily associated with volatile hazardous air pollutants (HAPs) and suspected greenhouse gases, whereas the PNNL library will consist of approximately 400 vapor phase spectra associated with DOE's remediation mission. Data are being recorded from 600 to 6500 cm-1 to cover not only the classical fingerprint region, but much of the near-infrared as well. The wavelength axis is calibrated against published standards. To prepare the samples, the two laboratories use significantly different sample preparation and handling techniques: NIST uses gravimetric dilution and a continuous flowing sample while PNNL uses partial pressure dilution and a static sample. The data are validated against one another and agreement on the ordinate axis is generally found to be within the statistical uncertainties (2σ ) of the Beer's law fit and less than 3 % of the total integrated band areas for the 4 chemicals used in this comparison. The nature of the two databases and the rigorous nature used to acquire the data will be briefly discussed.

  2. Department of Energy WindSentinel Loan Program Description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, William J.; Sturges, Mark H.

    The U.S. Department of Energy (DOE) currently owns two AXYS WindSentinel buoys that collect a comprehensive set of meteorological and oceanographic data to support resource characterization for wind energy offshore. The two buoys were delivered to DOE’s Pacific Northwest National Laboratory (PNNL) in September, 2014. After acceptance testing and initial performance testing and evaluation at PNNL’s Marine Sciences Laboratory in Sequim, Washington, the buoys have been deployed off the U.S. East Coast. One buoy was deployed approximately 42 km east of Virginia Beach, Virginia from December, 2014 through June, 2016. The second buoy was deployed approximately 5 km off Atlanticmore » City, New Jersey in November, 2015. Data from the buoys are available to the public. Interested parties can create an account and log in to http://offshoreweb.pnnl.gov. In response to a number of inquiries and unsolicited proposals, DOE’s Wind Energy Technologies Office is implementing a program, to be managed by PNNL, to lend the buoys to qualified parties for the purpose of acquiring wind resource characterization data in areas of interest for offshore wind energy development. This document describes the buoys, the scope of the loans, the process of how borrowers will be selected, and the schedule for implementation of this program, including completing current deployments.« less

  3. Laboratory for Atmospheres: 2004 Technical Highlights

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The report describes our role in NASA's mission, gives a broad description of our research, and summarizes our scientists' major accomplishments in 2004. The report also contains useful information on human resources, scientific interactions, outreach activities, and the transformation our laboratory has undergone. This report is published in two versions: 1) an abbreviated print version, and 2) an unabridged electronic version at our Laboratory for Atmospheres Web site: http://atmospheres.gsfc.nasa.gov/.

  4. NA-42 TI Shared Software Component Library FY2011 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudson, Christa K.; Rutz, Frederick C.; Dorow, Kevin E.

    The NA-42 TI program initiated an effort in FY2010 to standardize its software development efforts with the long term goal of migrating toward a software management approach that will allow for the sharing and reuse of code developed within the TI program, improve integration, ensure a level of software documentation, and reduce development costs. The Pacific Northwest National Laboratory (PNNL) has been tasked with two activities that support this mission. PNNL has been tasked with the identification, selection, and implementation of a Shared Software Component Library. The intent of the library is to provide a common repository that is accessiblemore » by all authorized NA-42 software development teams. The repository facilitates software reuse through a searchable and easy to use web based interface. As software is submitted to the repository, the component registration process captures meta-data and provides version control for compiled libraries, documentation, and source code. This meta-data is then available for retrieval and review as part of library search results. In FY2010, PNNL and staff from the Remote Sensing Laboratory (RSL) teamed up to develop a software application with the goal of replacing the aging Aerial Measuring System (AMS). The application under development includes an Advanced Visualization and Integration of Data (AVID) framework and associated AMS modules. Throughout development, PNNL and RSL have utilized a common AMS code repository for collaborative code development. The AMS repository is hosted by PNNL, is restricted to the project development team, is accessed via two different geographic locations and continues to be used. The knowledge gained from the collaboration and hosting of this repository in conjunction with PNNL software development and systems engineering capabilities were used in the selection of a package to be used in the implementation of the software component library on behalf of NA-42 TI. The second task managed

  5. Intravenous insertion site protection: moisture accumulation in intravenous site protectors.

    PubMed

    Lee, W E; Vallino, L M

    1996-01-01

    Stabilizing the intravenous catheter after insertion is a significant part of intravenous therapy. Dislodgments of the cannula from its optimal position in the vein can lead to complications such as phlebitis, thrombophlebitis, infiltration, and infection. Intravenous site protector shields are designed to protect the catheter from impact and tissue trauma at the insertion site. Nurses have requested ventilation in these shields to avoid moisture build up that may increase the risk of infections. To address this issue, experimental laboratory testing was performed to determine if moisture accumulation as evidenced by increased weight of the shield and visible evidence of condensation occurred. No moisture condensation problems with the ventilated intravenous site protectors were found.

  6. A remote laboratory for USRP-based software defined radio

    NASA Astrophysics Data System (ADS)

    Gandhinagar Ekanthappa, Rudresh; Escobar, Rodrigo; Matevossian, Achot; Akopian, David

    2014-02-01

    Electrical and computer engineering graduates need practical working skills with real-world electronic devices, which are addressed to some extent by hands-on laboratories. Deployment capacity of hands-on laboratories is typically constrained due to insufficient equipment availability, facility shortages, and lack of human resources for in-class support and maintenance. At the same time, at many sites, existing experimental systems are usually underutilized due to class scheduling bottlenecks. Nowadays, online education gains popularity and remote laboratories have been suggested to broaden access to experimentation resources. Remote laboratories resolve many problems as various costs can be shared, and student access to instrumentation is facilitated in terms of access time and locations. Labs are converted to homeworks that can be done without physical presence in laboratories. Even though they are not providing full sense of hands-on experimentation, remote labs are a viable alternatives for underserved educational sites. This paper studies remote modality of USRP-based radio-communication labs offered by National Instruments (NI). The labs are offered to graduate and undergraduate students and tentative assessments support feasibility of remote deployments.

  7. KENNEDY SPACE CENTER, FLA. - Dr. Paul Hintze (left) explains to Center Director Jim Kennedy a project he is working at the KSC Beach Corrosion Test Site. Hitze is doing post-graduate work for the National Research Council. The test facility site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.

    NASA Image and Video Library

    2003-08-21

    KENNEDY SPACE CENTER, FLA. - Dr. Paul Hintze (left) explains to Center Director Jim Kennedy a project he is working at the KSC Beach Corrosion Test Site. Hitze is doing post-graduate work for the National Research Council. The test facility site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.

  8. Development of Environmentally Benign and Reduced Corrosion Runway Deicing Fluid

    DTIC Science & Technology

    2009-08-01

    PCNA Peter Cremer North America PG Propylene glycol P&G Proctor and Gamble Inc. PNNL Pacific Northwest National Laboratory RDF Runway Deicing...Navy/NAVAIR Defining Navy needs Mack Findley Peter Cremer North America (PCNA) Bio-based raw materials selection Pat Viani SMI AMS 1435 testing...SMI), and other laboratories under the leadership of SAE G-12 Fluids Subcommittee, and is expected to provide a better indication of compatibility with

  9. Space Food Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; Russo, Dane M. (Technical Monitor)

    2001-01-01

    The Space Food Systems Laboratory (SFSL) is a multipurpose laboratory responsible for space food and package research and development. It is located on-site at Johnson Space Center in Building 17. The facility supports the development of flight food, menus, packaging and food related hardware for Shuttle, International Space Station, and Advanced Life Support food systems. All foods used to support NASA ground tests and/or missions must meet the highest standards before they are 'accepted' for use on actual space flights. The foods are evaluated for nutritional content, sensory acceptability, safety, storage and shelf life, and suitability for use in micro-gravity. The food packaging is also tested to determine its functionality and suitability for use in space. Food Scientist, Registered Dieticians, Packaging Engineers, Food Systems Engineers, and Technicians staff the Space Food Systems Laboratory.

  10. Time-Domain Reflectometry for Tamper Indication in Unattended Monitoring Systems for Safeguards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedeschi, Jonathan R.; Smith, Leon E.; Moore, David E.

    2014-12-01

    The International Atomic Energy Agency (IAEA) continues to expand its use of unattended, remotely monitored measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. Pacific Northwest National Laboratory (PNNL) leads a collaboration that is exploring various tamper-indicating (TI) measures that could help to address some of the long-standing detector and data-transmission authentication challenges with IAEA’s unattended systems. PNNL is investigating the viability of active time-domain reflectometry (TDR) along two parallel but interconnected paths: (1) swept-frequency TDR as the highly flexible, laboratory goldmore » standard to which field-deployable options can be compared, and (2) a low-cost commercially available spread-spectrum TDR technology as one option for field implementation. This report describes PNNL’s progress and preliminary findings from the first year of the study, and describes the path forward.« less

  11. 30 CFR 36.40 - Test site.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test site. 36.40 Section 36.40 Mineral... MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.40 Test site. Tests shall be conducted at MSHA's Diesel Testing Laboratory or other...

  12. 30 CFR 36.40 - Test site.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test site. 36.40 Section 36.40 Mineral... MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.40 Test site. Tests shall be conducted at MSHA's Diesel Testing Laboratory or other...

  13. 30 CFR 36.40 - Test site.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test site. 36.40 Section 36.40 Mineral... MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.40 Test site. Tests shall be conducted at MSHA's Diesel Testing Laboratory or other...

  14. Investigation of Nonlinear Site Response and Seismic Compression from Case History Analysis and Laboratory Testing

    NASA Astrophysics Data System (ADS)

    Yee, Eric

    In this thesis I address a series of issues related to ground failure and ground motions during earthquakes. A major component is the evaluation of cyclic volumetric strain behavior of unsaturated soils, more commonly known as seismic compression, from advanced laboratory testing. Another major component is the application of nonlinear and equivalent linear ground response analyses to large-strain problems involving highly nonlinear dynamic soil behavior. These two components are merged in the analysis of a truly unique and crucial field case history of nonlinear site response and seismic compression. My first topic concerns dynamic soil testing for relatively small strain dynamic soil properties such as threshold strains, gammatv. Such testing is often conducted using specialized devices such as dual-specimen simple-shear, as devices configured for large strain testing produce noisy signals in the small strain range. Working with a simple shear device originally developed for large-strain testing, I extend its low-strain capabilities by characterizing noisy signals and utilizing several statistical methods to extract meaningful responses in the small strain range. I utilize linear regression of a transformed variable to estimate the cyclic shear strain from a noisy signal and the confidence interval on its amplitude. I utilize Kernel regression with the Nadaraya-Watson estimator and a Gaussian kernel to evaluate vertical strain response. A practical utilization of these techniques is illustrated by evaluating threshold shear strains for volume change with a procedure that takes into account uncertainties in the measured shear and vertical strains. My second topic concerns the seismic compression characteristics of non-plastic and low-plasticity silty sands with varying fines content (10 ≤ FC ≤ 60%). Simple shear testing was performed on various sand-fines mixtures at a range of modified Proctor relative compaction levels ( RC) and degrees-of-saturation (S

  15. Site Environmental Report for Calendar Year 2006. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil

    2007-09-01

    This Annual Site Environmental Report (ASER) for 2006 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated inmore » 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2006 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  16. Duke Energy Photovoltaic Integration Study: Carolinas Service Areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Shuai; Samaan, Nader A.; Meng, Da

    2014-03-01

    Solar energy collected using photovoltaic (PV) technology is a clean and renewable energy source that offers multiple benefits to the electric utility industry and its customers, such as cost predictability, reduced emissions, and loss reduction by distributed installations. Renewable energy goals established in North Carolina Senate Bill 3 (SB3), in combination with the state tax credit and decreases in the cost of energy from PV panels, have resulted in rapid solar power penetration within the Carolinas services areas of Duke Energy. Continued decreases in PV prices are expected to lead to greater PV penetration rates than currently required in SB3.more » Despite the potential benefits, significant penetration of PV energy is of concern to the utility industry because of its impact on operating reliability and integration cost to customers, and equally important, how any additional costs may be allocated to different customer groups. Some of these impacts might become limiting factors for PV energy, especially growing distributed generation installed at customer sites. Recognizing the importance of renewable energy developments for a sustainable energy future and economic growth, Duke Energy has commissioned this study to simulate the effects of high-PV penetration rates and to initiate the process of quantifying the impacts. The objective of the study is to inform resource plans, guide operation improvements, and drive infrastructure investments for a steady and smooth transition to a new energy mix that provides optimal values to customers. The study team consists of experts from Pacific Northwest National Laboratory (PNNL), Power Costs, Inc. (PCI), Clean Power Research (CPR), Alstom Grid, and Duke Energy. PNNL, PCI, and CPR performed the study on generation impacts; Duke Energy modeled the transmission cases; and distribution simulations were conducted by Alstom Grid. PNNL analyzed the results from each work stream and produced the report.« less

  17. Cleanup Verification Package for the 300 VTS Waste Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. W. Clark and T. H. Mitchell

    2006-03-13

    This cleanup verification package documents completion of remedial action for the 300 Area Vitrification Test Site, also known as the 300 VTS site. The site was used by Pacific Northwest National Laboratory as a field demonstration site for in situ vitrification of soils containing simulated waste.

  18. Federal Emergency Management Information System (FEMIS) system administration guide, version 1.4.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arp, J.A.; Burnett, R.A.; Carter, R.J.

    The Federal Emergency Management Information Systems (FEMIS) is an emergency management planning and response tool that was developed by the Pacific Northwest National Laboratory (PNNL) under the direction of the US Army Chemical Biological Defense Command. The FEMIS System Administration Guide provides information necessary for the system administrator to maintain the FEMIS system. The FEMIS system is designed for a single Chemical Stockpile Emergency Preparedness Program (CSEPP) site that has multiple Emergency Operations Centers (EOCs). Each EOC has personal computers (PCs) that emergency planners and operations personnel use to do their jobs. These PCs are connected via a local areamore » network (LAN) to servers that provide EOC-wide services. Each EOC is interconnected to other EOCs via a Wide Area Network (WAN). Thus, FEMIS is an integrated software product that resides on client/server computer architecture. The main body of FEMIS software, referred to as the FEMIS Application Software, resides on the PC client(s) and is directly accessible to emergency management personnel. The remainder of the FEMIS software, referred to as the FEMIS Support Software, resides on the UNIX server. The Support Software provides the communication, data distribution, and notification functionality necessary to operate FEMIS in a networked, client/server environment. The UNIX server provides an Oracle relational database management system (RDBMS) services, ARC/INFO GIS (optional) capabilities, and basic file management services. PNNL developed utilities that reside on the server include the Notification Service, the Command Service that executes the evacuation model, and AutoRecovery. To operate FEMIS, the Application Software must have access to a site specific FEMIS emergency management database. Data that pertains to an individual EOC`s jurisdiction is stored on the EOC`s local server. Information that needs to be accessible to all EOCs is automatically distributed by the

  19. GROUNDWATER REMEDIATION SOLUTIONS AT HANFORD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmore, Tyler J.; Truex, Michael J.; Williams, Mark D.

    2007-02-26

    In 2006, Congress provided funding to the U. S. Department of Energy (DOE) to study new technologies that could be used to treat contamination from the Hanford Site that might impact the Columbia River. The contaminants of concern are primarily metals and radionuclides, which are byproducts of Hanford’s cold war mission to produce plutonium for atomic weapons. The DOE asked Pacific Northwest National Laboratory (PNNL) to consider this problem and develop approaches to address the contamination that threatens the river. DOE identified three high priority sites that had groundwater contamination migrating towards the Columbia river for remediation. The contaminants includedmore » strontium-90, uranium and chromium. Remediation techniques for metals and radionuclides focus primarily on altering the oxidation state of the contaminant chemically or biologically, isolating the contaminants from the environment through adsorption or encapsulation or concentrating the contaminants for removal. A natural systems approach was taken that uses a mass balance concept to frame the problem and determine the most appropriate remedial approach. This approach provides for a scientifically based remedial decision. The technologies selected to address these contaminants included an apatite adsorption barrier coupled with a phytoremediation to address the strontium-90 contamination, injection of polyphosphate into the subsurface to sequester uranium, and a bioremediation approach to reduce chromium contamination in the groundwater. The ability to provide scientifically based approaches is in large part due to work developed under previous DOE Office of Science and Office of Environmental Management projects. For example, the polyphosphate and the bioremediation techniques, were developed by PNNL under the EMSP and NABIR programs. Contaminated groundwater under the Hanford Site poses a potential risk to humans and the Columbia River. These new technologies holds great promise for

  20. Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.

    2011-09-12

    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sentmore » to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.« less

  1. Non-Intrusive Load Monitoring Assessment: Literature Review and Laboratory Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butner, R. Scott; Reid, Douglas J.; Hoffman, Michael G.

    2013-07-01

    To evaluate the accuracy of NILM technologies, a literature review was conducted to identify any test protocols or standardized testing approaches currently in use. The literature review indicated that no consistent conventions were currently in place for measuring the accuracy of these technologies. Consequently, PNNL developed a testing protocol and metrics to provide the basis for quantifying and analyzing the accuracy of commercially available NILM technologies. This report discusses the results of the literature review and the proposed test protocol and metrics in more detail.

  2. RAPID ON-SITE METHODS OF CHEMICAL ANALYSIS

    EPA Science Inventory

    The analysis of potentially hazardous air, water and soil samples collected and shipped to service laboratories off-site is time consuming and expensive. This Chapter addresses the practical alternative of performing the requisite analytical services on-site. The most significant...

  3. ARCHITECTURAL, 777M, PHYSICS ASSEMBLY LABORATORY BUILDING, EQUIPMENT ARRANGEMENT – SECTIONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARCHITECTURAL, 777-M, PHYSICS ASSEMBLY LABORATORY BUILDING, EQUIPMENT ARRANGEMENT – SECTIONS “B” AND “C” (W157132) - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  4. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Pierce, Eric M.; Freedman, Vicky L.

