NASA Technical Reports Server (NTRS)
Ehrenfreund, P.; Boon, J. J.; Commandeur, J.; Sagan, C.; Thompson, W. R.; Khare, B.
1995-01-01
Comparative pyrolysis mass spectrometric data of Titan aerosol analogs, called 'tholins', are presented. The Titan tholins were produced in the laboratory at Cornell by irradiation of simulated Titan atmospheres with high energy electrons in plasma discharge. Mass-spectrometry measurements were performed at FOM of the solid phase of various tholins by Curie-point pyrolysis Gas-Chromatography/Mass-Spectrometry (GCMS) and by temperature resolved in-source Pyrolysis Mass-Spectrometry to reveal the composition and evolution temperature of the dissociation products. The results presented here are used to further define the ACP (Aerosol Collector Pyrolyser)-GCMS experiment and provide a basis for modelling of aerosol composition on Titan and for the iterpretation of Titan atmosphere data from the Huygens probe in the future.
NASA Technical Reports Server (NTRS)
Stern, Jennifer C.; Navarro-Gonzalez, Rafael; Freissinet, Caroline; McKay, Christopher P.; Archer, P. Douglas, Jr.; Buch, Arnaud; Coll, Patrice; Eigenbrode, Jennifer L.; Franz, Heather B.; Glavin, Daniel P.;
2014-01-01
The Sampl;e Analysis at Mars (sam) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen bearing compounds during the pyrolysis of surface materials from the three sites at Gale Crater. Preliminary detections of nitrogen species include No, HCN, ClCN, and TFMA ((trifluoro-N-methyl-acetamide), Confirmation of indigenous Martian nitrogen-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate a compound that has also been identified by SAM in Mars solid samples.
NASA Technical Reports Server (NTRS)
Stern, J. C.; Navarro-Gonzales, R.; Freissinet, C.; McKay, C. P.; Archer, P. D., Jr.; Buch, A.; Brunner, A. E.; Coll, P.; Eigenbrode, J. L.; Franz, H. B.;
2014-01-01
The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen-bearing compounds during the pyrolysis of surface materials at Yellowknife Bay in Gale Crater. Preliminary detections of nitrogen species include NO, HCN, ClCN, CH3CN, and TFMA (trifluoro-N-methyl-acetamide). Confirmation of indigenous Martian N-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents (e.g. N-methyl-N-tertbutyldimethylsilyltrifluoroacetamide, MTBSTFA and dimethylformamide, DMF) carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate, a compound that has also been identified by SAM in Mars solid samples.
Pyrolysis process for the treatment of food waste.
Grycová, Barbora; Koutník, Ivan; Pryszcz, Adrian
2016-10-01
Different waste materials were pyrolysed in the laboratory pyrolysis unit to the final temperature of 800°C with a 10min delay at the final temperature. After the pyrolysis process a mass balance of the resulting products, off-line analysis of the pyrolysis gas and evaluation of solid and liquid products were carried out. The gas from the pyrolysis experiments was captured discontinuously into Tedlar gas sampling bags and the selected components were analyzed by gas chromatography (methane, ethene, ethane, propane, propene, hydrogen, carbon monoxide and carbon dioxide). The highest concentration of measured hydrogen (WaCe 61%vol.; WaPC 66%vol.) was analyzed at the temperature from 750 to 800°C. The heating values of the solid and liquid residues indicate the possibility of its further use for energy recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Leif, Roald N.
1993-01-01
High temperature alteration of sedimentary organic matter associated with marine hydrothermal systems involves complex physical and chemical processes that are not easily measured in most natural systems. Many of these processes can be evaluated indirectly by examining the geochemistry of the hydrothermal system in the laboratory. In this investigation, an experimental organic geochemical approach to studying pyrolysis of sedimentary organic matter is applied to the hydrothermal system in the Guaymas Basin, Gulf of California. A general survey of hydrothermal oils and extractable organic matter (bitumen) in hydrothermally altered sediments identified several homologous series of alkanones associated with a high temperature hydrothermal origin. The alkanones range in carbon number from C11 to C30 with no carbon number preference. Alkan-2-ones are in highest concentrations, with lower amounts of 3-, 4-, 5- (and higher) homologs. The alkanones appear to be pyrolysis products synthesized under extreme hydrothermal conditions. Hydrous pyrolysis and confinement pyrolysis experiments were performed to simulate thermally enhanced diagenetic and catagenetic changes in the immature sedimentary organic matter. The extent of alteration was measured by monitoring the n-alkanes, acyclic isoprenoids, steroid and triterpenoid biomarkers, polycyclic aromatic hydrocarbons and alkanones. The results were compared to bitumen extracts from sediments which have been naturally altered by a sill intrusion and accompanied hydrothermal fluid flow. These pyrolysis experiments duplicated many of the organic matter transformations observed in the natural system. Full hopane and sterane maturation occurred after 48 hr in experiments at 330 deg C with low water/rock mass ratios (0.29). A variety of radical and ionic reactions are responsible for the organic compound conversions which occur under extreme hydrothermal conditions. Short duration pyrolysis experiments revealed that a portion of the hydrocarbons generated from kerogen was observed to go through alkene intermediates, and the rate of alkene isomerization was influenced by the ionic strength and catalytic mineral phases. Confinement of the organic pyrolysate to the bulk sediment accelerated the rates of the biomarker epimerization reactions, suggesting that these reactions are influenced strongly by the association of the inorganic matrix, and that the relative rates of some ionic and radical reactions can be influenced by the water/rock ratio during the pyrolysis experiments.
Recent advances in materials toxicology
NASA Technical Reports Server (NTRS)
Russo, D. M.
1979-01-01
An overview of the fire toxicology program, its principal objectives and approach, is outlined. The laboratory methods of assessing pyrolysis product toxicity for two experiments are presented. The two experiments are: a comparison of test end points; and an evaluation of operant techniques. A third experiment is outlined for a comparison of full-scale and laboratory toxicity tests, with the purpose of determining animal survivability in full-scale tests. Future research plans are also outlined.
NASA Technical Reports Server (NTRS)
Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Coll, P.; Glavin, D. P.; Freissinet, C.; Archer, P. D., Jr.; Sutter, B.; Summons, R. E.;
2016-01-01
The Mars Science Laboratory (MSL) Curiosity Rover carries a suite of instruments, one of which is the Sample Analysis at Mars (SAM) experiment. SAM is devoted to the in situ molecular analysis of gases evolving from solid samples collected by Curiosity on Mars surface/sub-surface. Among its three analytical devices, SAM has a gaschromatograph coupled to a quadrupole mass spectrometer (GC-QMS). The GC-QMS is devoted to the separation and identification of organic and inorganic material. Before proceeding to the GC-QMS analysis, the solid sample collected by Curiosity is subjected to a thermal treatment thanks to the pyrolysis oven to release the volatiles into the gas processing system. Depending on the sample, a derivatization method by wet chemistry: MTBSTFA of TMAH can also be applied to analyze the most refractory compounds. The GC is able to separate the organic molecules which are then detected and identified by the QMS (Figure 1). For the second time after the Viking landers in 1976, SAM detected chlorinated organic compounds with the pyrolysis GC-QMS experiment. The detection of perchlorates salts (ClO4-) in soil at the Phoenix Landing site suggests that the chlorohydrocarbons detected could come from the reaction of organics with oxychlorines. Indeed, laboratory pyrolysis experiments have demonstrated that oxychlorines decomposed into molecular oxygen and volatile chlorine (HCl and/or Cl2) when heated which then react with the organic matter in the solid samples by oxidation and/or chlorination processes.
Lewis, James M T; Najorka, Jens; Watson, Jonathan S; Sephton, Mark A
2018-04-01
Jarosite on Mars is of significant geological and astrobiological interest, as it forms in acidic aqueous conditions that are potentially habitable for acidophilic organisms. Jarosite can provide environmental context and may host organic matter. The most common extraction technique used to search for organic compounds on the surface of Mars is pyrolysis. However, thermal decomposition of jarosite releases oxygen into pyrolysis ovens, which degrades organic signals. Jarosite has a close association with the iron oxyhydroxide goethite in many depositional/diagenetic environments. Hematite can form by dehydration of goethite or directly from jarosite under certain aqueous conditions. Goethite and hematite are significantly more amenable than jarosite for pyrolysis experiments employed to search for organic matter. Analysis of the mineralogy and organic chemistry of samples from a natural acidic stream revealed a diverse response for organic compounds during pyrolysis of goethite-rich layers but a poor response for jarosite-rich or mixed jarosite-goethite samples. Goethite units that are associated with jarosite, but do not contain jarosite themselves, should be targeted for organic detection pyrolysis experiments on Mars. These findings are extremely timely, as exploration targets for Mars Science Laboratory include Vera Rubin Ridge (formerly known as "Hematite Ridge"), which may have formed from goethite precursors. Key Words: Mars-Pyrolysis-Jarosite-Goethite-Hematite-Biosignatures. Astrobiology 18, 454-464.
NASA Astrophysics Data System (ADS)
Scharko, N.; Safdari, S.; Danby, T. O.; Howarth, J.; Beiswenger, T. N.; Weise, D.; Myers, T. L.; Fletcher, T. H.; Johnson, T. J.
2017-12-01
Combustion is an oxidation reaction that occurs when there is less fuel available than oxidizers, while pyrolysis is a thermal decomposition process that occurs under "fuel rich" conditions where all of the available oxidizers are consumed leaving some fuel(s) either unreacted or partially reacted. Gas-phase combustion products from biomass burning experiments have been studied extensively; less is known, however, about pyrolysis processes and products. Pyrolysis is the initial reaction occurring in the burning process and generates products that are subsequently oxidized during combustion, yielding highly-oxidized chemicals. This laboratory study investigates the pyrolysis processes by using an FTIR spectrometer to detect and quantify the gas-phase products from thermal decomposition of intact understory fuels from forests in the southeastern United States. In particular, a laboratory flat-flame burner operating under fuel rich conditions (no oxygen) was used to heat individual leaves to cause decomposition. The gas-phase products were introduced to an 8 meter gas cell coupled to an infrared spectrometer were used to monitor the products. Trace gas emissions along with emission ratios, which are calculated by dividing the change in the amount of the trace gas by the change in the amount of CO, for the plant species, gallberry (Ilex glabra) and swampbay (Persea palustris) were determined. Preliminary measurements observed species such as CO2, CO, C2H2, C2H4, HCHO, CH3OH, isoprene, 1,3-butadiene, phenol and NH3 being produced as part of the thermal decomposition process. It is important to note that FTIR will not detect H2.
Kearns, J P; Wellborn, L S; Summers, R S; Knappe, D R U
2014-10-01
Batch isotherm experiments were conducted with chars to study adsorption of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Chars generated from corncobs, bamboo and wood chips in a laboratory pyrolyzer at 400-700 °C were compared with traditional kiln charcoals collected from villages in S/SE Asia and with activated carbons (ACs). 2,4-D uptake by laboratory chars obtained from bamboo and wood chips after 14 h of pyrolysis at 700 °C, from wood chips after 96 h of pyrolysis at 600 °C, and one of the field-collected chars (basudha) was comparable to ACs. H:C and O:C ratios declined with pyrolysis temperature and duration while surface area increased to >500 m(2)/g. Increasing pyrolysis intensity by increasing temperature and/or duration of heating was found to positively influence adsorption capacity yield (mg(2,4-D/g(feedstock))) over the range of conditions studied. Economic analysis showed that high temperature chars can be a cost-effective alternative to ACs for water treatment applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
Najorka, Jens; Watson, Jonathan S.; Sephton, Mark A.
2018-01-01
Abstract Jarosite on Mars is of significant geological and astrobiological interest, as it forms in acidic aqueous conditions that are potentially habitable for acidophilic organisms. Jarosite can provide environmental context and may host organic matter. The most common extraction technique used to search for organic compounds on the surface of Mars is pyrolysis. However, thermal decomposition of jarosite releases oxygen into pyrolysis ovens, which degrades organic signals. Jarosite has a close association with the iron oxyhydroxide goethite in many depositional/diagenetic environments. Hematite can form by dehydration of goethite or directly from jarosite under certain aqueous conditions. Goethite and hematite are significantly more amenable than jarosite for pyrolysis experiments employed to search for organic matter. Analysis of the mineralogy and organic chemistry of samples from a natural acidic stream revealed a diverse response for organic compounds during pyrolysis of goethite-rich layers but a poor response for jarosite-rich or mixed jarosite-goethite samples. Goethite units that are associated with jarosite, but do not contain jarosite themselves, should be targeted for organic detection pyrolysis experiments on Mars. These findings are extremely timely, as exploration targets for Mars Science Laboratory include Vera Rubin Ridge (formerly known as “Hematite Ridge”), which may have formed from goethite precursors. Key Words: Mars—Pyrolysis—Jarosite—Goethite—Hematite—Biosignatures. Astrobiology 18, 454–464. PMID:29298093
Results of the International Energy Agency Round Robin on Fast Pyrolysis Bio-oil Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Douglas C.; Meier, Dietrich; Oasmaa, Anja
An international round robin study of the production of fast pyrolysis bio-oil was undertaken. Fifteen institutions in six countries contributed. Three biomass samples were distributed to the laboratories for processing in fast pyrolysis reactors. Samples of the bio-oil produced were transported to a central analytical laboratory for analysis. The round robin was focused on validating the pyrolysis community understanding of production of fast pyrolysis bio-oil by providing a common feedstock for bio-oil preparation. The round robin included: •distribution of 3 feedstock samples from a common source to each participating laboratory; •preparation of fast pyrolysis bio-oil in each laboratory with themore » 3 feedstocks provided; •return of the 3 bio-oil products (minimum 500 ml) with operational description to a central analytical laboratory for bio-oil property determination. The analyses of interest were: density, viscosity, dissolved water, filterable solids, CHN, S, trace element analysis, ash, total acid number, pyrolytic lignin, and accelerated aging of bio-oil. In addition, an effort was made to compare the bio-oil components to the products of analytical pyrolysis through GC/MS analysis. The results showed that clear differences can occur in fast pyrolysis bio-oil properties by applying different reactor technologies or configurations. The comparison to analytical pyrolysis method suggested that Py-GC/MS could serve as a rapid screening method for bio-oil composition when produced in fluid-bed reactors. Furthermore, hot vapor filtration generally resulted in the most favorable bio-oil product, with respect to water, solids, viscosity, and total acid number. These results can be helpful in understanding the variation in bio-oil production methods and their effects on bio-oil product composition.« less
Pennsylvania's Energy Curriculum for the Secondary Grades: Biological Science.
ERIC Educational Resources Information Center
Pennsylvania State Dept. of Education, Harrisburg.
Described are about two dozen laboratory experiments, demonstrations and class discussions intended to supplement secondary school biology curricula with energy-related learning activities. Concepts examined in these materials include photosynthesis, energy from biomass, feeding relationships, pyrolysis, and respiration. Lessons contain notes to…
The thermal degradation of 5 alpha (H)-cholestane during closed-system pyrolysis
NASA Astrophysics Data System (ADS)
Abbott, Geoffrey D.; Bennett, Barry; Stuart Fetch, G.
1995-06-01
Involatile hydrocarbons were identified following the heating of 5α(H)-cholestane in water with reaction vessel walls composed of 316 grade stainless steel and borosilicate glass. These analyses were compared with the hydrocarbon product compositions from closed-system pyrolysis experiments with no added water. Unsaturated hydrocarbons dominate their saturated counterparts following hydrous pyrolysis in both stainless steel-316 and borosilicate glass. In the absence of added water the converse is true in that saturated components dominate the hydrocarbon mixture. Backbone rearrangement in the steroid nucleus leading to spirosterene formation was only observed under aqueous conditions in both borosilicate glass and stainless steel-316 vessels. These comparisons demonstrate that water, as opposed to reaction vessel surface catalytic effects, plays a central role in mediating hydrocarbon degradation during closed-system hydrous pyrolysis. 5α(H)-cholestane degradation under aqueous conditions is a complex composite of dissociative and rearrangement processes. These include (I) carbon-carbon bond cleavage in the sidechains as well as the ring system, (2) dehydrogenation, and (3) backbone rearrangement. These laboratory experiments provide a product description of the involatile hydrocarbons which will be the basis for a mechanistic study of 5α(H)-cholestane degradation in hot water.
NASA Technical Reports Server (NTRS)
Glavin, D. P.; Conrad, P.; Dworkin, J. P.; Eigenbrode, J.; Mahaffy, P. R.
2011-01-01
One key goal for the future exploration of Mars is the search for chemical biomarkers including complex organic compounds important in life on Earth. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) will provide the most sensitive measurements of the organic composition of rocks and regolith samples ever carried out in situ on Mars. SAM consists of a gas chromatograph (GC), quadrupole mass spectrometer (QMS), and tunable laser spectrometer to measure volatiles in the atmosphere and released from rock powders heated up to 1000 C. The measurement of organics in solid samples will be accomplished by three experiments: (1) pyrolysis QMS to identify alkane fragments and simple aromatic compounds; pyrolysis GCMS to separate and identify complex mixtures of larger hydrocarbons; and (3) chemical derivatization and GCMS extract less volatile compounds including amino and carboxylic acids that are not detectable by the other two experiments.
NASA Astrophysics Data System (ADS)
Lanteigne, Jean-Remi
The present thesis covers an applied study on tire pyrolysis. The main objective is to develop tools to allow predicting the production and the quality of oil from tire pyrolysis. The first research objective consisted in modelling the kinetics of tires pyrolysis in a reactor, namely an industrial rotary drum operating in batch mode. A literature review performed later demonstrated that almost all kinetics models developed to represent tire pyrolysis could not represent the actual industrial process with enough accuracy. Among the families of kinetics models for pyrolysis, three have been identified: models with one single global reaction, models with multiple combined parallel reactions, and models with multiple parallel and series reactions. It was observed that these models show limitations. In the models with one single global reaction and with multiple parallels reactions, the production of each individual pyrolytic product cannot be predicted, but only for combined volatiles. Morevoer, the mass term in the kinetics refers to the final char weight (Winfinity) that varies with pyrolysis conditions, which yields less robust models. Also, despite the fact that models with multiple parallels and series reactions can predict the rate of production for each pyrolysis product, the selectivities are determined for operating temperatures instead of real mass temperatures, giving models for which parameters tuning is not adequate when used at the industrial scale. A new kinetics model has been developed, allowing predicting the rate of production of noncondensable gas, oil, and char from tire pyrolysis. The novelty of this model is the consideration of intrinsic selectivities for each product as a function of temperature. This hypothesis has been assumed valid considering that in the industrial pyrolysis process, pyrolysis kinetics is limiting. The developed model considers individual kinetics for each of the three pyrolytic products proportional to the global decomposition kinetics of pyrolysables. The simulation with data obtained in industrial operation showed the robustness of the model to predict with accuracy in transient regime, tires pyrolysis, with the help of model parameters obtained at laboratory scale, namely in regards of the trigger of production, the residence time of tires (dynamic production) and the amount of oil produced (cumulative yield). It is a novel way to model pyrolysis that could be extrapolated to new waste materials. The second objective of this doctoral research was to determine the evolution of specific tires specific heat during pyrolysis and the enthalpy of pyrolysis. The origin of this objective comes from a primary contradiction. With few exceptions, it is acknowledged that organic materials pyrolysis is globally an endothermic phenomenon. At the opposite, all experiments led with laboratory apparatuses such as DSC (Differential Scanning Calorimetry) showed exothermic peaks during dynamic experiments (constant heating rate). It has been confirmed by results obtained at the industrial scale, where no sign of exothermicity has been observed. The Hess Law has also confirmed these results, that globally, pyrolysis is indeed a completely endothermic process. An accurate energy balance is required to predict mass temperature during pyrolysis, this parameter being unbindable from kinetics. An advanced investigation of char first allowed demonstrating that specific heat of solids during pyrolysis decreases with increasing temperature until the weight loss peak is reached, around 400°C, and then starts increasing again. This observation, combined with the fact that the sample loses weight during pyrolysis is considered as the major cause of the apparition of an exothermic peak in laboratory scale experiments. That is, the control system of these apparatuses generates a bias and an unavoidable overheat of the samples producing this exothermic behavior. It would thus be an artifact. On the base of new data on the evolution of global specific heat during pyrolysis, a model of the energy balance has been developed at the industrial scale to determine the enthalpy of pyrolysis. The simulation has shown that a major part of the heat transferred to the pyrolized mass would make its temperature increase. Next, an enthalpy of pyrolysis dependent of weight loss was obtained. Finally, two other terms of enthalpy have been found, namely an enthalpy for the breakage of sulfur bridges and an enthalpy for the stabilization of char when conversion approaches completion. This research will have allowed establishing a novel general methodology to determine the enthalpy of pyrolysis. More particularly, new clarifications hasve been obtained in regards to the evolution of specific heat of solids during pyrolysis and new enthalpies of pyrolysis, all endothermic, could be obtained, in agreement with the theoretical expectations. The third research objective concerned the behavior of sulfur during tires pyrolysis. With as a premise that sulfur is an intrinsic contaminant of many types of waste, it is critical to clarify its fate during pyrolysis, in the present case for waste tires. It has been observed in the literature that some quantitative analyses had been presented, but generally, the mechanisms for the distribution of sulfur within the pyrolytic products remain unclear. Thus, it was then not possible to predict the transfer of sulfur to each of the tire pyrolysis products. The results taken form literature have been complemented with a series of TGA experiments followed by complete elemental analyses of the residual solids. Mass balances have been performed in order to characterize the distribution of elements within the three products (noncondensable gas, oil, and char). A novel parameter has been created during this research: the sulfur loss selectivity. This intrinsic selectivity is a prediction of the distribution of sulfur within the pyrolysis products as a function of temperature. Three phenomena has been identified that could affect the sulfur loss selectivity. First, the natural devolatilization of sulfur due to pyrolysis. Next, the sulfur devolatilization due to the desulfurization of the solid matrix by hydrogen and finally, the clustering of sulfur in the solid state due to metal sulfidation (zinc and iron). The results have shown that this selectivity reach a limit value of 1 when pyrolysis is limited by the kinetics and in the absence of metal. When the mass transfer is limiting at low temperature (<500°C) the selectivity will be greater than 1. At a temperature over 350°C with the presence of metals, the selectivity will be lower than 1. It is a useful tool for industrial pyrolysis processes, being a novel indicator for the distribution of contaminants during the pyrolysis of waste. A better comprehension of these mechanisms allows elaborating a better strategy when designing these industrial processes. For example, in light of this research, it could be preferable to pre-treat the tires at lower temperature to eliminate a significant part of sulfur before pyrolyzing them at high temperature. The resulting pyrolytic products would then necessitate a lighter purification post-treatment, being more efficient and more economical.
NASA Astrophysics Data System (ADS)
Millan, Maeva; Szopa, Cyril; Buch, Arnaud; Belmahdi, Imène; Coll, Patrice; Glavin, Daniel P.; Freissinet, Caroline; Archer, Doug; Sutter, Brad; Summons, Roger E.; Navarro-Gonzalez, Rafael; Cabane, Michel; Mahaffy, Paul
2016-04-01
The Sample Analysis at Mars (SAM) experiment onboard the Curiosity rover of the Mars Science Laboratory mission is partly devoted to the in situ molecular analysis of gases evolving from solid samples collected on Mars surface/sub-surface. SAM has a gas-chromatograph coupled to a quadrupole mass spectrometer (GC-QMS) devoted to the separation and identification of organic and inorganic material [1]. Before proceeding to the GC-QMS analysis, the solid sample collected by Curiosity is subjected to a thermal treatment thanks to the pyrolysis oven to release the volatiles into the gas processing system. As the Viking landers in 1976 [2], SAM detected chlorohydrocarbons with the pyrolysis GC-QMS experiment [3,4]. The detection of perchlorates salts in soil at the Phoenix Landing site [6] suggests that these chlorohydrocarbons could come from the reaction of organics with oxychlorines. Oxychlorines indeed decomposed into molecular oxygen and volatile chlorine when heated and react with the organic matter in the samples by oxidation and/or chlorination processes. [3,5,7,8]. During SAM pyrolysis, samples are heated to 850°C. SAM detected C1 to C3 chloroalkanes, entirely attributed to reaction products occurring during the pyrolysis experiment between oxychlorines and organic carbon from instrument background [3] and chlorobenzene and C2 to C4 dichloroalkanes produced by reaction between Mars endogenous organics with oxychlorines [4]. To help understanding the influence of perchlorate and chlorate salts on organic matter during SAM pyrolysis, we systemically study the reaction products formed during pyrolysis of various organic compounds mixed with various perchlorates and chlorates. We selected organics from simple molecule forms as for instance PAHs and amino acids to complex material (>30 carbon atoms) such as kerogen. The perchlorate and chlorate salts are prepared at 1 wt % concentration in silica and mixed with the organics to study the potential qualitative and/or quantitative effects. The experiments are performed on a laboratory GC-QMS with a Restek Rxi-5 column (30m x 0.25mm x 0.25μm) and an Intersciences pyrolyser. The mixture is pyrolyzed at different temperatures up to 900°C to cover the SAM temperature range. Different experiments are done to discriminate the pyrolysis products directly coming from the organics, and those produced from the reaction with oxychlorine. These experiments are under progress and should bring key information on the potential to identify Martian organics when pyrolyzing solid samples. Depending on the organic families studied, we may find recurring molecules, which are potentially present in Mars' surface samples. This work could thus highlight some organic precursors of the chlorinated compounds found on Mars, and support the interpretation of SAM measurements. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Biemann, K. et al (1977) JGR, 82, 4641-4658. [3] Glavin, D. et al. (2013), JGR 118, 1955-1973. [4] Freissinet, C. et al. (2015) JGR. [5] Leshin L. et al. (2013), Science. [6] Hecht, (2009), Science, 325 64-67. [7] Navarro-Gonzalez et al. (2010) JGR 115, EI12010. [8] Steninger, H. et al (2012) Planet. Space Sci. 71, 9-17. Acknowledgments: French Space Agency (CNES) support for SAM-GC development and exploitation.
Publications - GMC 242 | Alaska Division of Geological & Geophysical
DGGS GMC 242 Publication Details Title: Total organic carbon and rock-eval pyrolysis evaluation of 21 Core Laboratories, 1995, Total organic carbon and rock-eval pyrolysis evaluation of 21 hand-picked coal Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon Top of Page Department of Natural Resources, Division
Publications - GMC 83 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 83 Publication Details Title: Rock-eval pyrolysis data and interpretation for the Alaska and Ruth Laboratories, Inc., 1988, Rock-eval pyrolysis data and interpretation for the Alaska Information gmc083.pdf (274.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis Top of Page Department of Natural
Kwon, Eilhann E; Oh, Jeong-Ik; Kim, Ki-Hyun
2015-09-01
Our work reported the CO2-assisted mitigation of PAHs and VOCs in the thermo-chemical process (i.e., pyrolysis). To investigate the pyrolysis of used tires to recover energy and chemical products, the experiments were conducted using a laboratory-scale batch-type reactor. In particular, to examine the influence of the CO2 in pyrolysis of a tire, the pyrolytic products including C1-5-hydrocarbons (HCs), volatile organic carbons (VOCs), and polycyclic aromatic hydrocarbons (PAHs) were evaluated qualitatively by gas chromatography (GC) with mass spectroscopy (MS) as well as with a thermal conductivity detector (TCD). The mass balance of the pyrolytic products under various pyrolytic conditions was established on the basis of their weight fractions of the pyrolytic products. Our experimental work experimentally validated that the amount of gaseous pyrolytic products increased when using CO2 as a pyrolysis medium, while substantially altering the production of pyrolytic oil in absolute content (7.3-17.2%) and in relative composition (including PAHs and VOCs). Thus, the co-feeding of CO2 in the pyrolysis process can be considered an environmentally benign and energy efficient process. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haydary, J., E-mail: juma.haydary@stuba.sk; Susa, D.; Dudáš, J.
Highlights: ► Pyrolysis of aseptic packages was carried out in a laboratory flow reactor. ► Distribution of tetrapak into the product yields was obtained. ► Composition of the pyrolysis products was estimated. ► Secondary thermal and catalytic decomposition of tars was studied. ► Two types of catalysts (dolomite and red clay marked AFRC) were used. - Abstract: Pyrolysis of aseptic packages (tetrapak cartons) in a laboratory apparatus using a flow screw type reactor and a secondary catalytic reactor for tar cracking was studied. The pyrolysis experiments were realized at temperatures ranging from 650 °C to 850 °C aimed at maximizingmore » of the amount of the gas product and reducing its tar content. Distribution of tetrapak into the product yields at different conditions was obtained. The presence of H{sub 2}, CO, CH{sub 4}, CO{sub 2} and light hydrocarbons, HCx, in the gas product was observed. The Aluminum foil was easily separated from the solid product. The rest part of char was characterized by proximate and elemental analysis and calorimetric measurements. The total organic carbon in the tar product was estimated by elemental analysis of tars. Two types of catalysts (dolomite and red clay marked AFRC) were used for catalytic thermal tar decomposition. Three series of experiments (without catalyst in a secondary cracking reactor, with dolomite and with AFRC) at temperatures of 650, 700, 750, 800 and 850 °C were carried out. Both types of catalysts have significantly affected the content of tars and other components in pyrolytic gases. The effect of catalyst on the tetrapack distribution into the product yield on the composition of gas and on the total organic carbon in the tar product is presented in this work.« less
Publications - GMC 114 | Alaska Division of Geological & Geophysical
DGGS GMC 114 Publication Details Title: Total organic carbon and rock eval pyrolysis data and analysis and Ruth Laboratories, Inc., 1989, Total organic carbon and rock eval pyrolysis data and analysis for gmc114.pdf (171.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis Top of Page Department of Natural Resources
NASA Technical Reports Server (NTRS)
Huizinga, Bradley J.; Tannenbaum, Eli; Kaplan, I. R.
1987-01-01
A series of pyrolysis experiments, utilizing two different immature kerogens (from the Monterey and Green River Formations) mixed with common sedimentary minerals (calcite, illite, or Na-montmorillonite), was conducted to study the impact of the mineral matrix on the bitumen that was generated. Calcite has no significant influence on the thermal evolution of bitumen and also shows virtually no adsorption capacity for any of the pyrolysate. In contrast, montmorillonite (M) and illite, to a lesser extent, alter bitumen during dry pyrolysis. M and illite also display strong adsorption capacities for the polar constituents of bitumen. By this process, hydrocarbons are substantially concentrated within the pyrolysate that is not strongly adsorbed on the clay matrices. The effects of the clay minerals are significantly reduced during hydrous pyrolysis. The strong adsorption capacities of M and illite, as well as their thermocatalytic properties, may in part explain why light oils and gases are generated from certain argillaceous source-rock assemblages, whereas heavy immature oils are often derived from carbonate source rocks.
Pyrolysis of forest residues: an approach to techno-economics for bio-fuel production
USDA-ARS?s Scientific Manuscript database
The techno-economics for producing liquid fuels from Maine forest residues were determined from a combination of: (1) laboratory experiments at USDA-ARS’s Eastern Regional Research Center using hog fuel (a secondary woody residue produced from mill byproducts such as sawdust, bark and shavings) as a...
Haydary, J; Susa, D; Dudáš, J
2013-05-01
Pyrolysis of aseptic packages (tetrapak cartons) in a laboratory apparatus using a flow screw type reactor and a secondary catalytic reactor for tar cracking was studied. The pyrolysis experiments were realized at temperatures ranging from 650 °C to 850 °C aimed at maximizing of the amount of the gas product and reducing its tar content. Distribution of tetrapak into the product yields at different conditions was obtained. The presence of H2, CO, CH4, CO2 and light hydrocarbons, HCx, in the gas product was observed. The Aluminum foil was easily separated from the solid product. The rest part of char was characterized by proximate and elemental analysis and calorimetric measurements. The total organic carbon in the tar product was estimated by elemental analysis of tars. Two types of catalysts (dolomite and red clay marked AFRC) were used for catalytic thermal tar decomposition. Three series of experiments (without catalyst in a secondary cracking reactor, with dolomite and with AFRC) at temperatures of 650, 700, 750, 800 and 850 °C were carried out. Both types of catalysts have significantly affected the content of tars and other components in pyrolytic gases. The effect of catalyst on the tetrapack distribution into the product yield on the composition of gas and on the total organic carbon in the tar product is presented in this work. Copyright © 2013 Elsevier Ltd. All rights reserved.
Co-pyrolysis of swine manure with agricultural plastic waste: Laboratory-scale study
USDA-ARS?s Scientific Manuscript database
Manure-derived biochar is the solid product resulting from pyrolysis of animal manures. It has considerable potential both to improve soil quality with high levels of nutrients and to reduce contaminants in water and soil. However, the combustible gas produced from manure pyrolysis generally does no...
Computational Studies of Pyrolysis and Upgrading of Bio-oils: Virtual Special Issue
Xiong, Qingang; Robichaud, David J.
2017-03-23
As research activities continue, our understanding of biomass pyrolysis has been significantly elevated and we sought to arrange this Virtual Special Issue (VSI) in ACS Sustainable Chemistry & Engineering to report recent progress on computational and experimental studies of biomass pyrolysis. Beyond highlighting the five national laboratories' advancements, prestigious researchers in the field of biomass pyrolysis have been invited to report their most recent activities.
NASA Astrophysics Data System (ADS)
Shuai, Yanhua; Douglas, Peter M. J.; Zhang, Shuichang; Stolper, Daniel A.; Ellis, Geoffrey S.; Lawson, Michael; Lewan, Michael D.; Formolo, Michael; Mi, Jingkui; He, Kun; Hu, Guoyi; Eiler, John M.
2018-02-01
Multiply isotopically substituted molecules ('clumped' isotopologues) can be used as geothermometers because their proportions at isotopic equilibrium relative to a random distribution of isotopes amongst all isotopologues are functions of temperature. This has allowed measurements of clumped-isotope abundances to be used to constrain formation temperatures of several natural materials. However, kinetic processes during generation, modification, or transport of natural materials can also affect their clumped-isotope compositions. Herein, we show that methane generated experimentally by closed-system hydrous pyrolysis of shale or nonhydrous pyrolysis of coal yields clumped-isotope compositions consistent with an equilibrium distribution of isotopologues under some experimental conditions (temperature-time conditions corresponding to 'low,' 'mature,' and 'over-mature' stages of catagenesis), but can have non-equilibrium (i.e., kinetically controlled) distributions under other experimental conditions ('high' to 'over-mature' stages), particularly for pyrolysis of coal. Non-equilibrium compositions, when present, lead the measured proportions of clumped species to be lower than expected for equilibrium at the experimental temperature, and in some cases to be lower than a random distribution of isotopes (i.e., negative Δ18 values). We propose that the consistency with equilibrium for methane formed by relatively low temperature pyrolysis reflects local reversibility of isotope exchange reactions involving a reactant or transition state species during demethylation of one or more components of kerogen. Non-equilibrium clumped-isotope compositions occur under conditions where 'secondary' cracking of retained oil in shale or wet gas hydrocarbons (C2-5, especially ethane) in coal is prominent. We suggest these non-equilibrium isotopic compositions are the result of the expression of kinetic isotope effects during the irreversible generation of methane from an alkyl precursor. Other interpretations are also explored. These findings provide new insights into the chemistry of thermogenic methane generation, and may provide an explanation of the elevated apparent temperatures recorded by the methane clumped-isotope thermometer in some natural gases. However, it remains unknown if the laboratory experiments capture the processes that occur at the longer time and lower temperatures of natural gas formation.
Agar, David A; Kwapinska, Marzena; Leahy, James J
2018-02-26
Sludge from municipal wastewater treatment plants and organic fines from mechanical sorting of municipal solid waste (MSW) are two common widespread waste streams that are becoming increasingly difficult to utilise. Changing perceptions of risk in food production has limited the appeal of sludge use on agricultural land, and outlets via landfilling are diminishing rapidly. These factors have led to interest in thermal conversion technologies whose aim is to recover energy and nutrients from waste while reducing health and environmental risks associated with material re-use. Pyrolysis yields three output products: solid char, liquid oils and gas. Their relative distribution depends on process parameters which can be somewhat optimised depending on the end use of product. The potential of pyrolysis for the conversion of wastewater sludge (SS) and organic fines of MSW (OF) to a combustion gas and a carbon-rich char has been investigated. Pyrolysis of SS and OF was done using a laboratory fixed-bed reactor. Herein, the physical characterisation of the reactor is described, and results on pyrolysis yields are presented. Feedstock and chars have been characterised using standard laboratory methods, and the composition of pyrolysis gases was analysed using micro gas chromatography. Product distribution (char/liquid/gas) from the pyrolysis of sewage sludge and composted MSW fines at 700°C for 10 min were 45/26/29 and 53/14/33%, respectively. The combustible fractions of pyrolysis gases range from 36 to 54% for SS feedstock and 62 to 72% from OF. The corresponding lower heating value range of sampled gases were 11.8-19.1 and 18.2-21.0 MJ m -3 , respectively.
Insights into oil cracking based on laboratory experiments
Hill, R.J.; Tang, Y.; Kaplan, I.R.
2003-01-01
The objectives of this pyrolysis investigation were to determine changes in (1) oil composition, (2) gas composition and (3) gas carbon isotope ratios and to compare these results with hydrocarbons in reservoirs. Laboratory cracking of a saturate-rich Devonian oil by confined, dry pyrolysis was performed at T = 350-450??C, P = 650 bars and times ranging from 24 h to 33 days. Increasing thermal stress results in the C15+ hydrocarbon fraction cracking to form C6-14 and C1-5 hydrocarbons and pyrobitumen. The C6-14 fraction continues to crack to C 1-5 gases plus pyrobitumen at higher temperatures and prolonged heating time and the ?? 13Cethane-?? 13Cpropane difference becomes greater as oil cracking progresses. There is considerable overlap in product generation and product cracking. Oil cracking products accumulate either because the rate of generation of any product is greater than the rate of removal by cracking of that product or because the product is a stable end member under the experimental conditions. Oil cracking products decrease when the amount of product generated from a reactant is less than the amount of product cracked. If pyrolysis gas compositions are representative of gases generated from oil cracking in nature, then understanding the processes that alter natural gas composition is critical. ?? 2003 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Millan, M.; Lewis, J. M. T.; Eigenbrode, J. L.; Freissinet, C.; Szopa, C.; Buch, A.; McAdam, A.; Glavin, D. P.; Navarro-Gonzalez, R.; Johnson, S. S.; Mahaffy, P. R.
2017-12-01
The Curiosity rover is currently analyzing the base of Mt Sharp in Mars' Gale crater to find clues of habitability in the stratigraphic layers of rocks. One of its goal is the search of organic compounds thanks to the Sample Analysis at Mars (SAM) experiment. With this aim, SAM performs in situ molecular analysis of gases evolved from the heat of the solid samples collected by Curiosity. SAM uses a gas-chromatograph mass-spectrometer (GCMS), to detect/identify inorganics and organics present in the samples. During the pyrolysis, chemical reactions can occur between the gases thermally released from minerals and organic molecules SAM is looking for. Beyond the minerals involved, oxychlorines, likely spread at Mars' surface, liberate dioxygen and chlorine species, and sulfates release sulfur-bearing species. The detection of Cl- and S-bearing organics were attributed to reactions between oxychlorines, sulfates and organics. These last were proved to come from SAM instrument background and Mars indigenous organics, proving the presence of organics on Mars. However, the identification of their precursors is complex due to the chemical reactivity in the SAM ovens. Recent studies suggest compounds from various chemical families, as potential precursors of the chlorohydrocarbons detected on Mars, but considered limited parameters and mineralogy. Laboratory experiments have been performed to understand the influence of oxychlorines on organic matter incorporated in sulfates, during pyrolysis. To do so, organics from chemical families potentially present on Mars and synthetized in laboratory within jarosite, a ferric sulfate, were pyrolyzed in presence of oxychlorines. GCMS was used to identify the pyrolysis products and try to correlate them with the organo-chlorinated compounds detected by SAM. This helps discriminate their likely parent organics or chemical families. The work includes the investigation of sulfurized compounds generated from reactions between the organics, including the wet chemistry reagent (MTBSTFA) known to be present in SAM background, and the S-bearing inorganic species released from the Jarosite. The results and conclusions about the SAM measurements will support the analysis and interpretation of the future analyses to be done by the MOMA-GCMS experiment of the Exomars 2020 mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Qingang; Robichaud, David J.
As research activities continue, our understanding of biomass pyrolysis has been significantly elevated and we sought to arrange this Virtual Special Issue (VSI) in ACS Sustainable Chemistry & Engineering to report recent progress on computational and experimental studies of biomass pyrolysis. Beyond highlighting the five national laboratories' advancements, prestigious researchers in the field of biomass pyrolysis have been invited to report their most recent activities.
Graphical Interface for the Study of Gas-Phase Reaction Kinetics: Cyclopentene Vapor Pyrolysis
NASA Astrophysics Data System (ADS)
Marcotte, Ronald E.; Wilson, Lenore D.
2001-06-01
The undergraduate laboratory experiment on the pyrolysis of gaseous cyclopentene has been modernized to improve safety, speed, and precision and to better reflect the current practice of physical chemistry. It now utilizes virtual instrument techniques to create a graphical computer interface for the collection and display of experimental data. An electronic pressure gauge has replaced the mercury manometer formerly needed in proximity to the 500 °C pyrolysis oven. Students have much better real-time information available to them and no longer require multiple lab periods to get rate constants and acceptable Arrhenius parameters. The time saved on manual data collection is used to give the students a tour of the computer interfacing hardware and software and a hands-on introduction to gas-phase reagent preparation using a research-grade high-vacuum system. This includes loading the sample, degassing it by the freeze-pump-thaw technique, handling liquid nitrogen and working through the logic necessary for each reconfiguration of the diffusion pump section and the submanifolds.
Design of pyrolysis reactor for production of bio-oil and bio-char simultaneously
NASA Astrophysics Data System (ADS)
Aladin, Andi; Alwi, Ratna Surya; Syarif, Takdir
2017-05-01
The residues from the wood industry are the main contributors to biomass waste in Indonesia. The conventional pyrolysis process, which needs a large energy as well as to produce various toxic chemical to the environment. Therefore, a pyrolysis unit on the laboratory scale was designed that can be a good alternative to achieve zero-waste and low energy cost. In this paper attempts to discuss design and system of pyrolysis reactor to produce bio-oil and bio-char simultaneously.
Improved Pyrolysis Micro reactor Design via Computational Fluid Dynamics Simulations
2017-05-23
Dynamics Simulations Ghanshyam L. Vaghjiani Air Force Research Laboratory (AFMC) AFRL/RQRS 1 Ara Drive Edwards AFB, CA 93524-7013 Air Force...Aerospace Systems Directorate Air Force Research Laboratory AFRL/RQRS 1 Ara Road Edwards AFB, CA 93524 *Email: ghanshyam.vaghjiani@us.af.mil IMPROVED...PYROLYSIS MICRO-REACTOR DESIGN VIA COMPUTATIONAL FLUID DYNAMICS SIMULATIONS Ghanshyam L. Vaghjiani* DISTRIBUTION A: Approved for public release
USDA-ARS?s Scientific Manuscript database
Catalytic fast pyrolysis of eucalyptus wood was performed on a continuous laboratory scale fluidized bed fast pyrolysis system. Catalytic activity was monitored from use of fresh catalyst up to a cumulative biomass to catalyst ratio (B/C) of 4/1 over extruded pellets of three different ZSM-5 catalys...
NASA Technical Reports Server (NTRS)
Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Glavin, D. P.; Freissinet, C.; Eigenbrode, J. L.; Archer, P. D., Jr,; Sutter, B.; Mahaffy, P.
2017-01-01
One among the main objectives of the Sample Analysis at Mars (SAM) experiment is the in situ molecular analysis of gases evolving from solid samples heated up to approximately 850 degrees Centigrade, and collected by Curiosity on Mars surface/sub-surface in Gale crater. With this aim, SAM uses a gas-chromatograph coupled to a quadrupole mass spectrometer (GC-QMS) devoted to separate, detect and identify both volatile inorganic and organic compounds. SAM detected chlorinated organic molecules produced in evolved gas analysis (EGA) experiments. Several of these were also detected by the Viking experiments in 1976. SAM also detected oxychlorine compounds that were present at the Phoenix landing site. The oxychlorines may be prevelant over much of the martian surface. The C1 to C3 aliphatic chlorohydrocarbons (chloromethane and di- and trichloromethane) detected by SAM were attributed to reaction products occurring between the oxychlorines phases and the organic compounds coming from SAM instrument background. But SAM also showed the presence of a large excess of chlorobenzene and C2 to C4 dichloroalkanes among the volatile species released by the Cumberland sample of the Sheepbed mudstone. For the first time in the history of the Mars exploration, this proved the presence of Mars indigenous organic material at the Mars' surface. However, the identification of the precursor organic compounds of these chlorohydrocarbons is difficult due to the complexity of the reactions occurring during the sample pyrolysis. Laboratory pyrolysis experiments have demonstrated that oxychlorines phases such as perchlorates and chlorates, decomposed into dioxygen and volatile chlorine bearing molecules (HCl and/or Cl2) during the pyrolysis. These chemical species can then react with the organic molecules present in the martian solid samples through oxidation, chlorination and oxychlorination processes.
Comparison of artificial maturation of lignite in hydrous and nonhydrous conditions
Behar, F.; Lewan, M.D.; Lorant, F.; Vandenbroucke, M.
2003-01-01
The objectives of the study are to compare product compositions and yields generated from lignite artificially matured by open nonhydrous pyrolysis, closed nonhydrous pyrolysis, and hydrous pyrolysis. The pyrolysis products were fractionated into CO2, H2O, CH4, C2-C5, C8-C14, C14+ saturates, C14+ aromatics and NSOs (resins+asphaltenes). All three methods generated high and similar quantities of water during pyrolysis that ranged between 14.6 and 15.2 wt.% of the original lignite. As a result of this high water content generated by the lignite, the experiments with no added water are referred to as nonhydrous rather than anhydrous. Rock-Eval pyrolysis and elemental analyses were conducted on the recovered lignite after solvent extraction to determine their residual hydrocarbon generation potential and to plot their position in a van Krevelen diagram, respectively. Residual lignite from the closed nonhydrous and hydrous experiments showed relationships between vitrinite reflectance (%Ro) values and atomic H/C ratios that occurred within the fields observed for natural maturation of coal. Although no significant differences in the atomic H/C ratios were observed between closed nonhydrous and hydrous pyrolysis, the vitrinite reflectance values were on the average 0.2% Ro lower in the residual lignite from the nonhydrous experiments. The remaining hydrocarbon generation potential as determined by Rock-Eval pyrolysis of the residual lignite showed that the nonhydrous residuals had on the average 16 mg more hydrocarbon potential per gram of original lignite than the hydrous residuals. This suggests there is a better release of the pyrolysis products from the lignite network in the hydrous experiments once generation occurs. For gas generation, at maximum yields, open nonhydrous pyrolysis generates the most hydrocarbon gas (21.0 mg/g original lignite), which is 20% more than closed nonhydrous pyrolysis and 29% more than hydrous pyrolysis. Closed nonhydrous pyrolysis generates on the average 14% more gas than hydrous pyrolysis, but the proportionality of the generated hydrocarbon gases is essentially the same for both pyrolysis methods. At maximum yields, CO2 generation is greatest in hydrous pyrolysis (99.5 mg/g original lignite), with yields being 37 percent higher than closed nonhydrous pyrolysis and 26% higher than open nonhydrous pyrolysis. The maximum yields of C14+ products are highest and similar for open nonhydrous pyrolysis and hydrous pyrolysis (125.6 and 125.9 mg/g lignite, respectively), and are more than 70% higher than closed nonhydrous pyrolysis. This difference in the maximum yields of C14+ products can be explained by differences in the proportionality between either cracking reactions that result in liquid product and char formation or trapping of generated products within the coal network (cross-linking reactions). Maximum yields of C14+ aliphatics from hydrous experiments may not have been attained, but the maximums that were observed and their GC traces are similar for the three pyrolysis systems.
Shuai, Yanhua; Douglas, Peter M.J.; Zhang, Shuichang; Stolper, Daniel A.; Ellis, Geoffrey S.; Lawson, Michael; Lewan, Michael; Formolo, Michael; Mi, Jingkui; He, Kun; Hu, Guoyi; Eiler, John M.
2018-01-01
Multiply isotopically substituted molecules (‘clumped’ isotopologues) can be used as geothermometers because their proportions at isotopic equilibrium relative to a random distribution of isotopes amongst all isotopologues are functions of temperature. This has allowed measurements of clumped-isotope abundances to be used to constrain formation temperatures of several natural materials. However, kinetic processes during generation, modification, or transport of natural materials can also affect their clumped-isotope compositions. Herein, we show that methane generated experimentally by closed-system hydrous pyrolysis of shale or nonhydrous pyrolysis of coal yields clumped-isotope compositions consistent with an equilibrium distribution of isotopologues under some experimental conditions (temperature–time conditions corresponding to ‘low,’ ‘mature,’ and ‘over-mature’ stages of catagenesis), but can have non-equilibrium (i.e., kinetically controlled) distributions under other experimental conditions (‘high’ to ‘over-mature’ stages), particularly for pyrolysis of coal. Non-equilibrium compositions, when present, lead the measured proportions of clumped species to be lower than expected for equilibrium at the experimental temperature, and in some cases to be lower than a random distribution of isotopes (i.e., negative Δ18 values). We propose that the consistency with equilibrium for methane formed by relatively low temperature pyrolysis reflects local reversibility of isotope exchange reactions involving a reactant or transition state species during demethylation of one or more components of kerogen. Non-equilibrium clumped-isotope compositions occur under conditions where ‘secondary’ cracking of retained oil in shale or wet gas hydrocarbons (C2-5, especially ethane) in coal is prominent. We suggest these non-equilibrium isotopic compositions are the result of the expression of kinetic isotope effects during the irreversible generation of methane from an alkyl precursor. Other interpretations are also explored. These findings provide new insights into the chemistry of thermogenic methane generation, and may provide an explanation of the elevated apparent temperatures recorded by the methane clumped-isotope thermometer in some natural gases. However, it remains unknown if the laboratory experiments capture the processes that occur at the longer time and lower temperatures of natural gas formation.
Çepelioğullar, Özge; Pütün, Ayşe E
2014-10-01
In this study, thermochemical conversion of plastic wastes (PET and PVC) together with an agricultural waste (hazelnut shell) was investigated. In order to determine the thermal and kinetic behaviours, pyrolysis experiments were carried out from room temperature to 800 °C, with a heating rate of 10 °C min(-1) in the presence of a N2 atmosphere in a thermogravimetric analyzer. With the obtained thermogravimetric data, an appropriate temperature was specified for the pyrolysis of biomass-plastic wastes in a fixed-bed reactor. At the second step, pyrolysis experiments were carried out at the same conditions with the thermogravimetric analyzer, except the final temperature which was up to 500 °C in this case. After pyrolysis experiments, pyrolysis yields were calculated and characterization studies for bio-oil were investigated. Experimental results showed that co-pyrolysis has an important role in the determination of the pyrolysis mechanism and the process conditions while designing/implementing a thermochemical conversion method where biomass-plastic materials were preferred as raw materials. © The Author(s) 2014.
Rooney, A.D.; Selby, D.; Lewan, M.D.; Lillis, P.G.; Houzay, J.-P.
2012-01-01
Successful application of the 187Re–187Os geochronometer has enabled the determination of accurate and precise depositional ages for organic-rich sedimentary rocks (ORS) as well as establishing timing constraints of petroleum generation. However, we do not fully understand the systematics and transfer behaviour of Re and Os between ORS and petroleum products (e.g., bitumen and oil). To more fully understand the behaviour of Re–Os systematics in both source rocks and petroleum products we apply hydrous pyrolysis to two immature hydrocarbon source rocks: the Permian Phosphoria Formation (TOC = 17.4%; Type II-S kerogen) and the Jurassic Staffin Formation (TOC = 2.5%; Type III kerogen). The laboratory-based hydrous pyrolysis experiments were carried out for 72 h at 250, 300, 325 and 350 °C. These experiments provided us with whole rock, extracted rock and bitumen and in some cases expelled oil and asphaltene for evaluation of Re–Os isotopic and elemental abundance. The data from these experiments demonstrate that the majority (>95%) of Re and Os are housed within extracted rock and that thermal maturation does not result in significant transfer of Re or Os from the extracted rock into organic phases. Based on existing thermodynamic data our findings suggest that organic chelating sites have a greater affinity for the quadravalent states of Re and Os than sulphides. Across the temperature range of the hydrous pyrolysis experiments both whole rock and extracted rock 187Re/188Os ratios show small variations (3.3% and 4.7%, for Staffin, respectively and 6.3% and 4.9% for Phosphoria, respectively). Similarly, the 187Os/188Os ratios show only minor variations for the Staffin and Phosphoria whole rock and extracted rock samples (0.6% and 1.4% and 1.3% and 2.2%). These isotopic data strongly suggest that crude oil generation through hydrous pyrolysis experiments does not disturb the Re–Os systematics in ORS as supported by various studies on natural systems. The elemental abundance data reveal limited transfer of Re and Os into the bitumen from a Type III kerogen in comparison to Type II-S kerogen (0.02% vs. 3.7%), suggesting that these metals are very tightly bound in Type III kerogen structure. The 187Os/188Os data from the pyrolysis generated Phosphoria bitumens display minor variation (4%) across the experimental temperatures, with values similar to that of the source rock. This indicates that the isotopic composition of the bitumen reflects the isotopic composition of the source rock at the time of petroleum generation. These data further support the premise that the Os isotopic composition of oils and bitumens can be used to fingerprint petroleum deposits to specific source rocks. Oil generated through the hydrous pyrolysis experiments does not contain appreciable quantities of Re or Os (~120 and ~3 ppt, respectively), in contrast to natural oils (2–50 ppb and 34–288 ppt for Re and Os, respectively), which may suggest that kinetic parameters are fundamental to the transfer of Re and Os from source rocks to oils. From this we hypothesise that, at the temperatures employed in hydrous pyrolysis, Re and Os are assimilated into the extracted rock as a result of cross-linking reactions.
NASA Astrophysics Data System (ADS)
Rooney, Alan D.; Selby, David; Lewan, Michael D.; Lillis, Paul G.; Houzay, Jean-Pierre
2012-01-01
Successful application of the 187Re-187Os geochronometer has enabled the determination of accurate and precise depositional ages for organic-rich sedimentary rocks (ORS) as well as establishing timing constraints of petroleum generation. However, we do not fully understand the systematics and transfer behaviour of Re and Os between ORS and petroleum products (e.g., bitumen and oil). To more fully understand the behaviour of Re-Os systematics in both source rocks and petroleum products we apply hydrous pyrolysis to two immature hydrocarbon source rocks: the Permian Phosphoria Formation (TOC = 17.4%; Type II-S kerogen) and the Jurassic Staffin Formation (TOC = 2.5%; Type III kerogen). The laboratory-based hydrous pyrolysis experiments were carried out for 72 h at 250, 300, 325 and 350 °C. These experiments provided us with whole rock, extracted rock and bitumen and in some cases expelled oil and asphaltene for evaluation of Re-Os isotopic and elemental abundance. The data from these experiments demonstrate that the majority (>95%) of Re and Os are housed within extracted rock and that thermal maturation does not result in significant transfer of Re or Os from the extracted rock into organic phases. Based on existing thermodynamic data our findings suggest that organic chelating sites have a greater affinity for the quadravalent states of Re and Os than sulphides. Across the temperature range of the hydrous pyrolysis experiments both whole rock and extracted rock 187Re/188Os ratios show small variations (3.3% and 4.7%, for Staffin, respectively and 6.3% and 4.9% for Phosphoria, respectively). Similarly, the 187Os/188Os ratios show only minor variations for the Staffin and Phosphoria whole rock and extracted rock samples (0.6% and 1.4% and 1.3% and 2.2%). These isotopic data strongly suggest that crude oil generation through hydrous pyrolysis experiments does not disturb the Re-Os systematics in ORS as supported by various studies on natural systems. The elemental abundance data reveal limited transfer of Re and Os into the bitumen from a Type III kerogen in comparison to Type II-S kerogen (0.02% vs. 3.7%), suggesting that these metals are very tightly bound in Type III kerogen structure. The 187Os/188Os data from the pyrolysis generated Phosphoria bitumens display minor variation (4%) across the experimental temperatures, with values similar to that of the source rock. This indicates that the isotopic composition of the bitumen reflects the isotopic composition of the source rock at the time of petroleum generation. These data further support the premise that the Os isotopic composition of oils and bitumens can be used to fingerprint petroleum deposits to specific source rocks. Oil generated through the hydrous pyrolysis experiments does not contain appreciable quantities of Re or Os (∼120 and ∼3 ppt, respectively), in contrast to natural oils (2-50 ppb and 34-288 ppt for Re and Os, respectively), which may suggest that kinetic parameters are fundamental to the transfer of Re and Os from source rocks to oils. From this we hypothesise that, at the temperatures employed in hydrous pyrolysis, Re and Os are assimilated into the extracted rock as a result of cross-linking reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pendse, Hemant P.
Maine and its industries identified more efficient utilization of biomass as a critical economic development issue. In Phase I of this implementation project, a research team was assembled, research equipment was implemented and expertise was demonstrated in pyrolysis, hydrodeoxygenation of pyrolysis oils, catalyst synthesis and characterization, and reaction engineering. Phase II built upon the infrastructure to innovate reaction pathways and process engineering, and integrate new approaches for fuels and chemical production within pulp and paper and other industries within the state. This research cluster brought together chemists, engineers, physicists and students from the University of Maine, Bates College, and Bowdoinmore » College. The project developed collaborations with Oak Ridge National Laboratory and Brookhaven National Laboratory. The specific research projects within this proposal were of critical interest to the DoE - in particular the biomass program within EERE and the catalysis/chemical transformations program within BES. Scientific and Technical Merit highlights of this project included: (1) synthesis and physical characterization of novel size-selective catalyst/supports using engineered mesoporous (1-10 nm diameter pores) materials, (2) advances in fundamental knowledge of novel support/ metal catalyst systems tailored for pyrolysis oil upgrading, (3) a microcalorimetric sensing technique, (4) improved methods for pyrolysis oil characterization, (5) production and characterization of woody biomass-derived pyrolysis oils, (6) development of two new patented bio oil pathways: thermal deoxygenation (TDO) and formate assisted pyrolysis (FASP), and (7) technoeconomics of pyrolysis of Maine forest biomass. This research cluster has provided fundamental knowledge to enable and assess pathways to thermally convert biomass to hydrocarbon fuels and chemicals.« less
Artificial maturation of oil shale: The Irati Formation from the Parana Basin, Brazil
NASA Astrophysics Data System (ADS)
Gayer, James L.
Oil shale samples from the Irati Formation in Brazil were evaluated from an outcrop block, denoted Block 003. The goals of this thesis include: 1) Characterizing the Irati Formation, 2) Comparing the effects of two different types of pyrolysis, anhydrous and hydrous, and 3) Utilizing a variety of geophysical experiments to determine the changes associated with each type of pyrolysis. Primary work included determining total organic carbon, source rock analysis, mineralogy, computer tomography x-ray scans, and scanning electron microscope images before and after pyrolysis, as well as acoustic properties of the samples during pyrolysis. Two types of pyrolysis (hydrous and anhydrous) were performed on samples cored at three different orientations (0°, 45°, and 90°) with respect to the axis of symmetry, requiring six total experiments. During pyrolysis, the overall effective pressure was maintained at 800 psi, and the holding temperature was 365°C. The changes and deformation in the hydrous pyrolysis samples were greater compared to the anhydrous pyrolysis. The velocities gave the best indication of changes occurring during pyrolysis, but it was difficult to maintain the same amplitude and quality of waveforms at higher temperatures. The velocity changes were due to a combination of factors, including thermal deformation of the samples, fracture porosity development, and the release of adsorbed water and bitumen from the sample. Anhydrous pyrolysis in this study did not reduce TOC, while TOC was reduced due to hydrous pyrolysis by 5%, and velocities in the hydrous pyrolysis decreased by up to 30% at 365°C compared to room temperature. Data from this study and future data that can be acquired with the improved high-temperature, high-pressure experiment will assist in future economic production from oil shale at lower temperatures under hydrous pyrolysis conditions.
Pyrolysis of forest residues: An approach to techno-economics for bio-fuel production
Carrasco, Jose L.; Gunukula, Sampath; Boateng, Akwasi A.; ...
2017-04-01
Here, the techno-economics for producing liquid fuels from Maine forest residues were determined from a combination of: (1) laboratory experiments at USDA-ARS’s Eastern Regional Research Center using hog fuel (a secondary woody residue produced from mill byproducts such as sawdust, bark and shavings) as a feedstock for pyrolysis to establish product yields and composition, and (2) Aspen Plus® process simulation for a feed rate of 2000 dry metric tons per day to estimate energy requirements and equipment sizes. The simulated plant includes feedstock sizing and drying, pyrolysis, hydrogen production and hydrotreatment of pyrolysis oils. The biomass is converted into bio-oilmore » (61% yield), char (24%) and gases (15%) in the pyrolysis reactor, with an energy demand of 17%. The bio-oil is then hydrotreated to remove oxygen, thereby producing hydrocarbon fuels. The final mass yield of gasoline/diesel hydrocarbons is 16% with a 40% energy yield based on the dry biomass fed, this yield represents a fuel production of 51.9 gallons per dry metric ton of feedstock. A unique aspect of the process simulated herein is that pyrolysis char and gases are used as sources for both thermal energy and hydrogen, greatly decreasing the need to input fossil energy. The total capital investment for a grass-roots plant was estimated to be US$427 million with an annual operational cost of US$154 million. With a 30 year project life, a minimum fuel selling price was determined to be US$6.25 per gallon. The economic concerns are related to high capital costs, high feedstock costs and short hydrotreating catalyst lifetimes.« less
Pyrolysis of forest residues: An approach to techno-economics for bio-fuel production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrasco, Jose L.; Gunukula, Sampath; Boateng, Akwasi A.
Here, the techno-economics for producing liquid fuels from Maine forest residues were determined from a combination of: (1) laboratory experiments at USDA-ARS’s Eastern Regional Research Center using hog fuel (a secondary woody residue produced from mill byproducts such as sawdust, bark and shavings) as a feedstock for pyrolysis to establish product yields and composition, and (2) Aspen Plus® process simulation for a feed rate of 2000 dry metric tons per day to estimate energy requirements and equipment sizes. The simulated plant includes feedstock sizing and drying, pyrolysis, hydrogen production and hydrotreatment of pyrolysis oils. The biomass is converted into bio-oilmore » (61% yield), char (24%) and gases (15%) in the pyrolysis reactor, with an energy demand of 17%. The bio-oil is then hydrotreated to remove oxygen, thereby producing hydrocarbon fuels. The final mass yield of gasoline/diesel hydrocarbons is 16% with a 40% energy yield based on the dry biomass fed, this yield represents a fuel production of 51.9 gallons per dry metric ton of feedstock. A unique aspect of the process simulated herein is that pyrolysis char and gases are used as sources for both thermal energy and hydrogen, greatly decreasing the need to input fossil energy. The total capital investment for a grass-roots plant was estimated to be US$427 million with an annual operational cost of US$154 million. With a 30 year project life, a minimum fuel selling price was determined to be US$6.25 per gallon. The economic concerns are related to high capital costs, high feedstock costs and short hydrotreating catalyst lifetimes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guffey, F.D.; Holper, P.A.
The Western Research Institute is currently developing a process for the recovery of distillable liquid products from alternate fossil fuel sources such as tar sand and oil shale. The processing concept is based on recycling a fraction of the produced oil back into the reactor with the raw resource. This concept is termed the recycle oil pyrolysis and extraction (ROPE{sup TM}) process. The conversion of the alternate resource to a liquid fuel is performed in two stages. The first recovery stage is performed at moderate temperatures (325--420{degrees}C [617--788{degrees}F]) in the presence of product oil recycle. The second stage is performedmore » at higher temperatures (450--540{degrees}C [842--1004{degrees}F]) in the absence of product oil. The experiments reported here were performed Asphalt Ridge tar sand in the all-glass laboratory simulation reactor to simulate (1) the recycling of SAE 50 weight oil in the recycle oil pyrolysis zone and (2) to evaluate the potential catalytic effects of the sand matrix.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guffey, F.D.; Holper, P.A.
The Western Research Institute is currently developing a process for the recovery of distillable liquid products from alternate fossil fuel sources such as tar sand and oil shale. The processing concept is based on recycling a fraction of the produced oil back into the reactor with the raw resource. This concept is termed the recycle oil pyrolysis and extraction (ROPE{sup TM}) process. The conversion of the alternate resource to a liquid fuel is performed in two stages. The first recovery stage is performed at moderate temperatures (325--420{degrees}C (617--788{degrees}F)) in the presence of product oil recycle. The second stage is performedmore » at higher temperatures (450--540{degrees}C (842--1004{degrees}F)) in the absence of product oil. The experiments reported here were performed Asphalt Ridge tar sand in the all-glass laboratory simulation reactor to simulate (1) the recycling of SAE 50 weight oil in the recycle oil pyrolysis zone and (2) to evaluate the potential catalytic effects of the sand matrix.« less
Wang, Huamin; Elliott, Douglas C; French, Richard J; Deutch, Steve; Iisa, Kristiina
2016-12-25
Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Laboratory (NREL) for fast pyrolysis of lignocellulosic biomass to produce bio-oils in a fluidized-bed reactor and 2) at Pacific Northwest National Laboratory (PNNL) for catalytic hydrotreating of bio-oils in a two-stage, fixed-bed, continuous-flow catalytic reactor. The configurations of the reactor systems, the operating procedures, and the processing and analysis of feedstocks, bio-oils, and biofuels are described in detail in this paper. We also demonstrate hot-vapor filtration during fast pyrolysis to remove fine char particles and inorganic contaminants from bio-oil. Representative results showed successful conversion of biomass feedstocks to fuel-range hydrocarbon biofuels and, specifically, the effect of hot-vapor filtration on bio-oil production and upgrading. The protocols provided in this report could help to generate rigorous and reliable data for biomass pyrolysis and bio-oil hydrotreating research.
Wang, Huamin; Elliott, Douglas C.; French, Richard J.; Deutch, Steve; Iisa, Kristiina
2016-01-01
Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Laboratory (NREL) for fast pyrolysis of lignocellulosic biomass to produce bio-oils in a fluidized-bed reactor and 2) at Pacific Northwest National Laboratory (PNNL) for catalytic hydrotreating of bio-oils in a two-stage, fixed-bed, continuous-flow catalytic reactor. The configurations of the reactor systems, the operating procedures, and the processing and analysis of feedstocks, bio-oils, and biofuels are described in detail in this paper. We also demonstrate hot-vapor filtration during fast pyrolysis to remove fine char particles and inorganic contaminants from bio-oil. Representative results showed successful conversion of biomass feedstocks to fuel-range hydrocarbon biofuels and, specifically, the effect of hot-vapor filtration on bio-oil production and upgrading. The protocols provided in this report could help to generate rigorous and reliable data for biomass pyrolysis and bio-oil hydrotreating research. PMID:28060311
Chen, Nanwei; Ren, Jie; Ye, Ziwei; Xu, Qizhi; Liu, Jingyong; Sun, Shuiyu
2016-12-01
This study was carried out to investigate the kinetics of coffee industrial residue (CIR) pyrolysis, the effect of pyrolysis factors on yield of bio-oil component and components separation of bio-oil. The kinetics of CIR pyrolysis was analyzed using distributed activation energy model (DAEM), based on the experiments in thermogravimetric analyzer (TGA), and it indicated that the average of activation energy (E) is 187.86kJ·mol -1 . The bio-oils were prepared from CIR pyrolysis in vacuum tube furnace, and its components were determined by gas chromatography/mass spectrometry (GC-MS). Among pyrolysis factors, pyrolysis temperature is the most influential factor on components yield of bio-oil, directly concerned with the volatilization and yield of components (palmitic acid, linoleic acid, oleic acid, octadecanoic acid and caffeine). Furthermore, a new method (sequencing temperature-raising pyrolysis) was put forward and applied to the components separation of bio-oil. Based on experiments, a solution of components separation of bio-oil was come out. Copyright © 2016 Elsevier Ltd. All rights reserved.
Understanding the fast pyrolysis of lignin.
Patwardhan, Pushkaraj R; Brown, Robert C; Shanks, Brent H
2011-11-18
In the present study, pyrolysis of corn stover lignin was investigated by using a micro-pyrolyzer coupled with a GC-MS/FID (FID=flame ionization detector). The system has pyrolysis-vapor residence times of 15-20 ms, thus providing a regime of minimal secondary reactions. The primary pyrolysis product distribution obtained from lignin is reported. Over 84 % mass balance and almost complete closure on carbon balance is achieved. In another set of experiments, the pyrolysis vapors emerging from the micro-pyrolyzer are condensed to obtain lignin-derived bio-oil. The chemical composition of the bio-oil is analyzed by using GC-MS and gel permeation chromatography techniques. The comparison between results of two sets of experiments indicates that monomeric compounds are the primary pyrolysis products of lignin, which recombine after primary pyrolysis to produce oligomeric compounds. Further, the effect of minerals (NaCl, KCl, MgCl(2), and CaCl(2)) and temperature on the primary pyrolysis product distribution is investigated. The study provides insights into the fundamental mechanisms of lignin pyrolysis and a basis for developing more descriptive models of biomass pyrolysis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Incineration and pyrolysis vs. steam gasification of electronic waste.
Gurgul, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika
2018-05-15
Constructional complexity of items and their integration are the most distinctive features of electronic wastes. These wastes consist of mineral and polymeric materials and have high content of valuable metals that could be recovered. Elimination of polymeric components (especially epoxy resins) while leaving non-volatile mineral and metallic phases is the purpose of thermal treatment of electronic wastes. In the case of gasification, gaseous product of the process may be, after cleaning, used for energy recovery or chemical synthesis. If not melted, metals from solid products of thermal treatment of electronic waste could be recovered by hydrometallurgical processing. Three basic, high temperature ways of electronic waste processing, i.e. smelting/incineration, pyrolysis and steam gasification were shortly discussed in the paper, giving a special attention to gasification under steam, illustrated by laboratory experiments. Copyright © 2017 Elsevier B.V. All rights reserved.
The effect of bioleaching on sewage sludge pyrolysis.
Chen, Zhihua; Hu, Mian; Cui, Baihui; Liu, Shiming; Guo, Dabin; Xiao, Bo
2016-02-01
The effects of bioleaching on sewage sludge pyrolysis were studied. Sewage sludge was treated by bioleaching with solid concentrations of 6% (w/v), 8% (w/v), 10% (w/v). Results showed that bioleaching treatment could modify the physicochemical properties of sewage sludge and enhance the metals removal. The optimum removal efficiencies of heavy metals were achieved with solid concentration of 6% (w/v) bioleaching treatment: Cu, 73.08%; Zn, 78.67%; Pb, 24.65%; Cd, 79.46%. The characterization results of thermogravimetric analysis (TGA) showed that the bioleached sewage sludge with a 6% (w/v) solid concentration treatment was the easiest to decompose. Pyrolytic experiments of bioleached sewage sludge were performed in a laboratory-scale fixed bed reactor. Results indicated that bioleaching treatment greatly influenced the product yields and gas composition. Copyright © 2015 Elsevier Ltd. All rights reserved.
