Sample records for laboratory research focused

  1. Air Force Research Laboratory’s Focused Long Term Challenges

    DTIC Science & Technology

    2008-04-01

    Air Force Research Laboratory ( AFRL ) mission is to provide support to the Air Force (AF) and the warfighters with... Air Force Research Laboratory’s Focused Long Term Challenges Leo J Rose Munitions Directorate, Air Force Research Laboratory , 101 W Eglin Blvd...This technology vision, which was born in our Air Force Research Laboratory , builds on the Air Force’s traditional kill

  2. Using the Human Systems Simulation Laboratory at Idaho National Laboratory for Safety Focused Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joe, Jeffrey .C; Boring, Ronald L.

    Under the United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program, researchers at Idaho National Laboratory (INL) have been using the Human Systems Simulation Laboratory (HSSL) to conduct critical safety focused Human Factors research and development (R&D) for the nuclear industry. The LWRS program has the overall objective to develop the scientific basis to extend existing nuclear power plant (NPP) operating life beyond the current 60-year licensing period and to ensure their long-term reliability, productivity, safety, and security. One focus area for LWRS is the NPP main control room (MCR), because many of the instrumentation andmore » control (I&C) system technologies installed in the MCR, while highly reliable and safe, are now difficult to replace and are therefore limiting the operating life of the NPP. This paper describes how INL researchers use the HSSL to conduct Human Factors R&D on modernizing or upgrading these I&C systems in a step-wise manner, and how the HSSL has addressed a significant gap in how to upgrade systems and technologies that are built to last, and therefore require careful integration of analog and new advanced digital technologies.« less

  3. Human Laboratory Paradigms in Alcohol Research

    PubMed Central

    Plebani, Jennifer G.; Ray, Lara A.; Morean, Meghan E.; Corbin, William R.; Mackillop, James; Amlung, Michael; King, Andrea C.

    2014-01-01

    Human laboratory studies have a long and rich history in the field of alcoholism. Human laboratory studies have allowed for advances in alcohol research in a variety of ways, including elucidating of the neurobehavioral mechanisms of risk, identifying phenotypically distinct sub-types of alcohol users, investigating of candidate genes underlying experimental phenotypes for alcoholism, and testing mechanisms of action of alcoholism pharmacotherapies on clinically-relevant translational phenotypes, such as persons exhibiting positive-like alcohol effects or alcohol craving. Importantly, the field of human laboratory studies in addiction has progressed rapidly over the past decade and has built upon earlier findings of alcohol's neuropharmacological effects to advancing translational research on alcoholism etiology and treatment. To that end, the new generation of human laboratory studies has focused on applying new methodologies, further refining alcoholism phenotypes, and translating these findings to studies of alcoholism genetics, medication development, and pharmacogenetics. The combination of experimental laboratory approaches with recent developments in neuroscience and pharmacology has been particularly fruitful in furthering our understanding of the impact of individual differences in alcoholism risk and in treatment response. This review of the literature focuses on human laboratory studies of subjective intoxication, alcohol craving, anxiety, and behavioral economics. Each section discusses opportunities for phenotype refinement under laboratory conditions, as well as its application to translational science of alcoholism. A summary and recommendations for future research are also provided. PMID:22309888

  4. An Environmentally Focused General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Mihok, Morgan; Keiser, Joseph T.; Bortiatynski, Jacqueline M.; Mallouk, Thomas E.

    2006-01-01

    The environmentally focused general chemistry laboratory provides a format for teaching the concepts of the mainstream laboratory within an environmental context. The capstone integrated exercise emerged as the overwhelming favorite part of this laboratory and the experiment gave students an opportunity to do a self-directed project, using the…

  5. Laboratory Animal Technician | Center for Cancer Research

    Cancer.gov

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  6. Senior Laboratory Animal Technician | Center for Cancer Research

    Cancer.gov

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  7. The Johns Hopkins Hunterian Laboratory Philosophy: Mentoring Students in a Scientific Neurosurgical Research Laboratory.

    PubMed

    Tyler, Betty M; Liu, Ann; Sankey, Eric W; Mangraviti, Antonella; Barone, Michael A; Brem, Henry

    2016-06-01

    After over 50 years of scientific contribution under the leadership of Harvey Cushing and later Walter Dandy, the Johns Hopkins Hunterian Laboratory entered a period of dormancy between the 1960s and early 1980s. In 1984, Henry Brem reinstituted the Hunterian Neurosurgical Laboratory, with a new focus on localized delivery of therapies for brain tumors, leading to several discoveries such as new antiangiogenic agents and Gliadel chemotherapy wafers for the treatment of malignant gliomas. Since that time, it has been the training ground for 310 trainees who have dedicated their time to scientific exploration in the lab, resulting in numerous discoveries in the area of neurosurgical research. The Hunterian Neurosurgical Laboratory has been a unique example of successful mentoring in a translational research environment. The laboratory's philosophy emphasizes mentorship, independence, self-directed learning, creativity, and people-centered collaboration, while maintaining productivity with a focus on improving clinical outcomes. This focus has been served by the diverse backgrounds of its trainees, both in regard to educational status as well as culturally. Through this philosophy and strong legacy of scientific contribution, the Hunterian Laboratory has maintained a positive and productive research environment that supports highly motivated students and trainees. In this article, the authors discuss the laboratory's training philosophy, linked to the principles of adult learning (andragogy), as well as the successes and the limitations of including a wide educational range of students in a neurosurgical translational laboratory and the phenomenon of combining clinical expertise with rigorous scientific training.

  8. NRMRL SCIENCE PUBLICATIONS (NATIONAL RISK MANAGEMENT RESEARCH LABORATORY, EPA, CINCINNATI, OH)

    EPA Science Inventory

    The National Risk Management Research Laboratory (NRMRL)is the U.S.EPA's center for investigating technological and management approaches for preventing and reducing risks from pollution that threaten human health and the environment. The focus of the Laboratory's research progra...

  9. Apoptosis as the focus of an authentic research experience in a cell physiology laboratory.

    PubMed

    Byrd, Shere K

    2016-06-01

    Curriculum-embedded independent research is a high-impact teaching practice that has been shown to increase student engagement and learning. This article describes a multiweek laboratory project for an upper-division undergraduate cell physiology laboratory using apoptosis via the mitochondrial pathway as the overarching theme. Students did literature research on apoptotic agents that acted via the mitochondrial pathway. Compounds ranged from natural products such as curcumin to synthetic compounds such as etoposide. Groups of two to three students planned a series of experiments using one of three cultured cell lines that required them to 1) learn to culture cells; 2) determine treatment conditions, including apoptotic agent solubility and concentration ranges that had been reported in the literature; 3) choose two methods to validate/quantify apoptotic capacity of the reagent; and 4) attempt to "rescue" cells from undergoing apoptosis using one of several available compounds/methods. In essence, given some reagent and equipment constraints, students designed an independent experiment to highlight the effects of different apoptotic agents on cells in culture. Students presented their experimental designs as in a laboratory group meeting and their final findings as a classroom "symposium." This exercise can be adapted to many different types of laboratories with greater or lesser equipment and instrumentation constraints, incorporates several core cell physiology methods, and encourages key experimental design and critical thinking components of independent research. Copyright © 2016 The American Physiological Society.

  10. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated June 22, 1988: 'A dwarf wheat variety known as Yecoro Rojo flourishes in KSC's Biomass Production Chamber. Researchers are gathering information on the crop's ability to produce food, water and oxygen, and then remove carbon dioxide. The confined quarters associated with space travel require researchers to focus on smaller plants that yield proportionately large amounts of biomass. This wheat crop takes about 85 days to grow before harvest.' Plant experiments such as this are the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  11. Safety Issues in Agricultural Education Laboratories: A Synthesis of Research.

    ERIC Educational Resources Information Center

    Dyer, James E.; Andreasen, Randall J.

    1999-01-01

    Synthesis of research on safety in agricultural education laboratories found most research focused on agricultural mechanics. Labs appeared to be potentially hazardous places, and teachers have inadequate knowledge of safety laws and ways to provide a safe working environment. (SK)

  12. Naval Research Laboratory Major Facilities 2008

    DTIC Science & Technology

    2008-10-01

    Development Laboratory • Secure Supercomputing Facility • CBD/Tilghman Island IR Field Evaluation Facility • Ultra-Short-Pulse Laser Effects Research...EMI Test Facility • Proximity Operations Testbed GENERAL INFORMATION • Maps EX EC U TI V E D IR EC TO RA TE Code 1100 – Institute for Nanoscience...facility: atomic force microscope (AFM); benchtop transmission electron microscope (TEM); cascade probe station; critical point dryer ; dual beam focused

  13. Laboratory Directed Research and Development Annual Report FY 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Kelly O.

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate upmore » to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.« less

  14. Laboratory Directed Research and Development Annual Report FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Kelly O.

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate upmore » to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.« less

  15. What We Do | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory is the only U.S. national lab wholly focused on research, technology, and collaboration in the biomedical sciences- working to discover, to innovate, and to improve human health. We accelerate progress against can

  16. Introducing Students to Psychological Research: General Psychology as a Laboratory Course

    ERIC Educational Resources Information Center

    Thieman, Thomas J.; Clary, E. Gil; Olson, Andrea M.; Dauner, Rachel C.; Ring, Erin E.

    2009-01-01

    For 6 years, we have offered an integrated weekly laboratory focusing on research methods as part of our general psychology course. Through self-report measures and controlled comparisons, we found that laboratory projects significantly increase students' knowledge and comfort level with scientific approaches and concepts, sustain interest in…

  17. Sandia National Laboratories: Research: Laboratory Directed Research &

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  18. Air Force Research Laboratory

    DTIC Science & Technology

    2009-06-08

    Air Force Research Laboratory 8 June 2009 Mr. Leo Marple Ai F R h L b t r orce esearc a ora ory Leo.Marple@wpafb.af.mil DISTRIBUTION STATEMENT A...TITLE AND SUBTITLE Air Force Research Laboratory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory ,Wright

  19. Bringing the excitement and motivation of research to students; Using inquiry and research-based learning in a year-long biochemistry laboratory : Part II-research-based laboratory-a semester-long research approach using malate dehydrogenase as a research model.

    PubMed

    Knutson, Kristopher; Smith, Jennifer; Nichols, Paul; Wallert, Mark A; Provost, Joseph J

    2010-09-01

    Research-based learning in a teaching environment is an effective way to help bring the excitement and experience of independent bench research to a large number of students. The program described here is the second of a two-semester biochemistry laboratory series. Here, students are empowered to design, execute and analyze their own experiments for the entire semester. This style of laboratory replaces a variety of shorter labs in favor of an in depth research-based learning experience. The concept is to allow students to function in independent research groups. The research projects are focused on a series of wild-type and mutant clones of malate dehydrogenase. A common research theme for the laboratory helps instructors administer the course and is key to delivering a research opportunity to a large number of students. The outcome of this research-based learning laboratory results in students who are much more confident and skilled in critical areas in biochemistry and molecular biology. Students with research experience have significantly higher confidence and motivation than those students without a previous research experience. We have also found that all students performed better in advanced courses and in the workplace. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.

  20. Student research laboratory for optical engineering

    NASA Astrophysics Data System (ADS)

    Tolstoba, Nadezhda D.; Saitgalina, Azaliya; Abdula, Polina; Butova, Daria

    2015-10-01

    Student research laboratory for optical engineering is comfortable place for student's scientific and educational activity. The main ideas of laboratory, process of creation of laboratory and also activity of laboratory are described in this article. At ITMO University in 2013-2014 were formed a lot of research laboratories. SNLO is a student research (scientific) laboratory formed by the Department of Applied and computer optics of the University ITMO (Information Technologies of Mechanics and Optics). Activity of laboratory is career guidance of entrants and students in the field of optical engineering. Student research laboratory for optical engineering is a place where student can work in the interesting and entertaining scientific atmosphere.