    2014-08-04

    The federal facilities located on the Hanford Site in southeastern Washington State have been used extensively by the U.S. government to produce nuclear materials for the U.S. strategic defense arsenal. Currently, the Hanford Site is under the stewardship of the U.S. Department of Energy (DOE) Office of Environmental Management (EM). A large inventory of radioactive and mixed waste resulting from the production of nuclear materials has accumulated, mainly in 177 underground single- and double-shell tanks located in the central plateau of the Hanford Site (Mann et al., 2001). The DOE-EM Office of River Protection (ORP) is proceeding with plans tomore » immobilize and permanently dispose of the low-activity waste (LAW) fraction onsite in a shallow subsurface disposal facility (the Integrated Disposal Facility [IDF]). Pacific Northwest National Laboratory (PNNL) was contracted to provide the technical basis for estimating radionuclide release from the engineered portion of the IDF (the source term) as part of an immobilized low-activity waste (ILAW) glass testing program to support future IDF performance assessments (PAs).« less

  5. FY15 Status of Immersion Phased Array Ultrasonic Probe Development and Performance Demonstration Results for Under Sodium Viewing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, Aaron A.; Larche, Michael R.; Mathews, Royce

    2015-09-01

    This Technical Letter Report (TLR) describes work conducted at the Pacific Northwest National Laboratory (PNNL) during FY 2015 on the under-sodium viewing (USV) PNNL project 58745, Work Package AT-15PN230102. This TLR satisfies PNNL’s M3AT-15PN2301027 milestone, and is focused on summarizing the design, development, and evaluation of a two-dimensional matrix phased-array probe referred to as serial number 3 (SN3). In addition, this TLR also provides the results from a performance demonstration of in-sodium target detection trials at 260°C using a one-dimensional 22-element linear array developed in FY14 and referred to as serial number 2 (SN2).

  6. Training in Tbilisi nuclear facility provides new sampling perspectives for IAEA inspectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brim, Cornelia P.

    2016-06-08

    Office of Nonproliferation and Arms Control- (NPAC-) sponsored training in a “cold” nuclear facility in Tbilisi, Georgia provides International Atomic Energy Agency (IAEA) inspectors with a new perspective on environmental sampling strategies. Sponsored by the Nuclear Safeguards program under the NPAC, Pacific Northwest National Laboratory (PNNL) experts have been conducting an annual weeklong class for IAEA inspectors in a closed nuclear facility since 2011. The Andronikashvili Institute of Physics and the Republic of Georgia collaborate with PNNL to provide the training, and the U.S. Department of State, the U.S. Embassy in Tbilisi and the U.S. Mission to International Organizations inmore » Vienna provide logistical support.« less

  7. Development, Fabrication, and Testing of a Liquid/Liquid Microchannel Heat Exchanger for Constellation Spacecrafts

    NASA Technical Reports Server (NTRS)

    Hawkins-Reynolds, Ebony; Le, Hung; Stephan, Ryan

    2010-01-01

    Microchannel technology can be incorporated into heat exchanger designs to decrease the mass and volume of space hardware. The National Aeronautics and Space Administration at the Johnson Space Center (NASA JSC) partnered with Pacific Northwest National Laboratories (PNNL) to develop a liquid/liquid microchannel heat exchanger that has significant mass and volume savings without sacrificing thermal and pressure drop performance. PNNL designed the microchannel heat exchanger to the same performance design requirements of a conventional plate and fin liquid/liquid heat exchanger; 3 kW duty with inlet temperatures of 26 C and 4 C. Both heat exchangers were tested using the same test parameters on a test apparatus and performance data compared.

  8. Hanford Waste End Effector Phase I Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berglin, Eric J.; Hatchell, Brian K.; Mount, Jason C.

    This test plan describes the Phase 1 testing program of the Hanford Waste End Effector (HWEE) at the Washington River Protection Solutions’ Cold Test Facility (CTF) using a Pacific Northwest National Laboratory (PNNL)-designed testing setup. This effort fulfills the informational needs for initial assessment of the HWEE to support Hanford single-shell tank A-105 retrieval. This task will install the HWEE on a PNNL-designed robotic gantry system at CTF, install and calibrate instrumentation to measure reaction forces and process parameters, prepare and characterize simulant materials, and implement the test program. The tests will involve retrieval of water, sludge, and hardpan simulantsmore » to determine pumping rate, dilution factors, and screen fouling rate.« less

  9. MDMA effects consistent across laboratories

    PubMed Central

    Kirkpatrick, Matthew G.; Baggott, Matthew J.; Mendelson, John E.; Galloway, Gantt P.; Liechti, Matthias E.; Hysek, Cédric M.; de Wit, Harriet

    2014-01-01

    Rationale Several laboratories have conducted placebo-controlled drug challenge studies with MDMA, providing a unique source of data to examine the reliability of the acute effects of the drug across subject samples and settings. We examined the subjective and physiological responses to the drug across three different laboratories, and investigated the influence of prior MDMA use. Methods Overall, 220 healthy volunteers with varying levels of previous MDMA experience participated in laboratory-based studies in which they received placebo or oral MDMA (1.5 mg/kg or 125 mg fixed dose) under double blind conditions. Cardiovascular and subjective effects were assessed before and repeatedly after drug administration. The studies were conducted independently by investigators in Basel, San Francisco and Chicago. Results Despite methodological differences between the studies and differences in the subjects' drug use histories, MDMA produced very similar cardiovascular and subjective effects across the sites. The participants' prior use of MDMA was inversely related to feeling `Any Drug Effect' only at sites testing more experienced users. Conclusions These data indicate that the pharmacological effects of MDMA are robust and highly reproducible across settings. There was also modest evidence for tolerance to the effects of MDMA in regular users. PMID:24633447

  10. Quantifying and visualizing site performance in clinical trials.

    PubMed

    Yang, Eric; O'Donovan, Christopher; Phillips, JodiLyn; Atkinson, Leone; Ghosh, Krishnendu; Agrafiotis, Dimitris K

    2018-03-01

    One of the keys to running a successful clinical trial is the selection of high quality clinical sites, i.e., sites that are able to enroll patients quickly, engage them on an ongoing basis to prevent drop-out, and execute the trial in strict accordance to the clinical protocol. Intuitively, the historical track record of a site is one of the strongest predictors of its future performance; however, issues such as data availability and wide differences in protocol complexity can complicate interpretation. Here, we demonstrate how operational data derived from central laboratory services can provide key insights into the performance of clinical sites and help guide operational planning and site selection for new clinical trials. Our methodology uses the metadata associated with laboratory kit shipments to clinical sites (such as trial and anonymized patient identifiers, investigator names and addresses, sample collection and shipment dates, etc.) to reconstruct the complete schedule of patient visits and derive insights about the operational performance of those sites, including screening, enrollment, and drop-out rates and other quality indicators. This information can be displayed in its raw form or normalized to enable direct comparison of site performance across studies of varied design and complexity. Leveraging Covance's market leadership in central laboratory services, we have assembled a database of operational metrics that spans more than 14,000 protocols, 1400 indications, 230,000 unique investigators, and 23 million patient visits and represents a significant fraction of all clinical trials run globally in the last few years. By analyzing this historical data, we are able to assess and compare the performance of clinical investigators across a wide range of therapeutic areas and study designs. This information can be aggregated across trials and geographies to gain further insights into country and regional trends, sometimes with surprising results. The

  11. SITE EVALUATION OF FIELD PORTABLE PENTACHLOROPHENOL IMMUNOASSAYS

    EPA Science Inventory

    Four pentachlorophenol (PCP) enzyme immunoassays for environmental analysis have been evaluated through the U.S. EPA Superfund Innovative Technology Evaluation (SITE) program. Three assays were formatted for on-site field use and one assay could be used in a field laboratory sett...

  12. Environmental and Molecular Science Laboratory Arrow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-06-24

    Arrows is a software package that combines NWChem, SQL and NOSQL databases, email, and social networks (e.g. Twitter, Tumblr) that simplifies molecular and materials modeling and makes these modeling capabilities accessible to all scientists and engineers. EMSL Arrows is very simple to use. The user just emails chemical reactions to arrows@emsl.pnnl.gov and then an email is sent back with thermodynamic, reaction pathway (kinetic), spectroscopy, and other results. EMSL Arrows parses the email and then searches the database for the compounds in the reactions. If a compound isn't there, an NWChem calculation is setup and submitted to calculate it. Once themore » calculation is finished the results are entered into the database and then results are emailed back.« less

  13. Acid rain stone test sites

    NASA Astrophysics Data System (ADS)

    Sherwood, Susan I.; Doe, Bruce R.

    1984-04-01

    As a part of the United States National Acid Precipitation Assessment Program, Task Group G: Effects on Materials and Cultural Resources, which is chaired by Ray Herrmann, the National Park Service has established four test sites for 10-year testing of two kinds of dimension stone used in buildings and monuments. The four sites are (from south to north) Research Triangle Park near Raleigh, N.C. (activated May 25, 1984); the roof of the West End Branch of the Washington, D.C. Library (activated August 11, 1984); the Department of Energy Compound at the Environmental Measurements Laboratory of Bell Telephone Laboratories near Chester, N.J. (activated June 5, 1984); and Huntington Wildlife Forest in the Adirondack Mountains, Newcomb, N.Y. (activated June 19, 1984).

  14. Calendar Year 2001 Annual Site Environmental Report, Sandia National Laboratories, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VIGIL, FRANCINE S.; SANCHEZ, REBECCA D.; WAGNER, KATRINA

    2002-09-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned, contractor-operated facility overseen by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) through the Albuquerque Operations Office (AL), Office of Kirtland Site Operations (OKSO). Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL/NM. Work performed at SNL/NM is in support of the DOE and Sandia Corporation's mission to provide weapon component technology and hardware for the needs of the nation's security. Sandia Corporation also conducts fundamental research and development (R&D) to advance technology in energy research, computer science, waste management, microelectronics, materials science, and transportation safetymore » for hazardous and nuclear components. In support of Sandia Corporation's mission, the Integrated Safety and Security (ISS) Center and the Environmental Restoration (ER) Project at SNL/NM have established extensive environmental programs to assist Sandia Corporation's line organizations in meeting all applicable local, state, and federal environmental regulations and DOE requirements. This annual report summarizes data and the compliance status of Sandia Corporation's environmental protection and monitoring programs through December 31, 2001. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental remediation, oil and chemical spill prevention, and the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).« less

  15. Overview of DOE Oil and Gas Field Laboratory Projects

    NASA Astrophysics Data System (ADS)

    Bromhal, G.; Ciferno, J.; Covatch, G.; Folio, E.; Melchert, E.; Ogunsola, O.; Renk, J., III; Vagnetti, R.

    2017-12-01

    America's abundant unconventional oil and natural gas (UOG) resources are critical components of our nation's energy portfolio. These resources need to be prudently developed to derive maximum benefits. In spite of the long history of hydraulic fracturing, the optimal number of fracturing stages during multi-stage fracture stimulation in horizontal wells is not known. In addition, there is the dire need of a comprehensive understanding of ways to improve the recovery of shale gas with little or no impacts on the environment. Research that seeks to expand our view of effective and environmentally sustainable ways to develop our nation's oil and natural gas resources can be done in the laboratory or at a computer; but, some experiments must be performed in a field setting. The Department of Energy (DOE) Field Lab Observatory projects are designed to address those research questions that must be studied in the field. The Department of Energy (DOE) is developing a suite of "field laboratory" test sites to carry out collaborative research that will help find ways of improving the recovery of energy resources as much as possible, with as little environmental impact as possible, from "unconventional" formations, such as shale and other low permeability rock formations. Currently there are three field laboratories in various stages of development and operation. Work is on-going at two of the sites: The Hydraulic Fracturing Test Site (HFTS) in the Permian Basin and the Marcellus Shale Energy and Environmental Lab (MSEEL) project in the Marcellus Shale Play. Agreement on the third site, the Utica Shale Energy and Environmental Lab (USEEL) project in the Utica Shale Play, was just recently finalized. Other field site opportunities may be forthcoming. This presentation will give an overview of the three field laboratory projects.

  16. [The running status of Chinese Measles Laboratory Network in 2008].

    PubMed

    Zhang, Yan; Xu, Song-Tao; Jiang, Xiao-Hong

    2009-04-01

    To evaluate the running status of Measles laboratory network of China (Hong Kong, Macao and Taiwan were excluded) in 2008. To analyze the database of Measles laboratory network surveillance of the year 2008, and the database of serologic and virologic surveillance of National laboratory for Measles in Chinese Centers for Disease Control and Prevention(CCDC), then the indicators of the running of Measles laboratory network of China were analyzed. 1, serologic surveillance: 107,160 Measles sera samples were collected between Feburary and September of 2008, and the collection rate was 77.93%; 53 778 samples were qualified and positive for IgM, the positive percentage was 50.2%. 2, Virologic surveillance: 287 Measles viral isolates were isolated by 18 provincial Measles laboratories in 2008, all were certified as H1a genotype, H1a genotype was still the predominant genotype circulating in China; 29 Rubella viral isolates were isolated by 4 provincial Measles laboratories in 2008, all belonged to 1E genotype. 3, Laboratory quality control: National laboratory for Measles passed the proficiency test and on-site review in 2008; all provincial Measles laboratories passed the sera samples recheck and proficiency test hold by National laboratory for Measles in 2008; Tianjin, Shanxi, Shandong, Zhejiang, Jilin, Hubei, provincial Measles laboratory passed the on-site review by WHO. The running status of Chinese Measles laboratory network was good in 2008, and good laboratory quality control system was also set up, methods such as specimens collection, serologic detection, cell culture and viral isolation, etc, were standardized, and applied to Chinese Measles laboratory network, and it provided important scientific basis for eradication Measles in the year of 2012.

  17. Post-wildfire wind erosion in and around the Idaho National Laboratory Site

    USGS Publications Warehouse

    Germino, Matthew J.

    2012-01-01

    Wind erosion following large wildfires on and around the INL Site is a recurrent threat to human health and safety, DOE operations and trafficability, and ecological and hydrological condition of the INL Site and down-wind landscapes. Causes and consequences of wind erosion are mainly known from warm deserts (e.g., Southwest U.S.), dunefields, and croplands, and some but not all findings are transferable to the cold desert environments such as where the INL Site lies.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Happenny, Sean F.

    The United States’ power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power distribution networks utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Demonstrating security in embedded systems is another research area PNNL ismore » tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the networks protecting them are becoming easier to breach. Providing a virtual power substation network to each student team at the National Collegiate Cyber Defense Competition, thereby supporting the education of future cyber security professionals, is another way PNNL is helping to strengthen the security of the nation’s power infrastructure.« less

  19. U. S. Department of Energy (DOE) Industrial Programs and Their Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weakley, Steven A.; Roop, Joseph M.

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ¬mental performance, product quality, and productivity. To help ITP determine the impacts of its pro¬grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro¬gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer¬cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the newmore » technolo¬gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of the most recent PNNL review (conducted in 2007). From 1976-2006, the commercialized technologies from ITP’s research and development (R&D) programs and other activities have cumulatively saved 5.65 quadrillion Btu, with a net cost savings of $37.8 billion.« less

  20. U.S. Department of Energy (DOE) Industrial Programs and Their Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weakley, Steven A.; Roop, Joseph M.

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ¬mental performance, product quality, and productivity. To help ITP determine the impacts of its pro¬grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro¬gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer¬cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the newmore » technolo¬gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of the most recent PNNL review (conducted in 2006). From 1976-2005, the commercialized technologies from ITP’s research and development (R&D) programs and other activities have cumulatively saved 5.13 quadrillion Btu, with a net cost savings of $29.3 billion.« less

  1. Laboratory Directed Research & Development (LDRD)

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  2. Report of the Preliminary Archaeological Reconnaissance of the Lawrence Livermore Laboratory Site 300, San Joaquin County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busby, C

    2009-11-24

    The area subject to this investigation is the existing Lawrence Livermore Laboratory Site 300, located in the region north of Corral Hollow; approximately eight and one half miles southwest of Tracy, San Joaquin County, California. Cartographic location can be determined from the Tracy and Midway USGS 7.5 minute topographic quadrangles, the appropriate portions of which are herein reproduced as Maps 1 and 2. The majority of the approximate 7000 acres of the location lies within San Joaquin County. This includes all of the area arbitrarily designated the 'Eastern Portion' on Map 2 and the majority of the area designated themore » 'Western Portion' on Map 1. The remaining acreage, along the western boundary of the location, lies within Alameda County. The area is located in the region of open rolling hills immediately north of Corral Hollow, and ranges in elevation from approximately 600 feet, on the flood plain of Corral Hollow Creek, to approximately 1700 feet in the northwest portion of the project location. Proposed for the area under investigation are various, unspecified improvements or modifications to the existing Site 300 facilities. Present facilities consist of scattered buildings, bunkers and magazines, utilized for testing and research purposes, including the necessary water, power, and transportation improvements to support them. The vast majority of the 7000 acres location is presently open space, utilized as buffer zones between test locations and as firing ranges.« less

  3. VIEW OF BUILDING NO. 77710A, LOOKING WEST. LABORATORY WING AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF BUILDING NO. 777-10A, LOOKING WEST. LABORATORY WING AND MAIN ENTRANCE ON RIGHT; MULTISTORY REACTOR WING IN LEFT BACKGROUND - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  4. Hydrogeologic and water-quality data for the main site, Naval Surface Warfare Center, Dahlgren Laboratory, Dahlgren, Virginia

    USGS Publications Warehouse

    Bell, Clifton F.; Bolles, Thomas P.; Harlow, George E.