Soot formation in shock-tube pyrolysis and oxidation of vinylacetylene
NASA Technical Reports Server (NTRS)
Frenklach, M.; Yuan, T.; Ramachandra, M. K.
1990-01-01
Soot formation in vinylacetylene, and vinylacetylene-oxygen argon-diluted mixtures was studied behind reflected shock waves by monitoring the attenuation of a 632.8-nm He-Ne laser beam. The experiments were performed at temperatures of 1600-2500 K, pressures of 2.08-3.09 bar, and total carbon atom concentrations of (1.99-2.05) x 10 to the 17th atoms/cu cm. The experimental results obtained in pyrolysis of vinylacetylene are similar to those of acetylene, both in the order of magnitude of the soot yield and the shape of its temperature dependence. The addition of oxygen to vinylacetylene shifts the soot bell to lower temperature and, distinct from all other hydrocarbons studied in this laboratory, accelerates the production of soot with reaction time. The experimental results are interpreted in terms of possible chemical reaction.
Wang, Huamin; Elliott, Douglas C.; French, Richard J.; ...
2016-12-25
Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Laboratory (NREL) for fast pyrolysis of lignocellulosic biomass to produce bio-oils in a fluidized-bed reactor and 2) at Pacific Northwest National Laboratory (PNNL) for catalytic hydrotreating of bio-oils in a two-stage, fixed-bed, continuous-flow catalytic reactor. The configurations of the reactor systems, the operating procedures, and themore » processing and analysis of feedstocks, bio-oils, and biofuels are described in detail in this paper. We also demonstrate hot-vapor filtration during fast pyrolysis to remove fine char particles and inorganic contaminants from bio-oil. Representative results showed successful conversion of biomass feedstocks to fuel-range hydrocarbon biofuels and, specifically, the effect of hot-vapor filtration on bio-oil production and upgrading. As a result, the protocols provided in this report could help to generate rigorous and reliable data for biomass pyrolysis and bio-oil hydrotreating research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huamin; Elliott, Douglas C.; French, Richard J.
Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Laboratory (NREL) for fast pyrolysis of lignocellulosic biomass to produce bio-oils in a fluidized-bed reactor and 2) at Pacific Northwest National Laboratory (PNNL) for catalytic hydrotreating of bio-oils in a two-stage, fixed-bed, continuous-flow catalytic reactor. The configurations of the reactor systems, the operating procedures, and themore » processing and analysis of feedstocks, bio-oils, and biofuels are described in detail in this paper. We also demonstrate hot-vapor filtration during fast pyrolysis to remove fine char particles and inorganic contaminants from bio-oil. Representative results showed successful conversion of biomass feedstocks to fuel-range hydrocarbon biofuels and, specifically, the effect of hot-vapor filtration on bio-oil production and upgrading. As a result, the protocols provided in this report could help to generate rigorous and reliable data for biomass pyrolysis and bio-oil hydrotreating research.« less
Confined-Pyrolysis as an Experimental Method for Hydrothermal Organic Synthesis
NASA Technical Reports Server (NTRS)
Leif, Roald N.; Simoneit, Bernd R. T.
1995-01-01
A closed pyrolysis system has been developed as a tool for studying the reactions of organic compounds under extreme hydrothermal conditions. Small high pressure stainless steel vessels in which the ratio of sediment or sample to water has been adjusted to eliminate the headspace at peak experimental conditions confines the organic components to the bulk solid matrix and eliminates the partitioning of the organic compounds away from the inorganic components during the experiment. Confined pyrolysis experiments were performed to simulate thermally driven catagenetic changes in sedimentary organic matter using a solids to water ratio of 3.4 to 1. The extent of alteration was measured by monitoring the steroid and triterpenoid biomarkers and polycyclic aromatic hydrocarbon distributions. These pyrolysis experiments duplicated the hydrothermal transformations observed in nature. Molecular probe experiments using alkadienes, alkenes and alkanes in H2O and D2O elucidated the isomerization and hydrogenation reactions of aliphatic and the competing oxidative reactions occurring under hydrothermal conditions. This confined pyrolysis technique is being applied to test experiments on organic synthesis of relevance to chemical evolution for the origin of life.
NASA Technical Reports Server (NTRS)
Glavin, Daniel P.; Freissinet, Caroline; Miller, Kristen E.; Eigenbrode, Jennifer L.; Brunner, Anna E.; Buch, Arnaud; Sutter, Brad; Archer, P. Douglas, Jr.; Atreya, Sushil K.; Brinckerhoff, William B.;
2013-01-01
A single scoop of the Rocknest aeolian deposit was sieved (less than 150 micrometers), and four separate sample portions, each with a mass of approximately 50 mg, were delivered to individual cups inside the Sample Analysis at Mars (SAM) instrument by the Mars Science Laboratory rover's sample acquisition system. The samples were analyzed separately by the SAM pyrolysis evolved gas and gas chromatograph mass spectrometer analysis modes. Several chlorinated hydrocarbons including chloromethane, dichloromethane, trichloromethane, a chloromethylpropene, and chlorobenzene were identified by SAM above background levels with abundances of approximately 0.01 to 2.3 nmol. The evolution of the chloromethanes observed during pyrolysis is coincident with the increase in O2 released from the Rocknest sample and the decomposition of a product of N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA), a chemical whose vapors were released from a derivatization cup inside SAM. The best candidate for the oxychlorine compounds in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2·nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated hydrocarbons measured by SAM, although other chlorine-bearing phases are being considered. Laboratory analog experiments suggest that the reaction of Martian chlorine from perchlorate decomposition with terrestrial organic carbon from MTBSTFA during pyrolysis can explain the presence of three chloromethanes and a chloromethylpropene detected by SAM. Chlorobenzene may be attributed to reactions of Martian chlorine released during pyrolysis with terrestrial benzene or toluene derived from 2,6-diphenylphenylene oxide (Tenax) on the SAM hydrocarbon trap. At this time we do not have definitive evidence to support a nonterrestrial carbon source for these chlorinated hydrocarbons, nor do we exclude the possibility that future SAM analyses will reveal the presence of organic compounds native to the Martian regolith.
Derivation of hydrous pyrolysis kinetic parameters from open-system pyrolysis
NASA Astrophysics Data System (ADS)
Tseng, Yu-Hsin; Huang, Wuu-Liang
2010-05-01
Kinetic information is essential to predict the temperature, timing or depth of hydrocarbon generation within a hydrocarbon system. The most common experiments for deriving kinetic parameters are mainly by open-system pyrolysis. However, it has been shown that the conditions of open-system pyrolysis are deviant from nature by its low near-ambient pressure and high temperatures. Also, the extrapolation of heating rates in open-system pyrolysis to geological conditions may be questionable. Recent study of Lewan and Ruble shows hydrous-pyrolysis conditions can simulate the natural conditions better and its applications are supported by two case studies with natural thermal-burial histories. Nevertheless, performing hydrous pyrolysis experiment is really tedious and requires large amount of sample, while open-system pyrolysis is rather convenient and efficient. Therefore, the present study aims at the derivation of convincing distributed hydrous pyrolysis Ea with only routine open-system Rock-Eval data. Our results unveil that there is a good correlation between open-system Rock-Eval parameter Tmax and the activation energy (Ea) derived from hydrous pyrolysis. The hydrous pyrolysis single Ea can be predicted from Tmax based on the correlation, while the frequency factor (A0) is estimated based on the linear relationship between single Ea and log A0. Because the Ea distribution is more rational than single Ea, we modify the predicted single hydrous pyrolysis Ea into distributed Ea by shifting the pattern of Ea distribution from open-system pyrolysis until the weight mean Ea distribution equals to the single hydrous pyrolysis Ea. Moreover, it has been shown that the shape of the Ea distribution is very much alike the shape of Tmax curve. Thus, in case of the absence of open-system Ea distribution, we may use the shape of Tmax curve to get the distributed hydrous pyrolysis Ea. The study offers a new approach as a simple method for obtaining distributed hydrous pyrolysis Ea with only routine open-system Rock-Eval data, which will allow for better estimating hydrocarbon generation.
NASA Astrophysics Data System (ADS)
Szopa, Cyril; Millan, Maeva; Buch, Arnaud; Belmahdi, Imene; Coll, Patrice; Glavin, Daniel P.; Freissinet, Caroline; Eigenbrode, Jennifer; archer, doug; sutter, brad; Summons, Roger; Navarro-Gonzalez, Rafael; Mahaffy, Paul; cabane, Michel
2016-10-01
One of the main objectives of the Sample Analysis at Mars (SAM) experiment is the in situ molecular analysis of gases evolving from solid samples collected by Curiosity when they are heated up to ~850°C. With this aim SAM uses a gas-chromatograph coupled to a mass spectrometer (GC-MS) able to detect and identify both inorganic and organic molecules released by the samples.During the pyrolysis, chemical reactions occur between oxychlorines, probably homogeneously distributed at Mars's surface, and organic compounds SAM seeks for. This was confirmed by the first chlorohydrocarbons (chloromethane and di- and trichloromethane) detected by SAM that were entirely attributed to reaction products occurring between these oxychlorines and organics from instrument background. But SAM also detected in the Sheepbed mudstone of Gale crater, chloroalkanes produced by reaction between oxychlorines and Mars indigenous organics, proving for the first time the presence of organics in the soil of Mars. However, the identification of the molecules at the origin of these chloroalkanes is much more difficult due to the complexity of the reactivity occurring during the sample pyrolysis. If a first study has already been done recently with this aim, it was relatively limited in terms of parameters investigated.This is the reason why, we performed a systematic study in the laboratory to help understanding the influence of oxychlorines on organic matter during pyrolysis. With this aim, different organic compounds from various chemical families (e.g. amino and carboxylic acids) mixed with different perchlorates and chlorates, in concentrations compatible with the Mars soil from estimations done with SAM measurements, were pyrolyzed under SAM like conditions. The products of reaction were analyzed and identified by GC-MS in order to show a possible correlation between them and the parent molecule. Different parameters were tested for the pyrolysis to evaluate their potential influence on the products of reaction obtained. This work present the results of this series of experiments and the conclusions that can be done about the SAM measurements, but also about future analyses to be done by the MOMA experiment of the Exomars 2020 mission.
Kolesnikov, Еvgeny; Karunakaran, Gopalu; Godymchuk, Anna; Vera, Levina; Yudin, Andrey Grigorjevich; Gusev, Alexander; Kuznetsov, Denis
2017-05-01
Nowadays, the demands for the nanoparticles are increasing due to their tremendous applications in various fields. As a consequence, the discharge of nanoparticles into the atmosphere and environment is also increasing, posing a health threat and environmental damage in terms of pollution. Thus, an extensive research is essential to evaluate the discharge of these nanoparticles into the environment. Keeping this in mind, the present investigation aimed to analyze the discharge of aerosol nanoparticles that are synthesized in the laboratory via chemical precipitation and spray pyrolysis methods. The results indicated that the chemical precipitation method discharges a higher concentration of nanoparticles in the work site when compared to the spray pyrolysis method. The aerosol concentration also varied with the different steps involved during the synthesis of nanoparticles. The average particle's concentration in air for chemical precipitation and spray pyrolysis methods was around 1,037,476 and 883,421particles/cm 3 . In addition, the average total discharge of nanoparticles in the entire laboratory was also examined. A significant variation in the concentration of nanoparticles was noticed, during the processing of materials and the concentration of particles (14-723nm) exceeding the daily allowed concentration to about 70-170 times was observed over a period of 6 months. Thus, the results of the present study will be very useful in developing safety measures and would help in organizing the rules for people working in nanotechnology laboratories to minimize the hazardous effects. Copyright © 2017 Elsevier Inc. All rights reserved.
Publications - GMC 416 | Alaska Division of Geological & Geophysical
DGGS GMC 416 Publication Details Title: Total organic carbon and rock-eval pyrolysis of core and core Resolution Inc. Analytical Laboratories, 2013, Total organic carbon and rock-eval pyrolysis of core and core Table(s) gmc416.xls (44.0 K) Keywords Organic Chemistry Top of Page Department of Natural Resources
Chi, Yongchao; Xue, Junjie; Zhuo, Jiankun; Zhang, Dahu; Liu, Mi; Yao, Qiang
2018-08-15
Fast pyrolysis is one of the most economical and efficient technologies to convert biomass to bio-oil and valuable chemical products. Co-pyrolysis with hydrogen rich materials such as plastics over zeolite catalysts is one of the significant solutions to various problems of bio-oil such as high oxygen content, low heat value and high acid content. This paper studied pyrolysis of cellulose and polypropylene (PP) separately and co-pyrolysis of cellulose and PP over MCM-41 and Al-MCM-41. The pyrolysis over different heating rates (10K/min, 20K/min, 30K/min) was studied by Thermogravimetry Analysis (TGA) and kinetic parameters were obtained by Coats-Redfern method and isoconversion method. TG and DTG data shows that the two catalysts advance the pyrolysis reaction of PP significantly and reduce its peak temperature of DTG curve from 458°C to 341°C. The activation energy of pyrolysis of PP also has a remarkable reduction over the two catalysts. Py-GC/MS method was used to obtain the product distribution of pyrolysis of cellulose and PP separately and co-pyrolysis of cellulose and PP over MCM-41 and Al-MCM-41 at constant temperature of 650°C. Experiment results proved that co-pyrolysis with PP bring significant changes to the product distribution of cellulose. Oxygenated compounds such as furans are decreased, while yields of olefins and aromatics increase greatly. The yield of furans increases with the catalysis of MCM-41 as for the pyrolysis of cellulose and co-pyrolysis, while the yield of olefins and aromatics both experience significant growth over Al-MCM-41, which can be explained by the abundant acid centers in Al-MCM-41. Copyright © 2018 Elsevier B.V. All rights reserved.
Effect of Blended Feedstock on Pyrolysis Oil Composition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Kristin M; Gaston, Katherine R
Current techno-economic analysis results indicate biomass feedstock cost represents 27% of the overall minimum fuel selling price for biofuels produced from fast pyrolysis followed by hydrotreating (hydro-deoxygenation, HDO). As a result, blended feedstocks have been proposed as a way to both reduce cost as well as tailor key chemistry for improved fuel quality. For this study, two feedstocks were provided by Idaho National Laboratory (INL). Both were pyrolyzed and collected under the same conditions in the National Renewable Energy Laboratory's (NREL) Thermochemical Process Development Unit (TCPDU). The resulting oil properties were then analyzed and characterized for statistical differences.
Relative toxicity of pyrolysis products of some foams and fabrics
NASA Technical Reports Server (NTRS)
Hilado, C. J.
1976-01-01
A limited number of foams and fabrics was evaluated in the course of developing test procedures for determining the relative toxicity of materials. The principal variable studied, heating rate, did not affect the relative ranking of the materials tested. Two pyrolysis test procedures using the same basic approach but employing different sample weights, chamber volumes, laboratory animals, heating rates, and upper temperature limits, resulted in identical rankings of relative toxicity. The data obtained show that modification of conventional flexible polyurethane foams with flame retardants to comply with California upholstered furniture flammability regulations seems to consistently reduce toxicity under pyrolysis conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howe, Daniel T.; Westover, Tyler; Carpenter, Daniel
2015-05-21
Feedstock composition can affect final fuel yields and quality for the fast pyrolysis and hydrotreatment upgrading pathway. However, previous studies have focused on individual unit operations rather than the integrated system. In this study, a suite of six pure lignocellulosic feedstocks (clean pine, whole pine, tulip poplar, hybrid poplar, switchgrass, and corn stover) and two blends (equal weight percentages whole pine/tulip poplar/switchgrass and whole pine/clean pine/hybrid poplar) were prepared and characterized at Idaho National Laboratory. These blends then underwent fast pyrolysis at the National Renewable Energy Laboratory and hydrotreatment at Pacific Northwest National Laboratory. Although some feedstocks showed a highmore » fast pyrolysis bio-oil yield such as tulip poplar at 57%, high yields in the hydrotreater were not always observed. Results showed overall fuel yields of 15% (switchgrass), 18% (corn stover), 23% (tulip poplar, Blend 1, Blend 2), 24% (whole pine, hybrid poplar) and 27% (clean pine). Simulated distillation of the upgraded oils indicated that the gasoline fraction varied from 39% (clean pine) to 51% (corn stover), while the diesel fraction ranged from 40% (corn stover) to 46% (tulip poplar). Little variation was seen in the jet fuel fraction at 11 to 12%. Hydrogen consumption during hydrotreating, a major factor in the economic feasibility of the integrated process, ranged from 0.051 g/g dry feed (tulip poplar) to 0.070 g/g dry feed (clean pine).« less
Ghrib, Amina; Friaa, Athar; Ouerghi, Aymen; Naoui, Slim; Belayouni, Habib
2017-01-01
Solar dried sewage sludge (SS) conversion by pyrolysis and gasification processes has been performed, separately, using two laboratory-scale reactors, a fixed-bed pyrolyzer and a downdraft gasifier, to produce mainly hydrogen-rich syngas. Prior to SS conversion, solar drying has been conducted in order to reduce moisture content (up to 10%). SS characterization reveals that these biosolids could be appropriate materials for gaseous products production. The released gases from SS pyrolysis and gasification present relatively high heating values (up to 9.96 MJ/kg for pyrolysis and 8.02 9.96 MJ/kg for gasification) due to their high contents of H2 (up to 11 and 7 wt%, resp.) and CH4 (up to 17 and 5 wt%, resp.). The yields of combustible gases (H2 and CH4) show further increase with pyrolysis. Stoichiometric models of both pyrolysis and gasification reactions were determined based on the global biomass formula, CαHβOγNδSε, in order to assist in the products yields optimization. PMID:28856162
The Construction of a Simple Pyrolysis Gas Chromatograph.
ERIC Educational Resources Information Center
Hedrick, Jack L.
1982-01-01
Describes a simple and inexpensive pyrolysis gas chromatography (PGC) system constructed from items available in undergraduate institutions. The system is limited, accepting only liquid samples and pyrolyzing "on the fly" rather than statically and not allowing for reductive pyrolysis. Applications, experiments, and typical results are included.…
Laboratory Reactor for Processing Carbon-Containing Sludge
NASA Astrophysics Data System (ADS)
Korovin, I. O.; Medvedev, A. V.
2016-10-01
The paper describes a reactor for high-temperature pyrolysis of carbon-containing sludge with the possibility of further development of environmentally safe technology of hydrocarbon waste disposal to produce secondary products. A solution of the urgent problem has been found: prevention of environmental pollution resulting from oil pollution of soils using the pyrolysis process as a method of disposal of hydrocarbon waste to produce secondary products.
Laboratory for the Processing and Evaluation of Inorganic Matrix Composites
1989-06-01
preceramic polymers .’ Ceramic data (yield and elemental composition ) for the pyrolysis ... polymer matrix composites can feature apparent fracture energies as high as those of unreinforced metals (Ashby and Jones 1980). I I Fig. 1 SiC VLS...materials has pyrolysis of shaped bodies of such " preceramic " polymers . received much attention in recent years.’ This procedure The issues that are
Bio-Oil Analysis Laboratory Procedures | Bioenergy | NREL
Bio-Oil Analysis Laboratory Procedures Bio-Oil Analysis Laboratory Procedures NREL develops standard procedures have been validated and allow for reliable bio-oil analysis. Procedures Determination different hydroxyl groups (-OH) in pyrolysis bio-oil: aliphatic-OH, phenolic-OH, and carboxylic-OH. Download
Simmonds, Peter G.
1970-01-01
Pyrolysis-gas chromatography-mass spectrometric studies of two microorganisms, Micrococcus luteus and Bacillus subtilis var. niger, indicate that the majority of thermal fragments originate from the principal classes of bio-organic matter found in living systems such as protein and carbohydrate. Furthermore, there is a close qualitative similarity between the type of pyrolysis products found in microorganisms and the pyrolysates of other biological materials. Conversely, there is very little correlation between microbial pyrolysates and comparable pyrolysis studies of meteoritic and fossil organic matter. These observations will aid in the interpretation of a soil organic analysis experiment to be performed on the surface of Mars in 1975. The science payload of this landed mission will include a combined pyrolysis-gas chromatography-mass spectrometry instrument as well as several “direct biology experiments” which are designed to search for extraterrestrial life. PMID:16349890
NASA Technical Reports Server (NTRS)
Glavin, Daniel P.; Freissinet, Caroline; Miller, Kristen E.; Eigenbrode, Jennifer L.; Brunner, Anna E.; Buch, Arnaud; Sutter, Brad; Archer, P. Douglas, Jr.; Atreya, Sushil K.; Brinckerhoff, William B.;
2013-01-01
Four individual sample portions from a single scoop of the Rocknest aeolian deposit were sieved ( 150 m) and delivered to the Sample Analysis at Mars (SAM) instrument by the Mars Science Laboratory rover's sample acquisition system. The samples were analyzed separately by the SAM pyrolysis evolved gas and gas chromatography mass spectrometry analysis modes. Several chlorinated hydrocarbons including chloromethane, dichloromethane, trichloromethane, a chloromethylpropene, and chlorobenzene were identified by SAM above background levels with abundances of 0.01 to 2.3 nanomole.The evolution of the chloromethanes observed during pyrolysis is coincident with the increase in O2 released from the Rocknest sample and the decomposition of a product of N-methyl-N- (tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA), a chemical that leaked from a derivatization cup inside SAM.The best candidate for the oxychloride phase in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated species measured by SAM, although other chlorine bearing phases are being considered. Laboratory pyrolysis experiments suggest that reaction of martian chlorine with organic carbon from MTBSTFA can explain the presence of the chloromethanes and a chloromethylpropene also detected by SAM.However, we cannot exclude the possibility that traces of organic carbon of either martian or exogenous origin contributed to some of the chloromethanes measured by SAM. Although the alteration history and exposure age of the Rocknest deposit is unknown, it is possible that oxidative degradation of complex organic matter by ionizing radiation or other chemical processes in Rocknest has occurred.
Validation Results for Core-Scale Oil Shale Pyrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staten, Josh; Tiwari, Pankaj
2015-03-01
This report summarizes a study of oil shale pyrolysis at various scales and the subsequent development a model for in situ production of oil from oil shale. Oil shale from the Mahogany zone of the Green River formation was used in all experiments. Pyrolysis experiments were conducted at four scales, powdered samples (100 mesh) and core samples of 0.75”, 1” and 2.5” diameters. The batch, semibatch and continuous flow pyrolysis experiments were designed to study the effect of temperature (300°C to 500°C), heating rate (1°C/min to 10°C/min), pressure (ambient and 500 psig) and size of the sample on product formation.more » Comprehensive analyses were performed on reactants and products - liquid, gas and spent shale. These experimental studies were designed to understand the relevant coupled phenomena (reaction kinetics, heat transfer, mass transfer, thermodynamics) at multiple scales. A model for oil shale pyrolysis was developed in the COMSOL multiphysics platform. A general kinetic model was integrated with important physical and chemical phenomena that occur during pyrolysis. The secondary reactions of coking and cracking in the product phase were addressed. The multiscale experimental data generated and the models developed provide an understanding of the simultaneous effects of chemical kinetics, and heat and mass transfer on oil quality and yield. The comprehensive data collected in this study will help advance the move to large-scale in situ oil production from the pyrolysis of oil shale.« less
NASA Astrophysics Data System (ADS)
Siahaan, S.; Homma, H.; Homma, H.
2018-02-01
Energy crisis and global warming, in other words, climate change are critical topics discussed in various parts of the world. Global warming primarily result from too much emission of carbon dioxide (CO2) in the atmosphere. To mitigate global warming, or climate change and improve electrification in rural areas, wood pyrolysis technology is developed in a laboratory scale, of which gases are directly applicable to the gas engine generator. Our laboratory has developed a prototype of wood pyrolysis plant with a pre-vacuum chamber. However, tar yield was around 40 wt% of feedstock. This research aims to reduce tar yield by secondary tar cracking. For the secondary tar cracking, a secondary pre-vacuum chamber is installed after primary pre-vacuum chamber. Gases generated in the primary pre-vacuum chamber are lead into the secondary chamber that is heated up to 1000 K. This paper reports performance of the secondary chamber for secondary tar cracking in homogeneous mode and heterogeneous mode with char.
Wang, Shuang; Xia, Zhen; Hu, Yamin; He, Zhixia; Uzoejinwa, Benjamin Bernard; Wang, Qian; Cao, Bin; Xu, Shanna
2017-03-01
Co-pyrolysis conversion of seaweed (Enteromorpha clathrat and Sargassum fusiforme) polysaccharides and cellulose has been investigated. From the Py-GC/MS results, Enteromorpha clathrata (EN) polysaccharides pyrolysis mainly forms furans; while the products of Sargassum fusiforme (SA) polysaccharides pyrolysis are mainly acid esters. The formation mechanisms of H 2 O, CO 2 , and SO 2 during the pyrolysis of seaweed polysaccharides were analyzed using the thermogravimetric-mass spectrometry. Meanwhile the pyrolysis of seaweed polysaccharide based on the Amber and the ReaxFF force fields, has also been proposed and simulated respectively. The simulation results coincided with the experimental results. During the fast pyrolysis, strong synergistic effects among cellulose and seaweed polysaccharide molecules have been simulated. By comparing the experimental and simulation value, it has been found that co-pyrolysis could increase the number of molecular fragments, increase the pyrolysis conversion rate, and increase gas production rate at the middle temperature range. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development of bio-fuel from palm frond via fast pyrolysis
NASA Astrophysics Data System (ADS)
Solikhah, M. D.; Raksodewanto, A. A.; Kismanto, A.; Karuana, F.; Heryana, Y.; Riza; Pratiwi, F. T.
2017-05-01
In order to fulfill the fuel demand in the future, Indonesia has to find a sustainable alternative for its energy. Energy source in the form of biomass is a promising alternative since its availability is abundance in this tropical country. Biomass can be converted into liquid fuel via fast pyrolysis by contacting the solid biomass into hot medium in the absence of oxygen. Hot sand is the common heat carrier for fast pyrolysis purposes but it is very abrasive and required high pyrolysis temperature (450-600 °C). This paper will discuss on the equipment design and experiment of fast pyrolysis of palm frond using high boiling point thermal oil as heat carrier. Experiments show that by using thermal oil as heat carrier, bio-oil can be produced at lower pyrolysis temperature of 350 °C, compared to the one using hot sand as heating carrier. The yield of bio-oil production is 36.4 % of biomass feeding. The water content of bio-oil is 52.77 % mass while heating value is 10.25 MJ/kg.
NASA Technical Reports Server (NTRS)
Huizinga, Bradley J.; Tannenbaum, Eli; Kaplan, Isaac R.
1987-01-01
The effect of common sedimentary minerals (illite, Na-montmorillonite, or calcite) under different water concentrations on the generation and release of n-alkanes, acyclic isoprenoids, and select alkenes from oil-prone kerogens was investigated. Matrices containing Green River Formation kerogen or Monterey Formation kerogen, alone or in the presence of minerals, were heated at 200 or 300 C for periods of up to 1000 hours, and the pyrolysis products were analyzed. The influence of the first two clay minerals was found to be critically dependent on the water content. Under the dry pyrolysis conditions, both minerals significantly reduced alkene formation; the C12+ n-alkanes and acyclic isoprenoids were mostly destroyed by montmorillonite, but underwent only minor alteration with illite. Under hydrous conditions (mineral/water of 2/1), the effects of both minerals were substantially reduced. Calcite had no significant effect on the thermal evolution of the hydrocarbons.
Zabaniotou, A A; Kantarelis, E K; Theodoropoulos, D C
2008-05-01
Sunflower is a traditional crop which can be used for the production of bioenergy and liquid biofuels. A study of the pyrolytic behaviour of sunflower residues at temperatures from 300 to 600 degrees C has been carried out. The experiments were performed in a captive sample reactor under atmospheric pressure and helium as sweeping gas. The yields of the derived pyrolysis products were determined in relation to temperature, with constant sweeping gas flow of 50 cm3 min(-1) and heating rate of 40 degrees Cs(-1). The maximum gas yield of around 53 wt.% was obtained at 500 degrees C, whereas maximum oil yield of about 21 wt.% was obtained at 400 degrees C. A simple first order kinetic model has been applied for the devolatilization of biomass. Kinetic constants have been estimated: E=78.15 kJ mol(-1); k(0)=1.03 x 10(3)s(-1).
Low-temperature co-pyrolysis behaviours and kinetics of oily sludge: effect of agricultural biomass.
Zhou, Xiehong; Jia, Hanzhong; Qu, Chengtun; Fan, Daidi; Wang, Chuanyi
2017-02-01
Pyrolysis is potentially an effective treatment of oily sludge for oil recovery, and its kinetics and efficiency are expected to be affected by additives. In the present study, the pyrolysis parameters, including heating rate, final pyrolysis temperature, and pyrolysis time of oily sludge in the presence of agricultural biomass, apricot shell, were systematically explored. As a result, maximum oil recovery is achieved when optimizing the pyrolysis conditionas15 K/min, 723 K, and 3 h for heating rate, final pyrolysis temperature, and pyrolysis time, respectively. Thermogravimetric experiments of oily sludge samples in the presence of various biomasses conducted with non-isothermal temperature programmes suggest that the pyrolysis process contains three stages, and the main decomposition reaction occurs in the range of 400-740 K. Taking Flynn-Wall-Ozawa analysis of the derivative thermogravimetry and thermogravimetry results, the activation energy (E a ) values for the pyrolysis of oily sludge in the presence and absence of apricot shell were derived to be 35.21 and 39.40 kJ mol -1 , respectively. The present work supports that the presence of biomass promotes the pyrolysis of oily sludge, implying its great potential as addictive in the industrial pyrolysis of oily sludge.
Energy Conversion Loop: A Testbed for Nuclear Hybrid Energy Systems Use in Biomass Pyrolysis
NASA Astrophysics Data System (ADS)
Verner, Kelley M.
Nuclear hybrid energy systems are a possible solution for contemporary energy challenges. Nuclear energy produces electricity without greenhouse gas emissions. However, nuclear power production is not as flexible as electrical grids demand and renewables create highly variable electricity. Nuclear hybrid energy systems are able to address both of these problems. Wasted heat can be used in processes such as desalination, hydrogen production, or biofuel production. This research explores the possible uses of nuclear process heat in bio-oil production via biomass pyrolysis. The energy conversion loop is a testbed designed and built to mimic the heat from a nuclear reactor. Small scale biomass pyrolysis experiments were performed and compared to results from the energy conversion loop tests to determine future pyrolysis experimentation with the energy conversion loop. Further improvements must be made to the energy conversion loop before more complex experiments may be performed. The current conditions produced by the energy conversion loop are not conducive for current biomass pyrolysis experimentation.tion.
Study on the Inference Factors of Huangling Coking Coal Pyrolysis
NASA Astrophysics Data System (ADS)
Du, Meili; Yang, Zongyi; Fan, Jinwen
2018-01-01
In order to reasonably and efficiently utilize Huangling coking coal resource, coal particle, heating rate, holding time, pyrolysis temperature and others factors were dicussed for the influence of those factor on Huangling coking coal pyrolysis products. Several kinds of coal blending for coking experiments were carried out with different kinds of coal such as Huangling coking coal, Xida coal with high ash low sufur, Xinghuo fat coal with hign sulfur, Zhongxingyi coking coal with high sulfur, Hucun lean coal, mixed meager and lean coal. The results shown that the optimal coal particle size distribution was 0.5~1.5mm, the optimal heating rate was 8°C/min, the optimal holding time was 15min, the optimal pyrolysis temperature was 800°C for Huangling coking coal pyrolysis, the tar yield increased from 4.7% to 11.2%. The maximum tar yield of coal blending for coking under the best single factor experiment condition was 10.65% when the proportio of Huangling coking coal was 52%.
Small-scale hydrous pyrolysis of macromolecular material in meteorites
NASA Astrophysics Data System (ADS)
Sephton, M. A.; Pillinger, C. T.; Gilmour, I.
1998-12-01
The hydrous pyrolysis method, usually performed on several hundred grams of terrestrial rock sample, has been scaled down to accommodate less than two grams of meteorite sample. This technique makes full use of the high yields associated with hydrous pyrolysis experiments and permits the investigation of the meteorite macromolecular material, the major organic component in carbonaceous meteorites. The hydrous pyrolysis procedure transforms the high molecular weight macromolecular material into low molecular weight fragments. The released entities can then be extracted with supercritical fluid extraction. In contrast to the parent structure, the pyrolysis products are amenable for analysis by gas chromatography-based techniques. When subjected to hydrous pyrolysis, two carbonaceous chondrites (Orgueil and Cold Bokkeveld) released generally similar products, which consisted of abundant volatile aromatic and alkyl-substituted aromatic compounds. These results revealed the ability of small-scale hydrous pyrolysis to dissect extraterrestrial macromolecular material and thereby reveal its organic constitution.
Experimental study of thermal conductivity of pyrolysised materials by means of a flat layer
NASA Astrophysics Data System (ADS)
Vaniushkin, V. D.; Popov, S. K.; Sidenkov, D. V.
2017-11-01
Recycling of tires is currently a very important task. One of the areas of recycling tires is their low-temperature pyrolysis to produce marketable products - liquid fraction and a solid coke residue. For the development of the pyrolysis installation it is important to know the thermal conductivity of the coke residue at different temperatures of pyrolysis of initial material. As a property of matter, thermal conductivity depends in general on temperature and pressure. For materials with some structure, such as porous materials, the thermal conductivity depends on the characteristics of the structure. The thermal conductivity of the porous coke residue at pyrolysis temperatures of 300 0C, 400 0C, 500 0C and atmospheric pressure was studied experimentally at the laboratory unit of the department of “Theoretical basis of heat engineering” using the method of the flat layer in the temperature range 5…100 0C. Experimentally proved temperature dependencies of the coefficient of thermal conductivity of the coke residue are built to improve the accuracy of calculations of constructive and regime parameters of the pyrolysis installation.
SAM Gcms Chromatography Performed at Mars : Elements of Interpretation
NASA Astrophysics Data System (ADS)
Szopa, C.; Coll, P. J.; Buch, A.; François, P.; Cabane, M.; Coscia, D.; Teinturier, S.; Navarro-Gonzalez, R.; Glavin, D. P.; Freissinet, C.; Mahaffy, P. R.
2013-12-01
The characterisation of the chemical and mineralogical composition of regolith samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Interpretation of the data collected after SAM pyrolysis evolved gas analysis (EGA) and gas chromatography mass spectrometry (GC-MS) experiments on the first soil samples collected by MSL at the Rocknest Aeolian Deposit in Gale Crater has been challenging due to the concomitant presence in the ovens of an oxychlorine phase present in the samples, and a derivatization agent coming from the SAM wet chemistry experiment (Glavin et al., 2013). Moreover, accurate identification and quantification, in the SAM EGA mode, of volatiles released from the heated sample, or generated by reactions occurring in the SAM pyrolysis oven, is also difficult for a few compounds due to evolution over similar temperature ranges and overlap of their MS signatures. Hence, the GC analyses, coupled with MS, enabled the separation and identification and quantification of most of the volatile compounds detected. These results can have been obtained through tests and calibration done with GC individual spare components and with the SAM testbed. This paper will present a view of the interpretation of the chromatograms obtained when analyzing the Rocknest and John Klein solid samples delivered to SAM, on sols 96 and 199 respectively, supported by laboratory calibrations.
Clauer, Norbert; Chaudhuri, Sambhudas; Lewan, M.D.; Toulkeridis, T.
2006-01-01
Hydrous-pyrolysis experiments were conducted on an organic-rich Devonian-Mississippian shale, which was also leached by dilute HCl before and after pyrolysis, to identify and quantify the induced chemical and isotopic changes in the rock. The experiments significantly affect the organic-mineral organization, which plays an important role in natural interactions during diagenetic hydrocarbon maturation in source rocks. They produce 10.5% of volatiles and the amount of HCl leachables almost doubles from about 6% to 11%. The Rb-Sr and K-Ar data are significantly modified, but not just by removal of radiogenic 40Ar and 87Sr, as described in many studies of natural samples at similar thermal and hydrous conditions. The determining reactions relate to alteration of the organic matter marked by a significant change in the heavy REEs in the HCl leachate after pyrolysis, underlining the potential effects of acidic fluids in natural environments. Pyrolysis induces also release from organics of some Sr with a very low 87Sr/86Sr ratio, as well as part of U. Both seem to have been volatilised during the experiment, whereas other metals such as Pb, Th and part of U appear to have been transferred from soluble phases into stable (silicate?) components. Increase of the K2O and radiogenic 40Ar contents of the silicate minerals after pyrolysis is explained by removal of other elements that could only be volatilised, as the system remains strictly closed during the experiment. The observed increase in radiogenic 40Ar implies that it was not preferentially released as a volatile gas phase when escaping the altered mineral phases. It had to be re-incorporated into newly-formed soluble phases, which is opposite to the general knowledge about the behavior of Ar in supergene natural environments. Because of the strictly closed-system conditions, hydrous-pyrolysis experiments allow to better identify and even quantify the geochemical aspects of organic-inorganic interactions, such as elemental exchanges, transfers and volatilisation, in potential source-rock shales during natural diagenetic hydrocarbon maturation.
NASA Technical Reports Server (NTRS)
Stern, J. C.; Steele, A.; Brunner, A.; Coll, P.; Eigenbrode, J.; Franz, H. B.; Freissinet, C.; Glavin, D.; Jones, J. H.; Navarro-Gonzalez, R.;
2013-01-01
The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected nitrogen-bearing compounds during the pyrolysis of Rocknest material at Gale Crater. Hydrogen cyanide and acetonitrile were identified by the quadrupole mass spectrometer (QMS) both in direct evolved gas analysis (EGA). SAM carried out four separate analyses from Rocknest Scoop 5. A significant low temperature release was present in Rocknest runs 1-4, while a smaller high temperature release was also seen in Rocknest runs 1-3. Here we evaluate whether these compounds are indigenous to Mars or a pyrolysis product resulting from known terrestrial materials that are part of the SAM derivatization.
Recycling of electronic waste: Printed wiring boards
NASA Astrophysics Data System (ADS)
Luyima, Alex
Pyrolysis and leaching are the dominant techniques applied in the recycling of waste printed wiring boards (PWBs). Waste PWB pyrolysis is a highly polluting technology and produces brominated pyrolysis oils in addition to hydrogen bromide (HBr) gas. Moreover, leaching as a treatment process of waste PWBs is not well investigated. In this work, the pyrolysis of waste PWBs has been studied with the aim of reducing the amount of brominated oils and HBr gas evolved. The effects of powder inorganic chemicals (CaO, CaCO3, Fe 2O3, Al2O3, Y-Zeolite, and ZSM-5) additions on the pyrolysis of waste PWBs has been studied through experiments using a thermogravimetric-differential thermal analyzer connected to a mass spectrometer (TG-DTA-MS) and in a tube furnace at 900 °C. It has been shown that the kinetic models by Friedman, Flynn-Wall-Ozawa, and Kissinger are applicable to waste PWB pyrolysis at temperatures below 400 °C. Moreover, CaO, CaCO3, Fe2O3, Y-Zeolite, and ZSM-5 show a potential to reduce the amount of HBr gas evolved during pyrolysis in TG-DTA-MS. However, in the tube furnace pyrolysis experiments, CaO and CaCO3 were found to be the most effective chemical additions, with more than 90% reduction in total bromine (HBr and other brominated gases) evolved. It has also been demonstrated that the sequential leaching of waste PWBs with hydrochloric acid, nitric acid and aqua regia is capable of selective recovery of base and precious metals contained in waste PWBs.
Comparison of prototype and laboratory experiments on MOMA GCMS: results from the AMASE11 campaign.
Siljeström, Sandra; Freissinet, Caroline; Goesmann, Fred; Steininger, Harald; Goetz, Walter; Steele, Andrew; Amundsen, Hans
2014-09-01
The characterization of any organic molecules on Mars is a top-priority objective for the ExoMars European Space Agency-Russian Federal Space Agency joint mission. The main instrument for organic analysis on the ExoMars rover is the Mars Organic Molecule Analyzer (MOMA). In preparation for the upcoming mission in 2018, different Mars analog samples are studied with MOMA and include samples collected during the Arctic Mars Analog Svalbard Expedition (AMASE) to Svalbard, Norway. In this paper, we present results obtained from two different Mars analog sites visited during AMASE11, Colletthøgda and Botniahalvøya. Measurements were performed on the samples during AMASE11 with a MOMA gas chromatograph (GC) prototype connected to a commercial mass spectrometer (MS) and later in home institutions with commercial pyrolysis-GCMS instruments. In addition, derivatization experiments were performed on the samples during AMASE11 and in the laboratory. Three different samples were studied from the Colletthøgda that included one evaporite and two carbonate-bearing samples. Only a single sample was studied from the Botniahalvøya site, a weathered basalt covered by a shiny surface consisting of manganese and iron oxides. Organic molecules were detected in all four samples and included aromatics, long-chained hydrocarbons, amino acids, nucleobases, sugars, and carboxylic acids. Both pyrolysis and derivatization indicated the presence of extinct biota by the detection of carboxylic acids in the samples from Colletthøgda, while the presence of amino acids, nucleobases, carboxylic acids, and sugars indicated an active biota in the sample from Botniahalvøya. The results obtained with the prototype flight model in the field coupled with repeat measurements with commercial instruments within the laboratory were reassuringly similar. This demonstrates the performance of the MOMA instrument and validates that the instrument will aid researchers in their efforts to answer fundamental questions regarding the speciation and possible source of organic content on Mars.
Li, Hao; Mahyoub, Samah Awadh Ali; Liao, Wenjie; Xia, Shuqian; Zhao, Hechuan; Guo, Mengya; Ma, Peisheng
2017-01-01
The magnetic biochars were easily fabricated by thermal pyrolysis of Fe(NO 3 ) 3 and distillation residue derived from rice straw pyrolysis oil at 400, 600 and 800°C. The effects of pyrolysis temperature on characteristics of magnetic biochars as well as adsorption capacity for aromatic contaminants (i.e., anisole, phenol and guaiacol) were investigated carefully. The degree of carbonization of magnetic biochars become higher as pyrolysis temperature increasing. The magnetic biochar reached the largest surface area and pore volume at the pyrolysis temperature of 600°C due to pores blocking in biochar during pyrolysis at 800°C. Based on batch adsorption experiments, the used adsorbent could be magnetically separated and the adsorption capacity of anisole on magnetic biochars was stronger than that of phenol and guaiacol. The properties of magnetic biochar, including surface area, pore volume, aromaticity, grapheme-like-structure and iron oxide (γ-Fe 2 O 3 ) particles, showed pronounced effects on the adsorption performance of aromatic contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Kai; Zhang, Liqiang; Zhu, Liang; Zhu, Xifeng
2017-06-01
The cornstalk and chlorella were selected as the representative of lignocelulosic and algal biomass, and the pyrolysis experiments of them were carried out using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The physicochemical properties of samples and the pyrolytic product distribution were presented. And then the compositional differences between the two kinds of pyrolytic products were studied, the relevant pyrolysis mechanisms were analyzed systematically. Pyrolytic vapor from lignocellulosic biomass contained more phenolic and carbonyl compounds while that from algal biomass contained more long-chain fatty acids, nitrogen-containing compounds and fewer carbonyl compounds. Maillard reaction is conducive to the conversion of carbonyl compounds to nitrogenous heterocyclic compounds with better thermal stability. Copyright © 2017 Elsevier Ltd. All rights reserved.
2006-08-01
conditions will necessarily be supercritical fluids . These temperatures and pressures will also cause the fuel to undergo pyrolytic reactions, which...Spectrometric Detection for 5a. CONTRACT NUMBER Analysis of Supercritical Fuels Pyrolysis Products 5b. GRANT NUMBER FA9550-05-1-0253 5c... supercritical pyrolysis experiments with the model fuels 1-methylnaphthalene and toluene. The HPLC/UV/MS instrument facilitated the identification of fifteen 5
Co-pyrolysis of swine manure with agricultural plastic waste: laboratory-scale study.
Ro, Kyoung S; Hunt, Patrick G; Jackson, Michael A; Compton, David L; Yates, Scott R; Cantrell, Keri; Chang, SeChin
2014-08-01
Manure-derived biochar is the solid product resulting from pyrolysis of animal manures. It has considerable potential both to improve soil quality with high levels of nutrients and to reduce contaminants in water and soil. However, the combustible gas produced from manure pyrolysis generally does not provide enough energy to sustain the pyrolysis process. Supplementing this process may be achieved with spent agricultural plastic films; these feedstocks have large amounts of available energy. Plastic films are often used in soil fumigation. They are usually disposed in landfills, which is wasteful, expensive, and environmentally unsustainable. The objective of this work was to investigate both the energetics of co-pyrolyzing swine solids with spent plastic mulch films (SPM) and the characteristics of its gas, liquid, and solid byproducts. The heating value of the product gas from co-pyrolysis was found to be much higher than that of natural gas; furthermore, the gas had no detectable toxic fumigants. Energetically, sustaining pyrolysis of the swine solids through the energy of the product gas could be achieved by co-pyrolyzing dewatered swine solids (25%m/m) with just 10% SPM. If more than 10% SPM is used, the co-pyrolysis would generate surplus energy which could be used for power generation. Biochars produced from co-pyrolyzing SPM and swine solid were similar to swine solid alone based on the surface area and the (1)H NMR spectra. The results of this study demonstrated the potential of using pyrolysis technology to manage two prominent agricultural waste streams (SPM and swine solids) while producing value-added biochar and a power source that could be used for local farm operations. Published by Elsevier Ltd.
Laboratory Analytical Procedures | Bioenergy | NREL
analytical procedures (LAPs) to provide validated methods for biofuels and pyrolysis bio-oils research . Biomass Compositional Analysis These lab procedures provide tested and accepted methods for performing
NASA Technical Reports Server (NTRS)
Eigenbrode, J. L.; McAdam, A.; Franz, H.; Freissinet, C.; Bower, H.; Floyd, M.; Conrad, P.; Mahaffy, P.; Feldman, J.; Hurowitz, J.;
2013-01-01
Polytetrafluoroethylene (PTFE or trade name: Teflon by Dupont Co.) has been detected in rocks drilled during terrestrial testing of the Mars Science Laboratory (MSL) drilling hardware. The PTFE in sediments is a wear product of the seals used in the Drill Bit Assemblies (DBAs). It is expected that the drill assembly on the MSL flight model will also shed Teflon particles into drilled samples. One of the primary goals of the Sample Analysis at Mars (SAM) instrument suite on MSL is to test for the presence of martian organics in samples. Complications introduced by the potential presence of PTFE in drilled samples to the SAM evolved gas analysis (EGA or pyrolysisquadrupole mass spectrometry, pyr-QMS) and pyrolysis- gas chromatography mass spectrometry (Pyr- GCMS) experiments was investigated.
Internally Heated Screw Pyrolysis Reactor (IHSPR) heat transfer performance study
NASA Astrophysics Data System (ADS)
Teo, S. H.; Gan, H. L.; Alias, A.; Gan, L. M.
2018-04-01
1.5 billion end-of-life tyres (ELT) were discarded globally each year and pyrolysis is considered the best solution to convert the ELT into valuable high energy-density products. Among all pyrolysis technologies, screw reactor is favourable. However, conventional screw reactor risks plugging issue due to its lacklustre heat transfer performance. An internally heated screw pyrolysis reactor (IHSPR) was developed by local renewable energy industry, which serves as the research subject for heat transfer performance study of this particular paper. Zero-load heating test (ZLHT) was first carried out to obtain the operational parameters of the reactor, followed by the one dimensional steady-state heat transfer analysis carried out using SolidWorks Flow Simulation 2016. Experiments with feed rate manipulations and pyrolysis products analyses were conducted last to conclude the study.
NASA Astrophysics Data System (ADS)
Aziz, Mohammad Abdul; Al-khulaidi, Rami Ali; Rashid, MM; Islam, M. R.; Rashid, MAN
2017-03-01
In this research, a development and performance test of a fixed-bed batch type pyrolysis reactor for pilot scale pyrolysis oil production was successfully completed. The characteristics of the pyrolysis oil were compared to other experimental results. A solid horizontal condenser, a burner for furnace heating and a reactor shield were designed. Due to the pilot scale pyrolytic oil production encountered numerous problems during the plant’s operation. This fixed-bed batch type pyrolysis reactor method will demonstrate the energy saving concept of solid waste tire by creating energy stability. From this experiment, product yields (wt. %) for liquid or pyrolytic oil were 49%, char 38.3 % and pyrolytic gas 12.7% with an operation running time of 185 minutes.
Optimizing biochars to mitigate N2O emissions in Mediterranean areas
NASA Astrophysics Data System (ADS)
Cayuela, Maria Luz; Sanchez-Garcia, Maria; Roig, Asuncion; Sanchez-Monedero, Miguel Angel
2017-04-01
Some of the most productive agricultural soils stand in Mediterranean-type climate areas of the world (e.g. California's Central Valley, Andalucia region in South Spain, and Lombardy region in Italy). Many of these soils are under intensive agricultural production, bearing the addition of substantial amounts of N fertilizers, which are known to promote soil N2O emissions. Laboratory studies have shown the potential of biochar to decrease N2O emissions in soils from Mediterranean areas. These soils generally have alkaline pH and low concentrations of organic C and several laboratory experiments found that applying biochar at a rate of 2% in weight could decrease N2O emissions up to 90%. However, field studies carried out in areas of California, Italy and Spain (all under Mediterranean climate) showed none or very limited N2O mitigation with biochar. We postulate that this discrepancy may be because biochar-soil combinations were not optimal in field studies and that developing biochars adjusted to specific soil properties is crucial for their successful application to mitigate N2O emissions. Thus, in this study we aimed at (i) collecting and characterizing a variety of the most representative Mediterranean agricultural residues (olive tree, almond and orange tree pruning, olive mill waste, rice straw, horticultural residues, etc.), (ii) exploring their suitability as feedstocks for biochar production and (iii) analyzing their impact on N2O emissions in a Mediterranean agricultural soil. Biochars were produced by slow pyrolysis with a heating rate of 5˚C min-1 at two pyrolysis temperatures (400 and 600˚C) and a retention time of two hours. Soil incubations were set up simulating conditions of highly intensive crop production (high N fertilization, high moisture) to test how the biochars produced from different feedstocks and under two pyrolysis temperatures influence N2O emissions. Our starting hypothesis was that it is possible to optimize biochar characteristics (by appropriately selecting original feedstocks and pyrolysis conditions) in order to mitigate N2O emissions in Mediterranean agricultural soils. Acknowledgements: This contribution was possible thanks to Fundación Séneca (Agencia Regional de Ciencia y Tecnología de la region de Murcia). Grant number 19281/PI/14
Gong, Xiaomin; Huang, Danlian; Liu, Yunguo; Zeng, Guangming; Wang, Rongzhong; Wei, Jingjing; Huang, Chao; Xu, Piao; Wan, Jia; Zhang, Chen
2018-04-01
This study aimed to investigate the effect of pyrolysis on the stabilization of heavy metals in plant residues obtained after phytoremediation. Ramie residues, being collected after phytoremediation of metal contaminated sediments, were pyrolyzed at different temperatures (300-700 °C). Results indicated that pyrolysis was effective in the stabilization of Cd, Cr, Zn, Cu, and Pb in ramie residues by converting the acid-soluble fraction of metals into residual form and decreasing the TCLP-leachable metal contents. Meanwhile, the reutilization potential of using the pyrolysis products generated from ramie residues obtained after phytoremediation as sorbents was investigated. Adsorption experiments results revealed that the pyrolysis products presented excellent ability to adsorb methylene blue (MB) with a maximum adsorption capacity of 259.27 mg/g. This study demonstrated that pyrolysis could be used as an efficient alternative method for stabilizing heavy metals in plant residues obtained after phytoremediation, and their pyrolysis products could be reutilized for dye adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.
Flash Vacuum Pyrolysis: Techniques and Reactions.
Wentrup, Curt
2017-11-20
Flash vacuum pyrolysis (FVP) had its beginnings in the 1940s and 1950s, mainly through mass spectrometric detection of pyrolytically formed free radicals. In the 1960s many organic chemists started performing FVP experiments with the purpose of isolating new and interesting compounds and understanding pyrolysis processes. Meanwhile, many different types of apparatus and techniques have been developed, and it is the purpose of this review to present the most important methods as well as a survey of typical reactions and observations that can be achieved with the various techniques. This includes preparative FVP, chemical trapping reactions, matrix isolation, and low temperature spectroscopy of reactive intermediates and unstable molecules, the use of online mass, photoelectron, microwave, and millimeterwave spectroscopies, gas-phase laser pyrolysis, pulsed pyrolysis with supersonic jet expansion, very low pressure pyrolysis for kinetic investigations, solution-spray and falling-solid FVP for involatile compounds, and pyrolysis over solid supports and reagents. Moreover, the combination of FVP with matrix isolation and photochemistry is a powerful tool for investigations of reaction mechanism. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mu, Lin; Chen, Jianbiao; Yao, Pikai; Zhou, Dapeng; Zhao, Liang; Yin, Hongchao
2016-12-01
Co-pyrolysis characteristics of petrochemical wastewater sludge and Huolinhe lignite were investigated using thermogravimetric analyzer and packed-bed reactor coupled with Fourier transform infrared spectrometer and gas chromatography. The pyrolysis characteristics of the blends at various sludge blending ratios were compared with those of the individual materials. Thermogravimetric experiments showed that the interactions between the blends were beneficial to generate more residues. In packed-bed reactor, synergetic effects promoted the release of gas products and left less liquid and solid products than those calculated by additive manner. Fourier transform infrared spectrometer analysis showed that main functional groups in chars gradually disappeared with pyrolysis temperatures increasing, and H 2 O, CH 4 , CO, and CO 2 appeared in volatiles during pyrolysis. Gas compositions analysis indicated that, the yields of H 2 and CO clearly increased as the pyrolysis temperature and sludge blending ratio increasing, while the changes of CH 4 and CO 2 yields were relatively complex. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Locke, Darren R.; Yazzie, Cyriah A.; Burton, Aaron S.; Niles, Paul B.; Johnson, Natasha M.
2015-01-01
Abiotic synthesis of complex organic compounds in the early solar nebula that formed our solar system is hypothesized to occur via a Fischer-Tropsch type (FTT) synthesis involving the reaction of hydrogen and carbon monoxide gases over metal and metal oxide catalysts. In general, at low temperatures (less than 200 C), FTT synthesis is expected to form abundant alkane compounds while at higher temperatures (greater than 200 C) it is expected to product lesser amounts of n-alkanes and greater amounts of alkene, alcohol, and polycyclic aromatic hydrocarbons (PAHs). Experiments utilizing a closed-gas circulation system to study the effects of FTT reaction temperature, catalysts, and number of experimental cycles on the resulting solid insoluble organic products are being performed in the laboratory at NASA Goddard Space Flight Center. These experiments aim to determine whether or not FTT reactions on grain surfaces in the protosolar nebula could be the source of the insoluble organic matter observed in meteorites. The resulting solid organic products are being analyzed at NASA Johnson Space Center by pyrolysis gas chromatography mass spectrometry (PY-GCMS). PY-GCMS yields the types and distribution of organic compounds released from the insoluble organic matter generated from the FTT reactions. Previously, exploratory work utilizing PY-GCMS to characterize the deposited organic materials from these reactions has been reported. Presented here are new organic analyses using magnetite catalyst to produce solid insoluble organic FTT products with varying reaction temperatures and number of experimental cycles.
Sample Manipulation System for Sample Analysis at Mars
NASA Technical Reports Server (NTRS)
Mumm, Erik; Kennedy, Tom; Carlson, Lee; Roberts, Dustyn
2008-01-01
The Sample Analysis at Mars (SAM) instrument will analyze Martian samples collected by the Mars Science Laboratory Rover with a suite of spectrometers. This paper discusses the driving requirements, design, and lessons learned in the development of the Sample Manipulation System (SMS) within SAM. The SMS stores and manipulates 74 sample cups to be used for solid sample pyrolysis experiments. Focus is given to the unique mechanism architecture developed to deliver a high packing density of sample cups in a reliable, fault tolerant manner while minimizing system mass and control complexity. Lessons learned are presented on contamination control, launch restraint mechanisms for fragile sample cups, and mechanism test data.
NASA Technical Reports Server (NTRS)
Des Marais, D. J.; Stallard, M. L.; Nehring, N. L.; Truesdell, A. H.
1988-01-01
Hydrocarbon abundances and stable-isotopic compositions were measured in wells M5, M26, M35 and M102, which represent a range of depths (1270-2000 m) and temperatures (275-330 degrees C) in the field. In order to simulate the production of the geothermal hydrocarbons, gases were collected from the pyrolysis of lignite in the laboratory. This lignite was obtained from a well which sampled rock strata which are identical to those occurring in the field, but which have experienced much lower subsurface temperatures. In both the well and the laboratory observations, high-temperature environments favored higher relative concentrations of methane, ethane and benzene and generally higher delta 13C-values in the individual hydrocarbons. The best correlation between the laboratory and well data is obtained when laboratory-produced gases from experiments conducted at lower (400 degrees C) and higher (600 degrees C) temperatures are mixed. This improved correlation suggests that the wells are sampling hydrocarbons produced from a spectrum of depths and temperatures in the sediments.
Pyrolysis of Woody Residues: Impact of Mineral Content
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iisa, Kristiina; Zacher, Alan; Sykes, Robert
2014-11-21
Woody residues represent a lower cost option for feedstocks for the production of biofuels. In this study, the pyrolysis of woody residues was investigated as part of Clean Energy Dialogue between the U.S. and Canada. Three pine-based hog fuels from saw mills and wood from pine beetle killed trees were chosen as the woody residue feedstocks and pine and birch as the reference clean feedstocks. The yields and quality of the oil were evaluated in a bubbling fluidized bed reactor and a laboratory-scale pyrolyzer connected to a molecular beam mass spectrometer.
Pyrolysis process for the treatment of scrap tyres: preliminary experimental results.
Galvagno, S; Casu, S; Casabianca, T; Calabrese, A; Cornacchia, G
2002-01-01
The aim of this work is the evaluation, on a pilot scale, of scrap tyre pyrolysis process performance and the characteristics of the products under different process parameters, such as temperature, residence time, pressure, etc. In this frame, a series of tests were carried out at varying process temperatures between 550 and 680 degrees C, other parameters being equal. Pyrolysis plant process data are collected by an acquisition system; scrap tyre samples used for the treatment, solid and liquid by-products and produced syngas were analysed through both on-line monitoring (for gas) and laboratory analyses. Results show that process temperature, in the explored range, does not seem to seriously influence the volatilisation reaction yield, at least from a quantitative point of view, while it observably influences the distribution of the volatile fraction (liquid and gas) and by-products characteristics.
Low temperature isothermal pyrolysis of cellulose
A. Broido; M. Weinstein
1971-01-01
By providing continuous weight measurement, thermogravimetry, even for isothermal experiments, offers a major advantage over the classical methods of determining weight-change curves in complex pyrolysis reactions. Thus, even minor weight changes, readily detectable on a continuous record, furnish clues concerning the reaction sequences and indicate conditions under...
NASA Astrophysics Data System (ADS)
Chassefiere, E.; Jambon, A.; Berthelier, J.-J.; Goulpeau, G.; Leblanc, F.; Montmessin, F.; Sarda, P.; Agrinier, P.; Fouchet, T.; Waite, H.
The technique of GCMS analysis has to be completed by static mass spectrometry for precise in-situ measurements of the isotopic composition of planetary atmospheres (noble gases, stable isotopes), and volatile outgassed products from solid sample pyrolysis. Static mass spectrometry, coupled with gas separation by cryo-separation and gettering, is commonly used in the laboratory to study volatiles extracted from terrestrial and meteoritic samples. Such an instrument (PALOMA) is presently developed in our laboratories, and it will be coupled with a Pyr-GCMS analyzer (MACE), built by a US consortium of science laboratories and industrials (University of Michigan, Southwest Research Institute, JPL, Ball Aerospace). The MACE/PALOMA experiment will be proposed on the NASA Mars Science Laboratory mission, planned to be launched in 2009. The scientific objectives of PALOMA, coupled with MACE, may be listed as follows : (i) search for isotopic signatures of past life in atmosphere, rock, dust and ice samples, with emphasis on carbon, nitrogen and hydrogen; (ii) accurately measure isotopic composition of atmospheric noble gases, and stable isotopes, in order to better constrain past escape, surface interaction, outgassing history and climate evolution; (iii) precisely measure diurnal/ seasonal variations of isotopic ratios of H2O, CO2, and N2, for improving our understanding of present and past climate, and of the role of water cycle. Main measurement objectives are : (i) C, H, O, N isotopic composition in both organic evolved samples (provided by MACE pyrolysis system) and atmosphere with high accuracy (a few per mil at 1-s level); (ii) noble gas (He, Ne, Ar, Kr, Xe) and stable (C, H, O, N) isotope composition in atmosphere with high accuracy (a few per mil at 1-s level); (iii) molecular and isotopic composition of inorganic evolved samples (salts, hydrates, nitrates, {ldots}), including ices; (iv) diurnal and seasonal monitoring of D/H in water vapor, and water ice.
Tabletop Femtosecond VUV Photoionization and PEPICO Detection of Microreactor Pyrolysis Products.
Couch, David E; Buckingham, Grant T; Baraban, Joshua H; Porterfield, Jessica P; Wooldridge, Laura A; Ellison, G Barney; Kapteyn, Henry C; Murnane, Margaret M; Peters, William K
2017-07-20
We report the combination of tabletop vacuum ultraviolet photoionization with photoion-photoelectron coincidence spectroscopy for sensitive, isomer-specific detection of nascent products from a pyrolysis microreactor. Results on several molecules demonstrate two essential capabilities that are very straightforward to implement: the ability to differentiate isomers and the ability to distinguish thermal products from dissociative ionization. Here, vacuum ultraviolet light is derived from a commercial tabletop femtosecond laser system, allowing data to be collected at 10 kHz; this high repetition rate is critical for coincidence techniques. The photoion-photoelectron coincidence spectrometer uses the momentum of the ion to identify dissociative ionization events and coincidence techniques to provide a photoelectron spectrum specific to each mass, which is used to distinguish different isomers. We have used this spectrometer to detect the pyrolysis products that result from the thermal cracking of acetaldehyde, cyclohexene, and 2-butanol. The photoion-photoelectron spectrometer can detect and identify organic radicals and reactive intermediates that result from pyrolysis. Direct comparison of laboratory and synchrotron data illustrates the advantages and potential of this approach.
Tabletop Femtosecond VUV Photoionization and PEPICO Detection of Microreactor Pyrolysis Products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couch, David E.; Buckingham, Grant T.; Baraban, Joshua H.
Here, we report the combination of tabletop vacuum ultraviolet photoionization with photoion--photoelectron coincidence spectroscopy for sensitive, isomer-specific detection of nascent products from a pyrolysis microreactor. Results on several molecules demonstrate two essential capabilities that are very straightforward to implement: the ability to differentiate isomers, and to distinguish thermal products from dissociative ionization. We derive vacuum ultraviolet light is from a commercial tabletop femtosecond laser system, allowing data to be collected at 10 kHz; this high repetition rate is critical for coincidence techniques. The photoion—photoelectron coincidence spectrometer uses the momentum of the ion to identify dissociative ionization events, and coincidence techniquesmore » to provide a photoelectron spectrum specific to each mass, which is used to distinguish different isomers. We also have used this spectrometer to detect the pyrolysis products that result from the thermal cracking of acetaldehyde, cyclohexene, and 2-butanol. The photoion—photoelectron spectrometer can detect and identify organic radicals and reactive intermediates that result from pyrolysis. Direct comparison of laboratory and synchrotron data illustrate the advantages and potential of this approach.« less
Unice, Kenneth M; Kreider, Marisa L; Panko, Julie M
2012-11-08
Pyrolysis(pyr)-GC/MS analysis of characteristic thermal decomposition fragments has been previously used for qualitative fingerprinting of organic sources in environmental samples. A quantitative pyr-GC/MS method based on characteristic tire polymer pyrolysis products was developed for tread particle quantification in environmental matrices including soil, sediment, and air. The feasibility of quantitative pyr-GC/MS analysis of tread was confirmed in a method evaluation study using artificial soil spiked with known amounts of cryogenically generated tread. Tread concentration determined by blinded analyses was highly correlated (r2 ≥ 0.88) with the known tread spike concentration. Two critical refinements to the initial pyrolysis protocol were identified including use of an internal standard and quantification by the dimeric markers vinylcyclohexene and dipentene, which have good specificity for rubber polymer with no other appreciable environmental sources. A novel use of deuterated internal standards of similar polymeric structure was developed to correct the variable analyte recovery caused by sample size, matrix effects, and ion source variability. The resultant quantitative pyr-GC/MS protocol is reliable and transferable between laboratories.
Tabletop Femtosecond VUV Photoionization and PEPICO Detection of Microreactor Pyrolysis Products
Couch, David E.; Buckingham, Grant T.; Baraban, Joshua H.; ...
2017-06-29
Here, we report the combination of tabletop vacuum ultraviolet photoionization with photoion--photoelectron coincidence spectroscopy for sensitive, isomer-specific detection of nascent products from a pyrolysis microreactor. Results on several molecules demonstrate two essential capabilities that are very straightforward to implement: the ability to differentiate isomers, and to distinguish thermal products from dissociative ionization. We derive vacuum ultraviolet light is from a commercial tabletop femtosecond laser system, allowing data to be collected at 10 kHz; this high repetition rate is critical for coincidence techniques. The photoion—photoelectron coincidence spectrometer uses the momentum of the ion to identify dissociative ionization events, and coincidence techniquesmore » to provide a photoelectron spectrum specific to each mass, which is used to distinguish different isomers. We also have used this spectrometer to detect the pyrolysis products that result from the thermal cracking of acetaldehyde, cyclohexene, and 2-butanol. The photoion—photoelectron spectrometer can detect and identify organic radicals and reactive intermediates that result from pyrolysis. Direct comparison of laboratory and synchrotron data illustrate the advantages and potential of this approach.« less
Thompson, Logan C.; Ciesielski, Peter N.; Jarvis, Mark W.; ...
2017-07-12
Here, biomass particles can experience variable thermal conditions during fast pyrolysis due to differences in their size and morphology, and from local temperature variations within a reactor. These differences lead to increased heterogeneity of the chemical products obtained in the pyrolysis vapors and bio-oil. Here we present a simple, high-throughput method to investigate the thermal history experienced by large ensembles of particles during fast pyrolysis by imaging and quantitative image analysis. We present a correlation between the surface luminance (darkness) of the biochar particle and the highest temperature that it experienced during pyrolysis. Next, we apply this correlation to large,more » heterogeneous ensembles of char particles produced in a laminar entrained flow reactor (LEFR). The results are used to interpret the actual temperature distributions delivered by the reactor over a range of operating conditions.« less
Method for Hot Real-Time Sampling of Pyrolysis Vapors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomeroy, Marc D
Biomass Pyrolysis has been an increasing topic of research, in particular as a replacement for crude oil. This process utilizes moderate temperatures to thermally deconstruct the biomass which is then condensed into a mixture of liquid oxygenates to be used as fuel precursors. Pyrolysis oils contain more than 400 compounds, up to 60 percent of which do not re-volatilize for subsequent chemical analysis. Vapor chemical composition is also complicated as additional condensation reactions occur during the condensation and collection of the product. Due to the complexity of the pyrolysis oil, and a desire to catalytically upgrade the vapor composition beforemore » condensation, online real-time analytical techniques such as Molecular Beam Mass Spectrometry (MBMS) are of great use. However, in order to properly sample hot pyrolysis vapors, many challenges must be overcome. Sampling must occur within a narrow range of temperatures to reduce product composition changes from overheating or partial condensation or plugging of lines from condensed products. Residence times must be kept at a minimum to reduce further reaction chemistries. Pyrolysis vapors also form aerosols that are carried far downstream and can pass through filters resulting in build-up in downstream locations. The co-produced bio-char and ash from the pyrolysis process can lead to plugging of the sample lines, and must be filtered out at temperature, even with the use of cyclonic separators. A practical approach for considerations and sampling system design, as well as lessons learned are integrated into the hot analytical sampling system of the National Renewable Energy Laboratory's (NREL) Thermochemical Process Development Unit (TCPDU) to provide industrially relevant demonstrations of thermochemical transformations of biomass feedstocks at the pilot scale.« less
Oxalate Synthesis and Pyrolysis: A Colorful Introduction to Stoichiometry
ERIC Educational Resources Information Center
Vannatta, Michael W.; Richards-Babb, Michelle; Sweeney, Robert J.
2010-01-01
Metal oxalate synthesis and pyrolysis provides an opportunity for students to (i) learn stoichiometry, (ii) experience the consequences of proper stoichiometric calculations and experimental techniques, and (iii) be introduced to the relevance of chemistry by highlighting oxalates in context, for example, usages and health effects. At our…
Spray atomization of bio-oil/ethanol blends with externally mixed nozzles
USDA-ARS?s Scientific Manuscript database
Experiments were conducted to investigate the properties of sprays of pyrolysis oil from biomass (bio-oil) using an air assisted atomization nozzle operated without combustion to explore the potential of pyrolysis oil combustion in industrial and home furnaces. Bio-oil was blended with ethanol to im...
NASA Technical Reports Server (NTRS)
Park, J.; Ming, D. W.; Garrison, D. H.; Jones, J. H.; Bogard, D. D.; Nagao, K.
2009-01-01
The purpose of this noble gas investigation was to evaluate the possibility of measuring noble gases in martian rocks and air by future robotic missions such as the Mars Science Laboratory (MSL). The MSL mission has, as part of its payload, the Sample Analysis at Mars (SAM) instrument, which consists of a pyrolysis oven integrated with a GCMS. The MSL SAM instrument has the capability to measure noble gas compositions of martian rocks and atmosphere. Here we suggest the possibility of K-Ar age dating based on noble gas release of martian rocks by conducting laboratory simulation experiments on terrestrial basalts and martian meteorites. We provide requirements for the SAM instrument to obtain adequate noble gas abundances and compositions within the current SAM instrumental operating conditions, especially, a power limit that prevents heating the furnace above approx.1100 C. In addition, Martian meteorite analyses from NASA-JSC will be used as ground truth to evaluate the feasibility of robotic experiments to constrain the ages of martian surface rocks.
Wang, H; Chen, D; Yuan, G; Ma, X; Dai, X
2013-02-01
In this work, the morphological characteristics of waste polyethylene (PE)/polypropylene (PP) plastics during their pyrolysis process were investigated, and based on their basic image changing patterns representative morphological signals describing the pyrolysis stages were obtained. PE and PP granules and films were used as typical plastics for testing, and influence of impurities was also investigated. During pyrolysis experiments, photographs of the testing samples were taken sequentially with a high-speed infrared camera, and the quantitative parameters that describe the morphological characteristics of these photographs were explored using the "Image Pro Plus (v6.3)" digital image processing software. The experimental results showed that plastics pyrolysis involved four stages: melting, two stages of decomposition which are characterized with bubble formation caused by volatile evaporating, and ash deposition; and each stage was characterized with its own phase changing behaviors and morphological features. Two stages of decomposition are the key step of pyrolysis since they took up half or more of the reaction time; melting step consumed another half of reaction time in experiments when raw materials were heated up from ambient temperatures; and coke-like deposition appeared as a result of decomposition completion. Two morphological signals defined from digital image processing, namely, pixel area of the interested reaction region and bubble ratio (BR) caused by volatile evaporating were found to change regularly with pyrolysis stages. In particular, for all experimental scenarios with plastics films and granules, the BR curves always exhibited a slowly drop as melting started and then a sharp increase followed by a deep decrease corresponding to the first stage of intense decomposition, afterwards a second increase - drop section corresponding to the second stage of decomposition appeared. As ash deposition happened, the BR dropped to zero or very low values. When impurities were involved, the shape of BR curves showed that intense decomposition started earlier but morphological characteristics remained the same. In addition, compared to parameters such as pressure, the BR reflects reaction stages better and its change with pyrolysis process of PE/PP plastics with or without impurities was more intrinsically process correlated; therefore it can be adopted as a signal for pyrolysis process characterization, as well as offering guide to process improvement and reactor design. Copyright © 2012 Elsevier Ltd. All rights reserved.