  1. NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  2. New working paradigms in research laboratories.

    PubMed

    Keighley, Wilma; Sewing, Andreas

    2009-07-01

    Work in research laboratories, especially within centralised functions in larger organisations, is changing fast. With easier access to external providers and Contract Research Organisations, and a focus on budgets and benchmarking, scientific expertise has to be complemented with operational excellence. New concepts, globally shared projects and restricted resources highlight the constraints of traditional operating models working from Monday to Friday and nine to five. Whilst many of our scientists welcome this new challenge, organisations have to enable and foster a more business-like mindset. Organisational structures, remuneration, as well as systems in finance need to be adapted to build operations that are best-in-class rather than merely minimising negative impacts of current organisational structures.

  3. About the Frederick National Laboratory for Cancer Research | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory is a Federally Funded Research and Development Center (FFRDC) sponsored by the National Cancer Institute (NCI) and currently operated by Leidos Biomedical Research, Inc. The laboratory addresses some of the most urge

  4. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wester, W.

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple ofmore » years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.« less

  5. Through Microgravity and Towards the Stars: Microgravity and Strategic Research at Marshall's Biological and Physical Space Research Laboratory

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    2003-01-01

    The Microgravity and Strategic research at Marshall s Biological and Physical Space Research Laboratory will be reviewed. The environment in orbit provides a unique opportunity to study Materials Science and Biotechnology in the absence of sedimentation and convection. There are a number of peer-selected investigations that have been selected to fly on the Space Station that have been conceived and are led by Marshall s Biological and Physical Research Laboratory s scientists. In addition to Microgravity research the Station will enable research in "Strategic" Research Areas that focus on enabling humans to live, work, and explore the solar system safely. New research in Radiation Protection, Strategic Molecular Biology, and In-Space Fabrication will be introduced.

  6. An Experiential Research-Focused Approach: Implementation in a Nonlaboratory-Based, Graduate-Level Analytical Chemistry Course

    NASA Astrophysics Data System (ADS)

    Toh, Chee-Seng

    2007-04-01

    A research-focused approach is described for a nonlaboratory-based graduate-level module on analytical chemistry. The approach utilizes commonly practiced activities carried out in active research laboratories, in particular, activities involving logging of ideas and thoughts, journal clubs, proposal writing, classroom participation and discussions, and laboratory tours. This approach was adapted without compromising the course content and results suggest possible adaptation and implementation in other graduate-level courses.

  7. Senior Laboratory Animal Technician | Center for Cancer Research

    Cancer.gov

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused on the design, generation, characterization and application of genetically engineered and biological animal models of human disease, which are aimed at the development of targeted diagnostics and therapies. LASP contributes to advancing human health, developing new treatments, and improving existing treatments for cancer and other diseases while ensuring safe and humane treatment of animals. KEY ROLES/RESPONSIBILITIES The Senior Laboratory Animal Technician will be responsible for: Daily tasks associated with the care, breeding and treatment of research animals for experimental purposes Management of rodent breeding colonies consisting of multiple, genetically complex strains and associated record keeping and database management Colony management procedures including: tail clipping, animal identification, weaning Data entry consistent with complex colony management Collection of routine diagnostic samples Coordinating shipment of live animals and specimens Performing rodent experimental procedures including basic necropsy and blood collection Observation and recording of physical signs of animal health Knowledge of safe working practices using chemical carcinogen and biological hazards Work schedule may include weekend and holiday hours This position is in support of the Center for Cancer Research (CCR).

  8. Found in translation: Integrating laboratory and clinical oncology research

    PubMed Central

    Wagner, H

    2008-01-01

    Translational research in medicine aims to inform the clinic and the laboratory with the results of each other’s work, and to bring promising and validated new therapies into clinical application. While laudable in intent, this is complicated in practice and the current state of translational research in cancer shows both striking success stories and examples of the numerous potential obstacles as well as opportunities for delays and errors in translation. This paper reviews the premises, promises, and problems of translational research with a focus on radiation oncology and suggests opportunities for improvements in future research design. PMID:21611010

  9. The Central Importance of Laboratories for Reducing Waste in Biomedical Research.

    PubMed

    Stroth, Nikolas

    2016-12-01

    The global biomedical research enterprise is driving substantial advances in medicine and healthcare. Yet it appears that the enterprise is rather wasteful, falling short of its true innovative potential. Suggested reasons are manifold and involve various stakeholders, such that there is no single remedy. In the present paper, I will argue that laboratories are the basic working units of the biomedical research enterprise and an important site of action for corrective intervention. Keeping laboratories relatively small will enable better training and mentoring of individual scientists, which in turn will yield better performance of the scientific workforce. The key premise of this argument is that people are at the heart of the successes and failures of biomedical research, yet the human dimension of science has been unduly neglected in practice. Renewed focus on the importance of laboratories and their constituent scientists is one promising approach to reducing waste and increasing efficiency within the biomedical research enterprise.

  10. Laboratory directed research and development fy1999 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R A

    2000-04-11

    The Lawrence Livermore National Laboratory (LLNL) was founded in 1952 and has been managed since its inception by the University of California (UC) for the U.S. Department of Energy (DOE). Because of this long association with UC, the Laboratory has been able to recruit a world-class workforce, establish an atmosphere of intellectual freedom and innovation, and achieve recognition in relevant fields of knowledge as a scientific and technological leader. This environment and reputation are essential for sustained scientific and technical excellence. As a DOE national laboratory with about 7,000 employees, LLNL has an essential and compelling primary mission to ensuremore » that the nation's nuclear weapons remain safe, secure, and reliable and to prevent the spread and use of nuclear weapons worldwide. The Laboratory receives funding from the DOE Assistant Secretary for Defense Programs, whose focus is stewardship of our nuclear weapons stockpile. Funding is also provided by the Deputy Administrator for Defense Nuclear Nonproliferation, many Department of Defense sponsors, other federal agencies, and the private sector. As a multidisciplinary laboratory, LLNL has applied its considerable skills in high-performance computing, advanced engineering, and the management of large research and development projects to become the science and technology leader in those areas of its mission responsibility. The Laboratory Directed Research and Development (LDRD) Program was authorized by the U.S. Congress in 1984. The Program allows the Director of each DOE laboratory to fund advanced, creative, and innovative research and development (R&D) activities that will ensure scientific and technical vitality in the continually evolving mission areas at DOE and the Laboratory. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies, which attract the most qualified scientists and engineers. The LDRD

  11. National Exposure Research Laboratory

    EPA Pesticide Factsheets

    The Ecosystems Research Division of EPA’s National Exposure Research Laboratory, conducts research on organic and inorganic chemicals, greenhouse gas biogeochemical cycles, and land use perturbations that create stressor exposures and potentia risk

  12. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of The Director)

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selectedmore » from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.« less

  13. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigali, Mark J.; Miller, James E.; Altman, Susan J.

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documentsmore » Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.« less

  14. Student teaching and research laboratory focusing on brain-computer interface paradigms--A creative environment for computer science students.

    PubMed

    Rutkowski, Tomasz M

    2015-08-01

    This paper presents an applied concept of a brain-computer interface (BCI) student research laboratory (BCI-LAB) at the Life Science Center of TARA, University of Tsukuba, Japan. Several successful case studies of the student projects are reviewed together with the BCI Research Award 2014 winner case. The BCI-LAB design and project-based teaching philosophy is also explained. Future teaching and research directions summarize the review.

  15. Initiation of Research at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1942-05-21

    A group of National Advisory Committee for Aeronautics (NACA) officials and local dignitaries were on hand on May 8, 1942, to witness the Initiation of Research at the NACA's new Aircraft Engine Research Laboratory in Cleveland, Ohio. The group in this photograph was in the control room of the laboratory's first test facility, the Engine Propeller Research Building. The NACA press release that day noted, "First actual research activities in what is to be the largest aircraft engine research laboratory in the world was begun today at the National Advisory Committee for Aeronautics laboratory at the Cleveland Municipal Airport.” The ceremony, however, was largely symbolic since most of the laboratory was still under construction. Dr. George W. Lewis, the NACA's Director of Aeronautical Research, and John F. Victory, NACA Secretary, are at the controls in this photograph. Airport Manager John Berry, former City Manager William Hopkins, NACA Assistant Secretary Ed Chamberlain, Langley Engineer-in-Charge Henry Reid, Executive Engineer Carlton Kemper, and Construction Manager Raymond Sharp are also present. The propeller building contained two torque stands to test complete engines at ambient conditions. The facility was primarily used at the time to study engine lubrication and cooling systems for World War II aircraft, which were required to perform at higher altitudes and longer ranges than previous generations.

  16. Entrance to the NACA's Flight Propulsion Research Laboratory

    NASA Image and Video Library

    1948-08-21

    The sign near the entrance of the National Advisory Committee for Aeronautics (NACA) Flight Propulsion Research Laboratory. The name was changed several weeks later to the Lewis Flight Propulsion Laboratory in honor of the NACA’s former Director of Aeronautical Research, George W. Lewis. The research laboratory has had five different names since its inception in 1941. The Cleveland laboratory was originally known as the NACA Aircraft Engine Research Laboratory. In 1947 it was renamed the NACA Flight Propulsion Research Laboratory to reflect the expansion of the research activities beyond just engines. Following the death of George Lewis, the name was changed to the NACA Lewis Flight Propulsion Laboratory in September 1948. On October 1, 1958, the lab was incorporated into the new NASA space agency, and it was renamed the NASA Lewis Research Center. Following John Glenn’s flight on the space shuttle, the name was changed again to the NASA Glenn Research Center on March 1, 1999. From his office in Washington DC, George Lewis managed the aeronautical research conducted at the NACA for over 20 years. His most important accomplishment, however, may have been an investigative tour of German research facilities in the fall of 1936. The visit resulted in the broadening of the scope of the NACA’s research and the physical expansion that included the new engine laboratory in Cleveland.

  17. Air Force Research Laboratory Preparation for Year 2000.

    DTIC Science & Technology

    1998-10-05

    Air Force Research Laboratory , Phillips Research Site , Kirkland Air Force Base, New...Pentagon, Washington, D.C. 20301-1900. The identity of each writer and caller is fully protected. Acronym AFRL Air Force Research Laboratory INSPECTOR...completion of the implementation phase was May 31, 1999. Air Force Research Laboratory . The Air Force Research

  18. Helical Explosive Flux Compression Generator Research at the Air Force Research Laboratory

    DTIC Science & Technology

    1999-06-01

    Air Force Research Laboratory Kirtland AFB...ORGANIZATION NAME(S) AND ADDRESS(ES) Directed Energy Directorate, Air Force Research Laboratory Kirtland AFB, NM 8. PERFORMING ORGANIZATION REPORT...in support of the Air Force Research Laboratory ( AFRL ) explosive pulsed power program. These include circuit codes such as Microcap and

  19. Experiences of mentors training underrepresented undergraduates in the research laboratory.

    PubMed

    Prunuske, Amy J; Wilson, Janelle; Walls, Melissa; Clarke, Benjamin

    2013-01-01

    Successfully recruiting students from underrepresented groups to pursue biomedical science research careers continues to be a challenge. Early exposure to scientific research is often cited as a powerful means to attract research scholars with the research mentor being critical in facilitating the development of an individual's science identity and career; however, most mentors in the biological sciences have had little formal training in working with research mentees. To better understand mentors' experiences working with undergraduates in the laboratory, we conducted semistructured interviews with 15 research mentors at a public university in the Midwest. The interviewed mentors were part of a program designed to increase the number of American Indians pursuing biomedical/biobehavioral research careers and represented a broad array of perspectives, including equal representation of male and female mentors, mentors from underrepresented groups, mentors at different levels of their careers, and mentors from undergraduate and professional school departments. The mentors identified benefits and challenges in being an effective mentor. We also explored what the term underrepresented means to the mentors and discovered that most of the mentors had an incomplete understanding about how differences in culture could contribute to underrepresented students' experience in the laboratory. Our interviews identify issues relevant to designing programs and courses focused on undergraduate student research.