    1994-01-01

    Hydrogeologic and water-quality data were collected at the Naval Surface Warfare Center, Dahlgren Laboratory at Dahlgren, Virginia, as part of a hydrogeologic assessment of the shallow aquifer system begun in 1992. The U.S. Geological Survey conducted this study to provide the Navy with hydrogeologic data to meet the requirements of a Spill Contingency Plan. This report describes the ground-water observation-well network, hydro- geologic, and water-quality data collected between August 1992 and September 1993. The report includes a description of the locations and con- struction of 35 observation wells on the Main Site. Hydrologic data include lithologic core samples, geophysical logs, and vertical hydraulic conductivity measurements of selected core intervals. Hydrologic data include synoptic and hourly measurements of ground-water levels, observation-well slug tests to determine horizontal hydraulic conductivity, and tide data. Water-quality data include analyses of major dissolved constituents in ground water and surface water.

  5. Comparison of the Output in Weighted Work Units of Installation Dental Laboratories with that of Regional Dental Activities. Part II.

    DTIC Science & Technology

    1980-07-01

    at the study sites and compare it to the total production at each site. Orthodontics was excepted be- cause it is not done at all laboratories, nor is...DENTAC laboratories. It is sometimes tempting to relate productivity in terms of weighted work units to the type of work being done. Orthodontic laboratory...hypotheses. DENTAC Sites 2 and 3 both produce a heavy orthodontic workload, whereas Site 1 did very little in Month 1. In Month 2, when Site 1 reported a

  6. Radiation damage and annealing in plutonium tetrafluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Kaylyn; Casella, Amanda; Sinkov, Sergey

    Plutonium tetrafluoride that was separated prior to 1966 at the Hanford Site in Washington State was analyzed at the Pacific Northwest National Laboratory (PNNL) in 2015 and 2016. The plutonium tetrafluoride, as received, was an off-normal color and considering the age of the plutonium, there were questions about the condition of the material. These questions had to be answered in order to determine the suitability of the material for future use or long-term storage. Therefore, Thermogravimetric/Differential Thermal Analysis and X-ray Diffraction evaluations were conducted to determine the plutonium’s crystal structure, oxide content, and moisture content; these analyses reported that themore » plutonium was predominately amorphous and tetrafluoride, with an oxide content near ten percent. Freshly fluorinated plutonium tetrafluoride is known to be monoclinic. During the initial Thermogravimetric/Differential Thermal analyses, it was discovered that an exothermic event occurred within the material near 414°C. X-ray Diffraction analyses were conducted on the annealed tetrafluoride. The X-ray Diffraction analyses indicated that some degree of recrystallization occurred in conjunction with the 414°C event. The following commentary describes the series of Thermogravimetric/Differential Thermal and X-ray Diffraction analyses that were conducted as part of this investigation at PNNL, in collaboration with the University of Utah Nuclear Engineering Program.« less

  7. Subsurface high resolution definition of subsurface heterogeneity for understanding the biodynamics of natural field systems: Advancing the ability for scaling to field conditions. 1998 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majer, E.L.; Brockman, F.J.

    1998-06-01

    'This research is an integrated physical (geophysical and hydrologic) and microbial study using innovative geophysical imaging and microbial characterization methods to identify key scales of physical heterogeneities that affect the biodynamics of natural subsurface environments. Data from controlled laboratory and in-situ experiments at the INEEL Test Area North (TAN) site are being used to determine the dominant physical characteristics (lithologic, structural, and hydrologic) that can be imaged in-situ and correlated with microbial properties. The overall goal of this research is to contribute to the understanding of the interrelationships between transport properties and spatially varying physical, chemical, and microbiological heterogeneity. Themore » outcome will be an improved understanding of the relationship between physical and microbial heterogeneity, thus facilitating the design of bioremediation strategies in similar environments. This report summarizes work as of May 1998, the second year of the project. This work is an extension of basic research on natural heterogeneity first initiated within the DOE/OHER Subsurface Science Program (SSP) and is intended to be one of the building blocks of an integrated and collaborative approach with an INEEL/PNNL effort aimed at understanding the effect of physical heterogeneity on transport properties and biodynamics in natural systems. The work is closely integrated with other EMSP projects at INEEL (Rick Colwell et al.) and PNNL (Fred Brockman and Jim Fredrickson).'« less

  8. Direct Comparison of the Performance of a Bio-inspired Synthetic Nickel Catalyst and a [NiFe]-Hydrogenase, Both Covalently Attached to Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Macia, Patricia; Dutta, Arnab; Lubitz, Wolfgang

    2015-10-12

    The active site of hydrogenases has been a source of inspiration for the development of molecular catalysts. However, direct comparisons between molecular catalysts and enzymes have not been possible because different techniques are used to evaluate both types of catalysts, minimizing our ability to determine how far we’ve come in mimicking the impressive enzymatic performance. Here we directly compare the catalytic properties of the [Ni(PCy2NGly2)2]2+ complex with the [NiFe]-hydrogenase from Desulfobivrio vulgaris Miyazaki F (DvMF) immobilized to a functionalized electrode under identical conditions. At pH=7, the enzyme has higher performance in both activity and overpotential, and is more stable, whilemore » at low pH, the molecular catalyst outperforms the enzyme in all respects. The Ni complex also has increased tolerance to CO. This is the first direct comparison of enzymes and molecular complexes, enabling a unique understanding of the benefits and detriments of both systems, and advancing our understanding of the utilization of these bioinspired complexes in fuel cells. AD and WJS acknowledge the Office of Science Early Career Research Program through the US Department of Energy (US DOE), Office of Science, Office of Basic Energy Sciences (BES), and Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US DOE.« less

  9. PCR-mediated site-directed mutagenesis.

    PubMed

    Carey, Michael F; Peterson, Craig L; Smale, Stephen T

    2013-08-01

    Unlike traditional site-directed mutagenesis, this protocol requires only a single PCR step using full plasmid amplification to generate point mutants. The method can introduce small mutations into promoter sites and is even better suited for introducing single or double mutations into proteins. It is elegant in its simplicity and can be applied quite easily in any laboratory using standard protein expression vectors and commercially available reagents.

  10. ANL site response for the DOE FY1994 information resources management long-range plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boxberger, L.M.

    1992-03-01

    Argonne National Laboratory`s ANL Site Response for the DOE FY1994 Information Resources Management (IRM) Long-Range Plan (ANL/TM 500) is one of many contributions to the DOE information resources management long-range planning process and, as such, is an integral part of the DOE policy and program planning system. The Laboratory has constructed this response according to instructions in a Call issued in September 1991 by the DOE Office of IRM Policy, Plans and Oversight. As one of a continuing series, this Site Response is an update and extension of the Laboratory`s previous submissions. The response contains both narrative and tabular material.more » It covers an eight-year period consisting of the base year (FY1991), the current year (FY1992), the budget year (FY1993), the plan year (FY1994), and the out years (FY1995-FY1998). This Site Response was compiled by Argonne National Laboratory`s Computing and Telecommunications Division (CTD), which has the responsibility to provide leadership in optimizing computing and information services and disseminating computer-related technologies throughout the Laboratory. The Site Response consists of 5 parts: (1) a site overview, describes the ANL mission, overall organization structure, the strategic approach to meet information resource needs, the planning process, major issues and points of contact. (2) a software plan for DOE contractors, Part 2B, ``Software Plan FMS plan for DOE organizations, (3) computing resources telecommunications, (4) telecommunications, (5) printing and publishing.« less

  11. PNNL: Climate Modelling

    Science.gov Websites

    Runs [ Open Access : Password Protected ] CESM Development CESM Runs [ Open Access : Password Protected ] WRF Development WRF Runs [ Open Access : Password Protected ] Climate Modeling Home Projects Links Literature Manuscripts Publications Polar Group Meeting (2012) ASGC Home ASGC Jobs Web Calendar Wiki Internal

  12. Iron Phosphate Glass-Containing Hanford Waste Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevigny, Gary J.; Kimura, Marcia L.; Fischer, Christopher M.

    2012-01-18

    Resolution of the nation's high-level tank waste legacy requires the design, construction, and operation of large and technically complex one-of-a-kind processing waste treatment and vitrification facilities. While the ultimate limits for waste loading and melter efficiency have yet to be defined or realized, significant reductions in glass volumes for disposal and mission life may be possible with advancements in melter technologies and/or glass formulations. This test report describes the experimental results from a small-scale test using the research-scale melter (RSM) at Pacific Northwest National Laboratory (PNNL) to demonstrate the viability of iron-phosphate-based glass with a selected waste composition that ismore » high in sulfate (4.37 wt% SO3). The primary objective of the test was to develop data to support a cost-benefit analysis related to the implementation of phosphate-based glasses for Hanford low-activity waste (LAW) and/or other high-level waste streams within the U.S. Department of Energy complex. The testing was performed by PNNL and supported by Idaho National Laboratory, Savannah River National Laboratory, Missouri University of Science and Technology, and Mo-Sci Corporation.« less

  13. Conceptualization, Development and Validation of an Instrument for Investigating Elements of Undergraduate Physics Laboratory Learning Environments: The UPLLES (Undergraduate Physics Laboratory Learning Environment Survey)

    ERIC Educational Resources Information Center

    Thomas, Gregory P; Meldrum, Al; Beamish, John

    2013-01-01

    First-year undergraduate physics laboratories are important physics learning environments. However, there is a lack of empirically informed literature regarding how students perceive their overall laboratory learning experiences. Recipe formats persist as the dominant form of instructional design in these sites, and these formats do not adequately…

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Michael G.; Srivastava, Viraj; Wagner, Anne W.

    The Pacific Northwest National Laboratory (PNNL) has launched a project funded by the Bonneville Power Association (BPA) to identify strategies for increasing industrial energy efficiency and reducing energy costs of Northwest Food Processors Association (NWFPA) plants through deployment of novel combinations and designs of variable-output combined heat and power (CHP) distributed generation (DG), combined cooling, heating and electric power (CCHP) DG and energy storage systems. Detailed evaluations and recommendations of CHP and CCHP DG systems will be performed for several Northwest (NW) food processing sites. The objective is to reduce the overall energy use intensity of NW food processors bymore » 25% by 2020 and by 50% by 2030, as well as reducing emissions and understanding potential congestion reduction impacts on the transmission system in the Pacific Northwest.« less

  15. Final Data Report: P- and S-Wave Velocity Logging Borings C4993, C4996, and C4997 Part A: Interval Logs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steller, Robert; Diehl, John

    2007-02-01

    Insitu borehole P- and S-wave velocity measurements were collected in three borings located within the Waste Treatment Plant (WTP) boundaries at the Hanford Site, southeastern Washington. Geophysical data acquisition was performed between August and October of 2006 by Rob Steller, Charles Carter, Antony Martin and John Diehl of GEOVision. Data analysis was performed by Rob Steller and John Diehl, and reviewed by Antony Martin of GEOVision, and report preparation was performed by John Diehl and reviewed by Rob Steller. The work was performed under subcontract with Battelle, Pacific Northwest Division with Marty Gardner as Battelle’s Technical Representative and Alan Rohaymore » serving as the Technical Administrator for Pacific Northwest National Laboratory (PNNL). This report describes the field measurements, data analysis, and results of this work.« less

  16. Final Data Report: P- and S-Wave Velocity Logging Borings C4993, C4996, and C4997 Part B: Overall Logs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diehl, John; Steller, Robert

    2007-03-20

    Insitu borehole P- and S-wave velocity measurements were collected in three borings located within the Waste Treatment Plant (WTP) boundaries at the Hanford Site, southeastern Washington. Geophysical data acquisition was performed between August and October of 2006 by Rob Steller, Charles Carter, Antony Martin and John Diehl of GEOVision. Data analysis was performed by Rob Steller and John Diehl, and reviewed by Antony Martin of GEOVision, and report preparation was performed by John Diehl and reviewed by Rob Steller. The work was performed under subcontract with Battelle, Pacific Northwest Division with Marty Gardner as Battelle’s Technical Representative and Alan Rohaymore » serving as the Technical Administrator for Pacific Northwest National Laboratory (PNNL). This report describes the field measurements, data analysis, and results of this work.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vermeul, Vince R.; Szecsody, Jim E.; Truex, Michael J.

    This treatability study was conducted by Pacific Northwest National Laboratory (PNNL), at the request of the U. S. Environmental Protection Agency (EPA) Region 2, to evaluate the feasibility of using in situ treatment technologies for chromate reduction and immobilization at the Puchack Well Field Superfund Site in Pennsauken Township, New Jersey. In addition to in situ reductive treatments, which included the evaluation of both abiotic and biotic reduction of Puchack aquifer sediments, natural attenuation mechanisms were evaluated (i.e., chromate adsorption and reduction). Chromate exhibited typical anionic adsorption behavior, with greater adsorption at lower pH, at lower chromate concentration, and atmore » lower concentrations of other competing anions. In particular, sulfate (at 50 mg/L) suppressed chromate adsorption by up to 50%. Chromate adsorption was not influenced by inorganic colloids.« less

  18. Army Reserve Comprehensive Water Efficiency Assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMordie Stoughton, Kate; Kearney, Jaime

    The Army Reserve has partnered with the Pacific Northwest National Laboratory (PNNL) to develop comprehensive water assessments for numerous Army Reserve Centers in all five regions including the Pacific islands and Puerto Rico, and at Fort Buchanan and Fort Hunter Liggett. The objective of these assessments is to quantify water use at the site, and identify innovative water efficiency projects that can be implemented to help reduce water demand and increase efficiency. Several of these assessments have focused on a strategic plan for achieving net zero water to help meet the Army’s Net Zero Directive . The Army Reserve hasmore » also leveraged this approach as part of the energy conservation investment program (ECIP), energy savings performance contracts (ESPCs), and utility energy service contracts (UESCs). This article documents the process involved.« less

  19. Chemical composition analysis and product consistency tests supporting refinement of the Nepheline Model for the high aluminum Hanford glass composition region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.; Edwards, T. B.; Mcclane, D. L.

    2016-03-01

    In this report, Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for a series of simulated high level waste (HLW) glasses fabricated by Pacific Northwest National Laboratory (PNNL) as part of an ongoing nepheline crystallization study. The results of these analyses will be used to improve the ability to predict crystallization of nepheline as a function of composition and heat treatment for glasses formulated at high alumina concentrations.

  20. Sources, Composition, and Properties of Newly Formed and Regional Organic Aerosol in a Boreal Forest during the Biogenic Aerosol: Effects on Clouds and Climate Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, Joel

    2016-05-01

    The Thornton Laboratory participated in the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Biogenic Aerosol Effects on Clouds and Climate (BAECC) campaign in Finland by deploying our mass spectrometer. We then participated in environmental simulation chamber studies at Pacific Northwest National Laboratory (PNNL). Thereafter, we analyzed the results as demonstrated in the several presentations and publications. The field campaign and initial environmental chamber studies are described below.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serne, R. Jeffrey; Lanigan, David C.; Westsik, Joseph H.

    This revision to the original report adds two longer term leach sets of data to the report and provides more discussion and graphics on how to interpret the results from long-term laboratory leach tests. The leach tests were performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams.

  2. Sandia National Laboratories, California Environmental Management System program manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a setmore » of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has

  3. 77 FR 38276 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National... times prior to the meeting. ADDRESSES: Red Lion Hotel, 1555 Pocatello Creek Road, Pocatello, Idaho 83201...

  4. Joint Institute for Nanoscience Annual Report 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Donald R.; Campbell, Charles

    Due to the inherently interdisciplinary nature of nanoscience and nanotechnology, research in this arena is often significantly enhanced through creative cooperative activities. The Joint Institute for Nanoscience (JIN) is a venture of the University of Washington (UW) and Pacific Northwest National Laboratory (PNNL) to encourage and enhance high impact and high quality nanoscience and nanotechnology research that leverages the strengths and capabilities of both institutions, and to facilitate education in these areas. This report summarizes JIN award activities that took place during fiscal year 2004 and provides a historical list of JIN awardees, their resulting publications, and JIN-related meetings. Majormore » portions of the JIN efforts and resources are dedicated to funding graduate students and postdoctoral research associates to perform research in collaborations jointly directed by PNNL staff scientists and UW professors. JIN fellowships are awarded on the basis of applications that include research proposals. They have been very successful in expanding collaborations between PNNL and UW, which have led to many excellent joint publications and presentations and enhanced the competitiveness of both institutions for external grant funding. JIN-based interactions are playing a significant role in creating new research directions and reshaping existing research programs at both the UW and PNNL. The JIN also co-sponsors workshops on Nanoscale Science and Technology, four of which have been held in Seattle and one in Richland. In addition to involving PNNL staff in various UW nanoscience courses and seminars, a National Science Foundation grant, Development of UW-PNL Collaborative Curriculums in Nano-Science and Technology, has allowed the development of three intensive short courses that are taught by UW faculty, PNNL staff, and faculty from other institutions, including Washington State University, the University of Idaho, Stanford University, and the

  5. Site Environmental Report for Calendar Year 2008. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Amar, Ravnesh

    2009-09-01

    This Annual Site Environmental Report (ASER) for 2008 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988; allmore » subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. In May 2007, the D&D operations in Area IV were suspended by the DOE. The environmental monitoring programs were continued throughout the year. Results of the radiological monitoring program for the calendar year 2008 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  6. Regulatory controls on the hydrogeological characterization of a mixed waste disposal site, Radioactive Waste Management Complex, Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruebelmann, K.L.