Role of minerals in thermal alteration of organic matter. II - A material balance
NASA Technical Reports Server (NTRS)
Tannenbaum, Eli; Huizinga, Bradley J.; Kaplan, I. R.
1986-01-01
The paper presents the results of pyrolysis experiments which were carried out on Green River and Monterey Formation kerogens with and without calcite, illite, or montmorillonite at 300 C for 2 to 1,000 hours under dry and hydrous conditions. The data reveal significant differences in the products generated by pyrolysis of kerogens with and without minerals. Both illite and montmorillonite adsorb a considerable portion of the generated bitumen. In the case of calcite, the pyrolysis products are similar to those from kerogen heated alone, and bitumen adsorption is negligible.
Characteristics of the surface chemistry of linden pyrochar after removal of labile organic matter
NASA Astrophysics Data System (ADS)
Valeeva, A. A.; Smirnova, E. V.; Giniyatullin, K. G.; Vorobev, V. V.; Biktasheva, L. R.; Grachev, A. N.
2018-01-01
The changes of chemical properties of the pyrochar surface were studied in the laboratory experiment that simulated pedogenic transformation of pyrochar under the influence of soil biota. The native pyrochar samples were obtained by pyrolysis of linden wood residues at the temperature of 250°C, 450°C and 650°C. Their modified samples were obtained by removing an easily degradable pool of organic substances that can be used by microorganisms during the first months after application to the soil. In low-temperature linden pyrochar (250°C and 450°C) dominated carboxylic and phenolic surface groups, in high-temperature (650°C) - lactonic groups. After removal of readily decomposable organic substances the acidity of the phenolic and lactonic groups in pyrochar of low-temperature pyrolysis sharply decreased. Characteristic feature of all studied samples is the presence in IR spectra of absorption bands of gyroxyl, carbonyl, methylene groups and organosilicon polymers. The feature of IR spectra of linden pyrochar (250°C and 450°C) is the presence of absorption bands of the stretching vibrations of the tertiary alcohols and phenols C-O group.
Biomass fast pyrolysis for bio-oil production in a fluidized bed reactor under hot flue atmosphere.
Li, Ning; Wang, Xiang; Bai, Xueyuan; Li, Zhihe; Zhang, Ying
2015-10-01
Fast pyrolysis experiments of corn stalk were performed to investigate the optimal pyrolysis conditions of temperature and bed material for maximum bio-oil production under flue gas atmosphere. Under the optimized pyrolysis conditions, furfural residue, xylose residue and kelp seaweed were pyrolyzed to examine their yield distributions of products, and the physical characteristics of bio-oil were studied. The best flow rate of the flue gas at selected temperature is obtained, and the pyrolysis temperature at 500 degrees C and dolomite as bed material could give a maximum bio-oil yield. The highest bio-oil yield of 43.3% (W/W) was achieved from corn stalk under the optimal conditions. Two main fractions were recovered from the stratified bio-oils: light oils and heavy oils. The physical properties of heavy oils from all feedstocks varied little. The calorific values of heavy oils were much higher than that of light oils. The pyrolysis gas could be used as a gaseous fuel due to a relatively high calorific value of 6.5-8.5 MJ/m3.
Azizi, Kolsoom; Keshavarz Moraveji, Mostafa; Abedini Najafabadi, Hamed
2017-11-01
Thermal decomposition behavior and kinetics of microalgae Chlorella vulgaris, wood and polypropylene were investigated using thermogravimetric analysis (TGA). Experiments were carried out at heating rates of 10, 20 and 40°C/min from ambient temperature to 600°C. The results show that pyrolysis process of C. vulgaris and wood can be divided into three stages while pyrolysis of polypropylene occurs almost totally in one step. It is shown that wood can delay the pyrolysis of microalgae while microalgae can accelerate the pyrolysis of wood. The existence of polymer during the pyrolysis of microalgae or wood will lead to two divided groups of peaks in DTG curve of mixtures. The results showed that interaction is inhibitive rather than synergistic during the decomposition process of materials. Kinetics of process is studied by the Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO). The average E values obtained from FWO and KAS methods were 131.228 and 142.678kJ/mol, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Jianbiao; Wang, Yanhong; Lang, Xuemei; Ren, Xiu'e; Fan, Shuanshi
2017-10-01
The thermal conversion characteristics, kinetics, and thermodynamics of agricultural residues, rape straw (RS) and wheat bran (WB), were investigated under non-isothermal conditions. TGA experiments showed that the pyrolysis characteristics of RS were quite different from those of WB. As reflected by the comprehensive devolatilization index, when the heating rate increased from 10 to 30Kmin -1 , the pyrolysis performance of RS and WB were improved 5.27 and 5.96 times, respectively. The kinetic triplets of the main pyrolysis process of agricultural residues were calculated by the Starink method and the integral master-plots method. Kinetic analysis results indicated that the most potential kinetic models for the pyrolysis of RS and WB were D 2 and F 2.7 , respectively. The thermodynamic parameters (ΔH, ΔG, and ΔS) were determined by the activated complex theory. The positive ΔH, positive ΔG, and negative ΔS at characteristic temperatures validated that the pyrolysis of agricultural residues was endothermic and non-spontaneous. Copyright © 2017 Elsevier Ltd. All rights reserved.
Well-to-wheels analysis of fast pyrolysis pathways with the GREET model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, J.; Elgowainy, A.; Palou-Rivera, I.
The pyrolysis of biomass can help produce liquid transportation fuels with properties similar to those of petroleum gasoline and diesel fuel. Argonne National Laboratory conducted a life-cycle (i.e., well-to-wheels [WTW]) analysis of various pyrolysis pathways by expanding and employing the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The WTW energy use and greenhouse gas (GHG) emissions from the pyrolysis pathways were compared with those from the baseline petroleum gasoline and diesel pathways. Various pyrolysis pathway scenarios with a wide variety of possible hydrogen sources, liquid fuel yields, and co-product application and treatment methods were considered. Atmore » one extreme, when hydrogen is produced from natural gas and when bio-char is used for process energy needs, the pyrolysis-based liquid fuel yield is high (32% of the dry mass of biomass input). The reductions in WTW fossil energy use and GHG emissions relative to those that occur when baseline petroleum fuels are used, however, is modest, at 50% and 51%, respectively, on a per unit of fuel energy basis. At the other extreme, when hydrogen is produced internally via reforming of pyrolysis oil and when bio-char is sequestered in soil applications, the pyrolysis-based liquid fuel yield is low (15% of the dry mass of biomass input), but the reductions in WTW fossil energy use and GHG emissions are large, at 79% and 96%, respectively, relative to those that occur when baseline petroleum fuels are used. The petroleum energy use in all scenarios was restricted to biomass collection and transportation activities, which resulted in a reduction in WTW petroleum energy use of 92-95% relative to that found when baseline petroleum fuels are used. Internal hydrogen production (i.e., via reforming of pyrolysis oil) significantly reduces fossil fuel use and GHG emissions because the hydrogen from fuel gas or pyrolysis oil (renewable sources) displaces that from fossil fuel natural gas and the amount of fossil natural gas used for hydrogen production is reduced; however, internal hydrogen production also reduces the potential petroleum energy savings (per unit of biomass input basis) because the fuel yield declines dramatically. Typically, a process that has a greater liquid fuel yield results in larger petroleum savings per unit of biomass input but a smaller reduction in life-cycle GHG emissions. Sequestration of the large amount of bio-char co-product (e.g., in soil applications) provides a significant carbon dioxide credit, while electricity generation from bio-char combustion provides a large energy credit. The WTW energy and GHG emissions benefits observed when a pyrolysis oil refinery was integrated with a pyrolysis reactor were small when compared with those that occur when pyrolysis oil is distributed to a distant refinery, since the activities associated with transporting the oil between the pyrolysis reactors and refineries have a smaller energy and emissions footprint than do other activities in the pyrolysis pathway.« less
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Fu, Qi; Niles, Paul B.
2010-01-01
We report results of experiments designed to characterize the carbon isotope composition of intermediate organic compounds produced as a result of mineral surface catalyzed reactions. The impetus for this work stems from recently reported detection of methane in the Martian atmosphere coupled with evidence showing extensive water-rock interaction during Martian history. Abiotic formation by Fischer-Tropsch-type (FTT) synthesis during serpentinization reactions may be one possible process responsible for methane generation on Mars, and measurement of carbon and hydrogen isotopes of intermediary organic compounds can help constrain the origin of this methane. Of particular interest within the context of this work is the isotopic composition of organic intermediaries produced on the surfaces of mineral catalysts (i.e. magnetite) during hydrothermal experiments, and the ability to make meaningful and reproducible isotope measurements. Our isotope measurements utilize a unique analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-Combustion-Isotope Ratio Mass Specrometry (Py-GC-MS-C-IRMS). Others have conducted similar pyrolysis-IRMS experiments on low molecular weight organic acids (Dias, et al, Organic Geochemistry, 33 [2002]). Our technique differs in that it carries a split of the pyrolyzed GC-separated product to a Thermo DSQ-II quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of the organic compounds. A sample of carboxylic acid (mixture of C1 through C6) was pyrolyzed at 100 XC and passed through the GC-MS-C-IRMS (combusted at 940 XC). In order to test the reliability of our technique we compared the _13C composition of different molecular weight organic acids (from C1 through C6) extracted individually by the traditional sealed-tube cupric oxide combustion (940 XC) method with the _13C produced by our pyrolysis technique. Our data indicate that an average 4.3. +/-0.5. (V-PDB) apparent isotopic fractionation accompanies the pyrolysis extractions. We postulate that this isotope offset could be the result of incomplete thermal desorption during pyrolysis. We are continuing to investigate the reliability of this pyrolysis technique for correcting carbon isotope measurements of mineral surface catalyzed organic compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, L.E.
Sulfur compounds are frequently added to pyrolysis feedstocks to control the two main undesirable wall catalyzed reactions: partial combustion of product to carbon monoxide and coking. Although the addition of sulfur does moderate the formation of carbon monoxide, recent evidence has shown that sulfur actually increases the rate of coking. Data obtained in a high velocity laboratory pyrolysis reactor will illustrate the effect of sulfur, not only on total coke production, but also on the coke profile within the cracking coil and transfer line. These data will be compared to the total coke and coke profiles obtained upon treatment ofmore » the coil with Phillips antifoulants.« less
NASA Technical Reports Server (NTRS)
Stern, Jennifer C.; Navarro-Gonzalez, Rafael; Freissinet, Caroline; McKay, Christopher P.; Archer, Paul Douglas; Buch, Arnaud; Eigenbrode, Jennifer L.; Franz, Heather; Glavin, Daniel Patrick; Ming, Douglas W/;
2013-01-01
The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen-bearing compounds during the pyrolysis of surface materials from three sites at Gale Crater. Preliminary detections of nitrogen species include NO, HCN, ClCN, CH3CN, and TFMA (trifluoro-Nmethyl-acetamide). On Earth, nitrogen is a crucial bio-element, and nitrogen availability controls productivity in many environments. Nitrogen has also recently been detected in the form of CN in inclusions in the Martian meteorite Tissint, and isotopically heavy nitrogen (delta N-15 approx +100per mille) has been measured during stepped combustion experiments in several SNC meteorites. The detection of nitrogen-bearing compounds in Martian regolith would have important implications for the habitability of ancient Mars. However, confirmation of indigenous Martian nitrogen bearing compounds will require ruling out their formation from the terrestrial derivatization reagents (e.g. N-methyl-N-tert-butyldimethylsilyl-trifluoroacetamide, MTBSTFA and dimethylformamide, DMF) carried for SAM's wet chemistry experiment that contribute to the SAM background. The nitrogen species we detect in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate, a compound that has also been identified by SAM in Mars solid samples. However, this does not preclude a Martian origin for some of these compounds, which are present in nanomolar concentrations in SAM evolved gas analyses. Analysis of SAM data and laboratory breadboard tests are underway to determine whether nitrogen species are present at higher concentrations than can be accounted for by maximum estimates of nitrogen contribution from MTBSTFA and DMF. In addition, methods are currently being developed to use GC Column 6, (functionally similar to a commercial Q-Bond column), to separate and identify unretained compounds such as NO, N2O, and NO2, which are difficult to detect by EGA-MS due to mass interferences at 30, 44 and 46, respectively. Here we present evolved gas analysis-mass spectrometry (EGA-MS) and gas chromatography mass spectrometry (GC-MS) data on the identification and quantification of these nitrogen-bearing compounds, and suggestions for their origins
Cao, Hongliang; Xin, Ya; Yuan, Qiaoxia
2016-02-01
To predict conveniently the biochar yield from cattle manure pyrolysis, intelligent modeling approach was introduced in this research. A traditional artificial neural networks (ANN) model and a novel least squares support vector machine (LS-SVM) model were developed. For the identification and prediction evaluation of the models, a data set with 33 experimental data was used, which were obtained using a laboratory-scale fixed bed reaction system. The results demonstrated that the intelligent modeling approach is greatly convenient and effective for the prediction of the biochar yield. In particular, the novel LS-SVM model has a more satisfying predicting performance and its robustness is better than the traditional ANN model. The introduction and application of the LS-SVM modeling method gives a successful example, which is a good reference for the modeling study of cattle manure pyrolysis process, even other similar processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Influence of pressure on pyrolysis of black liquor: 2. Char yields and component release.
Whitty, Kevin; Kullberg, Mika; Sorvari, Vesa; Backman, Rainer; Hupa, Mikko
2008-02-01
This is the second in a series of papers concerning the behavior of black liquor during pyrolysis at elevated pressures. Two industrial black liquors were pyrolyzed under pressurized conditions in two laboratory-scale devices, a pressurized single-particle reactor and a pressurized grid heater. Temperatures ranging between 650 and 1100 degrees C and pressures in the range 1-20 bar were studied. Char yields were calculated and based on analysis of some of the chars the fate of carbon, sodium, potassium and sulfur was determined as a function of pyrolysis pressure. At temperatures below 800 degrees C little variation in char yield was observed at different pressures. At higher temperatures char yield increased with pressure due to slower decomposition of sodium carbonate. For the same reason, sodium release decreased with pressure. Sulfur release, however, increased with pressure primarily because there was less opportunity for its capture in the less-swollen chars.
Pollutant emissions during the pyrolysis and combustion of flexible polyurethane foam.
Garrido, María A; Font, Rafael; Conesa, Juan A
2016-06-01
Thermal decomposition of flexible polyurethane foam (FPUF) was studied under nitrogen and air atmospheres at 550°C and 850°C using a laboratory scale reactor to analyse the evolved products. Ammonia, hydrogen cyanide and nitrile compounds were obtained in high yields in pyrolysis at the lower temperature, whereas at 850°C polycyclic aromatic hydrocarbons (PAHs) and other semivolatile compounds, especially compounds containing nitrogen (benzonitrile, aniline, quinolone and indene) were the most abundant products. Different behaviour was observed in the evolution of polychlorodibenzo-p-dioxins and furans (PCDD/Fs) at 550°C and 850°C. At 550°C, the less chlorinated congeners, mainly PCDF, were more abundant. Contrarily, at 850°C the most chlorinated PCDD were dominant. In addition, the total yields of PCDD/Fs in the pyrolysis and combustion runs at 850°C were low and quite similar. Copyright © 2016 Elsevier Ltd. All rights reserved.
Volatile Analysis by Pyrolysis of Regolith (Vapor) on the Moon using Mass Spectrometry
NASA Technical Reports Server (NTRS)
Glavin, D. P.; Kate, I. L. ten; Brinckerhoff, W.; Cardiff, E.; Dworkin, J. P.; Feng, S.; Getty, S.; Gorevan, S.; Harpold, D.; Jones, A. L.;
2008-01-01
The identification of lunar resources such as water is a fundamental component of the the NASA Vision for Space Exploration. The Lunar Prospector mission detected high concentrations of hydrogen at the lunar poles that may indicate the presence of water or other volatiles in the lunar regolith [1]. One explanation for the presence of enhanced hydrogen in permanently shadowed crater regions is long term trapping of water-ice delivered by comets, asteroids, and other meteoritic material that have bombarded the Moon over the last 4 billion years [2]. It is also possible that the hydrogen signal at the lunar poles is due to hydrogen implanted by the solar wind which is delayed from diffusing out of the regolith by the cold temperatures [3]. Previous measurements of the lunar atmosphere by the LACE experiment on Apollo 17, suggested the presence of cold trapped vola'tiles that were expelled by solar heating [4]. In situ composition and isotopic analyses of the lunar regolith will be required to establish the abundance, origin, and distribution of water-ice and other volatiles at the lunar poles. Volatile Analysis by Pyrolysis of Regolith (VAPoR) on the Moon using mass spectrometry is one technique that should be considered. The VAPoR pyrolysis-mass spectrometer (pyr-MS) instrument concept study was selected for funding in 2007 by the NASA Lunar Sortie Science Opportunities (LSSO) Program. VAPoR is a miniature version of the Sample Analysis at Mars (SAM) instrument suite currently being developed at NASA Goddard for the 2009 Mars Science Laboratory mission (Fig. 1).
Research on a new type of additive for CWS from low temperature pyrolysis tar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Guoguang; Wang Zuna
1997-12-31
In this paper, coal tar from flash pyrolysis of Ping Zhuang lignite with solid heat carrier was used as raw material, which was directly synthesized a new type of additive for coal water slurry (CWS) in the laboratory. The wetting heat between the lignite and distilled water and solution of additive has been determined. It is evident that the wetting heat between the lignite and distilled water is very high, up to 44.56 J/g, which is harmful to preparing CWS. The wetting heat between the lignite and a solution of additive is reduced, which is related to its characteristics suchmore » as surface properties, oxygen functional groups and structure. The effect of coal properties on preparing CWS has also been analyzed systematically. It is suggested that the concentration of CWS is regularly changed with oxygen content of coal based on moisture and ash content. It is emphasized that when the influence of macerals on slurriability of coal is observed, inherent properties of each maceral such as pore structure, porosity, oxygen functional groups, grindability must be tightly combined to evaluate comprehensively. The structural characteristics of the additive matches well the molecular structure and surface properties of the coal. It is seen by synthetic experiments that suitable a degree of sulphonating and condensation are beneficial to preparing CWS. The rheology and stability of CWS have also been investigated. The result indicates that the stability of CWS using the new type of additive is improved, and the production cost of the additive synthesized from low temperature pyrolysis coal tar can be reduced.« less
Oxygen production by pyrolysis of lunar regolith
NASA Technical Reports Server (NTRS)
Senior, Constance L.
1991-01-01
Oxygen was identified as the most important product of initial lunar materials processing efforts. A source of oxygen on the Moon provides an alternative to the costly transport of propellant to the Moon or to low earth orbit. Pyrolysis, or vapor-phase reduction, involves heating a feedstock to temperatures sufficient to decompose the constituent metal oxides and release oxygen. The process relies on the vaporization of metal oxides in the form of reduced suboxides or atomic species. The reduced species must then be condensed without re-oxidizing, yielding oxygen in the gas phase. The feasibility of obtaining oxygen from common lunar minerals was demonstrated using solar furnace experiments. These results are discussed together with chemical equilibrium models which were extended to include the multicomponent oxides used in experiments. For the first time, both experiments and theoretical models dealt with the complex oxides that make up potential lunar feedstocks. Two major conclusions are drawn from this preliminary work. First, unbeneficiated regolith is a suitable feedstock for pyrolysis. Second, the process can operate at moderate temperatures, circa 2000 K, which could be supplied by direct solar or electrical energy. In addition to these advantages in choice of feedstock and energy source, the pyrolysis process requires no chemicals or reagents, making it an attractive process for lunar oxygen production.
ERIC Educational Resources Information Center
Kusch, Peter
2014-01-01
An experiment for the identification of synthetic polymers and copolymers by analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was developed and performed in the polymer analysis courses for third-year undergraduate students of chemistry with material sciences, and for first-year postgraduate students of polymer sciences. In…
Detecting Pyrolysis Products from Bacteria on Mars
NASA Technical Reports Server (NTRS)
Glavin, Daniel; Schubert, Michael; Botta, Oliver; Kminek, Gerhard; Bada, Jeffrey L.
2001-01-01
A pyrolysis/sublimation technique was developed to isolate volatile amine compounds from a Mars soil analogue inoculated with approx. 10 billion Escherichia coli cells. In this technique, the inoculated soil is heated to 500 C for several seconds at Martian ambient pressure and the sublimate, collected by a cold finger, then analyzed using high performance liquid chromatography. Methylamine and ethylamine, produced from glycine and alanine decarboxylation, were the most abundant amine compounds detected after pyrolysis of the cells. A heating cycle similar to that utilized in our experiment was also used to release organic compounds from the Martian soil in the 1976 Viking gas chromatography/mass spectrometry (GC/MS) pyrolysis experiment. The Viking GC/MS did not detect any organic compounds of Martian origin above a level of a few parts per billion in the Martian surface soil. Although the Viking GC/MS instruments were not specifically designed to search for the presence of living cells on Mars, our experimental results indicate that at the part per billion level, the degradation products generated from several million bacterial cells per gram of Martian soil would not have been detected.
Flash Pyrolysis and Fractional Pyrolysis of Oleaginous Biomass in a Fluidized-bed Reactor
NASA Astrophysics Data System (ADS)
Urban, Brook
Thermochemical conversion methods such as pyrolysis have the potential for converting diverse biomass feedstocks into liquid fuels. In particular, bio-oil yields can be maximized by implementing flash pyrolysis to facilitate rapid heat transfer to the solids along with short vapor residence times to minimize secondary degradation of bio-oils. This study first focused on the design and construction of a fluidized-bed flash pyrolysis reactor with a high-efficiency bio-oil recovery unit. Subsequently, the reactor was used to perform flash pyrolysis of soybean pellets to assess the thermochemical conversion of oleaginous biomass feedstocks. The fluidized bed reactor design included a novel feed input mechanism through suction created by flow of carrier gas through a venturi which prevented plugging problems that occur with a more conventional screw feeders. In addition, the uniquely designed batch pyrolysis unit comprised of two tubes of dissimilar diameters. The bottom section consisted of a 1" tube and was connected to a larger 3" tube placed vertically above. At the carrier gas flow rates used in these studies, the feed particles remained fluidized in the smaller diameter tube, but a reduction in carrier gas velocity in the larger diameter "disengagement chamber" prevented the escape of particles into the condensers. The outlet of the reactor was connected to two Allihn condensers followed by an innovative packed-bed dry ice condenser. Due to the high carrier gas flow rates in fluidized bed reactors, bio-oil vapors form dilute aerosols upon cooling which that are difficult to coalesce and recover by traditional heat exchange condensers. The dry ice condenser provided high surface area for inertial impaction of these aerosols and also allowed easy recovery of bio-oils after natural evaporation of the dry ice at the end of the experiments. Single step pyrolysis was performed between 250-610°C with a vapor residence time between 0.3-0.6s. At 550°C or higher, 70% of the initial feed mass was recovered as bio-oil. However, the mass of high calorific lipid-derived components in the collected bio-oils remained nearly constant at reaction temperatures above 415°C; between 80-90% of the feedstock lipids were recovered in the bio-oil fraction. In addition, multi-step fractional flash pyrolysis experiments were performed to assess the possibility of producing higher quality bio-oils since a large fraction of protein and carbohydrates degrade at lower temperatures (320-400°C). A low temperature pyrolysis step was first performed and was followed by pyrolysis of the residues at higher temperature. This fractional pyrolysis approach which produced higher quality bio-oil with low water- and nitrogen- content from the higher temperature steps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Douglas C.; Olarte, Mariefel V.; Hart, Todd R.
2015-06-19
DOE-EE Bioenergy Technologies Office has set forth several goals to increase the use of bioenergy and bioproducts derived from renewable resources. One of these goals is to facilitate the implementation of the biorefinery. The biorefinery will include the production of liquid fuels, power and, in some cases, products. The integrated biorefinery should stand-alone from an economic perspective with fuels and power driving the economy of scale while the economics/profitability of the facility will be dependent on existing market conditions. UOP LLC proposed to demonstrate a fast pyrolysis based integrated biorefinery. Pacific Northwest National Laboratory (PNNL) has expertise in an importantmore » technology area of interest to UOP for use in their pyrolysis-based biorefinery. This CRADA project provides the supporting technology development and demonstration to allow incorporation of this technology into the biorefinery. PNNL developed catalytic hydrothermal gasification (CHG) for use with aqueous streams within the pyrolysis biorefinery. These aqueous streams included the aqueous phase separated from the fast pyrolysis bio-oil and the aqueous byproduct streams formed in the hydroprocessing of the bio-oil to finished products. The purpose of this project was to demonstrate a technically and economically viable technology for converting renewable biomass feedstocks to sustainable and fungible transportation fuels. To demonstrate the technology, UOP constructed and operated a pilot-scale biorefinery that processed one dry ton per day of biomass using fast pyrolysis. Specific objectives of the project were to: The anticipated outcomes of the project were a validated process technology, a range of validated feedstocks, product property and Life Cycle data, and technical and operating data upon which to base the design of a full-scale biorefinery. The anticipated long-term outcomes from successful commercialization of the technology were: (1) the replacement of a significant fraction of petroleum based fuels with advanced biofuels, leading to increased energy security and decreased carbon footprint; and (2) establishment of a new biofuel industry segment, leading to the creation of U.S. engineering, manufacturing, construction, operations and agricultural jobs. PNNL development of CHG progressed at two levels. Initial tests were made in the laboratory in both mini-scale and bench-scale continuous flow reactor systems. Following positive results, the next level of evaluation was in the scaled-up engineering development system, which was operated at PNNL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Logan C.; Ciesielski, Peter N.; Jarvis, Mark W.
Here, biomass particles can experience variable thermal conditions during fast pyrolysis due to differences in their size and morphology, and from local temperature variations within a reactor. These differences lead to increased heterogeneity of the chemical products obtained in the pyrolysis vapors and bio-oil. Here we present a simple, high-throughput method to investigate the thermal history experienced by large ensembles of particles during fast pyrolysis by imaging and quantitative image analysis. We present a correlation between the surface luminance (darkness) of the biochar particle and the highest temperature that it experienced during pyrolysis. Next, we apply this correlation to large,more » heterogeneous ensembles of char particles produced in a laminar entrained flow reactor (LEFR). The results are used to interpret the actual temperature distributions delivered by the reactor over a range of operating conditions.« less
Investigation of solid organic waste processing by oxidative pyrolysis
NASA Astrophysics Data System (ADS)
Kolibaba, O. B.; Sokolsky, A. I.; Gabitov, R. N.
2017-11-01
A thermal analysis of a mixture of municipal solid waste (MSW) of the average morphological composition and its individual components was carried out in order to develop ways to improve the efficiency of its utilization for energy production in thermal reactors. Experimental studies were performed on a synchronous thermal analyzer NETZSCH STA 449 F3 Jupiter combined with a quadrupole mass spectrometer QMC 403. Based on the results of the experiments, the temperature ranges of the pyrolysis process were determined as well as the rate of decrease of the mass of the sample of solid waste during the drying and oxidative pyrolysis processes, the thermal effects accompanying these processes, as well as the composition and volumes of gases produced during oxidative pyrolysis of solid waste and its components in an atmosphere with oxygen content of 1%, 5%, and 10%. On the basis of experimental data the dependences of the yield of gas on the moisture content of MSW were obtained under different pyrolysis conditions under which a gas of various calorific values was produced.
Novel Fast Pyrolysis/Catalytic Technology for the Production of Stable Upgraded Liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyama, Ted; Agblevor, Foster; Battaglia, Francine
The objective of the proposed research is the demonstration and development of a novel biomass pyrolysis technology for the production of a stable bio-oil. The approach is to carry out catalytic hydrodeoxygenation (HDO) and upgrading together with pyrolysis in a single fluidized bed reactor with a unique two-level design that permits the physical separation of the two processes. The hydrogen required for the HDO will be generated in the catalytic section by the water-gas shift reaction employing recycled CO produced from the pyrolysis reaction itself. Thus, the use of a reactive recycle stream is another innovation in this technology. Themore » catalysts will be designed in collaboration with BASF Catalysts LLC (formerly Engelhard Corporation), a leader in the manufacture of attrition-resistant cracking catalysts. The proposed work will include reactor modeling with state-of-the-art computational fluid dynamics in a supercomputer, and advanced kinetic analysis for optimization of bio-oil production. The stability of the bio-oil will be determined by viscosity, oxygen content, and acidity determinations in real and accelerated measurements. A multi-faceted team has been assembled to handle laboratory demonstration studies and computational analysis for optimization and scaleup.« less
Unice, Kenneth M.; Kreider, Marisa L.; Panko, Julie M.
2012-01-01
Pyrolysis(pyr)-GC/MS analysis of characteristic thermal decomposition fragments has been previously used for qualitative fingerprinting of organic sources in environmental samples. A quantitative pyr-GC/MS method based on characteristic tire polymer pyrolysis products was developed for tread particle quantification in environmental matrices including soil, sediment, and air. The feasibility of quantitative pyr-GC/MS analysis of tread was confirmed in a method evaluation study using artificial soil spiked with known amounts of cryogenically generated tread. Tread concentration determined by blinded analyses was highly correlated (r2 ≥ 0.88) with the known tread spike concentration. Two critical refinements to the initial pyrolysis protocol were identified including use of an internal standard and quantification by the dimeric markers vinylcyclohexene and dipentene, which have good specificity for rubber polymer with no other appreciable environmental sources. A novel use of deuterated internal standards of similar polymeric structure was developed to correct the variable analyte recovery caused by sample size, matrix effects, and ion source variability. The resultant quantitative pyr-GC/MS protocol is reliable and transferable between laboratories. PMID:23202830
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, P.R.; Serio, M.A.; Hamblen, D.G.
1986-01-01
During the sixth quarter, work was completed on modifications of the high pressure reactor (HPR) system for higher pressure (600 psig) operation. A series of pyrolysis experiments was completed in the HPR using mixtures of nitrogen and oxygen at various pressures and compositions. The original intention of the O/sub 2//N/sub 2/ experiments was to examine the effects of oxygen on the pyrolysis product distribution and the char reactivity. Unfortunately, at the temperature, residence time and pressure used for most of the experiments in this series (817/sup 0/C, 0.47 s, 26 psig) nearly complete oxidation of the char and volatile productsmore » occurred. Additional CO/sub 2/ gasification experiments were done to provide a database for revising the test plan. These were done at a variety of temperatures, pressures and CO/sub 2/ concentrations. The reactor was then switched back to nitrogen and additional pyrolysis experiments were done at high pressure (300 psig). When it was observed that the material balance was falling off slightly, it was decided to repeat some of the previous pyrolysis experiments at low pressure. There appeared to be a small, but systematic, reduction in char recovery. We continued to do char reactivity and surface area measurements for chars using the new non-isothermal technique described in the Fifth Quarterly report. A comparison was made of the results for char, tar, and gas yields for 1 atm and 5 atm (60 psig) experiments in the HTR. The asymptotic yield of about 10% was similar for both sets of experiments. A comparison was also made of tar yields for the Montana Rosebud coal from experiments in the HPR and HTR. The observed tar yields were in good agreement for similar experimental conditions. A preliminary version of a particle temperature model for the HPR was completed during the past quarter. 9 refs., 2 figs., 3 tabs.« less
Designing relevant biochars to revitalize soil quality: Current status and advances
Biochars chemical and physical properties can be designed to improve specific soil quality issues. In order to make appropriate selections, evaluations are required of different feedstocks, pyrolysis conditions, and gross biochar particle sizes. We conducted laboratory soil incu...
Synthesis of Bio-aromatics from Black Liquors Using Catalytic Pyrolysis
2018-01-01
Bio-aromatics (benzene, toluene, xylenes, BTX) were prepared by the catalytic pyrolysis of six different black liquors using both in situ and ex situ approaches. A wide range of catalysts was screened and conditions were optimized in microscale reactors. Up to 7 wt % of BTX, based on the organic fraction of the black liquors, was obtained for both the in situ and ex situ pyrolysis (T = 500–600 °C) using a Ga-modified H-ZSM-5 catalyst. The in situ catalytic pyrolysis of black liquors from hardwood paper mills afforded slightly higher yields of aromatics/BTX than softwood black liquors, a trend that could be confirmed by the results obtained in the ex situ catalytic pyrolysis. An almost full deoxygenation of the lignin and carbohydrate fraction was achieved and both organic fractions were converted to a broad range of (substituted) aromatics. The zeolite catalyst used was remarkably stable and even after 100 experiments in batch mode with intermittent oxidative catalyst regeneration, the yields and selectivity toward BTX remained similar. The ex situ pyrolysis of black liquor has potential for large-scale implementation in a paper mill without disturbing the paper production process. PMID:29607268
In Situ and ex Situ Catalytic Pyrolysis of Pine in a Bench-Scale Fluidized Bed Reactor System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iisa, Kristiina; French, Richard J.; Orton, Kellene A.
In situ and ex situ catalytic pyrolysis were compared in a system with two 2-in. bubbling fluidized bed reactors. Pine was pyrolyzed in the system with a catalyst, HZSM-5 with a silica-to-alumina ratio of 30, placed either in the first (pyrolysis) reactor or the second (upgrading) reactor. Both the pyrolysis and upgrading temperatures were 500 degrees C, and the weight hourly space velocity was 1.1 h -1. Five catalytic cycles were completed in each experiment. The catalytic cycles were continued until oxygenates in the vapors became dominant. The catalyst was then oxidized, after which a new catalytic cycle was begun.more » The in situ configuration gave slightly higher oil yield but also higher oxygen content than the ex situ configuration, which indicates that the catalyst deactivated faster in the in situ configuration than the ex situ configuration. Analysis of the spent catalysts confirmed higher accumulation of metals in the in situ experiment. In all experiments, the organic oil mass yields varied between 14 and 17% and the carbon efficiencies between 20 and 25%. The organic oxygen concentrations in the oils were 16-18%, which represented a 45% reduction compared to corresponding noncatalytic pyrolysis oils prepared in the same fluidized bed reactor system. GC/MS analysis showed the oils to contain one- to four-ring aromatic hydrocarbons and a variety of oxygenates (phenols, furans, benzofurans, methoxyphenols, naphthalenols, indenols). Lastly, high fractions of oxygen were rejected as water, CO, and CO 2, which indicates the importance of dehydration, decarbonylation, and decarboxylation reactions. Light gases were the major sources of carbon losses, followed by char and coke.« less
In Situ and ex Situ Catalytic Pyrolysis of Pine in a Bench-Scale Fluidized Bed Reactor System
Iisa, Kristiina; French, Richard J.; Orton, Kellene A.; ...
2016-02-03
In situ and ex situ catalytic pyrolysis were compared in a system with two 2-in. bubbling fluidized bed reactors. Pine was pyrolyzed in the system with a catalyst, HZSM-5 with a silica-to-alumina ratio of 30, placed either in the first (pyrolysis) reactor or the second (upgrading) reactor. Both the pyrolysis and upgrading temperatures were 500 degrees C, and the weight hourly space velocity was 1.1 h -1. Five catalytic cycles were completed in each experiment. The catalytic cycles were continued until oxygenates in the vapors became dominant. The catalyst was then oxidized, after which a new catalytic cycle was begun.more » The in situ configuration gave slightly higher oil yield but also higher oxygen content than the ex situ configuration, which indicates that the catalyst deactivated faster in the in situ configuration than the ex situ configuration. Analysis of the spent catalysts confirmed higher accumulation of metals in the in situ experiment. In all experiments, the organic oil mass yields varied between 14 and 17% and the carbon efficiencies between 20 and 25%. The organic oxygen concentrations in the oils were 16-18%, which represented a 45% reduction compared to corresponding noncatalytic pyrolysis oils prepared in the same fluidized bed reactor system. GC/MS analysis showed the oils to contain one- to four-ring aromatic hydrocarbons and a variety of oxygenates (phenols, furans, benzofurans, methoxyphenols, naphthalenols, indenols). Lastly, high fractions of oxygen were rejected as water, CO, and CO 2, which indicates the importance of dehydration, decarbonylation, and decarboxylation reactions. Light gases were the major sources of carbon losses, followed by char and coke.« less
NASA Astrophysics Data System (ADS)
Morisson, Marietta; Szopa, Cyril; Carrasco, Nathalie; Buch, Arnaud; Gautier, Thomas
2016-10-01
Analogues of Titan's aerosols are of primary interest in the understanding of Titan's atmospheric chemistry and climate, and in the development of in situ instrumentation for future space missions. Numerous studies have been carried out to characterize laboratory analogues of Titan aerosols (tholins), but their molecular composition and structure are still poorly known. If pyrolysis gas chromatography mass spectrometry (pyr-GCMS) has been used for years to give clues about their chemical composition, highly disparate results were obtained with this technique. They can be attributed to the variety of analytical conditions used for pyr-GCMS analyses, and/or to differences in the nature of the analogues analyzed, that were produced with different laboratory set-ups under various operating conditions. In order to have a better description of Titan's tholin's molecular composition by pyr-GCMS, we carried out a systematic study with two major objectives: (i) exploring the pyr-GCMS analytical parameters to find the optimal ones for the detection of a wide range of chemical products allowing a characterization of the tholins composition as comprehensive as possible, and (ii) highlighting the role of the CH4 ratio in the gaseous reactive medium on the tholin's molecular structure. We used a radio-frequency plasma discharge to synthetize tholins with different concentrations of CH4 diluted in N2. The samples were pyrolyzed at temperatures covering the 200-700°C range. The extracted gases were then analyzed by GCMS for their molecular identification. The optimal pyrolysis temperature for characterizing the molecular composition of our tholins by GCMS analysis is found to be 600°C. This temperature choice results from the best compromise between the number of compounds released, the quality of the signal and the appearance of pyrolysis artifacts. About a hundred molecules are identified as pyrolysates. A common major chromatographic pattern appears clearly for all the samples even if the number of released compounds can significantly differ. The hydrocarbon chain content increases in tholins when the CH4 ratio increases. A semi-quantitative study of the nitriles (most abundant chemical family in our chromatograms) released during the pyrolysis shows the existence of a correlation between the amount of a nitrile released and its molecular mass, similarly to the previous quantification of nitriles in the plasma gas-phase. Moreover, numerous nitriles are present both in tholins and in the gas phase, confirming their suspected role in the gas phase as precursors of the solid organic particles.
Lee, Hyung Won; Choi, Suek Joo; Park, Sung Hoon; Jeon, Jong-Ki; Jung, Sang-Chul; Kim, Sang Chai; Park, Young-Kwon
2014-01-01
The catalytic co-pyrolysis of a seaweed biomass, Laminaria japonica, and a typical polymer material, polypropylene, was studied for the first time. A mesoporous material Al-SBA-15 was used as a catalyst. Pyrolysis experiments were conducted using a fixed-bed reactor and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). BET surface area, N2 adsorption-desorption isotherms, and NH3 temperature programmed desorption were measured to examine the catalyst characteristics. When only L. japonica was pyrolyzed, catalytic reforming slightly increased the gas yield and decreased the oil yield. The H2O content in bio-oil was increased by catalytic reforming from 42.03 to 50.32 wt% due to the dehydration reaction occurring on the acid sites inside the large pores of Al-SBA-15. Acids, oxygenates, mono-aromatics, poly aromatic hydrocarbons, and phenolics were the main components of the bio-oil obtained from the pyrolysis of L. japonica. Upon catalytic reforming over Al-SBA-15, the main oxygenate species 1,4-anhydro-d-galactitol and 1,5-anhydro-d-manitol were completely removed. When L. japonica was co-pyrolyzed with polypropylene, the H2O content in bio-oil was decreased dramatically (8.93 wt% in the case of catalytic co-pyrolysis), contributing to the improvement of the oil quality. A huge increase in the content of gasoline-range and diesel-range hydrocarbons in bio-oil was the most remarkable change that resulted from the co-pyrolysis with polypropylene, suggesting its potential as a transport fuel. The content of mono-aromatics with high economic value was also increased significantly by catalytic co-pyrolysis.
NASA Astrophysics Data System (ADS)
Lee, Hyung Won; Choi, Suek Joo; Park, Sung Hoon; Jeon, Jong-Ki; Jung, Sang-Chul; Kim, Sang Chai; Park, Young-Kwon
2014-08-01
The catalytic co-pyrolysis of a seaweed biomass, Laminaria japonica, and a typical polymer material, polypropylene, was studied for the first time. A mesoporous material Al-SBA-15 was used as a catalyst. Pyrolysis experiments were conducted using a fixed-bed reactor and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). BET surface area, N2 adsorption-desorption isotherms, and NH3 temperature programmed desorption were measured to examine the catalyst characteristics. When only L. japonica was pyrolyzed, catalytic reforming slightly increased the gas yield and decreased the oil yield. The H2O content in bio-oil was increased by catalytic reforming from 42.03 to 50.32 wt% due to the dehydration reaction occurring on the acid sites inside the large pores of Al-SBA-15. Acids, oxygenates, mono-aromatics, poly aromatic hydrocarbons, and phenolics were the main components of the bio-oil obtained from the pyrolysis of L. japonica. Upon catalytic reforming over Al-SBA-15, the main oxygenate species 1,4-anhydro- d-galactitol and 1,5-anhydro- d-manitol were completely removed. When L. japonica was co-pyrolyzed with polypropylene, the H2O content in bio-oil was decreased dramatically (8.93 wt% in the case of catalytic co-pyrolysis), contributing to the improvement of the oil quality. A huge increase in the content of gasoline-range and diesel-range hydrocarbons in bio-oil was the most remarkable change that resulted from the co-pyrolysis with polypropylene, suggesting its potential as a transport fuel. The content of mono-aromatics with high economic value was also increased significantly by catalytic co-pyrolysis.
2014-01-01
The catalytic co-pyrolysis of a seaweed biomass, Laminaria japonica, and a typical polymer material, polypropylene, was studied for the first time. A mesoporous material Al-SBA-15 was used as a catalyst. Pyrolysis experiments were conducted using a fixed-bed reactor and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). BET surface area, N2 adsorption-desorption isotherms, and NH3 temperature programmed desorption were measured to examine the catalyst characteristics. When only L. japonica was pyrolyzed, catalytic reforming slightly increased the gas yield and decreased the oil yield. The H2O content in bio-oil was increased by catalytic reforming from 42.03 to 50.32 wt% due to the dehydration reaction occurring on the acid sites inside the large pores of Al-SBA-15. Acids, oxygenates, mono-aromatics, poly aromatic hydrocarbons, and phenolics were the main components of the bio-oil obtained from the pyrolysis of L. japonica. Upon catalytic reforming over Al-SBA-15, the main oxygenate species 1,4-anhydro-d-galactitol and 1,5-anhydro-d-manitol were completely removed. When L. japonica was co-pyrolyzed with polypropylene, the H2O content in bio-oil was decreased dramatically (8.93 wt% in the case of catalytic co-pyrolysis), contributing to the improvement of the oil quality. A huge increase in the content of gasoline-range and diesel-range hydrocarbons in bio-oil was the most remarkable change that resulted from the co-pyrolysis with polypropylene, suggesting its potential as a transport fuel. The content of mono-aromatics with high economic value was also increased significantly by catalytic co-pyrolysis. PMID:25136282
Zhou, Bingliang; Zhou, Jianbin; Zhang, Qisheng
2017-10-01
This study aims at investigating the pyrolysis behavior of Camellia sinensis branches by the Discrete Distributed Activation Energy Model (DAEM) and thermogravimetric experiments. Then the Discrete DAEM method is used to describe pyrolysis process of Camellia sinensis branches dominated by 12 characterized reactions. The decomposition mechanism of Camellia sinensis branches and interaction with components are observed. And the reaction at 350.77°C is a significant boundary of the first and second reaction range. The pyrolysis process of Camellia sinensis branches at the heating rate of 10,000°C/min is predicted and provides valuable references for gasification or combustion. The relationship and function between four typical indexes and heating rates from 10 to 10,000°C/min are revealed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analytical pyrolysis mass spectrometry: new vistas opened by temperature-resolved in-source PYMS
NASA Astrophysics Data System (ADS)
Boon, Jaap J.
1992-09-01
Analytical pyrolysis mass spectrometry (PYMS) is introduced and its applications to the analysis of synthetic polymers, biopolymers, biomacromolecular systems and geomacromolecules are critically reviewed. Analytical pyrolysis inside the ionisation chamber of a mass spectrometer, i.e. in-source PYMS, gives a complete inventory of the pyrolysis products evolved from a solid sample. The temperature-resolved nature of the experiment gives a good insight into the temperature dependence of the volatilisation and pyrolytic dissociation processes. Chemical ionisation techniques appear to be especially suitable for the analysis of oligomeric fragments released in early stages of the pyrolysis of polymer systems. Large oligomeric fragments were observed for linear polymers such as cellulose (pentadecamer), polyhydroxyoctanoic acid (tridecamer) and polyhydroxybutyric acid (heneicosamer). New in-source PYMS data are presented on artists' paints, the plant polysaccharides cellulose and xyloglucan, several microbial polyhydroxyalkanoates, wood and enzyme-digested wood, biodegraded roots and a fossil cuticle of Miocene age. On-line and off-line pyrolysis chromatography mass spectrometric approaches are also discussed. New data presented on high temperature gas chromatography--mass spectrometry of deuterio-reduced permethylated pyrolysates of cellulose lead to a better understanding of polysaccharide dissociation mechanisms. Pyrolysis as an on-line sample pretreatment method for organic macromolecules in combination with MS techniques is a very challenging field of mass spectrometry. Pyrolytic dissociation and desorption is not at all a chaotic process but proceeds according to very specific mechanisms.
NASA Astrophysics Data System (ADS)
Lu, Qiang; Zhang, Zhen-xi; Wang, Xin; Guo, Hao-qiang; Cui, Min-shu; Yang, Yong-ping
2018-02-01
A new technique was proposed to co-produce phenol and activated carbon (AC) from catalytic fast pyrolysis of biomass impregnated with K3PO4 in a hydrogen atmosphere, followed by activation of the pyrolytic solid residues. Lab-scale catalytic fast pyrolysis experiments were performed to quantitatively determine the pyrolytic product distribution, as well as to investigate the effects of several factors on the phenol production, including pyrolysis atmosphere, catalyst type, biomass type, catalytic pyrolysis temperature, and catalyst impregnation content. In addition, the pyrolytic solid residues were activated to prepare ACs with high specific surface areas. The results indicated that phenol could be obtained due to the synergistic effects of K3PO4 and hydrogen atmosphere, with the yield and selectivity reaching 5.3 wt% and 17.8% from catalytic fast pyrolysis of poplar wood with 8 wt% K3PO4 at 550 oC in a hydrogen atmosphere. This technique was adaptable to different woody materials for phenol production. Moreover, gas product generated from the pyrolysis process was feasible to be recycled to provide the hydrogen atmosphere, instead of extra hydrogen supply. In addition, the pyrolytic solid residue was suitable for AC preparation, using CO2 activation method, the specific surface area was as high as 1605 m2/g.
[Bio-oil production from biomass pyrolysis in molten salt].
Ji, Dengxiang; Cai, Tengyue; Ai, Ning; Yu, Fengwen; Jiang, Hongtao; Ji, Jianbing
2011-03-01
In order to investigate the effects of pyrolysis conditions on bio-oil production from biomass in molten salt, experiments of biomass pyrolysis were carried out in a self-designed reactor in which the molten salt ZnCl2-KCl (with mole ratio 7/6) was selected as heat carrier, catalyst and dispersion agent. The effects of metal salt added into ZnCl2-KCl and biomass material on biomass pyrolysis were discussed, and the main compositions of bio-oil were determined by GC-MS. Metal salt added into molten salt could affect pyrolysis production yields remarkably. Lanthanon salt could enhance bio-oil yield and decrease water content in bio-oil, when mole fraction of 5.0% LaCl3 was added, bio-oil yield could reach up to 32.0%, and water content of bio-oil could reduce to 61.5%. The bio-oil and char yields were higher when rice straw was pyrolysed, while gas yield was higher when rice husk was used. Metal salts showed great selectivity on compositions of bio-oil. LiCl and FeCl2 promoted biomass to pyrolyse into smaller molecular weight compounds. CrCl3, CaCl2 and LaCl3 could restrain second pyrolysis of bio-oil. The research provided a scientific reference for production of bio-oil from biomass pyrolysis in molten salt.
Adrados, A; De Marco, I; Lopez-Urionabarrenechea, A; Caballero, B M; Laresgoiti, M F
2013-01-01
In this paper rejected streams coming from a waste packaging material recovery facility have been characterized and separated into families of products of similar nature in order to determine the influence of different types of ingredients in the products obtained in the pyrolysis process. The pyrolysis experiments have been carried out in a non-stirred batch 3.5 dm(3) reactor, swept with 1 L min(-1) N(2), at 500°C for 30 min. Pyrolysis liquids are composed of an organic phase and an aqueous phase. The aqueous phase is greater as higher is the cellulosic material content in the sample. The organic phase contains valuable chemicals as styrene, ethylbenzene and toluene, and has high heating value (HHV) (33-40 MJ kg(-1)). Therefore they could be used as alternative fuels for heat and power generation and as a source of valuable chemicals. Pyrolysis gases are mainly composed of hydrocarbons but contain high amounts of CO and CO(2); their HHV is in the range of 18-46 MJ kg(-1). The amount of COCO(2) increases, and consequently HHV decreases as higher is the cellulosic content of the waste. Pyrolysis solids are mainly composed of inorganics and char formed in the process. The cellulosic materials lower the quality of the pyrolysis liquids and gases, and increase the production of char. Copyright © 2012 Elsevier Ltd. All rights reserved.
Lu, Qiang; Zhang, Zhen-xi; Wang, Xin; Guo, Hao-qiang; Cui, Min-shu; Yang, Yong-ping
2018-01-01
A new technique was proposed to co-produce phenol and activated carbon (AC) from catalytic fast pyrolysis of biomass impregnated with K3PO4 in a hydrogen atmosphere, followed by activation of the pyrolytic solid residues. Lab-scale catalytic fast pyrolysis experiments were performed to quantitatively determine the pyrolytic product distribution, as well as to investigate the effects of several factors on the phenol production, including pyrolysis atmosphere, catalyst type, biomass type, catalytic pyrolysis temperature, and catalyst impregnation content. In addition, the pyrolytic solid residues were activated to prepare ACs with high specific surface areas. The results indicated that phenol could be obtained due to the synergistic effects of K3PO4 and hydrogen atmosphere, with the yield and selectivity reaching 5.3 wt% and 17.8% from catalytic fast pyrolysis of poplar wood with 8 wt% K3PO4 at 550°C in a hydrogen atmosphere. This technique was adaptable to different woody materials for phenol production. Moreover, gas product generated from the pyrolysis process was feasible to be recycled to provide the hydrogen atmosphere, instead of extra hydrogen supply. In addition, the pyrolytic solid residue was suitable for AC preparation, using CO2 activation method, the specific surface area was as high as 1,605 m2/g. PMID:29515994
Lu, Qiang; Zhang, Zhen-Xi; Wang, Xin; Guo, Hao-Qiang; Cui, Min-Shu; Yang, Yong-Ping
2018-01-01
A new technique was proposed to co-produce phenol and activated carbon (AC) from catalytic fast pyrolysis of biomass impregnated with K 3 PO 4 in a hydrogen atmosphere, followed by activation of the pyrolytic solid residues. Lab-scale catalytic fast pyrolysis experiments were performed to quantitatively determine the pyrolytic product distribution, as well as to investigate the effects of several factors on the phenol production, including pyrolysis atmosphere, catalyst type, biomass type, catalytic pyrolysis temperature, and catalyst impregnation content. In addition, the pyrolytic solid residues were activated to prepare ACs with high specific surface areas. The results indicated that phenol could be obtained due to the synergistic effects of K 3 PO 4 and hydrogen atmosphere, with the yield and selectivity reaching 5.3 wt% and 17.8% from catalytic fast pyrolysis of poplar wood with 8 wt% K 3 PO 4 at 550°C in a hydrogen atmosphere. This technique was adaptable to different woody materials for phenol production. Moreover, gas product generated from the pyrolysis process was feasible to be recycled to provide the hydrogen atmosphere, instead of extra hydrogen supply. In addition, the pyrolytic solid residue was suitable for AC preparation, using CO 2 activation method, the specific surface area was as high as 1,605 m 2 /g.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solak, Agnieszka; Rutkowski, Piotr, E-mail: piotr.rutkowski@pwr.wroc.pl
2014-02-15
Highlights: • Non-catalytic and catalytic fast pyrolysis of cellulose/polyethylene blend was carried out in a laboratory scale reactor. • Optimization of process temperature was done. • Optimization of clay catalyst type and amount for co-pyrolysis of cellulose and polyethylene was done. • The product yields and the chemical composition of bio-oil was investigated. - Abstract: Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 – montmorillonite K10, KSF – montmorillonite KSF, B – Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500 °C with heating rate of 100 °C/s to produce bio-oil with highmore » yield. The pyrolytic oil yield was in the range of 41.3–79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst.« less
Ebin, Burçak; Petranikova, Martina; Steenari, Britt-Marie; Ekberg, Christian
2017-10-01
Zinc (Zn) recovery from alkaline and zinc-carbon (Zn-C) battery waste were studied by a laboratory scale pyrolysis process at a reaction temperature of 950°C for 15-60min residence time using 5%H 2(g) -N 2(g) mixture at 1.0L/min gas flow rate. The effect of different cooling rates on the properties of pyrolysis residue, manganese oxide particles, were also investigated. Morphological and structural characterization of the produced Zn particles were performed. The battery black mass was characterized with respect to the properties and chemical composition of the waste battery particles. The thermodynamics of the pyrolysis process was studied using the HSC Chemistry 5.11 software. A hydrogen reduction reaction of the battery black mass (washed with Milli-Q water) takes place at the chosen temperature and makes it possible to produce fine Zn particles by rapid condensation following the evaporation of Zn from the pyrolysis batch. The amount of Zn that can be separated from the black mass increases by extending the residence time. Recovery of 99.8% of the Zn was achieved at 950°C for 60min residence time using 1.0L/min gas flow rate. The pyrolysis residue contains MnO and Mn 2 O 3 compounds, and the oxidation state of manganese can be controlled by cooling rate and atmosphere. The Zn particles exhibit spherical and hexagonal particle morphology with a particle size varying between 200nm and 3µm. However the particles were formed by aggregation of nanoparticles which are primarily nucleated from the gas phase. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fast pyrolysis of oil palm shell (OPS)
NASA Astrophysics Data System (ADS)
Abdullah, Nurhayati; Sulaiman, Fauziah; Aliasak, Zalila
2015-04-01
Biomass is an important renewable source of energy. Residues that are obtained from harvesting and agricultural products can be utilised as fuel for energy generation by conducting any thermal energy conversion technology. The conversion of biomass to bio oil is one of the prospective alternative energy resources. Therefore, in this study fast pyrolysis of oil palm shell was conducted. The main objective of this study was to find the optimum condition for high yield bio-oil production. The experiment was conducted using fixed-bed fluidizing pyrolysis system. The biomass sample was pyrolysed at variation temperature of 450°C - 650°C and at variation residence time of 0.9s - 1.35s. The results obtained were further discussed in this paper. The basic characteristic of the biomass sample was also presented here. The experiment shows that the optimum bio-oil yield was obtained at temperature of 500°C at residence time 1.15s.
ERIC Educational Resources Information Center
Bentley, Anne K.; Weaver, Gabriela C.; Russell, Cianan B.; Fornes, William L.; Choi, Kyoung-Shin; Shih, Susan M.
2007-01-01
A simple and cost-effective experiment for the development and characterization of semiconductors using Uv-vis spectroscopy is described. The study shows that the optical properties of ZnO films can be easily modified by forming Zn[subscript 1-x] Co[subscript x]O solid solutions via spray pyrolysis.
Intelligent Processing of Ferroelectric Thin Films
1993-09-03
the acetate precursors. The results from these experiments involving coprecipitation, hydrothermal , spray pyrolysis and freeze drying have shown that...Spray Pyrolysis (SP) D. Hydrothermal Processing (HP) The powder produced by each process was characterized by X-ray diffraction (XRD) and scanning...precursors were used as described above. Instead of ammonia solution, an oxalic acid solution was used as the3 precipitating agent. The precipitants
NASA Astrophysics Data System (ADS)
Surjosatyo, Adi; Haq, Imaduddin; Dafiqurrohman, Hafif; Gibran, Felly Rihlat
2017-03-01
The formation of pyrolysis sustainability (Sustainable Pyrolysis) is the objective of the gasification process. Pyrolysis zone in the gasification process is the result of the endothermic reaction that get heat from oxidation (combustion) of the fuel with oxygen, where cracking biomass rice husk result of such as charcoal, water vapor, steam tar, and gas - gas (CO, H 2, CH 4, CO 2 and N 2) and must be maintained at a pyrolysis temperature to obtain results plentiful gas (producer gas) or syngas (synthetic gas). Obtaining continuously syngas is indicated by flow rate (discharge) producer gas well and the consistency of the flame on the gas burner, it is highly influenced by the gasification process and the operation of the gasifier and the mass balance (mass balance) between the feeding rate of rice husk with the disposal of ash (ash removal). In experiments conducted is using fixed bed gasifier type downdraft capacity of 10 kg/h. Besides setting the mass of rice husks into the gasifier and disposal arrangements rice husk ash may affect the sustainability of the pyrolysis process, but tar produced during the gasification process causes sticky rice husk ash in the plenum gasifier. Modifications disposal system rice husk ash can facilitate the arrangement of ash disposal then could control the temperature pyrolysis with pyrolysis at temperatures between 500-750 ° C. The experimental study was conducted to determine the effect of mass quantities of rice husk ash issued against sustainability pyrolysis temperature which is obtained at each time disposal of rice husk ash to produce 60-90 grams of ash issued. From some experimental phenomena is expected to be seen pyrolysis and its effect on the flow rate of syngas and the stability of the flame on the gas burner so that this research can find a correlation to obtain performance (performance) gasifier optimal.
Attrition-free pyrolysis to produce bio-oil and char.
Mauviel, Guillain; Guillain, Mauviel; Kies, Fairouz; Fairouz, Kies; René, Mar Sans; Mar, Sans Rene; Ferrer, Monique; Monique, Ferrer; Lédé, Jacques; Jacques, Lédé
2009-12-01
Experiments are performed on a laboratory scale setup where beech wood chips are heated by gas convection and walls radiation. This study shows that it is possible to obtain high bio-oil and char yields with relatively low external heat transfer coefficients. The main advantage of this convection/radiation heat transfer mode compared to solid-solid collisions, applied in fluidized bed or twin screw reactors, is the reduction of solid attrition (char and sand). Thus tricky gas-solid separation through hot cyclones and/or hot filters could be avoided or reduced. It should be possible to recover directly bio-oil with less char particles and char free of sand dust. These qualities would allow easier use of these bio-products in different applications.
Experimental study on the liquefaction of cellulose in supercritical ethanol
NASA Astrophysics Data System (ADS)
Peng, Jinxing; Liu, Xinyuan; Bao, Zhenbo
2018-03-01
Cellulose is the major composition of solid waste for producing biofuel; cellulose liquefaction is helpful for realizing biomass supercritical liquefaction process. This paper is taking supercritical ethanol as the medium, liquefied cellulose with the intermittence installation of high press cauldron. Experiments have studied technical condition and the technology parameter of cellulose liquefaction in supercritical ethanol, and the pyrolysis mechanism was analysed based on the pyrolysis product. Results show that cellulose can be liquefied, can get good effect through appropriate technology condition. Under not catalyst, highest liquefaction rate of cellulose can reach 73.5%. The composition of the pyrolysis product was determined by GC-MS.
Simulation of Oil Palm Shell Pyrolysis to Produce Bio-Oil with Self-Pyrolysis Reactor
NASA Astrophysics Data System (ADS)
Fika, R.; Nelwan, L. O.; Yulianto, M.
2018-05-01
A new self-pyrolysis reactor was designed to reduce the utilization of electric heater due to the energy saving for the production of bio-oil from oil palm shell. The yield of the bio- oil was then evaluated with the developed mathematical model by Sharma [1] with the characteristic of oil palm shell [2]. During the simulation, the temperature on the combustion chamber on the release of the bio-oil was utilized to determine the volatile composition from the combustion of the oil palm shell as fuel. The mass flow was assumed constant for three experiments. The model resulted in a significant difference between the simulated bio-oil and experiments. The bio-oil yields from the simulation were 22.01, 16.36, and 21.89 % (d.b.) meanwhile the experimental yields were 10.23, 9.82, and 8.41% (d.b.). The char yield varied from 30.7 % (d.b.) from the simulation to 40.9 % (d.b.) from the experiment. This phenomenon was due to the development of process temperature over time which was not considered as one of the influential factors in producing volatile matters on the simulation model. Meanwhile the real experiments highly relied on the process conditions (reactor type, temperature over time, gas flow). There was also possibilities of the occurrence of the gasification inside the reactor which caused the liquid yield was not as high as simulated. Further simulation model research on producing the bio-oil yield will be needed to predict the optimum condition and temperature development on the newly self-pyrolysis reactor.
Nitrous oxide emission reduction in temperate biochar-amended soils
NASA Astrophysics Data System (ADS)
Felber, R.; Hüppi, R.; Leifeld, J.; Neftel, A.
2012-01-01
Biochar, a pyrolysis product of organic residues, is an amendment for agricultural soils to improve soil fertility, sequester CO2 and reduce greenhouse gas (GHG) emissions. In highly weathered tropical soils laboratory incubations of soil-biochar mixtures revealed substantial reductions for nitrous oxide (N2O) and carbon dioxide (CO2). In contrast, evidence is scarce for temperate soils. In a three-factorial laboratory incubation experiment two different temperate agricultural soils were amended with green waste and coffee grounds biochar. N2O and CO2 emissions were measured at the beginning and end of a three month incubation. The experiments were conducted under three different conditions (no additional nutrients, glucose addition, and nitrate and glucose addition) representing different field conditions. We found mean N2O emission reductions of 60 % compared to soils without addition of biochar. The reduction depended on biochar type and soil type as well as on the age of the samples. CO2 emissions were slightly reduced, too. NO3- but not NH4+ concentrations were significantly reduced shortly after biochar incorporation. Despite the highly significant suppression of N2O emissions biochar effects should not be transferred one-to-one to field conditions but need to be tested accordingly.
Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP).
Achilias, D S; Roupakias, C; Megalokonomos, P; Lappas, A A; Antonakou, Epsilon V
2007-11-19
The recycling of either model polymers or waste products based on low-density polyethylene (LDPE), high-density polyethylene (HDPE) or polypropylene (PP) is examined using the dissolution/reprecipitation method, as well as pyrolysis. In the first technique, different solvents/non-solvents were examined at different weight percent amounts and temperatures using as raw material both model polymers and commercial products (packaging film, bags, pipes, food-retail outlets). The recovery of polymer in every case was greater than 90%. FT-IR spectra and tensile mechanical properties of the samples before and after recycling were measured. Furthermore, catalytic pyrolysis was carried out in a laboratory fixed bed reactor with an FCC catalyst using again model polymers and waste products as raw materials. Analysis of the derived gases and oils showed that pyrolysis gave a mainly aliphatic composition consisting of a series of hydrocarbons (alkanes and alkenes), with a great potential to be recycled back into the petrochemical industry as a feedstock for the production of new plastics or refined fuels.
OXIDATION AND DEVOLATILIZATION OF NITROGEN IN COAL CHAR
The reactions of organically-bound nitrogen in coal char during combustion have been studied in a laboratory furnace using size-graded char particles prepared by the pyrolysis of a Montana lignite. The time-resolved variations of nitrogen-to-carbon ratio during char oxidation hav...
Chen, Tianju; Zhang, Jinzhi; Wu, Jinhu
2016-07-01
The kinetic and energy productions of pyrolysis of a lignocellulosic biomass were investigated using a three-parallel Gaussian distribution method in this work. The pyrolysis experiment of the pine sawdust was performed using a thermogravimetric-mass spectroscopy (TG-MS) analyzer. A three-parallel Gaussian distributed activation energy model (DAEM)-reaction model was used to describe thermal decomposition behaviors of the three components, hemicellulose, cellulose and lignin. The first, second and third pseudocomponents represent the fractions of hemicellulose, cellulose and lignin, respectively. It was found that the model is capable of predicting the pyrolysis behavior of the pine sawdust. The activation energy distribution peaks for the three pseudo-components were centered at 186.8, 197.5 and 203.9kJmol(-1) for the pine sawdust, respectively. The evolution profiles of H2, CH4, CO, and CO2 were well predicted using the three-parallel Gaussian distribution model. In addition, the chemical composition of bio-oil was also obtained by pyrolysis-gas chromatography/mass spectrometry instrument (Py-GC/MS). Copyright © 2016 Elsevier Ltd. All rights reserved.
Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics.
Zhang, Xuesong; Lei, Hanwu; Zhu, Lei; Zhu, Xiaolu; Qian, Moriko; Yadavalli, Gayatri; Wu, Joan; Chen, Shulin
2016-11-01
The present study aims to investigate the thermal decomposition behaviors and kinetics of biomass (cellulose/Douglas fir sawdust) and plastics (LDPE) in a non-catalytic and catalytic co-pyrolysis over ZSM-5 catalyst by using a thermogravimetric analyzer (TGA). It was found that there was a positive synergistic interaction between biomass and plastics according to the difference of weight loss (ΔW), which could decrease the formation of solid residue at the end of the experiment. The first order reaction model well fitted for both non-catalytic and catalytic co-pyrolysis of biomass with plastics. The activation energy (E) of Cellulose-LDPE-Catalyst and DF-LDPE-Catalyst are only 89.51 and 54.51kJ/mol, respectively. The kinetics analysis showed that adding catalyst doesn't change the decomposition mechanism. As a result, the kinetic study on catalytic co-pyrolysis of biomass with plastics was suggested that the catalytic co-pyrolysis is a promising technique that can significantly reduce the energy input. Copyright © 2016 Elsevier Ltd. All rights reserved.
Huang, Feng; Tahmasebi, Arash; Maliutina, Kristina; Yu, Jianglong
2017-12-01
The formation of nitrogen-containing compounds in bio-oil during microwave pyrolysis of Chlorella and Spirulina microalgae has been investigated in this study. Activated carbon (AC) and magnetite (Fe 3 O 4 ) were used as microwave receptors during microwave pyrolysis experiments. It has been found that the use of Fe 3 O 4 increased the total yield of bio-oil. The use of different microwave receptors did not seem to have affected the total yield of nitrogen-containing compounds in the bio-oil. However, Fe 3 O 4 promoted the formation of nitrogen-containing aliphatics, thereby reducing the formation of nitrogen-containing aromatics. The use of AC promoted the dehydration reactions during amino acid decomposition, thereby enhancing the formation of nitrogen-containing aromatics during pyrolysis. From the gas chromatography-mass spectrometry (GC-MS) analysis results, the major high-value nitrogen-containing compounds in the pyrolysis bio-oil of Chlorella and Spirulina were identified as indole and dodecamide. The formation mechanisms of nitrogen-containing compounds were proposed and discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pyrolysis of a waste from the grinding of scrap tyres.
Fernández, A M; Barriocanal, C; Alvarez, R
2012-02-15
The fibres that are used to reinforce tyres can be recovered as a waste in the process of grinding of scrap tyres. In this paper beneficiation through pyrolysis is studied since the fibres are made up of polymers with a small amount of rubber because the latter is difficult to separate. The experiments were performed at three temperatures (400, 550 and 900°C) in a horizontal oven. The three products - gas, oil and char - obtained from the pyrolysis were investigated. The composition of the gas was analyzed by means of gas chromatography. The oil was studied by gas chromatography and infrared spectroscopy. The char porous structure was determined by N(2) adsorption. In addition, the topography of the chars was studied by means of scanning electron microscopy (SEM). The products resulting from the pyrolysis of the fibres were compared with those obtained from scrap rubber. Copyright © 2011 Elsevier B.V. All rights reserved.
Lunar oxygen production by pyrolysis of regolith
NASA Technical Reports Server (NTRS)
Senior, Constance L.
1991-01-01
Oxygen represents one of the most desirable products of lunar mining and manufacturing. Among the many processes which have been proposed for oxygen production, pyrolysis stands out as one which is uncomplicated and easy to bootstrap. Pyrolysis or vapor-phase reduction involves heating regolith to temperatures sufficient to allow partial decomposition and vaporization. Some metal oxides give up oxygen upon heating, either in the gas phase to form reduced gaseous species or in the condensed phase to form a metallic phase. Based on preliminary experiments and equilibrium calculations, the temperatures needed for pyrolysis are expected to be in the range of 2000 to 2200 K, giving total gas pressures of 0.001 to 0.1 torr. Bulk regolith can be used as a feedstock without beneficiation with concentrated solar radiation supplying most of energy needed. Further, selective condensation of metal-containing species from the gas phase may yield metallic iron and silicon as byproducts.
NASA Astrophysics Data System (ADS)
Magnacca, Giuliana; Guerretta, Federico; Vizintin, Alen; Benzi, Paola; Valsania, Maria C.; Nisticò, Roberto
2018-01-01
Chitin (a biopolymer obtained from shellfish industry) was used as precursor for the production of biochars obtained via pyrolysis treatments performed at mild conditions (in the 290-540 °C range). Biochars were physicochemical characterized in order to evaluate the pyrolysis-induced effects in terms of both functional groups and material structure. Moreover, such carbonaceous materials were tested as adsorbent substrates for the removal of target molecules from aqueous environment as well as in solid-gas experiments, to measure the adsorption capacities and selectivity toward CO2. Lastly, biochars were also investigated as possible cathode materials in sustainable and low-cost electrochemical energy storage devices, such as lithium-sulphur (Li-S) batteries. Interestingly, experimental results evidenced that such chitin-derived biochars obtained via pyrolysis at mild conditions are sustainable, low-cost and easy scalable alternative materials suitable for both environmental and energetic applications.
NASA Technical Reports Server (NTRS)
Tannenbaum, E.; Kaplan, I. R.
1985-01-01
Pyrolysis experiments conducted at 200 and 300 C on kerogen and bitumen from the Monterey formation and on the Green River Formation kerogen with montmorillonite, illite, and calcite added are described. The pyrolysis products are identified and gas and condensate analyses are performed. A catalytic effect is detected in the pyrolysis of kerogen with montmorillonite; however, illite and calcite display no catalytic activity. The increased production of C1-C6 hydrocarbons and the dominance of branched hydrocarbons in the C4-C6 range reveals a catalytic influence. It is observed that the catalysis of montmorillonite is greater during bitumen pyrolysis than for kerogen, and catalysis with minerals affects the production of CO2. It is concluded that a mineral matrix is important in determining the type and amount of gases and condensates forming from organic matter under thermal stress.
Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis.