  20. Experiences of Mentors Training Underrepresented Undergraduates in the Research Laboratory

    PubMed Central

    Prunuske, Amy J.; Wilson, Janelle; Walls, Melissa; Clarke, Benjamin

    2013-01-01

    Successfully recruiting students from underrepresented groups to pursue biomedical science research careers continues to be a challenge. Early exposure to scientific research is often cited as a powerful means to attract research scholars with the research mentor being critical in facilitating the development of an individual's science identity and career; however, most mentors in the biological sciences have had little formal training in working with research mentees. To better understand mentors’ experiences working with undergraduates in the laboratory, we conducted semistructured interviews with 15 research mentors at a public university in the Midwest. The interviewed mentors were part of a program designed to increase the number of American Indians pursuing biomedical/biobehavioral research careers and represented a broad array of perspectives, including equal representation of male and female mentors, mentors from underrepresented groups, mentors at different levels of their careers, and mentors from undergraduate and professional school departments. The mentors identified benefits and challenges in being an effective mentor. We also explored what the term underrepresented means to the mentors and discovered that most of the mentors had an incomplete understanding about how differences in culture could contribute to underrepresented students’ experience in the laboratory. Our interviews identify issues relevant to designing programs and courses focused on undergraduate student research. PMID:24006389

  1. Network Science Research Laboratory (NSRL) Discrete Event Toolkit

    DTIC Science & Technology

    2016-01-01

    ARL-TR-7579 ● JAN 2016 US Army Research Laboratory Network Science Research Laboratory (NSRL) Discrete Event Toolkit by...Laboratory (NSRL) Discrete Event Toolkit by Theron Trout and Andrew J Toth Computational and Information Sciences Directorate, ARL...Research Laboratory (NSRL) Discrete Event Toolkit 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Theron Trout

  2. Neutron Focusing Mirrors for Neutron Radiography of Irradiated Nuclear Fuel at Idaho National Laboratory

    NASA Astrophysics Data System (ADS)

    Rai, Durgesh K.; Wu, Huarui; Abir, Muhammad; Giglio, Jeffrey; Khaykovich, Boris

    Post irradiation examination (PIE) of samples irradiated in nuclear reactors is a challenging but necessary task for the development on novel nuclear power reactors. Idaho National Laboratory (INL) has neutron radiography capabilities, which are especially useful for the PIE of irradiated nuclear fuel. These capabilities are limited due to the extremely high gamma-ray radiation from the irradiated fuel, which precludes the use of standard digital detectors, in turn limiting the ability to do tomography and driving the cost of the measurements. In addition, the small 250 kW Neutron Radiography Reactor (NRAD) provides a relatively weak neutron flux, which leads to low signal-to-noise ratio. In this work, we develop neutron focusing optics suitable for the installation at NRAD. The optics would separate the sample and the detector, potentially allowing for the use of digital radiography detectors, and would provide significant intensity enhancement as well. The optics consist of several coaxial nested Wolter mirrors and is suited for polychromatic thermal neutron radiation. Laboratory Directed Research and Development program of Idaho National Laboratory.

  3. Battelle's Marine Research Laboratory, Sequim

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, C.D.; Strand, J.A.

    Scientists at Battelle's Marine Research Laboratory (MRL) in Sequim, Washington study the effect of human activities on marine ecosystems, with emphasis on near shore and estuarine environments. The laboratory provides research and development assistance to industry and government agencies engaged in management of marine technologies, operation of coastal power utilities, protection of the marine environment, and related areas. This paper outlines and discusses the functions of Battelle's MRL, it's history, it's unique features, it's areas of expertise, it's current programs, and it's cooperating agencies.

  4. Establishment of a Laboratory for Biofuels Research at the University of Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crocker, Mark; Crofcheck, Czarena; Andrews, Rodney

    2013-03-29

    This project was aimed at the development of the biofuels industry in Kentucky by establishing a laboratory to develop improved processes for biomass utilization. The facility is based at the University of Kentucky Center for Applied Energy Research and the Department of Biosystems and Agricultural Engineering, and constitutes an “open” laboratory, i.e., its equipment is available to other Kentucky researchers working in the area. The development of this biofuels facility represents a significant expansion of research infrastructure, and will provide a lasting resource for biobased research endeavors at the University of Kentucky. In order to enhance the laboratory's capabilities andmore » contribute to on-going biofuels research at the University of Kentucky, initial research at the laboratory has focused on the following technical areas: (i) the identification of algae strains suitable for oil production, utilizing flue gas from coal-fired power plants as a source of CO 2; (ii) the conversion of algae to biofuels; and (iii) the development of methods for the analysis of lignin and its deconstruction products. Highlights from these activities include the development of catalysts for the upgrading of lipids to hydrocarbons by means of decarboxylation/decarbonylation (deCOx), a study of bio-oil production from the fast pyrolysis of algae (Scenedesmus), and the application of pyrolytic gas chromatography coupled with mass spectrometry (Py-GC-MS) to the characterization of high lignin biomass feedstocks.« less

  5. Green Fluorescent Protein-Focused Bioinformatics Laboratory Experiment Suitable for Undergraduates in Biochemistry Courses

    ERIC Educational Resources Information Center

    Rowe, Laura

    2017-01-01

    An introductory bioinformatics laboratory experiment focused on protein analysis has been developed that is suitable for undergraduate students in introductory biochemistry courses. The laboratory experiment is designed to be potentially used as a "stand-alone" activity in which students are introduced to basic bioinformatics tools and…

  6. 41 CFR 101-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Laboratory and research...-General Policies § 101-25.109 Laboratory and research equipment. (a) This section prescribes controls for use by Federal agencies in managing laboratory and research equipment in Federal laboratories...

  7. 41 CFR 101-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Laboratory and research...-General Policies § 101-25.109 Laboratory and research equipment. (a) This section prescribes controls for use by Federal agencies in managing laboratory and research equipment in Federal laboratories...

  8. 41 CFR 101-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Laboratory and research...-General Policies § 101-25.109 Laboratory and research equipment. (a) This section prescribes controls for use by Federal agencies in managing laboratory and research equipment in Federal laboratories...

  9. Pre-trial inter-laboratory analytical validation of the FOCUS4 personalised therapy trial.

    PubMed

    Richman, Susan D; Adams, Richard; Quirke, Phil; Butler, Rachel; Hemmings, Gemma; Chambers, Phil; Roberts, Helen; James, Michelle D; Wozniak, Sue; Bathia, Riya; Pugh, Cheryl; Maughan, Timothy; Jasani, Bharat

    2016-01-01

    Molecular characterisation of tumours is increasing personalisation of cancer therapy, tailored to an individual and their cancer. FOCUS4 is a molecularly stratified clinical trial for patients with advanced colorectal cancer. During an initial 16-week period of standard first-line chemotherapy, tumour tissue will undergo several molecular assays, with the results used for cohort allocation, then randomisation. Laboratories in Leeds and Cardiff will perform the molecular testing. The results of a rigorous pre-trial inter-laboratory analytical validation are presented and discussed. Wales Cancer Bank supplied FFPE tumour blocks from 97 mCRC patients with consent for use in further research. Both laboratories processed each sample according to an agreed definitive FOCUS4 laboratory protocol, reporting results directly to the MRC Trial Management Group for independent cross-referencing. Pyrosequencing analysis of mutation status at KRAS codons12/13/61/146, NRAS codons12/13/61, BRAF codon600 and PIK3CA codons542/545/546/1047, generated highly concordant results. Two samples gave discrepant results; in one a PIK3CA mutation was detected only in Leeds, and in the other, a PIK3CA mutation was only detected in Cardiff. pTEN and mismatch repair (MMR) protein expression was assessed by immunohistochemistry (IHC) resulting in 6/97 discordant results for pTEN and 5/388 for MMR, resolved upon joint review. Tumour heterogeneity was likely responsible for pyrosequencing discrepancies. The presence of signet-ring cells, necrosis, mucin, edge-effects and over-counterstaining influenced IHC discrepancies. Pre-trial assay analytical validation is essential to ensure appropriate selection of patients for targeted therapies. This is feasible for both mutation testing and immunohistochemical assays and must be built into the workup of such trials. ISRCTN90061564. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to

  10. FY04 Engineering Technology Reports Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpe, R M

    2005-01-27

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2004, and exemplifies Engineering's more than 50-year history of developing the technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. Engineering's investmentmore » in technologies is carried out through two programs, the ''Tech Base'' program and the LDRD program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply technologies to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2004, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the long-term science and technology investments for the Directorate. The Centers represent technologies that have been identified as critical for the present and future work of the Laboratory, and are chartered to develop their

  11. Fuels and Lubrication Researcher at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1943-08-21

    A researcher at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory studies the fuel ignition process. Improved fuels and lubrication was an area of particular emphasis at the laboratory during World War II. The military sought to use existing types of piston engines in order to get large numbers of aircraft into the air as quickly as possible. To accomplish its goals, however, the military needed to increase the performance of these engines without having to wait for new models or extensive redesigns. The Aircraft Engine Research Laboratory was called on to lead this effort. The use of superchargers successfully enhanced engine performance, but the resulting heat increased engine knock [fuel detonation] and structural wear. These effects could be offset with improved cooling, lubrication, and fuel mixtures. The NACA researchers in the Fuels and Lubrication Division concentrated on new synthetic fuels, higher octane fuels, and fuel-injection systems. The laboratory studied 16 different types of fuel blends during the war, including extensive investigations of triptane and xylidine.

  12. 2nd Annual Postdoc Research Day: US Army Research Laboratory PosterSymposia and Activities

    DTIC Science & Technology

    2018-04-12

    ARL-SR-0394•APR 2018 US Army Research Laboratory 2nd Annual Postdoc Research Day: US Army Research Laboratory Poster Symposia and Activities by...Do not return it to the originator. ARL-SR-0394•APR 2018 US Army Research Laboratory 2nd Annual Postdoc Research Day: US Army Research Laboratory...Poster Symposia and Activities by Efraín Hernández–Rivera Weapons and Materials Research Directorate, ARL Julia Cline Oak Ridge Institute for Science and

  13. Discovering Inexpensive, Effective Catalysts for Solar Energy Conversion: An Authentic Research Laboratory Experience

    ERIC Educational Resources Information Center

    Shaner, Sarah E.; Hooker, Paul D.; Nickel, Anne-Marie; Leichtfuss, Amanda R.; Adams, Carissa S.; de la Cerda, Dionisia; She, Yuqi; Gerken, James B.; Pokhrel, Ravi; Ambrose, Nicholas J.; Khaliqi, David; Stahl, Shannon S.; Schuttlefield Christus, Jennifer D.

    2016-01-01

    Electrochemical water oxidation is a major focus of solar energy conversion efforts. A new laboratory experiment has been developed that utilizes real-time, hands-on research to discover catalysts for solar energy conversion. The HARPOON, or Heterogeneous Anodes Rapidly Perused for Oxygen Overpotential Neutralization, experiment allows an array of…

  14. Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop Laboratory Radio Frequency (RF) Propagation Section

    DTIC Science & Technology

    2016-10-01

    ARL-TR-7860 ● OCT 2016 US Army Research Laboratory Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop ...ARL-TR-7860 ● OCT 2016 US Army Research Laboratory Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop Laboratory...Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop Laboratory Radio Frequency (RF) Propagation Section 5a. CONTRACT NUMBER

  15. Stirling laboratory research engine survey report

    NASA Technical Reports Server (NTRS)

    Anderson, J. W.; Hoehn, F. W.