    1990-01-01

    Following the detection of chlorinated volatile organic compounds in the groundwater beneath the SDA in the summer of 1987, hydrogeological characterization of the Radioactive Waste Management Complex (RWMC), Idaho National Engineering Laboratory (INEL) was required by the Resource Conservation and Recovery Act (RCRA). The waste site, the Subsurface Disposal Area (SDA), is the subject of a RCRA Corrective Action Program. Regulatory requirements for the Corrective Action Program dictate a phased approach to evaluation of the SDA. In the first phase of the program, the SDA is the subject of a RCRA Facility Investigation (RIF), which will obtain information to fullymore » characterize the physical properties of the site, determine the nature and extent of contamination, and identify pathways for migration of contaminants. If the need for corrective measures is identified during the RIF, a Corrective Measures Study (CMS) will be performed as second phase. Information generated during the RIF will be used to aid in the selection and implementation of appropriate corrective measures to correct the release. Following the CMS, the final phase is the implementation of the selected corrective measures. 4 refs., 1 fig.« less

  7. Analysis and Test Support for Phillips Laboratory Precision Structures

    DTIC Science & Technology

    1998-11-01

    Air Force Research Laboratory ( AFRL ), Phillips Research Site . Task objectives centered...around analysis and structural dynamic test support on experiments within the Space Vehicles Directorate at Kirtland Air Force Base. These efforts help...support for Phillips Laboratory Precision Structures." Mr. James Goodding of CSA Engineering was the principal investigator for this task. Mr.

  8. Our Story | Materials Research Laboratory at UCSB: an NSF MRSEC

    Science.gov Websites

    this site Materials Research Laboratory at UCSB: an NSF MRSEC logo Materials Research Laboratory at & Workshops Visitor Info Research IRG-1: Magnetic Intermetallic Mesostructures IRG 2: Polymeric Seminars Publications MRL Calendar Facilities Computing Energy Research Facility Microscopy &

  9. SITE CHARACTERIZATION LIBRARY: VOLUMN 1 (RELEASE 2.5)

    EPA Science Inventory

    This CD-ROM, Volume 1, Release 2.5, of EPA's National Exposure Research Laboratory (NERL - Las Vegas) Site Characterization Library, contains additional electronic documents and computer programs related to the characterization of hazardous waste sites. EPA has produced this libr...

  10. An Approach to Industrial Stormwater Benchmarks: Establishing and Using Site-Specific Threshold Criteria at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, C G; Mathews, S

    2006-09-07

    Current regulatory schemes use generic or industrial sector specific benchmarks to evaluate the quality of industrial stormwater discharges. While benchmarks can be a useful tool for facility stormwater managers in evaluating the quality stormwater runoff, benchmarks typically do not take into account site-specific conditions, such as: soil chemistry, atmospheric deposition, seasonal changes in water source, and upstream land use. Failing to account for these factors may lead to unnecessary costs to trace a source of natural variation, or potentially missing a significant local water quality problem. Site-specific water quality thresholds, established upon the statistical evaluation of historic data take intomore » account these factors, are a better tool for the direct evaluation of runoff quality, and a more cost-effective trigger to investigate anomalous results. Lawrence Livermore National Laboratory (LLNL), a federal facility, established stormwater monitoring programs to comply with the requirements of the industrial stormwater permit and Department of Energy orders, which require the evaluation of the impact of effluent discharges on the environment. LLNL recognized the need to create a tool to evaluate and manage stormwater quality that would allow analysts to identify trends in stormwater quality and recognize anomalous results so that trace-back and corrective actions could be initiated. LLNL created the site-specific water quality threshold tool to better understand the nature of the stormwater influent and effluent, to establish a technical basis for determining when facility operations might be impacting the quality of stormwater discharges, and to provide ''action levels'' to initiate follow-up to analytical results. The threshold criteria were based on a statistical analysis of the historic stormwater monitoring data and a review of relevant water quality objectives.« less

  11. GENERAL VIEW OF SITE, LOOKING WEST, WITH BUILDING NO. 77710A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF SITE, LOOKING WEST, WITH BUILDING NO. 777-10A ON LEFT. THE MULTISTORY REACTOR WING OF 777-10A IS ON THE FAR LEFT; THE ONE-STORY LABORATORY WING OF 777-10A IS IN CENTER OF VIEW. BUILDING NO. 305-A IS ON THE RIGHT - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  12. Biotelemetry system for Epilepsy Seizure Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, LaCurtise; Bohnert, George W.

    2009-07-02

    The Biotelemetry System for Epilepsy Seizure Control Project developed and tested an automated telemetry system for use in an epileptic seizure prevention device that precisely controls localized brain temperature. This project was a result of a Department of Energy (DOE) Global Initiatives for Proliferation Prevention (GIPP) grant to the Kansas City Plant (KCP), Argonne National Laboratory (ANL), and Pacific Northwest National Laboratory (PNNL) to partner with Flint Hills Scientific, LLC, Lawrence, KS and Biophysical Laboratory Ltd (BIOFIL), Sarov, Russia to develop a method to help control epileptic seizures.

  13. Sustaining International CBRN Centers of Excellence with a Focus on Nuclear Security and Safeguards: Initial Scoping Session London, 23-24 September 2013 SUMMARY REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Roger G.; Frazar, Sarah L.

    2013-12-12

    This report provides a summary-level description of the key information, observations, ideas, and recommendations expressed during the subject meeting. The report is organized to correspond to the meeting agenda provided in Appendix 1 and includes references to several of the participants listed in Appendix 2 .The meeting venue was Lloyd’s Register in the City of London. Lloyd’s Register graciously accommodated the request of The Pacific Northwest Laboratory (PNNL) with whom it works on various safeguards activities commissioned by NNSA. PNNL and NNSA also shared the goal of the meeting/study with the United Kingdom (UK) Foreign and Commonwealth Office (FCO) andmore » the Department of Energy and Climate Change with whom they coordinated the participant list.« less

  14. IEEE PES Resource Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammerstrom, Donald J.; Widergren, Steven E.; Irwin, Chris

    About 11 years ago, the U.S. Department of Energy (DOE) funded the Pacific Northwest National Laboratory (PNNL) to conduct one of the first-ever field demonstrations of what later became called a transactive system. Transactive systems have since become important tools in the DOE’s research efforts to modernize the U.S. electric power grid and conserve energy in U.S. buildings. The DOE currently funds fundamental and applied research to advance transactive system technologies, including their simulation, standardization, theoretical principles, valuation, demonstration, and automation. This article will discuss both the historical and recent DOE research and development activities in this topic area, includingmore » especially a recent PNNL report concerning the valuation of transactive systems.« less

  15. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.D. Levine; V.L. Finley

    1998-03-01

    The results of the 1996 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1996, PPPL's Tokamak Fusion Test Reactor (TFTR) continued to conduct fusion experiments. Having set a world record on November 2, 1994, by achieving approximately 10.7 million watts of controlled fusion power during the deuterium-tritium (D-T) plasmamore » experiments, researchers turned their attention to studying plasma science experiments, which included ''enhanced reverse shear techniques.'' Since November 1993, more than 700 tritium-fueled experiments were conducted, which generated more than 4 x 10(superscript 20) neutrons and 1.4 gigajoules of fusion energy. In 1996, the overall performance of Princeton Plasma Physics Laboratory was rated ''excellent'' by the US Department of Energy in the Laboratory Appraisal report issued in early 1997. The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents) and petroleum hydrocarbons (past leaks of releases of diesel fuel from underground storage tanks). Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the TFTR stack; the data are presented in this

  16. Laboratory Tests on Post-Filtration Precipitation in the WTP Pretreatment Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Renee L.; Peterson, Reid A.; Rinehart, Donald E.

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, "Undemonstrated Leaching Processes," of the External Flowsheet Review Team (EFRT) issue response plan (Barnes et al. 2006). The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, andmore » slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. A simplified flow diagram of the PEP system is shown in Figure 1.1. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP; and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP; vessels UFP-VSL-00001A and B in the WTP PTF).« less

  17. Supplement Analysis for the Site-Wide Environmental Impact Statement for Continued Operation of Los Alamos National Laboratory -- Recovery and Storage of Strontium-90 Fueled Radioisotope Thermal Electric Generators at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    2004-01-22

    This Supplement Analysis (SA) has been prepared to determine if the Site-Wide Environmental Impact Statement for Continued Operations of Los Alamos National Laboratory (SWEIS) (DOE/EIS-0238) adequately addresses the environmental effects of recovery and storage for disposal of six strontium-90 (Sr-90) fueled radioisotope thermal electric generators (RTGs) at the Los Alamos National Laboratory (LANL) Technical Area (TA)-54, Area G, or if the SWEIS needs to be supplemented. DOE's National Nuclear Security Administration (NNSA) proposed to recover and store six Sr-90 RTGs from the commercial sector as part of its Offsite-Source Recovery Project (OSRP). The OSRP focuses on the proactive recovery andmore » storage of unwanted radioactive sealed sources exceeding the US Nuclear Regulatory Commission (NRC) limits for Class C low-level waste (also known as Greater than Class C waste, or GTCC). In response to the events of September 11, 2001, NRC conducted a risk-based evaluation of potential vulnerabilities to terrorist threats involving NRC-licensed nuclear facilities and materials. NRC's evaluation concluded that possession of unwanted radioactive sealed sources with no disposal outlet presents a potential vulnerability (NRC 2002). In a November 25, 2003 letter to the manager of the NNSA's Los Alamos Site Office, the NRC Office of Nuclear Security and Incident Response identified recovery of several Sr-90 RTGs as the highest priority and requested that DOE take whatever actions necessary to recovery these sources as soon as possible. This SA specifically compares key impact assessment parameters of this proposal to the offsite source recovery program evaluated in the SWEIS and a subsequent SA that evaluated a change to the approach of a portion of the recovery program. It also provides an explanation of any differences between the Proposed Action and activities described in the previous SWEIS and SA analyses.« less

  18. The Current and Historical Distribution of Special Status Amphibians at the Livermore Site and Site 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattem, M V; Paterson, L; Woollett, J

    2008-08-20

    65 surveys were completed in 2002 to assess the current distribution of special status amphibians at the Lawrence Livermore National Laboratory's (LLNL) Livermore Site and Site 300. Combined with historical information from previous years, the information presented herein illustrates the dynamic and probable risk that amphibian populations face at both sites. The Livermore Site is developed and in stark contrast to the mostly undeveloped Site 300. Yet both sites have significant issues threatening the long-term sustainability of their respective amphibian populations. Livermore Site amphibians are presented with a suite of challenges inherent of urban interfaces, most predictably the bullfrog (Ranamore » catesbeiana), while Site 300's erosion issues and periodic feral pig (Sus scrofa) infestations reduce and threaten populations. The long-term sustainability of LLNL's special status amphibians will require active management and resource commitment to maintain and restore amphibian habitat at both sites.« less

  19. Hazardous Waste Cleanup: USDOE Knolls Atomic Power Laboratory in Niskayuna, New York

    EPA Pesticide Factsheets

    The Knolls site is located at 2401 River Road in the Town of Niskayuna, Schenectady County, New York, on the south bank of the Mohawk River. Construction of the site began in 1948 and laboratory operations began in 1949. The site consists of 170 acres of

  20. Site Environmental Report for Calendar Year 2013. DOE Operations at The Boeing Company, Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-06-30

    This Annual Site Environmental Report (ASER) for 2013 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988,more » and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2013 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. Due to the suspension of D&D activities in Area IV, no effluents were released into the atmosphere during 2013. Therefore, the potential radiation dose to the general public through airborne release was zero. Similarly, the radiation dose to an offsite member of the public (maximally exposed individual) due to direct radiation from SSFL is indistinguishable from background. All radioactive wastes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for

  1. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Frederick

    2012-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA-000160-01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: (1) Facility and system description; (2) Permit required effluent monitoring data and loading rates; (3) Groundwater monitoring data; (4) Status of special compliance conditions; and (5) Discussion of the facility's environmental impacts. During the 2011 reporting year, an estimated 6.99 million gallons of wastewater were discharged to themore » Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. Using the dissolved iron data, the concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.« less

  2. Preface: 5th International Symposium on the Interface between Analytical Chemistry and Microbiology - April 19th to 21st, 2004: Hosted at Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allmaier, Guenter; Wunschel, David S.; Wahl, Karen L.

    2004-04-19

    This is an introduction to a special issue of the Journal of microbiological Methods based on a recent meeting held at PNNL: the 5th International Symposium on the Interface between Analytical Chemistry and Microbiology.

  3. Technical Status Report: Preliminary Glass Formulation Report for INEEL HAW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, D.; Reamer, I.; Vienna, J.

    1998-03-01

    This study was performed by a team comprising experts in glass chemistry, glass technology, and statistics at both SRTC and PNNL. This joint effort combined the strengths of each discipline and site to quickly develop a glass formulation for specific INEEL HAW.

  4. Sub-micron Cu/SSZ-13: Synthesis and application as selective catalytic reduction (SCR) catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodinger, Sebastian; Derewinski, Miroslaw A.; Wang, Yilin

    For the first time, sub-micron Cu/SSZ-13, obtained by modifying an existing synthesis procedure, was shown to be an effective and stable catalyst for selective catalytic reduction reactions, such as NO reduction. Characterization of the materials with X-ray diffraction, N2-physisorption and 27Al MAS NMR shows that hydrothermal aging, simulating SCR reaction conditions, is more destructive in respect to dealumination for smaller particles prior to Cu-exchange. However, the catalytic performance and hydrothermal stability for Cu/SSZ-13 is independent of the particle size. In particular, the stability of tetrahedral framework Al is improved in the sub-micron Cu/SSZ-13 catalysts of comparable Cu loading. This indicatesmore » that variations in the Al distribution for different SSZ-13 synthesis procedures have a more critical influence on stabilizing isolated Cu-ions during harsh hydrothermal aging than the particle size. This study is of high interest for applications in vehicular DeNOx technologies where high loadings of active species on wash coats can be achieved by using sub-micron Cu/SSZ-13. The authors would like to thank B. W. Arey and J. J. Ditto for performing electron microscope imaging. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. S. P and M. A. D also acknowledge support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under the Laboratory Directed Research & Development Program at PNNL. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.« less

  5. ANL statement of site strategy for computing workstations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenske, K.R.; Boxberger, L.M.; Amiot, L.W.

    1991-11-01

    This Statement of Site Strategy describes the procedure at Argonne National Laboratory for defining, acquiring, using, and evaluating scientific and office workstations and related equipment and software in accord with DOE Order 1360.1A (5-30-85), and Laboratory policy. It is Laboratory policy to promote the installation and use of computing workstations to improve productivity and communications for both programmatic and support personnel, to ensure that computing workstations acquisitions meet the expressed need in a cost-effective manner, and to ensure that acquisitions of computing workstations are in accord with Laboratory and DOE policies. The overall computing site strategy at ANL is tomore » develop a hierarchy of integrated computing system resources to address the current and future computing needs of the laboratory. The major system components of this hierarchical strategy are: Supercomputers, Parallel computers, Centralized general purpose computers, Distributed multipurpose minicomputers, and Computing workstations and office automation support systems. Computing workstations include personal computers, scientific and engineering workstations, computer terminals, microcomputers, word processing and office automation electronic workstations, and associated software and peripheral devices costing less than $25,000 per item.« less

  6. Improved reconstruction and sensing techniques for personnel screening in three-dimensional cylindrical millimeter-wave portal scanning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandes, Justin L.; Rappaport, Carey M.; Sheen, David M.

    2011-05-01

    The cylindrical millimeter-wave imaging technique, developed at Pacific Northwest National Laboratory (PNNL) and commercialized by L-3 Communications/Safeview in the ProVision system, is currently being deployed in airports and other high security locations to meet person-borne weapon and explosive detection requirements. While this system is efficient and effective in its current form, there are a number of areas in which the detection performance may be improved through using different reconstruction algorithms and sensing configurations. PNNL and Northeastern University have teamed together to investigate higher-order imaging artifacts produced by the current cylindrical millimeter-wave imaging technique using full-wave forward modeling and laboratory experimentation.more » Based on imaging results and scattered field visualizations using the full-wave forward model, a new imaging system is proposed. The new system combines a multistatic sensor configuration with the generalized synthetic aperture focusing technique (GSAFT). Initial results show an improved ability to image in areas of the body where target shading, specular and higher-order reflections cause images produced by the monostatic system difficult to interpret.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    van der Eide, Edwin F.; Yang, Ping; Walter, Eric D.

    Unlike the very labile, unobservable radical cations [{l_brace}CpM(CO){sub 3}{r_brace}{sub 2}]{sup {sm_bullet}+} (M = W, Mo), derivatives [{l_brace}CpM(CO){sub 2}(PMe{sub 3}){r_brace}{sub 2}]{sup {sm_bullet}+} are stable enough to be isolated and characterized. Experimental and theoretical studies show that the shortened M-M bonds are of order 1 1/2, and that they are not supported by bridging ligands. The unpaired electron is fully delocalized, with a spin density of ca. 45% on each metal atom. We thank the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences for support of this work. Pacific Northwestmore » National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The EPR and computational studies were performed using EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. We thank Dr. Charles Windisch for access to his UV-Vis-NIR spectrometer.« less

  8. Site Environmental Report for Calendar Year 2009. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Amar, Ravnesh

    2010-09-01

    This Annual Site Environmental Report (ASER) for 2009 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, andmore » all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2009 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  9. Site Environmental Report for Calendar Year 2011. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Dassler, David

    2012-09-01

    This Annual Site Environmental Report (ASER) for 2011 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988,more » and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2011 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  10. Site Environmental Report for Calendar Year 2010. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Amar, Ravnesh

    2011-09-01

    This Annual Site Environmental Report (ASER) for 2010 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, andmore » all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2010 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  11. Site Environmental Report For Calendar Year 2012. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Dassler, David

    2013-09-01

    This Annual Site Environmental Report (ASER) for 2012 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988,more » and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2012 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  12. Commercialization of a DOE Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephenson, Barry A.