Zhou, Hui; Long, YanQiu; Meng, AiHong; Li, QingHai; Zhang, YanGuo
2015-04-01
The interactions of nine typical municipal solid waste (MSW) fractions during pyrolysis were investigated using the thermogravimetric analyzer (TGA). To compare the mixture results with the calculation results of superposition of single fractions quantitatively, TG overlap ratio was introduced. There were strong interactions between orange peel and rice (overlap ratio 0.9736), and rice and poplar wood (overlap ratio 0.9774). The interactions of mixture experiments postponed the peak and lowered the peak value. Intense interactions between PVC and rice, poplar wood, tissue paper, wool, terylene, and rubber powder during co-pyrolysis were observed, and the pyrolysis at low temperature was usually promoted. The residue yield was increased when PVC was blended with rice, poplar wood, tissue paper, or rubber powder; while the residue yield was decreased when PVC was blended with wool. Copyright © 2014 Elsevier Ltd. All rights reserved.
Raclavská, Helena; Corsaro, Agnieszka; Hlavsová, Adéla; Juchelková, Dagmar; Zajonc, Ondřej
2015-03-01
The investigation of the effect of moisture on the release and enrichment of heavy metals during pyrolysis of municipal solid waste is essential. This is important owing to: (i) the increasing amount of metals in the solid product of pyrolysis beyond the normalised level; (ii) the effect of moisture on the overall cost of pyrolysis process; and (iii) the utilisation of pyrolysis products. Seven metals were selected for evaluation: arsenic, cadmium, chromium, mercury, nickel, lead, and vanadium. Pyrolysis experiments were conducted in a steel retort at 650 °C. The municipal solid waste samples with moisture contents of 0, 30, and 65 wt% were investigated. The relative enrichment index and release of heavy metals were evaluated individually for liquid and solid fractions. A consistent trend was observed for the majority of metals investigated. Reductions of relative enrichment index and release, i.e. an increase of volatility, were observed for arsenic, chromium, cadmium, nickel, and vanadium, with an increase of municipal solid waste moisture. Whereas divergent results were obtained for lead and mercury. The effect of moisture on the relative enrichment index and release was greater at 65 wt% moisture than at 30 wt% for lead, and more remarkable at 30 wt% than at 65 wt% for mercury. © The Author(s) 2015.
Thermal Decomposition Mechanism of Butyraldehyde
NASA Astrophysics Data System (ADS)
Hatten, Courtney D.; Warner, Brian; Wright, Emily; Kaskey, Kevin; McCunn, Laura R.
2013-06-01
The thermal decomposition of butyraldehyde, CH_3CH_2CH_2C(O)H, has been studied in a resistively heated SiC tubular reactor. Products of pyrolysis were identified via matrix-isolation FTIR spectroscopy and photoionization mass spectrometry in separate experiments. Carbon monoxide, ethene, acetylene, water and ethylketene were among the products detected. To unravel the mechanism of decomposition, pyrolysis of a partially deuterated sample of butyraldehyde was studied. Also, the concentration of butyraldehyde in the carrier gas was varied in experiments to determine the presence of bimolecular reactions. The results of these experiments can be compared to the dissociation pathways observed in similar aldehydes and are relevant to the processing of biomass, foods, and tobacco.
NASA Astrophysics Data System (ADS)
Peltre, Clement; Dignac, Marie-France; Doublet, Jeremy; Plante, Alain; Houot, Sabine
2013-04-01
Land application of exogenous organic matter (EOM) of residual origin can help to maintain or increase soil organic carbon (SOC) stocks. However, it remains necessary to quantify and predict the soil C accumulation and to determine under which form the C accumulates. Changes to the chemical composition of soil organic matter (SOM) after repeated applications of composts and farmyard manure were investigated in a field experiment (Qualiagro experiment, Ile-de-France) after 8 years of applications of green waste and sludge compost (GWS), municipal solid waste compost (MSW), biowaste compost (BIOW) or farmyard manure (FYM). The soil was fractionated into particulate organic matter >50 µm (POM), a heavy fraction >50 µm and a 0-50 µm fraction demineralized with hydrofluoric acid (HF). Repeated EOM applications significantly increased total SOC stocks, the C amount in the POM fraction and to a less extent in the 0-50 µm fraction compared to the reference treatment. Compost applications accumulated C preferentially under the form of coarse organic matter of size >50 µm, whereas the FYM accumulated similar C proportions of size >50 µm and 0-50 µm, which was attributed to the presence in the FYM of a fraction of labile C stimulating microbial activity and producing humified by-products together with a fraction of stabilized C directly alimenting the humified fraction of SOC. Pyrolysis-GC/MS and DRIFT spectroscopy revealed enrichment in lignin in the POM fractions of amended soils with GWS, BIOW and FYM. In the soil receiving MSW compost, the pyrolysate of the POM fraction revealed the presence of plastics originating from the MSW compost. A lower C mineralization during laboratory incubation was found for the POM fractions of amended soils compared with the POM from reference soil. This feature was related to a lower ratio of (furfural+acetic acid) / pyrole pyrolysis products in POM of amended vs. reference plots, indicating a higher degree of recalcitrance.. The POM from amended soils also featured greater thermal stability during thermal analysis compared with POM from reference soil. Higher proportions of N-containing pyrolysis compounds in the POM fraction, and of benzene pyrolysis products in the 0-50 µm fraction, were found in the soil amended with BIOW compost, probably originating from the humified OM of the compost. DRIFT spectroscopy showed relative enrichment in aliphatic compounds of the 0-50 µm fractions from amended plots when compared to reference plots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
An Apple IIe microcomputer is being used to collect data and to control a pyrolysis system. Pyrolysis data for bitumen and kerogen are widely used to estimate source rock maturity. For a detailed analysis of kinetic parameters, however, data must be obtained more precisely than for routine pyrolysis. The authors discuss the program which controls the temperature ramp of the furnace that heats the sample, and collects data from a thermocouple in the furnace and from the flame ionization detector measuring evolved hydrocarbons. These data are stored on disk for later use by programs that display the results of themore » experiment or calculate kinetic parameters. The program is written in Applesoft BASIC with subroutines in Apple assembler for speed and efficiency.« less
Breyer, Sacha; Mekhitarian, Loucine; Rimez, Bart; Haut, B
2017-02-01
This work is a preliminary study for the development of a co-pyrolysis process of plastic wastes excavated from a landfill and used lubrication oils, with the aim to produce an alternative liquid fuel for industrial use. First, thermogravimetric experiments were carried out with pure plastics (HDPE, LDPE, PP and PS) and oils (a motor oil and a mixture of used lubrication oils) in order to highlight the interactions occurring between a plastic and an oil during their co-pyrolysis. It appears that the main decomposition event of each component takes place at higher temperatures when the components are mixed than when they are alone, possibly because the two components stabilize each other during their co-pyrolysis. These interactions depend on the nature of the plastic and the oil. In addition, co-pyrolysis experiments were led in a lab-scale reactor using a mixture of excavated plastic wastes and used lubrication oils. On the one hand, the influence of some key operating parameters on the outcome of the process was analyzed. It was possible to produce an alternative fuel for industrial use whose viscosity is lower than 1Pas at 90°C, from a plastic/oil mixture with an initial plastic mass fraction between 40% and 60%, by proceeding at a maximum temperature included in the range 350-400°C. On the other hand, the amount of energy required to successfully co-pyrolyze, in lab conditions, 1kg of plastic/oil mixture with an initial plastic mass fraction of 60% was estimated at about 8MJ. That amount of energy is largely used for the thermal cracking of the molecules. It is also shown that, per kg of mixture introduced in the lab reactor, 29MJ can be recovered from the combustion of the liquid resulting from the co-pyrolysis. Hence, this co-pyrolysis process could be economically viable, provided heat losses are addressed carefully when designing an industrial reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.
The extraction of bitumen from western oil sands: Volume 2. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.
1997-11-26
The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery andmore » upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.« less
Pyrolysis of automotive shredder residue in a bench scale rotary kiln.
Notarnicola, Michele; Cornacchia, Giacinto; De Gisi, Sabino; Di Canio, Francesco; Freda, Cesare; Garzone, Pietro; Martino, Maria; Valerio, Vito; Villone, Antonio
2017-07-01
Automotive shredder residue (ASR) can create difficulties when managing, with its production increasing. It is made of different type of plastics, foams, elastomers, wood, glasses and textiles. For this reason, it is complicated to dispose of in a cost effective way, while also respecting the stringent environmental restrictions. Among thermal treatments, pyrolysis seems to offer an environmentally attractive method for the treatment of ASR; it also allows for the recovery of valuable secondary materials/fuels such as pyrolysis oils, chars, and gas. While, there is a great deal of significant research on ASR pyrolysis, the literature on higher scale pyrolysis experiments is limited. To improve current literature, the aim of the study was to investigate the pyrolysis of ASR in a bench scale rotary kiln. The Italian ASR was separated by dry-sieving into two particle size fractions: d<30mm and d>30mm. Both the streams were grounded, pelletized and then pyrolyzed in a continuous bench scale rotary kiln at 450, 550 and 650°C. The mass flow rate of the ASR pellets was 200-350g/h and each test ran for about 4-5h. The produced char, pyrolysis oil and syngas were quantified to determine product distribution. They were thoroughly analyzed with regard to their chemical and physical properties. The results show how higher temperatures increase the pyrolysis gas yield (44wt% at 650°C) as well as its heating value. The low heating value (LHV) of syngas ranges between 18 and 26MJ/Nm 3 dry. The highest pyrolysis oil yield (33wt.%) was observed at 550°C and its LHV ranges between 12.5 and 14.5MJ/kg. Furthermore, only two out of the six produced chars respect the LHV limit set by the Italian environmental regulations for landfilling. The obtained results in terms of product distribution and their chemical-physical analyses provide useful information for plant scale-up. Copyright © 2017 Elsevier Ltd. All rights reserved.
Publications - GMC 28 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 28 Publication Details Title: Geochemical analysis (total organic carbon, rock-eval pyrolysis Reference Brown and Ruth Laboratories, Inc., 1985, Geochemical analysis (total organic carbon, rock-eval Organic Carbon Top of Page Department of Natural Resources, Division of Geological & Geophysical
Ablator Response Model Development: From Flight Data Back to Fundamental Experiments
NASA Technical Reports Server (NTRS)
Mansour, Nagi N.; Lachaud, Jean R.
2013-01-01
The successful Mars atmospheric entry by the Mars Science Laboratory (MSL-Curiosity) combined with the success of the Earth atmospheric entry by the Stardust capsule have established PICA as a major Thermal Protection Systems (TPS) material. We expect that this class of materials will be on the short list selected by NASA for any atmospheric entry missions and that it will be the lead of that list of materials in any planning, feasibility studies or flight readiness studies. In addition to NASAs successes, the Dragon capsule, the successful commercial space vehicle built by SpaceX, uses PICA-X, while the European Space Agency is considering ASTERM for its exploration missions that involve atmospheric entries, both of these materials are of the same family as PICA. In the talk, a high-fidelity model will be detailed and discussed. The model tracks the chemical composition of the gases produced during pyrolysis. As in the conventional models, it uses equilibrium chemistry to determine the recession rate at high temperatures but switches to in-volume finite-rate ablation for lower temperatures. It also tracks the time evolution of the porosity of the material. Progress in implementing this high-fidelity model in a code will be presented. In addition, a set of basic experimental data being supported for model validation will be summarized. The validation process for the model development will be discussed. Preliminary results will be presented for a case where detailed pyrolysis product chemistry is computed. Finally, a wish list for a set of validation experiments will be outlined and discussed.
Sfakiotakis, Stelios; Vamvuka, Despina
2015-12-01
The pyrolysis of six waste biomass samples was studied and the fuels were kinetically evaluated. A modified independent parallel reactions scheme (IPR) and a distributed activation energy model (DAEM) were developed and their validity was assessed and compared by checking their accuracy of fitting the experimental results, as well as their prediction capability in different experimental conditions. The pyrolysis experiments were carried out in a thermogravimetric analyzer and a fitting procedure, based on least squares minimization, was performed simultaneously at different experimental conditions. A modification of the IPR model, considering dependence of the pre-exponential factor on heating rate, was proved to give better fit results for the same number of tuned kinetic parameters, comparing to the known IPR model and very good prediction results for stepwise experiments. Fit of calculated data to the experimental ones using the developed DAEM model was also proved to be very good. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lewan, Michael; Kotarba, M.J.
2014-01-01
Hydrous-pyrolysis experiments at 360°C (680°F) for 72 h were conducted on 53 humic coals representing ranks from lignite through anthracite to determine the upper maturity limit for hydrocarbon-gas generation from their kerogen and associated bitumen (i.e., primary gas generation). These experimental conditions are below those needed for oil cracking to ensure that generated gas was not derived from the decomposition of expelled oil generated from some of the coals (i.e., secondary gas generation). Experimental results showed that generation of hydrocarbon gas ends before a vitrinite reflectance of 2.0%. This reflectance is equivalent to Rock-Eval maximum-yield temperature and hydrogen indices (HIs) of 555°C (1031°F) and 35 mg/g total organic carbon (TOC), respectively. At these maturity levels, essentially no soluble bitumen is present in the coals before or after hydrous pyrolysis. The equivalent kerogen atomic H/C ratio is 0.50 at the primary gas-generation limit and indicates that no alkyl moieties are remaining to source hydrocarbon gases. The convergence of atomic H/C ratios of type-II and -I kerogen to this same value at a reflectance of indicates that the primary gas-generation limits for humic coal and type-III kerogen also apply to oil-prone kerogen. Although gas generation from source rocks does not exceed vitrinite reflectance values greater than , trapped hydrocarbon gases can remain stable at higher reflectance values. Distinguishing trapped gas from generated gas in hydrous-pyrolysis experiments is readily determined by of the hydrocarbon gases when a -depleted water is used in the experiments. Water serves as a source of hydrogen in hydrous pyrolysis and, as a result, the use of -depleted water is reflected in the generated gases but not pre-existing trapped gases.
Catalyzed pyrolysis of grape and olive bagasse. Influence of catalyst type and chemical treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Encinar, J.M.; Beltran, F.J.; Ramiro, A.
1997-10-01
Catalyzed pyrolysis of grape and olive bagasse under different experimental conditions has been studied. Variables investigated were temperature and type and concentration of catalysts. Experiments were carried out in an isothermal manner. Products of pyrolysis are gases (H{sub 2}, CO, CO{sub 2}, and CH{sub 4}), liquids (methanol, acetone, furfurylic alcohol, phenol, furfural, naphthalene, and o-cresol), and solids (chars). Temperature is a significant variable, yielding increases of fixed carbon content, gases, and to a lesser extent, ash percentage. Catalyst presence also yields increases of solid phase content, but the amount of liquid components decrease. Among catalysts applied those of Fe andmore » Zn are the most advisable to obtain gases. Chemical treatment of bagasses with sulfuric or phosphoric acid washing leads to lower char yields, although fixed carbon content is higher and ash presence diminishes with respect to catalyst pyrolysis without chemical pretreatment. A pyrolysis kinetic study based on gas generation from thermal decomposition of residues has been carried out. From the model proposed, rate constants for the formation of each gas, reaction order of the catalyst, and activation energies were determined.« less
Deactivation of Multilayered MFI Nanosheet Zeolite during Upgrading of Biomass Pyrolysis Vapors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Mengze; Mukarakate, Calvin; Iisa, Kristiina
Here, the catalytic fast pyrolysis (CFP) of biomass is a promising technology for producing renewable transportation fuels and chemicals. MFI-type catalysts have shown promise for CFP because they produce gasoline range hydrocarbons from oxygenated pyrolysis compounds; however, rapid catalyst deactivation due to coking is one of the major technical barriers inhibiting the commercialization of this technology. Coke deposited on the surface of the catalysts blocks access to active sites in the micropores leading to rapid catalyst deactivation. Our strategy is to minimize rapid catalyst deactivation by adding mesoporosity through forming MFI nanosheet materials. The synthesized MFI nanosheet catalysts were fullymore » characterized and evaluated for cellulose pyrolysis vapor upgrading to produce olefins and aromatic hydrocarbons. The data obtained from pyrolysis-GCMS (py-GCMS), showed that fresh MFI nanosheets produced similar aromatic hydrocarbon and olefin yields compared to conventional HZSM-5. However, MFI nanosheets demonstrated a longer lifetime than HZSM-5 even though coke contents were also higher than for HZSM-5 because the mesopores enabled better accessibility to active acid sites. This conclusion was supported by results from post-reaction analysis of various spent catalysts collected at different points during the deactivation experiments.« less
Deactivation of Multilayered MFI Nanosheet Zeolite during Upgrading of Biomass Pyrolysis Vapors
Xu, Mengze; Mukarakate, Calvin; Iisa, Kristiina; ...
2017-05-02
Here, the catalytic fast pyrolysis (CFP) of biomass is a promising technology for producing renewable transportation fuels and chemicals. MFI-type catalysts have shown promise for CFP because they produce gasoline range hydrocarbons from oxygenated pyrolysis compounds; however, rapid catalyst deactivation due to coking is one of the major technical barriers inhibiting the commercialization of this technology. Coke deposited on the surface of the catalysts blocks access to active sites in the micropores leading to rapid catalyst deactivation. Our strategy is to minimize rapid catalyst deactivation by adding mesoporosity through forming MFI nanosheet materials. The synthesized MFI nanosheet catalysts were fullymore » characterized and evaluated for cellulose pyrolysis vapor upgrading to produce olefins and aromatic hydrocarbons. The data obtained from pyrolysis-GCMS (py-GCMS), showed that fresh MFI nanosheets produced similar aromatic hydrocarbon and olefin yields compared to conventional HZSM-5. However, MFI nanosheets demonstrated a longer lifetime than HZSM-5 even though coke contents were also higher than for HZSM-5 because the mesopores enabled better accessibility to active acid sites. This conclusion was supported by results from post-reaction analysis of various spent catalysts collected at different points during the deactivation experiments.« less
Strategy for Passivating Char Efficiently at the Pilot Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunning, Timothy C
Fast pyrolysis is a promising pathway for the commercialization of liquid transportation fuels from biomass. Fast pyrolysis is performed at moderate heat (450-600 degrees Celcius) in an oxygen-deficient environment. One of the products of fast pyrolysis is biochar, which is often used as a heat source or as a soil amendment. Biochar is a partially reacted solid that is created in the production of bio-oil during fast pyrolysis. Biochar produced at these conditions contains significant quantities of carbon that adsorb oxygen when exposed to air. Biochar adsorption of oxygen is an exothermic process that may generate sufficient heat for combustionmore » in ambient air. Biochar is also a self-insulating material which compounds the effects of heat generated internally. These factors lead to safety concerns and material handling difficulties. The Thermochemical Process Development Unit at the National Renewable Energy Laboratory operates a pilot plant that may be configured for fast pyrolysis, gasification, and will be introducing catalytic fast pyrolysis capabilities in 2018. The TCPDU designed and installed a system to introduce oxygen to collected biochar systematically for a controlled passivation. Biochar is collected and cooled in an oxygen deficient environment during fast pyrolysis. Oxygen is then introduced to the biochar on a mass flow basis. A sparger imbedded within the biochar sample near the bottom of the bed flows air diluted with nitrogen into the char bed, and excess gasses are removed from the top of the collection drum, above the char bed. Pressure within the collection drum is measured indicating adequate flow through filters. Sample weight is recorded before and after passivation. During passivation, temperature is measured at 18 points within the char bed. Oxygen content and temperature are measured leaving the char bed. Maximum temperature parameters were established to ensure operator safety during biochar passivation. Extensive passivation data was collected on pine and blended feedstocks and has been analyzed to characterize the exotherm of char samples. Observations and data collected while passivating char will be discussed.« less
Cho, Dong-Wan; Kwon, Gihoon; Ok, Yong Sik; Kwon, Eilhann E; Song, Hocheol
2017-04-19
In this study, pyrolysis of lignin impregnated with cobalt (Co) was conducted to fabricate a Co-biochar (i.e., Co/lignin biochar) for use as a catalyst for bromate (BrO 3 - ) reduction. Carbon dioxide (CO 2 ) was employed as a reaction medium in the pyrolysis to induce desired effects associated with CO 2 ; (1) the enhanced thermal cracking of volatile organic compounds (VOCs) evolved from the thermal degradation of biomass, and (2) the direct reaction between CO 2 and VOCs, which resulted in the enhanced generation of syngas (i.e., H 2 and CO). This study placed main emphases on three parts: (1) the role of impregnated Co in pyrolysis of lignin in the presence of CO 2 , (2) the characterization of Co/lignin biochar, and (3) evaluation of catalytic capability of Co-lignin biochar in BrO 3 - reduction. The findings from the pyrolysis experiments strongly evidenced that the desired CO 2 effects were strengthened due to catalytic effect of impregnated Co in lignin. For example, the enhanced generation of syngas from pyrolysis of Coimpregnated lignin in CO 2 was more significant than the case without Co impregnation. Moreover, pyrolysis of Coimpregnated lignin in CO 2 led to production of biochar of which surface area (599 m 2 g -1 ) is nearly 100 times greater than the biochar produced in N 2 (6.6 m 2 g -1 ). Co/lignin biochar produced in CO 2 also showed a great performance in catalyzing BrO 3 - reduction as compared to the biochar produced in N 2 .
JPL Activated Carbon Treatment System (ACTS) for sewage
NASA Technical Reports Server (NTRS)
1976-01-01
An Activated Carbon Treatment System (ACTS) was developed for sewage treatment and is being applied to a one-million gallon per day sewage treatment pilot plant in Orange County California. Activities reported include pyrolysis and activation of carbon-sewage sludge, and activated carbon treatment of sewage to meet ocean discharge standards. The ACTS Sewage treatment operations include carbon-sewage treatment, primary and secondary clarifiers, gravity (multi-media) filter, filter press dewatering, flash drying of carbon-sewage filter cake, and sludge pyrolysis and activation. Tests were conducted on a laboratory scale, 10,000 gallon per day demonstration plant and pilot test equipment. Preliminary economic studies are favorable to the ACTS process relative to activated sludge treatment for a 175,000,000 gallon per day sewage treatment plant.
Influence of pressure on pyrolysis of black liquor: 1. Swelling.
Whitty, Kevin; Backman, Rainer; Hupa, Mikko
2008-02-01
This is the first of two papers concerning the behavior of black liquor during pyrolysis under pressurized conditions. Two industrial kraft liquors were pyrolyzed in a laboratory-scale pressurized single particle reactor and a pressurized grid heater at temperatures ranging from 650 to 1100 degrees C and at pressures between 1 and 20 bar. The dimensions of the chars produced were measured and the specific swollen volume was calculated. Swelling decreased roughly logarithmically over the pressure range 1-20 r. An expression is developed to predict the specific swollen volume at elevated pressure when the volume at 1 bar is known. The bulk density of the char increased with pressure, indicating that liquors will be entrained less easily at higher pressures.
High quality fuel gas from biomass pyrolysis with calcium oxide.
Zhao, Baofeng; Zhang, Xiaodong; Chen, Lei; Sun, Laizhi; Si, Hongyu; Chen, Guanyi
2014-03-01
The removal of CO2 and tar in fuel gas produced by biomass thermal conversion has aroused more attention due to their adverse effects on the subsequent fuel gas application. High quality fuel gas production from sawdust pyrolysis with CaO was studied in this paper. The results of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments indicate that the mass ratio of CaO to sawdust (Ca/S) remarkably affects the behavior of sawdust pyrolysis. On the basis of Py-GC/MS results, one system of a moving bed pyrolyzer coupled with a fluid bed combustor has been developed to produce high quality fuel gas. The lower heating value (LHV) of the fuel gas was above 16MJ/Nm(3) and the content of tar was under 50mg/Nm(3), which is suitable for gas turbine application to generate electricity and heat. Therefore, this technology may be a promising route to achieve high quality fuel gas for biomass utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.
3D Material Response Analysis of PICA Pyrolysis Experiments
NASA Technical Reports Server (NTRS)
Oliver, Brandon A.
2017-01-01
Primarily interested in improving ablation modeling for use in inverse reconstruction of flight environments on ablative heat shields. Ablation model is essentially a component of the heat flux sensor, so model uncertainties lead to measurement uncertainties. Non-equilibrium processes have been known to be significant in low density ablators for a long time, but increased accuracy requirements of the reconstruction process necessitates incorporating this physical effect. Attempting to develop a pyrolysis model for implementation in material response based on the PICA data produced by Bessire and Minton. Pyrolysis gas species molar yields as a function of temperature and heating rate. Several problems encountered while trying to fit Arrhenius models to the data led to further investigation of the experimental setup.
Pollutant formation in the pyrolysis and combustion of materials combining biomass and e-waste.
Soler, Aurora; Conesa, Juan A; Iñiguez, María E; Ortuño, Nuria
2018-05-01
Combustion and pyrolysis runs at 850°C were carried out in a laboratory scale horizontal reactor with different materials combining biomass and waste electrical and electronic equipment (WEEE). Analyses are presented of the carbon oxides, light hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), polychlorinated benzenes (ClBzs), polychlorinated phenols (ClPhs), polybrominated phenols (BrPhs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Results showed that gas emissions were mainly composed of CO and CO 2 ; the high level of CO found in the pyrolytic runs was easily transformed into CO 2 by reaction with oxygen. The total amount of light hydrocarbons emitted was higher in the samples containing WEEE, methane being the most abundant light hydrocarbon in all the runs. However, the presence of WEEE reduced the emission of PAHs which decreased with the increase of the oxygen. The total amount of BrPhs increased in the decomposition of the samples containing WEEE, reaching its maximum in pyrolysis runs. Emission of PCDD/Fs was enhanced in pyrolytic conditions and easily decreased in the presence of oxygen. Copyright © 2017 Elsevier B.V. All rights reserved.
Molecular characterization and comparison of shale oils generated by different pyrolysis methods
Birdwell, Justin E.; Jin, Jang Mi; Kim, Sunghwan
2012-01-01
Shale oils generated using different laboratory pyrolysis methods have been studied using standard oil characterization methods as well as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with electrospray ionization (ESI) and atmospheric photoionization (APPI) to assess differences in molecular composition. The pyrolysis oils were generated from samples of the Mahogany zone oil shale of the Eocene Green River Formation collected from outcrops in the Piceance Basin, Colorado, using three pyrolysis systems under conditions relevant to surface and in situ retorting approaches. Significant variations were observed in the shale oils, particularly the degree of conjugation of the constituent molecules and the distribution of nitrogen-containing compound classes. Comparison of FT-ICR MS results to other oil characteristics, such as specific gravity; saturate, aromatic, resin, asphaltene (SARA) distribution; and carbon number distribution determined by gas chromatography, indicated correspondence between higher average double bond equivalence (DBE) values and increasing asphaltene content. The results show that, based on the shale oil DBE distributions, highly conjugated species are enriched in samples produced under low pressure, high temperature conditions, and under high pressure, moderate temperature conditions in the presence of water. We also report, for the first time in any petroleum-like substance, the presence of N4 class compounds based on FT-ICR MS data. Using double bond equivalence and carbon number distributions, structures for the N4 class and other nitrogen-containing compounds are proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, M.K.
Technoeconomic analyses have been conducted on two processes to produce hydrogen from biomass: indirectly-heated gasification of biomass followed by steam reforming of the syngas, and biomass pyrolysis followed by steam reforming of the pyrolysis oil. The analysis of the gasification-based process was highly detailed, including a process flowsheet, material and energy balances calculated with a process simulation program, equipment cost estimation, and the determination of the necessary selling price of hydrogen. The pyrolysis-based process analysis was of a less detailed nature, as all necessary experimental data have not been obtained; this analysis is a follow-up to the preliminary economic analysismore » presented at the 1994 Hydrogen Program Review. A coproduct option in which pyrolysis oil is used to produce hydrogen and a commercial adhesive was also studied for economic viability. Based on feedstock availability estimates, three plant sizes were studied: 907 T/day, 272 T/day, and 27 T/day. The necessary selling price of hydrogen produced by steam reforming syngas from the Battelle Columbus Laboratories indirectly heated biomass gasifier falls within current market values for the large and medium size plants within a wide range of feedstock costs. Results show that the small scale plant does not produce hydrogen at economically competitive prices, indicating that if gasification is used as the upstream process to produce hydrogen, local refueling stations similar to current gasoline stations, would probably not be feasible.« less
Pyrolysis of polyolefins for increasing the yield of monomers' recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donaj, Pawel J., E-mail: pawel@mse.kth.se; Kaminsky, W.; Buzeto, F.
2012-05-15
Highlights: Black-Right-Pointing-Pointer Thermal and catalytic pyrolysis of mixed polyolefins in fluidized bed has been studied. Black-Right-Pointing-Pointer We tested applicability of a commercial Ziegler-Natta catalyst (Z-N: TiCl{sub 4}/MgCl{sub 2}). Black-Right-Pointing-Pointer The catalyst has a strong influence on product distribution, increasing gas fraction. Black-Right-Pointing-Pointer At 650 Degree-Sign C the monomer generation increased by 55% when the catalyst was used. Black-Right-Pointing-Pointer We showed the concept of treatment of mixed polyolefins without a need of separation. - Abstract: Pyrolysis of plastic waste is an alternative way of plastic recovery and could be a potential solution for the increasing stream of solid waste. The objectivemore » of this work was to increase the yield the gaseous olefins (monomers) as feedstock for polymerization process and to test the applicability of a commercial Ziegler-Natta (Z-N): TiCl{sub 4}/MgCl{sub 2} for cracking a mixture of polyolefins consisted of 46% wt. of low density polyethylene (LDPE), 30% wt. of high density polyethylene (HDPE) and 24% wt. of polypropylene (PP). Two sets of experiments have been carried out at 500 and 650 Degree-Sign C via catalytic pyrolysis (1% of Z-N catalyst) and at 650 and 730 Degree-Sign C via only-thermal pyrolysis. These experiments have been conducted in a lab-scale, fluidized quartz-bed reactor of a capacity of 1-3 kg/h at Hamburg University. The results revealed a strong influence of temperature and presence of catalyst on the product distribution. The ratios of gas/liquid/solid mass fractions via thermal pyrolysis were: 36.9/48.4/15.7% wt. and 42.4/44.7/13.9% wt. at 650 and 730 Degree-Sign C while via catalytic pyrolysis were: 6.5/89.0/4.5% wt. and 54.3/41.9/3.8% wt. at 500 and 650 Degree-Sign C, respectively. At 650 Degree-Sign C the monomer generation increased by 55% up to 23.6% wt. of total pyrolysis products distribution while the catalyst was added. Obtained yields of olefins were compared with the naphtha steam cracking process and other potentially attractive processes for feedstock generation. The concept of closed cycle material flow for polyolefins has been discussed, showing the potential benefits of feedstock recycling in a plastic waste management.« less
What limits the yield of levoglucosan during fast pyrolysis of cellulose?
NASA Astrophysics Data System (ADS)
Proano-Aviles, Juan
The pyrolysis of cellulose to form levoglucosan is investigated in this study. Although the stoichiometric yield of levoglucosan from the pyrolysis of cellulose is expected to be 100%, only about 60 wt.% yields are reported in the literature. Several possible reasons for this limitation are investigated through experiments in micropyrolyzers and computational studies on the depolymerization of cellulose. Heat and mass transfer limitations in an experimental apparatus is one possible limitation on the yield of levoglucosan. Repolymerization of condensed phase reaction intermediates could prevent the formation and release of volatile levoglucosan. Thermohydrolysis of pyrolyzing cellulose to form non-volatile and thermally unstable glucose has also been proposed as a mechanism that reduces levoglucosan yields. Secondary reactions in the gas phase were also investigated to explain limitations on levoglucosan yields. Population balance models were developed to test ideas on how cellulose depolymerized to form levoglucosan at less than stoichiometric yields. These models were supported with chemical kinetic data obtained from transient pyrolysis experiments. Under carefully controlled experimental conditions, no evidence was found for heat and mass transfer effects limiting levoglucosan yields to 60 wt.% nor do secondary reactions in the condensed- or gas-phases appear to offer a satisfactory explanation. Based on modeling results, it appears levoglucosan-forming reaction rates that decrease as oligosaccharide chain length decreases is the most plausible explanation for limitations on levoglucosan yield from cellulose.
NASA Astrophysics Data System (ADS)
Jarzyna, Jadwiga A.; Krakowska, Paulina I.; Puskarczyk, Edyta; Wawrzyniak-Guz, Kamila; Zych, Marcin
2018-03-01
More than 70 rock samples from so-called sweet spots, i.e. the Ordovician Sa Formation and Silurian Ja Member of Pa Formation from the Baltic Basin (North Poland) were examined in the laboratory to determine bulk and grain density, total and effective/dynamic porosity, absolute permeability, pore diameters size, total surface area, and natural radioactivity. Results of the pyrolysis, i.e., TOC (Total Organic Carbon) together with S1 and S2 - parameters used to determine the hydrocarbon generation potential of rocks, were also considered. Elemental composition from chemical analyses and mineral composition from XRD measurements were also included. SCAL analysis, NMR experiments, Pressure Decay Permeability measurements together with water immersion porosimetry and adsorption/ desorption of nitrogen vapors method were carried out along with the comprehensive interpretation of the outcomes. Simple and multiple linear statistical regressions were used to recognize mutual relationships between parameters. Observed correlations and in some cases big dispersion of data and discrepancies in the property values obtained from different methods were the basis for building shale gas rock model for well logging interpretation. The model was verified by the result of the Monte Carlo modelling of spectral neutron-gamma log response in comparison with GEM log results.
Prathiba, R; Shruthi, M; Miranda, Lima Rose
2018-06-01
Pyrolysis process was experimented using two types of heating source, namely conventional and microwave. Polystyrene (PS) plastic waste was used as feedstock in a batch reactor for both the conventional (slow pyrolysis) and microwave pyrolysis. The effect of activated carbon to polystyrene ratio on (i) yield of oil, gas and residues (ii) reaction temperature (iii) reaction time were studied. Quality of oil from pyrolysis of polystyrene were assessed for the possible applicability in fuel production. Microwave power of 450 W and polymer to activated carbon ratio of 10:1, resulted in the highest oil yield of 93.04 wt.% with a higher heating value of 45 MJ kg -1 and a kinematic viscosity of 2.7 cSt. Microwave heating when compared to conventional heating method, exhibits a reaction temperature and time of 330 °C in 5.5 min, whereas in conventional heating system it was 418 °C in 60 min. The gas chromatography-mass spectrometry analysis of liquid oil from microwave pyrolysis predominantly yields alkenes of 8.44 wt.%, α-methyl styrene 0.96 wt.%, condensed ring aromatics 23.21 wt.% and benzene derivatives 26.77 wt.% when the polystyrene to activated carbon ratio was 10:1. Significant factor of using microwave heating is the amount of energy converted (kWh) is lesser than conventional heating. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westerhout, R.W.J.; Balk, R.H.P.; Meijer, R.
1997-08-01
A screen heater with a gas sweep was developed and applied to study the pyrolysis kinetics of low density polyethene (LDPE) and polypropene (PP) at temperatures ranging from 450 to 530 C. The aim of this study was to examine the applicability of screen heaters to measure these kinetics. On-line measurement of the rate of volatiles formation using a hydrocarbon analyzer was applied to enable the determination of the conversion rate over the entire conversion range on the basis of a single experiment. Another important feature of the screen heater used in this study is the possibility to measure pyrolysismore » kinetics under nearly isothermal conditions. The kinetic constants for LDPE and PP pyrolysis were determined, using a first order model to describe the conversion rate in the 70--90% conversion range and the random chain dissociation model for the entire conversion range. In addition to the experimental work two single particle models have been developed which both incorporate a mass and a (coupled) enthalpy balance, which were used to assess the influence of internal and external heat transfer processes on the pyrolysis process. The first model assumes a variable density and constant volume during the pyrolysis process, whereas the second model assumes a constant density and a variable volume. An important feature of these models is that they can accommodate kinetic models for which no analytical representation of the pyrolysis kinetics is available.« less
Leventhal, Joel S.
1979-01-01
Organic matter seems to play an important role in the genesis of uranium deposits in sandstones in the western United States. Organic materials associated with ore from the Texas coastal plain, Tertiary basins of Wyoming, Grants mineral belt of New Mexico, and the Uravan mineral belt of Utah and Colorado vary widely in physical appearance and chemical composition. Partial characterization of organic materials is achieved by chemical analyses to determine atomic hydrogen-to-carbon (H/C) ratios and by gas chromatographic analyses to determine the molecular fragments evolved during stepwise pyrolysis. From the pyrolysis experiments the organic materials can be classified and grouped: (a) lignites from Texas and Wyoming and (b) hydrogen poor materials, from Grants and Uravan mineral belts and Wyoming; (c) naphthalene-containing materials from Grants mineral belt and Wyoming; and (d) complex and aromatic materials from Uravan, Grants and Wyoming. The organic materials analyzed have atomic H/C ratios that range from approximately 0.3 to at least 1.5. The samples with higher H/C ratios yield pyrolysis products that contain as many as 30 carbon atoms per molecule. Samples with low H/C ratios are commonly more uraniferous and yield mostly methane and low-molecular-weight gases during pyrolysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yong S.; Singh, Rahul; Zhang, Jing
2016-01-01
Although lignin is one of the main components of biomass, its pyrolysis chemistry is not well understood due to complex heterogeneity. To gain insights into this chemistry, the pyrolysis of seven lignin model compounds (five ..beta..-O-4 and two ..alpha..-O-4 linked molecules) was investigated in a micropyrolyzer connected to GC-MS/FID. According to quantitative product mole balance for the reaction networks, concerted retro-ene fragmentation and homolytic dissociation were strongly suggested as the initial reaction step for ..beta..-O-4 compounds and ..alpha..-O-4 compounds, respectively. The difference in reaction pathway between compounds with different linkages was believed to result from thermodynamics of the radical initiation.more » The rate constants for the different reaction pathways were predicted from ab initio density functional theory calculations and pre-exponential literature values. The computational findings were consistent with the experiment results, further supporting the different pyrolysis mechanisms for the ..beta..-ether linked and ..alpha..-ether linked compounds. A combination of the two pathways from the dimeric model compounds was able to describe qualitatively the pyrolysis of a trimeric lignin model compound containing both ..beta..-O-4 and ..alpha..-O-4 linkages.« less
NASA Astrophysics Data System (ADS)
Zhang, Xuesong
This dissertation aims to enhance the production of aromatic hydrocarbons in the catalytic microwave-induced pyrolysis, and maximize the production of renewable cycloalkanes for jet fuels in the hydrogenation process. In the process, ZSM-5 catalyst as the highly efficient catalyst was employed for catalyzing the pyrolytic volatiles from thermal decomposition of cellulose (a model compound of lignocellulosic biomass). A central composite experiment design (CCD) was used to optimize the product yields as a function of independent factors (e.g. catalytic temperature and catalyst to feed mass ratio). The low-density polyethylene (a mode compound of waste plastics) was then carried out in the catalytic microwave-induced pyrolysis in the presence of ZSM-5 catalyst. Thereafter, the catalytic microwave-induced co-pyrolysis of cellulose with low-density polyethylene (LDPE) was conducted over ZSM-5 catalyst. The results showed that the production of aromatic hydrocarbons was significantly enhanced and the coke formation was also considerably reduced comparing with the catalytic microwave pyrolysis of cellulose or LDPE alone. Moreover, practical lignocellulosic biomass (Douglas fir sawdust pellets) was converted into aromatics-enriched bio-oil by catalytic microwave pyrolysis. The bio-oil was subsequently hydrogenated by using the Raney Ni catalyst. A liquid-liquid extraction step was implemented to recover the liquid organics and remove the water content. Over 20% carbon yield of liquid product regarding lignocellulosic biomass was obtained. Up to 90% selectivity in the liquid product belongs to jet fuel range cycloalkanes. As the integrated processes was developed, catalytic microwave pyrolysis of cellulose with LDPE was conducted to improve aromatic production. After the liquid-liquid extraction by the optimal solvent (n-heptane), over 40% carbon yield of hydrogenated organics based on cellulose and LDPE were achieved in the hydrogenation process. As such, real lignocellulosic biomass with LDPE were transformed into aromatics via co-feed catalytic microwave pyrolysis. It was also found that close to 40% carbon yield of hydrogenated organics were garnered. Based on these outcomes, the reaction kinetics regarding non-catalytic co-pyrolysis and catalytic co-pyrolysis of biomass with plastics were also presented. In addition, the techno-economic analysis of the catalytically integrated processes from lignocellulosic biomass to renewable cycloalkanes for jet fuels was evaluated in the dissertation as well.
Kinetic Analysis of the Main Temperature Stage of Fast Pyrolysis
NASA Astrophysics Data System (ADS)
Yang, Xiaoxiao; Zhao, Yuying; Xu, Lanshu; Li, Rui
2017-10-01
Kinetics of the thermal decomposition of eucalyptus chips was evaluated using a high-rate thermogravimetric analyzer (BL-TGA) designed by our research group. The experiments were carried out under non-isothermal condition in order to determine the fast pyrolysis behavior of the main temperature stage (350-540ºC) at heating rates of 60, 120, 180, and 360ºC min-1. The Coats-Redfern integral method and four different reaction mechanism models were adopted to calculate the kinetic parameters including apparent activation energy and pre-exponential factor, and the Flynn-Wall-Ozawa method was employed to testify apparent activation energy. The results showed that estimation value was consistent with the values obtained by linear fitting equations, and the best-fit model for fast pyrolysis was found.
Chen, Jianbiao; Mu, Lin; Cai, Jingcheng; Yao, Pikai; Song, Xigeng; Yin, Hongchao; Li, Aimin
2015-12-01
The pyrolysis and oxy-fuel combustion characteristics of petrochemical wastewater sludge (PS) were studied in air (O2/N2) and oxy-fuel (O2/CO2) atmospheres using non-isothermal thermogravimetric analysis (TGA). Pyrolysis experiments showed that the weight loss profiles were almost similar up to 1050K in both N2 and CO2 atmospheres, while further weight loss took place in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Compared with 20%O2/80%N2, the drying and devolatilization stage of PS were delayed in 20%O2/80%CO2 due to the differences in properties of the diluting gases. In oxy-fuel combustion experiments, with O2 concentration increasing, characteristic temperatures decreased, while characteristic combustion rates and combustion performance indexes increased. Kinetic analysis of PS decomposition under various atmospheres was performed using Coats-Redfern approach. The results indicated that, with O2 concentration increasing, the activation energies of Step 1 almost kept constant, while the values of subsequent three steps increased. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effluent Gas Flux Characterization During Pyrolysis of Chicken Manure
NASA Astrophysics Data System (ADS)
Clark, S. C.; Ryals, R.; Miller, D. J.; Mullen, C. A.; Pan, D.; Zondlo, M. A.; Boateng, A. A.; Hastings, M. G.
2017-12-01
Pyrolysis is a viable option for the production of agricultural resources from diverted organic waste streams and renewable bioenergy. This high temperature thermochemical process yields material with beneficial reuses, including bio-oil and biochar. Gaseous forms of carbon (C) and nitrogen (N) are also emitted during pyrolysis. The effluent mass emission rates from pyrolysis are not well characterized, thus limiting proper evaluation of the environmental benefits or costs of pyrolysis products. We present the first comprehensive suite of C and N mass emission rate measurements of a biomass pyrolysis process using chicken manure as feedstock to produce biochar and bio-oil. Two chicken manure fast pyrolysis experiments were conducted at controlled temperature ranges of 450 - 485 °C and 550 - 585 °C. Mass emission rates of N2O, NO, CO, CO2, CH4 and NH3 were measured using trace gas analyzers. Based on the system mass balance, 23-25% of the total mass of the manure feedstock was emitted as gas, while 52-55% and 23% were converted to bio-oil and biochar, respectively. CO2 and NH3 were the dominant gaseous species by mass, accounting for 58 - 65% of total C mass emitted and 99% of total reactive N mass emitted, respectively. Our gas flux measurements suggest that 1.4 to 2.7 g NH3 -N would be produced from the pyrolysis of one kg of manure. Conservatively scaling up these NH3 pyrolysis emissions in the Chesapeake Bay Watershed, where an estimated 8.64 billion kg of poultry manure is applied to agricultural soils every year, as much as 1.2 x 107 kg of NH3 could be emitted into the atmosphere annually, increasing the potential impact of atmospheric N deposition without a mechanism to capture the gas exhaust during pyrolysis. However, this is considerably less than the potential emissions from NH3 volatilization of raw chicken manure applications, which can be 20-60% of total N applied, and amount to 3.4 x 107 - 1.0 x 108 kg NH3-N yr-1. Pyrolysis has the potential to minimize water pollution with reduced runoff and improve air quality in watersheds challenged with the management of concentrated livestock wastes. This work has direct implications for future greenhouse gas and reactive N life cycle assessments that can compare net benefits and tradeoffs of manure management practices in hotspots of concentrated chicken manure production.
Jin, J.M.; Kim, S.; Birdwell, J.E.
2011-01-01
Fourier transform ion cyclotron resonance mass spectrometry (FT ICR-MS) was applied in the analysis of shale oils generated using two different pyrolysis systems under laboratory conditions meant to simulate surface and in situ oil shale retorting. Significant variations were observed in the shale oils, particularly the degree of conjugation of the constituent molecules. Comparison of FT ICR-MS results to standard oil characterization methods (API gravity, SARA fractionation, gas chromatography-flame ionization detection) indicated correspondence between the average Double Bond Equivalence (DBE) and asphaltene content. The results show that, based on the average DBE values and DBE distributions of the shale oils examined, highly conjugated species are enriched in samples produced under low pressure, high temperature conditions and in the presence of water.
Pyrolysis of furan in a microreactor
NASA Astrophysics Data System (ADS)
Urness, Kimberly N.; Guan, Qi; Golan, Amir; Daily, John W.; Nimlos, Mark R.; Stanton, John F.; Ahmed, Musahid; Ellison, G. Barney
2013-09-01
A silicon carbide microtubular reactor has been used to measure branching ratios in the thermal decomposition of furan, C4H4O. The pyrolysis experiments are carried out by passing a dilute mixture of furan (approximately 0.01%) entrained in a stream of helium through the heated reactor. The SiC reactor (0.66 mm i.d., 2 mm o.d., 2.5 cm long) operates with continuous flow. Experiments were performed with a reactor inlet pressure of 100-300 Torr and a wall temperature between 1200 and 1600 K; characteristic residence times in the reactor are 60-150 μs. The unimolecular decomposition pathway of furan is confirmed to be: furan (+ M) rightleftharpoons α-carbene or β-carbene. The α-carbene fragments to CH2=C=O + HC≡CH while the β-carbene isomerizes to CH2=C=CHCHO. The formyl allene can isomerize to CO + CH3C≡CH or it can fragment to H + CO + HCCCH2. Tunable synchrotron radiation photoionization mass spectrometry is used to monitor the products and to measure the branching ratio of the two carbenes as well as the ratio of [HCCCH2]/[CH3C≡CH]. The results of these pyrolysis experiments demonstrate a preference for 80%-90% of furan decomposition to occur via the β-carbene. For reactor temperatures of 1200-1400 K, no propargyl radicals are formed. As the temperature rises to 1500-1600 K, at most 10% of the decomposition of CH2=C=CHCHO produces H + CO + HCCCH2 radicals. Thermodynamic conditions in the reactor have been modeled by computational fluid dynamics and the experimental results are compared to the predictions of three furan pyrolysis mechanisms. Uncertainty in the pressure-dependency of the initiation reaction rates is a possible a source of discrepancy between experimental results and theoretical predictions.
USDA-ARS?s Scientific Manuscript database
Biochar is a soil amendment produced from incomplete pyrolysis of organic materials in the absence of oxygen. In most previous studies, the impacts of biochar on soil physical properties and organic carbon was investigated under controlled conditions such as laboratory or greenhouse environments. Th...
NASA Technical Reports Server (NTRS)
Glavin, D.; Archer, D.; Brunner, A.; Buch, A.; Cabane, M.; Coll, P.; Conrad, P.; Coscia, D.; Dworkin J.; Eigenbrode, J.;
2013-01-01
The search for organic compounds on Mars, including molecules of either abiotic or biological origin is one of the key goals of the Mars Science Laboratory (MSL) mission. Previously the Viking and Phoenix Lander missions searched for organic compounds, but did not find any definitive evidence of martian organic material in the soils. The Viking pyrolysis gas chromatography mass spectrometry (GCMS) instruments did not detect any organic compounds of martian or exogenous origin above a level of a few parts-per-billion (ppb) in the near surface regolith at either landing site [1]. Viking did detect chloromethane and dichloromethane at pmol levels (up to 40 ppb) after heating the soil samples up to 500 C (Table 1), although it was originally argued that the chlorohydrocarbons were derived from cleaning solvents used on the instrument hardware, and not from the soil samples themselves [1]. More recently, it was suggested that the chlorohydrocarbons detected by Viking may have been formed by oxidation of indigenous organic matter during pyrolysis of the soil in the presence of perchlorates [2]. Although it is unknown if the Viking soils contained perchlorates, Phoenix did reveal relatively high concentrations (0.6 wt%) of perchlorate salt in the icy regolith [3], therefore, it is possible that the chlorohydrocarbons detected by Viking were produced, at least partially, during the experiments [2,4]. The Sample Analysis at Mars (SAM) instrument suite on MSL analyzed the organic composition of the soil at Rocknest in Gale Crater using a combination of pyrolysis evolved gas analysis (EGA) and GCMS. One empty cup procedural blank followed by multiple EGA-GCMS analyses of the Rocknest soil were carried out. Here we will discuss the results from these SAM measurements at Rocknest and the steps taken to determine the source of the chlorohydrocarbons.
A generalized methodology to characterize composite materials for pyrolysis models
NASA Astrophysics Data System (ADS)
McKinnon, Mark B.
The predictive capabilities of computational fire models have improved in recent years such that models have become an integral part of many research efforts. Models improve the understanding of the fire risk of materials and may decrease the number of expensive experiments required to assess the fire hazard of a specific material or designed space. A critical component of a predictive fire model is the pyrolysis sub-model that provides a mathematical representation of the rate of gaseous fuel production from condensed phase fuels given a heat flux incident to the material surface. The modern, comprehensive pyrolysis sub-models that are common today require the definition of many model parameters to accurately represent the physical description of materials that are ubiquitous in the built environment. Coupled with the increase in the number of parameters required to accurately represent the pyrolysis of materials is the increasing prevalence in the built environment of engineered composite materials that have never been measured or modeled. The motivation behind this project is to develop a systematic, generalized methodology to determine the requisite parameters to generate pyrolysis models with predictive capabilities for layered composite materials that are common in industrial and commercial applications. This methodology has been applied to four common composites in this work that exhibit a range of material structures and component materials. The methodology utilizes a multi-scale experimental approach in which each test is designed to isolate and determine a specific subset of the parameters required to define a material in the model. Data collected in simultaneous thermogravimetry and differential scanning calorimetry experiments were analyzed to determine the reaction kinetics, thermodynamic properties, and energetics of decomposition for each component of the composite. Data collected in microscale combustion calorimetry experiments were analyzed to determine the heats of complete combustion of the volatiles produced in each reaction. Inverse analyses were conducted on sample temperature data collected in bench-scale tests to determine the thermal transport parameters of each component through degradation. Simulations of quasi-one-dimensional bench-scale gasification tests generated from the resultant models using the ThermaKin modeling environment were compared to experimental data to independently validate the models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben Hassen-Trabelsi, A., E-mail: aidabenhassen@yahoo.fr; Kraiem, T.; Département de Géologie, Université de Tunis, 2092, Tunis
Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. Themore » maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.« less
Pyrolysis of flax straw: Characterization of char, liquid, and gas as fuel
NASA Astrophysics Data System (ADS)
Tushar, Mohammad Shahed Hasan Khan
The demand for energy continues to outstrip its supply and necessitates the development of renewable energy options. Biomass has been recognized as a major renewable energy source to supplement the declining fossil fuel source of energy. It is the most popular form of renewable energy and, currently, biofuel production is becoming more promising. Being carbon neutral, readily available, and low in sulphur content makes biomass a very promising source of renewable energy. In the present research, both the isothermal and non-isothermal pressurized pyrolysis of flax straw is studied for the first time. In case of isothermal pyrolysis, the influence of pyrolysis temperature and reaction time on char yield and morphology was investigated. The applied pyrolysis temperature was varied between 300 and 500°C. The reaction time was varied from 15 to 60 min. The char yield was found to decrease as pyrolysis temperature and reaction time increased. The char structure and surface morphology were thoroughly investigated by means of x-ray diffraction (XRD), temperature-programmed oxidation (TPO), and scanning electron microscopy (SEM). The degree of porosity and graphitization increased as pyrolysis temperature and time increased. In fact, the experiment performed at 500°C for 1h duration did not yield any char; only residual ash could be obtained. The TPO studies on the char samples corroborated the XRD findings and showed the presence of two types of carbon, namely, amorphous filamentous carbon and graphitic carbon. A thermogravimetric analysis (TGA) of the char was performed to gain an understanding of combustion kinetics and reactivity. It implied that the reactivity of the char decreases as temperature increases, and this finding is well supported by the TPO, TGA, SEM, and XRD characterization data. Furthermore, an empirical global model was devised based on the power law to estimate activation energy and other kinetic parameters. For the non-isothermal pressurized pyrolysis of flax straw, the experiments were carried out at different pressures, ranging from 10 to 40 psig. The three types of products thus obtained (gas, liquid, char) were thoroughly quantified and analyzed. The yields of the products were found to be dependent on the experimental conditions. It was observed that 10 psig of pressure gave the maximum yield of bio-oil, while 20 psig pressure lead to maximum char yield. The gaseous products were analyzed using an online GC, while the bio-oils were characterized using an offline GC/MS. SEM studies were performed to study the char morphology and porosity. The main gaseous products observed were CO, H2, CO2, CH 4, and C3. The bio-oils were mainly composed of phenolic compounds, carboxylic acids, and furfural. The pH and density of the bio-oils was found to increase as pyrolysis pressure increased. SEM investigation gave insights into the porosity of chars; as pressure increased, an increase in the porosity of char was noted. XRD studies showed that amorphous hydrocarbon and graphitic carbons are the major constituents of char, which was supported by TPO experiments. A TGA study showed two reaction zones for char oxidation. The kinetic parameters of oxidation were estimated using a power law model, which was also used for isothermal pyrolysis and isothermal char oxidation kinetics. Based on the data generated, the pressure of 10 psig was found to be optimum for bio-oil production, while a pressure of 20 psig was optimum for char production. With the increase in pressure, the production of individual gas components increased within the pressure range studied. Finally, with the increase in reaction pressure, temperature and time, the produced chars became less reactive.
Magnesium Sulfate as a Key Mineral for the Detection of Organic Molecules on Mars Using Pyrolysis
NASA Technical Reports Server (NTRS)
Francois, P.; Szopa, C.; Buch, A.; Coll, P.; McAdam, A. C.; Mahaffy, P. R.; Freissinet, C.; Glavin, D. P.; Navarro-Gonzalez, R.; Cabane, M.
2016-01-01
Pyrolysis of soil or rock samples is the preferred preparation technique used on Mars to search for organic molecules up today. During pyrolysis, oxichlorines present in the soil of Mars release oxidant species that alter the organic molecules potentially contained in the samples collected by the space probes.This process can explain the difficulty experienced by in situ exploration probes to detect organic materials in Mars soil samples until recently. Within a few months, the Curiosity rover should reach and analyze for the first time soils rich in sulfates which could induce a different behavior of the organics during the pyrolysis compared with the types of soils analyzed up today. For this reason, we systematically studied the pyrolysis of organic molecules trapped in magnesium sulfate, in the presence or absence of calcium perchlorate. Our results show that organics trapped in magnesium sulfate can undergo some oxidation and sulfuration during the pyrolysis. But these sulfates are also shown to protect organics trapped inside the crystal lattice and/or present in fluid inclusions from the oxidation induced by the decomposition of calcium perchlorate and probably other oxychlorine phases currently detected on Mars. Trapped organics may also be protected from degradation processes induced by other minerals present in the sample, at least until these organics are released from the pyrolyzed sulfate mineral (700C in our experiment). Hence, we suggest magnesium sulfate as one of the minerals to target in priority for the search of organic molecules by the Curiosity and ExoMars 2018 rovers.
NASA Technical Reports Server (NTRS)
Burton, A. S.; Locke, D. R.; Lewis, E. K.
2017-01-01
Mars is an important target for Astrobiology. A key goal of the MSL mission was to determine whether Mars was habitable in the past, a que-tion that has now been definitely determined to be yes. Another key goal for Mars exploration is to understand the origin and distribution of organic material on Mars; this question is being addressed by the SAM instrument on MSL, and will also be informed by two upcoming Mars exploration missions, ExoMars and Mars 2020. These latter two missions have instrumentation capable of detecting and characterize organic molecules. Over the next decade, these missions will analyze organics in surface, near-surface and sub-surface samples. Each mission has the capability to analyze organics by different methods (pyrolysis gas chromatography-mass spectrometry [py-GC-MS]; laser desorption and thermal volatilization GC-MS; and Raman spectroscopy). Plausibly extraterrestrial organics were recently discovered by the Mars Science Laboratory (MSL), providing an important first step towards understanding the organic inventory on Mars [1]. The compounds detected were chlorobenzenes and chloroalkanes, but it was argued that chlorination of these compounds occurred during pyrolysis of samples containing unchlorinated organics in the presence of perchlorate. A recent report analyzed a suite of aromatic (benzene, toluene, benzoic acid, phthalic acid, and mellitic acid) and aliphatic (acetic acid, propane, propanol, and hexane) by pyrolysis under SAM-like conditions in the presence of perchlorate to attempt to constrain possible precursor molecules for the organic molecules detected on Mars. For aromatic compounds, the aromatic acids all readily produced SAM-relevant chlorobenzes, whereas benzene and toluene did not. This observation suggests that the chlorobenzene detected on Mars could have derived from compounds like mellitic acid, consistent with the previous hypothesis by Benner et al. [3]. Among the aliphatic molecules, it was shown that pyrolysis of alkanes and alcohols in the presence of perchlorates produced polychlorine containing chloro-alkanes similar to what was observed on Mars. Surpris-ingly, however, similar treatment of acetic acid pro-duced chloroketones, instead, and no chloroalkanes were reported. This suggests that the chloroalkanes detected in the Sheepbed mudstone were not derived from aliphatic carboxylic acids, but instead were from more reduced alcohols or even alkanes, or perhaps were degradation products of more complicated organic material. Because organics analyses on mars will rely heavily on py-GC-MS of perchlorate-containing samples over the next decade, it is important to understand the fate of organic molecules of biotic and abiotic origin under such conditions. In this work we begin a series of experiments to improve our understanding of products generated during py-GC-MS of increasingly complex organic molecules (esters, amides, peptides, nucleic acids, fatty acids) in the presence of perchlorate.
Xiong, Qingang; Ramirez, Emilio; Pannala, Sreekanth; ...
2015-10-09
The impact of bubbling bed hydrodynamics on temporal variations in the exit tar yield for biomass fast pyrolysis was investigated using computational simulations of an experimental laboratory-scale reactor. A multi-fluid computational fluid dynamics model was employed to simulate the differential conservation equations in the reactor, and this was combined with a multi-component, multi-step pyrolysis kinetics scheme for biomass to account for chemical reactions. The predicted mean tar yields at the reactor exit appear to match corresponding experimental observations. Parametric studies predicted that increasing the fluidization velocity should improve the mean tar yield but increase its temporal variations. Increases in themore » mean tar yield coincide with reducing the diameter of sand particles or increasing the initial sand bed height. However, trends in tar yield variability are more complex than the trends in mean yield. The standard deviation in tar yield reaches a maximum with changes in sand particle size. As a result, the standard deviation in tar yield increases with the increases in initial bed height in freely bubbling state, while reaches a maximum in slugging state.« less
Conversion and Extraction of Insoluble Organic Materials in Meteorites
NASA Technical Reports Server (NTRS)
Locke, Darren R.; Burton, Aaron S.; Niles, Paul B.
2016-01-01
We endeavor to develop and implement methods in our laboratory to convert and extract insoluble organic materials (IOM) from low car-bon bearing meteorites (such as ordinary chondrites) and Precambrian terrestrial rocks for the purpose of determining IOM structure and prebiotic chemistries preserved in these types of samples. The general scheme of converting and extracting IOM in samples is summarized in Figure 1. First, powdered samples are solvent extracted in a micro-Soxhlet apparatus multiple times using solvents ranging from non-polar to polar (hexane - non-polar, dichloromethane - non-polar to polar, methanol - polar protic, and acetonitrile - polar aprotic). Second, solid residue from solvent extractions is processed using strong acids, hydrochloric and hydrofluoric, to dissolve minerals and isolate IOM. Third, the isolated IOM is subjected to both thermal (pyrolysis) and chemical (oxidation) degradation to release compounds from the macromolecular material. Finally, products from oxidation and pyrolysis are analyzed by gas chromatography - mass spectrometry (GCMS). We are working toward an integrated method and analysis scheme that will allow us to determine prebiotic chemistries in ordinary chondrites and Precambrian terrestrial rocks. Powerful techniques that we are including are stepwise, flash, and gradual pyrolysis and ruthenium tetroxide oxidation. More details of the integrated scheme will be presented.
NASA Technical Reports Server (NTRS)
Holzer, G.; Oro, J.
1977-01-01
The influence of ammonia on the pyrolysis pattern of selected organic substances sorbed on an inorganic phase was investigated. The thermal degradation products were identified by gas chromatography-mass spectrometry. The feasibility of this technique was tested on a meteoritic sample. All substances examined react with ammonia at the pyrolysis temperature of 500 C, the major products being nitriles and heterocyclic compounds in which nitrogen was incorporated. Based on these results, a model for the non-equilibrium production of organic compounds on Jupiter is discussed. The investigation was performed in connection with the Viking lander molecular analysis. The results obtained indicate that the concentrations of ammonia in the retrorocket fuel exhaust would have been probably too small to produce significant changes in the Martian soil organic compounds if any were found.
Co-pyrolysis characteristics and kinetic analysis of organic food waste and plastic.
Tang, Yijing; Huang, Qunxing; Sun, Kai; Chi, Yong; Yan, Jianhua
2018-02-01
In this work, typical organic food waste (soybean protein (SP)) and typical chlorine enriched plastic waste (polyvinyl chloride (PVC)) were chosen as principal MSW components and their interaction during co-pyrolysis was investigated. Results indicate that the interaction accelerated the reaction during co-pyrolysis. The activation energies needed were 2-13% lower for the decomposition of mixture compared with linear calculation while the maximum reaction rates were 12-16% higher than calculation. In the fixed-bed experiments, interaction was observed to reduce the yield of tar by 2-69% and promote the yield of char by 13-39% compared with linear calculation. In addition, 2-6 times more heavy components and 61-93% less nitrogen-containing components were formed for tar derived from mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhao, Bingwei; Wang, Xin; Yang, Xiaoyi
2015-12-01
Co-pyrolysis characteristics of Isochrysis (high lipid) and Chlorella (high protein) were investigated qualitatively and quantitatively based on DTG curves, biocrude yield and composition by individual pyrolysis and co-pyrolysis. DTG curves in co-pyrolysis have been compared accurately with those in individual pyrolysis. An interaction has been detected at 475-500°C in co-pyrolysis based on biocrude yields, and co-pyrolysis reaction mechanism appear three-dimensional diffusion in comparison with random nucleation followed by growth in individual pyrolysis based on kinetic analysis. There is no obvious difference in the maximum biocrude yields for individual pyrolysis and co-pyrolysis, but carboxylic acids (IC21) decreased and N-heterocyclic compounds (IC12) increased in co-pyrolysis. Simulation results of biocrude yield by Components Biofuel Model and Kinetics Biofuel Model indicate that the processes of co-pyrolysis comply with those of individual pyrolysis in solid phase by and large. Variation of percentage content in co-pyrolysis and individual pyrolysis biocrude indicated interaction in gas phase. Copyright © 2015. Published by Elsevier Ltd.
Experimental controls on D/H and 13C/12C ratios of kerogen, bitumen and oil during hydrous pyrolysis
Schimmelmann, A.; Boudou, J.-P.; Lewan, M.D.; Wintsch, R.P.
2001-01-01
Large isotopic transfers between water-derived hydrogen and organic hydrogen occurred during hydrous pyrolysis experiments of immature source rocks, in spite of only small changes in organic 13C/12C. Experiments at 330 ??C over 72 h using chips or powder containing kerogen types I and III identify the rock/water ratio as a main factor affecting ????D for water and organic hydrogen. Our data suggest that larger rock permeability and smaller rock grain size increase the H-isotopic transfer between water-derived hydrogen and thermally maturing organic matter. Increasing hydrostatic pressure may have a similar effect, but the evidence remains inconclusive. ?? 2001 Elsevier Science Ltd. All rights reserved.
Upgraded bio-oil production via catalytic fast co-pyrolysis of waste cooking oil and tea residual.
Wang, Jia; Zhong, Zhaoping; Zhang, Bo; Ding, Kuan; Xue, Zeyu; Deng, Aidong; Ruan, Roger
2017-02-01
Catalytic fast co-pyrolysis (co-CFP) offers a concise and effective process to achieve an upgraded bio-oil production. In this paper, co-CFP experiments of waste cooking oil (WCO) and tea residual (TR) with HZSM-5 zeolites were carried out. The influences of pyrolysis reaction temperature and H/C ratio on pyrolytic products distribution and selectivities of aromatics were performed. Furthermore, the prevailing synergetic effect of target products during co-CFP process was investigated. Experimental results indicated that H/C ratio played a pivotal role in carbon yields of aromatics and olefins, and with H/C ratio increasing, the synergetic coefficient tended to increase, thus led to a dramatic growth of aromatics and olefins yields. Besides, the pyrolysis temperature made a significant contribution to carbon yields, and the yields of aromatics and olefins increased at first and then decreased at the researched temperature region. Note that 600°C was an optimum temperature as the maximum yields of aromatics and olefins could be achieved. Concerning the transportation fuel dependence and security on fossil fuels, co-CFP of WCO and TR provides a novel way to improve the quality and quantity of pyrolysis bio-oil, and thus contributes bioenergy accepted as a cost-competitive and promising alternative energy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Design and construction of gas-fed burners for laboratory studies of flame structure
Dan Jimenez; Mark A. Finney; Jack Cohen
2010-01-01
The study of buoyant convection for diffusion flames in wildland fires is critical to understanding heating and cooling dynamics related to particle ignition. Studies based on solid biomass fuels are made difficult by short flame residence time associated with fine fuels. An alternative is to use artificial fuel gas rather than relying on pyrolysis of solid fuels to...
ERIC Educational Resources Information Center
Nash, John J.; Leininger, Marnie A.; Keyes, Kurt
2008-01-01
The aryl sulfonate ester, menthyl N-acetylsulfanilate, is synthesized from N-acetylsulfanilyl chloride and menthol in pyridine, then pyrolyzed (thermally decomposed) at reduced pressure. The volatile (elimination) products of the reaction are analyzed using gas chromatography, and the resulting product distribution is used to determine whether the…
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Fu, Qi; Niles, Paul B.
2011-01-01
We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).
Tailoring ZSM-5 Zeolites for the Fast Pyrolysis of Biomass to Aromatic Hydrocarbons.
Hoff, Thomas C; Gardner, David W; Thilakaratne, Rajeeva; Wang, Kaige; Hansen, Thomas W; Brown, Robert C; Tessonnier, Jean-Philippe
2016-06-22
The production of aromatic hydrocarbons from cellulose by zeolite-catalyzed fast pyrolysis involves a complex reaction network sensitive to the zeolite structure, crystallinity, elemental composition, porosity, and acidity. The interplay of these parameters under the reaction conditions represents a major roadblock that has hampered significant improvement in catalyst design for over a decade. Here, we studied commercial and laboratory-synthesized ZSM-5 zeolites and combined data from 10 complementary characterization techniques in an attempt to identify parameters common to high-performance catalysts. Crystallinity and framework aluminum site accessibility were found to be critical to achieve high aromatic yields. These findings enabled us to synthesize a ZSM-5 catalyst with enhanced activity, which offers the highest aromatic hydrocarbon yield reported to date. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Shitrit, Omri; Hatzor, Yossef H.; Feinstein, Shimon; Vinegar, Harold J.
2017-12-01
Thermal maturation is known to influence the rock physics of organic-rich rocks. While most studies were performed on low-porosity organic-rich shales, here we examine the effect of thermal maturation on a high-porosity organic-rich chalk. We compare the physical properties of native state immature rock with the properties at two pyrolysis-simulated maturity levels: early-mature and over-mature. We further evaluate the applicability of results from unconfined pyrolysis experiments to naturally matured rock properties. Special attention is dedicated to the elastic properties of the organic phase and the influence of bitumen and kerogen contents. Rock physics is studied based on confined petrophysical measurements of porosity, density and permeability, and measurements of bedding-normal acoustic velocities at estimated field stresses. Geochemical parameters like total organic carbon (TOC), bitumen content and thermal maturation indicators are used to monitor variations in density and volume fraction of each phase. We find that porosity increases significantly upon pyrolysis and that P wave velocity decreases in accordance. Solids density versus TOC relationships indicate that the kerogen increases its density from 1.43 to 1.49 g/cc at the immature and early-mature stages to 2.98 g/cc at the over-mature stage. This density value is unusually high, although increase in S wave velocity and backscatter SEM images of the over-mature samples verify that the over-mature kerogen is significantly denser and stiffer. Using the petrophysical and acoustic properties, the elastic moduli of the rock are estimated by two Hashin-Shtrikman (HS)-based models: "HS + BAM" and "HS kerogen." The "HS + BAM" model is calibrated to the post-pyrolysis measurements to describe the mechanical effect of the unconfined pyrolysis on the rock. The absence of compaction in the pyrolysis process causes the post-pyrolysis samples to be extremely porous. The "HS kerogen" model, which simulates a kerogen-supported matrix, depicts a compacted version of the matrix and is believed to be more representative of a naturally matured rock. Rock physics analysis using the "HS kerogen" model indicates strong mechanical dominance of porosity and organic content, and only small maturity-associated effects.
Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fletcher, Thomas; Pugmire, Ronald
2015-01-01
Three pristine Utah Green River oil shale samples were obtained and used for analysis by the combined research groups at the University of Utah and Brigham Young University. Oil shale samples were first demineralized and the separated kerogen and extracted bitumen samples were then studied by a host of techniques including high resolution liquid-state carbon-13 NMR, solid-state magic angle sample spinning 13C NMR, GC/MS, FTIR, and pyrolysis. Bitumen was extracted from the shale using methanol/dichloromethane and analyzed using high resolution 13C NMR liquid state spectroscopy, showing carbon aromaticities of 7 to 11%. The three parent shales and the demineralized kerogensmore » were each analyzed with solid-state 13C NMR spectroscopy. Carbon aromaticity of the kerogen was 23-24%, with 10-12 aromatic carbons per cluster. Crushed samples of Green River oil shale and its kerogen extract were pyrolyzed at heating rates from 1 to 10 K/min at pressures of 1 and 40 bar and temperatures up to 1000°C. The transient pyrolysis data were fit with a first-order model and a Distributed Activation Energy Model (DAEM). The demineralized kerogen was pyrolyzed at 10 K/min in nitrogen at atmospheric pressure at temperatures up to 525°C, and the pyrolysis products (light gas, tar, and char) were analyzed using 13C NMR, GC/MS, and FTIR. Details of the kerogen pyrolysis have been modeled by a modified version of the chemical percolation devolatilization (CPD) model that has been widely used to model coal combustion/pyrolysis. This refined CPD model has been successful in predicting the char, tar, and gas yields of the three shale samples during pyrolysis. This set of experiments and associated modeling represents the most sophisticated and complete analysis available for a given set of oil shale samples.« less
Biological markers from Green River kerogen decomposition
NASA Astrophysics Data System (ADS)
Burnham, A. K.; Clarkson, J. E.; Singleton, M. F.; Wong, C. M.; Crawford, R. W.