    1979-01-01

    As one step in expanding the knowledge relative to and accelerating the development of Stirling engines, NASA, through the Jet Propulsion Laboratory (JPL), is sponsoring a program which will lead to a versatile Stirling Laboratory Research Engine (SLRE). An objective of this program is to lay the groundwork for a commercial version of this engine. It is important to consider, at an early stage in the engine's development, the needs of the potential users so that the SLRE can support the requirements of educators and researchers in academic, industrial, and government laboratories. For this reason, a survey was performed, the results of which are described.

  16. Artist's Concept of NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications.

  17. Optics research at the U.S. Naval Research Laboratory.

    PubMed

    Hoffman, Craig; Giallorenzi, T G; Slater, Leo B

    2015-11-01

    The Naval Research Laboratory (NRL) was established in Washington, DC in 1923 and is the corporate laboratory for the U.S. Navy and Marine Corps. Today NRL is a world-class research institution conducting a broad program of research and development (R&D), including many areas of optical science and technology. NRL is conducting cutting-edge R&D programs to explore new scientific areas to enable unprecedented Navy capabilities as well as improving current technologies to increase the effectiveness of Navy and other Department of Defense systems. This paper provides a broad overview of many of NRL's achievements in optics. Some of the remaining articles in this feature issue will discuss NRL's most recent research in individual areas, while other articles will present more detailed historical perspectives of NRL's research concerning particular scientific topics.

  18. 2014 Fermilab Laboratory Directoed Research & Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Wester

    After initiation by the Fermilab Laboratory Director, a team from the senior Laboratory leadership and a Laboratory Directed Research and Development (LDRD) Advisory Committee developed an implementation plan for LDRD at Fermilab for the first time. This implementation was captured in the approved Fermilab 2014 LDRD Program Plan and followed directions and guidance from the Department of Energy (DOE) order, DOE O 413.2B, a “Roles, Responsibilities, and Guidelines, …” document, and examples of best practices at other DOE Office of Science Laboratories. At Fermilab, a FY14 midyear Call for Proposals was issued. A LDRD Selection Committee evaluated those proposals thatmore » were received and provided a recommendation to the Laboratory Director who approved seven LDRD projects. This Annual Report focuses on the status of those seven projects and provides an overview of the current status of LDRD at Fermilab. The seven FY14 LDRD approved projects had a date of initiation late in FY14 such that this report reflects approximately six months of effort approximately through January 2015. The progress of these seven projects, the subsequent award of six additional new projects beginning in FY15, and preparations for the issuance of the FY16 Call for Proposals indicates that LDRD is now integrated into the overall annual program at Fermilab. All indications are that LDRD is improving the scientific and technical vitality of the Laboratory and providing new, novel, or cutting edge projects carried out at the forefront of science and technology and aligned with the mission and strategic visions of Fermilab and the Department of Energy.« less

  19. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Researchers perform tests at Kennedy Space Center. New facilities for such research will be provided at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  20. A 13-Week Research-Based Biochemistry Laboratory Curriculum

    ERIC Educational Resources Information Center

    Lefurgy, Scott T.; Mundorff, Emily C.

    2017-01-01

    Here, we present a 13-week research-based biochemistry laboratory curriculum designed to provide the students with the experience of engaging in original research while introducing foundational biochemistry laboratory techniques. The laboratory experience has been developed around the directed evolution of an enzyme chosen by the instructor, with…

  1. Sandia National Laboratories: Research

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  2. A research update for southeast poultry research laboratory

    USDA-ARS?s Scientific Manuscript database

    The Southeast Poultry Research Laboratory continues with their modernization plan. The 35% architectural drawings have been completed and the project is currently out for bid for the completion of the design and building of the new facility. Research activities in the Exotic and Emerging Avian Vir...

  3. Adaptive Training and Education Research at the US Army Research Laboratory: Bibliography (2016-2017)

    DTIC Science & Technology

    2018-03-05

    Validation suite. Synthetic training environments. Service orientated architecture. Citation: Robson, E., Ray, F., Sinatra, A. M., & Sinatra, A. M. (2017...ARL-SR-0393 ● MAR 2018 US Army Research Laboratory Adaptive Training and Education Research at the US Army Research Laboratory... Training and Education Research at the US Army Research Laboratory: Bibliography (2016–2017) by Robert A Sottilare Human Research and

  4. Research and Development. Laboratory Activities.

    ERIC Educational Resources Information Center

    Gallaway, Ann, Ed.

    Research and Development is a laboratory-oriented course that includes the appropriate common essential elements for industrial technology education plus concepts and skills related to research and development. This guide provides teachers of the course with learning activities for secondary students. Introductory materials include an…

  5. Evaluation of the implementation of a quality system in a basic research laboratory: viability and impacts.

    PubMed

    Fraga, Hilda Carolina de Jesus Rios; Fukutani, Kiyoshi Ferreira; Celes, Fabiana Santana; Barral, Aldina Maria Prado; Oliveira, Camila Indiani de

    2012-01-01

    To evaluate the process of implementing a quality management system in a basic research laboratory of a public institution, particularly considering the feasibility and impacts of this improvement. This was a prospective and qualitative study. We employed the norm "NIT DICLA 035--Princípios das Boas Práticas de Laboratório (BPL)" and auxiliary documents of Organisation for Economic Co-operation and Development to complement the planning and implementation of a Quality System, in a basic research laboratory. In parallel, we used the PDCA tool to define the goals of each phase of the implementation process. This study enabled the laboratory to comply with the NIT DICLA 035 norm and to implement this norm during execution of a research study. Accordingly, documents were prepared and routines were established such as the registration of non-conformities, traceability of research data and equipment calibration. The implementation of a quality system, the setting of a laboratory focused on basic research is feasible once certain structural changes are made. Importantly, impacts were noticed during the process, which could be related to several improvements in the laboratory routine.

  6. Supercharger Research at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1944-01-21

    A researcher in the Supercharger Research Division at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory measures the blade thickness on a supercharger. Superchargers were developed at General Electric used to supply additional air to reciprocating engines. The extra air resulted in increased the engine’s performance, particularly at higher altitudes. The Aircraft Engine Research Laboratory had an entire division dedicated to superchargers during World War II. General Electric developed the supercharger in response to a 1917 request from the NACA to develop a device to enhance high-altitude flying. The supercharger pushed larger volumes of air into the engine manifold. The extra oxygen allowed the engine to operate at its optimal sea-level rating even when at high altitudes. Thus, the aircraft could maintain its climb rate, maneuverability and speed as it rose higher into the sky. NACA work on the supercharger ceased after World War II due to the arrival of the turbojet engine. The Supercharger Research Division was disbanded in October 1945 and reconstituted as the Compressor and Turbine Division.

  7. Laboratory directed research and development program, FY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides themore » resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.« less

  8. A Research-Based Laboratory Course Designed to Strengthen the Research-Teaching Nexus

    ERIC Educational Resources Information Center

    Parra, Karlett J.; Osgood, Marcy P.; Pappas, Donald L., Jr.

    2010-01-01

    We describe a 10-week laboratory course of guided research experiments thematically linked by topic, which had an ultimate goal of strengthening the undergraduate research-teaching nexus. This undergraduate laboratory course is a direct extension of faculty research interests. From DNA isolation, characterization, and mutagenesis, to protein…

  9. Perspectives from Former Executives of the DOD Corporate Research Laboratories

    DTIC Science & Technology

    2009-03-01

    Research Laboratory (NRL) in Washington, DC; and the Air Force Research Laboratory ( AFRL ) in Dayton, Ohio respectively. These individuals are: John Lyons...13 Vincent Russo and the Air Force Research Laboratory The Air Force Research Laboratory ( AFRL ) was activated in 1997. Prior to the creation of... AFRL , the Air Force conducted its research at four major

  10. A Research Update for Southeast Poultry Research Laboratory

    USDA-ARS?s Scientific Manuscript database

    The Southeast Poultry Research Laboratory continues with their modernization plan. The 35% architectural drawings have been completed and the project is currently out for bid for the completion of the design and building of the new facility. Research activities include responding to the H7N9 highl...

  11. MIT Lincoln Laboratory Annual Report 2010

    DTIC Science & Technology

    2010-01-01

    Research and Development Center (FFRDC) and a DoD Research and Development Laboratory. The Laboratory conducts research and development pertinent to...year, the Laboratory restruc- tured three divisions to focus research and development in areas that are increasingly important to the nation...the Director 3 Collaborations with MIT campus continue to grow, leveraging the strengths of researchers at both the Laboratory and campus. The

  12. 41 CFR 101-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equipped and/or used for scientific research, testing, or analysis, except clinical laboratories operating... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Laboratory and research...-General Policies § 101-25.109 Laboratory and research equipment. (a) This section prescribes controls for...

  13. Sandia National Laboratories: Research: Research Foundations: Nanodevices

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  14. Earth Resources Laboratory research and technology

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The accomplishments of the Earth Resources Laboratory's research and technology program are reported. Sensors and data systems, the AGRISTARS project, applied research and data analysis, joint research projects, test and evaluation studies, and space station support activities are addressed.

  15. Stirling Laboratory Research Engine: Preprototype configuration report

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.

    1982-01-01

    The concept of a simple Stirling research engine that could be used by industrial, university, and government laboratories was studied. The conceptual and final designs, hardware fabrication and the experimental validation of a preprototype stirling laboratory research engine (SLRE) were completed. Also completed was a task to identify the potential markets for research engines of this type. An analytical effort was conducted to provide a stirling cycle computer model. The versatile engine is a horizontally opposed, two piston, single acting stirling engine with a split crankshaft drive mechanism; special instrumentation is installed at all component interfaces. Results of a thermodynamic energy balance for the system are reported. Also included are the engine performance results obtained over a range of speeds, working pressures, phase angles and gas temperatures. The potential for a stirling research engine to support the laboratory requirements of educators and researchers was demonstrated.

  16. Visitor's Guide | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research headquarters are located at the Advanced Technology and Research Facility (ATRF), located at 8560 Progress Drive, Frederick Maryland. Additional offices and laboratories are locatedon the NC

  17. The Columbia River Research Laboratory

    USGS Publications Warehouse

    Maule, Alec

    2005-01-01

    The U.S. Geological Survey's Columbia River Research Laboratory (CRRL) was established in 1978 at Cook, Washington, in the Columbia River Gorge east of Portland, Oregon. The CRRL, as part of the Western Fisheries Research Center, conducts research on fishery issues in the Columbia River Basin. Our mission is to: 'Serve the public by providing scientific information to support the stewardship of our Nation's fish and aquatic resources...by conducting objective, relevant research'.

  18. 41 CFR 109-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Laboratory and research... PROCUREMENT 25-GENERAL 25.1-General Policies § 109-25.109 Laboratory and research equipment. The provisions of 41 CFR 101-25.109 and this section apply to laboratory and research equipment in the possession of...