    2008-01-15

    On April 1, 1998, Materials and Chemistry Laboratory, Inc. (MCLinc) began business as an employee-owned, commercial, applied research laboratory offering services to both government and commercial clients. The laboratory had previously been a support laboratory to DoE's gaseous diffusion plant in Oak Ridge (K-25). When uranium enrichment was halted at the site, the laboratory was expanded to as an environmental demonstration center and served from 1992 until 1997 as a DOE Environmental User Facility. In 1997, after the laboratory was declared surplus, it was made available to the employee group who operated the laboratory for DOE as a government-owned, contractor-operatedmore » facility. This paper describes briefly the process of establishing the business. Attributes that contributed to the success of MCLinc are described. Some attention is given to lessons learned and to changes that could facilitate future attempts to make similar transitions. Lessons learnt: as with any business venture, operation over time has revealed that some actions taken by the laboratory founders have contributed to its successful operation while others were not so successful. Observations are offered in hopes that lessons learned may suggest actions that will facilitate future attempts to make similar transitions. First, the decision to vest significant ownership of the business in the core group of professionals operating the business is key to its success. Employee-owners of the laboratory have consistently provided a high level of service to its customers while conducting business in a cost-efficient manner. Secondly, an early decision to provide business support services in-house rather than purchasing them from support contractors on site have proven cost-effective. Laboratory employees do multiple tasks and perform overhead tasks in addition to their chargeable technical responsibilities. Thirdly, assessment of technical capabilities in view of market needs and a decision to

  13. Building Diagnostic Market Deployment - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katipamula, S.; Gayeski, N.

    2012-04-30

    Operational faults are pervasive across the commercial buildings sector, wasting energy and increasing energy costs by up to about 30% (Mills 2009, Liu et al. 2003, Claridge et al. 2000, Katipamula and Brambley 2008, and Brambley and Katipamula 2009). Automated fault detection and diagnostic (AFDD) tools provide capabilities essential for detecting and correcting these problems and eliminating the associated energy waste and costs. The U.S. Department of Energy's (DOE) Building Technology Program (BTP) has previously invested in developing and testing of such diagnostic tools for whole-building (and major system) energy use, air handlers, chillers, cooling towers, chilled-water distribution systems, andmore » boilers. These diagnostic processes can be used to make the commercial buildings more energy efficient. The work described in this report was done as part of a Cooperative Research and Development Agreement (CRADA) between the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) and KGS Building LLC (KGS). PNNL and KGS both believe that the widespread adoption of AFDD tools will result in significant reduction to energy and peak energy consumption. The report provides an introduction and summary of the various tasks performed under the CRADA. The CRADA project had three major focus areas: (1) Technical Assistance for Whole Building Energy Diagnostician (WBE) Commercialization, (2) Market Transfer of the Outdoor Air/Economizer Diagnostician (OAE), and (3) Development and Deployment of Automated Diagnostics to Improve Large Commercial Building Operations. PNNL has previously developed two diagnostic tools: (1) whole building energy (WBE) diagnostician and (2) outdoor air/economizer (OAE) diagnostician. WBE diagnostician is currently licensed non-exclusively to one company. As part of this CRADA, PNNL developed implementation documentation and provided technical support to KGS to implement the tool into their software suite, Clockworks. PNNL

  14. [Evaluation on running status of Chinese Polio Laboratories Network in 2008].

    PubMed

    Zhu, Shuang-li; Yan, Dong-mei; Zhu, Hui

    2010-04-01

    In order to evaluate the running status and provide the laboratory data for maintaining polio-free status in China, the virology surveillance database of Chinese Polio Laboratories Network (not include Hong Kong, Macao, and Taiwan)in 2008 were analyzed. The case investigation data of Acute Flaccid Paralysis(AFP)cases reported by 31 provinces (municipal, autonomous regions) through EPI surveillance information management system and the database of National Polio Laboratory (NPL) were analyzed, and the indicators of running status of Chinese Polio Laboratories Network were evaluated. 10,116 stool samples were collected from 5116 AFP cases by Chinese Polio Laboratories Network in 2008, and viral isolation and identification of all stool samples were done according to 4th World Health Organization (WHO) Polio Laboratory Manual. The rate of viral isolation and identification performed within 28d was 94.9%. 189 polioviruses (PV) and 597 of non-polio enteroviruses (NPEV) were isolated from AFP cases, the isolatien rates were 3.72% and 11.74% respectively. 251 polio positive isolates were sent to NPL from 31 provincial polio laboratories. There were 318 single serotype PVs were performed VPI sequencing. And no wild polioviruses and Vaccine-derived Polioviruses (VDPVs) were found in 2008. NPL passed the proficiency test and got full accreditation for on-site review by WHO experts in 2008. All 31 provincial Polio laboratories passed the proficiency test with the same panel as NPL, and 13 provincial Polio laboratories joined and passed the on-site review by WHO experts. The running status of Chinese Polio Laboratories Network was good, polio-free status was maintained in China in 2008. The Chinese polio laboratories network running is normaly, the laboratory surveillance system was sensitive and laboratory data were provided for maintaining the polio-free status in China.

  15. Demonstration Assessment of Light Emitting Diode (LED) Commercial Garage Lights In the Providence Portland Medical Center, Portland, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ton, My K.; Richman, Eric E.; Gilbride, Theresa L.

    2008-11-11

    This U.S. Department of Energy GATEWAY Demonstration project studied the applicability of light-emitting diode (LED) luminaires for commercial parking garage applications. High-pressure sodium (HPS) area luminaires were replaced with new LED area luminaires. The project was supported under the U.S. Department of Energy (DOE) Solid State Lighting Program. Other participants in the demonstration project included Providence Portland Medical Center in Portland, Oregon, the Energy Trust of Oregon, and Lighting Sciences Group (LSG) Inc. Pacific Northwest National Laboratory (PNNL) conducted the measurements and analysis of the results. PNNL manages GATEWAY demonstrations for DOE and represents their perspective in the conduct ofmore » the work. Quantitative and qualitative measurements of light and electrical power were taken at the site for both HPS and LED light sources. Economic costs were estimated and garage users’ responses to the new light sources were gauged with a survey. Six LED luminaires were installed in the below-ground parking level A, replacing six existing 150W HPS lamps spread out over two rows of parking spaces. Illuminance measurements were taken at floor level approximately every 4 ft on a 60-ft x 40-ft grid to measure light output of these LED luminaires which were termed the “Version 1” luminaires. PNNL conducted power measurements of the circuit in the garage to which the 6 luminaires were connected and determined that they drew an average of 82 W per lamp. An improved LED luminaire, Version 2, was installed in Level B of the parking garage. Illuminance measurements were not made of this second luminaire on site due to higher traffic conditions, but photometric measurements of this lamp and Version 1 were made in an independent testing laboratory and power usage for Version 2 was also measured. Version 1 was found to produce 3600 lumens and Version 2 was found to produce 4700 lumens of light and to consume 78 Watts. Maximum and minimum

  16. 13. Photographic copy of site plan displaying Test Stand 'C' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photographic copy of site plan displaying Test Stand 'C' (4217/E-18), Test Stand 'D' (4223/E-24), and Control and Recording Center (4221/E-22) with ancillary structures, and connecting roads and services. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office 'Repairs to Test Stand 'C,' Edwards Test Station, Legend & Site Plan M-1,' drawing no. ESP/115, August 14, 1987. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA

  17. Doing laboratory ethnography: reflections on method in scientific workplaces.

    PubMed

    Stephens, Neil; Lewis, Jamie

    2017-04-01

    Laboratory ethnography extended the social scientist's gaze into the day-to-day accomplishment of scientific practice. Here we reflect upon our own ethnographies of biomedical scientific workspaces to provoke methodological discussion on the doing of laboratory ethnography. What we provide is less a 'how to' guide and more a commentary on what to look for and what to look at. We draw upon our empirical research with stem cell laboratories and animal houses, teams producing robotic surgical tools, musicians sonifying data science, a psychiatric genetics laboratory, and scientists developing laboratory grown meat. We use these cases to example a set of potential ethnographic themes worthy of pursuit: science epistemics and the extended laboratory, the interaction order of scientific work, sensory realms and the rending of science as sensible, conferences as performative sites, and the spaces, places and temporalities of scientific work.

  18. Advanced image collection, information extraction, and change detection in support of NN-20 broad area search and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrie, G.M.; Perry, E.M.; Kirkham, R.R.

    1997-09-01

    This report describes the work performed at the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy`s Office of Nonproliferation and National Security, Office of Research and Development (NN-20). The work supports the NN-20 Broad Area Search and Analysis, a program initiated by NN-20 to improve the detection and classification of undeclared weapons facilities. Ongoing PNNL research activities are described in three main components: image collection, information processing, and change analysis. The Multispectral Airborne Imaging System, which was developed to collect georeferenced imagery in the visible through infrared regions of the spectrum, and flown on a light aircraftmore » platform, will supply current land use conditions. The image information extraction software (dynamic clustering and end-member extraction) uses imagery, like the multispectral data collected by the PNNL multispectral system, to efficiently generate landcover information. The advanced change detection uses a priori (benchmark) information, current landcover conditions, and user-supplied rules to rank suspect areas by probable risk of undeclared facilities or proliferation activities. These components, both separately and combined, provide important tools for improving the detection of undeclared facilities.« less

  19. Tuning the light in senior care: Evaluating a trial LED lighting system at the ACC Care Center in Sacramento, CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Robert G.; Wilkerson, Andrea M.

    This report summarizes the results from a trial installation of light-emitting diode (LED) lighting systems in several spaces within the ACC Care Center in Sacramento, CA. The Sacramento Municipal Utility District (SMUD) coordinated the project and invited the U.S. Department of Energy (DOE) to document the performance of the LED lighting systems as part of a GATEWAY evaluation. DOE tasked the Pacific Northwest National Laboratory (PNNL) to conduct the investigation. SMUD and ACC staff coordinated and completed the design and installation of the LED systems, while PNNL and SMUD staff evaluated the photometric performance of the systems. ACC staff alsomore » track behavioral and health measures of the residents; some of those results are reported here, although PNNL staff were not directly involved in collecting or interpreting those data. The trial installation took place in a double resident room and a single resident room, and the corridor that connects those (and other) rooms to the central nurse station. Other spaces in the trial included the nurse station, a common room called the family room located near the nurse station, and the ACC administrator’s private office.« less

  20. Aerial View of NACA's Lewis Flight Propulsion Research Laboratory

    NASA Image and Video Library

    1946-05-21

    The National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory in Cleveland, Ohio as seen from the west in May 1946. The Cleveland Municipal Airport is located directly behind. The laboratory was built in the early 1940s to resolve problems associated with aircraft engines. The initial campus contained seven principal buildings: the Engine Research Building, hangar, Fuels and Lubricants Building, Administration Building, Engine Propeller Research Building, Altitude Wind Tunnel, and Icing Research Tunnel. These facilities and their associated support structures were located within an area occupying approximately one-third of the NACA’s property. After World War II ended, the NACA began adding new facilities to address different problems associated with the newer, more powerful engines and high speed flight. Between 1946 and 1955, four new world-class test facilities were built: the 8- by 6-Foot Supersonic Wind Tunnel, the Propulsion Systems Laboratory, the Rocket Engine Test Facility, and the 10- by 10-Foot Supersonic Wind Tunnel. These large facilities occupied the remainder of the NACA’s semicircular property. The Lewis laboratory expanded again in the late 1950s and early 1960s as the space program commenced. Lewis purchased additional land in areas adjacent to the original laboratory and acquired a large 9000-acre site located 60 miles to the west in Sandusky, Ohio. The new site became known as Plum Brook Station.

  1. Oak Ridge National Laboratory`s (ORNL) ecological and physical science study center: A hands-on science program for K-12 students

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, S.P.

    1994-12-31

    In our tenth year of educational service and outreach, Oak Ridge National Laboratory`s Ecological and Physical Science Study Center (EPSSC) provides hands-on, inquiry-based science activities for area students and teachers. Established in 1984, the EPSSC now hosts over 20,000 student visits. Designed to foster a positive attitude towards science, each unit includes activities which reinforce the science concept being explored. Outdoor science units provide field experience at the Department of Energy`s Oak Ridge National Environmental Research Park and outreach programs are offered on-site in area schools. Other programs are offered as extensions of the EPSSC core programs, including on-site studentmore » science camps, all-girl programs, outreach science camps, student competitions, teacher in-service presentations and teacher workshops.« less

  2. Comparability of river suspended-sediment sampling and laboratory analysis methods

    USGS Publications Warehouse

    Groten, Joel T.; Johnson, Gregory D.

    2018-03-06

    Accurate measurements of suspended sediment, a leading water-quality impairment in many Minnesota rivers, are important for managing and protecting water resources; however, water-quality standards for suspended sediment in Minnesota are based on grab field sampling and total suspended solids (TSS) laboratory analysis methods that have underrepresented concentrations of suspended sediment in rivers compared to U.S. Geological Survey equal-width-increment or equal-discharge-increment (EWDI) field sampling and suspended sediment concentration (SSC) laboratory analysis methods. Because of this underrepresentation, the U.S. Geological Survey, in collaboration with the Minnesota Pollution Control Agency, collected concurrent grab and EWDI samples at eight sites to compare results obtained using different combinations of field sampling and laboratory analysis methods.Study results determined that grab field sampling and TSS laboratory analysis results were biased substantially low compared to EWDI sampling and SSC laboratory analysis results, respectively. Differences in both field sampling and laboratory analysis methods caused grab and TSS methods to be biased substantially low. The difference in laboratory analysis methods was slightly greater than field sampling methods.Sand-sized particles had a strong effect on the comparability of the field sampling and laboratory analysis methods. These results indicated that grab field sampling and TSS laboratory analysis methods fail to capture most of the sand being transported by the stream. The results indicate there is less of a difference among samples collected with grab field sampling and analyzed for TSS and concentration of fines in SSC. Even though differences are present, the presence of strong correlations between SSC and TSS concentrations provides the opportunity to develop site specific relations to address transport processes not captured by grab field sampling and TSS laboratory analysis methods.

  3. PACIFIC NORTHWEST CYBER SUMMIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesperance, Ann M.; Matlock, Gordon W.; Becker-Dippmann, Angela S.

    2013-08-07

    On March 26, 2013, the Snohomish County Public Utility District (PUD) and the U.S. Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) jointly hosted the Pacific Northwest Cyber Summit with the DOE’s Office of Electricity Delivery and Energy Reliability, the White House, Washington State congressional delegation, Washington State National Guard, and regional energy companies.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, Laura H.; Hayes, Beverly T.; Lembo, Mary Frances

    NEWSBridge is a free news service produced by the Technical Library at the Pacific Northwest National Laboratory (PNNL). Developed by library staff members in late 2004 to early 2005, it is loosely based on the Oak Ridge National Laboratory’s ORNL in the News. NEWSBridge delivers headlines each weekday to a subscriber’s desktop, laptop, or mobile device.

  5. An infrared spectral database for detection of gases emitted by biomass burning

    Treesearch

    Timothy J. Johnson; Luisa T. M. Profeta; Robert L. Sams; David W. T. Griffith; Robert L. Yokelson

    2010-01-01

    We report the construction of a database of infrared spectra aimed at detecting the gases emitted by biomass burning. The project uses many of the methods of the Pacific Northwest National Laboratory (PNNL) infrared database, but the selection of the species and special experimental considerations are optimized. Each spectrum is a weighted average derived from 10 or...

  6. Effect of Oxygen Defects on the Catalytic Performance of VOx/CeO2 Catalysts for Oxidative Dehydrogenation of Methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yan; Wei, Zhehao; Gao, Feng

    2015-05-01

    In this work, CeO2 nanocubes with controlled particle size and dominating (100) facets are synthesized as supports for VOx catalysts. Combined TEM, SEM, XRD, and Raman study reveals that the oxygen vacancy density of CeO2 supports can be tuned by tailoring the particle sizes without altering the dominating facets, where smaller particle sizes result in larger oxygen vacancy densities. At the same vanadium coverage, the VOx catalysts supported on small-sized CeO2 supports with higher oxygen defect densities exhibit promoted redox property and lower activation energy for methoxyl group decomposition, as evidenced by H2-TPR and methanol TPD study. These results furthermore » confirm that the presence of oxygen vacancies plays an important role in promoting the activity of VOx species in methanol oxidation. We gratefully acknowledge financial support from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Part of this work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for the DOE by Battelle.« less

  7. Peptoid Backbone Flexibilility Dictates Its Interaction with Water and Surfaces: A Molecular Dynamics Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, Arushi; Baer, Marcel D.; Mundy, Christopher J.

    Peptoids are peptide-mimetic biopolymers that are easy-to-synthesize and adaptable for use in drugs, chemical scaffolds, and coatings. However, there is insufficient information about their structural preferences and interactions with the environment in various applications. We conducted a study to understand the fundamental differences between peptides and peptoids using molecular dynamics simulations with semi-empirical (PM6) and empirical (AMBER) potentials, in conjunction with metadynamics enhanced sampling. From studies of single molecules in water and on surfaces, we found that sarcosine (model peptoid) is much more flexible than alanine (model peptide) in different environments. However, the sarcosine and alanine interact similarly with amore » hydrophobic or a hydrophilic. Finally, this study highlights the conformational landscape of peptoids and the dominant interactions that drive peptoids towards these conformations. ACKNOWLEDGMENT: MD simulations and manuscript preparation were supported by the MS3 (Materials Synthesis and Simulation Across Scales) Initiative at Pacific Northwest National Laboratory (PNNL), a multi-program national laboratory operated by Battelle for the U.S. Department of Energy. CJM was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by the US Department of Energy, Office of Basic Energy Sciences, Biomolecular Materials Program at PNNL. Computing resources were generously allocated by University of Washington's IT department and PNNL's Institutional Computing program. The authors greatly acknowledge conversations with Dr. Kayla Sprenger, Josh Smith, and Dr. Yeneneh Yimer.« less

  8. Consolidated clinical microbiology laboratories.

    PubMed

    Sautter, Robert L; Thomson, Richard B

    2015-05-01

    The manner in which medical care is reimbursed in the United States has resulted in significant consolidation in the U.S. health care system. One of the consequences of this has been the development of centralized clinical microbiology laboratories that provide services to patients receiving care in multiple off-site, often remote, locations. Microbiology specimens are unique among clinical specimens in that optimal analysis may require the maintenance of viable organisms. Centralized laboratories may be located hours from patient care settings, and transport conditions need to be such that organism viability can be maintained under a variety of transport conditions. Further, since the provision of rapid results has been shown to enhance patient care, effective and timely means for generating and then reporting the results of clinical microbiology analyses must be in place. In addition, today, increasing numbers of patients are found to have infection caused by pathogens that were either very uncommon in the past or even completely unrecognized. As a result, infectious disease specialists, in particular, are more dependent than ever on access to high-quality diagnostic information from clinical microbiology laboratories. In this point-counterpoint discussion, Robert Sautter, who directs a Charlotte, NC, clinical microbiology laboratory that provides services for a 40-hospital system spread over 3 states in the southeastern United States explains how an integrated clinical microbiology laboratory service has been established in a multihospital system. Richard (Tom) Thomson of the NorthShore University HealthSystem in Evanston, IL, discusses some of the problems and pitfalls associated with large-scale laboratory consolidation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Components of laboratory accreditation.