1982-07-01
Isoprenoid and other carbon skeletons that are formed in living organisms and preserved essentially intact in ancient sediments are often called biological markers. The purpose of this paper is to develop improved methods of using isoprenoid hydrocarbons to relate petroleum or shale oil to its source rock. It is demonstrated that most, but not all, of the isoprenoid hydrocarbon structures are chemically bonded in kerogen (or to minerals) in Green River oil shale. The rate constant for thermally producing isoprenoid, cyclic, and aromatic hydrocarbons is substantially greater than for the bulk of shale oil. This may be related to the substantial quantity of CO 2 which is evolved coincident with the isoprenoid hydrocarbons but prior to substantial oil evolution. Although formation of isoprenoid alkenes is enhanced by rapid heating and high pyrolysis temperatures, the ratio of isoprenoid alkenes plus alkanes to normal alkenes plus alkanes is independent of heating rate. High-temperature laboratory pyrolysis experiments can thus be used to predict the distribution of aliphatic hydrocarbons in low temperature processes such as in situ shale oil production and perhaps petroleum formation. Finally, we demonstrate that significant variation in biological marker ratios occurs as a function of stratigraphy in the Green River formation. This information, combined with methods for measuring process yield from oil composition, enables one to relate time-dependent processing conditions to the corresponding time-dependent oil yield in a vertical modified- in situ retort even if there is a substantial and previously undetermined delay in drainage of shale oil from the retort.
NASA Astrophysics Data System (ADS)
Pepin, Robert O.; Schlutter, Dennis J.; Becker, Richard H.; Reisenfeld, Daniel B.
2012-07-01
We report compositions and fluxes of light noble gases in the solar wind (SW), extracted by stepped pyrolysis and amalgamation from gold collector materials carried on the Genesis Solar Wind Sample Return Mission. Results are compared with data from other laboratories on SW-He, Ne and Ar distributions implanted in Genesis aluminum, carbon, and silicon collectors and extracted by laser ablation. Corrections for mass-dependent losses (“backscatter”) of impinging SW ions due to scattering from the collector material are substantially larger for gold than for these lower atomic weight targets. We assess such losses by SRIM simulation calculations of SW backscatter from gold which are applied to the measurements to recover the composition of the incident SW. Averaged results of integrated stepped pyrolysis and single-step amalgamation measurements, with 1σ errors, are as follows: for SW-Ne and Ar isotope ratios (3He/4He was not measured), 20Ne/22Ne = 14.001 ± 0.042, 21Ne/22Ne = 0.03361 ± 0.00018, 36Ar/38Ar = 5.501 ± 0.014; for SW element ratios, 4He/20Ne = 641 ± 15, 20Ne/36Ar = 51.6 ± 0.5; and for SW fluxes in atoms cm-2 s-1 at the Genesis L1 station, 4He = 1.14 ± 0.04 × 107, 20Ne = 1.80 ± 0.06 × 104, 36Ar = 3.58 ± 0.11 × 102. Except for the 21Ne/22Ne and 20Ne/36Ar ratios, these values are in reasonable accord (within ∼1-3σ) with measurements on different collector materials reported by one or both of two other Genesis noble gas research groups. We further find, in three stepped pyrolysis experiments on gold foil, that He, Ne and Ar are released at increasing temperatures without elemental fractionation, in contrast to a pyrolytic extraction of a single non-gold collector (Al) where the release patterns point to mass-dependent thermal diffusion. The pyrolyzed gold foils exhibit enhancements, relative to sample totals, in 20Ne/22Ne and 21Ne/22Ne ratios evolved at low temperatures. The absence of elemental fractionation in pyrolytic release from gold implies that these isotope ratio enhancements, involving much smaller mass differences, do not result from preferential diffusive release of the lighter Ne isotopes. This effect, not predicted by SRIM calculations, has also been observed in stepped acid-etch releases from a different Genesis collector material in another laboratory.
Solar heating of common lunar minerals for the production of oxygen
NASA Technical Reports Server (NTRS)
Senior, C. L.
1991-01-01
The purpose of this work was to demonstrate the feasibility of vapor-phase reduction (pyrolysis) of lunar materials to produce oxygen. Solar furnace experiments were conducted on two common lunar minerals, ilmenite and anorthite. Thermodynamic equilibrium calculations predicted that ilmenite should show a larger pressure increase than anorthite under conditions of the experiments and this was confirmed by the experiments. The measured mass loss of the ilmenite sample was consistent with loss of oxygen by reduction of iron in the liquid phase; this result was also predicted from equilibrium calculations. Based on preliminary experiments and equilibrium calculations, the temperatures needed for pyrolysis are expected to be in the range of 2000 to 2500 K, giving total gas pressures of 0.01 to 1 torr. Bulk regolith can be used as a feedstock without extensive beneficiation. Further, selective condensation of metal-containing species from the gas phase may yield metallic iron and silicon as byproducts from the process.
The influence of pressure on petroleum generation and maturation as suggested by aqueous pyrolysis
Price, L.C.; Wenger, L.M.
1992-01-01
Because fluid pressures are transient in sedimentary basins over geologic time, the effect of increasing fluid pressure on organic-matter metamorphism is difficult to determine, and conflicting opinions exist concerning its influence. Properly-performed aqueous-pyrolysis experiments can closely simulate hydrocarbon generation and maturation in nature, and thus offer an excellent way to study the influence of pressure. Such experiments, carried out on the Retort Phosphatic Shale Member of the Lower Permian Phosphoria Formation (type II-S organic matter) at different constant temperatures, demonstrated that increasing pressure significantly retards all aspects of organic matter metamorphism, including hydrocarbon generation, maturation and thermal destruction. This conclusion results from detailed quantitative and qualitative analyses of all products from hydrocarbon generation, from the C1 to C4 hydrocarbon gases to the asphaltenes, and also from analyses of the reacted rocks. We have documented that our aqueous-pyrolysis experiments closely simulated natural hydrocarbon generation and maturation. Thus the data taken as a function of pressure have relevance to the influence of normal and abnormal fluid pressures as related to: 1) depths and temperatures of mainstage hydrocarbon generation; 2) the thermal destruction of deposits of gas or light oil, or their preservation to unexpectedly high maturation ranks; and 3) the persistence of measurable to moderate concentrations of C15+ hydrocarbons in fine-grained rocks even to ultra-high maturation ranks. ?? 1992.
Porterfield, Jessica P; Baraban, Joshua H; Troy, Tyler P; Ahmed, Musahid; McCarthy, Michael C; Morgan, Kathleen M; Daily, John W; Nguyen, Thanh Lam; Stanton, John F; Ellison, G Barney
2016-04-14
Both glycolaldehyde and glyoxal were pyrolyzed in a set of flash-pyrolysis microreactors. The pyrolysis products resulting from CHO-CH2OH and HCO-CHO were detected and identified by vacuum ultraviolet (VUV) photoionization mass spectrometry. Complementary product identification was provided by argon matrix infrared absorption spectroscopy. Pyrolysis pressures in the microreactor were about 100 Torr, and contact times with the microreactors were roughly 100 μs. At 1200 K, the products of glycolaldehyde pyrolysis are H atoms, CO, CH2═O, CH2═C═O, and HCO-CHO. Thermal decomposition of HCO-CHO was studied with pulsed 118.2 nm photoionization mass spectrometry and matrix infrared absorption. Under these conditions, glyoxal undergoes pyrolysis to H atoms and CO. Tunable VUV photoionization mass spectrometry provides a lower bound for the ionization energy (IE)(CHO-CH2OH) ≥ 9.95 ± 0.05 eV. The gas-phase heat of formation of glycolaldehyde was established by a sequence of calorimetric experiments. The experimental result is ΔfH298(CHO-CH2OH) = -75.8 ± 1.3 kcal mol(-1). Fully ab initio, coupled cluster calculations predict ΔfH0(CHO-CH2OH) of -73.1 ± 0.5 kcal mol(-1) and ΔfH298(CHO-CH2OH) of -76.1 ± 0.5 kcal mol(-1). The coupled-cluster singles doubles and noniterative triples correction calculations also lead to a revision of the geometry of CHO-CH2OH. We find that the O-H bond length differs substantially from earlier experimental estimates, due to unusual zero-point contributions to the moments of inertia.
Pyrolysis of reinforced polymer composites: Parameterizing a model for multiple compositions
NASA Astrophysics Data System (ADS)
Martin, Geraldine E.
A single set of material properties was developed to describe the pyrolysis of fiberglass reinforced polyester composites at multiple composition ratios. Milligram-scale testing was performed on the unsaturated polyester (UP) resin using thermogravimetric analysis (TGA) coupled with differential scanning calorimetry (DSC) to establish and characterize an effective semi-global reaction mechanism, of three consecutive first-order reactions. Radiation-driven gasification experiments were conducted on UP resin and the fiberglass composites at compositions ranging from 41 to 54 wt% resin at external heat fluxes from 30 to 70 kW m -2. The back surface temperature was recorded with an infrared camera and used as the target for inverse analysis to determine the thermal conductivity of the systematically isolated constituent species. Manual iterations were performed in a comprehensive pyrolysis model, ThermaKin. The complete set of properties was validated for the ability to reproduce the mass loss rate during gasification testing.
Khachatryan, Lavrent; Xu, Meng-xia; Wu, Ang-jian; Pechagin, Mikhail; Asatryan, Rubik
2016-01-01
The experimental results on detection and identification of intermediate radicals and molecular products from gas-phase pyrolysis of cinnamyl alcohol (CnA), the simplest non-phenolic lignin model compound, over the temperature range of 400–800 °C are reported. The low temperature matrix isolation – electron paramagnetic resonance (LTMI-EPR) experiments along with the theoretical calculations, provided evidences on the generation of the intermediate carbon and oxygen centered as well as oxygen-linked, conjugated radicals. A mechanistic analysis is performed based on density functional theory to explain formation of the major products from CnA pyrolysis; cinnamaldehyde, indene, styrene, benzaldehyde, 1-propynyl benzene, and 2-propenyl benzene. The evaluated bond dissociation patterns and unimolecular decomposition pathways involve dehydrogenation, dehydration, 1,3-sigmatropic H-migration, 1,2-hydrogen shift, C—O and C—C bond cleavage processes. PMID:28344372
Total recovery of nitrogen and phosphorus from three wetland plants by fast pyrolysis technology.
Liu, Wu-Jun; Zeng, Fan-Xin; Jiang, Hong; Yu, Han-Qing
2011-02-01
Fast pyrolysis of three wetland plants (Alligator weed, Oenanthe javanica and Typha angustifolia) in a vertical drop fixed bed reactor was investigated in this study. The experiments were carried out at different pyrolysis temperatures, and the maximum bio-oil yields achieved were 42.3%, 40.2% and 43.6% for Alligator weed, Oenanthe javanica and Typha angustifolia, respectively. The elemental composition of the bio-oil and char were analyzed, and the results show that a low temperature was appropriate for the nitrogen and phosphorus enrichment in char. GC-MS analysis shows that nitrogenous compounds, phenols and oxygenates were the main categories in the bio-oil. A series of leaching tests were carried out to examine the recovery of the nitrogen and phosphorus in the char, and the results indicate that significant fractions of nitrogen and phosphorus could be recovered by leaching process. Copyright © 2010 Elsevier Ltd. All rights reserved.
Pyrolysis responses of kevlar/epoxy composite materials on laser irradiating
NASA Astrophysics Data System (ADS)
Liu, Wei-ping; Wei, Cheng-hua; Zhou, Meng-lian; Ma, Zhi-liang; Song, Ming-ying; Wu, Li-xiong
2017-05-01
The pyrolysis responses of kevlar/epoxy composite materials are valuable to study in a case of high temperature rising rate for its widely application. Distinguishing from the Thermal Gravimetric Analysis method, an apparatus is built to research the pyrolysis responses of kevlar/epoxy composite materials irradiated by laser in order to offer a high temperature rising rate of the sample. By deploying the apparatus, a near real-time gas pressure response can be obtained. The sample mass is weighted before laser irradiating and after an experiment finished. Then, the gas products molecular weight and the sample mass loss evolution are derived. It is found that the pressure and mass of the gas products increase with the laser power if it is less than 240W, while the molecular weight varies inversely. The variation tendency is confusing while the laser power is bigger than 240W. It needs more deeper investigations to bring it to light.
NASA Astrophysics Data System (ADS)
Morisson, Marietta; Buch, Arnaud; Szopa, Cyril; Raulin, François; Stambouli, Moncef
2017-04-01
Martian surface is exposed to harsh radiative and oxidative conditions which are destructive for organic molecules. That is why the future ExoMars rover will examine the molecular composition of samples acquired from depths down to two meters below the Martian surface, where organics may have been protected from radiative and oxidative degradation. The samples will then be analyzed by the Pyrolysis-Gas Chromatography-Mass Spectrometry (Pyr-GC-MS) operational mode of the Mars Organic Molecule Analyzer (MOMA) instrument. To prevent thermal alteration of organic molecules during pyrolysis, thermochemolysis with tetramethylammonium hydroxide (TMAH) will extract the organics from the mineral matrix and methylate the polar functional groups, allowing the volatilization of molecules at lower temperatures and protecting the most labile chemical groups from thermal degradation. This study has been carried out on a Martian regolith analogue (JSC-Mars-1) with a high organic content with the aim of optimizing the thermochemolysis temperature within operating conditions similar to the MOMA experiment ones. We also performed Pyrolysis-GC-MS analysis as a comparison. The results show that, unlike pyrolysis alone - which mainly produces aromatics, namely thermally altered molecules - thermochemolysis allows the extraction and identification of numerous organic molecules of astrobiological interest. They also show that the main compounds start to be detectable at low thermochemolysis temperatures ranging from 400°C to 600°C. However, we noticed that the more the temperature increases, the more the chromatograms are saturated with thermally evolved molecules leading to many coelutions and making identification difficult.
Isocyanate emissions from pyrolysis of mattresses containing polyurethane foam.
Garrido, María A; Gerecke, Andreas C; Heeb, Norbert; Font, Rafael; Conesa, Juan A
2017-02-01
This study examined the emissions of powerful asthmatic agents called isocyanates from small-scale pyrolysis experiments of two common foams employed in mattress production such as flexible polyurethane foam (FPUF) and viscoelastic memory foam (VMF). A nitrogen atmosphere and five different temperatures, 300, 350, 400, 450 and 850 °C, were selected to carry out the experiments in order to evaluate the worst possible conditions for thermal degradation. A similar trend for both materials was found. At lower temperatures, diisocyanates were the most important products whereas at 850 °C monoisocyanates, and mainly isocyanic acid released mainly from the thermal cracking of diisocyanates evolved directly from the polymer chains. The total yields of isocyanates were in the range of 1.43-11.95 mg/m 3 for FPUF at 300-850 °C and 0.05-6.13 mg/m 3 for VMF, 300-850 °C. This difference could be a consequence of the lower amount of isocyanates employed in the VMF production which was confirmed by the nitrogen content of the foams, 5.95% FPUF vs. 3.34% in VMF. Additionally, a qualitative search for so far unknown isocyanates was performed in samples from the pyrolysis of FPUF at 300, 400 and 850 °C. It was confirmed that six different aminoisocyanates at 300 °C were evolved, whereas at 400 and 850 °C only five of them were detected. The general trend observed was a decrease of the aminoisocyanate levels with increasing pyrolysis temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.
Methane Synthesis from Automotive Paint Sludge via Microwave Assisted Pyrolysis
NASA Astrophysics Data System (ADS)
Rosli, N. L.; Rahman, N. Abd; Kadri, A.
2018-05-01
Methane gas, which has one atom of carbon and four atoms of hydrogen, is a valuable energy resource, which can be used in the energy sector. The purpose of this research work is to identify methane synthesis from Automotive Paint Sludge (APS) using microwave assisted pyrolysis. APS is known as a hazardous waste since it contains various chemicals that categorized as heavy metals and toxic substances. A modified conventional kitchen microwave was used to pyrolise the APS. The microwave was set with the power level of 600 W and 50 minutes radiation time. Through the experiment, pyrogas was collected into tedlar bag and was analysed using Gas Chromatography with Flame Ionization Detector (GC-FID). Results from the GC-FID were shown that the retention time of 3.3583, 3.2733, and 3.2267 min are proved to be methane gas. The results obtained are resembled with the results from the literature. This indicates methane gas was presented in the pyrogas of pyrolysis of APS and there is a possibility of producing methane gas. The research study suggests that it is possible to synthesize methane gas from the APS via microwave assisted pyrolysis, and in the meantime reduce the volume of APS in the landfill.
The use of a behavioral response system in the USF/NASA toxicity screening test method
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Cumming, H. J.; Packham, S. C.
1977-01-01
Relative toxicity data on the pyrolysis effluents from bisphenol A polycarbonate and wool fabric were obtained, based on visual observations of the behavior of free-moving mice and on an avoidance response behavioral paradigm of restrained rats monitored by an instrumented behavioral system. The initial experiments show an essentially 1:1 correlation between the two systems with regard to first signs of incapacitation, collapse, and death from pyrolysis effluents from polycarbonate. It is hypothesized that similarly good correlations between these two systems might exist for other materials exhibiting predominantly carbon monoxide mechanisms of intoxication. This hypothesis needs to be confirmed, however, by additional experiments. Data with wool fabric exhibited greater variability with both procedures, indicating possibly different mechanisms of intoxication for wool as compared with bisphenol A polycarbonate.
Pyrolysis characteristics of typical biomass thermoplastic composites
NASA Astrophysics Data System (ADS)
Cai, Hongzhen; Ba, Ziyu; Yang, Keyan; Zhang, Qingfa; Zhao, Kunpeng; Gu, Shiyan
The biomass thermoplastic composites were prepared by extrusion molding method with poplar flour, rice husk, cotton stalk and corn stalk. The thermo gravimetric analyzer (TGA) has also been used for evaluating the pyrolysis process of the composites. The results showed that the pyrolysis process mainly consists of two stages: biomass pyrolysis and the plastic pyrolysis. The increase of biomass content in the composite raised the first stage pyrolysis peak temperature. However, the carbon residue was reduced and the pyrolysis efficiency was better because of synergistic effect of biomass and plastic. The composite with different kinds of biomass have similar pyrolysis process, and the pyrolysis efficiency of the composite with corn stalk was best. The calcium carbonate could inhibit pyrolysis process and increase the first stage pyrolysis peak temperature and carbon residue as a filling material of the composite.
Methods and apparatuses for preparing upgraded pyrolysis oil
Brandvold, Timothy A; Baird, Lance Awender; Frey, Stanley Joseph
2013-10-01
Methods and apparatuses for preparing upgraded pyrolysis oil are provided herein. In an embodiment, a method of preparing upgraded pyrolysis oil includes providing a biomass-derived pyrolysis oil stream having an original oxygen content. The biomass-derived pyrolysis oil stream is hydrodeoxygenated under catalysis in the presence of hydrogen to form a hydrodeoxygenated pyrolysis oil stream comprising a cyclic paraffin component. At least a portion of the hydrodeoxygenated pyrolysis oil stream is dehydrogenated under catalysis to form the upgraded pyrolysis oil.
First Detection of Non-Chlorinated Organic Molecules Indigenous to a Martian Sample
NASA Technical Reports Server (NTRS)
Freissinet, C.; Glavin, D. P.; Buch, A.; Szopa, C.; Summons, R. E.; Eigenbrode, J. L.; Archer, P. D., Jr.; Brinckerhoff, W. B.; Brunner, A. E.; Cabane, M.;
2016-01-01
The Sample Analysis at Mars (SAM) instrument onboard Curiosity can perform pyrolysis of martian solid samples, and analyze the volatiles by direct mass spectrometry in evolved gas analysis (EGA) mode, or separate the components in the GCMS mode (coupling the gas chromatograph and the mass spectrometer instruments). In addition, SAM has a wet chemistry laboratory designed for the extraction and identification of complex and refractory organic molecules in the solid samples. The chemical derivatization agent used, N-methyl-N-tert-butyldimethylsilyl- trifluoroacetamide (MTBSTFA), was sealed inside seven Inconel metal cups present in SAM. Although none of these foil-capped derivatization cups have been punctured on Mars for a full wet chemistry experiment, an MTBSTFA leak was detected and the resultant MTBSTFA vapor inside the instrument has been used for a multi-sol MTBSTFA derivatization (MD) procedure instead of direct exposure to MTBSTFA liquid by dropping a solid sample directly into a punctured wet chemistry cup. Pyr-EGA, Pyr-GCMS and Der-GCMS experiments each led to the detection and identification of a variety of organic molecules in diverse formations of Gale Crater.
Buss, Wolfram; Mašek, Ondřej
2014-05-01
Biochar can be contaminated during pyrolysis by re-condensation of pyrolysis vapours. In this study two biochar samples contaminated by pyrolysis liquids and gases to a high degree, resulting in high volatile organic compound (high-VOC) content, were investigated and compared to a biochar with low volatile organic compound (low-VOC) content. All biochar samples were produced from the same feedstock (softwood pellets) under the same conditions (550 °C, 20 min mean residence time). In experiments where only gaseous compounds could access germinating cress seeds (Lepidium sativum), application amounts ranging from 1 to 30 g of high-VOC biochar led to total inhibition of cress seed germination, while exposure to less than 1 g resulted in only partial reduction. Furthermore, leachates from biochar/sand mixtures (1, 2, 5 wt.% of biochar) induced heavy toxicity to germination and showed that percolating water could dissolve toxic compounds easily. Low-VOC biochar didn't exhibit any toxic effects in either germination test. Toxicity mitigation via blending of a high-VOC biochar with a low-VOC biochar increased germination rate significantly. These results indicate re-condensation of VOCs during pyrolysis can result in biochar containing highly mobile, phytotoxic compounds. However, it remains unclear, which specific compounds are responsible for this toxicity and how significant re-condensation in different pyrolysis units might be. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chum, Helena L.
This work focuses on developing a thermochemical route to produce biofuels from agricultural wastes such as sugar cane bagasse, wood chips or corn stover; more specifically it intends to develop the biomass pyrolysis route, which produces bio-oils. Production of bio-oils by pyrolysis is a commercial technology. However, bio-oils are currently not being used for liquid fuels production. Although bio-oils can be produced by high-pressure liquefaction, pyrolysis is a less expensive technology. Nevertheless, bio-oils cannot be used directly as a transportation fuel without upgrading, since they are generally unstable, viscous, and acidic. Thus NREL and Petrobras intend to use their combinedmore » expertise to develop a two-step route to biofuels production: in the first step, a stable bio-oil is produced by NREL biomass pyrolysis technology, while in the second step it is upgraded by using two distinct catalytic processes under development by Petrobras. The first process converts bio-oil into gasoline, LPG, and fuel oil using the catalytic cracking process, while the second one, converts bio-oil into synthesis gas. Syngas gasification catalysts provided by both NREL and Petrobras will be tested. The work includes experiments at both sites to produce bio-oil and then biofuels, life-cycle analysis of each route, personnel training and development of analytical methods with a duration time of two years.« less
Finite time thermodynamics and the quasi-stability of closed-systems of natural hydrocarbon mixtures
NASA Astrophysics Data System (ADS)
Planche, H.
1996-11-01
The isothermal pyrolysis at 372°C, between 400 and 500 bars, of a paraffinic liquid hydrocarbon (natural physical conditions: 195°C, 1000 bars) has been performed over 3 months in order to observe composition changes and to calculate the total Gibbs energy of the fluid hydrocarbon mixture G(t). The approach of a G minimum corresponding to a reversible equilibrium of the composition has been detected. This is consistent with the observation of a significant C 11+ paraffin neo-formation flux after 2 months pyrolysis, and the overall stabilization trend for the fluid composition. The calculated stable composition of the saturates family is consistent with the one asymptotically reached after 1000 h of pyrolysis. This stable composition contains significant amounts of C 6+ paraffins. Assuming the functionality of G in the time-composition space to be conserved when changing temperature from pyrolysis back to the initial fluid natural condition, the stable composition extrapolated at 195°C is that of a liquid hydrocarbon, very close to the natural oil used in the pyrolysis experiments. The observed concentration of most of molecular components of mature oils would thus be controlled by the effective equilibrium of a reversible chemical network. The reversibility of the oil saturates to gas + aromatics conversion is most probably the reason why C 11+ paraffins may survive for as long as 100 Ma in the range 300 to 350°C as literature shows for hyper-mature rock extracts.
Phytotoxicity and Plant Productivity Analysis of Tar-Enriched Biochars
NASA Astrophysics Data System (ADS)
Keller, M. L.; Masiello, C. A.; Dugan, B.; Rudgers, J. A.; Capareda, S. C.
2008-12-01
Biochar is one of the three by-products obtained by the pyrolysis of organic material, the other two being syngas and bio-oil. The pyrolysis of biomass has generated a great amount of interest in recent years as all three by-products can be put toward beneficial uses. As part of a larger project designed to evaluate the hydrologic impact of biochar soil amendment, we generated a biochar through fast pyrolysis (less than 2 minutes) of sorghum stock at 600°C. In the initial biochar production run, the char bin was not purged with nitrogen. This inadvertent change in pyrolysis conditions produced a fast-pyrolysis biochar enriched with tars. We chose not to discard this batch, however, and instead used it to test the impact of tar-enriched biochars on plants. A suite of phytotoxicity tests were run to assess the effects of tar-rich biochar on plant germination and plant productivity. We designed the experiment to test for negative effects, using an organic carbon and nutrient-rich, greenhouse- optimized potting medium instead of soil. We used Black Seeded Simpson lettuce (Lactuca sativa) as the test organism. We found that even when tars are present within biochar, biochar amendment up to 10% by weight caused increased lettuce germination rates and increased biomass productivity. In this presentation, we will report the statistical significance of our germination and biomass data, as well as present preliminary data on how biochar amendment affects soil hydrologic properties.
In-depth investigation on quantitative characterization of pyrolysis oil by 31P NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben, Haoxi; Ferrell, III, Jack R.
The characterization of different heteroatom functional groups by employing 31P NMR has been developed for almost 30 years. In this study, an in-depth investigation of this commonly used method has been accomplished for the analysis of pyrolysis oil. Several commonly used internal standards for 31P NMR have been examined by in situ monitoring. The results indicated that endo-N-hydroxy-5-norbornene-2,3-dicarboximide (NHND) is not stable after a long period of storage or experiment (>12 hours), but both cyclohexanol and triphenylphosphine oxide (TPPO) can be used as internal standards if a long experiment or storage is required. The pyrolysis oil has also been investigatedmore » by both short time (16 hours) in situ monitoring and long time (14 days) ex situ monitoring. The results showed that aliphatic OH, carboxylic acids and water contents are not very stable after 2 hours, and thus a short time of preparation, storage, and experiment need to be considered to ensure a precise quantitative measurement. The decomposition products are still unclear, but some preliminary investigations for different acids, (e.g. formic acid) have been accomplished. The results indicated that the aromatic carboxylic acids (benzoic acid and vanillic acid) are more stable than formic acid and acetic acid. Interestingly, the formic acid will even decompose to some other compounds at the very beginning of the in situ monitoring test. Further characterization found that water is one of the major products for the decomposition of formic acid in the 31P NMR solution. Finally, as far as we know, this is the first report on such time-dependent changes when using 31P NMR to analyze the pyrolysis oil, and these results show that proper application of this method is essential to achieve reliable quantitative data.« less
In-depth investigation on quantitative characterization of pyrolysis oil by 31P NMR
Ben, Haoxi; Ferrell, III, Jack R.
2016-01-29
The characterization of different heteroatom functional groups by employing 31P NMR has been developed for almost 30 years. In this study, an in-depth investigation of this commonly used method has been accomplished for the analysis of pyrolysis oil. Several commonly used internal standards for 31P NMR have been examined by in situ monitoring. The results indicated that endo-N-hydroxy-5-norbornene-2,3-dicarboximide (NHND) is not stable after a long period of storage or experiment (>12 hours), but both cyclohexanol and triphenylphosphine oxide (TPPO) can be used as internal standards if a long experiment or storage is required. The pyrolysis oil has also been investigatedmore » by both short time (16 hours) in situ monitoring and long time (14 days) ex situ monitoring. The results showed that aliphatic OH, carboxylic acids and water contents are not very stable after 2 hours, and thus a short time of preparation, storage, and experiment need to be considered to ensure a precise quantitative measurement. The decomposition products are still unclear, but some preliminary investigations for different acids, (e.g. formic acid) have been accomplished. The results indicated that the aromatic carboxylic acids (benzoic acid and vanillic acid) are more stable than formic acid and acetic acid. Interestingly, the formic acid will even decompose to some other compounds at the very beginning of the in situ monitoring test. Further characterization found that water is one of the major products for the decomposition of formic acid in the 31P NMR solution. Finally, as far as we know, this is the first report on such time-dependent changes when using 31P NMR to analyze the pyrolysis oil, and these results show that proper application of this method is essential to achieve reliable quantitative data.« less
Thermal decomposition of electronic wastes: Mobile phone case and other parts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molto, Julia, E-mail: julia.molto@ua.es; Egea, Silvia; Conesa, Juan Antonio
Highlights: > Pyrolysis and combustion of different parts of mobile phones produce important quantities of CO and CO{sub 2}. > Naphthalene is the most abundant PAH obtained in the thermal treatment of mobile phones. > Higher combustion temperature increases the chlorinated species evolved. - Abstract: Pyrolysis and combustion runs at 850 {sup o}C in a horizontal laboratory furnace were carried out on different parts of a mobile phone (printed circuit board, mobile case and a mixture of both materials). The analyses of the carbon oxides, light hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), polychlorodibenzo-p-dioxin, polychlorodibenzofurans (PCDD/Fs), and dioxin-like PCBs are shown. Regardingmore » semivolatile compounds, phenol, styrene, and its derivatives had the highest yields. In nearly all the runs the same PAHs were identified, naphthalene being the most common component obtained. Combustion of the printed circuit board produced the highest emission factor of PCDD/Fs, possibly due to the high copper content.« less
A novel approach to increasing cocaine detection confidence utilizing ion mobility spectrometry
NASA Technical Reports Server (NTRS)
Jadamec, J. Richard; Su, Chih-Wu; Rigdon, Stephen; Norwood, Lavan
1995-01-01
When a positive detection of a narcotic occurs during the search of a vessel, a decision has to be made whether further intensive search is warranted. In terms of unwarranted delays of vessels and possible property damage, the accuracy of the analytical determination is very important. Analytical accuracy becomes critical when the data may be used in court actions as evidence. For this purpose, the U.S. Coast Guard has been investigating several confirmatory ion mobility spectrometry (IMS) field methods for the detection and identification of cocaine. This paper presents the findings of our investigations on the use of catalytic pyrolysis and base hydrolysis as confirmatory methods. The catalytic effects of various metals on the pyrolysis reaction are reported. In addition, the effects of several different ion mobility spectrometer sample transfer mediums and varying laboratory conditions on the base hydrolysis of the cocaine molecule are also be reported.
Oyster Shell Recycling and Bone Waste Treatment Using Plasma Pyrolysis
NASA Astrophysics Data System (ADS)
Jae, Ou Chae; Knak, S. P.; Knak, A. N.; Koo, H. J.; Ravi, V.
2006-11-01
Investigations on the recycling of oyster shells and bone waste treatment using the plasma pyrolysis technique are presented in this paper. A arc based plasma torch operated at 25 kW was employed for the experiments. Fresh oyster shells were recycled using the plasma torch to convert them to a useful product such as CaO. Bone waste was treated to remove the infectious organic part and to vitrify the inorganic part. The time required for treatment in both cases was significantly short. Significant reduction in the weight of the samples was observed in both cases.
NASA Technical Reports Server (NTRS)
ten Kate, I. L.; Cardiff, E. H.; Feng, S. H.; Holmes, V.; Malespin, C.; Stern, J. G.; Swindle, T. D.; Glavin, D. P.
2010-01-01
We present the Volatile Analysis by Pyrolysis of Regolith (VAPoR) instrument design and demonstrate the validity of an in situ pyrolysis mass spectrometer for evolved gas analyses of lunar and planetary regolith samples. In situ evolved gas analyses of the lunar regolith have not yet been carried out and no atmospheric or evolved gas measurements have been made at the lunar poles. VAPoR is designed to do both kinds of measurements, is currently under development at NASA's Goddard Space Flight Center, and will be able to heat powdered regolith samples or rock drill fines up to 1400 C in vacuo. To validate the instrument concept, evolved gas species released from different planetary analogs were determined as a function of temperature using a laboratory breadboard. Evolved gas measurements of an Apollo 16 regolith sample and a fragment of the carbonaceous meteorite Murchison were made by VAPoR and our results compared with existing data. The results imply that in situ evolved gas measurements of the lunar regolith at the polar regions by VAPoR will be a very powerful tool for identifying water and other volatile signatures of lunar or exogenous origin as potential resources for future human exploration.
Aqueous stream characterization from biomass fast pyrolysis and catalytic fast pyrolysis
Black, Brenna A.; Michener, William E.; Ramirez, Kelsey J.; ...
2016-09-05
Here, biomass pyrolysis offers a promising means to rapidly depolymerize lignocellulosic biomass for subsequent catalytic upgrading to renewable fuels. Substantial efforts are currently ongoing to optimize pyrolysis processes including various fast pyrolysis and catalytic fast pyrolysis schemes. In all cases, complex aqueous streams are generated containing solubilized organic compounds that are not converted to target fuels or chemicals and are often slated for wastewater treatment, in turn creating an economic burden on the biorefinery. Valorization of the species in these aqueous streams, however, offers significant potential for substantially improving the economics and sustainability of thermochemical biorefineries. To that end, heremore » we provide a thorough characterization of the aqueous streams from four pilot-scale pyrolysis processes: namely, from fast pyrolysis, fast pyrolysis with downstream fractionation, in situ catalytic fast pyrolysis, and ex situ catalytic fast pyrolysis. These configurations and processes represent characteristic pyrolysis processes undergoing intense development currently. Using a comprehensive suite of aqueous-compatible analytical techniques, we quantitatively characterize between 12 g kg -1 of organic carbon of a highly aqueous catalytic fast pyrolysis stream and up to 315 g kg -1 of organic carbon present in the fast pyrolysis aqueous streams. In all cases, the analysis ranges between 75 and 100% of mass closure. The composition and stream properties closely match the nature of pyrolysis processes, with high contents of carbohydrate-derived compounds in the fast pyrolysis aqueous phase, high acid content in nearly all streams, and mostly recalcitrant phenolics in the heavily deoxygenated ex situ catalytic fast pyrolysis stream. Overall, this work provides a detailed compositional analysis of aqueous streams from leading thermochemical processes -- analyses that are critical for subsequent development of selective valorization strategies for these waste streams.« less
Aqueous stream characterization from biomass fast pyrolysis and catalytic fast pyrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Brenna A.; Michener, William E.; Ramirez, Kelsey J.
Here, biomass pyrolysis offers a promising means to rapidly depolymerize lignocellulosic biomass for subsequent catalytic upgrading to renewable fuels. Substantial efforts are currently ongoing to optimize pyrolysis processes including various fast pyrolysis and catalytic fast pyrolysis schemes. In all cases, complex aqueous streams are generated containing solubilized organic compounds that are not converted to target fuels or chemicals and are often slated for wastewater treatment, in turn creating an economic burden on the biorefinery. Valorization of the species in these aqueous streams, however, offers significant potential for substantially improving the economics and sustainability of thermochemical biorefineries. To that end, heremore » we provide a thorough characterization of the aqueous streams from four pilot-scale pyrolysis processes: namely, from fast pyrolysis, fast pyrolysis with downstream fractionation, in situ catalytic fast pyrolysis, and ex situ catalytic fast pyrolysis. These configurations and processes represent characteristic pyrolysis processes undergoing intense development currently. Using a comprehensive suite of aqueous-compatible analytical techniques, we quantitatively characterize between 12 g kg -1 of organic carbon of a highly aqueous catalytic fast pyrolysis stream and up to 315 g kg -1 of organic carbon present in the fast pyrolysis aqueous streams. In all cases, the analysis ranges between 75 and 100% of mass closure. The composition and stream properties closely match the nature of pyrolysis processes, with high contents of carbohydrate-derived compounds in the fast pyrolysis aqueous phase, high acid content in nearly all streams, and mostly recalcitrant phenolics in the heavily deoxygenated ex situ catalytic fast pyrolysis stream. Overall, this work provides a detailed compositional analysis of aqueous streams from leading thermochemical processes -- analyses that are critical for subsequent development of selective valorization strategies for these waste streams.« less
Using BPCA and pyrolysis-GC/MS patterns as a measure of charring intensity
NASA Astrophysics Data System (ADS)
Kaal, Joeri; Schneider, Maximilian P. W.; Schmidt, Michael W. I.
2010-05-01
Many questions remain on the molecular properties of Black C (organic fire residues such as charcoal and soot). Here we compare parameters from two methods that have recently shown to be related to the degree of thermal modification ("charring intensity") of charcoal-Black C: i) the proportion of mellitic acid (B6CA) among benzenepolycarboxylic acids in the BPCA method [1,2,3] and ii) the relative proportions and degree of alkylation of pyrolysis products from Black C in pyrolysis-GC/MS [4]. For that purpose we used laboratory chars from rice straw (grass) and chestnut wood (wood) produced at 200-1000 °C under N2 flow. The chars obtained at 450 °C are reference materials of the Black Carbon Ring Trial [5]. Positive correlations between the charring temperature and BPCA and pyrolysis patterns confirm that these methods can be used to study the degree of thermal impact of charred remains. Pyrolysis-GC/MS allowed us to track the thermal degradation of the major biocomponents lignin, polysaccharides, tannin, aliphatic chain lipids, triterpenoids, chlorophyll and proteins, mostly between 250 and 450 °C. The proportions of the pyrolysis products of Black C (benzene, toluene, benzonitrile, PAHs, etc.) and also the ratios that reflect the abundance of aliphatic cross-linkages between aromatic moieties (benzene/toluene, naphthalene/alkylnaphthalenes, benzofuran/alkylbenzofurans), increase with charring intensity. Nonetheless, chars obtained at T > 600 °C (especially for wood) gave low quality pyrograms and poor reproducibility because of high thermal stability. The relative contributions of B6CA, one of the molecular markers used for the BPCA method, are indicative for the degree of condensation of the chars. The BPCA approach showed a clear increase in the relative contribution of B6CA from ca. 5 % at 200 °C to ca. 95 % at 1000 °C, confirming the ability of this parameter to assess charring intensity. The relative contribution of B6CA remains almost constant at ca. 30 % between 250 and 450 °C. Thus, with regard to estimating the charring intensity of Black C, the BPCA method is more suitable for high T chars (> 450 °C) while pyrolysis-GC/MS seems more appropriate in the lower T range (< 500 °C). This is not surprising as larger clusters of polyaromatic domains (high T) can be assessed by the BPCA method but are resistant against pyrolysis. On the other hand, smaller clusters and non-polycondensed portions of Black C (low T) are amenable to pyrolysis-GC/MS but escape the analytical window of the BPCA method. The two methods may therefore be considered complementary, with BPCA giving reliable quantitative data on Black C content and charring degree of high T chars while pyrolysis-GC/MS is quantitatively weak but provides highly detailed information on the molecular properties of especially lower T chars. References [1] Brodowski, S., Rodionov, A., Haumeier L., Glaser, B., Amelung, W. (2005) Org. Geochem. 36, 1299-1310. [2] Glaser, B., Haumeier, L., Guggenberger, G., Zech, W. (1998) Org. Geochem. 29, 811-819. [3] Schneider, M.P.W., Hilf, M., Vogt, U.F., Schmidt, M.W.I., Org. Geochem. (submitted) [4] Kaal, J., Rumpel, C. (2009) Org. Geochem. 40, 1179-1187. [5] Hammes, K., Schmidt, M.W.I., Smernik, R.J. et al. (2007) Global Biogeochemical Cycles 21, 1-18.
Conventional and fast pyrolysis of automobile shredder residues (ASR).
Zolezzi, Marcello; Nicolella, Cristiano; Ferrara, Sebastiano; Iacobucci, Cesare; Rovatti, Mauro
2004-01-01
This work aims at comparing performance and product yields in conventional pyrolysis and fast pyrolysis of automotive shredded residues. In both processes, carbon conversion to gaseous and liquid products was more than 80%. Gas production was maximised in conventional pyrolysis (about 35% by weight of the initial ASR weight), while fast pyrolysis led to an oil yield higher than 55%. Higher heating values (HHV) of both conventional pyrolysis gas and fast pyrolysis oil increased from 8.8 to 25.07 MJ/Nm3 and from 28.8 and 36.27 MJ/kg with increasing pyrolysis temperature. Copyright 2004 Elsevier Ltd.
Muradov, Nazim; Fidalgo, Beatriz; Gujar, Amit C; T-Raissi, Ali
2010-11-01
The aim of this work was to conduct the experimental study of pyrolysis of fast-growing aquatic biomass -Lemna minor (commonly known as duckweed) with the emphasis on the characterization of main products of pyrolysis. The yields of pyrolysis gas, pyrolytic oil (bio-oil) and char were determined as a function of pyrolysis temperature and the sweep gas (Ar) flow rate. Thermogravimetric/differential thermogravimetric (TG/DTG) analyses of duckweed samples in inert (helium gas) and oxidative (air) atmosphere revealed differences in the TG/DTG patterns obtained for duckweed and typical plant biomass. The bio-oil samples produced by duckweed pyrolysis at different reaction conditions were analyzed using GC-MS technique. It was found that pyrolysis temperature had minor effect on the bio-oil product slate, but exerted major influence on the relative quantities of the individual pyrolysis products obtained. While, the residence time of the pyrolysis vapors had negligible effect on the yield and composition of the duckweed pyrolysis products. Copyright 2010 Elsevier Ltd. All rights reserved.
Wang, Huihui; Wang, Xin; Cui, Yanshan; Xue, Zhongcai; Ba, Yuxin
2018-05-11
Slow pyrolysis of bamboo was conducted at 400-600 °C and pyrolysis products were characterized with FTIR, BET, XRD, SEM, EDS and GC to establish a pyrolysis product yield prediction model and biochar formation mechanism. Pyrolysis biochar yield was predicted based on content of cellulose, hemicellulose and lignin in biomass with their carbonization index of 0.20, 0.35 and 0.45. The formation mechanism of porous structure in pyrolysis biochar was established based on its physicochemical property evolution and emission characteristics of pyrolysis gas. The main components (cellulose, hemicellulose and lignin) had different pyrolysis or chemical reaction pathways to biochar. Lignin had higher aromatic structure, which resulted higher biochar yield. It was the main biochar precursor during biomass pyrolysis. Cellulose was likely to improve porous structure of pyrolysis biochar due to its high mass loss percentage. Higher pyrolysis temperatures (600 °C) promoted inter- and intra-molecular condensation reactions and aromaticity in biochar. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Douglas C.; Oasmaa, Anja; Meier, Dietrich
2012-11-06
An international round robin study of the viscosity and aging of fast pyrolysis bio-oil has been undertaken recently and this work is an outgrowth from that effort. Two bio-oil samples were distributed to the laboratories for aging tests and extended viscosity studies. The accelerated aging test was defined as the change in viscosity of a sealed sample of bio-oil held for 24 h at 80 °C. The test was repeated 10 times over consecutive days to determine the repeatability of the method. Other bio-oil samples were placed in storage at three temperatures, 21 °C, 4 °C and -17 °C formore » a period up to a year to evaluate the change in viscosity. The variation in the results of the aging test was shown to be low within a given laboratory. Storage of bio-oil under refrigeration can minimize the amount of change in viscosity. The accelerated aging test gives a measure of change similar to that of 6-12 months of storage at room temperature. These results can be helpful in setting standards for use of bio-oil, which is just coming into the marketplace.« less
Evaluation of the performance of biochars as an adsorbent for polycyclic aromatic hydrocarbons
NASA Astrophysics Data System (ADS)
Jung, J.; Kang, S.; Ok, Y.; Choi, Y.
2016-12-01
Biochars, byproducts generated by pyrolysis of biomass, are known to have several advantages as a soil amendment such as carbon sequestration effect, enhancement of soil microbial activity, and nutrient supply. Because of their high surface area and affinity to organic pollutants, biochars are also being evaluated as an adsorbent for hydrophobic organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) in soils, stormwater, and wastewater. Depending on their organic precursors and pyrolysis temperatures, biochars have been shown to have various physicochemical properties, which should determine their performance as an adsorbent for hydrophobic organic pollutants. In this study, we obtained biochars derived from soybean stover, wood chip, rice husk, and sewage sludge with pyrolysis temperatures of 700°, 250°, 500°, and 500°, respectively, to investigate their performance for PAH adsorption. Adsorption kinetic and isotherm experiments were conducted using naphthalene and phenanthrene as model compounds. Soybean stover biochar reached close to equilibrium in 7 days while the others did in 25 days in the kinetic experiments. The first-order sorption rate constants were greater for naphthalene than for phenanthrene for all biochars studied, and they were generally in the order of soybean stover>rice husk>sewage sludge>wood chip biochars for the two contaminants. The removal rates of aqueous PAHs at equilibrium were in the order of soybean stover>rice husk>sewage sludge>wood chip biochars at a concentration range of a few ng/mL. The results suggested that the sorption capability and the rate is generally greater for biochar produced from plant materials than that from sludge, and for biochar produced at higher pyrolysis temperature. Comparing the sorption properties of the biochars and granular activated carbon (GAC), it is shown that biochar produced at optimal conditions can exhibit performance for PAH adsorption similar to GAC.
Dias, Robert F.; Lewan, Michael D.; Birdwell, Justin E.; Kotarba, Maciej J.
2014-01-01
So as to better understand how the gas generation potential of coal changes with increasing rank, same-seam samples of bituminous coal from the Illinois Basin that were naturally matured to varying degrees by the intrusion of an igneous dike were subjected to hydrous pyrolysis (HP) conditions of 360 °C for 72 h. The accumulated methane in the reactor headspace was analyzed for δ13C and δ2H, and mol percent composition. Maximum methane production (9.7 mg/g TOC) occurred in the most immature samples (0.5 %Ro), waning to minimal methane values at 2.44 %Ro (0.67 mg/g TOC), and rebounding to 3.6 mg/g TOC methane in the most mature sample (6.76 %Ro). Methane from coal with the highest initial thermal maturity (6.76 %Ro) shows no isotopic dependence on the reactor water and has a microbial δ13C value of −61‰. However, methane from coal of minimal initial thermal maturity (0.5 %Ro) shows hydrogen isotopic dependence on the reaction water and has a δ13C value of −37‰. The gas released from coals under hydrous pyrolysis conditions represents a quantifiable mixture of ancient (270 Ma) methane (likely microbial) that was generated in situ and trapped within the rock during the rapid heating by the dike, and modern (laboratory) thermogenic methane that was generated from the indigenous organic matter due to thermal maturation induced by hydrous pyrolysis conditions. These findings provide an analytical framework for better assessment of natural gas sources and for differentiating generated gas from pre-existing trapped gas in coals of various ranks.
Multi-scale Multi-dimensional Imaging and Characterization of Oil Shale Pyrolysis
NASA Astrophysics Data System (ADS)
Gao, Y.; Saif, T.; Lin, Q.; Al-Khulaifi, Y.; Blunt, M. J.; Bijeljic, B.
2017-12-01
The microstructural evaluation of fine grained rocks is challenging which demands the use of several complementary methods. Oil shale, a fine-grained organic-rich sedimentary rock, represents a large and mostly untapped unconventional hydrocarbon resource with global reserves estimated at 4.8 trillion barrels. The largest known deposit is the Eocene Green River Formation in Western Colorado, Eastern Utah, and Southern Wyoming. An improved insight into the mineralogy, organic matter distribution and pore network structure before, during and after oil shale pyrolysis is critical to understanding hydrocarbon flow behaviour and improving recovery. In this study, we image Mahogany zone oil shale samples in two dimensions (2-D) using scanning electron microscopy (SEM), and in three dimensions (3-D) using focused ion beam scanning electron microscopy (FIB-SEM), laboratory-based X-ray micro-tomography (µCT) and synchrotron X-ray µCT to reveal a complex and variable fine grained microstructure dominated by organic-rich parallel laminations which are tightly bound in a highly calcareous and heterogeneous mineral matrix. We report the results of a detailed µCT study of the Mahogany oil shale with increasing pyrolysis temperature. The physical transformation of the internal microstructure and evolution of pore space during the thermal conversion of kerogen in oil shale to produce hydrocarbon products was characterized. The 3-D volumes of pyrolyzed oil shale were reconstructed and image processed to visualize and quantify the volume and connectivity of the pore space. The results show a significant increase in anisotropic porosity associated with pyrolysis between 300-500°C with the formation of micron-scale connected pore channels developing principally along the kerogen-rich lamellar structures.
NASA Astrophysics Data System (ADS)
Bennion, Edward P.
Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae-to-biofuel process through life cycle assessment. A system boundary of a "well to pump" (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimental and literature data and are representative of an industrial-scale microalgae-to-biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO2 eq (MJ renewable diesel)-1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory-scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development, and a comparison of results to literature.
Jarvis, Mark W.; Olstad, Jessica; Parent, Yves; ...
2018-01-02
We investigate and quantitate the changes in hydrocarbon product composition while evaluating the performance and operability of the National Renewable Energy Laboratory's Davison Circulating Riser (DCR) reactor system when biomass model compounds are cofed with traditional fluid catalyst cracking (FCC) feeds and catalyst: vacuum gas oil (VGO) and equilibrium zeolite catalyst (E-Cat). Three compounds (acetic acid, guaiacol, and sorbitan monooleate) were selected to represent the major classes of oxygenates present in biomass pyrolysis vapors. These vapors can contain 30-50% oxygen as oxygenates, which create conversion complications (increased reactivity and coking) when integrating biomass vapors and liquids into fuel and chemicalmore » processes long dominated by petroleum feedstocks. We used these model compounds to determine the appropriate conditions for coprocessing with petroleum and ultimately pure pyrolysis vapors only as compared with standard baseline conditions obtained with VGO and E-Cat only in the DCR. Model compound addition decreased the DCR catalyst circulation rate, which controls reactor temperature and measures reaction heat demand, while increasing catalyst coking rates. Liquid product analyses included 2-dimensional gas chromatography time-of-flight mass spectroscopy (2D GCxGC TOFS), simulated distillation (SIM DIST), 13C NMR, and carbonyl content. Aggregated results indicated that the model compounds were converted during reaction, and despite functional group differences, product distributions for each model compound were very similar. In addition, we determined that adding model compounds to the VGO feed did not significantly affect the DCR's operability or performance. Future work will assess catalytic upgrading of biomass pyrolysis vapor to fungible hydrocarbon products using upgrading catalysts currently being developed at NREL and at Johnson Matthey.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarvis, Mark W.; Olstad, Jessica; Parent, Yves
We investigate and quantitate the changes in hydrocarbon product composition while evaluating the performance and operability of the National Renewable Energy Laboratory's Davison Circulating Riser (DCR) reactor system when biomass model compounds are cofed with traditional fluid catalyst cracking (FCC) feeds and catalyst: vacuum gas oil (VGO) and equilibrium zeolite catalyst (E-Cat). Three compounds (acetic acid, guaiacol, and sorbitan monooleate) were selected to represent the major classes of oxygenates present in biomass pyrolysis vapors. These vapors can contain 30-50% oxygen as oxygenates, which create conversion complications (increased reactivity and coking) when integrating biomass vapors and liquids into fuel and chemicalmore » processes long dominated by petroleum feedstocks. We used these model compounds to determine the appropriate conditions for coprocessing with petroleum and ultimately pure pyrolysis vapors only as compared with standard baseline conditions obtained with VGO and E-Cat only in the DCR. Model compound addition decreased the DCR catalyst circulation rate, which controls reactor temperature and measures reaction heat demand, while increasing catalyst coking rates. Liquid product analyses included 2-dimensional gas chromatography time-of-flight mass spectroscopy (2D GCxGC TOFS), simulated distillation (SIM DIST), 13C NMR, and carbonyl content. Aggregated results indicated that the model compounds were converted during reaction, and despite functional group differences, product distributions for each model compound were very similar. In addition, we determined that adding model compounds to the VGO feed did not significantly affect the DCR's operability or performance. Future work will assess catalytic upgrading of biomass pyrolysis vapor to fungible hydrocarbon products using upgrading catalysts currently being developed at NREL and at Johnson Matthey.« less
Mild Biomass Liquefaction Process for Economic Production of Stabilized Refinery-Ready Bio-oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangwal, Santosh; Meng, Jiajia; McCabe, Kevin
Southern Research (SR) in cooperation with U.S. Department of Energy (DOE), Bioenergy Technology Office (BETO), investigated a biomass liquefaction process for economic production of stabilized refinery-ready bio-oil. The project was awarded by DOE under a Funding Opportunity Announcement (DE-FOA-0000686) for Bio-oil Stabilization and Commoditization that intended to evaluate the feasibility of using bio-oil as a potential feedstock in an existing petroleum refinery. SR investigated Topic Area 1 of the FOA at Technology Readiness Level 2-3 to develop thermochemical liquefaction technologies for producing a bio-oil feedstock from high-impact biomass that can be utilized within a petroleum refinery. Bio-oil obtained from fastmore » pyrolysis of biomass is a green intermediate that can be further upgraded into a biofuel for blending in a petroleum refinery using a hydro-deoxygenation (HDO) route. Co-processing pyrolysis bio-oil in a petroleum refinery is an attractive approach to leverage the refinery’s existing capital. However, the petroleum industry is reluctant to accept pyrolysis bio-oil because of a lack of a standard definition for an acceptable bio-oil feedstock in existing refinery processes. Also per BETO’s multiyear program plan, fast pyrolysis-based bio-fuel is presently not cost competitive with petroleum-based transportation fuels. SR aims to develop and demonstrate a cost-effective low-severity thermal liquefaction and hydrodeoxygenation (HDO) process to convert woody biomass to stabilized bio-oils that can be directly blended with hydrotreater input streams in a petroleum refinery for production of gasoline and/or diesel range hydrocarbons. The specific project objectives are to demonstrate the processes at laboratory scale, characterize the bio-oil product and develop a plan in partnership with a refinery company to move the technology towards commercialization.« less
Tienpont, Bart; David, Frank; Pereira, Alberto; Sandra, Pat
2011-11-18
A new generic pyrolysis unit (PyroVial) is presented. Pyrolysis is carried out in a 2 mL autosampler vial placed in a XYZ robot for automated pyrolysis as well as for pre- and post-pyrolysis treatment of the sample. Analysis of the volatiles is performed by headspace analysis while the semi- and non-volatiles are extracted from the pyrolysate with an organic solvent. The features of the PyroVial are such that all chromatographic techniques can be applied. The pyrolysis unit is discussed in terms of its technical features and its performance is illustrated with applications including conventional pyrolysis, in situ and post-pyrolysis derivatization, reaction pyrolysis and catalytic cracking. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Devivar, Rodrigo
2014-01-01
The performance of a material is greatly influenced by its thermal and chemical properties. Analytical pyrolysis, when coupled to a GC-MS system, is a powerful technique that can unlock the thermal and chemical properties of almost any substance and provide vital information. At NASA, we depend on precise thermal analysis instrumentation for understanding aerospace travel. Our analytical techniques allow us to test materials in the laboratory prior to an actual field test; whether the field test is miles up in the sky or miles underground, the properties of any involved material must be fully studied and understood in the laboratory.
NASA Astrophysics Data System (ADS)
Socki, R. A.; Fu, Q.; Niles, P. B.; Gibson, E. K.
2012-03-01
We report results of experiments to measure the H-isotope composition of organic acids and alcohols. These experiments make use of a pyroprobe interfaced with a GC and high-temperature extraction furnace to make quantitative H-isotope measurements.
Effects of mass transfer and hydrogen pressure on the fixed-bed pyrolysis of sunflower bagasse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putun, E.; Kockar, O.M.; Gercel, F.
1994-12-31
There are a number of waste and biomass sources being considered as potential sources of fuels and chemical feedstocks. The economics for biomass pyrolysis are generally considered to be most favourable for (1) plants which grow abundantly and require little cultivation in and lands and (2) wastes available in relatively large quantities from agricultural plants, for example, sunflower and hazel nuts. For the former, one such group of plants is Euphorbiaceae which are characterised by their ability to produce a milky latex, an emulsion of about 30% w/w terpenoids in water. One species in the family, Euphorbia Rigida from Southwesternmore » Anatolia, Turkey is cultivated in close proximity to the sunflower growing regions and their oil extraction plants. The Turkish sunflower oil industry generates 800,000 tons of extraction residue (bagasse) per annum. Thus, both sunflower wastes and latex-producing plants are being considered as feedstocks for a future thermochemical demonstration unit in Turkey. Pyrolysis at relatively high hydrogen pressures (hydropyrolysis) has not been widely investigated for biomass. A potential advantage of hydropyrolysis is the ability to upgrade tar vapours over hydroprocessing catalysts. Fixed-bed pyrolysis and hydropyrolysis experiments have been conducted on sunflower bagasse to assess the effects of mass transfer and hydrogen pressure on oil yield and quality.« less
Influence of platinum group metal-free catalyst synthesis on microbial fuel cell performance
NASA Astrophysics Data System (ADS)
Santoro, Carlo; Rojas-Carbonell, Santiago; Awais, Roxanne; Gokhale, Rohan; Kodali, Mounika; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen
2018-01-01
Platinum group metal-free (PGM-free) ORR catalysts from the Fe-N-C family were synthesized using sacrificial support method (SSM) technique. Six experimental steps were used during the synthesis: 1) mixing the precursor, the metal salt, and the silica template; 2) first pyrolysis in hydrogen rich atmosphere; 3) ball milling; 4) etching the silica template using harsh acids environment; 5) the second pyrolysis in ammonia rich atmosphere; 6) final ball milling. Three independent batches were fabricated following the same procedure. The effect of each synthetic parameters on the surface chemistry and the electrocatalytic performance in neutral media was studied. Rotating ring disk electrode (RRDE) experiment showed an increase in half wave potential and limiting current after the pyrolysis steps. The additional improvement was observed after etching and performing the second pyrolysis. A similar trend was seen in microbial fuel cells (MFCs), in which the power output increased from 167 ± 2 μW cm-2 to 214 ± 5 μW cm-2. X-ray Photoelectron Spectroscopy (XPS) was used to evaluate surface chemistry of catalysts obtained after each synthetic step. The changes in chemical composition were directly correlated with the improvements in performance. We report outstanding reproducibility in both composition and performance among the three different batches.
Conversion of microwave pyrolysed ASR's char using high temperature agents.
Donaj, Pawel; Blasiak, Wlodzimierz; Yang, Weihong; Forsgren, Christer
2011-01-15
Pyrolysis enables to recover metals and organic feedstock from waste conglomerates such as: automotive shredder residue (ASR). ASR as well as its pyrolysis solid products, is a morphologically and chemically varied mixture, containing mineral materials, including hazardous heavy metals. The aim of the work is to generate fundamental knowledge on the conversion of the organic residues of the solid products after ASR's microwave pyrolysis, treated at various temperatures and with two different types of gasifying agent: pure steam or 3% (v/v) of oxygen. The research is conducted using a lab-scale, plug-flow gasifier, with an integrated scale for analysing mass loss changes over time of experiment, serving as macro TG at 950, 850 and 760 °C. The reaction rate of char decomposition was investigated, based on carbon conversion during gasification and pyrolysis stage. It was found in both fractions that char conversion rate decreases with the rise of external gas temperature, regardless of the gasifying agent. No significant differences between the reaction rates undergoing with steam and oxygen for char decomposition has been observed. This abnormal char behaviour might have been caused by the inhibiting effects of ash, especially alkali metals on char activity or due to deformation of char structure during microwave heating. Copyright © 2010 Elsevier B.V. All rights reserved.
Microwave pyrolysis of multilayer plastic waste (LDPE) using zeolite catalyst
NASA Astrophysics Data System (ADS)
Juliastuti, Sri Rachmania; Hendrianie, Nuniek; Ramadhan, Pandu Jati; Satria, Dama Husin
2017-05-01
To overcome the problem of garbage, especially plastic waste, environmental experts and scholars from various disciplines have conducted various studies and actions. One way to degrade the multilayer packaging plastic waste LDPE (Low Density Poliethylene) with microwave pyrolysis process by using natural zeolite catalysts. The purpose of this experiment was to determine the effect of temperature and time of microwave pyrolysis process by using natural zeolite catalyst to degrade the plastic waste LDPE and compare them. Pyrolysis process was done by using a closed glass reactor with a capacity of 500 ml, operated at a pressure of 1 atm and flowed nitrogen 0.5 1 / min. Plastic waste was LDPE, and natural zeolite was used as its catalyst. Sample was heated at temperature 300, 400, 500 or 550 °C and was kept during time variables of 45, 60, 75 and 90 minutes. Liquid product was analyzed by Gas Chromatography-Mass Spectrometry (GC-MS), raw material was analyzed by Fourier Transform Infrared (FTIR), and solid product was analyzed by X-Ray Fluorescene (XRF). From the experimental resulted in the best yield products of pyrolisis using natural zeolite at 550 °C and 90 minutes was 2.88 % of solid yield, 28.12 % of liquid yield and the highest hydrocarbon concentration of 19.02 %.
Upgrading of bio-oil from the pyrolysis of biomass over the rice husk ash catalysts
NASA Astrophysics Data System (ADS)
Sutrisno, B.; Hidayat, A.
2016-11-01
The pyrolysis oils are complex mixtures of organic compounds that exhibit a wide spectrum of chemical functionality, and generally contain some water. Their direct use as fuels may present some difficulties due to their high viscosity, poor heating value, corrosiveness and instability. For possible future use as replacements for hydrocarbon chemical feedstocks and fuels, the liquids will require considerable upgrading to improve its characteristics. By esterification of the bio oil as the upgrading method, the properties of the bio-oil could be improved. In the paper, the upgrading of a bio-oil obtained by pyrolysis was studied over rice husk ash catalysts. The raw bio-oil was produced by pyrolysis of rice husk.From the experiment results, it can be concluded that the densities of upgraded bio-oil were reduced from 1.24 to 0.95 g.cm-3, and the higherheating value increased from 16.0 to 27.2 MJ/kg and the acidity of upgraded bio-oil was also alleviated from 2.3 to 4.4. The results of gas chromatography-mass spectrometry (GC-MS) and FT-IR analysis showed that the ester compounds in the upgraded bio-oil increased. It is possible to improve the properties of bio-oil by esterifying the raw bio-oil.
Study of plasma off-gas treatment from spent ion exchange resin pyrolysis.
Castro, Hernán Ariel; Luca, Vittorio; Bianchi, Hugo Luis
2017-03-23
Polystyrene divinylbenzene-based ion exchange resins are employed extensively within nuclear power plants (NPPs) and research reactors for purification and chemical control of the cooling water system. To maintain the highest possible water quality, the resins are regularly replaced as they become contaminated with a range of isotopes derived from compromised fuel elements as well as corrosion and activation products including 14 C, 60 Co, 90 Sr, 129 I, and 137 Cs. Such spent resins constitute a major proportion (in volume terms) of the solid radioactive waste generated by the nuclear industry. Several treatment and conditioning techniques have been developed with a view toward reducing the spent resin volume and generating a stable waste product suitable for long-term storage and disposal. Between them, pyrolysis emerges as an attractive option. Previous work of our group suggests that the pyrolysis treatment of the resins at low temperatures between 300 and 350 °C resulted in a stable waste product with a significant volume reduction (>50%) and characteristics suitable for long-term storage and/or disposal. However, another important issue to take into account is the complexity of the off-gas generated during the process and the different technical alternatives for its conditioning. Ongoing work addresses the characterization of the ion exchange resin treatment's off-gas. Additionally, the application of plasma technology for the treatment of the off-gas current was studied as an alternative to more conventional processes utilizing oil- or gas-fired post-combustion chambers operating at temperatures in excess of 1000 °C. A laboratory-scale flow reactor, using inductively coupled plasma, operating under sub-atmospheric conditions was developed. Fundamental experiments using model compounds have been performed, demonstrating a high destruction and removal ratio (>99.99%) for different reaction media, at low reactor temperatures and moderate power consumption. The role of H 2 O as an important participant of the oxidation mechanisms in plasma conditions was established. The combination of both processes could represent a simple, safe, and effective alternative for treating spent ion exchange resins with a large reduction of generated gaseous byproducts in fuel cycle facilities where processes that utilize open flames are undesirable.
A Comprehensive Study on Pyrolysis Mechanism of Substituted β-O-4 Type Lignin Dimers.
Jiang, Xiaoyan; Lu, Qiang; Hu, Bin; Liu, Ji; Dong, Changqing; Yang, Yongping
2017-11-09
In order to understand the pyrolysis mechanism of β- O -4 type lignin dimers, a pyrolysis model is proposed which considers the effects of functional groups (hydroxyl, hydroxymethyl and methoxyl) on the alkyl side chain and aromatic ring. Furthermore, five specific β- O -4 type lignin dimer model compounds are selected to investigate their integrated pyrolysis mechanism by density functional theory (DFT) methods, to further understand and verify the proposed pyrolysis model. The results indicate that a total of 11 pyrolysis mechanisms, including both concerted mechanisms and homolytic mechanisms, might occur for the initial pyrolysis of the β- O -4 type lignin dimers. Concerted mechanisms are predominant as compared with homolytic mechanisms throughout unimolecular decomposition pathways. The competitiveness of the eleven pyrolysis mechanisms are revealed via different model compounds, and the proposed pyrolysis model is ranked in full consideration of functional groups effects. The proposed pyrolysis model can provide a theoretical basis to predict the reaction pathways and products during the pyrolysis process of β- O -4 type lignin dimers.
A Comprehensive Study on Pyrolysis Mechanism of Substituted β-O-4 Type Lignin Dimers
Jiang, Xiaoyan; Lu, Qiang; Hu, Bin; Liu, Ji; Dong, Changqing; Yang, Yongping
2017-01-01
In order to understand the pyrolysis mechanism of β-O-4 type lignin dimers, a pyrolysis model is proposed which considers the effects of functional groups (hydroxyl, hydroxymethyl and methoxyl) on the alkyl side chain and aromatic ring. Furthermore, five specific β-O-4 type lignin dimer model compounds are selected to investigate their integrated pyrolysis mechanism by density functional theory (DFT) methods, to further understand and verify the proposed pyrolysis model. The results indicate that a total of 11 pyrolysis mechanisms, including both concerted mechanisms and homolytic mechanisms, might occur for the initial pyrolysis of the β-O-4 type lignin dimers. Concerted mechanisms are predominant as compared with homolytic mechanisms throughout unimolecular decomposition pathways. The competitiveness of the eleven pyrolysis mechanisms are revealed via different model compounds, and the proposed pyrolysis model is ranked in full consideration of functional groups effects. The proposed pyrolysis model can provide a theoretical basis to predict the reaction pathways and products during the pyrolysis process of β-O-4 type lignin dimers. PMID:29120350
Pyrolysis temperature influences ameliorating effects of biochars on acidic soil.
Wan, Qing; Yuan, Jin-Hua; Xu, Ren-Kou; Li, Xing-Hui
2014-02-01
The biochars were prepared from straws of canola, corn, soybean, and peanut at different temperatures of 300, 500, and 700 °C by means of oxygen-limited pyrolysis.Amelioration effects of these biochars on an acidic Ultisol were investigated with incubation experiments, and application rate of biochars was 10 g/kg. The incorporation of these biochars induced the increase in soil pH, soil exchangeable base cations, base saturation, and cation exchange capacity and the decrease in soil exchangeable acidity and exchangeable Al. The ameliorating effects of biochars on acidic soil increased with increase in their pyrolysis temperature. The contribution of oxygen-containing functional groups on the biochars to their ameliorating effects on the acidic soil decreased with the rise in pyrolysis temperature, while the contribution from carbonates in the biochars changed oppositely. The incorporation of the biochars led to the decrease in soil reactive Al extracted by 0.5mol/L CuCl2, and the content of reactive Al was decreased with the increase in pyrolysis temperature of incorporated biochars. The biochars generated at 300 °C increased soil organically complexed Al due to ample quantity of oxygen-containing functional groups such as carboxylic and phenolic groups on the biochars, while the biochars generated at 500 and 700 °C accelerated the transformation of soil exchangeable Al to hydroxyl-Al polymers due to hydrolysis of Al at higher pH. Therefore, the crop straw-derived biochars can be used as amendments for acidic soils and the biochars generated at relatively high temperature have great ameliorating effects on the soils.
Cho, Dong-Wan; Cho, Seong-Heon; Song, Hocheol; Kwon, Eilhann E
2015-01-01
This work mainly presents the influence of CO2 as a reaction medium in the thermo-chemical process (pyrolysis) of waste biomass. Our experimental work mechanistically validated two key roles of CO2 in pyrolysis of biomass. For example, CO2 expedited the thermal cracking of volatile organic compounds (VOCs) evolved from the thermal degradation of spent coffee ground (SCG) and reacted with VOCs. This enhanced thermal cracking behavior and reaction triggered by CO2 directly led to the enhanced generation of CO (∼ 3000%) in the presence of CO2. As a result, this identified influence of CO2 also directly led to the substantial decrease (∼ 40-60%) of the condensable hydrocarbons (tar). Finally, the morphologic change of biochar was distinctive in the presence of CO2. Therefore, a series of the adsorption experiments with dye were conducted to preliminary explore the physico-chemical properties of biochar induced by CO2. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jantschke, A.; Fischer, C.; Hensel, R.; Braun, H.-G.; Brunner, E.
2014-09-01
A novel strategy for a directed nanoparticle coupling to isolated Stephanopyxis turris valves is presented. After pyrolysis, the valves exhibit incomplete wetting due to their characteristic T-shaped profiles as a prerequisite for a regioselective coupling reaction. A micromanipulation system allows for precise handling and their immobilization onto an adhesive substrate and manipulation into arrays.A novel strategy for a directed nanoparticle coupling to isolated Stephanopyxis turris valves is presented. After pyrolysis, the valves exhibit incomplete wetting due to their characteristic T-shaped profiles as a prerequisite for a regioselective coupling reaction. A micromanipulation system allows for precise handling and their immobilization onto an adhesive substrate and manipulation into arrays. Electronic supplementary information (ESI) available: BET surface area, TG/DTA measurements, HIM images and a video of an array of six valves of S. turris in a wetting experiment as well as a 3D animation based on CLSM measurements. See DOI: 10.1039/c4nr02662d
Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor.