  19. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energymore » Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition

  20. Laboratory Directed Research and Development Program FY2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports themore » Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.« less

  1. Crime Laboratory Proficiency Testing Research Program.

    ERIC Educational Resources Information Center

    Peterson, Joseph L.; And Others

    A three-year research effort was conducted to design a crime laboratory proficiency testing program encompassing the United States. The objectives were to: (1) determine the feasibility of preparation and distribution of different classes of physical evidence; (2) assess the accuracy of criminalistics laboratories in the processing of selected…

  2. The use of focused ethnography in nursing research.

    PubMed

    Cruz, Edward Venzon; Higginbottom, Gina

    2013-03-01

    To provide an overview of the relevance and strengths of focused ethnography in nursing research. The paper provides descriptions of focused ethnography and discusses using exemplars to show how focused ethnographies can enhance and understand nursing practice. Orthodox ethnographic approaches may not always be suitable or desirable for research in diverse nursing contexts. Focused ethnography has emerged as a promising method for applying ethnography to a distinct issue or shared experience in cultures or sub-cultures and in specific settings, rather than throughout entire communities. Unfortunately, there is limited guidance on using focused ethnography, particularly as applied to nursing research. Research studies performed by nurses using focused ethnography are summarised to show how they fulfilled three main purposes of the genre in nursing research. Additional citations are provided to help demonstrate the versatility of focused ethnography in exploring distinct problems in a specific context in different populations and groups of people. The unique role that nurses play in health care, coupled with their skills in enquiry, can contribute to the further development of the discipline. Focused ethnography offers an opportunity to gain a better understanding and appreciation of nursing as a profession, and the role it plays in society. Focused ethnography has emerged as a relevant research methodology that can be used by nurse researchers to understand specific societal issues that affect different facets of nursing practice. As nurse researchers endeavour to understand experiences in light of their health and life situations, focused ethnography enables them to understand the interrelationship between people and their environments in the society in which they live.

  3. Laboratory Directed Research and Development FY2001 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R

    2002-06-20

    Established by Congress in 1991, the Laboratory Directed Research and Development (LDRD) Program provides the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) laboratories, like Lawrence Livermore National Laboratory (LLNL or the Laboratory), with the flexibility to invest up to 6% of their budget in long-term, high-risk, and potentially high payoff research and development (R&D) activities to support the DOE/NNSA's national security missions. By funding innovative R&D, the LDRD Program at LLNL develops and extends the Laboratory's intellectual foundations and maintains its vitality as a premier research institution. As proof of the Program's success, many of the research thrusts thatmore » started many years ago under LDRD sponsorship are at the core of today's programs. The LDRD Program, which serves as a proving ground for innovative ideas, is the Laboratory's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. Basic and applied research activities funded by LDRD enhance the Laboratory's core strengths, driving its technical vitality to create new capabilities that enable LLNL to meet DOE/NNSA's national security missions. The Program also plays a key role in building a world-class multidisciplinary workforce by engaging the Laboratory's best researchers, recruiting its future scientists and engineers, and promoting collaborations with all sectors of the larger scientific community.« less

  4. Summer Research Program (1992). Graduate Student Research Program (GSRP) Reports. Volume 8. Phillips Laboratory.

    DTIC Science & Technology

    1992-12-28

    Research Program Starfire Optical Range, Phillips Laboratory /LITE Kirtland Air Force Base, Albuquerque, NM 87117 Sponsored by: Air ... Phillips Laboratory Sponsored by: Air Force Office of Scientific Research Kirtland Air Force Base, Albuquerque, New Mexico September, 1992 18-1 PROGRESS...Report for: Summer Research Program Phillips Laboratory Sponsored by: Air

  5. Research Laboratories and Centers Fact Sheet

    EPA Pesticide Factsheets

    The Office of Research and Development is the research arm of the U.S. Environmental Protection Agency. It has three national laboratories and four national centers located in 14 facilities across the country.

  6. Georgia Teachers in Academic Laboratories: Research Experiences in the Geosciences

    NASA Astrophysics Data System (ADS)

    Barrett, D.

    2005-12-01

    The Georgia Intern-Fellowships for Teachers (GIFT) is a collaborative effort designed to enhance mathematics and science experiences of Georgia teachers and their students through summer research internships for teachers. By offering business, industry, public science institute and research summer fellowships to teachers, GIFT provides educators with first-hand exposure to the skills and knowledge necessary for the preparation of our future workforce. Since 1991, GIFT has placed middle and high school mathematics, science and technology teachers in over 1000 positions throughout the state. In these fellowships, teachers are involved in cutting edge scientific and engineering research, data analysis, curriculum development and real-world inquiry and problem solving, and create Action Plans to assist them in translating the experience into changed classroom practice. Since 2004, an increasing number of high school students have worked with their teachers in research laboratories. The GIFT program places an average of 75 teachers per summer into internship positions. In the summer of 2005, 83 teachers worked in corporate and research environments throughout the state of Georgia and six of these positions involved authentic research in geoscience related departments at the Georgia Institute of Technology, including aerospace engineering and the earth and atmospheric sciences laboratories. This presentation will review the history and the structure of the program including the support system for teachers and mentors as well as the emphasis on inquiry based learning strategies. The focus of the presentation will be a comparison of two placement models of the teachers placed in geoscience research laboratories: middle school earth science teachers placed in a 6 week research experience and high school teachers placed in 7 week internships with teams of 3 high school students. The presentation will include interviews with faculty to determine the value of these experiences

  7. Deep focus earthquakes in the laboratory

    NASA Astrophysics Data System (ADS)

    Schubnel, Alexandre; Brunet, Fabrice; Hilairet, Nadège; Gasc, Julien; Wang, Yanbin; Green, Harry W., II

    2014-05-01

    While the existence of deep earthquakes have been known since the 1920's, the essential mechanical process responsible for them is still poorly understood and remained one of the outstanding unsolved problems of geophysics and rock mechanics. Indeed, deep focus earthquake occur in an environment fundamentally different from that of shallow (<100 km) earthquakes. As pressure and temperature increase with depth however, intra-crystalline plasticity starts to dominate the deformation regime so that rocks yield by plastic flow rather than by brittle fracturing. Olivine phase transitions have provided an attractive alternative mechanism for deep focus earthquakes. Indeed, the Earth mantle transition zone (410-700km) is the locus of the two successive polymorphic transitions of olivine. Such scenario, however, runs into the conceptual barrier of initiating failure in a pressure (P) and temperature (T) regime where deviatoric stress relaxation is expected to be achieved through plastic flow. Here, we performed laboratory deformation experiments on Germanium olivine (Mg2GeO4) under differential stress at high pressure (P=2-5GPa) and within a narrow temperature range (T=1000-1250K). We find that fractures nucleate at the onset of the olivine to spinel transition. These fractures propagate dynamically (i.e. at a non-negligible fraction of the shear wave velocity) so that intense acoustic emissions are generated. Similar to deep-focus earthquakes, these acoustic emissions arise from pure shear sources, and obey the Gutenberg-Richter law without following Omori's law. Microstructural observations prove that dynamic weakening likely involves superplasticity of the nanocrystalline spinel reaction product at seismic strain rates. Although in our experiments the absolute stress value remains high compared to stresses expected within the cold core of subducted slabs, the observed stress drops are broadly consistent with those calculated for deep earthquakes. Constant differential

  8. Frederick National Laboratory and Georgetown University Launch Research and Education Collaboration | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- A new collaboration established between Georgetown University and the Frederick National Laboratory for Cancer Research aims to expand both institutions’ research and training missions in the biomedical sciences. Representatives f

  9. 21 CFR 312.86 - Focused FDA regulatory research.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Focused FDA regulatory research. 312.86 Section... Severely-debilitating Illnesses § 312.86 Focused FDA regulatory research. At the discretion of the agency, FDA may undertake focused regulatory research on critical rate-limiting aspects of the preclinical...

  10. 21 CFR 312.86 - Focused FDA regulatory research.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Focused FDA regulatory research. 312.86 Section... Severely-debilitating Illnesses § 312.86 Focused FDA regulatory research. At the discretion of the agency, FDA may undertake focused regulatory research on critical rate-limiting aspects of the preclinical...

  11. 21 CFR 312.86 - Focused FDA regulatory research.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Focused FDA regulatory research. 312.86 Section... Severely-debilitating Illnesses § 312.86 Focused FDA regulatory research. At the discretion of the agency, FDA may undertake focused regulatory research on critical rate-limiting aspects of the preclinical...

  12. 21 CFR 312.86 - Focused FDA regulatory research.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Focused FDA regulatory research. 312.86 Section... Severely-debilitating Illnesses § 312.86 Focused FDA regulatory research. At the discretion of the agency, FDA may undertake focused regulatory research on critical rate-limiting aspects of the preclinical...

  13. 21 CFR 312.86 - Focused FDA regulatory research.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Focused FDA regulatory research. 312.86 Section... Severely-debilitating Illnesses § 312.86 Focused FDA regulatory research. At the discretion of the agency, FDA may undertake focused regulatory research on critical rate-limiting aspects of the preclinical...

  14. Tour of Research Laboratories at the Ford Company

    NASA Astrophysics Data System (ADS)

    Reitz, J. R.

    1981-01-01

    A brief description of the physics programs encountered on the tour of the Ford Motor Company Research Laboratories is provided. A visit to the Research Laboratories of the Ford Motor Company is part of the Conference on Physics in the Automotive Industry. The visit will show a cross-section of the programs in Research Staff which are clearly identified as physics research as well as other areas where physicists have established themselves as dominant or team members in what might traditionally be regarded as the province of engineering R&D. After a brief orientation, the Conference visitors will be divided into tour groups and will visit laboratories involved in combustion research, arc-discharge physics, various spectroscopic applications, metal gauging, energy management, optical display systems and solar energy research. Synopses of the specific tour visits follow.

  15. From Topos to Oikos: The Standardization of Glass Containers as Epistemic Boundaries in Modern Laboratory Research (1850-1900).

    PubMed

    Espahangizi, Kijan

    2015-09-01

    Glass vessels such as flasks and test tubes play an ambiguous role in the historiography of modern laboratory research. In spite of the strong focus on the role of materiality in the last decades, the scientific glass vessel - while being symbolically omnipresent - has remained curiously neglected in regard to its materiality. The popular image or topos of the transparent, neutral, and quasi-immaterial glass container obstructs the view of the physico-chemical functionality of this constitutive inner boundary in modern laboratory environments and its material historicity. In order to understand how glass vessels were able to provide a stable epistemic containment of spatially enclosed experimental phenomena in the new laboratory ecologies emerging in the nineteenth and early twentieth century, I will focus on the history of the material standardization of laboratory glassware. I will follow the rise of a new awareness for measurement errors due to the chemical agency of experimental glass vessels, then I will sketch the emergence of a whole techno-scientific infrastructure for the improvement of glass container quality in late nineteenth-century Germany. In the last part of my argument, I will return to the laboratory by looking at the implementation of this glass reform that created a new oikos for the inner experimental milieus of modern laboratory research.

  16. Laboratory Directed Research and Development FY-15 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillai, Rekha Sukamar

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  17. Laboratory Directed Research and Development FY-10 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  18. USAF Summer Research Program - 1994 Graduate Student Research Program Final Reports, Volume 8, Phillips Laboratory

    DTIC Science & Technology

    1994-12-01

    Research Group at the Phillips Laboratory at Kirtland Air Force Base...for Summer Graduate Student Research Program Phillips Laboratory Sponsored by: Air Force Office of Scientific Research Boiling Air Force Base, DC...2390 S. York Street Denver, CO 80208-0177 Final Report for: Summer Faculty Research Program Phillips Laboratory Sponsored by: Air Force

  19. Nano-G research laboratory for a spacecraft

    NASA Technical Reports Server (NTRS)

    Vonbun, Friedrich O. (Inventor); Garriott, Owen K. (Inventor)

    1991-01-01

    An acceleration free research laboratory is provided that is confined within a satellite but free of any physical engagement with the walls of the satellite, wherein the laboratory has adequate power, heating, cooling, and communications services to conduct basic research and development. An inner part containing the laboratory is positioned at the center-of-mass of a satellite within the satellite's outer shell. The satellite is then positioned such that its main axes are in a position parallel to its flight velocity vector or in the direction of the residual acceleration vector. When the satellite is in its desired orbit, the inner part is set free so as to follow that orbit without contacting the inside walls of the outer shell. Sensing means detect the position of the inner part with respect to the outer shell, and activate control rockets to move the outer shell; thereby, the inner part is repositioned such that it is correctly positioned at the center-of-mass of the satellite. As a consequence, all disturbing forces, such as drag forces, act on the outer shell, and the inner part containing the laboratory is shielded and is affected only by gravitational forces. Power is supplied to the inner part and to the laboratory by a balanced microwave/laser link which creates the kind of environment necessary for basic research to study critical phenomena such as the Lambda transition in helium and crystal growth, and to perform special metals and alloys research, etc.