    PubMed

    Royal, P D

    1995-12-01

    Accreditation or certification is a recognition given to an operation or product that has been evaluated against a standard; be it regulatory or voluntary. The purpose of accreditation is to provide the consumer with a level of confidence in the quality of operation (process) and the product of an organization. Environmental Protection Agency/OCM has proposed the development of an accreditation program under National Environmental Laboratory Accreditation Program for Good Laboratory Practice (GLP) laboratories as a supplement to the current program. This proposal was the result of the Inspector General Office reports that identified weaknesses in the current operation. Several accreditation programs can be evaluated and common components identified when proposing a structure for accrediting a GLP system. An understanding of these components is useful in building that structure. Internationally accepted accreditation programs provide a template for building a U.S. GLP accreditation program. This presentation will discuss the traditional structure of accreditation as presented in the Organization of Economic Cooperative Development/GLP program, ISO-9000 Accreditation and ISO/IEC Guide 25 Standard, and the Canadian Association for Environmental Analytical Laboratories, which has a biological component. Most accreditation programs are managed by a recognized third party, either privately or with government oversight. Common components often include a formal review of required credentials to evaluate organizational structure, a site visit to evaluate the facility, and a performance evaluation to assess technical competence. Laboratory performance is measured against written standards and scored. A formal report is then sent to the laboratory indicating accreditation status. Usually, there is a scheduled reevaluation built into the program. Fee structures vary considerably and will need to be examined closely when building a GLP program.

  10. Ion Exchange Modeling of Crystalline Silicotitanate (IONSIV(R) IE-911) Column for Cesium Removal from Argentine Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hang, T.

    2003-07-16

    The U.S. Department of Energy (DOE) and the Nuclear Energy Commission of Argentina (CNEA) have a collaborative project to separate cesium/strontium from waste resulting from the production of Mo-99. The Pacific Northwest National Laboratory (PNNL) is assisting DOE on this joint project by providing technical guidance to CNEA scientists. As part of the collaboration, PNNL staff works with staff at the Savannah River Technology Center (SRTC) to run the VERSE-LC model for removal of cesium from the Mo-99 waste using the crystalline silicotitanate (CST) material (IONSIV(R) IE-911, UOP LLC, DesPlaines, IL) based on technical data provided by CNEA. This reportmore » discusses the VERSE-LC ion-exchange-column model and the predicted results of CNEA test cases.« less

  11. SANDIA NATIONAL LABORATORIES IN SITU ELECTROKINETIC EXTRACTION TECHNOLOGY; INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    As a part of the Superfund Innovative Technology Evaluation (SITE) Program, the U.S. Environmental Protection Agency evaluated the In-Situ Electrokinetic Extraction (ISEE) system at Sandia National Laboratories, Albuquerque, New Mexico.

    The SITE demonstration results show ...

  12. Site Environmental Report for 2004. Volume 1, Environment, Health, and Safety Division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2005-09-30

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, Environment, Safety, and Health Reporting.1 The Site Environmental Report for 2004 summarizes Berkeley Lab’s environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2004. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as “Berkeley Lab,” “the Laboratory,” “Lawrence Berkeley National Laboratory,” and “LBNL.”) The report is separated into two volumes. Volume I contains an overview of the Laboratory, the status of environmental programs,more » and summarized results from surveillance and monitoring activities. Volume II contains individual data results from these activities. This year, the Site Environmental Report was distributed by releasing it on the Web from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at http://www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. CD and printed copies of this Site Environmental Report are available upon request.« less

  13. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards-Fiscal Year 1999 Mid-Year Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peurrung, L.M.

    1999-06-30

    Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, and eight in fiscal year 1998. This section summarizes how each grant addresses significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is focused primarily in five areas: Tank Waste Remediation, Decontamination and Decommissioning, Spent Nuclear Fuel and Nuclear Materials, Soil and Groundwater Cleanmore » Up, and Health Effects.« less

  14. Practical methodological guide for hydrometric inter-laboratory organisation

    NASA Astrophysics Data System (ADS)

    Besson, David; Bertrand, Xavier

    2015-04-01

    Discharge measurements performed by the French governmental hydrometer team feed a national database. This data is available for general river flows knowkedge, flood forecasting, low water survey, statistical calculations flow, control flow regulatory and many other uses. Regularly checking the measurements quality and better quantifying its accuracy is therefore an absolute need. The practice of inter-laboratory comparison in hydrometry particularly developed during the last decade. Indeed, discharge measurement can not easily be linked to a standard. Therefore, on-site measurement accuracy control is very difficult. Inter-laboratory comparison is thus a practical solution to this issue. However, it needs some regulations in order to ease its practice and legitimize its results. To do so, the French government hydrometrics teams produced a practical methodological guide for hydrometric inter-laboratory organisation in destination of hydrometers community in view of ensure the harmonization of inter-laboratory comparison practices for different materials (ADCP, current meter on wadind rod or gauging van, tracer dilution, surface speed) and flow range (flood, low water). Ensure the results formalization and banking. The realisation of this practice guide is grounded on the experience of the governmental teams & their partners (or fellows), following existing approaches (Doppler group especially). The guide is designated to validate compliance measures and identify outliers : Hardware, methodological, environmental, or human. Inter-laboratory comparison provides the means to verify the compliance of the instruments (devices + methods + operators) and provides methods to determine an experimental uncertainty of the tested measurement method which is valid only for the site and the measurement conditions but does not address the calibration or periodic monitoring of the few materials. After some conceptual definitions, the guide describes the different stages of an

  15. Selecting automation for the clinical chemistry laboratory.

    PubMed

    Melanson, Stacy E F; Lindeman, Neal I; Jarolim, Petr

    2007-07-01

    Laboratory automation proposes to improve the quality and efficiency of laboratory operations, and may provide a solution to the quality demands and staff shortages faced by today's clinical laboratories. Several vendors offer automation systems in the United States, with both subtle and obvious differences. Arriving at a decision to automate, and the ensuing evaluation of available products, can be time-consuming and challenging. Although considerable discussion concerning the decision to automate has been published, relatively little attention has been paid to the process of evaluating and selecting automation systems. To outline a process for evaluating and selecting automation systems as a reference for laboratories contemplating laboratory automation. Our Clinical Chemistry Laboratory staff recently evaluated all major laboratory automation systems in the United States, with their respective chemistry and immunochemistry analyzers. Our experience is described and organized according to the selection process, the important considerations in clinical chemistry automation, decisions and implementation, and we give conclusions pertaining to this experience. Including the formation of a committee, workflow analysis, submitting a request for proposal, site visits, and making a final decision, the process of selecting chemistry automation took approximately 14 months. We outline important considerations in automation design, preanalytical processing, analyzer selection, postanalytical storage, and data management. Selecting clinical chemistry laboratory automation is a complex, time-consuming process. Laboratories considering laboratory automation may benefit from the concise overview and narrative and tabular suggestions provided.

  16. Translating a National Laboratory Strategic Plan into action through SLMTA in a district hospital laboratory in Botswana.

    PubMed

    Ntshambiwa, Keoratile; Ntabe-Jagwer, Winnie; Kefilwe, Chandapiwa; Samuel, Fredrick; Moyo, Sikhulile

    2014-01-01

    The Ministry of Health (MOH) of Botswana adopted Strengthening Laboratory Management Toward Accreditation (SLMTA), a structured quality improvement programme, as a key tool for the implementation of quality management systems in its public health laboratories. Coupled with focused mentorship, this programme aimed to help MOH achieve the goals of the National Laboratory Strategic Plan to provide quality and timely clinical diagnoses. This article describes the impact of implementing SLMTA in Sekgoma Memorial Hospital Laboratory (SMHL) in Serowe, Botswana. SLMTA implementation in SMHL included trainings, improvement projects, site visits and focused mentorship. To measure progress, audits using the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist were conducted at baseline and exit of the programme, with scores corresponding to a zero- to five-star scale. Turnaround times, customer satisfaction, and several other health service indicators were tracked. The laboratory scored 53% (zero stars) at the baseline audit and 80% (three stars) at exit. Nearly three years later, the laboratory scored 85% (four stars) in an official audit conducted by the African Society for Laboratory Medicine. Turnaround times became shorter after SLMTA implementation, with reductions ranging 19% to 52%; overall patient satisfaction increased from 56% to 73%; and clinician satisfaction increased from 41% to 72%. Improvements in inventory management led to decreases in discarded reagents, reducing losses from US $18 000 in 2011 to $40 in 2013. The SLMTA programme contributed to enhanced performance of the laboratory, which in turn yielded potential positive impacts for patient care at the hospital.

  17. KENNEDY SPACE CENTER, FLA. - On a tour of the KSC Beach Corrosion Test Site, Testbed Manager Louis MacDowell (right) explains to Center Director Jim Kennedy about the test blocks being used to test a newly developed coating to protect steel inside concrete. Between MacDowell and Kennedy are Dr. Paul Hintze and Lead Scientist Dr. Luz Marina Calle. The KSC Beach Corrosion Test Site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.

    NASA Image and Video Library

    2003-08-21

    KENNEDY SPACE CENTER, FLA. - On a tour of the KSC Beach Corrosion Test Site, Testbed Manager Louis MacDowell (right) explains to Center Director Jim Kennedy about the test blocks being used to test a newly developed coating to protect steel inside concrete. Between MacDowell and Kennedy are Dr. Paul Hintze and Lead Scientist Dr. Luz Marina Calle. The KSC Beach Corrosion Test Site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.

  18. Stills, status, stocks and science: the laboratories at Apothecaries' Hall in the nineteenth century.

    PubMed

    Simmons, Anna

    2014-05-01

    This paper focuses on one site of chemistry that served multiple functions over its lifetime and played a pivotal role in the development of British pharmaceutical manufacturing. At the beginning of the nineteenth century, the Society of Apothecaries' premises in Blackfriars housed the largest pharmaceutical manufacturing laboratories in London and supplied drugs for use throughout the British Empire. Under the guidance of William Brande, the laboratories developed as sites of teaching, research and consultancy, activities which shaped the Society's public image and enhanced its commercial, regulatory and professional roles. However, as competition from other pharmaceutical firms increased, inherent contradictions in the Society's various remits, combined with its conservative approach to business, meant that there was no clear direction for the laboratories' development. In an era of growing specialisation, this multifunctional site became increasingly outdated by the end of the nineteenth century.

  19. Doing laboratory ethnography: reflections on method in scientific workplaces

    PubMed Central

    Stephens, Neil; Lewis, Jamie

    2017-01-01

    Laboratory ethnography extended the social scientist’s gaze into the day-to-day accomplishment of scientific practice. Here we reflect upon our own ethnographies of biomedical scientific workspaces to provoke methodological discussion on the doing of laboratory ethnography. What we provide is less a ‘how to’ guide and more a commentary on what to look for and what to look at. We draw upon our empirical research with stem cell laboratories and animal houses, teams producing robotic surgical tools, musicians sonifying data science, a psychiatric genetics laboratory, and scientists developing laboratory grown meat. We use these cases to example a set of potential ethnographic themes worthy of pursuit: science epistemics and the extended laboratory, the interaction order of scientific work, sensory realms and the rending of science as sensible, conferences as performative sites, and the spaces, places and temporalities of scientific work. PMID:28546784

  20. A Profilometry-Based Dentifrice Abrasion Method for V8 Brushing Machines Part III: Multi-Laboratory Validation Testing of RDA-PE.

    PubMed

    Schneiderman, Eva; Colón, Ellen L; White, Donald J; Schemehorn, Bruce; Ganovsky, Tara; Haider, Amir; Garcia-Godoy, Franklin; Morrow, Brian R; Srimaneepong, Viritpon; Chumprasert, Sujin

    2017-09-01

    We have previously reported on progress toward the refinement of profilometry-based abrasivity testing of dentifrices using a V8 brushing machine and tactile or optical measurement of dentin wear. The general application of this technique may be advanced by demonstration of successful inter-laboratory confirmation of the method. The objective of this study was to explore the capability of different laboratories in the assessment of dentifrice abrasivity using a profilometry-based evaluation technique developed in our Mason laboratories. In addition, we wanted to assess the interchangeability of human and bovine specimens. Participating laboratories were instructed in methods associated with Radioactive Dentin Abrasivity-Profilometry Equivalent (RDA-PE) evaluation, including site visits to discuss critical elements of specimen preparation, masking, profilometry scanning, and procedures. Laboratories were likewise instructed on the requirement for demonstration of proportional linearity as a key condition for validation of the technique. Laboratories were provided with four test dentifrices, blinded for testing, with a broad range of abrasivity. In each laboratory, a calibration curve was developed for varying V8 brushing strokes (0, 4,000, and 10,000 strokes) with the ISO abrasive standard. Proportional linearity was determined as the ratio of standard abrasion mean depths created with 4,000 and 10,000 strokes (2.5 fold differences). Criteria for successful calibration within the method (established in our Mason laboratory) was set at proportional linearity = 2.5 ± 0.3. RDA-PE was compared to Radiotracer RDA for the four test dentifrices, with the latter obtained by averages from three independent Radiotracer RDA sites. Individual laboratories and their results were compared by 1) proportional linearity and 2) acquired RDA-PE values for test pastes. Five sites participated in the study. One site did not pass proportional linearity objectives. Data for this site are

  1. Idaho National Laboratory Test Area North: Application of Endpoints to Guide Adaptive Remediation at a Complex Site: INL Test Area North: Application of Endpoints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, M. Hope; Truex, Mike; Freshley, Mark

    Complex sites are defined as those with difficult subsurface access, deep and/or thick zones of contamination, large areal extent, subsurface heterogeneities that limit the effectiveness of remediation, or where long-term remedies are needed to address contamination (e.g., because of long-term sources or large extent). The Test Area North at the Idaho National Laboratory, developed for nuclear fuel operations and heavy metal manufacturing, is used as a case study. Liquid wastes and sludge from experimental facilities were disposed in an injection well, which contaminated the subsurface aquifer located deep within fractured basalt. The wastes included organic, inorganic, and low-level radioactive constituents,more » with the focus of this case study on trichloroethylene. The site is used as an example of a systems-based framework that provides a structured approach to regulatory processes established for remediation under existing regulations. The framework is intended to facilitate remedy decisions and implementation at complex sites where restoration may be uncertain, require long timeframes, or involve use of adaptive management approaches. The framework facilitates site, regulator, and stakeholder interactions during the remedial planning and implementation process by using a conceptual model description as a technical foundation for decisions, identifying endpoints, which are interim remediation targets or intermediate decision points on the path to an ultimate end, and maintaining protectiveness during the remediation process. At the Test Area North, using a structured approach to implementing concepts in the endpoint framework, a three-component remedy is largely functioning as intended and is projected to meet remedial action objectives by 2095 as required. The remedy approach is being adjusted as new data become available. The framework provides a structured process for evaluating and adjusting the remediation approach, allowing site owners, regulators

  2. Sitewide Environmental Assessment for the National Renewable Energy Laboratory, Golden, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-05-04

    The Solar Energy Research, Development, and Demonstration Act of 1974 authorized a federal program to develop solar energy as a viable source of the nation`s future energy needs. Under this authority, the National Renewable Energy Laboratory (NREL) was created as a laboratory of the Department of Energy (DOE) to research a number of renewable energy possibilities. The laboratory conducts its operations both in government-owned facilities on the NREL South Table Mountain (STM) Site near Golden, Colorado, and in a number of leased facilities, particularly the Denver West Office Park. NREL operations include research in energy technologies, and other areas ofmore » national environmental and energy technology interest. Examples of these technologies include electricity from sunlight with solar cells (photovoltaics); energy from wind (windmills or wind turbines); conversion of plants and plant products (biomass) into liquid fuels (ethanol and methanol); heat from the sun (solar thermal) in place of wood, oil, gas, coal and other forms of heating; and solar buildings. NREL proposes to continue and expand the present R&D efforts in C&R energy by making infrastructure improvements and constructing facilities to eventually consolidate the R&D and associated support activities at its STM Site. In addition, it is proposed that operations continue in current leased space at the present levels of activity until site development is complete. The construction schedule proposed is designed to develop the site as rapidly as possible, dependent on Congressional funding, to accommodate not only the existing R&D that is being conducted in leased facilities off-site but to also allow for the 20-year projected growth. Impacts from operations currently conducted off-site are quantified and added to the cumulative impacts of the STM site. This environmental assessment provides information to determine the severity of impacts on the environment from the proposed action.« less