Park, Dong Kyoo; Kim, Sang Done; Lee, See Hoon; Lee, Jae Goo
2010-08-01
Co-pyrolysis characteristics of sawdust and coal blend were determined in TGA and a fixed bed reactor. The yield and conversion of co-pyrolysis of sawdust and coal blend based on volatile matters are higher than those of the sum of sawdust and coal individually. Form TGA experiments, weight loss rate of sawdust and coal blend increases above 400 degrees C and additional weight loss was observed at 700 degrees C. In a fixed bed at isothermal condition, the synergy to produce more volatiles is appeared at 500-700 degrees C, and the maximum synergy exhibits with a sawdust blending ratio of 0.6 at 600 degrees C. The gas product yields remarkably increase at lower temperature range by reducing tar yield. The CO yield increases up to 26% at 400 degrees C and CH(4) yield increases up to 62% at 600 degrees C compared with the calculated value from the additive model. (c) 2010 Elsevier Ltd. All rights reserved.
Characteristics of oily sludge combustion in circulating fluidized beds.
Zhou, Lingsheng; Jiang, Xiumin; Liu, Jianguo
2009-10-15
Incineration of oily sludge in circulating fluidized beds may be an effective way for its management in some cases. The objective of the present paper is to investigate combustion characteristics of oily sludge, which would be helpful and useful for the design and simulation of a circulating fluidized bed. Firstly, the pyrolysis and combustion of oily sludge were studied through some thermal analyses, which included the thermogravimetric (TG) analysis and the differential thermal analytical (DTA) analysis. It was found that the combustion of oily sludge might be the combustion of its pyrolysis products. Secondly, an experiment for measuring of main components of the volatile from oily sludge pyrolysis was carried out. Some mathematic correlations about the compositions of volatile from oily sludge devolatilization were achieved from the experimental results. Finally, the combustion characteristics of oily sludge was studied in a lab-scale circulating fluidized bed, which could obtain some information about the location of release and combustion of the volatiles.
Enhancing biogas production of corn stover by fast pyrolysis pretreatment.
Wang, Fang; Zhang, Deli; Wu, Houkai; Yi, Weiming; Fu, Peng; Li, Yongjun; Li, Zhihe
2016-10-01
A new thermo-chemical pretreatment by a lower temperature fast pyrolysis (LTFP) was applied to promote anaerobic digestion (AD) efficiency of corn stover (CS). The pretreatment experiment was performed by a fluidized bed pyrolysis reactor at 180, 200 and 220°C with a carrier gas flow rate of 4 and 3m(3)/h. The components characteristics, Scanning Electron Microscope (SEM) images and Crystal Intensity (CrI) of the pretreated CS were tested to explore effectiveness of the pretreatment. The results showed that the cumulative methane production at 180°C for 4 and 3m(3)/h were 199.8 and 200.3mL/g TS, respectively. As compared to the untreated CS, the LTFP pretreatment significantly (a<0.05) increased the methane production by 18.07% and 18.33%, respectively. Methane production was well fitted by the Gompertz models, and the maximum methane potential and AD efficiency was obtained at 180°C for 3m(3)/h. Copyright © 2016 Elsevier Ltd. All rights reserved.
Steam thermolysis of tire shreds: modernization in afterburning of accompanying gas with waste steam
NASA Astrophysics Data System (ADS)
Kalitko, V. A.
2010-03-01
On the basis of experience in the commercial operation of tire-shred steam thermolysis in EnresTec Inc. (Taiwan) producing high-grade commercial carbon, liquid pyrolysis fuel, and accompanying fuel gas by this method, we have proposed a number of engineering solutions and calculated-analytical substantiations for modernization and intensification of the process by afterburning the accompanying gas with waste steam condensable in the scrubber of water gas cleaning of afterburning products. The condensate is completely freed of the organic pyrolysis impurities and the necessity of separating it from the liquid fuel, as is the case with the active process, is excluded.
Effects of Feedstock and Pyrolysis Temperature on Biochar Adsorption of Ammonium and Nitrate
Gai, Xiapu; Wang, Hongyuan; Liu, Jian; Zhai, Limei; Liu, Shen; Ren, Tianzhi; Liu, Hongbin
2014-01-01
Biochar produced by pyrolysis of biomass can be used to counter nitrogen (N) pollution. The present study investigated the effects of feedstock and temperature on characteristics of biochars and their adsorption ability for ammonium N (NH4 +-N) and nitrate N (NO3 −-N). Twelve biochars were produced from wheat-straw (W-BC), corn-straw (C-BC) and peanut-shell (P-BC) at pyrolysis temperatures of 400, 500, 600 and 700°C. Biochar physical and chemical properties were determined and the biochars were used for N sorption experiments. The results showed that biochar yield and contents of N, hydrogen and oxygen decreased as pyrolysis temperature increased from 400°C to 700°C, whereas contents of ash, pH and carbon increased with greater pyrolysis temperature. All biochars could sorb substantial amounts of NH4 +-N, and the sorption characteristics were well fitted to the Freundlich isotherm model. The ability of biochars to adsorb NH4 +-N followed: C-BC>P-BC>W-BC, and the adsorption amount decreased with higher pyrolysis temperature. The ability of C-BC to sorb NH4 +-N was the highest because it had the largest cation exchange capacity (CEC) among all biochars (e.g., C-BC400 with a CEC of 38.3 cmol kg−1 adsorbed 2.3 mg NH4 +-N g−1 in solutions with 50 mg NH4 + L−1). Compared with NH4 +-N, none of NO3 −-N was adsorbed to biochars at different NO3 − concentrations. Instead, some NO3 −-N was even released from the biochar materials. We conclude that biochars can be used under conditions where NH4 +-N (or NH3) pollution is a concern, but further research is needed in terms of applying biochars to reduce NO3 −-N pollution. PMID:25469875
Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate.
Gai, Xiapu; Wang, Hongyuan; Liu, Jian; Zhai, Limei; Liu, Shen; Ren, Tianzhi; Liu, Hongbin
2014-01-01
Biochar produced by pyrolysis of biomass can be used to counter nitrogen (N) pollution. The present study investigated the effects of feedstock and temperature on characteristics of biochars and their adsorption ability for ammonium N (NH4(+)-N) and nitrate N (NO3(-)-N). Twelve biochars were produced from wheat-straw (W-BC), corn-straw (C-BC) and peanut-shell (P-BC) at pyrolysis temperatures of 400, 500, 600 and 700°C. Biochar physical and chemical properties were determined and the biochars were used for N sorption experiments. The results showed that biochar yield and contents of N, hydrogen and oxygen decreased as pyrolysis temperature increased from 400°C to 700°C, whereas contents of ash, pH and carbon increased with greater pyrolysis temperature. All biochars could sorb substantial amounts of NH4(+)-N, and the sorption characteristics were well fitted to the Freundlich isotherm model. The ability of biochars to adsorb NH4(+)-N followed: C-BC>P-BC>W-BC, and the adsorption amount decreased with higher pyrolysis temperature. The ability of C-BC to sorb NH4(+)-N was the highest because it had the largest cation exchange capacity (CEC) among all biochars (e.g., C-BC400 with a CEC of 38.3 cmol kg(-1) adsorbed 2.3 mg NH4(+)-N g(-1) in solutions with 50 mg NH4(+) L(-1)). Compared with NH4(+)-N, none of NO3(-)-N was adsorbed to biochars at different NO3(-) concentrations. Instead, some NO3(-)-N was even released from the biochar materials. We conclude that biochars can be used under conditions where NH4(+)-N (or NH3) pollution is a concern, but further research is needed in terms of applying biochars to reduce NO3(-)-N pollution.
A reconnaissance study of 13C-13C clumping in ethane from natural gas
NASA Astrophysics Data System (ADS)
Clog, Matthieu; Lawson, Michael; Peterson, Brian; Ferreira, Alexandre A.; Santos Neto, Eugenio V.; Eiler, John M.
2018-02-01
Ethane is the second most abundant alkane in most natural gas reservoirs. Its bulk isotopic compositions (δ13C and δD) are used to understand conditions and progress of cracking reactions that lead to the accumulation of hydrocarbons. Bulk isotopic compositions are dominated by the concentrations of singly-substituted isotopologues (13CH3-12CH3 for δ13C and 12CDH2-12CH3 for δD). However, multiply-substituted isotopologues can bring additional independent constraints on the origins of natural ethane. The 13C2H6 isotopologue is particularly interesting as it can potentially inform the distribution of 13C atoms in the parent biomolecules whose thermal cracking lead to the production of natural gas. This work presents methods to purify ethane from natural gas samples and quantify the abundance of the rare isotopologue 13C2H6 in ethane at natural abundances to a precision of ±0.12 ‰ using a high-resolution gas source mass spectrometer. To investigate the natural variability in carbon-carbon clumping, we measured twenty-five samples of thermogenic ethane from a range of geological settings, supported by two hydrous pyrolysis of shales experiments and a dry pyrolysis of ethane experiment. The natural gas samples exhibit a range of 'clumped isotope' signatures (Δ13C2H6) at least 30 times larger than our analytical precision, and significantly larger than expected for thermodynamic equilibration of the carbon-carbon bonds during or after formation of ethane, inheritance from the distribution of isotopes in organic molecules or different extents of cracking of the source. However we show a relationship between the Δ13C2H6 and the proportion of alkanes in natural gas samples, which we believe can be associated to the extent of secondary ethane cracking. This scenario is consistent with the results of laboratory experiments, where breaking down ethane leaves the residue with a low Δ13C2H6 compared to the initial gas. Carbon-carbon clumping is therefore a new potential tracer suitable for the study of kinetic processes associated with natural gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baird, Lance Awender; Brandvold, Timothy A.
Processes and apparatuses for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil are provided herein. An exemplary process for washing a spent ion exchange bed employed in purification of biomass-derived pyrolysis oil includes the step of providing a ion-depleted pyrolysis oil stream having an original oxygen content. The ion-depleted pyrolysis oil stream is partially hydrotreated to reduce the oxygen content thereof, thereby producing a partially hydrotreated pyrolysis oil stream having a residual oxygen content that is less than the original oxygen content. At least a portion of the partially hydrotreated pyrolysis oil stream is passed throughmore » the spent ion exchange bed. Water is passed through the spent ion exchange bed after passing at least the portion of the partially hydrotreated pyrolysis oil stream therethrough.« less
Quality improvement of pyrolysis oil from waste rubber by adding sawdust.
Wang, Wen-liang; Chang, Jian-min; Cai, Li-ping; Shi, Sheldon Q
2014-12-01
This work was aimed at improving the pyrolysis oil quality of waste rubber by adding larch sawdust. Using a 1 kg/h stainless pyrolysis reactor, the contents of sawdust in rubber were gradually increased from 0%, 50%, 100% and 200% (wt%) during the pyrolysis process. Using a thermo-gravimetric (TG) analyzer coupled with Fourier transform infrared (FTIR) analysis of evolving products (TG-FTIR), the weight loss characteristics of the heat under different mixtures of sawdust/rubber were observed. Using the pyrolysis-gas chromatography (GC)-mass spectrometry (Py-GC/MS), the vapors from the pyrolysis processes were collected and the compositions of the vapors were examined. During the pyrolysis process, the recovery of the pyrolysis gas and its composition were measured in-situ at a reaction temperature of 450 °C and a retaining time of 1.2s. The results indicated that the efficiency of pyrolysis was increased and the residual carbon was reduced as the percentage of sawdust increased. The adding of sawdust significantly improved the pyrolysis oil quality by reducing the polycyclic aromatic hydrocarbons (PAHs) and nitrogen and sulfur compounds contents, resulting in an improvement in the combustion efficiency of the pyrolysis oil. Copyright © 2014 Elsevier Ltd. All rights reserved.
Raymond Hansen Photo of Raymond Hansen Raymond Hansen Industrial Research Equipment Technician Pyrolysis Areas of Expertise Industrial equipment fabrication specialist Pilot plant operator/trainer Education Industrial Science Program, Red Rocks Community College, 2006-present Professional Experience
Reprint of: Pyrolysis technologies for municipal solid waste: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dezhen, E-mail: chendezhen@tongji.edu.cn; Yin, Lijie; Wang, Huan
2015-03-15
Highlights: • MSW pyrolysis reactors, products and environmental impacts are reviewed. • MSW pyrolysis still has to deal with flue gas emissions and products’ contamination. • Definition of standardized products is suggested to formalize MSW pyrolysis technology. • Syngas is recommended to be the target product for single MSW pyrolysis technology. - Abstract: Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis inmore » regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO{sub 2} and NH{sub 3}, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested.« less
Pyrolysis technologies for municipal solid waste: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dezhen, E-mail: chendezhen@tongji.edu.cn; Yin, Lijie; Wang, Huan
2014-12-15
Highlights: • MSW pyrolysis reactors, products and environmental impacts are reviewed. • MSW pyrolysis still has to deal with flue gas emissions and products’ contamination. • Definition of standardized products is suggested to formalize MSW pyrolysis technology. • Syngas is recommended to be the target product for single MSW pyrolysis technology. - Abstract: Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis inmore » regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO{sub 2} and NH{sub 3}, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested.« less
Lewan, Michael D.; Birdwell, Justin E.; Baez, Luis; Beeney, Ken; Sonnenberg, Steve
2013-01-01
Understanding changes in petrophysical and geochemical parameters during source rock thermal maturation is a critical component in evaluating source-rock petroleum accumulations. Natural core data are preferred, but obtaining cores that represent the same facies of a source rock at different thermal maturities is seldom possible. An alternative approach is to induce thermal maturity changes by laboratory pyrolysis on aliquots of a source-rock sample of a given facies of interest. Hydrous pyrolysis is an effective way to induce thermal maturity on source-rock cores and provide expelled oils that are similar in composition to natural crude oils. However, net-volume increases during bitumen and oil generation result in expanded cores due to opening of bedding-plane partings. Although meaningful geochemical measurements on expanded, recovered cores are possible, the utility of the core for measuring petrophysical properties relevant to natural subsurface cores is not suitable. This problem created during hydrous pyrolysis is alleviated by using a stainless steel uniaxial confinement clamp on rock cores cut perpendicular to bedding fabric. The clamp prevents expansion just as overburden does during natural petroleum formation in the subsurface. As a result, intact cores can be recovered at various thermal maturities for the measurement of petrophysical properties as well as for geochemical analyses. This approach has been applied to 1.7-inch diameter cores taken perpendicular to the bedding fabric of a 2.3- to 2.4-inch thick slab of Mahogany oil shale from the Eocene Green River Formation. Cores were subjected to hydrous pyrolysis at 360 °C for 72 h, which represents near maximum oil generation. One core was heated unconfined and the other was heated in the uniaxial confinement clamp. The unconfined core developed open tensile fractures parallel to the bedding fabric that result in a 38 % vertical expansion of the core. These open fractures did not occur in the confined core, but short, discontinuous vertical fractures on the core periphery occurred as a result of lateral expansion.
Zhang, Yanhong; Huang, Hong; Xia, Zhengbin; Chen, Huanqin
2008-07-01
Thermal degradation of pyrolysis of waste circuit boards was investigated by high-resolution pyrolysis gas chromatography-mass spectrometry (PyGC-MS) and thermogravimetry (TG). In helium atmosphere, the products of FR-4 waste printed circuit board were pyrolyzed at 350, 450, 550, 650, and 750 degrees degrees C, separately, and the pyrolysis products were identified by online MS. The results indicated that the pyrolysis products of the FR-4 waste circuit board were three kinds of substances, such as the low boiling point products, phenol, bisphenol and their related products. Moreover, under 300 degrees degrees C, only observed less pyrolysis products. As the increase of pyrolysis temperature, the relative content of the low boiling point products increased. In the range of 450-650 degrees degrees C, the qualitative analysis and character were similar, and the relative contents of phenol and bisphenol were higher. The influence of pyrolysis temperature on pyrolyzate yields was studied. On the basis of the pyrolyzate profile and the dependence of pyrolyzate yields on pyrolysis temperature, the thermal degradation mechanism of brominated epoxy resin was proposed.
NASA Astrophysics Data System (ADS)
Izzatie, N. I.; Basha, M. H.; Uemura, Y.; Hashim, M. S. M.; Amin, N. A. M.; Hamid, M. F.
2017-10-01
In this work, co-pyrolysis of rice straw and polyethylene terephthalate (PET) was carried out at different temperatures (450,500,550, and 600°C) at ratio 1:1 by using fixed bed drop-type pyrolyzer. The purpose of this work is to determine the effect of pyrolysis temperature on the product yield. As the temperature increased, the pyrolysis oil increased until it reaches certain high temperature (600°C), the pyrolysis oil decreased as of more NCG were produced. The temperature 550°C is considered as the optimum pyrolysis temperature since it produced the highest amount of pyrolysis oil with 36 wt.%. In pyrolysis oil, the calorific value (13.98kJ/g) was low because of the presence of high water content (52.46 wt.%). Main chemicals group from pyrolysis oil were an aldehyde, ketones, acids, aromatics, and phenol and all compound have abundant of hydrogen and carbon were identified. Co-pyrolysis of rice straw and PET produced a higher amount of carbon oxides and recycling back the NCG could increase liquid and char yields.
Conversion of wood residues to diesel fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuester, J.L.
1981-01-01
The basic approach is indirect liquefaction, i.e., thermal gasification followed by catalytic liquefaction. The indirect approach results in separation of the oxygen in the biomass feedstock, i.e., oxygenated compounds do not appear in the liquid hydrocarbon fuel product. The general conversion scheme is shown. The process is capable of accepting a wide variety of feedstocks. Potential products include medium quality gas, normal propanol, paraffinic fuel and/or high octane gasoline. A flow diagram of the continuous laboratory unit is shown. A fluidized bed pyrolysis system is used for gasification. Capacity is about 10 lbs/h of feedstock. The pyrolyzer can be fluidizedmore » with recycle pyrolysis gas, steam or recycle liquefaction system off gas or some combination thereof. Tars are removed in a wet scrubber. Unseparated pyrolysis gases are utilized as feed to a modified Fischer-Tropsch reactor. The liquid condensate from the reactor consists of a normal propanol-water phase and a paraffinic hydrocarbon phase. The reactor can be operated to optimize for either product. If a high octane gasoline is desired, the paraffinic fuel is passed through a conventional catalytic reformer. The normal propanol could be used as a fuel extender if blended with the hydrocarbon fuel products. Off gases from the downstream reactors are of high quality due to the accumulation of low molecular weight paraffins.« less
Low oxygen biomass-derived pyrolysis oils and methods for producing the same
Marinangeli, Richard; Brandvold, Timothy A; Kocal, Joseph A
2013-08-27
Low oxygen biomass-derived pyrolysis oils and methods for producing them from carbonaceous biomass feedstock are provided. The carbonaceous biomass feedstock is pyrolyzed in the presence of a catalyst comprising base metal-based catalysts, noble metal-based catalysts, treated zeolitic catalysts, or combinations thereof to produce pyrolysis gases. During pyrolysis, the catalyst catalyzes a deoxygenation reaction whereby at least a portion of the oxygenated hydrocarbons in the pyrolysis gases are converted into hydrocarbons. The oxygen is removed as carbon oxides and water. A condensable portion (the vapors) of the pyrolysis gases is condensed to low oxygen biomass-derived pyrolysis oil.
Quality improvement of pyrolysis oil from waste rubber by adding sawdust
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wen-liang; Chang, Jian-min, E-mail: cjianmin@bjfu.edu.cn; Cai, Li-ping
Highlights: • Rubber-pyrolysis oil is difficult to be fuel due to high proportion of PAHs. • The efficiency of pyrolysis was increased as the percentage of sawdust increased. • The adding of sawdust improved pyrolysis oil quality by reducing the PAHs content. • Adding sawdust reduced nitrogen/sulfur in oil and was easier to convert to diesel. - Abstract: This work was aimed at improving the pyrolysis oil quality of waste rubber by adding larch sawdust. Using a 1 kg/h stainless pyrolysis reactor, the contents of sawdust in rubber were gradually increased from 0%, 50%, 100% and 200% (wt%) during themore » pyrolysis process. Using a thermo-gravimetric (TG) analyzer coupled with Fourier transform infrared (FTIR) analysis of evolving products (TG–FTIR), the weight loss characteristics of the heat under different mixtures of sawdust/rubber were observed. Using the pyrolysis–gas chromatography (GC)–mass spectrometry (Py–GC/MS), the vapors from the pyrolysis processes were collected and the compositions of the vapors were examined. During the pyrolysis process, the recovery of the pyrolysis gas and its composition were measured in-situ at a reaction temperature of 450 °C and a retaining time of 1.2 s. The results indicated that the efficiency of pyrolysis was increased and the residual carbon was reduced as the percentage of sawdust increased. The adding of sawdust significantly improved the pyrolysis oil quality by reducing the polycyclic aromatic hydrocarbons (PAHs) and nitrogen and sulfur compounds contents, resulting in an improvement in the combustion efficiency of the pyrolysis oil.« less
Experimental study on the heat transfer characteristics of waste printed circuit boards pyrolysis.
Ma, Hongting; Du, Na; Lin, Xueyin; Li, Chen; Lai, Junwen; Li, Zihao
2018-08-15
In order to study the appropriate and advanced technology for recycling waste printed circuit boards (PCBs), a fixed bed pyrolysis device with stirring function has been designed and developed. The effect of rotating speed on the temperature distribution and mass change in the pyrolysis process of FR-4 PCB has been analyzed. The heat transfer and pyrolysis characteristics of different granular layers with and without stirring have been investigated. The results indicate that the stirring can change the main way of heat transfer from conduction to convection in the PCB layers. As the increase of rotating speed, the temperature rising rate of material at the bottom of the pyrolysis furnace gradually decreases, while the heating rate is increasing at the upper layer, and the temperature difference between the upper and bottom layers is gradually reduced. When the rotating speed varies from 0r/min to 18r/min, the weight loss of the material increases from 3.97% to 6.76%, and the overall pyrolysis degree is improved. During the pyrolysis process, the material layer can be divided into three zones along the vertical direction, namely complete pyrolysis zone, partial pyrolysis zone and non-pyrolysis zone. As the rotating speed is 0r/min, the thickness of each zones is 6cm, 6cm and 3cm, respectively. However, when the rotating speed is increased to 18r/min, the non-pyrolysis zone disappears, and the thickness of complete pyrolysis zone and partial pyrolysis zone increase to 9cm and 6cm, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.
Girardin, Bertrand; Fontaine, Gaëlle; Duquesne, Sophie; Försth, Michael; Bourbigot, Serge
2015-11-20
The pyrolysis of solid polymeric materials is a complex process that involves both chemical and physical phenomena such as phase transitions, chemical reactions, heat transfer, and mass transport of gaseous components. For modeling purposes, it is important to characterize and to quantify the properties driving those phenomena, especially in the case of flame-retarded materials. In this study, protocols have been developed to characterize the thermal conductivity and the heat capacity of an ethylene-vinyl acetate copolymer (EVA) flame retarded with aluminum tri-hydroxide (ATH). These properties were measured for the various species identified across the decomposition of the material. Namely, the thermal conductivity was found to decrease as a function of temperature before decomposition whereas the ceramic residue obtained after the decomposition at the steady state exhibits a thermal conductivity as low as 0.2 W/m/K. The heat capacity of the material was also investigated using both isothermal modulated Differential Scanning Calorimetry (DSC) and the standard method (ASTM E1269). It was shown that the final residue exhibits a similar behavior to alumina, which is consistent with the decomposition pathway of EVA/ATH. Besides, the two experimental approaches give similar results over the whole range of temperatures. Moreover, the optical properties before decomposition and the heat capacity of the decomposition gases were also analyzed. Those properties were then used as input data for a pyrolysis model in order to predict gasification experiments. Mass losses of gasification experiments were well predicted, thus validating the characterization of the thermo-physical properties of the material.
Girardin, Bertrand; Fontaine, Gaëlle; Duquesne, Sophie; Försth, Michael; Bourbigot, Serge
2015-01-01
The pyrolysis of solid polymeric materials is a complex process that involves both chemical and physical phenomena such as phase transitions, chemical reactions, heat transfer, and mass transport of gaseous components. For modeling purposes, it is important to characterize and to quantify the properties driving those phenomena, especially in the case of flame-retarded materials. In this study, protocols have been developed to characterize the thermal conductivity and the heat capacity of an ethylene-vinyl acetate copolymer (EVA) flame retarded with aluminum tri-hydroxide (ATH). These properties were measured for the various species identified across the decomposition of the material. Namely, the thermal conductivity was found to decrease as a function of temperature before decomposition whereas the ceramic residue obtained after the decomposition at the steady state exhibits a thermal conductivity as low as 0.2 W/m/K. The heat capacity of the material was also investigated using both isothermal modulated Differential Scanning Calorimetry (DSC) and the standard method (ASTM E1269). It was shown that the final residue exhibits a similar behavior to alumina, which is consistent with the decomposition pathway of EVA/ATH. Besides, the two experimental approaches give similar results over the whole range of temperatures. Moreover, the optical properties before decomposition and the heat capacity of the decomposition gases were also analyzed. Those properties were then used as input data for a pyrolysis model in order to predict gasification experiments. Mass losses of gasification experiments were well predicted, thus validating the characterization of the thermo-physical properties of the material. PMID:28793682
Co-pyrolysis of rice straw and polypropylene using fixed-bed pyrolyzer
NASA Astrophysics Data System (ADS)
Izzatie, N. I.; Basha, M. H.; Uemura, Y.; Mazlan, M. A.; Hashim, M. S. M.; Amin, N. A. M.; Hamid, M. F.
2016-11-01
The present work encompasses the impact of temperature (450, 500, 550, 600 °C) on the properties of pyrolysis oil and on other product yield for the co-pyrolysis of Polypropylene (PP) plastics and rice straw. Co-pyrolysis of PP plastic and rice straw were conducted in a fixed-bed drop type pyrolyzer under an inert condition to attain maximum oil yield. Physically, the pyrolysis oil is dark-brown in colour with free flowing and has a strong acrid smell. Copyrolysis between these typically obtained in maximum pyrolysis oil yields up to 69% by ratio 1:1 at a maximum temperature of 550 °C. From the maximum yield of pyrolysis oil, characterization of pyrolysis product and effect of biomass type of the composition were evaluated. Pyrolysis oil contains a high water content of 66.137 wt.%. Furfural, 2- methylnaphthalene, tetrahydrofuran (THF), toluene and acetaldehyde were the major organic compounds found in pyrolysis oil of rice straw mixed with PP. Bio-char collected from co-pyrolysis of rice straw mixed with PP plastic has high calorific value of 21.190 kJ/g and also carbon content with 59.02 wt.% and could contribute to high heating value. The non-condensable gases consist of hydrogen, carbon monoxide, and methane as the major gas components.
Char yield on pyrolysis of cellulose
A. Broido; Maxine A. Nelson
1975-01-01
Whether the pyrolysis of cellulose is conducted in an inert medium or in air, partial pyrolysis at a lower temperature increases the char yield subsequently obtained after 1 hour at 370°C. The results are consistent with a pyrolysis scheme in which two competing sequences of cellulose pyrolysis reactions are initiated by (1) an intermolecular dehydration leading to...
Honma, Sensho; Hata, Toshimitsu; Watanabe, Takashi
2014-01-01
The influence of catalysts on the compositions of char and pyrolysis oil obtained by pyrolysis of wood biomass with pulse current heating was studied. The effects of catalysts on product compositions were analyzed using GC-MS and TEM. The compositions of some aromatic compounds changed noticeably when using a metal oxide species as the catalyst. The coexistence or dissolution of amorphous carbon and iron oxide was observed in char pyrolyzed at 800°C with Fe3O4. Pyrolysis oil compositions changed remarkably when formed in the presence of a catalyst compared to that obtained from the uncatalyzed pyrolysis of wood meal. We observed a tendency toward an increase in the ratio of polyaromatic hydrocarbons in the pyrolysis oil composition after catalytic pyrolysis at 800°C. Pyrolysis of biomass using pulse current heating and an adequate amount of catalyst is expected to yield a higher content of specific polyaromatic compounds. PMID:25614894
A Comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass.
Wang, Nan; Tahmasebi, Arash; Yu, Jianglong; Xu, Jing; Huang, Feng; Mamaeva, Alisa
2015-08-01
Microwave (MW) pyrolysis of algal and lignocellulosic biomass samples were studied using a modified domestic oven. The pyrolysis temperature was recorded continuously by inserting a thermocouple into the samples. Temperatures as high as 1170 and 1015°C were achieved for peanut shell and Chlorella vulgaris. The activation energy for MW pyrolysis was calculated by Coats-Redfern method and the values were 221.96 and 214.27kJ/mol for peanut shell and C. vulgaris, respectively. Bio-oil yields reached to 27.7wt.% and 11.0wt.% during pyrolysis of C. vulgaris and peanut shell, respectively. The bio-oil samples from pyrolysis were analyzed by a gas chromatography-mass spectrometry (GC-MS). Bio-oil from lignocellulosic biomass pyrolysis contained more phenolic compounds while that from microalgae pyrolysis contained more nitrogen-containing species. Fourier transform infrared spectroscopy (FTIR) analysis results showed that concentration of OH, CH, CO, OCH3, and CO functional groups in char samples decreased significantly after pyrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Yongchun; Hensley, Alyssa; McEwen, Jean-Sabin
Catalytic fast pyrolysis is the most promising approach for biofuel production, due to its simple process and versatility to handle lignocellulosic biomass feedstocks with varying and complex compositions. Compared with in situ catalytic fast pyrolysis, ex situ catalytic pyrolysis has the flexibility of optimizing the pyrolysis step and catalytic process individually to improve the quality of pyrolysis oil (stability, oxygen content, acid number, etc.) and to maximize the carbon efficiency in the conversion of biomass to pyrolysis oil. Hydrodeoxygenation is one of the key catalytic functions in ex situ catalytic fast pyrolysis. Recently, Fe-based catalysts have been reported to exhibitmore » superior catalytic properties in hydrodeoxygenation of model compounds in pyrolysis oil, which potentially makes the ex situ pyrolysis of biomass commercially viable due to the abundance and low cost of Fe. Here, we briefly summarize the recent progress on Fe-based catalysts for hydrodeoxygenation of biomass, and provide perspectives on how to further improve Fe-based catalysts (activity and stability) for their potential applications in the emerging area of biomass conversion.« less
Lewan, Michael D.; Dolan, Michael P.; Curtis, John B.
2014-01-01
The amount of oil that maturing source rocks expel is expressed as their expulsion efficiency, which is usually stated in milligrams of expelled oil per gram of original total organic carbon (TOCO). Oil-expulsion efficiency can be determined by heating thermally immature source rocks in the presence of liquid water (i.e., hydrous pyrolysis) at temperatures between 350°C and 365°C for 72 hr. This pyrolysis method generates oil that is compositionally similar to natural crude oil and expels it by processes operative in the subsurface. Consequently, hydrous pyrolysis provides a means to determine oil-expulsion efficiencies and the rock properties that influence them. Smectite in source rocks has previously been considered to promote oil generation and expulsion and is the focus of this hydrous-pyrolysis study involving a representative sample of smectite-rich source rock from the Eocene Kreyenhagen Shale in the San Joaquin Basin of California. Smectite is the major clay mineral (31 wt. %) in this thermally immature sample, which contains 9.4 wt. % total organic carbon (TOC) comprised of type II kerogen. Compared to other immature source rocks that lack smectite as their major clay mineral, the expulsion efficiency of the Kreyenhagen Shale was significantly lower. The expulsion efficiency of the Kreyenhagen whole rock was reduced 88% compared to that of its isolated kerogen. This significant reduction is attributed to bitumen impregnating the smectite interlayers in addition to the rock matrix. Within the interlayers, much of the bitumen is converted to pyrobitumen through crosslinking instead of oil through thermal cracking. As a result, smectite does not promote oil generation but inhibits it. Bitumen impregnation of the rock matrix and smectite interlayers results in the rock pore system changing from water wet to bitumen wet. This change prevents potassium ion (K+) transfer and dissolution and precipitation reactions needed for the conversion of smectite to illite. As a result, illitization only reaches 35% to 40% at 310°C for 72 hr and remains unchanged to 365°C for 72 hr. Bitumen generation before or during early illitization in these experiments emphasizes the importance of knowing when and to what degree illitization occurs in natural maturation of a smectite-rich source rock to determine its expulsion efficiency. Complete illitization prior to bitumen generation is common for Paleozoic source rocks (e.g., Woodford Shale and Retort Phosphatic Shale Member of the Phosphoria Formation), and expulsion efficiencies can be determined on immature samples by hydrous pyrolysis. Conversely, smectite is more common in Cenozoic source rocks like the Kreyenhagen Shale, and expulsion efficiencies determined by hydrous pyrolysis need to be made on samples that reflect the level of illitization at or near bitumen generation in the subsurface.
Toxicity of combustion products from burning polymers: development and evaluation of methods
Wright, P. L.; Adams, C. H.
1976-01-01
Laboratory and room-scale experiments were conducted with natural and synthetic polymers: cotton, paper, wood, wool, acetate, acrylic, nylon, and urethane. Smoke and off-gases from single materials were generated in a dual-compartment 110-liter exposure chamber. Multicomponent, composite fuel loads were burned within a 100 m3 facility subdivided into rooms. In chamber experiments, mortality depended on the amount of material burned, i.e., fuel consumption (FC). Conventional dose (FC)/mortality curves were obtained, and the amount of fuel required to produce 50% mortality (FC50) was calculated. With simple flame ignition, cotton was the only material that produced smoke concentrations lethal to rats; FC50 values for cotton ranged from 2 g to 9 g, depending on the configuration of the cotton sample burned. When supplemental conductive heat was added to flame ignition, the following FC50 values were obtained; nylon, 7 g; acrylic, 8 g; newsprint, 9 g; cotton, 10 g; and wood, 11 g. Mortality resulting from any given material depended upon the specific conditions employed for its thermal decomposition. Toxicity of off-gasses from pyrolysis of phosphorus-containing trimethylol propane—polyurethane foams was markedly decreased by addition of a flame ignition source. Further studies are needed to determine the possible relevance of single-material laboratory scale smoke toxicity experiments. Room-scale burns were conducted to assess the relative contributions of single materials to toxicity of smoke produced by a multicomponent self-perpetuating fire. Preliminary results suggest that this approach permits a realistic evaluation of the contribution of single materials to the toxicity of smoke from residential fires. ImagesFIGURE 2. PMID:1026420
Simultaneous biosorption of selenium, arsenic and molybdenum with modified algal-based biochars.
Johansson, Charlotte L; Paul, Nicholas A; de Nys, Rocky; Roberts, David A
2016-01-01
Ash disposal waters from coal-fired power stations present a challenging water treatment scenario as they contain high concentrations of the oxyanions Se, As and Mo which are difficult to remove through conventional techniques. In an innovative process, macroalgae can be treated with Fe and processed through slow pyrolysis into Fe-biochar which has a high affinity for oxyanions. However, the effect of production conditions on the efficacy of Fe-biochar is poorly understood. We produced Fe-biochar from two algal sources; "Gracilaria waste" (organic remnants after agar is extracted from cultivated Gracilaria) and the freshwater macroalgae Oedogonium. Pyrolysis experiments tested the effects of the concentration of Fe(3+) in pre-treatment, and pyrolysis temperatures, on the efficacy of the Fe-biochar. The efficacy of Fe-biochar increased with increasing concentrations of Fe(3+) in the pre-treatment solutions, and decreased with increasing pyrolysis temperatures. The optimized Fe-biochar for each biomass was produced by treatment with a 12.5% w/v Fe(3+) solution, followed by slow pyrolysis at 300 °C. The Fe-biochar produced in this way had higher a biosorption capacity for As and Mo (62.5-80.7 and 67.4-78.5 mg g(-1) respectively) than Se (14.9-38.8 mg g(-1)) in single-element mock effluents, and the Fe-biochar produced from Oedogonium had a higher capacity for all elements than the Fe-biochar produced from Gracilaria waste. Regardless, the optimal Fe-biochars from both biomass sources were able to effectively treat Se, As and Mo simultaneously in an ash disposal effluent from a power station. The production of Fe-biochar from macroalgae is a promising technique for treatment of complex effluents containing oxyanions. Copyright © 2015 Elsevier Ltd. All rights reserved.
COAL/POLYMER COPROCESSING WITH EFFICIENT USE OF HYDROGEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Linda J. Broadbelt; Matthew J. DeWitt; Hsi-Wu Wong
2000-09-30
The final project period was devoted to investigating the binary mixture pyrolysis of polypropylene and polystyrene. Their interactions were assessed in order to provide a baseline for experiments with multicomponent mixtures of polymers with coal. Pyrolysis of polypropylene, polystyrene and their binary mixture was investigated at temperatures of 350 C and 420 C with reaction times from 1 to 180 minutes. Two different loadings, 10 mg and 20 mg, were studied for neat polypropylene and polystyrene to assess the effect of total pressure on product yields and selectivities. For neat pyrolysis of polypropylene, total conversion was much higher at 420more » C, and no significant effect of loading on the total conversion was observed. Four classes of products, alkanes, alkenes, dienes, and aromatic compounds, were observed, and their distribution was explained by a typical free radical mechanism. For neat polystyrene pyrolysis, conversion reached approximately 75% at 350 C, while at 420 C the conversion reached a maximum around 90% at 10 minutes and decreased at longer times because of condensation reactions. The selectivities to major products were slightly different for the two different loadings due to the effect of total reaction pressure on secondary reactions. For binary mixture pyrolysis, the overall conversion was higher than the average of the two neat cases. The conversion of polystyrene remained the same, but a significant enhancement in the polypropylene conversion was observed. This suggests that the less reactive polypropylene was initiated by polystyrene-derived radicals. These results are summarized in detail in an attached manuscript that is currently in preparation. The other results obtained during the lifetime of this grant are documented in the set of attached manuscripts.« less
Reforming Biomass Derived Pyrolysis Bio-oil Aqueous Phase to Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukarakate, Calvin; Evans, Robert J.; Deutch, Steve
Fast pyrolysis and catalytic fast pyrolysis (CFP) of biomass produce a liquid product stream comprised of various classes of organic compounds having different molecule size and polarity. This liquid, either spontaneously in the case of catalytic fast pyrolysis or by water addition for the non-catalytic process separates into a non-polar organic-rich fraction and a highly polar water-rich fraction. The organic fraction can be used as a blendstock or feedstock for further processing in a refinery while, in the CFP process design, the aqueous phase is currently sent to wastewater treatment, which results in a loss of residual biogenic carbon presentmore » in this stream. Our work focuses on the catalytic conversion of the biogenic carbon in pyrolysis aqueous phase streams to produce hydrocarbons using a vertical micro-reactor coupled to a molecular beam mass spectrometer (MBMS). Furthermore, the MBMS provides real-time analysis of products while also tracking catalyst deactivation. The catalyst used in this work was HZSM-5, which upgraded the oxygenated organics in the aqueous fraction to fuels comprising small olefins and aromatic hydrocarbons. During processing the aqueous bio-oil fraction the HZSM-5 catalyst exhibited higher activity and coke resistance than those observed in similar experiments using biomass or whole bio-oils. Reduced coking is likely due to ejection of coke precursors from the catalyst pores that was enhanced by excess process water available for steam stripping. The water reacted with coke precursors to form phenol, methylated phenols, naphthol, and methylated naphthols. Conversion data shows that up to 40 wt% of the carbon in the feed stream is recovered as hydrocarbons.« less
Reforming Biomass Derived Pyrolysis Bio-oil Aqueous Phase to Fuels
Mukarakate, Calvin; Evans, Robert J.; Deutch, Steve; ...
2017-01-07
Fast pyrolysis and catalytic fast pyrolysis (CFP) of biomass produce a liquid product stream comprised of various classes of organic compounds having different molecule size and polarity. This liquid, either spontaneously in the case of catalytic fast pyrolysis or by water addition for the non-catalytic process separates into a non-polar organic-rich fraction and a highly polar water-rich fraction. The organic fraction can be used as a blendstock or feedstock for further processing in a refinery while, in the CFP process design, the aqueous phase is currently sent to wastewater treatment, which results in a loss of residual biogenic carbon presentmore » in this stream. Our work focuses on the catalytic conversion of the biogenic carbon in pyrolysis aqueous phase streams to produce hydrocarbons using a vertical micro-reactor coupled to a molecular beam mass spectrometer (MBMS). Furthermore, the MBMS provides real-time analysis of products while also tracking catalyst deactivation. The catalyst used in this work was HZSM-5, which upgraded the oxygenated organics in the aqueous fraction to fuels comprising small olefins and aromatic hydrocarbons. During processing the aqueous bio-oil fraction the HZSM-5 catalyst exhibited higher activity and coke resistance than those observed in similar experiments using biomass or whole bio-oils. Reduced coking is likely due to ejection of coke precursors from the catalyst pores that was enhanced by excess process water available for steam stripping. The water reacted with coke precursors to form phenol, methylated phenols, naphthol, and methylated naphthols. Conversion data shows that up to 40 wt% of the carbon in the feed stream is recovered as hydrocarbons.« less
Standardization for oxygen isotope ratio measurement - still an unsolved problem.
Kornexl; Werner; Gehre
1999-07-01
Numerous organic and inorganic laboratory standards were gathered from nine European and North American laboratories and were analyzed for their delta(18)O values with a new on-line high temperature pyrolysis system that was calibrated using Vienna standard mean ocean water (VSMOW) and standard light Antartic precipitation (SLAP) internationally distributed reference water samples. Especially for organic materials, discrepancies between reported and measured values were high, ranging up to 2 per thousand. The reasons for these discrepancies are discussed and the need for an exact and reliable calibration of existing reference materials, as well as for the establishment of additional organic and inorganic reference materials is stressed. Copyright 1999 John Wiley & Sons, Ltd.
Yang, Xiaoning; Sun, Lushi; Xiang, Jun; Hu, Song; Su, Sheng
2013-02-01
Plastics from waste electrical and electronic equipment (WEEE) have been an important environmental problem because these plastics commonly contain toxic halogenated flame retardants which may cause serious environmental pollution, especially the formation of carcinogenic substances polybrominated dibenzo dioxins/furans (PBDD/Fs), during treat process of these plastics. Pyrolysis has been proposed as a viable processing route for recycling the organic compounds in WEEE plastics into fuels and chemical feedstock. However, dehalogenation procedures are also necessary during treat process, because the oils collected in single pyrolysis process may contain numerous halogenated organic compounds, which would detrimentally impact the reuse of these pyrolysis oils. Currently, dehalogenation has become a significant topic in recycling of WEEE plastics by pyrolysis. In order to fulfill the better resource utilization of the WEEE plastics, the compositions, characteristics and dehalogenation methods during the pyrolysis recycling process of WEEE plastics were reviewed in this paper. Dehalogenation and the decomposition or pyrolysis of WEEE plastics can be carried out simultaneously or successively. It could be 'dehalogenating prior to pyrolysing plastics', 'performing dehalogenation and pyrolysis at the same time' or 'pyrolysing plastics first then upgrading pyrolysis oils'. The first strategy essentially is the two-stage pyrolysis with the release of halogen hydrides at low pyrolysis temperature region which is separate from the decomposition of polymer matrixes, thus obtaining halogenated free oil products. The second strategy is the most common method. Zeolite or other type of catalyst can be used in the pyrolysis process for removing organohalogens. The third strategy separate pyrolysis and dehalogenation of WEEE plastics, which can, to some degree, avoid the problem of oil value decline due to the use of catalyst, but obviously, this strategy may increase the cost of whole recycling process. Copyright © 2012 Elsevier Ltd. All rights reserved.
Catalytic pyrolysis of car tire waste using expanded perlite.
Kar, Y
2011-08-01
In this study, the non-catalytic and catalytic pyrolysis experiments were conducted on the sample of tire waste using expanded perlite as an additive material to determine especially the effect of temperature and catalyst-to-tire ratio on the products yields and the compositions and qualities of pyrolytic oils (NCPO and CPO). Non-catalytic studies, which were carried out under the certain conditions (a nitrogen flow of 100mL/min and a heating rate of 10°C/min), showed that the highest yield of pyrolytic oil (NCPO) was 60.02wt.% at 425°C. Then, the catalytic pyrolysis studies were carried out at catalyst-to-tire ratio range of 0.05-0.25 and the highest catalytic pyrolytic oil (CPO) yield was 65.11wt.% at the ratio of 0.10 with the yield increase of 8.48wt.% compared with the non-catalytic pyrolysis. Lastly, the pyrolytic oils were characterized with applying a various techniques such as elemental analyses and various chromatographic and spectroscopic techniques (GC-MS, (1)H NMR, FT-IR, etc.). The characterization results revealed that the pyrolytic oils which were complex mixtures of C(5)-C(15) organic compounds (predominantly aromatic compounds) and also the CPO compared to the NCPO was more similar to conventional fuels in view of the certain fuel properties. Copyright © 2011 Elsevier Ltd. All rights reserved.
Han, Yitong; Cao, Xi; Ouyang, Xin; Sohi, Saran P; Chen, Jiawei
2016-02-01
Magnetic biochar was made from peanut hull biomass using iron chloride in a simplified aqueous phase approach and pyrolysis at alternative peak temperatures (450-650 °C). Magnetic biochar showed an extreme capacity for adsorption of hexavalent chromium Cr (VI) from aqueous solution, which was 1-2 orders of magnitude higher compared to standard (non-magnetic) biochar from the same feedstock. Adsorption increased with pyrolysis temperature peaking at 77,542 mg kg(-1) in the sample pyrolysed at 650 °C. In contrast to magnetic biochar, the low adsorption capacity of standard biochar decreased with increasing pyrolysis temperature. The fine particle size of magnetic biochar and low aqueous pH were also important for adsorption. Surfaces of products from batch adsorption experiments were characterized by scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction, X-ray photoelectron spectroscopy and vibrating sample magnetometer. This revealed that γ-Fe2O3 was crucial to the properties (adsorbance and magnetism) of magnetic biochar. The removal mechanism was the Cr (VI) electrostatic attracted on protonated -OH on γ-Fe2O3 surface and it could be desorbed by alkaline solution. Findings suggest that pyrolysis has potential to create effective, magnetically recoverable adsorbents relevant to environmental application. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings
NASA Astrophysics Data System (ADS)
Keppler, Frank; Harper, David B.; Greule, Markus; Ott, Ulrich; Sattler, Tobias; Schöler, Heinz F.; Hamilton, John T. G.
2014-11-01
Controversy continues as to whether chloromethane (CH3Cl) detected during pyrolysis of Martian soils by the Viking and Curiosity Mars landers is indicative of organic matter indigenous to Mars. Here we demonstrate CH3Cl release (up to 8 μg/g) during low temperature (150-400°C) pyrolysis of the carbonaceous chondrite Murchison with chloride or perchlorate as chlorine source and confirm unequivocally by stable isotope analysis the extraterrestrial origin of the methyl group (δ2H +800 to +1100‰, δ13C -19.2 to +10‰,). In the terrestrial environment CH3Cl released during pyrolysis of organic matter derives from the methoxyl pool. The methoxyl pool in Murchison is consistent both in magnitude (0.044%) and isotope signature (δ2H +1054 +/- 626‰, δ13C +43.2 +/- 38.8‰,) with that of the CH3Cl released on pyrolysis. Thus CH3Cl emissions recorded by Mars lander experiments may be attributed to methoxyl groups in undegraded organic matter in meteoritic debris reaching the Martian surface being converted to CH3Cl with perchlorate or chloride in Martian soil. However we cannot discount emissions arising additionally from organic matter of indigenous origin. The stable isotope signatures of CH3Cl detected on Mars could potentially be utilized to determine its origin by distinguishing between terrestrial contamination, meteoritic infall and indigenous Martian sources.
Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings.
Keppler, Frank; Harper, David B; Greule, Markus; Ott, Ulrich; Sattler, Tobias; Schöler, Heinz F; Hamilton, John T G
2014-11-13
Controversy continues as to whether chloromethane (CH3Cl) detected during pyrolysis of Martian soils by the Viking and Curiosity Mars landers is indicative of organic matter indigenous to Mars. Here we demonstrate CH3Cl release (up to 8 μg/g) during low temperature (150-400°C) pyrolysis of the carbonaceous chondrite Murchison with chloride or perchlorate as chlorine source and confirm unequivocally by stable isotope analysis the extraterrestrial origin of the methyl group (δ(2)H +800 to +1100‰, δ(13)C -19.2 to +10‰,). In the terrestrial environment CH3Cl released during pyrolysis of organic matter derives from the methoxyl pool. The methoxyl pool in Murchison is consistent both in magnitude (0.044%) and isotope signature (δ(2)H +1054 ± 626‰, δ(13)C +43.2 ± 38.8‰,) with that of the CH3Cl released on pyrolysis. Thus CH3Cl emissions recorded by Mars lander experiments may be attributed to methoxyl groups in undegraded organic matter in meteoritic debris reaching the Martian surface being converted to CH3Cl with perchlorate or chloride in Martian soil. However we cannot discount emissions arising additionally from organic matter of indigenous origin. The stable isotope signatures of CH3Cl detected on Mars could potentially be utilized to determine its origin by distinguishing between terrestrial contamination, meteoritic infall and indigenous Martian sources.
Carbonized waste for the cut-down of environmental pollution with heavy metals
NASA Astrophysics Data System (ADS)
Gmucová, K.; Morvová, M.; Havránek, E.; Kliman, J.; Košinár, I.; Kunecová, D.; Malakhov, A. I.; Anisimov, Yu. S.; Morva, I.; Siváček, I.; Sýkorová, M.; Šatka, A.
2011-07-01
Nowadays, an increasing concern about the treatment and disposal of waters contaminated by toxic heavy metals is noticed. The toxic pollutants must be removed from the sewage water which then is fed back into the materials cycle. Any candidate technology should result in reusable by-products. With this in mind, the aim of the present study is to test a low cost procedure for utilization of the carbonized waste, a product of PET (polyethylene terephthalate) bottles pyrolysis on sand bedding, for this purpose. Both the water present in PET bottles waste and combustion exhaust probably contribute to the conversion of carbon char to activated carbon directly within the pyrolysis oven. Preliminary results, obtained for several heavy metal ions under laboratory conditions are presented and discussed. Adsorption of heavy metals on the carbonized PET waste is tested by both the electrochemical methods and X-ray fluorescence spectrometry. A simple desorption procedure for the regeneration of prepared active carbon is proposed.
NASA Astrophysics Data System (ADS)
Applin, D. M.; Izawa, M. R. M.; Cloutis, E. A.; Goltz, D.; Johnson, J. R.
2015-06-01
Small amounts of unidentified organic compounds have only recently been inferred on Mars despite strong reasons to expect significant concentrations and decades of searching. Based on X-ray diffraction and reflectance spectroscopic analyses we show that solid oxalic acid and its most common mineral salts are stable under the pressure and ultraviolet irradiation environment of the surface of Mars, and could represent a heretofore largely overlooked reservoir of organic carbon in the martian near-surface. In addition to the delivery to Mars by carbonaceous chondrites, oxalate minerals are among the predicted breakdown products of meteoritic organic matter delivered to the martian surface, as well as any endogenic organic carbon reaching the martian surface from the interior. A reinterpretation of pyrolysis experiments from the Viking, Phoenix, and Mars Science Laboratory missions shows that all are consistent with the presence of significant concentrations of oxalate minerals. Oxalate minerals could be important in numerous martian geochemical processes, including acting as a possible nitrogen sink (as ammonium oxalate), and contributing to the formation of “organic” carbonates, methane, and hydroxyl radicals.
Szczawiński, J; Tomaszewski, H; Jackowska-Tracz, A; Szczawińska, M E
2011-01-01
The aim of this study was to determine and compare the antimicrobial activity of UV radiation of wavelength 253.7 nm (used in typical germicidal lamps) against Staphylococcus aureus on the surfaces of conventionally produced white ceramic wall tiles (matt and shiny) and the same tiles coated with TiO2 using three different methods: RF diode sputtering, atmospheric pressure chemical vapour deposition (APCVD) and spray pyrolysis deposition (SPD). Results clearly indicate that the bactericidal action of UV radiation is much stronger on the surfaces of tiles coated with TiO2 than on the tiles uncovered. The strongest bactericidal effect of UV radiation was found for film prepared by APCVD. Results of experiments for shiny and matt tiles did not differ statistically. The use of ceramic wall tiles coated with TiO2 films in hospitals, veterinary clinics, laboratories, food processing plants and other places where UV radiation is applied for disinfection should greatly improve the efficiency of this treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaeger, C.; Huisken, F.; Henning, Th.
2009-05-01
Carbonaceous grains represent a major component of cosmic dust. In order to understand their formation pathways, they have been prepared in the laboratory by gas-phase condensation reactions such as laser pyrolysis and laser ablation. Our studies demonstrate that the temperature in the condensation zone determines the formation pathway of carbonaceous particles. At temperatures lower than 1700 K, the condensation by-products are mainly polycyclic aromatic hydrocarbons (PAHs) that are also the precursors or building blocks for the condensing soot grains. The low-temperature condensates contain PAH mixtures that are mainly composed of volatile three to five ring systems. At condensation temperatures highermore » than 3500 K, fullerene-like carbon grains and fullerene compounds are formed. Fullerene fragments or complete fullerenes equip the nucleating particles. Fullerenes can be identified as soluble components. Consequently, condensation products in cool and hot astrophysical environments such as cool and hot asymptotic giant branch stars or Wolf-Rayet stars should be different and should have distinct spectral properties.« less
Processes for converting lignocellulosics to reduced acid pyrolysis oil
Kocal, Joseph Anthony; Brandvold, Timothy A
2015-01-06
Processes for producing reduced acid lignocellulosic-derived pyrolysis oil are provided. In a process, lignocellulosic material is fed to a heating zone. A basic solid catalyst is delivered to the heating zone. The lignocellulosic material is pyrolyzed in the presence of the basic solid catalyst in the heating zone to create pyrolysis gases. The oxygen in the pyrolysis gases is catalytically converted to separable species in the heating zone. The pyrolysis gases are removed from the heating zone and are liquefied to form the reduced acid lignocellulosic-derived pyrolysis oil.
Astrobiological Implications of Titan Tholin in Methane Lakes
NASA Astrophysics Data System (ADS)
Khare, Bishun N.; McKay, C. P.; McPherson, S.; Cruikshank, D.; Nna-Mvondo, D.; Sekine, Y.
2010-10-01
We report here on our ongoing research in the Laboratory for Planetary Studies at NASA Ames Research Center dedicated to determine the degree of solubility of Titan tholin in the methane-ethane lakes. Our work is also directed toward confirming the presence of any astrobiologically significant molecules via hydrolysis and pyrolysis of a simulated lake sample. Our previous work conducted at Cornell University and subsequently in the Laboratory for Planetary Studies at NASA Ames Research Center has established that Titan tholin produces amino acids (Khare et al. Icarus 1986) on hydrolysis, and many compounds including adenine on pyrolysis (Khare et al. Adv. Space Res. 1984). Also, our previous work by Thompson et al. (Icarus 1991) has clearly indicated that when energy is supplied to Titan's atmospheric composition (methane and nitrogen), tholin results from hundreds of contemporary compounds, including highly reactive compounds such as azides and isocyanides. Cassini showed that photolysis of methane produces benzene and many polycyclic aromatic hydrocarbons, along with compounds with very high molecular weights (up to 10000 amu), resulting from the photolytic reactions of CH4 with nitrogen. These heavy aerosols, termed "tholins” by Sagan and Khare (Nature 1979), are also synthesized when Titan intercepts charged particles from the magnetosphere of Saturn. Tholins resulting from both of these syntheses eventually descend to the surface of Titan, where some quantity collects in the methane-ethane lakes. This research is supported by a grant from Planetary Atmospheres.
Identifying thermal breakdown products of thermoplastics.
Guillemot, Marianne; Oury, Benoît; Melin, Sandrine
2017-07-01
Polymers processed to produce plastic articles are subjected to temperatures between 150°C and 450°C or more during overheated processing and breakdowns. Heat-based processing of this nature can lead to emission of volatile organic compounds (VOCs) into the thermoplastic processing shop. In this study, laboratory experiments, qualitative and quantitative emissions measurement in thermoplastic factories were carried out. The first step was to identify the compounds released depending on the thermoplastic nature, the temperature and the type of process. Then a thermal degradation protocol that can extrapolate the laboratory results to industry scenarios was developed. The influence of three parameters on released thermal breakdown products was studied: the sample preparation methods-manual cutting, ambient, or cold grinding-the heating rate during thermal degradation-5, 10 20, and 50°C/min-and the decomposition method-thermogravimetric analysis and pyrolysis. Laboratory results were compared to atmospheric measurements taken at 13 companies to validate the protocol and thereby ensure its representativeness of industrial thermal processing. This protocol was applied to most commonly used thermoplastics to determine their thermal breakdown products and their thermal behaviour. Emissions data collected by personal exposure monitoring and sampling at the process emission area show airborne concentrations of detected compounds to be in the range of 0-3 mg/m 3 under normal operating conditions. Laser cutting or purging operations generate higher pollution levels in particular formaldehyde which was found in some cases at a concentration above the workplace exposure limit.
Geng, Jing; Wang, Wen-Liang; Yu, Yu-Xiang; Chang, Jian-Min; Cai, Li-Ping; Shi, Sheldon Q
2017-03-01
The composition of pyrolysis vapors obtained from alkali lignin pyrolysis with the additive of nickel formate was examined using the pyrolysis gas chromatography-mass spectrometry (Py-GC/MS). Characterization of bio-chars was performed using X-ray diffraction (XRD). Results showed that the nickel formate significantly increased liquid yield, simplified the types of alkali lignin pyrolysis products and increased individual component contents. The additive of nickel formate increased contents of alkylphenols and aromatics from alkali lignin pyrolysis. With an increase in temperature, a greater amount of the relative contents can be achieved. The nickel formate was thermally decomposed to form hydrogen, resulting in hydrodeoxygenation of alkali lignin during pyrolysis. It was also found that Ni is in favor of producing alkylphenols. The analysis based on the experimental result provided evidences used to propose reaction mechanism for pyrolysis of nickel formate-assisted alkali lignin. Copyright © 2016. Published by Elsevier Ltd.
The slow and fast pyrolysis of cherry seed.
Duman, Gozde; Okutucu, Cagdas; Ucar, Suat; Stahl, Ralph; Yanik, Jale
2011-01-01
The slow and fast pyrolysis of cherry seeds (CWS) and cherry seeds shells (CSS) was studied in fixed-bed and fluidized bed reactors at different pyrolysis temperatures. The effects of reactor type and temperature on the yields and composition of products were investigated. In the case of fast pyrolysis, the maximum bio-oil yield was found to be about 44 wt% at pyrolysis temperature of 500 °C for both CWS and CSS, whereas the bio yields were of 21 and 15 wt% obtained at 500 °C from slow pyrolysis of CWS and CSS, respectively. Both temperature and reactor type affected the composition of bio-oils. The results showed that bio-oils obtained from slow pyrolysis of CWS and CSS can be used as a fuel for combustion systems in industry and the bio-oil produced from fast pyrolysis can be evaluated as a chemical feedstock. Copyright © 2010 Elsevier Ltd. All rights reserved.
Effects of feedstock characteristics on microwave-assisted pyrolysis - A review.
Zhang, Yaning; Chen, Paul; Liu, Shiyu; Peng, Peng; Min, Min; Cheng, Yanling; Anderson, Erik; Zhou, Nan; Fan, Liangliang; Liu, Chenghui; Chen, Guo; Liu, Yuhuan; Lei, Hanwu; Li, Bingxi; Ruan, Roger
2017-04-01
Microwave-assisted pyrolysis is an important approach to obtain bio-oil from biomass. Similar to conventional electrical heating pyrolysis, microwave-assisted pyrolysis is significantly affected by feedstock characteristics. However, microwave heating has its unique features which strongly depend on the physical and chemical properties of biomass feedstock. In this review, the relationships among heating, bio-oil yield, and feedstock particle size, moisture content, inorganics, and organics in microwave-assisted pyrolysis are discussed and compared with those in conventional electrical heating pyrolysis. The quantitative analysis of data reported in the literature showed a strong contrast between the conventional processes and microwave based processes. Microwave-assisted pyrolysis is a relatively new process with limited research compared with conventional electrical heating pyrolysis. The lack of understanding of some observed results warrant more and in-depth fundamental research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yuan, Shuai; Dai, Zheng-hua; Zhou, Zhi-jie; Chen, Xue-li; Yu, Guang-suo; Wang, Fu-chen
2012-04-01
Rapid pyrolysis of rice straw (RS) and Shenfu bituminous coal (SB) separately, and rapid co-pyrolysis of RS/SB blends (mass ratio 1:4, 1:4, and 4:1), were carried out in a high-frequency furnace which can ensure both high heating rate and satisfying contact of fuel particles. Synergies between RS and SB during rapid co-pyrolysis were investigated. Intrinsic and morphological structures of residual char from co-pyrolysis, and their effects on gasification characteristics were also studied. Synergies occurred during rapid co-pyrolysis of RS and SB (RS/SB=1:4) resulting in decreasing char yields and increasing volatile yields. Synergies also happened during gasification of the char derived from co-pyrolysis of RS and SB with mass ratio of 1:4. The increased mass ratio of RS to SB did not only weaken synergies during co-pyrolysis, but significantly reduced the gasification rates of the co-pyrolysis char compared to the calculated values. Results can help to optimize co-conversion process of biomass/coal. Copyright © 2012 Elsevier Ltd. All rights reserved.
Studies on thermal decomposition behaviors of polypropylene using molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Huang, Jinbao; He, Chao; Tong, Hong; Pan, Guiying
2017-11-01
Polypropylene (PP) is one of the main components of waste plastics. In order to understand the mechanism of PP thermal decomposition, the pyrolysis behaviour of PP has been simulated from 300 to 1000 K in periodic boundary conditions by molecular dynamic method, based on AMBER force field. The simulation results show that the pyrolysis process of PP can mostly be divided into three stages: low temperature pyrolysis stage, intermediate temperature stage and high temperature pyrolysis stage. PP pyrolysis is typical of random main-chain scission, and the possible formation mechanism of major pyrolysis products was analyzed.
Evans, R.J.; Chum, H.L.
1998-10-13
A process is described for using fast pyrolysis in a carrier gas to convert a plastic waste feed stream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feed stream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.
Evans, Robert J.; Chum, Helena L.
1994-01-01
A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.
Evans, Robert J.; Chum, Helena L.
1994-01-01
A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.
Evans, Robert J.; Chum, Helena L.
1993-01-01
A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.
Evans, Robert J.; Chum, Helena L.
1998-01-01
A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.
Calcium-rich biochar from the pyrolysis of crab shell for phosphorus removal.
Dai, Lichun; Tan, Furong; Li, Hong; Zhu, Nengmin; He, Mingxiong; Zhu, Qili; Hu, Guoquan; Wang, Li; Zhao, Jie
2017-08-01
Calcium-rich biochars (CRB) prepared through pyrolysis of crab shell at various temperatures were characterized for physicochemical properties and P removal potential. Elemental analysis showed that CRB was rich in calcium (22.91%-36.14%), while poor in carbon (25.21%-9.08%). FTIR, XRD and TG analyses showed that calcite-based CRB was prepared at temperature ≤600 °C, while lime-based CRB was prepared at temperature ≥700 °C. Phosphorus removal experiment showed that P removal efficiencies in 80 mg P/L phosphate solution and biogas effluent ranged from 26% to 11%, respectively, to about 100% and 63%, respectively, depending on the pyrolysis temperature of the resulting biochar. Specifically, compared to common used CaCO 3 and Ca(OH) 2 , P removal potential of calcite-based CRB was much higher than that of CaCO 3 ; while that of lime-based CRB was close to that of Ca(OH) 2 . These results suggested that CRB was competent for P removal/recovery from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bao, Liwei; Shi, Lei; Luo, Hu; Kong, Lingzhao; Li, Shenggang; Wei, Wei; Sun, Yuhan
2017-08-10
Glucose labeled with 13 C or 18 O was used to investigate the mechanism of its conversion into furfural by microwaveassisted pyrolysis. The isotopic content and location in furfural were determined from GC-MS and 13 C NMR spectroscopic measurements and data analysis. The results suggest that the carbon skeleton in furfural is mainly derived from C1 to C5 of glucose, whereas the C of the aldehyde group and the O of the furan ring in furfural primarily originate from C1 and O5 of glucose, respectively. For the first time, the source of O in the furan ring of furfural was elucidated directly by experiment, providing results that are consistent with predictions from recent quantum chemical calculations. Moreover, further theoretical calculations indicate substantially lower energy barriers than previous predictions by considering the potential catalytic effect of formic acid, which is one of the pyrolysis products. The catalytic role of formic acid is further confirmed by experimental evidence. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jeong, Jae-Yong; Lee, Uen-Do; Chang, Won-Seok; Jeong, Soo-Hwa
2016-11-01
In this study, palm residues were pyrolyzed in a bench-scale (3kg/h) fast pyrolysis plant equipped with a fluidized bed reactor and bio-oil separation system for the production of bio-oil rich in acetic acid and phenol. Pyrolysis experiments were performed to investigate the effects of reaction temperature and the types and amounts of activated carbon on the bio-oil composition. The maximum bio-oil yield obtained was approximately 47wt% at a reaction temperature of 515°C. The main compounds produced from the bio-oils were acetic acid, hydroxyacetone, phenol, and phenolic compounds such as cresol, xylenol, and pyrocatechol. When coal-derived activated carbon was applied, the acetic acid and phenol yields in the bio-oils reached 21 and 19wt%, respectively. Finally, bio-oils rich in acetic acid and phenol could be produced separately by using an in situ bio-oil separation system and activated carbon as an additive. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modeling the pyrolysis study of non-charring polymers under reduced pressure environments
NASA Astrophysics Data System (ADS)
Zong, Ruowen; Kang, Ruxue; Hu, Yanghui; Zhi, Youran
2018-04-01
In order to study the pyrolysis of non-charring polymers under reduced pressure environments, a series of experiments based on black acrylonitrile butadiene styrene (ABS) was conducted in a reduced pressure chamber under different external heat fluxes. The temperatures of the top surface and the bottom of the sample and the mass loss during the whole process were measured in real time. A one-dimensional numerical model was developed to predict the top surface and the bottom surface temperatures of ABS during the pyrolysis at different reduced pressures and external heat fluxes, and the model was validated by the experimental data. The results of the study indicate that the profiles of the top surface and the bottom surface temperatures are different at different pressures and heat fluxes. The temperature and the mass loss rate of the sample under a lower heat flux decreased significantly as the pressure was increased. However, under a higher heat flux, the temperature and the mass loss rate showed little sensitivity to the pressure. The simulated results fitted the experimental results better at the higher heat flux than at the lower heat flux.
Ahmad, Mahtab; Lee, Sang Soo; Dou, Xiaomin; Mohan, Dinesh; Sung, Jwa-Kyung; Yang, Jae E; Ok, Yong Sik
2012-08-01
Conversion of crop residues into biochars (BCs) via pyrolysis is beneficial to environment compared to their direct combustion in agricultural field. Biochars developed from soybean stover at 300 and 700 °C (S-BC300 and S-BC700, respectively) and peanut shells at 300 and 700 °C (P-BC300 and P-BC700, respectively) were used for the removal of trichloroethylene (TCE) from water. Batch adsorption experiments showed that the TCE adsorption was strongly dependent on the BCs properties. Linear relationships were obtained between sorption parameters (K(M) and S(M)) and molar elemental ratios as well as surface area of the BCs. The high adsorption capacity of BCs produced at 700 °C was attributed to their high aromaticity and low polarity. The efficacy of S-BC700 and P-BC700 for removing TCE from water was comparable to that of activated carbon (AC). Pyrolysis temperature influencing the BC properties was a critical factor to assess the removal efficiency of TCE from water. Copyright © 2012 Elsevier Ltd. All rights reserved.
Idris, Siti Shawalliah; Abd Rahman, Norazah; Ismail, Khudzir; Alias, Azil Bahari; Abd Rashid, Zulkifli; Aris, Mohd Jindra
2010-06-01
This study aims to investigate the behaviour of Malaysian sub-bituminous coal (Mukah Balingian), oil palm biomass (empty fruit bunches (EFB), kernel shell (PKS) and mesocarp fibre (PMF)) and their respective blends during pyrolysis using thermogravimetric analysis (TGA). The coal/palm biomass blends were prepared at six different weight ratios and experiments were carried out under dynamic conditions using nitrogen as inert gas at various heating rates to ramp the temperature from 25 degrees C to 900 degrees C. The derivative thermogravimetric (DTG) results show that thermal decomposition of EFB, PMF and PKS exhibit one, two and three distinct evolution profiles, respectively. Apparently, the thermal profiles of the coal/oil palm biomass blends appear to correlate with the percentage of biomass added in the blends, thus, suggesting lack of interaction between the coal and palm biomass. First-order reaction model were used to determine the kinetics parameters for the pyrolysis of coal, palm biomass and their respective blends. (c) 2010 Elsevier Ltd. All rights reserved.
Biodegradation of the chitin-protein complex in crustacean cuticle
Artur, Stankiewicz B.; Mastalerz, Maria; Hof, C.H.J.; Bierstedt, A.; Flannery, M.B.; Briggs, D.E.G.; Evershed, R.P.
1998-01-01
Arthropod cuticles consist predominantly of chitin cross-linked with proteins. While there is some experimental evidence that this chitin-protein complex may resist decay, the chemical changes that occur during degradation have not been investigated in detail. The stomatopod crustacean Neogonodactylus oerstedii was decayed in the laboratory under anoxic conditions. A combination of pyrolysis-gas chromatography/mass spectrometry and FTIR revealed extensive chemical changes after just 2 weeks that resulted in a cuticle composition dominated by chitin. Quantitative analysis of amino acids (by HPLC) and chitin showed that the major loss of proteins and chitin occurred between weeks 1 and 2. After 8 weeks tyrosine, tryptophan and valine are the most prominent amino acid moieties, showing their resistance to degradation. The presence of cyclic ketones in the pyrolysates indicates that mucopolysaccharides or other bound non-chitinous carbohydrates are also resistant to decay. There is no evidence of structural degradation of chitin prior to 8 weeks when FTIR revealed a reduction in chitin-specific bands. The chemical changes are paralleled by structural changes in the cuticle, which becomes an increasingly open structure consisting of loose chitinous fibres. The rapid rate of decay in the experiments suggests that where chitin and protein are preserved in fossil cuticles degradation must have been inhibited.Arthropod cuticles consist predominantly of chitin cross-linked with proteins. While there is some experimental evidence that this chitin-protein complex may resist decay, the chemical changes that occur during degradation have not been investigated in detail. The stomatopod crustacean Neogonodactylus oerstedii was decayed in the laboratory under anoxic conditions. A combination of pyrolysis-gas chromatography/mass spectrometry and FTIR revealed extensive chemical changes after just 2 weeks that resulted in a cuticle composition dominated by chitin. Quantitative analysis of amino acids (by HPLC) and chitin showed that the major loss of proteins and chitin occurred between weeks 1 and 2. After 8 weeks tyrosine, tryptophan and valine are the most prominent amino acid moieties, showing their resistance to degradation. The presence of cyclic ketones in the pyrolysates indicates that mucopolysaccharides or other bound non-chitinous carbohydrates are also resistant to decay. There is no evidence of structural degradation of chitin prior to 8 weeks when FTIR revealed a reduction in chitin-specific bands. The chemical changes are paralleled by structural changes in the cuticle, which becomes an increasingly open structure consisting of loose chitinous fibres. The rapid rate of decay in the experiments suggests, that where chitin and protein are preserved in fossil cuticles degradation must have been inhibited.