  20. Air Force Research Laboratory Sensors Directorate Leadership Legacy, 1960-2011

    DTIC Science & Technology

    2011-03-01

    AFRL -RY-WP-TM-2011-1017 AIR FORCE RESEARCH LABORATORY SENSORS DIRECTORATE LEADERSHIP LEGACY, 1960-2011 Compiled by Raymond C. Rang...Structures Divi- sion, Space Vehicles Directorate, Air Force Research Laboratory , Kirtland AFB, N.M. 7. March 1998 - July 1999, Chief, Integration and... Research Laboratory ( AFRL ), and Deputy Director of the Sensors Direc- torate, Air Force Research

  1. Commissioning a materials research laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SAVAGE,GERALD A.

    2000-03-28

    This presentation covers the process of commissioning a new 150,000 sq. ft. research facility at Sandia National Laboratories. The laboratory being constructed is a showcase of modern design methods being built at a construction cost of less than $180 per sq. ft. This is possible in part because of the total commissioning activities that are being utilized for this project. The laboratory's unique approach to commissioning will be presented in this paper. The process will be followed through from the conceptual stage on into the actual construction portion of the laboratory. Lessons learned and cost effectiveness will be presented inmore » a manner that will be usable for others making commissioning related decisions. Commissioning activities at every stage of the design will be presented along with the attributed benefits. Attendees will hear answers to the what, when, who, and why questions associated with commissioning of this exciting project.« less

  2. Tree Topping Ceremony at NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications. This photo depicts construction workers taking part in a tree topping ceremony as the the final height of the laboratory is framed. The ceremony is an old German custom of paying homage to the trees that gave their lives in preparation of the building site.

  3. Air Force Research Laboratory, Edwards Air Force Base, CA

    DTIC Science & Technology

    2011-06-27

    Air Force Research Laboratory (AFMC) AFRL /RZS 1 Ara Road Edwards AFB CA 93524-7013 AFRL -RZ-ED-VG-2011-269 9...SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL /RZS 11. SPONSOR...Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Air Force Research Laboratory Ed d Ai F B CA Col Mike Platt war s r orce

  4. 1995 Laboratory-Directed Research and Development Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  5. Nanoscience and Technology at the Air Force Research Laboratory (AFRL)

    DTIC Science & Technology

    2005-05-01

    AIR FORCE RESEARCH LABORATORY ( AFRL ) Dr. Richard A. Vaia Dr. Daniel Miracle Dr. Thomas Cruse Air Force Research ...Technology At The Air Force Research Laboratory ( AFRL ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...98) Prescribed by ANSI Std Z39-18 AFRL NST Overview 2 AIR FORCE RESEARCH LABORATORY VISION We defend

  6. Nanoscience and Technology at the Air Force Research Laboratory (AFRL)

    DTIC Science & Technology

    2005-02-01

    AIR FORCE RESEARCH LABORATORY ( AFRL ) Dr. Richard A. Vaia Dr. Daniel Miracle Dr. Thomas Cruse Air Force Research ...Technology At The Air Force Research Laboratory ( AFRL ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...98) Prescribed by ANSI Std Z39-18 AFRL NST Overview 2 AIR FORCE RESEARCH LABORATORY VISION We defend

  7. Summer Research Program (1992). Summer Faculty Research Program (SFRP) Reports. Volume 3. Phillips Laboratory.

    DTIC Science & Technology

    1992-12-28

    Phillips Laboratory Kirtland Air Force Base NM 87117-6008 Sponsored by: Air Force Office of Scientific Research Bolling Air Force Base...Zindel, D.: 1963, Z. Astrophys. 57, 82. 29-13 FINAL REPORT SUMMER FACULTY RESEARCH PROGRAM AT PHILLIPS LABORATORY KIRTLAND AIR FORCE BASE...Program Phillips Laboratory Sponsored by: Air Force Office of Scientific

  8. Sandia National Laboratories: Research: Biodefense

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  9. Sandia National Laboratories: Research: Bioscience

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  10. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Neil Yorio and Lisa Ruffe prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  11. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Lisa Ruffe and Neil Yorio prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  12. Idaho National Laboratory Research & Development Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stricker, Nicole

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and governmentmore » agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.« less

  13. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 3: Laboratory descriptions

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The following study objectives are covered: (1) identification of major laboratory equipment; (2) systems and operations analysis in support of the laboratory design; and (3) conceptual design of the comm/nav research laboratory.

  14. 1999 LDRD Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rita Spencer; Kyle Wheeler

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  15. Using Focus Group Research in Public Relations.

    ERIC Educational Resources Information Center

    Grunig, Larissa A.

    1990-01-01

    Analyzes a recent instance of focus group research applied to a public relations case (rather than a marketing case). Reviews the advantages and disadvantages of this qualitative method, and describes the case of a county department of mental health relying on focus group research to help plan a program aimed at reducing the stigma of mental…

  16. Virtual Instruction: A Qualitative Research Laboratory Course

    ERIC Educational Resources Information Center

    Stadtlander, Lee M.; Giles, Martha J.

    2010-01-01

    Online graduate programs in psychology are becoming common; however, a concern has been whether instructors in the programs provide adequate research mentoring. One issue surrounding research mentoring is the absence of research laboratories in the virtual university. Students attending online universities often do research without peer or lab…

  17. Current safety practices in nano-research laboratories in China.

    PubMed

    Zhang, Can; Zhang, Jing; Wang, Guoyu

    2014-06-01

    China has become a key player in the global nanotechnology field, however, no surveys have specifically examined safety practices in the Chinese nano-laboratories in depth. This study reports results of a survey of 300 professionals who work in research laboratories that handle nanomaterials in China. We recruited participants at three major nano-research laboratories (which carry out research in diverse fields such as chemistry, material science, and biology) and the nano-chemistry session of the national meeting of the Chinese Chemical Society. Results show that almost all nano-research laboratories surveyed had general safety regulations, whereas less than one third of respondents reported having nanospecific safety rules. General safety measures were in place in most surveyed nano-research laboratories, while nanospecific protective measures existed or were implemented less frequently. Several factors reported from the scientific literature including nanotoxicology knowledge gaps, technical limitations on estimating nano-exposure, and the lack of nano-occupational safety legislation may contribute to the current state of affairs. With these factors in mind and embracing the precautionary principle, we suggest strengthening or providing nanosafety training (including raising risk awareness) and establishing nanosafety guidelines in China, to better protect personnel in the nano-workplace.

  18. Guard House at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-08-21

    A vehicle leaves the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory on August 14, 1945. At 7 p.m. that evening President Truman announced that Japan had accepted terms for surrender and World War II was over. The end of the war brought significant changes for the laboratory. The NACA would cease its troubleshooting of military aircraft and return to research. Researchers would increase their efforts to address the new technologies that emerged during the war. The entire laboratory was reorganized in October to better investigate turbojets, ramjets, and rockets. The guard house sat on the main entrance to the laboratory off of Brookpark Road. The building was fairly small and easily crowded. In the early 1960s a new security facility was built several hundred feet beyond the original guard house. The original structure remained in place for several years but was not utilized. The subsequent structure was replaced in 2011 by a new building and entrance configuration.

  19. Laboratory Directed Research and Development Program FY 2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and

  20. Science and Technology: The Making of the Air Force Research Laboratory

    DTIC Science & Technology

    2000-01-01

    AFRL . . . . . . . . . . . 187 11 Air Force Research Laboratory : Before and After...United States Air Force during my tenure as chief of staff—the crea - tion of the Air Force Research Laboratory ( AFRL ). As the “high technology” service...consolidate four existing laboratories into one Air Force Research Laboratory ( AFRL ) designed to lead to a more efficient and streamlined

  1. USAF Summer Research Program - 1993 Graduate Student Research Program Final Reports, Volume 8, Phillips Laboratory

    DTIC Science & Technology

    1994-12-01

    Research Program Phillips Laboratory Kirtland Air Force Base Albuquerque, New Mexico Sponsored by: Air ...Summer Research Program Phillips Laboratory Sponsored by. Air Force Office of Scientific Research Kirtland Air Force Base, Albuquerque, New Mexico...UNITED STATES AIR FORCE SUMMER RESEARCH PROGRAM -- 1993 SUMMER RESEARCH PROGRAM FINAL REPORTS VOLUME 8

  2. Biological and Physical Space Research Laboratory 2002 Science Review

    NASA Technical Reports Server (NTRS)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  3. Our Story | Materials Research Laboratory at UCSB: an NSF MRSEC

    Science.gov Websites

    this site Materials Research Laboratory at UCSB: an NSF MRSEC logo Materials Research Laboratory at & Workshops Visitor Info Research IRG-1: Magnetic Intermetallic Mesostructures IRG 2: Polymeric Seminars Publications MRL Calendar Facilities Computing Energy Research Facility Microscopy &

  4. USAF Summer Research Program - 1993 Summer Research Extension Program Final Reports, Volume 2, Phillips Laboratory

    DTIC Science & Technology

    1994-11-01

    Research Extension Program Phillips Laboratory Kirtland Air Force Base Sponsored by: Air Force Office of Scientific Research Boiling Air Force Base...Program Phillips Laboratory Sponsored by: Air Force Office of Scientific Research Bolling Air Force Base, Washington, D.C. and Arkansas Tech University...Summer Research Extension Program (SREP) Phillips

  5. Flight Research Building at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1942-09-21

    The Flight Research Building at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory is a 272- by 150-foot hangar with an internal height up to 90 feet. The hangar’s massive 37.5-foot-tall and 250-foot-long doors can be opened in sections to suit different size aircraft. The hangar has sheltered a diverse fleet of aircraft over the decades. These have ranged from World War II bombers to Cessna trainers and from supersonic fighter jets to a DC–9 airliner. At the time of this September 1942 photograph, however, the hangar was being used as an office building during the construction of the laboratory. In December of 1941, the Flight Research Building became the lab’s first functional building. Temporary offices were built inside the structure to house the staff while the other buildings were completed. The hangar offices were used for an entire year before being removed in early 1943. It was only then that the laboratory acquired its first aircraft, pilots and flight mechanics. The temporary one-story offices can be seen in this photograph inside the large sliding doors. Also note the vertical lift gate below the NACA logo. The gate was installed so that the tails of larger aircraft could pass into the hangar. The white Farm House that served as the Administration Building during construction can be seen in the distance to the left of the hangar.

  6. Laboratory models for central nervous system tumor stem cell research.

    PubMed

    Khan, Imad Saeed; Ehtesham, Moneeb

    2015-01-01

    Central nervous system (CNS) tumors are complex organ systems comprising of a neoplastic component with associated vasculature, inflammatory cells, and reactive cellular and extracellular components. Research has identified a subset of cells in CNS tumors that portray defining properties of neural stem cells, namely, that of self-renewal and multi-potency. Growing evidence suggests that these tumor stem cells (TSC) play an important role in the maintenance and growth of the tumor. Furthermore, these cells have also been shown to be refractory to conventional therapy and may be crucial for tumor recurrence and metastasis. Current investigations are focusing on isolating these TSC from CNS tumors to investigate their unique biological processes. This understanding will help identify and develop more effective and comprehensive treatment strategies. This chapter provides an overview of some of the most commonly used laboratory models for CNSTSC research.