  3. State of New Mexico wind site survey loan program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, R.D.

    1981-12-01

    This pilot project made available to the citizens of New Mexico, interested in wind energy, the loan of a wind data accumulator for one year so that they could determine if their site was suitable for the installation of a wind generator prior to their investment in a wind system. A nominal fee of $35.00 was charged for a year to help defray maintenance expenses. The Physical Science Laboratory meteorologist installed a 3-cup anemometer usually on a 30' telescoping mast at each site after looking over the exposure and making recommendations to the Site Owner. The electronic odometer was eithermore » housed inside a house or mounted to the mast in its lockable case. There are a total of 21 sets for loan. The site owners read their data once per week and mailed a data card in to the Physical Science Laboratory. The annual wind climatology for each site was computed and the owners advised of the suitability of their site for wind generation of electricity. An updated wind climatology for New Mexico was prepared utilizing this new data.« less

  4. Site Environmental Report for 2002, Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauer, Ron

    2003-07-01

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1. The ''Site Environmental Report for 2002'' summarizes Berkeley Lab's compliance with environmental standards and requirements, characterizes environmental management efforts through surveillance and monitoring activities, and highlights significant programs and efforts for calendar year 2002. Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab,'' ''the Laboratory,'' ''Lawrence Berkeley National Laboratory,'' and ''LBNL.'' The report is separated into two volumes. Volume I contains a general overview of themore » Laboratory, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from the monitoring programs. This year, the ''Site Environmental Report'' was distributed on a CD in PDF format that includes Volume I, Volume II, and related documents. The report is also available on the Web at http://www.lbl.gov/ehs/esg/. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are additionally reported using the more conventional (non-SI) system of measurements because this system is referenced by some current regulatory standards and is more familiar to some readers. The tables included at the end of the Glossary are intended to help readers understand the various prefixes used with SI units of measurement and convert these units from one system to the other.« less

  5. Site Environmental Report for 2002, Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauer, Ron

    2003-07-01

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1. The ''Site Environmental Report for 2002'' summarizes Berkeley Lab's compliance with environmental standards and requirements, characterizes environmental management efforts through surveillance and monitoring activities, and highlights significant programs and efforts for calendar year 2002. Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab,'' ''the Laboratory,'' ''Lawrence Berkeley National Laboratory,'' and ''LBNL.'' The report is separated into two volumes. Volume I contains a general overview of themore » Laboratory, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from the monitoring programs. This year, the ''Site Environmental Report'' was distributed on a CD in PDF format that includes Volume I, Volume II, and related documents. The report is also available on the Web at http://www.lbl.gov/ehs/esg/. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are additionally reported using the more conventional (non-SI) system of measurements because this system is referenced by some current regulatory standards and is more familiar to some readers. The tables included at the end of the Glossary are intended to help readers understand the various prefixes used with SI units of measurement and convert these units from one system to the other.« less

  6. KENNEDY SPACE CENTER, FLA. - Louis MacDowell (right), Testbed manager, explains to Center Director Jim Kennedy the use of astmospheric calibration specimens. Placed at various locations, they can rank the corrosivity of the given environment. The KSC Beach Corrosion Test Site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.

    NASA Image and Video Library

    2003-08-21

    KENNEDY SPACE CENTER, FLA. - Louis MacDowell (right), Testbed manager, explains to Center Director Jim Kennedy the use of astmospheric calibration specimens. Placed at various locations, they can rank the corrosivity of the given environment. The KSC Beach Corrosion Test Site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.

  7. CROSSFLOW FILTRATON: LITERATURE REVIEW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, M.

    2011-01-01

    As part of the Filtration task EM-31, WP-2.3.6, which is a joint effort between Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL), tests were planned to evaluate crossflow filtration in order to the improve the use of existing hardware in the waste treatment plants at both the Department of Energy (DOE) Savannah River Site (SRS) and Hanford Site. These tests included experiments to try different operating conditions and additives, such as filter aids, in order to create a more permeable filter cake and improve the permeate flux. To plan the SRNL tests a literature review wasmore » performed to provide information on previous experiments performed by DOE laboratories, and by academia. This report compliments PNNL report (Daniel, et al 2010), and is an attempt to try and capture crossflow filtration work performed in the past that provide a basis for future testing. However, not all sources on crossflow filtration could be reviewed due to the shear volume of information available. In this report various references were examined and a representative group was chosen to present the major factors that affect crossflow filtration. The information summarized in this review contains previous operating conditions studied and their influence on the rate of filtration. Besides operating conditions, other attempted improvements include the use of filter aids, a pre-filtration leaching process, the backpulse system, and various types of filter tubes and filter coatings. The results from past research can be used as a starting point for further experimentation that can result in the improvement in the performance of the crossflow filtration. The literature reviewed in this report indicates how complex the crossflow issues are with the results of some studies appearing to conflict results from other studies. This complexity implies that filtration of mobilized stored waste cannot be explained in a simple generic sense; meaning an

  8. Performance Art at the Campusphere: Pedagogical Experiments On-Site

    ERIC Educational Resources Information Center

    Ben-Shaul, Daphna

    2018-01-01

    Following a unique practice and research laboratory entitled "Performance: Site/Self" that took place in 2013-2015, this article discusses the implementation of performance art at an academic site--the Tel Aviv University campus. This pedagogical and artistic initiative, characterised by the transgressive pedagogy of performance art…

  9. Induction of CYP1A mRNA in Carp (Cyprinus carpio) from the Kalamazoo River polychlorinated biphenyl-contaminated superfund site and in a laboratory study.

    PubMed

    Fisher, M A; Mehne, C; Means, J C; Ide, C F

    2006-01-01

    The Kalamazoo River Superfund site in Michigan is contaminated with polychlorinated biphenyls (PCBs), which were heavily discharged into the river from several paper companies as part of the deinking process in the 1950s through 1970s. We characterized biomarkers of chronic PCB exposure in a resident fish population using real-time reverse transcriptase-polymerase chain reaction to examine mRNA expression levels of multiple genes in carp (Cyprinus carpio) liver from PCB contaminated and reference sites in the Kalamazoo River. We also measured these same genes in juvenile carp exposed to dietary PCBs for 4 months. Kalamazoo River carp had significantly increased levels of cytochrome P450 1A (CYP1A) mRNA as did carp fed PCBs in the laboratory. No significant mRNA upregulation occurred in the specific oxidative stress genes (gamma-glutamylcysteine synthetase and magnesium superoxide dismutase) and metabolic genes (phosphoenolpyruvate carboxykinase and nucleolin) examined. These data are consistent with the idea that carp from the Kalamazoo River Superfund Site are responding to PCB exposure via upregulation of CYP1A independent of activation of the oxidative stress response genes normally thought to be co-regulated with CYP1A.

  10. Validation of Statistical Sampling Algorithms in Visual Sample Plan (VSP): Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuffer, Lisa L; Sego, Landon H.; Wilson, John E.

    2009-02-18

    The U.S. Department of Homeland Security, Office of Technology Development (OTD) contracted with a set of U.S. Department of Energy national laboratories, including the Pacific Northwest National Laboratory (PNNL), to write a Remediation Guidance for Major Airports After a Chemical Attack. The report identifies key activities and issues that should be considered by a typical major airport following an incident involving release of a toxic chemical agent. Four experimental tasks were identified that would require further research in order to supplement the Remediation Guidance. One of the tasks, Task 4, OTD Chemical Remediation Statistical Sampling Design Validation, dealt with statisticalmore » sampling algorithm validation. This report documents the results of the sampling design validation conducted for Task 4. In 2005, the Government Accountability Office (GAO) performed a review of the past U.S. responses to Anthrax terrorist cases. Part of the motivation for this PNNL report was a major GAO finding that there was a lack of validated sampling strategies in the U.S. response to Anthrax cases. The report (GAO 2005) recommended that probability-based methods be used for sampling design in order to address confidence in the results, particularly when all sample results showed no remaining contamination. The GAO also expressed a desire that the methods be validated, which is the main purpose of this PNNL report. The objective of this study was to validate probability-based statistical sampling designs and the algorithms pertinent to within-building sampling that allow the user to prescribe or evaluate confidence levels of conclusions based on data collected as guided by the statistical sampling designs. Specifically, the designs found in the Visual Sample Plan (VSP) software were evaluated. VSP was used to calculate the number of samples and the sample location for a variety of sampling plans applied to an actual release site. Most of the sampling designs

  11. Changing needs, opportunities and constraints for the 21st century microbiology laboratory.

    PubMed

    Van Eldere, J

    2005-04-01

    Clinical microbiologists and microbiology laboratories are experiencing changes due to evolving views on 'healthcare delivery' as an economic activity, due to changes in the medical environment and the demographics of the workforce, and technical evolution. Cost-effectiveness of laboratory procedures has been achieved through consolidation and integration of laboratories. Consolidation offers economy of scale and reduction in numbers of on-site staff, but also leads to separation of microbiologists from their clinical colleagues. Integration puts different laboratory disciplines under a single management, and leads to reorganisation of laboratories along common work-lines. Cost-savings combined with on-site availability of laboratories are achieved at the expense of a reduction in the influence of microbiologists in the daily running of the laboratory. Medically, there is growing emphasis on evidence-based diagnostics. Because of time-delays inherent in culturing, microbiology through rapid testing is mandatory. There is an increasing shortage in Europe and the USA of trained microbiology laboratory technicians and microbiologists. This reinforces the trend towards more automation and integration. Technological advances, particularly in molecular diagnostics, offer the possibility of rapid reporting and improvement of the impact of clinical microbiology on patient management. Molecular tests, however, fit perfectly the concept of an integrated laboratory and may further loosen the link between microbiologist and microbiology tests. The challenge for clinical microbiology will be to use new techniques to improve its cost-effectiveness and impact on infectious disease management. The future organisation of microbiology laboratories must support this but is itself of secondary importance. The training of future microbiologist must prepare them for this changing environment.

  12. EM-21 Retrieval Knowledge Center: Waste Retrieval Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fellinger, Andrew P.; Rinker, Michael W.; Berglin, Eric J.

    EM-21 is the Waste Processing Division of the Office of Engineering and Technology, within the U.S. Department of Energy’s (DOE) Office of Environmental Management (EM). In August of 2008, EM-21 began an initiative to develop a Retrieval Knowledge Center (RKC) to provide the DOE, high level waste retrieval operators, and technology developers with centralized and focused location to share knowledge and expertise that will be used to address retrieval challenges across the DOE complex. The RKC is also designed to facilitate information sharing across the DOE Waste Site Complex through workshops, and a searchable database of waste retrieval technology information.more » The database may be used to research effective technology approaches for specific retrieval tasks and to take advantage of the lessons learned from previous operations. It is also expected to be effective for remaining current with state-of-the-art of retrieval technologies and ongoing development within the DOE Complex. To encourage collaboration of DOE sites with waste retrieval issues, the RKC team is co-led by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL). Two RKC workshops were held in the Fall of 2008. The purpose of these workshops was to define top level waste retrieval functional areas, exchange lessons learned, and develop a path forward to support a strategic business plan focused on technology needs for retrieval. The primary participants involved in these workshops included retrieval personnel and laboratory staff that are associated with Hanford and Savannah River Sites since the majority of remaining DOE waste tanks are located at these sites. This report summarizes and documents the results of the initial RKC workshops. Technology challenges identified from these workshops and presented here are expected to be a key component to defining future RKC-directed tasks designed to facilitate tank waste retrieval solutions.« less

  13. Organic Analytical Service within the Superfund Contract Laboratory Program

    EPA Pesticide Factsheets

    This page contains information about the SOM02.4 statement of work for the analysis of organic compounds at hazardous waste sites. The SOW contains the analytical method and contractual requirements for laboratories.

  14. Special Analysis for the Disposal of the Sandia National Laboratory Classified Macroencapsulated Mixed Waste at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, Louis B.

    This special analysis evaluates whether the Sandia National Laboratory (SNL) Classified Macroencapsulated Mixed Waste stream (ASLA000001007, Revision 4) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The SNL Classified Macroencapsulated Mixed Waste stream consists of debris from classified nuclear weapons components (SNL 2015). The SNL Classified Macroencapsulated Mixed Waste stream required a special analysis due to tritium (3H) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015). The SNL Classifiedmore » Macroencapsulated Mixed Waste stream had no significant effect on the maximum mean and 95th percentile results for the resident air pathway and all-pathways annual total effective dose (TED). The SNL Classified Macroencapsulated Mixed Waste stream increases the mean air pathway and all-pathways annual TED from approximately 100 to 200 years after closure. Addition of the SNL Classified Macroencapsulated Mixed Waste stream inventory shifts the maximum TED to approximately 100 years after closure and increases the TED for several alternative exposure scenarios. The maximum mean and the 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The SNL Classified Macroencapsulated Mixed Waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.« less

  15. WAG 2 remedial investigation and site investigation site-specific work plan/health and safety checklist for the sediment transport modeling task

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, V.L.; Baron, L.A.

    1994-05-01

    This site-specific Work Plan/Health and Safety Checklist (WP/HSC) is a supplement to the general health and safety plan (HASP) for Waste Area Grouping (WAG) 2 remedial investigation and site investigation (WAG 2 RI&SI) activities [Health and Safety Plan for the Remedial Investigation and Site Investigation of Waste Area Grouping 2 at the Oak Ridge National Laboratory, Oak Ridge, Tennessee (ORNL/ER-169)] and provides specific details and requirements for the WAG 2 RI&SI Sediment Transport Modeling Task. This WP/HSC identifies specific site operations, site hazards, and any recommendations by Oak Ridge National Laboratory (ORNL) health and safety organizations [i.e., Industrial Hygiene (IH),more » Health Physics (HP), and/or Industrial Safety] that would contribute to the safe completion of the WAG 2 RI&SI. Together, the general HASP for the WAG 2 RI&SI (ORNL/ER-169) and the completed site-specific WP/HSC meet the health and safety planning requirements specified by 29 CFR 1910.120 and the ORNL Hazardous Waste Operations and Emergency Response (HAZWOPER) Program Manual. In addition to the health and safety information provided in the general HASP for the WAG 2 RI&SI, details concerning the site-specific task are elaborated in this site-specific WP/HSC, and both documents, as well as all pertinent procedures referenced therein, will be reviewed by all field personnel prior to beginning operations.« less

  16. ARCHITECTURAL, 777M, PHYSICS ASSEMBLY LABORATORY BUILDING, PLAN OF +13’1” AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARCHITECTURAL, 777-M, PHYSICS ASSEMBLY LABORATORY BUILDING, PLAN OF +13’-1” AND +27’-0” FLOOR LEVELS (W157114) - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  17. On-Site Molecular Detection of Soil-Borne Phytopathogens Using a Portable Real-Time PCR System

    PubMed Central

    DeShields, Joseph B.; Bomberger, Rachel A.; Woodhall, James W.; Wheeler, David L.; Moroz, Natalia; Johnson, Dennis A.; Tanaka, Kiwamu

    2018-01-01

    On-site diagnosis of plant diseases can be a useful tool for growers for timely decisions enabling the earlier implementation of disease management strategies that reduce the impact of the disease. Presently in many diagnostic laboratories, the polymerase chain reaction (PCR), particularly real-time PCR, is considered the most sensitive and accurate method for plant pathogen detection. However, laboratory-based PCRs typically require expensive laboratory equipment and skilled personnel. In this study, soil-borne pathogens of potato are used to demonstrate the potential for on-site molecular detection. This was achieved using a rapid and simple protocol comprising of magnetic bead-based nucleic acid extraction, portable real-time PCR (fluorogenic probe-based assay). The portable real-time PCR approach compared favorably with a laboratory-based system, detecting as few as 100 copies of DNA from Spongospora subterranea. The portable real-time PCR method developed here can serve as an alternative to laboratory-based approaches and a useful on-site tool for pathogen diagnosis. PMID:29553557

  18. Low-background gamma-ray spectrometry for the international monitoring system

    DOE PAGES

    Greenwood, L. R.; Cantaloub, M. G.; Burnett, J. L.; ...

    2016-12-28

    PNNL has developed two low-background gamma-ray spectrometers in a new shallow underground laboratory, thereby significantly improving its ability to detect low levels of gamma-ray emitting fission or activation products in airborne particulate in samples from the IMS (International Monitoring System). Furthermore, the combination of cosmic veto panels, dry nitrogen gas to reduce radon and low background shielding results in a reduction of the background count rate by about a factor of 100 compared to detectors operating above ground at our laboratory.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenwood, L. R.; Cantaloub, M. G.; Burnett, J. L.

    PNNL has developed two low-background gamma-ray spectrometers in a new shallow underground laboratory, thereby significantly improving its ability to detect low levels of gamma-ray emitting fission or activation products in airborne particulate in samples from the IMS (International Monitoring System). Furthermore, the combination of cosmic veto panels, dry nitrogen gas to reduce radon and low background shielding results in a reduction of the background count rate by about a factor of 100 compared to detectors operating above ground at our laboratory.

  20. Nili Fossae Trough, Candidate MSL Landing Site

    NASA Image and Video Library

    2010-12-20

    This image from NASA Mars Reconnaissance Orbiter shows Nili Fossae region of Mars, one of the largest exposures of clay minerals, and a prime candidate landing site for Mars Science Laboratory rover, Curiosity.

  1. Annual Site Environmental Report Calendar Year 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayser, Dan

    This report summarizes the environmental status of Ames Laboratory for calendar year 2010. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring activities. In 2010, the Laboratory accumulated and disposed of waste under U.S. Environmental Protection Agency (EPA) issued generator numbers. All waste is handled according to all applicable EPA, State, Local regulations and DOE Orders. In 2006 the Laboratory reduced its generator status from a Large Quantity Generator (LQG) to a Smallmore » Quantity Generator (SQG). EPA Region VII was notified of this change. The Laboratory's RCRA hazardous waste management program was inspected by EPA Region VII in April 2006. There were no notices of violations. The inspector was impressed with the improvements of the Laboratory's waste management program over the past ten years. The Laboratory was in compliance with all applicable federal, state, local and DOE regulations and orders in 2010. There were no radiological air emissions or exposures to the general public due to Laboratory activities in 2010. See U.S. Department of Energy Air Emissions Annual Report in Appendix B. As indicated in prior SERs, pollution awareness, waste minimization and recycling programs have been in practice since 1990, with improvements implemented most recently in 2010. Included in these efforts were battery and CRT recycling, miscellaneous electronic office equipment, waste white paper and green computer paper-recycling and corrugated cardboard recycling. Ames Laboratory also recycles/reuses salvageable metal, used oil, foamed polystyrene peanuts, batteries, fluorescent lamps and telephone books. Ames Laboratory reported to DOE-Ames Site Office (AMSO), through the Laboratory's Performance Evaluation Measurement Plan, on its

  2. Inorganic Analytical Service within the Superfund Contract Laboratory Program

    EPA Pesticide Factsheets

    This page contains information about the ISM02.4 statement of work for the analysis of metals and cyanide at hazardous waste sites. The SOW contains the analytical method and contractual requirements for laboratories.