Waste-to-Energy Plant Environmental Assessment, Dyess Air Force Base, Texas
2011-09-01
pyrolysis can be defined as “ gasification minus oxygen.” Pyrolysis is the technique of heating organic matter ( biomass ) between 480 and 1,470 °F in the...provider using one of four alternative technologies: 1) gasification ; 2) pyrolysis; 3) plasma gasification /pyrolysis and 4) incineration. Under this...the solicitation to build a WTE plant based on one of the following alternative technologies: I) gasification ; 2) pyrolysis; 3) plasma gasification
1,1,1 TRICHLOROETHANE PYROLYSIS AND COMBUSTION: EXPERIMENT AND MODEL. (R824970)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass
NASA Astrophysics Data System (ADS)
Maddi, Balakrishna
Pyrolysis is a processing technique involving thermal degradation of biomass in the absence of oxygen. The bio-oils obtained following the condensation of the pyrolysis vapors form a convenient starting point for valorizing the major components of lignocellulosic as well as algal biomass feed stocks for the production of fuels and value-added chemicals. Pyrolysis can be implemented on whole biomass or on residues left behind following standard fractionation methods. Microalgae and oil seeds predominantly consist of protein, carbohydrate and triglycerides, whereas lignocellulose is composed of carbohydrates (cellulose and hemicellulose) and lignin. The differences in the major components of these two types of biomass will necessitate different pyrolysis strategies to derive the optimal benefits from the resulting bio-oils. In this thesis, novel pyrolysis strategies were developed that enable efficient utilization of the bio-oils (and/or their vapors) from lignocellulose, algae, as well as oil seed feed stocks. With lignocellulosic feed stocks, pyrolysis of whole biomass as well as the lignin residue left behind following well-established pretreatment and saccharification (i.e., depolymerization of cellulose and hemicellulose to their monomeric-sugars) of the biomass was studied with and without catalysts. Following this, pyrolysis of (lipid-deficient) algae and lignocellulosic feed stocks, under similar reactor conditions, was performed for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from protein degradation). Algal bio-char also had a significantly higher N-content. Overall, our results suggest that it is feasible to convert algal cultures deficient in lipids, such as nuisance algae obtained from natural blooms, into liquid fuels by thermochemical methods. Next, pyrolysis characteristics of each of the major components present in lignocellulosic as well as algal biomass were studied independently in a thermo-gravimetric analyzer, using model compounds. From those studies, we have established that, with algae and oil seed feed stocks, triglycerides degrade at distinctly higher temperatures (T>350 C) compared to both protein and carbohydrate fractions (T ~ 250-350 C). Similar trend was not seen for lignocellulosic biomass, where degradation temperature interval of lignin overlapped with that of carbohydrates. This unique trend observed for algal biomass (and oil seeds) can be exploited in multiple ways. First, it permits to separately collect high value triglyceride degradation products not contaminated with N-compounds from protein and oxygenates from carbohydrates; this observation formed the basis of a novel "pyrolytic fractionation technique" developed in this thesis. Second, it led to the development of a new and simple analytical method for rapid estimation of the triglyceride content of oleaginous feed stocks. Pyrolytic fractionation is a two-step pyrolysis approach that can be implemented for oleaginous feed stocks (algae and oil-seeds) to separately recover triglyceride degradation products as a "high-quality" bio-oil fraction. The first step is a low-temperature pyrolysis (T ~ 300-320 C) to produce bio-oils from degradation of protein and carbohydrate fractions. Solid residues left behind can subsequently be subjected to a second higher temperature pyrolysis (T ~ 420-430 C) to volatilize and/or degrade triglycerides to produce fatty acids and their derivatives (such as mono-, di- and tri-glycerides) and long chain hydrocarbons. Proof-of-concept micro-pyrolyser (Pyroprobe) and lab-scale fixed-bed experiments were performed using oleaginous algae (Chlorella Sp.) to establish pyrolytic fractionation technique and also to determine the yields of triglyceride-specific bio-oils. As expected, triglyceride-specific bio-oils have hydrocarbons and free fatty acids that were nearly free of water, organic acids and carbohydrate degradation products. Another unique feature of the fractional pyrolysis method is that it allows upgrading of the triglyceride-specific bio-oil vapors via in situ gas-phase hydro-deoxygenation to drop-in fuels (hydrocarbons), without the need to condense the vapors. Similarly, these vapors can also be converted to other value-added products such as fatty acid methyl esters and amides though efficient catalytic and non-catalytic in situ gas-phase conversion methods. Energy requirements for this new pyrolytic fractionation method were also assessed, using energy estimates for the individual steps obtained via differential scanning calorimetry experiments. A comparison of these energy needs against those of alternative thermal processing methods of algae (hydro-thermal processing) proposed in the literature established the viability of this new method. Finally, a new TGA-based analytical method was developed in this thesis for rapid quantification of the triglyceride content of oleaginous feed stocks, by exploiting the non-overlapping thermal degradation range of triglycerides and the other major components.
Shi, Lingna; Wang, Lijun; Zhang, Tao; Li, Jianfa; Huang, Xiaoyi; Cai, Jing; Lü, Jinhong; Wang, Yue
2017-10-01
For the purpose of safe disposal of biomass contaminated by biosorption of heavy metals, phosphate-assisted pyrolysis of water hyacinth biomass contaminated by lead (Pb) was tried to reduce the bioavailability and leaching potential of Pb, using direct pyrolysis without additive as a control method. Direct pyrolysis of the contaminated biomass at low temperatures (300 and 400°C) could reduce the bioavailability of Pb, but the leaching potential of Pb was increased with the rising pyrolysis temperature. While phosphate-assisted pyrolysis significantly enhanced the recovery and stability of Pb in the char. Specifically, the percentages of bioavailable Pb and leachable Pb in the chars obtained by phosphate-assisted pyrolysis at low temperatures were reduced to less than 5% and 7%, respectively. The sequential extraction test indicated the transformation of Pb into more stable fractions after phosphate-assisted pyrolysis, which was related to the formation of Pb phosphate minerals including pyromorphite and lead-substituted hydroxyapatite. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mass spectrometric studies of fast pyrolysis of cellulose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degenstein, John; Hurt, Matt; Murria, Priya
2015-01-01
A fast pyrolysis probe/linear quadrupole ion trap mass spectrometer combination was used to study the primary fast pyrolysis products (those that first leave the hot pyrolysis surface) of cellulose, cellobiose, cellotriose, cellotetraose, cellopentaose, and cellohexaose, as well as of cellobiosan, cellotriosan, and cellopentosan, at 600°C. Similar products with different branching ratios were found for the oligosaccharides and cellulose, as reported previously. However, identical products (with the exception of two) with similar branching ratios were measured for cellotriosan (and cellopentosan) and cellulose. This result demonstrates that cellotriosan is an excellent small-molecule surrogate for studies of the fast pyrolysis of cellulose andmore » also that most fast pyrolysis products of cellulose do not originate from the reducing end. Based on several observations, the fast pyrolysis of cellulose is suggested to initiate predominantly via two competing processes: the formation of anhydro-oligosaccharides, such as cellobiosan, cellotriosan, and cellopentosan (major route), and the elimination of glycolaldehyde (or isomeric) units from the reducing end of oligosaccharides formed from cellulose during fast pyrolysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukarakate, C.; Robichaud, D.; Donohoe, B.
2012-01-01
We have constructed a captive sample reactor (CSR) to study fast pyrolysis of biomass. The reactor uses a stainless steel wire mesh to surround biomass materials with an isothermal environment by independent controlling of heating rates and pyrolysis temperatures. The vapors produced during pyrolysis are immediately entrained and transported in He carrier gas to a molecular beam mass spectrometer (MBMS). Formation of secondary products is minimized by rapidly quenching the sample support with liquid nitrogen. A range of alkali and alkaline earth metal (AAEM) and transition metal salts were tested to study their effect on composition of primary pyrolysis products.more » Multivariate curve resolution (MCR) analysis of the MBMS data shows that transition metal salts enhance pyrolysis of carbohydrates and AAEM salts enhances pyrolysis of lignin. This was supported by performing similar separate studies on cellulose, hemicellulose and extracted lignin. The effect of salts on char formation is also discussed.« less
Thermal and catalytic slow pyrolysis of Calophyllum inophyllum fruit shell.
Alagu, R M; Sundaram, E Ganapathy; Natarajan, E
2015-10-01
Pyrolysis of Calophyllum inophyllum shell was performed in a fixed bed pyrolyser to produce pyrolytic oil. Both thermal (without catalysts) and catalytic pyrolysis process were conducted to investigate the effect of catalysts on pyrolysis yield and pyrolysis oil characteristics. The yield of pyrolytic oil through thermal pyrolysis was maximum (41% wt) at 425 °C for particle size of 1.18 mm and heating rate of 40 °C/min. In catalytic pyrolysis the pyrolytic oil yield was maximum (45% wt) with both zeolite and kaolin catalysts followed by Al2O3 catalyst (44% wt). The functional groups and chemical components present in the pyrolytic oil are identified by Fourier Transform Infrared Spectroscopy (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS) techniques. This study found that C. inophyllum shell is a potential new green energy source and that the catalytic pyrolysis process using zeolite catalyst improves the calorific value and acidity of the pyrolytic oil. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Tingting; Liu, Zhengang; Zheng, Qingfu; Lang, Qianqian; Xia, Yu; Peng, Nana; Gai, Chao
2018-01-01
The heavy metals distribution during hydrothermal carbonization (HTC) of sewage sludge, and pyrolysis of the resultant hydrochar was investigated and compared with raw sludge pyrolysis. The results showed that HTC reduced exchangeable/acid-soluble and reducible fraction of heavy metals and lowered the potential risk of heavy metals in sewage sludge. The pyrolysis favored the transformation of extracted/mobile fraction of heavy metals to residual form especially at high temperature, immobilizing heavy metals in the chars. Compared to the chars from raw sludge pyrolysis, the chars derived from hydrochar pyrolysis was more alkaline and had lower risk and less leachable heavy metals, indicating that pyrolysis imposed more positive effect on immobilization of heavy metals for the hydrochar than for sewage sludge. The present study demonstrated that HTC is a promising pretreatment prior to pyrolysis from the perspective of immobilization of heavy metals in sewage sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bach, Quang-Vu; Chen, Wei-Hsin
2017-12-01
Pyrolysis is a promising route for biofuels production from microalgae at moderate temperatures (400-600°C) in an inert atmosphere. Depending on the operating conditions, pyrolysis can produce biochar and/or bio-oil. In practice, knowledge for thermal decomposition characteristics and kinetics of microalgae during pyrolysis is essential for pyrolyzer design and pyrolysis optimization. Recently, the pyrolysis kinetics of microalgae has become a crucial topic and received increasing interest from researchers. Thermogravimetric analysis (TGA) has been employed as a proven technique for studying microalgae pyrolysis in a kinetic control regime. In addition, a number of kinetic models have been applied to process the TGA data for kinetic evaluation and parameters estimation. This paper aims to provide a state-of-the art review on recent research activities in pyrolysis characteristics and kinetics of various microalgae. Common kinetic models predicting the thermal degradation of microalgae are examined and their pros and cons are illustrated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Handing; Chen, Xueli; Qin, Yueqiang; Wei, Juntao; Liu, Haifeng
2017-03-01
The influence of torrefaction on the physicochemical characteristics of char during raw and water washed rice straw pyrolysis at 800-1200°C is investigated. Pore structure, aromaticity and gasification activity of pyrolysis chars are compared between raw and torrefied samples. For raw straw, BET specific surface area decreases with the increased torrefaction temperature at the same pyrolysis temperature and it approximately increases linearly with weight loss during pyrolysis. The different pore structure evolutions relate to the different volatile matters and pore structures between raw and torrefied straw. Torrefaction at higher temperature would bring about a lower graphitization degree of char during pyrolysis of raw straw. Pore structure and carbon crystalline structure evolutions of raw and torrefied water washed straw are different from these of raw straw during pyrolysis. For both raw and water washed straw, CO 2 gasification activities of pyrolysis chars are different between raw and torrefied samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pyrolysis of tyre powder using microwave thermogravimetric analysis: Effect of microwave power.
Song, Zhanlong; Yang, Yaqing; Zhou, Long; Zhao, Xiqiang; Wang, Wenlong; Mao, Yanpeng; Ma, Chunyuan
2017-02-01
The pyrolytic characteristics of tyre powder treated under different microwave powers (300, 500, and 700 W) were studied via microwave thermogravimetric analysis. The product yields at different power levels were studied, along with comparative analysis of microwave pyrolysis and conventional pyrolysis. The feedstock underwent preheating, intense pyrolysis, and final pyrolysis in sequence. The main and secondary weight loss peaks observed during the intense pyrolysis stage were attributed to the decomposition of natural rubbers and synthetic rubbers, respectively. The total mass loss rates, bulk temperatures, and maximum temperatures were distinctively higher at higher powers. However, the maximum mass loss rate (0.005 s -1 ), the highest yields of liquid product (53%), and the minimum yields of residual solid samples (43.83%) were obtained at 500 W. Compared with conventional pyrolysis, microwave pyrolysis exhibited significantly different behaviour with faster reaction rates, which can decrease the decomposition temperatures of both natural and synthetic rubber by approximately 110 °C-140 °C.
Hu, Guangji; Li, Jianbing; Zhang, Xinying; Li, Yubao
2017-05-01
The treatment of waste biomass (sawdust) through co-pyrolysis with refinery oily sludge was carried out in a fixed-bed reactor. Response surface method was applied to evaluate the main and interaction effects of three experimental factors (sawdust percentage in feedstock, temperature, and heating rate) on pyrolysis oil and char yields. It was found that the oil and char yields increased with sawdust percentage in feedstock. The interaction between heating rate and sawdust percentage as well as between heating rate and temperature was significant on the pyrolysis oil yield. The higher heating value of oil originated from sawdust during co-pyrolysis at a sawdust/oily sludge ratio of 3:1 increased by 5 MJ/kg as compared to that during sawdust pyrolysis alone, indicating a synergistic effect of co-pyrolysis. As a result, petroleum sludge can be used as an effective additive in the pyrolysis of waste biomass for improving its energy recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hübner, Tobias; Mumme, Jan
2015-05-01
Anaerobic digestion of aqueous pyrolysis liquor derived from pyrolysis of solid digestate was tested in batch mode using an un-adapted inoculum. Three pyrolysis liquors produced at 330°C, 430°C and 530°C in four COD-based concentrations of 3, 6, 12 and 30 g L(-1) were investigated. The three lower concentrations showed considerable biogas production, whereas the 30 g L(-1) dosage caused process inhibition. The highest methane yield of 199.1±18.5 mL g(COD)(-1) (COD removal: 56.9±5.3%) was observed for the 330°C pyrolysis liquor, followed by the 430°C sample with only slightly lower values. The 530°C sample dropped to a yield of 129.3±19.7 mL g(COD)(-1) (COD removal: 36.9±5.6%). Most VOCs contained in the pyrolysis liquor (i.e. furfural, phenol, catechol, guaiacol, and levoglucosan) were reduced below detection limit (cresol by 10-60%). Consequently, integrated pyrolysis and anaerobic digestion in addition to thermochemical conversion of digestate also promises bioconversion of pyrolysis liquors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gaseous emissions and toxic hazards associated with plastics in fire situations: A literature review
NASA Technical Reports Server (NTRS)
Junod, T. L.
1976-01-01
The hazards of plastics in fire situations, the gases emitted, the factors influencing the nature of these emissions, the characteristics of toxic gases, and the results of laboratory studies, are discussed. The literature pertaining to the pyrolysis and oxidation of plastics was reviewed. An effort was made to define the state of the art for determining the toxic gases emitted by plastics under fire conditions. Recommendations are made and research needs defined as a result of this review.
Publications - GMC 127 | Alaska Division of Geological & Geophysical
DGGS GMC 127 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite information. Bibliographic Reference Unknown, 1989, Total organic carbon, rock-eval pyrolysis, and vitrinite ) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite Reflectance Top of Page Department
Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components
USDA-ARS?s Scientific Manuscript database
Zeolites have been shown to effectively promote cracking reactions during pyrolysis resulting in highly deoxygenated and hydrocarbon-rich compounds and stable pyrolysis oil product. Py/GC-MS was employed to study the catalytic fast pyrolysis of lignocellulosic biomass samples comprising oak, corn...
Structural analysis of pyrolytic lignins isolated from switchgrass fast pyrolysis oil
USDA-ARS?s Scientific Manuscript database
Structural characterization of lignin extracted from the bio-oil produced by fast pyrolysis of switchgrass (Panicum virgatum) is reported. This new information is important to understanding the utility of lignin as a chemical feedstock in a pyrolysis based biorefinery. Pyrolysis induces a variety of...
Microwave-assisted pyrolysis of Mississippi coal: A comparative study with conventional pyrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelsayed, Victor; Shekhawat, Dushyant; Smith, Mark W.
Pyrolysis conditions greatly affect the structure-reactivity relationship of char during coal gasification. Here, this work investigated the effect of temperature and microwave heating on the structural properties of the chars generated during pyrolysis, as well as gaseous and tar products. Results showed that microwave pyrolysis of Mississippi coal produced more gaseous products and less tars compared to conventional pyrolysis. Higher CO/CO 2 ratio (>1) was observed under microwave pyrolysis compared to conventional pyrolysis (CO/CO2 < 1), which may be explained by a greater extent of gasification between solid carbon and the CO 2 formed during microwave pyrolysis. Additionally, in microwavemore » pyrolysis, the oil tars generated exhibited lower concentrations of polar oxygenates, while the wax tars showed higher concentrations of non-polar alkanes, as observed from the intensity of CH vibrations in FTIR. The product compositions and FTIR analysis of the tars (oils and waxes) suggest that the microwave interacted preferentially with these polar species, which have relatively higher dielectric properties compared to alkanes. The structure–reactivity relationship of the chars produced was also investigated using a variety of characterization tools such as XRD, BET, SEM, EDS, and FTIR. Finally, the char reactivity towards combustion suggested that microwave-produced chars have a higher thermal stability, likely due to lower O/C ratios, and could be utilized in the metallurgical industry.« less
Microwave-assisted pyrolysis of Mississippi coal: A comparative study with conventional pyrolysis
Abdelsayed, Victor; Shekhawat, Dushyant; Smith, Mark W.; ...
2018-01-13
Pyrolysis conditions greatly affect the structure-reactivity relationship of char during coal gasification. Here, this work investigated the effect of temperature and microwave heating on the structural properties of the chars generated during pyrolysis, as well as gaseous and tar products. Results showed that microwave pyrolysis of Mississippi coal produced more gaseous products and less tars compared to conventional pyrolysis. Higher CO/CO 2 ratio (>1) was observed under microwave pyrolysis compared to conventional pyrolysis (CO/CO2 < 1), which may be explained by a greater extent of gasification between solid carbon and the CO 2 formed during microwave pyrolysis. Additionally, in microwavemore » pyrolysis, the oil tars generated exhibited lower concentrations of polar oxygenates, while the wax tars showed higher concentrations of non-polar alkanes, as observed from the intensity of CH vibrations in FTIR. The product compositions and FTIR analysis of the tars (oils and waxes) suggest that the microwave interacted preferentially with these polar species, which have relatively higher dielectric properties compared to alkanes. The structure–reactivity relationship of the chars produced was also investigated using a variety of characterization tools such as XRD, BET, SEM, EDS, and FTIR. Finally, the char reactivity towards combustion suggested that microwave-produced chars have a higher thermal stability, likely due to lower O/C ratios, and could be utilized in the metallurgical industry.« less
Reprint of: Pyrolysis technologies for municipal solid waste: a review.
Chen, Dezhen; Yin, Lijie; Wang, Huan; He, Pinjing
2015-03-01
Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO2 and NH3, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evans, R.J.; Chum, H.L.
1994-10-25
A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.
Evans, Robert J.; Chum, Helena L.
1994-01-01
A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.
Evans, R.J.; Chum, H.L.
1994-04-05
A process is described for using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 87 figures.
Evans, R.J.; Chum, H.L.
1994-10-25
A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.
Rapid habitability assessment of Mars samples by pyrolysis-FTIR
NASA Astrophysics Data System (ADS)
Gordon, Peter R.; Sephton, Mark A.
2016-02-01
Pyrolysis Fourier transform infrared spectroscopy (pyrolysis FTIR) is a potential sample selection method for Mars Sample Return missions. FTIR spectroscopy can be performed on solid and liquid samples but also on gases following preliminary thermal extraction, pyrolysis or gasification steps. The detection of hydrocarbon and non-hydrocarbon gases can reveal information on sample mineralogy and past habitability of the environment in which the sample was created. The absorption of IR radiation at specific wavenumbers by organic functional groups can indicate the presence and type of any organic matter present. Here we assess the utility of pyrolysis-FTIR to release water, carbon dioxide, sulfur dioxide and organic matter from Mars relevant materials to enable a rapid habitability assessment of target rocks for sample return. For our assessment a range of minerals were analyzed by attenuated total reflectance FTIR. Subsequently, the mineral samples were subjected to single step pyrolysis and multi step pyrolysis and the products characterised by gas phase FTIR. Data from both single step and multi step pyrolysis-FTIR provide the ability to identify minerals that reflect habitable environments through their water and carbon dioxide responses. Multi step pyrolysis-FTIR can be used to gain more detailed information on the sources of the liberated water and carbon dioxide owing to the characteristic decomposition temperatures of different mineral phases. Habitation can be suggested when pyrolysis-FTIR indicates the presence of organic matter within the sample. Pyrolysis-FTIR, therefore, represents an effective method to assess whether Mars Sample Return target rocks represent habitable conditions and potential records of habitation and can play an important role in sample triage operations.
NASA Astrophysics Data System (ADS)
Pichler, C.; Antrekowitsch, J.
2017-04-01
The topic "Zero Waste" has been in existence for several years in the industry, and the metallurgical industry has also made efforts to reduce the amounts of residues occurring and have started several investigations to cut down on metallurgical by-products which have to be landfilled. Especially, the additional costs for CO2 emissions in different metallurgical steps have led to investigations into alternative carbon carriers. Charcoal has been identified to serve as an ideal substitute due its CO2-neutrality. For the applications of this renewable carbon carrier in metallurgical processes, charcoal production by means of a carbonization process needs to be optimized. As a by-product during the heating of agricultural wastes or wood by excluding air, pyrolysis gas occurs. Due to the existence of combustible compounds in this gas, an application as a reduction agent instead of fossil carbon carriers in metallurgy is possible. Based on the prevention of dumping metallurgical by-products, an investigation has been developed to treat zinc- and lead-containing materials. To realize this, a dedicated process concept has been designed and developed. As the main focuses, the usage of the pyrolysis gas from charcoal production for the Waelz kiln process and the recycling of zinc- and lead-containing Waelz slag, resulting from the processing of steel mill dust in a vertical retort, have to be mentioned. Within this research, the process concept was executed from laboratory-scale up to pilot-scale testing, described in this article.
NASA Astrophysics Data System (ADS)
Suzuki, K.; Yamamoto, M.; Rosenheim, B. E.; Omori, T.; Polyak, L.; Nam, S. I.
2017-12-01
The Arctic Ocean underwent dramatic climate changes in the past. Variations in sea-ice extent and ocean current system in the Arctic cause changes in surface albedo and deep water formation, which have global climatic implications. However, Arctic paleoceanographic studies are lagging behind the other oceans due largely to chronostratigraphic difficulties. One of the reasons for this is a scant presence of material suitable for 14C dating in large areas of the Arctic seafloor. To enable improved age constraints for sediments impoverished in datable material, we apply ramped pyrolysis 14C method (Ramped PyrOx 14C, Rosenheim et al., 2008) to sedimentary records from the Chukchi-Alaska margin recovering Holocene to late-glacial deposits. Samples were divided into five fraction products by gradual heating sedimentary organic carbon from ambient laboratory temperature to 1000°C. The thermographs show a trimodal pattern of organic matter decomposition over temperature, and we consider that CO2 generated at the lowest temperature range was derived from autochthonous organic carbon contemporaneous with sediment deposition, similar to studies in the Antarctic margin and elsewhere. For verification of results, some of the samples treated for ramped pyrolysis 14C were taken from intervals dated earlier by AMS 14C using bivalve mollusks. Ultimately, our results allow a new appraisal of deglacial to Holocene deposition at the Chukchi-Alaska margin with potential to be applied to other regions of the Arctic Ocean.
Publications - GMC 137 | Alaska Division of Geological & Geophysical
DGGS GMC 137 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1989, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of Report Report Information gmc137.pdf (47.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic
Publications - GMC 100 | Alaska Division of Geological & Geophysical
DGGS GMC 100 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Unknown, 1988, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of ditch cuttings Information gmc100.pdf (317.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite
Publications - GMC 144 | Alaska Division of Geological & Geophysical
DGGS GMC 144 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite for more information. Bibliographic Reference Unknown, 1989, Total organic carbon, rock-eval pyrolysis gmc144.pdf (104.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite Reflectance
Publications - GMC 30 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 30 Publication Details Title: Geochemical analysis (total organic carbon, rock-eval pyrolysis , Geochemical analysis (total organic carbon, rock-eval pyrolysis, vitrinite reflectance and gc/ms chromato (1.3 M) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite Reflectance Top of
Publications - GMC 141 | Alaska Division of Geological & Geophysical
DGGS GMC 141 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1989, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of Report Report Information gmc141.pdf (70.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic
Publications - GMC 101 | Alaska Division of Geological & Geophysical
DGGS GMC 101 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Unknown, 1988, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of ditch cuttings Information gmc101.pdf (201.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite
Publications - GMC 60 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 60 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite , Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance geochemical data for the Nechelik (125.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite Reflectance Top of
Publications - GMC 27 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 27 Publication Details Title: Geochemical analysis (total organic carbon, rock-eval pyrolysis . Bibliographic Reference Unknown, 1995, Geochemical analysis (total organic carbon, rock-eval pyrolysis, and ; Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite Reflectance Top of Page Department of
Publications - GMC 103 | Alaska Division of Geological & Geophysical
DGGS GMC 103 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Unknown, 1988, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of ditch cuttings Information gmc103.pdf (57.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite
Publications - GMC 23 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 23 Publication Details Title: Total organic carbon, rock-eval pyrolysis, visual kerogen Unknown, [n.d.], Total organic carbon, rock-eval pyrolysis, visual kerogen/vitrinite reflectance for Information gmc023.pdf (199.0 K) Keywords Kerogen; Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon
Publications - GMC 22 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 22 Publication Details Title: Total organic carbon, rock-eval pyrolysis, visual kerogen Unknown, 1984, Total organic carbon, rock-eval pyrolysis, visual kerogen/vitrinite reflectance for the gmc022.pdf (247.0 K) Keywords Kerogen; Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite
Publications - GMC 102 | Alaska Division of Geological & Geophysical
DGGS GMC 102 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Unknown, 1988, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of ditch cuttings Information gmc102.pdf (81.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite
Publications - GMC 124 | Alaska Division of Geological & Geophysical
DGGS GMC 124 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1989, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data from the Report Information gmc124.pdf (278.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon
Publications - GMC 68 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 68 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1987, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance geochemical Report Report Information gmc068.pdf (48.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic
40 CFR 721.10579 - Carbon black derived from the pyrolysis of rubber tire shreds (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... pyrolysis of rubber tire shreds (generic). 721.10579 Section 721.10579 Protection of Environment... pyrolysis of rubber tire shreds (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as carbon black derived from the pyrolysis of...
NASA Astrophysics Data System (ADS)
Santos, F.; Bird, J. A.; Berhe, A. A.
2017-12-01
Pyrogenic organic carbon (PyC) is a heterogenous mixture of thermally altered residues, ranging from slightly charred plant biomass to soot. Despite its apparent stability in soils, PyC has been reported to either increase or decrease (priming effect, PE), or have no effect on the mineralization rates of native soil organic matter (SOM), highlighting our limited knowledge on the mechanisms driving PyC-induced PE. Little is known about how PyC's pyrolysis temperature, and soil depth (surface versus subsurface) affect the direction of PE. To address this gap knowledge, we conducted from a 1-year laboratory incubation study aimed to investigate the interactive effects of pyrolysis temperature and soil depth on the mineralization rates of native SOM in fine-loamy, temperate forest soil that received additions of dual-labeled 13C and 15N jack pine pyrogenic organic matter produced at 300oC (PyC300) and 450oC (PyC450). Soil and PyC mixture were incubated in surface (0-10 cm) and subsurface (50-70 cm) forest soils in the dark at 55% soil field capacity and 25oC. Losses of native SOM as 13CO2 were measured periodically from the 13C-labeled PyC, and native (unlabeled) SOM during the incubation study using a Thermo Scientific GasBench interfaced to a Delta V Plus isotope ratio mass spectrometer. In surface soils, the addition of PyC300 decreased the turnover rates of native C relative to control treatments, whereas PyC400 had no effect on native C turnover rates. In subsurface soils, neither PyC300 nor PyC400 additions affected native C turnover rates. Our preliminary findings suggest that pyrolysis temperature is an important factor driving the persistence of soil C in Sierra Nevada forest soils.
Hartwig, Jason; Mittal, Gaurav; Kumar, Kamal; Sung, Chih-Jen
2018-04-01
This paper presents a set of system validation experiments that can be used to qualify either static or flow experimental systems for gathering tracer photophysical data or conducting laser diagnostics at high pressure and temperature in order to establish design and operation limits and reduce uncertainty in data interpretation. Tests demonstrated here quantify the effect of tracer absorption at the test cell walls, stratification, photolysis, pyrolysis, adequacy of mixing and seeding, and reabsorption of laser light using acetone as the tracer and 282 nm excitation. Results show that acetone exhibits a 10% decrease in fluorescence signal over 36 000 shots at 127.4 mJ/cm 2 , and photolysis is negligible below 1000 shots collected. Meanwhile, appropriately chosen gas residence times can mitigate risks due to pyrolysis and inadequate mixing and seeding; for the current work 100 ms residence time ensured <0.5% alteration of tracer number density due to thermal destruction. Experimental results here are compared to theoretical values from the literature.
Dry Acid Deposition and Accumulation on the Surface of Mars and in the Atacama Desert, Chile
NASA Technical Reports Server (NTRS)
Quinn, R. C.; Zent, A. P.; Ehrenfruend, P.; Taylor, C. L.; McKay, C. P.; Garry, J. R. C.
2005-01-01
It has been discovered recently that soils from certain regions of the Chilean Atacama Desert have some characteristics that are similar to the surface materials tested by the Viking Landers. Navarro-Gonzalez et al. demonstrated that the quantity and diversity of heterotrophic bacteria increase as a function of local water availability in the Atacama, and that for some soil samples collected in the driest regions, no culturable bacteria could be isolated. Additionally, Navarro-Gonzalez et al. reported that pyrolysis-GCMS analysis of soils collected from these regions revealed extremely low levels of organic matter. Although the mechanism resulting in the low level of organics in these regions was not established by Navarro-Gonzalez, the condition of organic-depleted, near-sterile soil offers an interesting Earth analog of the martian surface material, as the Viking Gas Exchange (GEx) experiment and Labeled Release (LR) experiment were unable to demonstrate the presence of culturable bacteria, and the Viking pyrolysis- GCMS was unable to detect organic compounds.
Analysis of Low-Pressure Gas-Phase Pyrolytic Reactions by Mass Spectrometric Techniques,
1989-01-01
temperatures and pressures known only as a polymeric substance, is similarly obtained in high purity by heating the polymer to its melting point (105-110’ C...filaments for Curie- point pyrolysis’ J.Anal.Appl.Pyrolysis. 5 (1983) 1-7 (with Helge Egsgaard) 4) ’Heterogeneous catalysis in gas phase reactions studied...by Curie- point pyrolysis. Gas phase pyrolysis of methyl dithio- acetat’ J.Anal.Appl.Pyrolysis. 5 (1983) 257-259 (with Helge Egsgaard) 5) ’Continuous
Demonstration of the waste tire pyrolysis process on pilot scale in a continuous auger reactor.
Martínez, Juan Daniel; Murillo, Ramón; García, Tomás; Veses, Alberto
2013-10-15
This work shows the technical feasibility for valorizing waste tires by pyrolysis using a pilot scale facility with a nominal capacity of 150 kWth. A continuous auger reactor was operated to perform thirteen independent experiments that conducted to the processing of more than 500 kg of shredded waste tires in 100 h of operation. The reaction temperature was 550°C and the pressure was 1 bar in all the runs. Under these conditions, yields to solid, liquid and gas were 40.5 ± 0.3, 42.6 ± 0.1 and 16.9 ± 0.3 wt.% respectively. Ultimate and proximate analyses as well as heating value analysis were conducted for both the solid and liquid fraction. pH, water content, total acid number (TAN), viscosity and density were also assessed for the liquid and compared to the specifications of marine fuels (standard ISO 8217). Gas chromatography was used to calculate the composition of the gaseous fraction. It was observed that all these properties remained practically invariable along the experiments without any significant technical problem. In addition, the reaction enthalpy necessary to perform the waste tire pyrolysis process (907.1 ± 40.0 kJ/kg) was determined from the combustion and formation enthalpies of waste tire and conversion products. Finally, a mass balance closure was performed showing an excellent reliability of the data obtained from the experimental campaign. Copyright © 2013 Elsevier B.V. All rights reserved.
Chen, Luguang; Bhattacharya, Sankar
2013-02-05
Sulfur emission from a Victorian brown coal was quantitatively determined through controlled experiments in a continuously fed drop-tube furnace under three different atmospheres: pyrolysis, oxy-fuel combustion, and carbon dioxide gasification conditions. The species measured were H(2)S, SO(2), COS, CS(2), and more importantly SO(3). The temperature (873-1273 K) and gas environment effects on the sulfur species emission were investigated. The effect of residence time on the emission of those species was also assessed under oxy-fuel condition. The emission of the sulfur species depended on the reaction environment. H(2)S, SO(2), and CS(2) are the major species during pyrolysis, oxy-fuel, and gasification. Up to 10% of coal sulfur was found to be converted to SO(3) under oxy-fuel combustion, whereas SO(3) was undetectable during pyrolysis and gasification. The trend of the experimental results was qualitatively matched by thermodynamic predictions. The residence time had little effect on the release of those species. The release of sulfur oxides, in particular both SO(2) and SO(3), is considerably high during oxy-fuel combustion even though the sulfur content in Morwell coal is only 0.80%. Therefore, for Morwell coal utilization during oxy-fuel combustion, additional sulfur removal, or polishing systems will be required in order to avoid corrosion in the boiler and in the CO(2) separation units of the CO(2) capture systems.
Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings
Keppler, Frank; Harper, David B.; Greule, Markus; Ott, Ulrich; Sattler, Tobias; Schöler, Heinz F.; Hamilton, John T. G.
2014-01-01
Controversy continues as to whether chloromethane (CH3Cl) detected during pyrolysis of Martian soils by the Viking and Curiosity Mars landers is indicative of organic matter indigenous to Mars. Here we demonstrate CH3Cl release (up to 8 μg/g) during low temperature (150–400°C) pyrolysis of the carbonaceous chondrite Murchison with chloride or perchlorate as chlorine source and confirm unequivocally by stable isotope analysis the extraterrestrial origin of the methyl group (δ2H +800 to +1100‰, δ13C −19.2 to +10‰,). In the terrestrial environment CH3Cl released during pyrolysis of organic matter derives from the methoxyl pool. The methoxyl pool in Murchison is consistent both in magnitude (0.044%) and isotope signature (δ2H +1054 ± 626‰, δ13C +43.2 ± 38.8‰,) with that of the CH3Cl released on pyrolysis. Thus CH3Cl emissions recorded by Mars lander experiments may be attributed to methoxyl groups in undegraded organic matter in meteoritic debris reaching the Martian surface being converted to CH3Cl with perchlorate or chloride in Martian soil. However we cannot discount emissions arising additionally from organic matter of indigenous origin. The stable isotope signatures of CH3Cl detected on Mars could potentially be utilized to determine its origin by distinguishing between terrestrial contamination, meteoritic infall and indigenous Martian sources. PMID:25394222
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutton, Phillip N.
This report describes research into an innovative laser-enhanced catalytic pyrolysis technology that has the potential to significantly decrease the cost of cracking ethane and other alkanes found in shale gas ethylene. Similar to how water is resonantly heated by microwaves, a CO 2 laser can resonantly heat ethylene, producing radicals that convert ethane to ethylene at lower reactor temperatures. Proof of concept experiments were performed to determine if commercial grade CO 2 lasers at one-twenty fifth the cost of scientific grade lasers could crack ethane at lower temperatures than conventional technology. Cr doped MgO catalyst was then inserted in themore » reaction chamber to further increase conersion rates.« less
Effects of torrefaction and densification on switchgrass pyrolysis products
Yang, Zixu; Sarkar, Madhura; Kumar, Ajay; ...
2014-12-01
Abstract The pyrolysis behaviors of four types of pretreated switchgrass (torrefied at 230 and 270 °C, densification, and torrefaction at 270 ºC followed by densification) were studied at three temperatures (500, 600, 700 ºC) using a pyroprobe attached to a gas chromatogram mass spectroscopy (Py-GC/MS). The torrefaction of switchgrass improved its oxygen to carbon ratio and energy content. Contents of anhydrous sugars and phenols in pyrolysis products of torrefied switchgrass were higher than those in pyrolysis products of raw switchgrass. As the torrefaction temperature increased from 230 to 270 °C, the contents of anhydrous sugars and phenols in pyrolysis productsmore » increased whereas content of guaiacols decreased. High pyrolysis temperature (600 and 700 °C as compared to 500 °C) enhanced decomposition of lignin and anhydrous sugars, leading to increase in phenols, aromatics and furans. Densification enhanced depolymerization of cellulose and hemicellulose during pyrolysis.« less
Publications - GMC 136 | Alaska Division of Geological & Geophysical
DGGS GMC 136 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and some vitrinite Unknown, 1989, Total organic carbon, rock-eval pyrolysis, and some vitrinite reflectance data of cuttings Report Information gmc136.pdf (39.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon
Publications - GMC 99 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 99 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1988, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of ditch Report Report Information gmc099.pdf (383.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic
Publications - GMC 12 | Alaska Division of Geological & Geophysical Surveys
- 11,850 feet; total organic carbon, rock-eval pyrolysis and visual kerogen/vitrinite reflectance Authors River #1 well 10,255 - 11,850 feet; total organic carbon, rock-eval pyrolysis and visual kerogen gmc012.pdf (384.0 K) Keywords Kerogen; Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite
Publications - GMC 20 | Alaska Division of Geological & Geophysical Surveys
, rock-eval/pyrolysis, total organic carbon) and core logs for the David River USA #1-A, Hoodoo Lake Unit , 1969, Geochemical analysis (vitrinite reflectance, visual kerogen, rock-eval/pyrolysis, total organic gmc020.pdf (3.2 M) Keywords Kerogen; Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite
Publications - GMC 24 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 24 Publication Details Title: Total organic carbon, rock-eval pyrolysis, visual kerogen Unknown, [n.d.], Total organic carbon, rock-eval pyrolysis, visual kerogen/vitrinite reflectance of the Information gmc024.pdf (79.0 K) Keywords Kerogen; Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon
Publications - GMC 123 | Alaska Division of Geological & Geophysical
DGGS GMC 123 Publication Details Title: Total organic carbon and rock-eval pyrolysis data of select organic carbon and rock-eval pyrolysis data of select cuttings from the Chevron USA Akulik #1 well: Alaska Pyrolysis; Rock-Eval Pyrolysis Top of Page Department of Natural Resources, Division of Geological &
Publications - GMC 284 | Alaska Division of Geological & Geophysical
DGGS GMC 284 Publication Details Title: TOC/rock-eval pyrolysis geochemical data for 26 Alaska North for more information. Bibliographic Reference Unknown, 1999, TOC/rock-eval pyrolysis geochemical data Information gmc284.pdf (1.8 M) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon Top of Page
Mattonai, Marco; Ribechini, Erika
2018-08-09
Reactive pyrolysis is a technique that provides mechanistic information by performing pyrolysis of the substrate in a sealed glass capsule at elevated temperature and pressure for relatively long time. This technique has already shown great potential for the analysis of biomass, favouring the formation of only the most thermostable compounds. In this work, both fast and reactive pyrolysis with on-line gas chromatography-mass spectrometry analysis (Py-GC/MS) are used to study fructose, inulin and Jerusalem artichoke tubers (Heliantus tuberosus). Interesting differences were found between the two systems, and became even more evident as the reaction time was increased. The most striking result was the formation of di-fructose dianhydrides (DFAs), a class of compounds with interesting biological activities. DFAs were obtained in high yields from reactive pyrolysis, but not from fast pyrolysis. Hypotheses on the pyrolysis mechanisms were made based upon the composition of the pyrolysates. This work describes for the first time the behaviour of fructans under reactive pyrolysis. Copyright © 2018 Elsevier B.V. All rights reserved.
High-resolution mass spectrometric analysis of biomass pyrolysis vapors
Christensen, Earl; Evans, Robert J.; Carpenter, Daniel
2017-01-19
Vapors generated from the pyrolysis of lignocellulosic biomass are made up of a complex mixture of oxygenated compounds. Direct analysis of these vapors provides insight into the mechanisms of depolymerization of cellulose, hemicellulose, and lignin as well as insight into reactions that may occur during condensation of pyrolysis vapors into bio-oil. Studies utilizing pyrolysis molecular beam mass spectrometry have provided valuable information regarding the chemical composition of pyrolysis vapors. Mass spectrometers generally employed with these instruments have low mass resolution of approximately a mass unit. The presence of chemical species with identical unit mass but differing elemental formulas cannot bemore » resolved with these instruments and are therefore detected as a single ion. In this study we analyzed the pyrolysis vapors of several biomass sources using a high-resolution double focusing mass spectrometer. High-resolution analysis of pyrolysis vapors allowed for speciation of several compounds that would be detected as a single ion with unit mass resolution. Lastly, these data not only provide greater detail into the composition of pyrolysis vapors but also highlight differences between vapors generated from multiple biomass feedstocks.« less
Comparison of the pyrolysis behavior of lignins from different tree species.
Wang, Shurong; Wang, Kaige; Liu, Qian; Gu, Yueling; Luo, Zhongyang; Cen, Kefa; Fransson, Torsten
2009-01-01
Despite the increasing importance of biomass pyrolysis, little is known about the pyrolysis behavior of lignin--one of the main components of biomass--due to its structural complexity and the difficulty in its isolation. In the present study, we extracted lignins from Manchurian ash (Fraxinus mandschurica) and Mongolian Scots pine (Pinus sylvestris var. mongolica) using the Bjorkman procedure, which has little effect on the structure of lignin. Fourier transform infrared (FTIR) spectrometry was used to characterize the microstructure of the Bjorkman lignins, i.e., milled wood lignins (MWLs), from the different tree species. The pyrolysis characteristics of MWLs were investigated using a thermogravimetric analyzer, and the release of the main volatile and gaseous products of pyrolysis were detected by FTIR spectroscopy. During the pyrolysis process, MWLs underwent thermo-degradation over a wide temperature range. Manchurian ash MWL showed a much higher thermal degradation rate than Mongolian Scots pine MWL in the temperature range from 290-430 degrees C. High residue yields were achieved at 37 wt.% for Mongolian Scots pine MWL and 26 wt.% for Manchurian ash MWL. In order to further investigate the mechanisms of lignin pyrolysis, we also analyzed the FTIR profiles for the main pyrolysis products (CO(2), CO, methane, methanol, phenols and formaldehyde) and investigated the variation in pyrolysis products between the different MWLs.
Evans, R.J.; Chum, H.L.
1994-06-14
A process is described using fast pyrolysis to convert a plastic waste feed stream containing polycarbonate and ABS to high value monomeric constituents prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of a given polymer to its high value monomeric constituents prior to a temperature range that causes pyrolysis of other plastic components; selecting an acid or base catalysts and an oxide or carbonate support for treating the feed stream to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of the high value monomeric constituents of polycarbonate and ABS in the first temperature program range; differentially heating the feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituents prior to pyrolysis or other plastic components; separating the high value monomeric constituents from the polycarbonate to cause pyrolysis to a different high value monomeric constituent of the plastic waste and differentially heating the feed stream at the second higher temperature program range to cause pyrolysis of different high value monomeric constituents; and separating the different high value monomeric constituents. 68 figs.
Pyrolysis of polystyrene - polyphenylene oxide to recover styrene and useful products
Evans, Robert J.; Chum, Helena L.
1995-01-01
A process of using fast pyrolysis in a carrier gas to convert a polystyrene and polyphenylene oxide plastic waste to a given polystyrene and polyphenylene oxide prior to pyrolysis of other plastic components therein comprising: selecting a first temperature range to cause pyrolysis of given polystyrene and polyphenylene oxide and its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and a support and treating the feed stream with the catalyst to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of high value monomeric constituent of styrene from polystyrene and polyphenylene oxide in the first temperature range; differentially heating the feed stream at a heat rate within the first temperature range to provide differential pyrolysis for selective recovery of the high value monomeric constituent of styrene from polystyrene and polyphenylene oxide prior to pyrolysis of other plastic components; separating the high value monomer constituent of styrene; selecting a second higher temperature range to cause pyrolysis to a different derived high value product of polyphenylene oxide from the plastic waste and differentially heating the feed stream at the higher temperature range to cause pyrolysis of the plastic into a polyphenylene oxide derived product; and separating the different derived high value polyphenylene oxide product.
Evans, Robert J.; Chum, Helena L.
1994-01-01
A process of using fast pyrolysis to convert a plastic waste feed stream containing polycarbonate and ABS to high value monomeric constituents prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of a given polymer to its high value monomeric constituents prior to a temperature range that causes pyrolysis of other plastic components; selecting an acid or base catalysts and an oxide or carbonate support for treating the feed stream to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of the high value monomeric constituents of polycarbonate and ABS in the first temperature program range; differentially heating the feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituents prior to pyrolysis or other plastic components; separating the high value monomeric constituents from the polycarbonate to cause pyrolysis to a different high value monomeric constituent of the plastic waste and differentially heating the feed stream at the second higher temperature program range to cause pyrolysis of different high value monomeric constituents; and separating the different high value monomeric constituents.
Vacuum pyrolysis of waste tires with basic additives.
Zhang, Xinghua; Wang, Tiejun; Ma, Longlong; Chang, Jie
2008-11-01
Granules of waste tires were pyrolyzed under vacuum (3.5-10 kPa) conditions, and the effects of temperature and basic additives (Na2CO3, NaOH) on the properties of pyrolysis were thoroughly investigated. It was obvious that with or without basic additives, pyrolysis oil yield increased gradually to a maximum and subsequently decreased with a temperature increase from 450 degrees C to 600 degrees C, irrespective of the addition of basic additives to the reactor. The addition of NaOH facilitated pyrolysis dramatically, as a maximal pyrolysis oil yield of about 48 wt% was achieved at 550 degrees C without the addition of basic additives, while a maximal pyrolysis oil yield of about 50 wt% was achieved at 480 degrees C by adding 3 wt% (w/w, powder/waste tire granules) of NaOH powder. The composition analysis of pyrolytic naphtha (i.b.p. (initial boiling point) approximately 205 degrees C) distilled from pyrolysis oil showed that more dl-limonene was obtained with basic additives and the maximal content of dl-limonene in pyrolysis oil was 12.39 wt%, which is a valuable and widely-used fine chemical. However, no improvement in pyrolysis was observed with Na2CO3 addition. Pyrolysis gas was mainly composed of H2, CO, CH4, CO2, C2H4 and C2H6. Pyrolytic char had a surface area comparable to commercial carbon black, but its proportion of ash (above 11.5 wt%) was much higher.
Chum, H.L.; Evans, R.J.
1992-08-04
A process is described for using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent. 11 figs.
Chum, Helena L.; Evans, Robert J.
1992-01-01
A process of using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent.
Solar gasification of biomass: design and characterization of a molten salt gasification reactor
NASA Astrophysics Data System (ADS)
Hathaway, Brandon Jay
The design and implementation of a prototype molten salt solar reactor for gasification of biomass is a significant milestone in the development of a solar gasification process. The reactor developed in this work allows for 3 kWth operation with an average aperture flux of 1530 suns at salt temperatures of 1200 K with pneumatic injection of ground or powdered dry biomass feedstocks directly into the salt melt. Laboratory scale experiments in an electrically heated reactor demonstrate the benefits of molten salt and the data was evaluated to determine the kinetics of pyrolysis and gasification of biomass or carbon in molten salt. In the presence of molten salt overall gas yields are increased by up to 22%; pyrolysis rates double due to improved heat transfer, while carbon gasification rates increase by an order of magnitude. Existing kinetic models for cellulose pyrolysis fit the data well, while carbon gasification in molten salt follows kinetics modeled with a 2/3 order shrinking-grain model with a pre-exponential factor of 1.5*106 min-1 and activation energy of 158 kJ/mol. A reactor concept is developed based around a concentric cylinder geometry with a cavity-style solar receiver immersed within a volume of molten carbonate salt. Concentrated radiation delivered to the cavity is absorbed in the cavity walls and transferred via convection to the salt volume. Feedstock is delivered into the molten salt volume where biomass gasification reactions will be carried out producing the desired product gas. The features of the cavity receiver/reactor concept are optimized based on modeling of the key physical processes. The cavity absorber geometry is optimized according to a parametric survey of radiative exchange using a Monte Carlo ray tracing model, resulting in a cavity design that achieves absorption efficiencies of 80%-90%. A parametric survey coupling the radiative exchange simulations to a CFD model of molten salt natural convection is used to size the annulus containing the molten salt to maximize utilization of absorbed solar energy, resulting in a predicted utilization efficiency of 70%. Finite element analysis was used to finalize the design to achieve acceptable thermal stresses less than 34.5 MPa to avoid material creep.
Self-activation of biochar from furfural residues by recycled pyrolysis gas.
Yin, Yulei; Gao, Yuan; Li, Aimin
2018-04-17
Biochar samples with controllable specific surface area and mesopore ratio were self-activated from furfural residues by recycled pyrolysis gas. The objective of this study was to develop a new cyclic utilization method for the gas produced by pyrolysis. The influences of preparation parameters on the resulting biochar were studied by varying the pyrolysis-gas flow rate, activation time and temperature. Structural characterization of the produced biochar was performed by analysis of nitrogen adsorption isotherms at 77 K and scanning electron microscope (SEM). The pyrolysis gas compositions before and after activation were determined by a gas chromatograph. The results indicated that the surface area of the biochar was increased from 167 m 2 /g to 567 m 2 /g, the total pore volume increased from 0.121 cm 3 /g to 0.380 cm 3 /g, and the ratio of the mesopore pore volume to the total pore volume increased 17-39.7%. The CO volume fraction of the pyrolysis gas changed from 34.66 to 62.29% and the CO 2 volume fraction decreased from 48.26% to 12.17% under different conditions of pyrolysis-gas flow rate, activation time and temperature. The calorific values of pyrolysis gas changed from 8.82 J/cm 3 to 14.00 J/cm 3 , which were higher than those of conventional pyrolysis gases. The slower pyrolysis-gas flow rate and higher activation time increased the efficiency of the reaction between carbon and pyrolysis gas. These results demonstrated the feasibility of treatment of the furfural residues to produce microporous and mesoporous biochar. The pyrolysis gas that results from the activation process could be used as fuel. Overall, this new self-activation method meets the development requirements of cyclic economy and cleaner production. Copyright © 2018. Published by Elsevier Ltd.
Sulfate minerals: a problem for the detection of organic compounds on Mars?
Lewis, James M T; Watson, Jonathan S; Najorka, Jens; Luong, Duy; Sephton, Mark A
2015-03-01
The search for in situ organic matter on Mars involves encounters with minerals and requires an understanding of their influence on lander and rover experiments. Inorganic host materials can be helpful by aiding the preservation of organic compounds or unhelpful by causing the destruction of organic matter during thermal extraction steps. Perchlorates are recognized as confounding minerals for thermal degradation studies. On heating, perchlorates can decompose to produce oxygen, which then oxidizes organic matter. Other common minerals on Mars, such as sulfates, may also produce oxygen upon thermal decay, presenting an additional complication. Different sulfate species decompose within a large range of temperatures. We performed a series of experiments on a sample containing the ferric sulfate jarosite. The sulfate ions within jarosite break down from 500 °C. Carbon dioxide detected during heating of the sample was attributed to oxidation of organic matter. A laboratory standard of ferric sulfate hydrate released sulfur dioxide from 550 °C, and an oxygen peak was detected in the products. Calcium sulfate did not decompose below 1000 °C. Oxygen released from sulfate minerals may have already affected organic compound detection during in situ thermal experiments on Mars missions. A combination of preliminary mineralogical analyses and suitably selected pyrolysis temperatures may increase future success in the search for past or present life on Mars.
USDA-ARS?s Scientific Manuscript database
Fast pyrolysis processes are among the most effective methods for liquefaction of lignocellulosic biomass. Catalytic fast pyrolysis (CFP) over HZSM-5 or other zeolites and/or utilization of reactive atmospheres such as in the non-catalytic Tail Gas Reactive Pyrolysis (TRGP) process, a recent patent...
Publications - GMC 290 | Alaska Division of Geological & Geophysical
DGGS GMC 290 Publication Details Title: Organic carbon and rock-eval pyrolysis data of cuttings from Reference Unknown, 1999, Organic carbon and rock-eval pyrolysis data of cuttings from the Husky Oil NPR Products Report Report Information gmc290.pdf (177.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis Top of Page
Publications - GMC 130 | Alaska Division of Geological & Geophysical
DGGS GMC 130 Publication Details Title: Total organic carbon and rock-eval pyrolysis data of cuttings Reference Unknown, 1989, Total organic carbon and rock-eval pyrolysis data of cuttings and core from the Report Report Information gmc130.pdf (208.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis Top of Page
Chapter 8: Pyrolysis of Biomass for Aviation Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robichaud, David J; Jenkins, Rhodri W.; Sutton, Andrew D.
2016-07-15
Pyrolysis, the breaking down of organic material using heat and the absence of oxygen, is a method that has been widely researched for the production of liquid fuels. In this chapter, we review the feedstocks typically used for pyrolysis, the properties and the composition of the liquid fraction (termed 'bio-oil') obtained, the studies in which pyrolysis has been used in an attempt to increase the bio-oil yield, and how the bio-oil has been upgraded to fuel-like molecules. We also discuss the viability of pyrolysis to produce jet fuel hydrocarbons.
Pyrolysis system evaluation study
NASA Technical Reports Server (NTRS)
1974-01-01
An evaluation of two different pyrolysis concepts which recover energy from solid waste was conducted in order to determine the merits of each concept for integration into a Integrated Utility System (IUS). The two concepts evaluated were a Lead Bath Furnace Pyrolysis System and a Slagging Vertical Shaft, Partial Air Oxidation Pyrolysis System. Both concepts will produce a fuel gas from the IUS waste and sewage sludge which can be used to offset primary fuel consumption in addition to the sanitary disposal of the waste. The study evaluated the thermal integration of each concept as well as the economic impact on the IUS resulting from integrating each pyrolysis concepts. For reference, the pyrolysis concepts were also compared to incineration which was considered the baseline IUS solid waste disposal system.
Catalytic hydroprocessing of fast pyrolysis oils: Impact of biomass feedstock on process efficiency
Carpenter, Daniel; Westover, Tyler; Howe, Daniel; ...
2016-12-01
Here, we report here on an experimental study to produce refinery-ready fuel blendstocks via catalytic hydrodeoxygenation (upgrading) of pyrolysis oil using several biomass feedstocks and various blends. Blends were tested along with the pure materials to determine the effect of blending on product yields and qualities. Within experimental error, oil yields from fast pyrolysis and upgrading are shown to be linear functions of the blend components. Switchgrass exhibited lower fast pyrolysis and upgrading yields than the woody samples, which included clean pine, oriented strand board (OSB), and a mix of pinon and juniper (PJ). The notable exception was PJ, formore » which the poor upgrading yield of 18% was likely associated with the very high viscosity of the PJ fast pyrolysis oil (947 cp). The highest fast pyrolysis yield (54% dry basis) was obtained from clean pine, while the highest upgrading yield (50%) was obtained from a blend of 80% clean pine and 20% OSB (CP 8OSB 2). For switchgrass, reducing the fast pyrolysis temperature to 450 degrees C resulted in a significant increase to the pyrolysis oil yield and reduced hydrogen consumption during hydrotreating, but did not directly affect the hydrotreating oil yield. The water content of fast pyrolysis oils was also observed to increase linearly with the summed content of potassium and sodium, ranging from 21% for clean pine to 37% for switchgrass. Multiple linear regression models demonstrate that fast pyrolysis is strongly dependent upon the contents lignin and volatile matter as well as the sum of potassium and sodium.« less
Co-pyrolysis of sewage sludge and manure.
Ruiz-Gómez, Nadia; Quispe, Violeta; Ábrego, Javier; Atienza-Martínez, María; Murillo, María Benita; Gea, Gloria
2017-01-01
The management and valorization of residual organic matter, such as sewage sludge and manure, is gaining interest because of the increasing volume of these residues, their localized generation and the related problems. The anaerobic digestion of mixtures of sewage sludge and manure could be performed due to the similarities between both residues. The purpose of this study is to evaluate the feasibility of the co-pyrolysis of sewage sludge (SS) and digested manure (DM) as a potential management technology for these residues. Pyrolysis of a sewage sludge/manure blend (50:50%) was performed at 525°C in a stirred batch reactor under N 2 atmosphere. The product yields and some characteristics of the product were analyzed and compared to the results obtained in the pyrolysis of pure residues. Potential synergetic and antagonist effects during the co-pyrolysis process were evaluated. Although sewage sludge and manure seem similar in nature, there are differences in their pyrolysis product properties and distribution due to their distinct ash and organic matter composition. For the co-pyrolysis of SS and DM, the product yields did not show noticeable synergistic effects with the exception of the yields of organic compounds, being slightly higher than the predicted average, and the H 2 yield, being lower than expected. Co-pyrolysis of SS and DM could be a feasible management alternative for these residues in locations where both residues are generated, since the benefits and the drawbacks of the co-pyrolysis are similar to those of the pyrolysis of each residue. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fates of Chemical Elements in Biomass during Its Pyrolysis.
Liu, Wu-Jun; Li, Wen-Wei; Jiang, Hong; Yu, Han-Qing
2017-05-10
Biomass is increasingly perceived as a renewable resource rather than as an organic solid waste today, as it can be converted to various chemicals, biofuels, and solid biochar using modern processes. In the past few years, pyrolysis has attracted growing interest as a promising versatile platform to convert biomass into valuable resources. However, an efficient and selective conversion process is still difficult to be realized due to the complex nature of biomass, which usually makes the products complicated. Furthermore, various contaminants and inorganic elements (e.g., heavy metals, nitrogen, phosphorus, sulfur, and chlorine) embodied in biomass may be transferred into pyrolysis products or released into the environment, arousing environmental pollution concerns. Understanding their behaviors in biomass pyrolysis is essential to optimizing the pyrolysis process for efficient resource recovery and less environmental pollution. However, there is no comprehensive review so far about the fates of chemical elements in biomass during its pyrolysis. Here, we provide a critical review about the fates of main chemical elements (C, H, O, N, P, Cl, S, and metals) in biomass during its pyrolysis. We overview the research advances about the emission, transformation, and distribution of elements in biomass pyrolysis, discuss the present challenges for resource-oriented conversion and pollution abatement, highlight the importance and significance of understanding the fate of elements during pyrolysis, and outlook the future development directions for process control. The review provides useful information for developing sustainable biomass pyrolysis processes with an improved efficiency and selectivity as well as minimized environmental impacts, and encourages more research efforts from the scientific communities of chemistry, the environment, and energy.
Effect of dry torrefaction on kinetics of catalytic pyrolysis of sugarcane bagasse
NASA Astrophysics Data System (ADS)
Daniyanto, Sutijan, Deendarlianto, Budiman, Arief
2015-12-01
Decreasing world reserve of fossil resources (i.e. petroleum oil, coal and natural gas) encourage discovery of renewable resources as subtitute for fossil resources. Biomass is one of the main natural renewable resources which is promising resource as alternate resources to meet the world's energy needs and raw material to produce chemical platform. Conversion of biomass, as source of energy, fuel and biochemical, is conducted using thermochemical process such as pyrolysis-gasification process. Pyrolysis step is an important step in the mechanism of pyrolysis - gasification of biomass. The objective of this study is to obtain the kinetic reaction of catalytic pyrolysis of dry torrified sugarcane bagasse which used Ca and Mg as catalysts. The model of kinetic reaction is interpreted using model n-order of single reaction equation of biomass. Rate of catalytic pyrolysis reaction depends on the weight of converted biomass into char and volatile matters. Based on TG/DTA analysis, rate of pyrolysis reaction is influenced by the composition of biomass (i.e. hemicellulose, cellulose and lignin) and inorganic component especially alkali and alkaline earth metallic (AAEM). From this study, it has found two equations rate of reaction of catalytic pyrolysis in sugarcane bagasse using catalysts Ca and Mg. First equation is equation of pyrolysis reaction in rapid zone of decomposition and the second equation is slow zone of decomposition. Value of order reaction for rapid decomposition is n > 1 and for slow decomposition is n<1. Constant and order of reactions for catalytic pyrolysis of dry-torrified sugarcane bagasse with presence of Ca tend to higher than that's of presence of Mg.
Lewan, M.D.; Ruble, T.E.
2002-01-01
This study compares kinetic parameters determined by open-system pyrolysis and hydrous pyrolysis using aliquots of source rocks containing different kerogen types. Kinetic parameters derived from these two pyrolysis methods not only differ in the conditions employed and products generated, but also in the derivation of the kinetic parameters (i.e., isothermal linear regression and non-isothermal nonlinear regression). Results of this comparative study show that there is no correlation between kinetic parameters derived from hydrous pyrolysis and open-system pyrolysis. Hydrous-pyrolysis kinetic parameters determine narrow oil windows that occur over a wide range of temperatures and depths depending in part on the organic-sulfur content of the original kerogen. Conversely, open-system kinetic parameters determine broad oil windows that show no significant differences with kerogen types or their organic-sulfur contents. Comparisons of the kinetic parameters in a hypothetical thermal-burial history (2.5 ??C/my) show open-system kinetic parameters significantly underestimate the extent and timing of oil generation for Type-US kerogen and significantly overestimate the extent and timing of petroleum formation for Type-I kerogen compared to hydrous pyrolysis kinetic parameters. These hypothetical differences determined by the kinetic parameters are supported by natural thermal-burial histories for the Naokelekan source rock (Type-IIS kerogen) in the Zagros basin of Iraq and for the Green River Formation (Type-I kerogen) in the Uinta basin of Utah. Differences in extent and timing of oil generation determined by open-system pyrolysis and hydrous pyrolysis can be attributed to the former not adequately simulating natural oil generation conditions, products, and mechanisms.
Dias, Pablo; Javimczik, Selene; Benevit, Mariana; Veit, Hugo
2017-02-01
Photovoltaic (PV) modules contain both valuable and hazardous materials, which makes its recycling meaningful economically and environmentally. In general, the recycling of PV modules starts with the removal of the polymeric ethylene-vinyl acetate (EVA) resin using pyrolysis, which assists in the recovery of materials such as silicon, copper and silver. The pyrolysis implementation, however, needs improvement given its importance. In this study, the polymers in the PV modules were characterized by Fourier transform infrared spectroscopy (FTIR) and the removal of the EVA resin using pyrolysis has been studied and optimized. The results revealed that 30min pyrolysis at 500°C removes >99% of the polymers present in photovoltaic modules. Moreover, the behavior of different particle size milled modules during the pyrolysis process was evaluated. It is shown that polymeric materials tend to remain at a larger particle size and thus, this fraction has the greatest mass loss during pyrolysis. A thermo gravimetric analysis (TGA) performed in all polymeric matter revealed the optimum pyrolysis temperature is around 500°C. Temperatures above 500°C continue to degrade matter, but mass loss rate is 6.25 times smaller. This study demonstrates the use of pyrolysis can remove >99% of the polymeric matter from PV modules, which assists the recycling of this hazardous waste and avoids its disposal. Copyright © 2016 Elsevier Ltd. All rights reserved.
National Aerospace Fuels Research Complex
2010-03-01
supercritical pyrolysis. 7 6. Representative chromatogram of low conversion stressed S-8 liquid product from supercritical pyrolysis on ECAT. 7 7...Representative chromatogram of very high conversion stressed S-8 liquid product from supercritical pyrolysis at UTRC. 9 8. Representative chromatogram...of stressed S-8 liquid product from supercritical pyrolysis at Louisiana State University. 9 9. GC-MS scanning total ion chromatograms of fuels
Catalytic pyrolysis characteristics of scrap printed circuit boards by TG-FTIR.
Zhao, Chunhu; Zhang, Xiaoping; Shi, Lin
2017-03-01
In the present work, pyrolysis and catalytic pyrolysis of waste printed circuit boards (WPCBs) was carried out in the coupling of Thermo Gravimetric Analysis and Fourier Transform Infrared Spectroscopy (TG-FTIR) under nitrogen atmosphere. The reaction temperature was increased from 30 to 700°C, while the heating rates were varied from 10 to 40°C/min. Experimental results show that the effect of catalyst on the WPCBs particles pyrolysis was significance. Compared with another two combustion-supporting agents (MgO, CaO), the whole pyrolysis process was optimized when the catalyst ZSM-5 was added into the WPCBs particles. The distributed activation energy model (DAEM) was used to analyze the kinetic parameters of the WPCBs pyrolysis. It was found that values of frequency factor (k 0 ) changed with different activation energy (E) values during pyrolysis process. The activation energy values range from 129.15 to 280.53kJ/mol, and the frequency factor values range from 9.02×10 10 to 4.21×10 22 s -1 . The generated major products for the catalytic pyrolysis of WPCBs were H 2 , CO 2 , CO, H 2 O, phenols and aromatics. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samolada, M.C.; Zabaniotou, A.A., E-mail: azampani@auth.gr
2014-02-15
Highlights: • The high output of MSS highlights the need for alternative routes of valorization. • Evaluation of 3 sludge-to-energy valorisation methods through SWOT analysis. • Pyrolysis is an energy and material recovery process resulting to ‘zero waste’. • Identification of challenges and barriers for MSS pyrolysis in Greece was investigated. • Adopters of pyrolysis systems face the challenge of finding new product markets. - Abstract: For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current statusmore » of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a ‘zero waste’ solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated.« less
Maliutina, Kristina; Tahmasebi, Arash; Yu, Jianglong
2018-05-01
Pressurized entrained-flow pyrolysis of Chlorella vulgaris microalgae was investigated. The impact of pressure on the yield and composition of pyrolysis products were studied. The results showed that the concentration of H 2 in bio-gas increased sharply with increasing pyrolysis pressure, while those of CO, CO 2 , CH 4 , and C 2 H 6 were dramatically decreased. The concentration of H 2 reached 88.01 vol% in bio-gas at 900 °C and 4 MPa. Higher pressures promoted the hydrogen transfer to bio-gas. The bio-oils derived from pressurized pyrolysis were rich in nitrogen-containing compounds and PAHs. The highest concentration of nitrogen-containing compounds in bio-oil was achieved at 800 °C and 1 MPa. Increasing pyrolysis pressure promoted the formation of nitrogen-containing compounds such as indole, quinoline, isoquinoline and phenanthridine. Higher pyrolysis pressures led to increased sphericity, enhanced swelling, and higher carbon order of bio-chars. Pressurized pyrolysis of biomass has a great potential for poly-generation of H 2 , nitrogen containing compounds and bio-char. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin L. Kenney; Kara G. Cafferty; Jacob J. Jacobson
The U.S. Department of Energy promotes the production of liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass sustainable supply, logistics, conversion, and overall system sustainability. As part of its involvement in this program, Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL quantified and the economics and sustainability of moving biomass from the field or stand to the throat of the conversion process using conventional equipment and processes. All previous work to 2012 was designed to improve themore » efficiency and decrease costs under conventional supply systems. The 2012 programmatic target was to demonstrate a biomass logistics cost of $55/dry Ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model.« less
Li, Boyan; Ou, Longwen; Dang, Qi; Meyer, Pimphan; Jones, Susanne; Brown, Robert; Wright, Mark
2015-11-01
This study evaluates the techno-economic uncertainty in cost estimates for two emerging technologies for biofuel production: in situ and ex situ catalytic pyrolysis. The probability distributions for the minimum fuel-selling price (MFSP) indicate that in situ catalytic pyrolysis has an expected MFSP of $1.11 per liter with a standard deviation of 0.29, while the ex situ catalytic pyrolysis has a similar MFSP with a smaller deviation ($1.13 per liter and 0.21 respectively). These results suggest that a biorefinery based on ex situ catalytic pyrolysis could have a lower techno-economic uncertainty than in situ pyrolysis compensating for a slightly higher MFSP cost estimate. Analysis of how each parameter affects the NPV indicates that internal rate of return, feedstock price, total project investment, electricity price, biochar yield and bio-oil yield are parameters which have substantial impact on the MFSP for both in situ and ex situ catalytic pyrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ferrera-Lorenzo, N; Fuente, E; Bermúdez, J M; Suárez-Ruiz, I; Ruiz, B
2014-01-01
A comparative study of the pyrolysis of a macroalgae industrial solid waste (algae meal) in an electrical conventional furnace and in a microwave furnace has been carried out. It was found that the chars obtained from both pyrolyses are similar and show good properties for performing as a solid bio-fuel and as a precursor of activated carbon. Bio-oils from conventional pyrolysis have a greater number of phenolic, pyrrole and alkane compounds whereas benzene and pyridine compounds are more predominant in microwave pyrolysis with a major presence of light compounds. The bio-gas fraction from microwave pyrolysis presents a much higher syngas content (H2+CO), and a lower CO2 and CH4 proportion than that obtained by conventional pyrolysis. Yields are similar for both treatments with a slightly higher gas yield in the case of microwave pyrolysis due to the fact that microwave heating favors heterogeneous reactions between the gases and the char. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wei, Juntao; Gong, Yan; Guo, Qinghua; Ding, Lu; Wang, Fuchen; Yu, Guangsuo
2017-03-01
Physicochemical evolution (i.e. pore structure variation, carbon structure change and active AAEM transformation) during rice straw (RS) and Shenfu bituminous coal (SF) co-pyrolysis was quantitatively determined in this work. Moreover, the corresponding char gasification was conducted using a thermogravimetric analyzer (TGA) and relative reactivity was proposed to quantify the co-pyrolysis impact on co-gasification reactivity. The results showed that the development of pore structure in co-pyrolyzed chars was first inhibited and then enhanced with the decrease of SF proportion. The promotion effect of co-pyrolysis on order degree of co-pyrolyzed chars gradually weakened with increasing RS proportion. Co-pyrolysis mainly enhanced active K transformation in co-pyrolyzed chars and the promotion effect was alleviated with increasing RS proportion. The inhibition effect of co-pyrolysis on co-gasification reactivity weakened with increasing RS proportion and gasification temperature, which was mainly attributed to the combination of carbon structure evolution and active AAEM transformation in co-pyrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Investigating pyrolysis characteristics of moso bamboo through TG-FTIR and Py-GC/MS.