  7. Low-gravity Orbiting Research Laboratory Environment Potential Impact on Space Biology Research

    NASA Technical Reports Server (NTRS)

    Jules, Kenol

    2006-01-01

    One of the major objectives of any orbital space research platform is to provide a quiescent low gravity, preferably a zero gravity environment, to perform fundamental as well as applied research. However, small disturbances exist onboard any low earth orbital research platform. The impact of these disturbances must be taken into account by space research scientists during their research planning, design and data analysis in order to avoid confounding factors in their science results. The reduced gravity environment of an orbiting research platform in low earth orbit is a complex phenomenon. Many factors, among others, such as experiment operations, equipment operation, life support systems and crew activity (if it is a crewed platform), aerodynamic drag, gravity gradient, rotational effects as well as the vehicle structural resonance frequencies (structural modes) contribute to form the overall reduced gravity environment in which space research is performed. The contribution of these small disturbances or accelerations is precisely why the environment is NOT a zero gravity environment, but a reduced acceleration environment. This paper does not discuss other factors such as radiation, electromagnetic interference, thermal and pressure gradient changes, acoustic and CO2 build-up to name a few that affect the space research environment as well, but it focuses solely on the magnitude of the acceleration level found on orbiting research laboratory used by research scientists to conduct space research. For ease of analysis this paper divides the frequency spectrum relevant to most of the space research disciplines into three regimes: a) quasi-steady, b) vibratory and c) transient. The International Space Station is used as an example to illustrate the point. The paper discusses the impact of these three regimes on space biology research and results from space flown experiments are used to illustrate the potential negative impact of these disturbances (accelerations

  8. Solvent use in private research laboratories in Japan: comparison with the use in public research laboratories and on production floors in industries.

    PubMed

    Hanada, Takaaki; Zaitsu, Ai; Kojima, Satoshi; Ukai, Hirohiko; Nagasawa, Yasuhiro; Takada, Shiro; Kawakami, Takuya; Ohashi, Fumiko; Ikeda, Masayuki

    2014-01-01

    Solvents used in production facility-affiliated private laboratories have been seldomly reported. This study was initiated to specify solvent use characteristics in private laboratories in comparison with the use in public research laboratories and on production floors. Elucidation of the applicability of conclusions from a public laboratory survey to private institutions is not only of scientific interest but also of practical importance. A survey on use of 47 legally stipulated organic solvents was conducted. The results were compiled for April 2011 to March 2013. Through sorting, data were available for 479 unit workplaces in private laboratories. Similar sorting for April 2012 to March 2013 was conducted for public research laboratories (e.g., national universities) and production floors (in private enterprises) to obtain 621 and 937 cases, respectively. Sampling of workroom air followed by capillary gas-chromatographic analyses for solvents was conducted in accordance with regulatory requirements. More than one solvent was usually detected in the air of private laboratories. With regard to solvent types, acetone, methyl alcohol, chloroform and hexane were prevalently used in private laboratories, and this was similar to the case of public laboratories. Prevalent use of ethyl acetate was unique to private laboratories. Toluene use was less common both in private and public laboratories. The prevalence of administrative control class 1 (i.e., an adequately controlled environment) was higher in laboratories (both private and public) than production floors. Solvent use patterns are similar in private and public laboratories, except that the use of mixtures of solvents is substantially more popular in private laboratories than in public laboratories.

  9. Linking research and education: an undergraduate research apprenticeship focusing on geologic and ecological impacts of the Elwha River Restoration

    NASA Astrophysics Data System (ADS)

    Ogston, A. S.; Eidam, E.; Webster, K. L.; Hale, R. P.

    2016-02-01

    Experiential learning is becoming well-rooted in undergraduate curriculum as a means of stimulating interest in STEM fields, and of preparing students for future careers in scientific research and communication. To further these goals in coastal sciences, an intensive, research-focused course was developed at the UW Friday Harbor Labs. The course revolved around an active NSF-funded research project concerning the highly publicized Elwha River Restoration project. Between 2008 and 2014, four groups of research "apprentices" spent their academic quarter in residence at a small, coastal marine lab in a learning environment that integrated interdisciplinary lectures, workshops on data analysis and laboratory methods, and the research process from proposal to oceanographic research cruise to publication. This environment helped students gain important skills in fieldwork planning and execution, laboratory and digital data analyses, and manuscript preparation from start to finish—all while elevating their knowledge of integrated earth science topics related to a coastal restoration project. Students developed their own research proposals and pursued their individual interests within the overall research topic, thereby expanding the overall breadth of the NSF-funded research program. The topics of student interest were often beyond the researcher's expertise, which ultimately led to more interdisciplinary findings beyond the quarter-long class. This also provided opportunities for student creativity and leadership, and for collaboration with fellow course participants and with students from many other disciplines in residence at the marine lab. Tracking the outcomes of the diverse student group undertaking this program indicates that these undergraduate (and post-bac) students are generally attending graduate school at a high rate, and launching careers in education, coastal management, and other STEM fields.

  10. General Motors and the University of Michigan smart materials and structures collaborative research laboratory

    NASA Astrophysics Data System (ADS)

    Brei, Diann; Luntz, Jonathan; Shaw, John; Johnson, Nancy L.; Browne, Alan L.; Alexander, Paul W.; Mankame, Nilesh D.

    2007-04-01

    The field of Smart Materials and Structures is evolving from high-end, one-of-a-kind products for medical, military and aerospace applications to the point of viability for mainstream affordable high volume products for automotive applications. For the automotive industry, there are significant potential benefits to be realized including reduction in vehicle mass, added functionality and design flexibility and decrease in component size and cost. To further accelerate the path from basic research and development to launched competitive products, General Motors (GM) has teamed with the College of Engineering at the University of Michigan (UM) to establish a $2.9 Million Collaborative Research Laboratory (CRL) in Smart Materials and Structures. Researchers at both GM and UM are working closely together to create leap-frog technologies which start at conceptualization and proceed all the way through demonstration and handoff to product teams, thereby bridging the traditional technology gap between industry and academia. In addition to Smart Device Technology Innovation, other thrust areas in the CRL include Smart Material Maturity with a basic research focus on overcoming material issues that form roadblocks to commercialism and Mechamatronic System Design Methodology with an applied focus on development tools (synthesis and analysis) to aid the engineer in application of smart materials to system engineering. This CRL is a global effort with partners across the nation and world from GM's Global Research Network such as HRL Laboratories in California and GM's India Science Lab in Bangalore, India. This paper provides an overview of this new CRL and gives examples of several of the projects underway.

  11. US Army Research Laboratory (ARL) Robotics Collaborative Technology Alliance 2014 Capstone Experiment

    DTIC Science & Technology

    2016-07-01

    ARL-TR-7729 ● JULY 2016 US Army Research Laboratory US Army Research Laboratory (ARL) Robotics Collaborative Technology Alliance...TR-7729 ● JULY 2016 US Army Research Laboratory US Army Research Laboratory (ARL) Robotics Collaborative Technology Alliance 2014 Capstone...National Robotics Engineering Center, Pittsburgh, PA Robert Dean, Terence Keegan, and Chip Diberardino General Dynamics Land Systems, Westminster

  12. Laboratory Directed Research and Development Program FY 2006 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoreen, Terrence P

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about themore » FY 2006 projects and an internal evaluation of the program's management process.« less

  13. Looking after the Land: The Navajo Dryland Environments Laboratory Researches the Environmental Needs of the Navajo Nation.

    ERIC Educational Resources Information Center

    Semken, Steven C.

    1992-01-01

    Describes the formation and operations of the Navajo Dryland Environments Laboratory (NDEL). NDEL, established by the Waste-Management Education and Research Consortium of New Mexico on the campus of Navajo Community College, focuses on environmental geology, hydrology, and resource management of the Colorado Plateau drylands. (DMM)

  14. Exploring the research culture of nurses and allied health professionals (AHPs) in a research-focused and a non-research-focused healthcare organisation in the UK.

    PubMed

    Luckson, Manju; Duncan, Fiona; Rajai, Azita; Haigh, Carol

    2018-04-01

    To explore the research culture of nurses and allied health professionals (AHPs) in the UK and the influence of a dedicated research strategy and funding. It is important to understand the culture in order to effectively promote evidence-based patient care. The primary aim of this research was to explore the influence of research-focused exposure on the research culture of nurses and AHPs in the UK and to identify whether there was a difference in the research culture between a research-focused and non-research-focused clinical area (City and Riverside Hospitals). This is a unique and novel study that explored and compared the research culture stance of both AHPs and nurses. METHODS: A mixed methods design was used in this study. Tools used included the "Research Capacity and Culture tool" as an online survey, three focus group discussions and five semi-structured interviews with senior managers. Focus groups included research-naive groups from both hospitals and a research-active group from City Hospital. There were 224 responses received from 941 surveys with a 24% response rate. Descriptive statistics of the survey results indicated that there was a difference (p = .001) in the mean score of the research culture between City Hospital (5.35) and Riverside Hospital (3.90), but not between nurses and AHPs (p = .12). Qualitative data findings from the framework analysis were congruent and supported the survey results. The results provided empirical evidence to support a whole-level approach in order to improve the research culture. Both findings showed that there may not be any difference in the research culture between professional groups. Importantly, new evidence is presented to suggest that there were crucial communication issues which were hampering the research culture and there was a lack of support at the middle management level which needed to be tackled to improve the research culture of nurses and AHPs. The study highlighted the need to include a

  15. Methodological Aspects of Focus Groups in Health Research

    PubMed Central

    Tausch, Anja P.; Menold, Natalja

    2016-01-01

    Although focus groups are commonly used in health research to explore the perspectives of patients or health care professionals, few studies consider methodological aspects in this specific context. For this reason, we interviewed nine researchers who had conducted focus groups in the context of a project devoted to the development of an electronic personal health record. We performed qualitative content analysis on the interview data relating to recruitment, communication between the focus group participants, and appraisal of the focus group method. The interview data revealed aspects of the focus group method that are particularly relevant for health research and that should be considered in that context. They include, for example, the preferability of face-to-face recruitment, the necessity to allow participants in patient groups sufficient time to introduce themselves, and the use of methods such as participant-generated cards and prioritization. PMID:28462326

  16. Fish passage research: S.O. Conte Anadromous Fish Research Laboratory

    USGS Publications Warehouse

    Garebedian, Steve

    2008-01-01

    The Leetown Science Center’s S.O. Conte Anadromous Fish Research Laboratory conducts basic and applied scientific studies of fish passage and migration to define underlying principles and relationships of fish behavior and hydraulics, and to develop integrated, predictive research that can be applied to a wide range of fish passage problems.

  17. Laboratory Directed Research and Development Program Assessment for FY 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annuallymore » in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps BNL to respond new scientific opportunities

  18. Cookstove Laboratory Research - Fiscal Year 2016 Report

    EPA Science Inventory

    This report provides an overview of the work conducted by the EPA cookstove laboratory research team in Fiscal Year 2016. The report describes research and activities including (1) ISO standards development, (2) capacity building for international testing and knowledge centers, ...

  19. Initiating the 2002 Mars Science Laboratory (MSL) Focused Technology Program

    NASA Technical Reports Server (NTRS)

    Caffrey, Robert T.; Udomkesmalee, Gabriel; Hayati, Samad A.