  3. U.S. Ebola Treatment Center Clinical Laboratory Support.

    PubMed

    Jelden, Katelyn C; Iwen, Peter C; Herstein, Jocelyn J; Biddinger, Paul D; Kraft, Colleen S; Saiman, Lisa; Smith, Philip W; Hewlett, Angela L; Gibbs, Shawn G; Lowe, John J

    2016-04-01

    Fifty-five hospitals in the United States have been designated Ebola treatment centers (ETCs) by their state and local health authorities. Designated ETCs must have appropriate plans to manage a patient with confirmed Ebola virus disease (EVD) for the full duration of illness and must have these plans assessed through a CDC site visit conducted by an interdisciplinary team of subject matter experts. This study determined the clinical laboratory capabilities of these ETCs. ETCs were electronically surveyed on clinical laboratory characteristics. Survey responses were returned from 47 ETCs (85%). Forty-one (87%) of the ETCs planned to provide some laboratory support (e.g., point-of-care [POC] testing) within the room of the isolated patient. Forty-four (94%) ETCs indicated that their hospital would also provide clinical laboratory support for patient care. Twenty-two (50%) of these ETC clinical laboratories had biosafety level 3 (BSL-3) containment. Of all respondents, 34 (72%) were supported by their jurisdictional public health laboratory (PHL), all of which had available BSL-3 laboratories. Overall, 40 of 44 (91%) ETCs reported BSL-3 laboratory support via their clinical laboratory and/or PHL. This survey provided a snapshot of the laboratory support for designated U.S. ETCs. ETCs have approached high-level isolation critical care with laboratory support in close proximity to the patient room and by distributing laboratory support among laboratory resources. Experts might review safety considerations for these laboratory testing/diagnostic activities that are novel in the context of biocontainment care. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. U.S. Ebola Treatment Center Clinical Laboratory Support

    PubMed Central

    Jelden, Katelyn C.; Iwen, Peter C.; Herstein, Jocelyn J.; Biddinger, Paul D.; Kraft, Colleen S.; Saiman, Lisa; Smith, Philip W.; Hewlett, Angela L.; Gibbs, Shawn G.

    2016-01-01

    Fifty-five hospitals in the United States have been designated Ebola treatment centers (ETCs) by their state and local health authorities. Designated ETCs must have appropriate plans to manage a patient with confirmed Ebola virus disease (EVD) for the full duration of illness and must have these plans assessed through a CDC site visit conducted by an interdisciplinary team of subject matter experts. This study determined the clinical laboratory capabilities of these ETCs. ETCs were electronically surveyed on clinical laboratory characteristics. Survey responses were returned from 47 ETCs (85%). Forty-one (87%) of the ETCs planned to provide some laboratory support (e.g., point-of-care [POC] testing) within the room of the isolated patient. Forty-four (94%) ETCs indicated that their hospital would also provide clinical laboratory support for patient care. Twenty-two (50%) of these ETC clinical laboratories had biosafety level 3 (BSL-3) containment. Of all respondents, 34 (72%) were supported by their jurisdictional public health laboratory (PHL), all of which had available BSL-3 laboratories. Overall, 40 of 44 (91%) ETCs reported BSL-3 laboratory support via their clinical laboratory and/or PHL. This survey provided a snapshot of the laboratory support for designated U.S. ETCs. ETCs have approached high-level isolation critical care with laboratory support in close proximity to the patient room and by distributing laboratory support among laboratory resources. Experts might review safety considerations for these laboratory testing/diagnostic activities that are novel in the context of biocontainment care. PMID:26842705

  5. Strengths of the Northwell Health Laboratory Service Line

    PubMed Central

    Balfour, Erika; Stallone, Robert; Castagnaro, Joseph; Poczter, Hannah; Schron, Deborah; Martone, James; Breining, Dwayne; Simpkins, Henry; Neglia, Tom; Kalish, Paul

    2016-01-01

    From 2009 to 2015, the laboratories of the 19-hospital North Shore-LIJ Health System experienced 5 threatened interruptions in service and supported 2 regional health-care providers with threatened interruptions in their laboratory service. We report our strategies to maintain laboratory performance during these events, drawing upon the strengths of our integrated laboratory service line. Established in 2009, the laboratory service line has unified medical and administrative leadership and system-wide divisional structure, quality management, and standardization of operations and procedures. Among many benefits, this governance structure enabled the laboratories to respond to a series of unexpected events. Specifically, at our various service sites, the laboratories dealt with pandemic (2009), 2 floods (2010, 2012), 2 fires (2010, 2015), and laboratory floor subsidence (2013). We were also asked to provide support for a regional physician network facing abrupt loss of testing services from closure of another regional clinical laboratory (2010) and to intervene for a non-health system hospital threatened with closure owing to noncompliance of laboratory operations (2012). In all but a single instance, patient care was served without interruption in service. In the last instance, fire interrupted laboratory services for 30 minutes. We conclude that in a large integrated health system, threats to continuous laboratory operations are not infrequent when measured on an annual basis. While most threats are from external physical circumstances, some emanate from unexpected administrative events. A strong laboratory governance mechanism that includes unified medical and administrative leadership across the entirety of the laboratory service line enables successful responses to these threats. PMID:28725768

  6. ANL site response for the DOE FY1994 information resources management long-range plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boxberger, L.M.

    1992-03-01

    Argonne National Laboratory's ANL Site Response for the DOE FY1994 Information Resources Management (IRM) Long-Range Plan (ANL/TM 500) is one of many contributions to the DOE information resources management long-range planning process and, as such, is an integral part of the DOE policy and program planning system. The Laboratory has constructed this response according to instructions in a Call issued in September 1991 by the DOE Office of IRM Policy, Plans and Oversight. As one of a continuing series, this Site Response is an update and extension of the Laboratory's previous submissions. The response contains both narrative and tabular material.more » It covers an eight-year period consisting of the base year (FY1991), the current year (FY1992), the budget year (FY1993), the plan year (FY1994), and the out years (FY1995-FY1998). This Site Response was compiled by Argonne National Laboratory's Computing and Telecommunications Division (CTD), which has the responsibility to provide leadership in optimizing computing and information services and disseminating computer-related technologies throughout the Laboratory. The Site Response consists of 5 parts: (1) a site overview, describes the ANL mission, overall organization structure, the strategic approach to meet information resource needs, the planning process, major issues and points of contact. (2) a software plan for DOE contractors, Part 2B, Software Plan FMS plan for DOE organizations, (3) computing resources telecommunications, (4) telecommunications, (5) printing and publishing.« less

  7. Spectrometer Images of Candidate Landing Sites for Next Mars Rover

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This composite shows four examples of 'browse' products the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument obtained of areas on Mars near proposed landing sites for NASA's 2009 Mars Science Laboratory. These examples are from two of more than 30 candidate sites. They are enhanced color images of West Candor chasm (A) and Nili Fossae trough (B); and false color images indicating the presence of hydrated (water-containing) minerals in West Candor (C); and clay-like (phyllosilicate) minerals in Nili Fossae (D).

    CRISM is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and the Mars Science Laboratory for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

  8. Strategies for laboratory cost containment and for pathologist shortage: centralised pathology laboratories with microwave-stimulated histoprocessing and telepathology.

    PubMed

    Leong, Anthony S Y; Leong, F Joel W M

    2005-02-01

    The imposition of laboratory cost containment, often from external forces, dictates the necessity to develop strategies to meet laboratory cost savings. In addition, the national and worldwide shortage of anatomical pathologists makes it imperative to examine our current practice and laboratory set-ups. Some of the strategies employed in other areas of pathology and laboratory medicine include improvements in staff productivity and the adoption of technological developments that reduce manual intervention. However, such opportunities in anatomical pathology are few and far between. Centralisation has been an effective approach in bringing economies of scale, the adoption of 'best practices' and the consolidation of pathologists, but this has not been possible in anatomical pathology because conventional histoprocessing takes a minimum of 14 hours and clinical turnaround time requirements necessitate that the laboratory and pathologist be in proximity and on site. While centralisation of laboratories for clinical chemistry, haematology and even microbiology has been successful in Australia and other countries, the essential requirements for anatomical pathology laboratories are different. In addition to efficient synchronised courier networks, a method of ultra-rapid tissue processing and some expedient system of returning the prepared tissue sections to the remote laboratory are essential to maintain the turnaround times mandatory for optimal clinical management. The advent of microwave-stimulated tissue processing that can be completed in 30-60 minutes and the immediate availability of compressed digital images of entire tissue sections via telepathology completes the final components of the equation necessary for making centralised anatomical pathology laboratories a reality.

  9. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to Unconfined and Confined Aquifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Nikolla; Brown, Christopher F.; Wang, Guohui

    2013-04-15

    Experimental research work has been conducted and is undergoing at Pacific Northwest National Laboratory (PNNL) to address a variety of scientific issues related with the potential leaks of the carbon dioxide (CO2) gas from deep storage reservoirs. The main objectives of this work are as follows: • Develop a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption and redox reactions) in the aquifer sediments. • Identify prevailing environmental conditions that would dictate one geochemical outcome over another. • Gather useful information to support site selection, risk assessment, policy-making, and public education effortsmore » associated with geological carbon sequestration. In this report, we present results from experiments conducted at PNNL to address research issues related to the main objectives of this effort. A series of batch and column experiments and solid phase characterization studies (quantitative x-ray diffraction and wet chemical extractions with a concentrated acid) were conducted with representative rocks and sediments from an unconfined, oxidizing carbonate aquifer, i.e., Edwards aquifer in Texas, and a confined aquifer, i.e., the High Plains aquifer in Kansas. These materials were exposed to a CO2 gas stream simulating CO2 gas leaking scenarios, and changes in aqueous phase pH and chemical composition were measured in liquid and effluent samples collected at pre-determined experimental times. Additional research to be conducted during the current fiscal year will further validate these results and will address other important remaining issues. Results from these experimental efforts will provide valuable insights for the development of site-specific, generation III reduced order models. In addition, results will initially serve as input parameters during model calibration runs and, ultimately, will be used to test model predictive

  10. PNNLs Data Intensive Computing research battles Homeland Security threats

    ScienceCinema

    David Thurman; Joe Kielman; Katherine Wolf; David Atkinson

    2018-05-11

    The Pacific Northwest National Laboratorys (PNNL's) approach to data intensive computing (DIC) is focused on three key research areas: hybrid hardware architecture, software architectures, and analytic algorithms. Advancements in these areas will help to address, and solve, DIC issues associated with capturing, managing, analyzing and understanding, in near real time, data at volumes and rates that push the frontiers of current technologies.

  11. Percolation Tests for Septic Systems: A Laboratory Exercise.

    ERIC Educational Resources Information Center

    Tinker, John R., Jr.

    1978-01-01

    Describes how the procedures by which a certificate soil tester evaluates a parcel of land for its suitability as a site for a private sewage system or septic tank can be used by college students as a laboratory exercise in environmental geology. (HM)

  12. A laboratory study of multiple site damage in fuselage lap splices

    DOT National Transportation Integrated Search

    1993-12-01

    This report details an experimental study that was conducted to explore the causes of : fuselage lap splice multiple site damage (MSD), which has been observed in several : aging aircraft. MSD was partially responsible for the 1988 Aloha Airlines acc...

  13. Fukushima Media Involvement: Lessons Learned and Challenges - 13261

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Geoffrey L.; Johnson, Wayne L.; Koller, Greg L.

    Only days after the Fukushima nuclear reactor disaster on March 11, 2011, the DOE's Pacific Northwest National Laboratory, or PNNL, found itself in a maelstrom of media attention following its announcement of the detection of minute levels of radioactive material originating from the damaged reactors 4,500 miles away. Because PNNL develops state-of-the-art ultra-sensitive radionuclide detection and monitoring systems for national security applications, and has some of the equipment operating on its Richland campus, there was little surprise when one of these sophisticated systems led PNNL to be the first to detect measurable radionuclides in the United States. On Wednesday, Marchmore » 16, 2011, that system detected minuscule levels of short-lived radioactive xenon, a telltale element derived from either weapons testing or a major reactor disruption. Immediately after the detection was announced, a flurry of inquiries nearly overwhelmed staff as governments, scientific organizations, the general public, and reporters struggled to understand and estimate what impacts this disaster might have on health and environment. Over the course of about three weeks, PNNL's News and Media Relations staff and its scientists and engineers responded to more than 100 requests for information, and engaged in dozens of personal interviews with international, national, regional, and local media. While many of the interviews and resulting stories were accurate and well done, not all communication went flawlessly. In the midst of chaos and confusion, which are part of any significant crisis, hiccoughs are sure to occur. Addressed here is 'the rest of the story'. (authors)« less

  14. Site 300 City Water Master Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Jeff

    Lawrence Livermore National Laboratory (LLNL), a scientific research facility, operates an experimental test site known as Site 300. The site is located in a remote area of southeastern Alameda County, California, and consists of about 100 facilities spread across 7,000-acres. The Site 300 water system includes groundwater wells and a system of storage tanks, booster pumps, and underground piping to distribute water to buildings and significant areas throughout the site. Site 300, which is classified as a non-transient non-community (NTNC) water system, serves approximately 110 employees through 109 service connections. The distribution system includes approximately 76,500-feet of water mains varyingmore » from 4- to 10-inches in diameter, mostly asbestos cement (AC) pipe, and eleven water storage tanks. The water system is divided into four pressure zones fed by three booster pump stations to tanks in each zone.« less

  15. BIOHAZ: Rapid On-Site Biological Detection for First Responders

    DTIC Science & Technology

    2001-09-01

    numbers comprise the compilation report: ADP013371 thru ADP013468 UNCLASSIFIED 84. BIORAZ: Rapid On- Site Biological Detection for First Responders Randall... responders an integated capability to collect an environmental sample and to rapidly screen that sample on site for the presence of biological material. This...further analyzed on site with immunoassay tickets before being sent to a laboratory. This system provides the emergency responders with a capability that

  16. An Archeological Overview and Management Plan for the Harry Diamond Laboratories, Adelphi, Maryland.

    DTIC Science & Technology

    1985-07-01

    WORK ON HARRY DIAMOND LABORATORY- ADELPHI, MARYLAND A number of prehistoric and historic sites have been reported in the vicinity of HDLA. Attempts...AD-Rftl 054 AN ARCHEOLOGICAL OVERVIEW AND NANAGENENT PLAN FOR THE Sui HARRY DIAMOND LABORATORIES ADELPHI NARYLRNDCU) U NLRSIFEDENYIROSPHERE CO NEW...An Archeological Overview and Management Plan r ifor the Harry Diamond Laboratories - Adelphi, Maryland Under Contract CX4000-3-0018 with the National

  17. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-02-01

    This volume contains appendices D6 through D8 containing laboratory test data: from MK-F investigation, 1987, Old Rifle and New Rifle sites; on bentonite amended radon barrier material; and from MK-F investigation, 1987, riprap tests.

  18. Adsorption of Potassium on the MoS2(100) Surface: A First-Principles Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Amity; Kathmann, Shawn M.; Lilga, Michael A.

    2011-04-15

    dissociative adsorption via s character electron repulsion. This research was performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory, a U.S. Department of Energy (DOE) national scientific user facility located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE.« less

  19. Audiovisual Speech Web-Lab: an Internet teaching and research laboratory.

    PubMed

    Gordon, M S; Rosenblum, L D

    2001-05-01

    Internet resources now enable laboratories to make full-length experiments available on line. A handful of existing web sites offer users the ability to participate in experiments and generate usable data. We have integrated this technology into a web site that also provides full discussion of the theoretical and methodological aspects of the experiments using text and simple interactive demonstrations. The content of the web site (http://www.psych.ucr.edu/avspeech/lab) concerns audiovisual speech perception and its relation to face perception. The site is designed to be useful for users of multiple interests and levels of expertise.

  20. Geomechanical Evaluation of Thermal Impact of Injected CO 2 Temperature on a Geological Reservoir: Application to the FutureGen 2.0 Site

    DOE PAGES

    Bonneville, Alain; USA, Richland Washington; Nguyen, Ba Nghiep; ...

    2014-12-31

    The impact of temperature variations of injected CO 2 on the mechanical integrity of a reservoir is a problem rarely addressed in the design of a CO 2 storage site. The geomechanical simulation of the FutureGen 2.0 storage site presented here takes into account the complete modeling of heat exchange between the environment and CO 2 during its transport in the pipeline and injection well before reaching the reservoir, as well as its interaction with the reservoir host rock. An ad-hoc program was developed to model CO 2 transport from the power plant to the reservoir and an approach couplingmore » PNNL STOMP-CO 2 multiphase flow simulator and ABAQUS® has been developed for the reservoir model which is fully three-dimensional with four horizontal wells and variable layer thickness. The Mohr-Coulomb fracture criterion has been employed, where hydraulic fracture was predicted to occur at an integration point if the fluid pressure at the point exceeded the least compressive principal stress. Evaluation of the results shows that the fracture criterion has not been verified at any node and time step for the CO 2 temperature range predicted at the top of the injection zone.« less