Liang, Fang; Wang, Ruijuan; Hongzhong, Xiang; Yang, Xiaomeng; Zhang, Tao; Hu, Wanhe; Mi, Bingbing; Liu, Zhijia
2018-05-01
This study was carried out to investigate pyrolysis characteristics of moso bamboo (Phyllostachys pubescens), including outer layer (OB), middle layer (MB) and inner layer (IB) and bamboo leaves (BL), through TG-FTIR and Py-GC/MS. The results showed that 70% of weight loss occurred at rapid pyrolysis stage with temperature of 200-400 °C. With increase in heating rate, pyrolysis process shifted toward higher temperature. IB, OB, MB and BL had a different activation energy at different conversion rates. BL had a higher activation energy than IB, OB and MB. The volatiles of bamboo was complicated with 2-30 of C atoms. IB, OB and MB mainly released benzofuran, hydroxyacetaldehyde and 2-Pentanone. BL released furan, acetic acid and phenol. The main pyrolysis products included H 2 O, CH 4 , CO 2 , CO, carboxylic acids, NO, NO 2 . Pyrolysis products of IB was the most and that of BL was the lowest. MB had the lowest pyrolysis temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.
Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis.
Mallick, Debarshi; Poddar, Maneesh Kumar; Mahanta, Pinakeswar; Moholkar, Vijayanand S
2018-08-01
This study reports pyrolysis kinetics of biomass blends using isoconversional methods, viz. Friedman, FWO and KAS. Blends of three biomasses, viz. saw dust, bamboo dust and rice husk, were used. Extractives and volatiles in biomass and minerals in ash had marked influence on enhancement of reaction kinetics during co-pyrolysis, as indicated by reduction in activation energy and increase in decomposition intensity. Pyrolysis kinetics of saw dust and rice husk accelerated (positive synergy), while that of bamboo dust decelerated after blending (negative synergy). Predominant reaction mechanism of all biomass blends was 3-D diffusion in lower conversion range (α ≤ 0.5), while for α ≥ 0.5 pyrolysis followed random nucleation (or nucleation and growth mechanism). Higher reaction order for pyrolysis of blends of rice husk with saw dust and bamboo dust was attributed to catalytic effect of minerals in ash. Positive ΔH and ΔG was obtained for pyrolysis of all biomass blends. Copyright © 2018 Elsevier Ltd. All rights reserved.
Janković, Bojan
2011-10-01
The non-isothermal pyrolysis kinetics of Acetocell (the organosolv) and Lignoboost® (kraft) lignins, in an inert atmosphere, have been studied by thermogravimetric analysis. Using isoconversional analysis, it was concluded that the apparent activation energy for all lignins strongly depends on conversion, showing that the pyrolysis of lignins is not a single chemical process. It was identified that the pyrolysis process of Acetocell and Lignoboost® lignin takes place over three reaction steps, which was confirmed by appearance of the corresponding isokinetic relationships (IKR). It was found that major pyrolysis stage of both lignins is characterized by stilbene pyrolysis reactions, which were subsequently followed by decomposition reactions of products derived from the stilbene pyrolytic process. It was concluded that non-isothermal pyrolysis of Acetocell and Lignoboost® lignins can be best described by n-th (n>1) reaction order kinetics, using the Weibull mixture model (as distributed reactivity model) with alternating shape parameters. Copyright © 2011 Elsevier Ltd. All rights reserved.
Pressurized chemical-looping combustion of coal with an iron ore-based oxygen carrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Rui; Song, Min; Zhang, Shuai
2010-06-15
Chemical-looping combustion (CLC) is a new combustion technology with inherent separation of CO{sub 2}. Most of the previous investigations on CLC of solid fuels were conducted under atmospheric pressure. A pressurized CLC combined cycle (PCLC-CC) system is proposed as a promising coal combustion technology with potential higher system efficiency, higher fuel conversion, and lower cost for CO{sub 2} sequestration. In this study pressurized CLC of coal with Companhia Valedo Rio Doce (CVRD) iron ore was investigated in a laboratory fixed bed reactor. CVRD iron ore particles were exposed alternately to reduction by 0.4 g of Chinese Xuzhou bituminous coal gasifiedmore » with 87.2% steam/N{sub 2} mixture and oxidation with 5% O{sub 2} in N{sub 2} at 970 C. The operating pressure was varied between 0.1 MPa and 0.6 MPa. First, control experiments of steam coal gasification over quartz sand were performed. H{sub 2} and CO{sub 2} are the major components of the gasification products, and the operating pressure influences the gas composition. Higher concentrations of CO{sub 2} and lower fractions of CO, CH{sub 4}, and H{sub 2} during the reduction process with CVRD iron ore was achieved under higher pressures. The effects of pressure on the coal gasification rate in the presence of the oxygen carrier were different for pyrolysis and char gasification. The pressurized condition suppresses the initial coal pyrolysis process while it also enhances coal char gasification and reduction with iron ore in steam, and thus improves the overall reaction rate of CLC. The oxidation rates and variation of oxygen carrier conversion are higher at elevated pressures reflecting higher reduction level in the previous reduction period. Scanning electron microscope and energy-dispersive X-ray spectroscopy (SEM-EDX) analyses show that particles become porous after experiments but maintain structure and size after several cycles. Agglomeration was not observed in this study. An EDX analysis demonstrates that there is very little coal ash deposited on the oxygen carrier particles but no appreciable crystalline phases change as verified by X-ray diffraction (XRD) analysis. Overall, the limited pressurized CLC experiments carried out in the present work suggest that PCLC of coal is promising and further investigations are necessary. (author)« less
The hypothesis that health effects associated with coal combustion fly-ash particles are exacerbated by the simultaneous presence of iron and soot was tested through two sets of experiments. The first set created prototype particles from complete and partial combustion, or oxygen...
Going Beyond, Going Further: Chemical Properties of Commonly Available Hydrocarbons.
ERIC Educational Resources Information Center
Perina, Ivo
1985-01-01
Background information, procedures used, and safety considerations are provided for experiments using natural gas. They include: (1) exploding a mixture of natural gas and oxygen; (2) testing for unsaturated hydrocarbons in natural gas; (3) substituting higher saturated hydrocarbons contained in kerosene with bromine; and (4) the pyrolysis of…
The hypothesis that health effects associated with coal combustion fly-ash particles are exacerbated by the simultaneous presence of iron and soot was tested through two sets of experiments. The first set created prototype particles from complete and partial combustion, or oxygen...
Liu, Chao-Li; Hackley, Keith C.; Coleman, D.D.
1987-01-01
A method has been developed using stable sulphur isotope analyses to monitor the behaviour of sulphur forms in a coal during thermal desulphurization. In this method, the natural stable isotopic composition of the pyritic and organic sulphur in coal is used as a tracer to follow their mobility during the desulphurization process. This tracer method is based on the fact that the isotopic compositions of pyritic and organic sulphur are significantly different in some coals. Isotopic results of pyrolysis experiments at temperatures ranging from 350 to 750 ??C indicate that the sulphur released with the volatiles is predominantly organic sulphur. The pyritic sulphur is evolved in significant quantities only when pyrolysis temperatures exceed 500 ??C. The presence of pyrite seems to have no effect on the amount of organic sulphur evolved during pyrolysis. The chemical and isotopic mass balances achieved from three different samples of the Herrin (No. 6) coal of the Illinois Basin demonstrate that this stable isotope tracer method is quantitative. The main disadvantage of this tracing technique is that not all coals contain isotopically distinct organic and pyritic sulphur. ?? 1987.
NASA Astrophysics Data System (ADS)
Liu, Baichen; Huang, Binbin; Lin, Cheng; Ye, Jianshan; Ouyang, Liuzhang
2017-07-01
In recent years, non-precious metal electrocatalysts for oxygen reduction reaction (ORR) have attracted tremendous attention due to their high catalytic activity, long-term stability and excellent methanol tolerance. Herein, the porous carbon supported Fe-N-C catalysts for ORR were synthesized by direct pyrolysis of ferric chloride, 6-Chloropyridazin-3-amine and carbon black. Variation of pyrolysis temperature during the synthesis process leads to the difference in ORR catalytic activity. High pyrolysis temperature is beneficial to the formation of the "N-Fe" active sites and high electrical conductivity, but the excessive temperature will cause the decomposition of nitrogen-containing active sites, which are revealed by Raman, TGA and XPS. A series of synthesis and characterization experiments with/without nitrogen or iron in carbon black indicate that the coordination of iron and nitrogen plays a crucial role in achieving excellent ORR performances. Electrochemical test results show that the catalyst pyrolyzed at 800 °C (Fe-N-C-800) exhibits excellent ORR catalytic activity, better methanol tolerance and higher stability compared with commercial Pt/C catalyst in both alkaline and acidic conditions.
Shock tube and chemical kinetic modeling study of the oxidation of 2,5-dimethylfuran.
Sirjean, Baptiste; Fournet, René; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Wang, Weijing; Oehlschlaeger, Matthew A
2013-02-21
A detailed kinetic model describing the oxidation of 2,5-dimethylfuran (DMF), a potential second-generation biofuel, is proposed. The kinetic model is based upon quantum chemical calculations for the initial DMF consumption reactions and important reactions of intermediates. The model is validated by comparison to new DMF shock tube ignition delay time measurements (over the temperature range 1300-1831 K and at nominal pressures of 1 and 4 bar) and the DMF pyrolysis speciation measurements of Lifshitz et al. [ J. Phys. Chem. A 1998 , 102 ( 52 ), 10655 - 10670 ]. Globally, modeling predictions are in good agreement with the considered experimental targets. In particular, ignition delay times are predicted well by the new model, with model-experiment deviations of at most a factor of 2, and DMF pyrolysis conversion is predicted well, to within experimental scatter of the Lifshitz et al. data. Additionally, comparisons of measured and model predicted pyrolysis speciation provides validation of theoretically calculated channels for the oxidation of DMF. Sensitivity and reaction flux analyses highlight important reactions as well as the primary reaction pathways responsible for the decomposition of DMF and formation and destruction of key intermediate and product species.
[Influence of impurities on waste plastics pyrolysis: products and emissions].
Zhao, Lei; Wang, Zhong-Hui; Chen, De-Zhen; Ma, Xiao-Bo; Luan, Jian
2012-01-01
The study is aimed to evaluate the impact of impurities like food waste, paper, textile and especially soil on the pyrolysis of waste plastics. For this purpose, emissions, gas and liquid products from pyrolysis of waste plastics and impurities were studied, as well as the transfer of element N, Cl, S from the substrates to the pyrolysis products. It was found that the presence of food waste would reduce the heat value of pyrolysis oil to 27 MJ/kg and increase the moisture in the liquid products, therefore the food residue should be removed from waste plastics; and the soil, enhance the waste plastics' pyrolysis by improving the quality of gas and oil products. The presence of food residue, textile and paper leaded to higher gas emissions.
McGuigan, Megan; Waite, J Hunter; Imanaka, Hiroshi; Sacks, Richard D
2006-11-03
The reddish brown haze that surrounds Titan, Saturn's largest moon, is thought to consist of tholin-like organic aerosols. Tholins are complex materials of largely unknown structure. The very high peak capacity and structured chromatograms obtained from comprehensive two-dimensional GC (GC x GC) are attractive attributes for the characterization of tholin pyrolysis products. In this report, GC x GC with time-of-flight MS detection and a flash pyrolysis inlet is used to characterize tholin pyrolysis products. Identified pyrolysis products include low-molecular-weight nitriles, alkyl substituted pyrroles, linear and branched hydrocarbons, alkyl-substituted benzenes and PAH compounds. The pyrolysis of standards found in tholin pyrolysate showed that little alteration occurred and thus these structures are likely present in the tholin material.
Shemwell, B; Levendis, Y A; Simons, G A
2001-01-01
This is a laboratory study on the reduction of combustion-generated hydrochloric acid (HCl) emissions by in-furnace dry-injection of calcium-based sorbents. HCl is a hazardous gaseous pollutant emitted in significant quantities by municipal and hazardous waste incinerators, coal-fired power plants, and other industrial furnaces. Experiments were conducted in a laboratory furnace at gas temperatures of 600-1000 degrees C. HCl gas diluted with N2, and sorbent powders fluidized in a stream of air were introduced into the furnace concurrently. Chlorination of the sorbents occurred in the hot zone of the furnace at gas residence times approximately 1 s. The sorbents chosen for these experiments were calcium formate (CF), calcium magnesium acetate (CMA), calcium propionate (CP), calcium oxide (CX), and calcium carbonate (CC). Upon release of organic volatiles, sorbents calcine to CaO at approximately 700 degrees C, and react with the HCl according to the reaction CaO + 2HCl <=> CaCl2 + H2O. At the lowest temperature case examined herein, 600 degrees C, direct reaction of HCl with CaCO3 may also be expected. The effectiveness of the sorbents to capture HCl was interpreted using the "pore tree" mathematical model for heterogeneous diffusion reactions. Results show that the thin-walled, highly porous cenospheres formed from the pyrolysis and calcination of CF, CMA, and CP exhibited high relative calcium utilization at the upper temperatures of this study. Relative utilizations under these conditions reached 80%. The less costly low-porosity sorbents, calcium carbonate and calcium oxide also performed well. Calcium carbonate reached a relative utilization of 54% in the mid-temperature range, while the calcium oxide reached an 80% relative utilization at the lowest temperature examined. The data matched theoretical predictions of sorbent utilization using the mathematical model, with activation energy and pre-exponential factors for the calcination reaction of 17,000 K and 300,000 (g gas/cm2/s/atm gas), respectively. Thus, the kinetics of the calcination reaction were found to be much faster (approximately 500 times) than those of the sulfation reaction examined previously in this laboratory.
NASA Astrophysics Data System (ADS)
Morisson, Marietta; Szopa, Cyril; Buch, Arnaud; Carrasco, Nathalie; Gautier, Thomas
2015-04-01
In spite of numerous studies carried out to characterize the chemical composition of laboratory analogues of Titan aerosols (tholins), their molecular composition as well as their structuration are still little known. If Pyrolysis gas chromatography mass spectrometry (Pyr-GCMS) has been used for years to give clues about this composition, the highly disparate results obtained show that they can be attributed to the analytical conditions used, to differences in the nature of the analogues studied, or both. In order to have a better description of Titan's tholins molecular composition, we led a systematic analysis of these materials by pyr-GCMS, exploring the analytical parameters to estimate the biases this technique can induce. With this aim, we used the PAMPRE experiment, a capacitively coupled RF cold plasma reactor (Szopa et al. 2006), to synthetize tholins with 2%, 5% and 10% of CH4 in N2. The three samples were systematically pyrolyzed in the temperature range 200-600°C with a 100°C step. The evolved gases were then injected into a GC-MS device for molecular identification. This systematic pyr-GC-MS analysis had two major objectives: (i) optimizing all the analytical parameters for the detection of a wide range of compounds and thus a characterization of the tholins composition as comprehensive as possible, and (ii) highlighting the role of the CH4 ratio on the tholins molecular structure. About a hundred of molecules have been identified in the pyrolysis products. Although an identical major pattern of nitriles and ethylene appears clearly for the three samples, some discriminant signatures were highlighted. The samples mainly differ by the number of released compounds. The results show especially an increase in the hydrocarbonaceous chains when the CH4 ratio increases. At the opposite, the formation of poly-nitrogenous compounds seems to be easier for lower CH4 ratios. We also performed a semi-quantitative study on the best represented chemical family in our chromatograms - namely nitriles: the existence of a relation between the quantity of a released compound and its molecular mass is consistent with the quantification of nitriles in the PAMPRE gas phase done by Gautier et al., 2011. Moreover, numerous species are present both in tholins and in the gas phase. That allowed us to make out potential precursors of the solid organic particles. From all these results, we conclude that the optimal pyrolysis temperature for a GC-MS analysis of our tholins is 600°C. This temperature choice results from the best compromise between the number of released compounds, the quality of the signal and the appearance of pyrolysis artefacts. Lastly, thanks to a review of pyr-GCMS studies carried out on Titan tholins since the first work of Khare et al. (1981), we compared all the previous analyses between them and with our own results in order to better understand the differences. References B. N. Khare et al., Icarus, vol. 48, no. 2, pp. 290-297, Nov. 1981. C. Szopa et al., Planet. Space Sci., vol. 54, no. 4, pp. 394-404, Apr. 2006. T. Gautier et al., Icarus, vol. 213, no. 2, pp. 625-635, Jun. 2011.
Use of laboratory simulated pyrolysis in tracing the history of sedimentary organic matter
NASA Technical Reports Server (NTRS)
Kaplan, I. R.; Tannenbaum, E.; Huizinga, B. E.
1986-01-01
Results from laboratory simulated pyrolyses experiments show that in addition to depth of burial, preservation of kerogen, and hence any morphologic structure in it, is also dependent on the mineral matrix with which it is associated. In the presence of clay minerals, and especially under dry conditions, extractable lipids released during kerogen decomposition are more rapidly destroyed than in the presence of calcite or chert matrices. The result is production of gas, polar bitumen and pyrobitumen and destruction of biomarkers. During such an early reorganization of the kerogen, the biomarker constituents can be destroyed, or unrecognizably altered. The above process of organic residues maturation appears to be inhibited in the presence of water and is significantly reduced where kerogen is hosted in limestones, dolomites or cherts. These minerals have been characteristically found to be the most reliable in yielding morphological fossils and small quantities of extractable bitumen in Archean and Proterozoic rocks. To understand the validity of chemical and morphological fossils, in the early geologic record, it will be necessary to understand the process of kerogen in sedimentary rocks. To test the role of various minerals on the preservation process, kerogen extracted from a variety of rocks has been heated together with montmorillonite, illite and calcite. The kinetics of the process has been monitored and the products quantitatively identified.
Pyrolysis process for producing fuel gas
NASA Technical Reports Server (NTRS)
Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Wojtowicz, Marek A. (Inventor); Suuberg, Eric M. (Inventor)
2007-01-01
Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.
Methods for deoxygenating biomass-derived pyrolysis oil
Baird, Lance Awender; Brandvold, Timothy A.
2015-06-30
Methods for deoxygenating a biomass-derived pyrolysis oil are provided. A method for deoxygenating a biomass-derived pyrolysis oil comprising the steps of combining a biomass-derived pyrolysis oil stream with a heated low-oxygen-pyoil diluent recycle stream to form a heated diluted pyoil feed stream is provided. The heated diluted pyoil feed stream has a feed temperature of about 150.degree. C. or greater. The heated diluted pyoil feed stream is contacted with a first deoxygenating catalyst in the presence of hydrogen at first hydroprocessing conditions effective to form a low-oxygen biomass-derived pyrolysis oil effluent.
Finding the chemistry in biomass pyrolysis: Millisecond chemical kinetics and visualization
NASA Astrophysics Data System (ADS)
Krumm, Christoph
Biomass pyrolysis is a promising thermochemical method for producing fuels and chemicals from renewable sources. Development of a fundamental understanding of biomass pyrolysis chemistry is difficult due to the multi-scale and multi-phase nature of the process; biomass length scales span 11 orders of magnitude and pyrolysis phenomena include solid, liquid, and gas phase chemistry in addition to heat and mass transfer. These complexities have a significant effect on chemical product distributions and lead to variability between reactor technologies. A major challenge in the study of biomass pyrolysis is the development of kinetic models capable of describing hundreds of millisecond-scale reactions of biomass into lower molecular weight products. In this work, a novel technique for studying biomass pyrolysis provides the first- ever experimental determination of kinetics and rates of formation of the primary products from cellulose pyrolysis, providing insight into the millisecond-scale chemical reaction mechanisms. These findings highlight the importance of heat and mass transport limitations for cellulose pyrolysis chemistry and are used to identify the length scales at which transport limitations become relevant during pyrolysis. Through this technique, a transition is identified, known as the reactive melting point, between low and high temperature depolymerization. The transition between two mechanisms of cellulose decompositions unifies the mechanisms that govern low temperature char formation, intermediate pyrolysis conditions, and high temperature gas formation. The conditions under which biomass undergoes pyrolysis, including modes of heat transfer, have been shown to significantly affect the distribution of biorenewable chemical and fuel products. High-speed photography is used to observe the liftoff of initially crystalline cellulose particles when impinged on a heated surface, known as the Leidenfrost effect for room-temperature liquids. Order-of-magnitude changes in the lifetime of cellulose particles are observed as a result of changing modes in heat transfer as cellulose intermediate liquid droplets wet and de-wet polished ceramic surfaces. Introduction of surface macroporosity is shown to completely inhibit the cellulose Leidenfrost effect, providing avenues for surface modification and reactor design to control particle heat transfer in industrial pyrolysis applications. Cellulosic particles on surfaces consisting of microstructured, asymmetric ratchets were observed to spontaneously move orthogonal to ratchet wells above the cellulose reactive Leidenfrost temperature (>750 °C). Evaluation of the accelerating particles supported the mechanism of propelling viscous forces (50-200 nN) from rectified pyrolysis vapors, thus providing the first example of biomass conveyors with no moving parts driven by high temperature for biofuel reactors. Combined knowledge of pyrolysis chemistry, kinetics, and heat and mass transport effects direct the design of the next generation pyrolysis reactors for tuning bio- oil quality and design of improved catalytic upgrading technology.
Methods for deoxygenating biomass-derived pyrolysis oil
Brandvold, Timothy A.
2015-07-14
Methods for deoxygenating a biomass-derived pyrolysis oil are provided. A method comprising the steps of diluting the biomass-derived pyrolysis oil with a phenolic-containing diluent to form a diluted pyoil-phenolic feed is provided. The diluted pyoil-phenolic feed is contacted with a deoxygenating catalyst in the presence of hydrogen at hydroprocessing conditions effective to form a low-oxygen biomass-derived pyrolysis oil effluent.
Xu, Gang; Zhang, You; Shao, Hongbo; Sun, Junna
2016-11-01
Phosphorus (P) recycling or reuse by pyrolyzing crop residue has recently elicited increased research interest. However, the effects of feedstock and pyrolysis conditions on P species have not been fully understood. Such knowledge is important in identifying the agronomic and environmental uses of biochar. Residues of three main Chinese agricultural crops and the biochars (produced at 300°C-600°C) derived from these crops were used to determine P transformations during pyrolysis. Hedley sequential fractionation and (31)P NMR analyses were used in the investigation. Our results showed that P transformation in biochar was significantly affected by pyrolysis temperature regardless of feedstock (Wheat straw, maize straw and peanut husk). Pyrolysis treatment transformed water soluble P into a labile (NaHCO3-Pi) or semi-labile pool (NaOH-Pi) and into a stable pool (Dil. HCl P and residual-P). At the same time, organic P was transformed into inorganic P fractions which was identified by the rapid decomposition of organic P detected with solution (31)P NMR. The P transformation during pyrolysis process suggested more stable P was formed at a higher pyrolysis temperature. This result was also evidenced by the presence of less soluble or stable P species, such as such as poly-P, crandallite (CaAl3(OH)5(PO4)2) and Wavellite (Al3(OH)3(PO4)2·5H2O), as detected by solid-state (31)P NMR in biochars formed at a higher pyrolysis temperature. Furthermore, a significant proportion of less soluble pyrophosphate was identified by solution (2%-35%) and solid-state (8%-53%) (31)P NMR, which was also responsible for the stable P forms at higher pyrolysis temperature although their solubility or stability requires further investigation. Results suggested that a relatively lower pyrolysis temperature retains P availability regardless of feedstock during pyrolysis process. Copyright © 2016. Published by Elsevier B.V.
Effect of temperature on pyrolysis product of empty fruit bunches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, Aizuddin Abdul; Sulaiman, Fauziah; Abdullah, Nurhayati
2015-04-24
Pyrolysis of empty fruit bunches (EFB) was performed in a fixed bed reactor equipped with liquid collecting system. Pyrolysis process was conducted by varying the terminal pyrolysis temperature from 300 to 500°C under heating rate of 10°C/min for at least 2 hours. Char yield was obtained highest at 300°C around 55.88 wt%, and started to decrease as temperature increase. The maximum yield of pyrolysis liquid was obtained around 54.75 wt% as pyrolysis temperature reach 450°C. For gas yield percentage, the yield gained as temperature was increased from 300 to 500°C, within the range between 8.44 to 19.32 wt%. The charmore » obtained at 400°C has great potential as an alternative solid fuel, due to its high heating value of 23.37 MJ/kg, low in volatile matter and ash content which are approximately around 40.32 and 11.12 wt%, respectively. The collected pyrolysis liquid within this temperature range found to have high water content of around 16.15 to 18.20 wt%. The high aqueous fraction seemed to cause the pyrolysis liquid to have low HHV which only ranging from 10.81 to 12.94 MJ/kg. These trends of results showed that necessary enhancement should be employ either on the raw biomass or pyrolysis products in order to approach at least the minimum quality of common hydrocarbon solid or liquid fuel. For energy production, both produced bio-char and pyrolysis liquid are considered as sustainable sources of bio-energy since they contained low amounts of nitrogen and sulphur, which are considered as environmental friendly solid and liquid fuel.« less
Chiang, Hung-Lung; Lin, Kuo-Hsiung; Lai, Nina; Shieh, Zhu-Xin
2014-05-15
Biosludge can be pyrolyzed to produce liquid oil as an alternative fuel. The content of five major elements, 22 trace elements and 16 PAHs was investigated in oven-dried raw material, pyrolysis residues and pyrolysis liquid products. Results indicated 39% carbon, 4.5% hydrogen, 4.2% nitrogen and 1.8% sulfur were in oven dried biosludge. Biosludge pyrolysis, carried out at temperatures from 400 to 800°C, corresponded to 34-14% weight in pyrolytic residues, 32-50% weight in liquid products and 31-40% weight in the gas phase. The carbon, hydrogen and nitrogen decreased and the sulfur content increased with an increase in the pyrolysis temperature at 400-800°C. NaP (2 rings) and AcPy (3 rings) were the major PAHs, contributing 86% of PAHs in oven-dried biosludge. After pyrolysis, the PAH content increased with the increase of pyrolysis temperature, which also results in a change in the PAH species profile. In pyrolysis liquid oil, NaP, AcPy, Flu and PA were the major species, and the content of the 16 PAHs ranged from 1.6 to 19 μg/ml at pyrolysis temperatures ranging from 400 to 800°C. Ca, Mg, Al, Fe and Zn were the dominant trace elements in the raw material and the pyrolysis residues. In addition, low toxic metal (Cd, V, Co, and Pb) content was found in the liquid oil, and its heat value was 7,800-9,500 kcal/kg, which means it can be considered as an alternative fuel. Copyright © 2014 Elsevier B.V. All rights reserved.
Liu, Guicai; Liao, Yanfen; Ma, Xiaoqian
2017-03-01
As important plastic blends in End-of-Life vehicles (ELV), pyrolysis profiles of ABS/PVC, ABS/PA6 and ABS/PC were investigated using thermogravimetric-Fourier transform infrared spectrometer (TG-FTIR). Also, CaCO 3 was added as plastic filler to discuss its effects on the pyrolysis of these plastics. The results showed that the interaction between ABS and PVC made PVC pyrolysis earlier and HCl emission slightly accelerated. The mixing of ABS and PA6 made their decomposition temperature closer, and ketones in PA6 pyrolysis products were reduced. The presence of ABS made PC pyrolysis earlier, and phenyl compounds in PC pyrolysis products could be transferred into alcohol or H 2 O. The interaction between ABS and other polymers in pyrolysis could be attributed to the intermolecular radical transfer, and free radicals from the polymer firstly decomposed led to a fast initiation the decomposition of the other polymer. As plastic filler, CaCO 3 promoted the thermal decomposition of PA6 and PC, and had no obvious effects on ABS and PVC pyrolysis process. Also, CaCO 3 made the pyrolysis products from PA6 and PC further decomposed into small-molecule compounds like CO 2 . The kinetics analysis showed that isoconversional method like Starink method was more suitable for these polymer blends. Starink method showed the average activation energy of ABS50/PVC50, ABS50/PA50 and ABS50/PC50 was 186.63kJ/mol, 239.61kJ/mol and 248.95kJ/mol, respectively, and the interaction among them could be reflected by the activation energy variation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Shasha; Jia, Wanglu; Peng, Ping'an
2016-08-15
Carbon isotope analysis of n-alkanes produced by the pyrolysis of oil asphaltenes is a useful tool for characterizing and correlating oil sources. Low-temperature (320-350°C) pyrolysis lasting 2-3 days is usually employed in such studies. Establishing a rapid pyrolysis method is necessary to reduce the time taken for the pretreatment process in isotope analyses. One asphaltene sample was pyrolyzed in sealed ampoules for different durations (60-120 s) at 610°C. The δ(13) C values of the pyrolysates were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The molecular characteristics and isotopic signatures of the pyrolysates were investigated for the different pyrolysis durations and compared with results obtained using the normal pyrolysis method, to determine the optimum time interval. Several asphaltene samples derived from various sources were analyzed using this method. The asphaltene pyrolysates of each sample were similar to those obtained by the flash pyrolysis method on similar samples. However, the molecular characteristics of the pyrolysates obtained over durations longer than 90 s showed intensified secondary reactions. The carbon isotopic signatures of individual compounds obtained at pyrolysis durations less than 90 s were consistent with those obtained from typical low-temperature pyrolysis. Several asphaltene samples from various sources released n-alkanes with distinct carbon isotopic signatures. This easy-to-use pyrolysis method, combined with a subsequent purification procedure, can be used to rapidly obtain clean n-alkanes from oil asphaltenes. Carbon isotopic signatures of n-alkanes released from oil asphaltenes from different sources demonstrate the potential application of this method in 'oil-oil' and 'oil-source' correlations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Méndez, A; Tarquis, A M; Saa-Requejo, A; Guerrero, F; Gascó, G
2013-10-01
Biochar is a carbon-rich solid product obtained by the pyrolysis of organic materials. The carbon stability of biochar allows that it can be applied to soil for long-term carbon storage. This carbon stability is greatly influenced by the pyrolysis temperature and the raw material used for biochar production. The aim of the present work is to study the soil carbon sequestration after the application of biochar from sewage sludge (SL) pyrolysis at two different temperatures (400 and 600 °C). For this purpose, soil CO2 emissions were measured for 80 d in an incubation experiment after soil amendment with the SL and each biochar at a dosage of 8 wt%. Biochar reduced the CO2 emissions during incubation between 11% and 32% relative to the SL treatment. The CO2 data were fit to a dual exponential model, and the CO2 emissions were simulated at different times (1, 5 and 10 yr). Additionally, the kinetics of the CO2 evolution from SL, two biochar samples, soil and amended soil were well fit to a dual first-order kinetic model with correlation coefficients greater than 0.93. The simulation of CO2 emissions from the soil by applying the proposed double first-order kinetic model (kg CO2-C ha(-1)) showed a reduction of CO2 emissions between 301 and 932 kg CO2-C ha(-1)with respect to the direct application of raw sewage sludge after 10 yr. Copyright © 2013 Elsevier Ltd. All rights reserved.
Meng, Jun; Tao, Mengming; Wang, Lili; Liu, Xingmei; Xu, Jianming
2018-08-15
Biochar has been utilized as a good amendment to immobilize heavy metals in contaminated soils. However, the effectiveness of biochar in metal immobilization depends on biochar properties and metal species. In this study, the biochars produced from co-pyrolysis of rice straw with swine manure at 400°C were investigated to evaluate their effects on bioavailability and chemical speciation of four heavy metals (Cd, Cu, Pb and Zn) in a Pb-Zn contaminated soil through incubation experiment. Results showed that co-pyrolysis process significantly change the yield, ash content, pH, and electrical conductivity (EC) of the blended biochars compared with the single straw/manure biochar. The addition of these biochars significantly increased the soil pH, EC, and dissolved organic carbon (DOC) concentrations. The addition of biochars at a rate of 3% significantly reduced the CaCl 2 -extractable metal concentrations in the order of Pb>Cu>Zn>Cd. The exchangeable heavy metals decreased in all the biochar-amended soils whereas the carbonate-bound metal speciation increased. The increase in soil pH and the decrease in the CaCl 2 extractable metals indicated that these amendments can directly transform the highly availability metal speciation to the stable speciation in soils. In conclusion, biochar derived from co-pyrolysis of rice straw with swine manure at a mass ratio of 3:1 could most effectively immobilize the heavy metals in the soil. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, Huiyan; Xiao, Rui; Nie, Jianlong; Jin, Baosheng; Shao, Shanshan; Xiao, Guomin
2015-09-01
Catalytic co-pyrolysis of black-liquor lignin and waste plastics (polyethylene, PE; polypropylene PP; polystyrene, PS) was conducted in a fluidized bed. The effects of temperature, plastic to lignin ratio, catalyst and plastic types on product distributions were studied. Both aromatic and olefin yields increased with increasing PE proportion. Petrochemical yield of co-pyrolysis of PE and lignin was LOSA-1 > spent FCC > Gamma-Al2O3 > sand. The petrochemical yield with LOSA-1 is 43.9% which is more than two times of that without catalyst. The feedstock for co-pyrolysis with lignin is polystyrene > polyethylene > polypropylene. Catalytic co-pyrolysis of black-liquor lignin with PS produced the maximum aromatic yield (55.3%), while co-pyrolysis with PE produced the maximum olefin yield (13%). Copyright © 2015 Elsevier Ltd. All rights reserved.
Kinetic study of corn straw pyrolysis: comparison of two different three-pseudocomponent models.
Li, Zhengqi; Zhao, Wei; Meng, Baihong; Liu, Chunlong; Zhu, Qunyi; Zhao, Guangbo
2008-11-01
With heating rates of 20, 50 and 100 K min(-1), the thermal decomposition of corn straw samples (corn stalks skins, corn stalks cores, corn bracts and corn leaves) were studied using thermogravimetric analysis. The maximum pyrolysis rates increased with the heating rate increasing and the temperature at the peak pyrolysis rate also increased. Assuming the addition of three independent parallel reactions, corresponding to three pseudocomponents linked to the hemicellulose, cellulose and lignin, two different three-pseudocomponent models were used to simulate the corn straw pyrolysis. Model parameters of pyrolysis were given. It was found that the three-pseudocomponent model with n-order kinetics was more accurate than the model with first-order kinetics at most cases. It showed that the model with n-order kinetics was more accurate to describe the pyrolysis of the hemicellulose.
Evaluation of Pyrolysis Oil as Carbon Source for Fungal Fermentation
Dörsam, Stefan; Kirchhoff, Jennifer; Bigalke, Michael; Dahmen, Nicolaus; Syldatk, Christoph; Ochsenreither, Katrin
2016-01-01
Pyrolysis oil, a complex mixture of several organic compounds, produced during flash pyrolysis of organic lignocellulosic material was evaluated for its suitability as alternative carbon source for fungal growth and fermentation processes. Therefore several fungi from all phyla were screened for their tolerance toward pyrolysis oil. Additionally Aspergillus oryzae and Rhizopus delemar, both established organic acid producers, were chosen as model organisms to investigate the suitability of pyrolysis oil as carbon source in fungal production processes. It was observed that A. oryzae tolerates pyrolysis oil concentrations between 1 and 2% depending on growth phase or stationary production phase, respectively. To investigate possible reasons for the low tolerance level, eleven substances from pyrolysis oil including aldehydes, organic acids, small organic compounds and phenolic substances were selected and maximum concentrations still allowing growth and organic acid production were determined. Furthermore, effects of substances to malic acid production were analyzed and compounds were categorized regarding their properties in three groups of toxicity. To validate the results, further tests were also performed with R. delemar. For the first time it could be shown that small amounts of phenolic substances are beneficial for organic acid production and A. oryzae might be able to degrade isoeugenol. Regarding pyrolysis oil toxicity, 2-cyclopenten-1-on was identified as the most toxic compound for filamentous fungi; a substance never described for anti-fungal or any other toxic properties before and possibly responsible for the low fungal tolerance levels toward pyrolysis oil. PMID:28066378
Quantitative Insights into the Fast Pyrolysis of Extracted Cellulose, Hemicelluloses, and Lignin
Windt, Michael; Ziegler, Bernhard; Appelt, Jörn; Saake, Bodo; Meier, Dietrich; Bridgwater, Anthony
2017-01-01
Abstract The transformation of lignocellulosic biomass into bio‐based commodity chemicals is technically possible. Among thermochemical processes, fast pyrolysis, a relatively mature technology that has now reached a commercial level, produces a high yield of an organic‐rich liquid stream. Despite recent efforts to elucidate the degradation paths of biomass during pyrolysis, the selectivity and recovery rates of bio‐compounds remain low. In an attempt to clarify the general degradation scheme of biomass fast pyrolysis and provide a quantitative insight, the use of fast pyrolysis microreactors is combined with spectroscopic techniques (i.e., mass spectrometry and NMR spectroscopy) and mixtures of unlabeled and 13C‐enriched materials. The first stage of the work aimed to select the type of reactor to use to ensure control of the pyrolysis regime. A comparison of the chemical fragmentation patterns of “primary” fast pyrolysis volatiles detected by using GC‐MS between two small‐scale microreactors showed the inevitable occurrence of secondary reactions. In the second stage, liquid fractions that are also made of primary fast pyrolysis condensates were analyzed by using quantitative liquid‐state 13C NMR spectroscopy to provide a quantitative distribution of functional groups. The compilation of these results into a map that displays the distribution of functional groups according to the individual and main constituents of biomass (i.e., hemicelluloses, cellulose and lignin) confirmed the origin of individual chemicals within the fast pyrolysis liquids. PMID:28644517
Evaluation of Pyrolysis Oil as Carbon Source for Fungal Fermentation.
Dörsam, Stefan; Kirchhoff, Jennifer; Bigalke, Michael; Dahmen, Nicolaus; Syldatk, Christoph; Ochsenreither, Katrin
2016-01-01
Pyrolysis oil, a complex mixture of several organic compounds, produced during flash pyrolysis of organic lignocellulosic material was evaluated for its suitability as alternative carbon source for fungal growth and fermentation processes. Therefore several fungi from all phyla were screened for their tolerance toward pyrolysis oil. Additionally Aspergillus oryzae and Rhizopus delemar , both established organic acid producers, were chosen as model organisms to investigate the suitability of pyrolysis oil as carbon source in fungal production processes. It was observed that A. oryzae tolerates pyrolysis oil concentrations between 1 and 2% depending on growth phase or stationary production phase, respectively. To investigate possible reasons for the low tolerance level, eleven substances from pyrolysis oil including aldehydes, organic acids, small organic compounds and phenolic substances were selected and maximum concentrations still allowing growth and organic acid production were determined. Furthermore, effects of substances to malic acid production were analyzed and compounds were categorized regarding their properties in three groups of toxicity. To validate the results, further tests were also performed with R. delemar . For the first time it could be shown that small amounts of phenolic substances are beneficial for organic acid production and A. oryzae might be able to degrade isoeugenol. Regarding pyrolysis oil toxicity, 2-cyclopenten-1-on was identified as the most toxic compound for filamentous fungi; a substance never described for anti-fungal or any other toxic properties before and possibly responsible for the low fungal tolerance levels toward pyrolysis oil.
Sulfur Transformation during Microwave and Conventional Pyrolysis of Sewage Sludge.
Zhang, Jun; Zuo, Wei; Tian, Yu; Chen, Lin; Yin, Linlin; Zhang, Jie
2017-01-03
The sulfur distributions and evolution of sulfur-containing compounds in the char, tar and gas fractions were investigated during the microwave and conventional pyrolysis of sewage sludge. Increased accumulation of sulfur in the char and less production of H 2 S were obtained from microwave pyrolysis at higher temperatures (500-800 °C). Three similar conversion pathways were identified for the formation of H 2 S during microwave and conventional pyrolysis. The cracking of unstable mercaptan structure in the sludge contributed to the release of H 2 S below 300 °C. The decomposition of aliphatic-S compounds in the tars led to the formation of H 2 S (300-500 °C). The thermal decomposition of aromatic-S compounds in the tars generated H 2 S from 500 to 800 °C. However, the secondary decomposition of thiophene-S compounds took place only in conventional pyrolysis above 700 °C. Comparing the H 2 S contributions from microwave and conventional pyrolysis, the significant increase of H 2 S yields in conventional pyrolysis was mainly attributed to the decomposition of aromatic-S (increasing by 10.4%) and thiophene-S compounds (11.3%). Further investigation on the inhibition mechanism of H 2 S formation during microwave pyrolysis confirmed that, with the special heating characteristics and relative shorter residence time, microwave pyrolysis promoted the retention of H 2 S on CaO and inhibited the secondary cracking of thiophene-S compounds at higher temperatures.
Quantitative Insights into the Fast Pyrolysis of Extracted Cellulose, Hemicelluloses, and Lignin.
Carrier, Marion; Windt, Michael; Ziegler, Bernhard; Appelt, Jörn; Saake, Bodo; Meier, Dietrich; Bridgwater, Anthony
2017-08-24
The transformation of lignocellulosic biomass into bio-based commodity chemicals is technically possible. Among thermochemical processes, fast pyrolysis, a relatively mature technology that has now reached a commercial level, produces a high yield of an organic-rich liquid stream. Despite recent efforts to elucidate the degradation paths of biomass during pyrolysis, the selectivity and recovery rates of bio-compounds remain low. In an attempt to clarify the general degradation scheme of biomass fast pyrolysis and provide a quantitative insight, the use of fast pyrolysis microreactors is combined with spectroscopic techniques (i.e., mass spectrometry and NMR spectroscopy) and mixtures of unlabeled and 13 C-enriched materials. The first stage of the work aimed to select the type of reactor to use to ensure control of the pyrolysis regime. A comparison of the chemical fragmentation patterns of "primary" fast pyrolysis volatiles detected by using GC-MS between two small-scale microreactors showed the inevitable occurrence of secondary reactions. In the second stage, liquid fractions that are also made of primary fast pyrolysis condensates were analyzed by using quantitative liquid-state 13 C NMR spectroscopy to provide a quantitative distribution of functional groups. The compilation of these results into a map that displays the distribution of functional groups according to the individual and main constituents of biomass (i.e., hemicelluloses, cellulose and lignin) confirmed the origin of individual chemicals within the fast pyrolysis liquids. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, Daniel; Westover, Tyler; Howe, Daniel
Here, we report here on an experimental study to produce refinery-ready fuel blendstocks via catalytic hydrodeoxygenation (upgrading) of pyrolysis oil using several biomass feedstocks and various blends. Blends were tested along with the pure materials to determine the effect of blending on product yields and qualities. Within experimental error, oil yields from fast pyrolysis and upgrading are shown to be linear functions of the blend components. Switchgrass exhibited lower fast pyrolysis and upgrading yields than the woody samples, which included clean pine, oriented strand board (OSB), and a mix of pinon and juniper (PJ). The notable exception was PJ, formore » which the poor upgrading yield of 18% was likely associated with the very high viscosity of the PJ fast pyrolysis oil (947 cp). The highest fast pyrolysis yield (54% dry basis) was obtained from clean pine, while the highest upgrading yield (50%) was obtained from a blend of 80% clean pine and 20% OSB (CP 8OSB 2). For switchgrass, reducing the fast pyrolysis temperature to 450 degrees C resulted in a significant increase to the pyrolysis oil yield and reduced hydrogen consumption during hydrotreating, but did not directly affect the hydrotreating oil yield. The water content of fast pyrolysis oils was also observed to increase linearly with the summed content of potassium and sodium, ranging from 21% for clean pine to 37% for switchgrass. Multiple linear regression models demonstrate that fast pyrolysis is strongly dependent upon the contents lignin and volatile matter as well as the sum of potassium and sodium.« less
Campo, J; Nierop, K G J; Cammeraat, E; Andreu, V; Rubio, J L
2011-07-29
The heating effect on the soil organic matter (SOM) of a Mediterranean soil was studied in two fractions (macro- and microaggregates) and in two environments (soil under canopy of Quercus coccifera and bare soil between plants). Samples were heated under laboratory conditions at different temperatures (220, 380 and 500°C) to establish their effects on the SOM quality and quantity by comparison with unheated control samples (25°C). The SOM content in the soil under canopy was higher than in the bare one and in the microaggregate fractions than in the macroaggregate ones. Increasing temperatures caused, in general, the decrease of SOM content in both soils as well as in both aggregate classes. The quality of SOM was determined after extraction with 0.1 M NaOH and analysed by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Obtained pyrolysates were characterized by the presence of polyphenols and other aromatic pyrolysis products (lipids, polysaccharides, proteins and lignin derivatives). Some of the products in these control samples, and furthermore the presence of black carbon (BC) markers (e.g. benzene, pyridine and toluene), confirmed the occurrence of past wildfires in the study zone. The composition of the SOM extracted from the soils heated at 220°C, was quite similar to that obtained from unheated soils. The products derived from polysaccharides and lignin, and some coming from polyphenols, were not detected in the pyrolysates of the soil heated at 380 and 500°C. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Hao; Dunn, Jennifer; Pegallapati, Ambica
The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) aims to develop and deploy technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2016). BETO and its national laboratory teams conduct in-depth technoeconomic assessments (TEA) of biomass feedstock supply and logistics and conversion technologies to produce biofuels, and life-cycle analysis of overall system sustainability.
2008-09-01
Infiltration (CVI), Chemical Vapor Deposition (CVD) and polymer impregnation/ pyrolysis (PIP) [5:20, 32]. The SiC fibers currently... composite was infiltrated with a mixture of polymer , filler particles and solvent. During pyrolysis under nitrogen at temperatures > 1000 °C, the...using polymer infiltration and pyrolysis (PIP) method. Polymer infiltration and pyrolysis processing method allows near-net-shape molding and
Reaction mechanisms in cellulose pyrolysis: a literature review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molton, P.M.; Demmitt, T.F.
1977-08-01
A bibliographic review of 195 references is presented outlining the history of the research into the mechanisms of cellulose pyrolysis. Topics discussed are: initial product identification, mechanism of initial formation of levoglucosan, from cellulose and from related compounds, decomposition of cellulose to other compounds, formation of aromatics, pyrolysis of levoglucosan, crosslinking of cellulose, pyrolytic reactions of cellulose derivatives, and the effects of inorganic salts on the pyrolysis mechanism. (JSR)
On-Line Analysis and Kinetic Behavior of Arsenic Release during Coal Combustion and Pyrolysis.
Shen, Fenghua; Liu, Jing; Zhang, Zhen; Dai, Jinxin
2015-11-17
The kinetic behavior of arsenic (As) release during coal combustion and pyrolysis in a fluidized bed was investigated by applying an on-line analysis system of trace elements in flue gas. This system, based on inductively coupled plasma optical emission spectroscopy (ICP-OES), was developed to measure trace elements concentrations in flue gas quantitatively and continuously. Obvious variations of arsenic concentration in flue gas were observed during coal combustion and pyrolysis, indicating strong influences of atmosphere and temperature on arsenic release behavior. Kinetic laws governing the arsenic release during coal combustion and pyrolysis were determined based on the results of instantaneous arsenic concentration in flue gas. A second-order kinetic law was determined for arsenic release during coal combustion, and the arsenic release during coal pyrolysis followed a fourth-order kinetic law. The results showed that the arsenic release rate during coal pyrolysis was faster than that during coal combustion. Thermodynamic calculations were carried out to identify the forms of arsenic in vapor and solid phases during coal combustion and pyrolysis, respectively. Ca3(AsO4)2 and Ca(AsO2)2 are the possible species resulting from As-Ca interaction during coal combustion. Ca(AsO2)2 is the most probable species during coal pyrolysis.
Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang
2015-02-06
This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250-300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes.
Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang
2015-01-01
This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250–300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes. PMID:25656294
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, K.; Ben, H.; Muzzy, J.
2012-03-01
Pyrolysis is a promising approach to utilize biomass for biofuels. One of the key challenges for this conversion is how to analyze complicated components in the pyrolysis oils. Water contents of pyrolysis oils are normally analyzed by Karl Fischer titration. The use of 2-chloro-4,4,5,5,-tetramethyl-1,3,2-dioxaphospholane followed by {sup 31}P NMR analysis has been used to quantitatively analyze the structure of hydroxyl groups in lignin and whole biomass. Results: {sup 31}P NMR analysis of pyrolysis oils is a novel technique to simultaneously characterize components and analyze water contents in pyrolysis oils produced from various biomasses. The water contents of various pyrolysis oilsmore » range from 16 to 40 wt%. The pyrolysis oils obtained from Loblolly pine had higher guaiacyl content, while that from oak had a higher syringyl content. Conclusion: The comparison with Karl Fischer titration shows that {sup 31}P NMR could also reliably be used to measure the water content of pyrolysis oils. Simultaneously with analysis of water content, quantitative characterization of hydroxyl groups, including aliphatic, C-5 substituted/syringyl, guaiacyl, p-hydroxyl phenyl and carboxylic hydroxyl groups, could also be provided by {sup 31}P NMR analysis.« less
Gaurh, Pramendra; Pramanik, Hiralal
2018-01-01
A new and innovative approach was adopted to increase the yield of aromatics like, benzene, toluene and xylene (BTX) in the catalytic pyrolysis of waste polyethylene (PE). The BTX content was significantly increased due to effective interaction between catalystZSM-5 and target molecules i.e., lower paraffins within the reactor. The thermal and catalytic pyrolysis both were performed in a specially designed semi-batch reactor at the temperature range of 500 °C-800 °C. Catalytic pyrolysis were performed in three different phases within the reactor batch by batch systematically, keeping the catalyst in A type- vapor phase, B type- liquid phase and C type- vapor and liquid phase (multiphase), respectively. Total aromatics (BTX) of 6.54 wt% was obtained for thermal pyrolysis at a temperature of 700 °C. In contrary, for the catalytic pyrolysis A, B and C types reactor arrangement, the aromatic (BTX) contents were progressively increased, nearly 6 times from 6.54 wt% (thermal pyrolysis) to 35.06 wt% for C-type/multiphase (liquid and vapor phase). The pyrolysis oil were characterized using GC-FID, FT-IR, ASTM distillation and carbon residue test to evaluate its end use and aromatic content. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Arnold, William A.; Hartman, Thomas G.; McQuillen, John
2006-01-01
Perfluorohexane (PFH), C6F14, is a perfluorocarbon fluid. Several PFH fluids with different isomer concentrations were evaluated for use in an upcoming NASA space experiment. Samples tested included two commercially obtained high-purity n-perfluorohexane (n-PFH) fluids and a technical grade mixture of C6F14 branched and linear isomers (FC-72(TradeMark)). These fluids were evaluated for exact chemical composition, impurity purity and high temperature degradation behavior (pyrolysis). Our investigation involved simulated thermal stressing studies of PFH fluids under conditions likely to occur in the event of an atmospheric breach within the International Space Station (ISS) and subsequent exposure of the vapors to the high temperature and catalyst present in its Trace Contaminant Control Subsystem (TCCS). Exposure to temperatures in the temperature range of 200-450 C in an inert or oxidizing atmosphere, with and without the presence of catalyst was investigated. The most aggressive conditions studied were exposure of PFH vapors to 450 C in air and in the presence of TCCS (palladium) catalyst. Gas chromatography-mass spectrometry (GC-MS) and gas chromatography (GC) analyses were conducted on the perfluorohexane samples before and after pyrolysis. The FC-72 and n-PFH samples showed no significant degradation following pyrolysis even under the most aggressive study conditions. Some trace level impurities associated with the PFH samples such as linear perfluorocarbon monohydrides or monoiodides were destroyed by pyrolysis at the upper limit. Other trace level impurities such as olefinic or cycloolefinic perfluorocarbons were converted into oxidation products by pyrolysis. The purity of PFH following pyrolysis actually increased slightly as a consequence since these trace contaminants were effectively scrubbed from the samples. However, since the initial concentrations of the thermally-impacted impurities were so low, the net effect was trivial. A potential byproduct of exposure of perfluorohexane fluids to high temperatures is the production of perfluoroisobutene (PFiB), which is extremely toxic. An ultra-high sensitivity PFiB-specific analysis based on GC-MS with negative ion chemical ionization (NICI) detection was used to evaluate the samples following thermal stressing. The perfluorohexanes examined here under conditions reflective of the ISS TCCS environment showed no signs of PFiB production with an analytical detection limit of 10 part per billion (ppb v/v).
Pyrolysis processing for solid waste resource recovery
NASA Technical Reports Server (NTRS)
Wojtowicz, Marek A. (Inventor); Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Suuberg, Eric M. (Inventor)
2007-01-01
Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.
Concentration-response data on toxicity of pyrolysis gases from some natural and synthetic polymers
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Huttlinger, N. V.
1978-01-01
Concentration-response data are presented on the toxic effects of the pyrolysis gases from some natural and synthetic polymers, using the toxicity screening test method developed at the University of San Francisco. The pyrolysis gases from wool, red oak, Douglas fir, polycaprolactam, polyether sulfone, polyaryl sulfone, and polyphenylene sulfide appeared to exhibit the concentration-response relationships commonly encountered in toxicology. Carbon monoxide seemed to be an important toxicant in the pyrolysis gases from red oak, Douglas fir, and polycaprolactam, but did not appear to have been the principal toxicant in the pyrolysis gases from polyether sulfone and polyphenylene sulfide.
NASA Astrophysics Data System (ADS)
Glavin, D. P.; Popa, R.; Martin, M. G.; Freissinet, C.; Fisk, M. R.; Dworkin, J. P.; Mahaffy, P. R.
2012-12-01
Mars is a planet of great interest for Astrobiology since its past environmental conditions are thought to have been favourable for the emergence life. At present, the Red Planet is extremely cold and dry and the surface is exposed to intense UV and ionizing radiation, conditions generally considered to be incompatible with life as we know it on Earth. It was proposed that the shallow subsurface of Mars, where temperatures can be above freezing and liquid water can exist on rock surfaces, could harbor chemolithoautotrophic bacteria such as the iron oxidizing microorganism Pseudomonas sp. HerB [Popa et al. 2012]. The Mars Science Laboratory (MSL) mission will provide the next opportunity to carry out in situ measurements for organic compounds of possible biological origin on Mars. One instrument onboard MSL, called the Sample Analysis at Mars (SAM) instrument suite, will carry out a broad and sensitive search for organic compounds in surface samples using either high temperature pyrolysis or chemical extraction followed by gas chromatography mass spectrometry [Mahaffy et al. 2012]. We present gas chromatograph mass spectrometer (GC/MS) data on crushed olivine rock powders that have been inoculated with Pseudomonas sp. HerB at different concentrations ranging from ~102 to 107 cells per gram. The inoculated olivine samples were heated under helium carrier gas flow at 500°C and the pyrolysis products concentrated using a SAM-like hydrocarbon trap set at -20°C followed by trap heating and analysis by GC/MS. In addition, the samples were also extracted using a low temperature "one-pot" chemical extraction technique using N-methyl, N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) as the silylating agent prior to GC/MS analysis [Stalport et al. 2012]. We identified several aldehydes, thiols, and alkene nitriles after pyrolysis GC/MS analysis of the bacteria that were not found in the olivine control samples that had not been inoculated with bacteria. The distribution of pyrolysis products extracted from the bacteria was clearly distinct from similar GC/MS analyses of the carbonaceous meteorite Murchison that was dominated by sulfur containing aromatic compounds. A similar comparison, if organic compounds are detected by SAM on Mars, could be useful to help discriminate between meteoritic or biological origins. References: Popa, R. et al. (2012), Olivine-respiring bacteria isolated from the rock-ice interface in a lava-tube cave, a Mars analog environment. Astrobiology 12, 9-18; Mahaffy, P. R. et al. (2012), The Sample Analysis at Mars investigation and instrument suite. Planet. Space Sci., doi: 10.1007/s11214-012-9879-z; Stalport, F. et al. (2012) The influence of mineralogy on recovering organic acids from Mars analogue materials using the ''one-pot'' derivatization experiment on the Sample Analysis at Mars (SAM) instrument suite. Planet. Space Sci., doi:10.1016/j.pss.2012.02.010.
Microwave-assisted co-pyrolysis of brown coal and corn stover for oil production.
Zhang, Yaning; Fan, Liangliang; Liu, Shiyu; Zhou, Nan; Ding, Kuan; Peng, Peng; Anderson, Erik; Addy, Min; Cheng, Yanling; Liu, Yuhuan; Li, Bingxi; Snyder, John; Chen, Paul; Ruan, Roger
2018-07-01
The controversial synergistic effect between brown coal and biomass during co-pyrolysis deserves further investigation. This study detailed the oil production from microwave-assisted co-pyrolysis of brown coal (BC) and corn stover (CS) at different CS/BC ratios (0, 0.33, 0.50, 0.67, and 1) and pyrolysis temperatures (500, 550, and 600 °C). The results showed that a higher CS/BC ratio resulted in higher oil yield, and a higher pyrolysis temperature increased oil yield for brown coal and coal/corn mixtures. Corn stover and brown coal showed different pyrolysis characteristics, and positive synergistic effect on oil yield was observed only at CS/BC ratio of 0.33 and pyrolysis temperature of 600 °C. Oils from brown coal mainly included hydrocarbons and phenols whereas oils from corn stover and coal/corn mixtures were dominated by ketones, phenols, and aldehydes. Positive synergistic effects were observed for ketones, aldehydes, acids, and esters whereas negative synergistic effects for hydrocarbons, phenols and alcohols. Copyright © 2018 Elsevier Ltd. All rights reserved.
Weng, Jun-Jie; Liu, Yue-Xi; Zhu, Ya-Nan; Pan, Yang; Tian, Zhen-Yu
2017-11-01
With the aim to support the experimental tests in a circulating fluidized bed pilot plant, the pyrolysis processes of coal, corn, and coal-corn blend have been studied with an online pyrolysis photoionization time-of-flight mass spectrometry (Py-PI-TOFMS). The mass spectra at different temperatures (300-800°C) as well as time-evolved profiles of selected species were measured. The pyrolysis products such as alkanes, alkenes, phenols, aromatics, as well as nitrogen- and sulfur-containing species were detected. As temperature rises, the relative ion intensities of high molecular weight products tend to decrease, while those of aromatics increase significantly. During the co-pyrolysis, coal can promote the reaction temperature of cellulose in corn. Time-evolved profiles demonstrate that coal can affect pyrolysis rate of cellulose, hemicellulose, and lignin of corn in blend. This work shows that Py-PI-TOFMS is a powerful approach to permit a better understanding of the mechanisms underlying the co-pyrolysis of coal and biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Boyan; Ou, Longwen; Dang, Qi
This study evaluates the techno-economic uncertainty in cost estimates for two emerging biorefinery technologies for biofuel production: in situ and ex situ catalytic pyrolysis. Stochastic simulations based on process and economic parameter distributions are applied to calculate biorefinery performance and production costs. The probability distributions for the minimum fuel-selling price (MFSP) indicate that in situ catalytic pyrolysis has an expected MFSP of $4.20 per gallon with a standard deviation of 1.15, while the ex situ catalytic pyrolysis has a similar MFSP with a smaller deviation ($4.27 per gallon and 0.79 respectively). These results suggest that a biorefinery based on exmore » situ catalytic pyrolysis could have a lower techno-economic risk than in situ pyrolysis despite a slightly higher MFSP cost estimate. Analysis of how each parameter affects the NPV indicates that internal rate of return, feedstock price, total project investment, electricity price, biochar yield and bio-oil yield are significant parameters which have substantial impact on the MFSP for both in situ and ex situ catalytic pyrolysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben, Haoxi; Huang, Fang; Li, Liwei
2015-09-09
The pyrolysis of whole biomass—pine wood and bark—with mordenite (M), beta (β) and Y zeolites has been examined at 600°C. The GPC results indicated that the pyrolysis oils upgraded by Y and β zeolites have a very low average molecular weight range (70–170 g mol –1). Several NMR methods have been employed to characterize the whole portion of pyrolysis products. After the use of these two zeolites (Y and β), the two main products from the pyrolysis of cellulose—levoglucosan and HMF—were eliminated; this indicates a significant deoxygenation process. When a mixture of zeolites (Y and M) was used, the upgradedmore » pyrolysis oil exhibited advantages provided by both zeolites; this pyrolysis oil represents a biofuel precursor that has a very low average molecular weight and a relatively low acidity. Finally, this study opens up a new way to upgrade pyrolysis oils by employing mixtures of different functional zeolites to produce biofuel/biochemical precursors from whole biomass.« less
Wang, Yuxin; He, Tao; Liu, Kaituo; Wu, Jinhu; Fang, Yunming
2012-03-01
Compared hydrodeoxygenation experimental studies of both model compounds and real bio-oil derived from biomass fast pyrolysis and catalytic pyrolysis was carried out over two different supported Pt catalysts. For the model compounds, the deoxygenation degree of dibenzofuran was higher than that of cresol and guaiacol over both Pt/Al(2)O(3) and the newly developed Pt supported on mesoporous zeolite (Pt/MZ-5) catalyst, and the deoxygenation degree of cresol over Pt/MZ-5 was higher than that over Pt/Al(2)O(3). The results indicated that hydrodeoxygenation become much easier upon oxygen reduction. Similar to model compounds study, the hydrodeoxygenation of the real bio-oil derived from catalytic pyrolysis was much easier than that from fast pyrolysis over both Pt catalysts, and the Pt/MZ-5 again shows much higher deoxygenation ability than Pt/Al(2)O(3). Clearly synergy between catalytic pyrolysis and bio-oil hydro-processing was found in this paper and this finding will lead an advanced biofuel production pathway in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effect of torrefaction pretreatment on the pyrolysis of rubber wood sawdust analyzed by Py-GC/MS.
Chen, Wei-Hsin; Wang, Chao-Wen; Kumar, Gopalakrishnan; Rousset, Patrick; Hsieh, Tzu-Hsien
2018-07-01
The aim of this study was to investigate the effect of torrefaction on the pyrolysis of rubber wood sawdust (RWS) using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Three typical torrefaction temperatures (200, 250, and 300 °C) and pyrolysis temperatures (450, 500, and 550 °C) were considered. The results suggested that only diethyl phthalate, belonging to esters, was detected at the torrefaction temperatures of 200 and 250 °C, revealing hemicellulose degradation. With the torrefaction temperature of 300 °C, esters, aldehydes, and phenols were detected, suggesting the predominant decomposition of hemicellulose and lignin. The double-shot pyrolysis indicated that the contents of oxy-compounds such as acids and aldehydes in pyrolysis bio-oil decreased with rising torrefaction temperature, implying that increasing torrefaction severity abated oxygen content in the bio-oil. With the torrefaction temperature of 300 °C, relatively more cellulose was retained in the biomass because the carbohydrate content in the pyrolysis bio-oil increased significantly. Copyright © 2018 Elsevier Ltd. All rights reserved.
Toraman, Hilal E; Vanholme, Ruben; Borén, Eleonora; Vanwonterghem, Yumi; Djokic, Marko R; Yildiz, Guray; Ronsse, Frederik; Prins, Wolter; Boerjan, Wout; Van Geem, Kevin M; Marin, Guy B
2016-05-01
Wild-type and two genetically engineered hybrid poplar lines were pyrolyzed in a micro-pyrolysis (Py-GC/MS) and a bench scale setup for fast and intermediate pyrolysis studies. Principal component analysis showed that the pyrolysis vapors obtained by micro-pyrolysis from wood of caffeic acid O-methyltransferase (COMT) and caffeoyl-CoA O-methyltransferase (CCoAOMT) down-regulated poplar trees differed significantly from the pyrolysis vapors obtained from non-transgenic control trees. Both fast micro-pyrolysis and intermediate pyrolysis of transgenic hybrid poplars showed that down-regulation of COMT can enhance the relative yield of guaiacyl lignin-derived products, while the relative yield of syringyl lignin-derived products was up to a factor 3 lower. This study indicates that lignin engineering via genetic modifications of genes involved in the phenylpropanoid and monolignol biosynthetic pathways can help to steer the pyrolytic production of guaiacyl and syringyl lignin-derived phenolic compounds such as guaiacol, 4-methylguaiacol, 4-ethylguaiacol, 4-vinylguaiacol, syringol, 4-vinylsyringol, and syringaldehyde present in the bio-oil. Copyright © 2016 Elsevier Ltd. All rights reserved.
A review of the toxicity of biomass pyrolysis liquids formed at low temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diebold, J P
1997-04-01
The scaleup of biomass fast pyrolysis systems to large pilot and commercial scales will expose an increasingly large number of personnel to potential health hazards, especially during the evaluation of the commercial use of the pyrolysis condensates. Although the concept of fast pyrolysis to optimize liquid products is relatively new, low-temperature pyrolysis processes have been used over the aeons to produce charcoal and liquid by-products, e.g., smoky food flavors, food preservatives, and aerosols containing narcotics, e.g., nicotine. There are a number of studies in the historical literature that concern the hazards of acute and long-term exposure to smoke and tomore » the historical pyrolysis liquids formed at low temperatures. The reported toxicity of smoke, smoke food flavors, and fast pyrolysis oils is reviewed. The data found for these complex mixtures suggest that the toxicity may be less than that of the individual components. It is speculated that there may be chemical reactions that take place that serve to reduce the toxicity during aging. 81 refs.« less
Chen, Dengyu; Li, Yanjun; Deng, Minsi; Wang, Jiayang; Chen, Miao; Yan, Bei; Yuan, Qiqiang
2016-08-01
Torrefaction of pine wood was performed in a tube furnace at three temperatures (220, 250, and 280°C) for 30min. Then catalytic pyrolysis of raw and torrefied pine wood was performed using HZSM-5 catalyst in a fixed-bed pyrolysis reactor at 550°C for 15min. Torrefaction pretreatment and catalytic pyrolysis have an very important effect on the yield, property, and energy distribution of pyrolysis products. The results showed that the yield of biochar rapidly increased, while that of bio-oil decreased with increasing torrefaction temperature. The oxy-compound content of bio-oil, such as acids and aldehydes, sharply decreased. However, the aromatic hydrocarbon content not only increased but also further promoted by HZSM-5 catalyst. With highest mass yields and energy yields, biochar was also the very important product of pyrolysis. The oxygen content in biomass was mainly removed in the form of CO2 and H2O, leading to increasing CO2 content in non-condensable gas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pyrolysis polygeneration of poplar wood: Effect of heating rate and pyrolysis temperature.
Chen, Dengyu; Li, Yanjun; Cen, Kehui; Luo, Min; Li, Hongyan; Lu, Bin
2016-10-01
The pyrolysis of poplar wood were comprehensively investigated at different pyrolysis temperatures (400, 450, 500, 550, and 600°C) and at different heating rates (10, 30, and 50°C/min). The results showed that BET surface area of biochar, the HHV of non-condensable gas and bio-oil reached the maximum values of 411.06m(2)/g, 14.56MJ/m(3), and 14.39MJ/kg, under the condition of 600°C and 30°C/min, 600°C and 50°C/min, and 550°C and 50°C/min, respectively. It was conducive to obtain high mass and energy yield of bio-oil at 500°C and higher heating rate, while lower pyrolysis temperature and heating rate contributed towards obtaining both higher mass yield and energy yield of biochar. However, higher pyrolysis temperature and heating rate contributed to obtain both higher mass yield and energy yield of the non-condensable gas. In general, compared to the heating rate, the pyrolysis temperature had more effect on the product properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Stalport, F.; Glavin, D. P.; Eigenbrode, J. L.; Bish, D.; Blake, D.; Coll, P.; Szopa, C.; Buch, A.; McAdam, A.; Dworkin, J. P.;
2012-01-01
The search for complex organic molecules on Mars, including important biomolecules such as amino acids and carboxylic acids will require a chemical extraction and derivatization step to transform these organic compounds into species that are sufficiently volatile to be detected by gas chromatography mass spectrometry (GCMS). We have developed, a one-pot extraction and chemical derivatization protocol using N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF) for the Sample Analysis at Mars (SAM) experiment on the Mars Science Laboratory (MSL). The temperature and duration the derivatization reaction, pre-concentration of chemical derivatives, and gas chromatographic separation parameters have been optimized under SAM instrument design constraints. MTBSTFA/DMF extraction and derivatization at 300 C for several minutes of a variety of terrestrial Mars analogue materials facilitated the detection of amino acids and carboxylic acids in a surface soil sample collected from the Atacama Desert and a carbonate-rich stromatolite sample from Svalbard. However, the rapid reaction of MTBSTFA with water in several analogue materials that contained high abundances of hydrated minerals and the possible deactivation of derivatized compounds by iron oxides, as detected by XRD/XRF using the CheMin field unit Terra, proved to be highly problematic for the direct extraction of organics using MTBSTFA, The combination of pyrolysis and two different chemical derivatization methods employed by SAM should enable a wide range of organic compounds to be detected by GCMS if present on Mars,
Pyrolysis Pathways of Sulfonated Polyethylene, an Alternative Carbon Fiber Precursor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younker, Jarod M; Saito, Tomonori; Hunt, Marcus A
2013-01-01
Sulfonated polyethylene is an emerging precursor for the production of carbon fibers. Pyrolysis of sulfonated polyethylene was characterized by thermogravimetric analysis (TGA). n-heptane-4-sulfonic acid (H4S) was selected as a model compound for the study of sulfonated polyethylene. Density functional theory and conventional transition state theory were used to determine the rate constants of pyrolysis for H4S from 300-1000 K. Multiple reaction channels from two different mechanisms were explored: 1) internal five-centered elimination (Ei 5) and 2) radical chain reaction. The pyrolysis of H4S was simulated with kinetic Monte Carlo (kMC) to obtain TGA plots that compared favorably to experiment. Wemore » observed that at tem- peratures < 550 K, the radical mechanism was dominant and yielded the trans-alkene, whereas cis-alkene was formed at higher temperatures from the internal elimination. The maximum rates of % mass loss became independent of initial OH radical concentration at 440-480 K. Experimentally, the maximum % mass loss occurred from 440-460 K (heating rate dependent). Activation energies derived from the kMC-simulated TGAs of H4S (26-29 kcal/mol) agreed with experiment for sulfonated polyethylene ( 31 kcal/mol). The simulations revealed that in this region, decomposition of radical HOSO2 became competitive to H abstraction by HOSO2, making OH the carrying radical for the reaction chain. The maximum rate of % mass loss for internal elimination was observed at temperatures > 600 K. Low-scale carbonization utilizes temperatures < 620 K; thus, internal elimination will not be competitive. Ei5 elimination has been studied for sulfoxides and sulfones, but this represents the first study of internal elimination in sulfonic acids. Nonlinear Arrhenius plots were found for all bimolecular reactions. The most significant nonlinear behavior was observed for reactions where the barrier was small. For reactions with low activation barriers, nonlinearity was traced to conflicting trends between the exponential temperature dependence of the energetic term and the temperature dependence of the vibrational partition function of the transitional modes.« less
Desulfurized gas production from vertical kiln pyrolysis
Harris, Harry A.; Jones, Jr., John B.
1978-05-30
A gas, formed as a product of a pyrolysis of oil shale, is passed through hot, retorted shale (containing at least partially decomposed calcium or magnesium carbonate) to essentially eliminate sulfur contaminants in the gas. Specifically, a single chambered pyrolysis vessel, having a pyrolysis zone and a retorted shale gas into the bottom of the retorted shale zone and cleaned product gas is withdrawn as hot product gas near the top of such zone.
Miskolczi, Norbert; Ateş, Funda; Borsodi, Nikolett
2013-09-01
Pyrolysis of real wastes (MPW and MSW) has been investigated at 500°C, 550°C and 600°C using Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3 as catalysts. The viscosity of pyrolysis oils could be decreased by the using of catalysts, especially by β-zeolite and MoO3. Both carbon frame and double bound isomerization was found in case of thermo-catalytic pyrolysis. Char morphology and texture analysis showed more coke deposits on the catalyst surface using MSW raw material. Pyrolysis oils had K, S, P Cl, Ca, Zn, Fe, Cr, Br and Sb as contaminants; and the concentrations of K, S, P, Cl and Br could be decreased by the using of catalysts. Copyright © 2013 Elsevier Ltd. All rights reserved.