    2004-01-01

    The Mars Science Laboratory (MSL) Project is an aggressive mission launching in 2009 to deliver a new generation of rover safely to the surface of Mars and conduct comprehensive in situ investigations using a new generation of instruments. This system will be designed to land with precision and be capable of operating over a large percentage on the surface of Mars. It will have capabilities that will support NASA's scientific goals into the next decade of exphation. The MSL Technology program is developing a wide-range of technologies needed for this Mission and potentially other space missions. The MSL Technology Program reports to both the MSL Project and the Mars Technology Program (MTP). The dual reporting process creates a challenging management situation, but ensures the new technology meets both the specific MSL requirements and the broader Mars Program requirements. MTP is a NASA-wide technology development program managed by the Jet Propulsion Laboratory (JPL) and is divided into a Focused Program and a Base Program. The Focused Technology Program addresses technologies that are specific and critical to near-term missions, while the Base Technology Program addresses those technologies that are applicable to multiple missions and which can be characterized as longer term, higher risk, and high payoff technologies. The MSL Technology Program is under the Focused Program and is tightly coupled to MSL's mission milestones and deliverables. The technology budget is separate from the flight Project budget, but the technology s requirements and the development process are tightly coordinated with the Project. The Technology Program combines proven management techniques of flight projects with commercial and academic technology management strategies, to create a technology management program that meets the near-term requirements of MSL and the long-term requirements of MTP. This paper examines the initiation of 2002 MSL Technology program. Some of the areas

  20. ECOSYSTEM RESTORATION RESEARCH THROUGH THE NATIONAL RISK MANAGEMENT RESEARCH LABORATORY (NRMRL)

    EPA Science Inventory

    The Ecosystem Restoration Research Program underway through ORD's National Risk Management Research Laboratory (NRMRL) has the long-term goal of providing watershed managers with "..state-of-the-science field-evaluated tools, technical guidance, and decision-support systems for s...

  1. A laboratory nanoseismological study on deep-focus earthquake micromechanics

    DOE PAGES

    Wang, Yanbin; Zhu, Lupei; Shi, Feng; ...

    2017-07-21

    Global earthquake occurring rate displays an exponential decay down to ~300 km and then peaks around 550 to 600 km before terminating abruptly near 700 km. How fractures initiate, nucleate, and propagate at these depths remains one of the greatest puzzles in earth science, as increasing pressure inhibits fracture propagation. We report nanoseismological analysis on high-resolution acoustic emission (AE) records obtained during ruptures triggered by partial transformation from olivine to spinel in Mg 2GeO 4, an analog to the dominant mineral (Mg,Fe) 2SiO 4 olivine in the upper mantle, using state-of-the-art seismological techniques, in the laboratory. AEs’ focal mechanisms, asmore » well as their distribution in both space and time during deformation, are carefully analyzed. Microstructure analysis shows that AEs are produced by the dynamic propagation of shear bands consisting of nanograined spinel. These nanoshear bands have a near constant thickness (~100 nm) but varying lengths and self-organize during deformation. This precursory seismic process leads to ultimate macroscopic failure of the samples. Several source parameters of AE events were extracted from the recorded waveforms, allowing close tracking of event initiation, clustering, and propagation throughout the deformation/transformation process. AEs follow the Gutenberg-Richter statistics with a well-defined b value of 1.5 over three orders of moment magnitudes, suggesting that laboratory failure processes are self-affine. The seismic relation between magnitude and rupture area correctly predicts AE magnitude at millimeter scales. A rupture propagation model based on strain localization theory is proposed. Future numerical analyses may help resolve scaling issues between laboratory AE events and deep-focus earthquakes.« less

  2. A laboratory nanoseismological study on deep-focus earthquake micromechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yanbin; Zhu, Lupei; Shi, Feng

    Global earthquake occurring rate displays an exponential decay down to ~300 km and then peaks around 550 to 600 km before terminating abruptly near 700 km. How fractures initiate, nucleate, and propagate at these depths remains one of the greatest puzzles in earth science, as increasing pressure inhibits fracture propagation. We report nanoseismological analysis on high-resolution acoustic emission (AE) records obtained during ruptures triggered by partial transformation from olivine to spinel in Mg2GeO4, an analog to the dominant mineral (Mg,Fe)2SiO4 olivine in the upper mantle, using state-of-the-art seismological techniques, in the laboratory. AEs’ focal mechanisms, as well as their distributionmore » in both space and time during deformation, are carefully analyzed. Microstructure analysis shows that AEs are produced by the dynamic propagation of shear bands consisting of nanograined spinel. These nanoshear bands have a near constant thickness (~100 nm) but varying lengths and self-organize during deformation. This precursory seismic process leads to ultimate macroscopic failure of the samples. Several source parameters of AE events were extracted from the recorded waveforms, allowing close tracking of event initiation, clustering, and propagation throughout the deformation/transformation process. AEs follow the Gutenberg-Richter statistics with a well-defined b value of 1.5 over three orders of moment magnitudes, suggesting that laboratory failure processes are self-affine. The seismic relation between magnitude and rupture area correctly predicts AE magnitude at millimeter scales. A rupture propagation model based on strain localization theory is proposed. Future numerical analyses may help resolve scaling issues between laboratory AE events and deep-focus earthquakes.« less

  3. A laboratory nanoseismological study on deep-focus earthquake micromechanics

    PubMed Central

    Wang, Yanbin; Zhu, Lupei; Shi, Feng; Schubnel, Alexandre; Hilairet, Nadege; Yu, Tony; Rivers, Mark; Gasc, Julien; Addad, Ahmed; Deldicque, Damien; Li, Ziyu; Brunet, Fabrice

    2017-01-01

    Global earthquake occurring rate displays an exponential decay down to ~300 km and then peaks around 550 to 600 km before terminating abruptly near 700 km. How fractures initiate, nucleate, and propagate at these depths remains one of the greatest puzzles in earth science, as increasing pressure inhibits fracture propagation. We report nanoseismological analysis on high-resolution acoustic emission (AE) records obtained during ruptures triggered by partial transformation from olivine to spinel in Mg2GeO4, an analog to the dominant mineral (Mg,Fe)2SiO4 olivine in the upper mantle, using state-of-the-art seismological techniques, in the laboratory. AEs’ focal mechanisms, as well as their distribution in both space and time during deformation, are carefully analyzed. Microstructure analysis shows that AEs are produced by the dynamic propagation of shear bands consisting of nanograined spinel. These nanoshear bands have a near constant thickness (~100 nm) but varying lengths and self-organize during deformation. This precursory seismic process leads to ultimate macroscopic failure of the samples. Several source parameters of AE events were extracted from the recorded waveforms, allowing close tracking of event initiation, clustering, and propagation throughout the deformation/transformation process. AEs follow the Gutenberg-Richter statistics with a well-defined b value of 1.5 over three orders of moment magnitudes, suggesting that laboratory failure processes are self-affine. The seismic relation between magnitude and rupture area correctly predicts AE magnitude at millimeter scales. A rupture propagation model based on strain localization theory is proposed. Future numerical analyses may help resolve scaling issues between laboratory AE events and deep-focus earthquakes. PMID:28776024

  4. A laboratory nanoseismological study on deep-focus earthquake micromechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yanbin; Zhu, Lupei; Shi, Feng

    Global earthquake occurring rate displays an exponential decay down to ~300 km and then peaks around 550 to 600 km before terminating abruptly near 700 km. How fractures initiate, nucleate, and propagate at these depths remains one of the greatest puzzles in earth science, as increasing pressure inhibits fracture propagation. We report nanoseismological analysis on high-resolution acoustic emission (AE) records obtained during ruptures triggered by partial transformation from olivine to spinel in Mg 2GeO 4, an analog to the dominant mineral (Mg,Fe) 2SiO 4 olivine in the upper mantle, using state-of-the-art seismological techniques, in the laboratory. AEs’ focal mechanisms, asmore » well as their distribution in both space and time during deformation, are carefully analyzed. Microstructure analysis shows that AEs are produced by the dynamic propagation of shear bands consisting of nanograined spinel. These nanoshear bands have a near constant thickness (~100 nm) but varying lengths and self-organize during deformation. This precursory seismic process leads to ultimate macroscopic failure of the samples. Several source parameters of AE events were extracted from the recorded waveforms, allowing close tracking of event initiation, clustering, and propagation throughout the deformation/transformation process. AEs follow the Gutenberg-Richter statistics with a well-defined b value of 1.5 over three orders of moment magnitudes, suggesting that laboratory failure processes are self-affine. The seismic relation between magnitude and rupture area correctly predicts AE magnitude at millimeter scales. A rupture propagation model based on strain localization theory is proposed. Future numerical analyses may help resolve scaling issues between laboratory AE events and deep-focus earthquakes.« less

  5. The Air Force Research Laboratory’s In-Space Propulsion Program

    DTIC Science & Technology

    2015-02-01

    Air Force Research Laboratory (AFMC) AFRL /RQRS 1 Ara...MONITOR’S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL /RQR 5 Pollux Drive 11. SPONSOR/MONITOR’S REPORT Edwards AFB CA 93524-7048 NUMBER(S) AFRL ...illustrate the rationale behind AFRL’s technology development strategy. INTRODUCTION The Air Force Research Laboratory ( AFRL ) is the technology

  6. Guidance for Human Subjects Research in the National Exposure Research Laboratory

    EPA Science Inventory

    This document provides guidance to investigators and managers associated with the U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD)’s National Exposure Research Laboratory (NERL) on the ethical conduct, regulatory review, and approval of all huma...

  7. HUMAN HEALTH RESEARCH IMPLEMENTATION PLAN, NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY

    EPA Science Inventory

    The National Health and Environmental Effects Research Laboratory (NHEERL), as part of the Environmental Protection Agency's (EPA's) Office of Research and Development (ORD), is responsible for conducting research to improve the risk assessment of chemicals for potential effects ...

  8. NASA Ames Fluid Mechanics Laboratory research briefs

    NASA Technical Reports Server (NTRS)

    Davis, Sanford (Editor)

    1994-01-01

    The Ames Fluid Mechanics Laboratory research program is presented in a series of research briefs. Nineteen projects covering aeronautical fluid mechanics and related areas are discussed and augmented with the publication and presentation output of the Branch for the period 1990-1993.

  9. History | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research was established as the Frederick Cancer Research and Development Center in 1972 when about 70 acres and 67 buildings of the U.S. Army were transferred to the U.S. Department of Health and Huma

  10. US Army Research Laboratory and University of Notre Dame Distributed Sensing: Hardware Overview

    DTIC Science & Technology

    2017-11-01

    ARL-TR-8199 ● NOV 2017 US Army Research Laboratory US Army Research Laboratory and University of Notre Dame Distributed Sensing...US Army Research Laboratory US Army Research Laboratory and University of Notre Dame Distributed Sensing: Hardware Overview by Roger P...TITLE AND SUBTITLE US Army Research Laboratory and University of Notre Dame Distributed Sensing: Hardware Overview 5a. CONTRACT NUMBER 5b. GRANT

  11. Freshwater findings, 1979-1982: research publications of the Environmental Research Laboratory, Duluth, Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Highland, T.; Curtis, C.

    1983-10-01

    This report contains citations of publications for the years 1979-1982 on research conducted or supported by the Environmental Research Laboratory-Duluth. All published material has been organized into two major categories: (1) Journal Articles, Book Chapters, Proceedings, etc., and (2) EPA Research Reports. The report is organized by year with all journal articles, book chapters, proceedings, etc., for a given year appearing before the EPA research reports for the same year; within each category publications are listed alphabetically by author. Authors of the publications listed include ERL-Duluth laboratory staff members and scientists at universities, in industry, and at other facilities whomore » received research funding under the auspices of the Environmental Research Laboratory-Duluth. Limited quantities of reprints are available for those articles identified by ERL-Duluth reprint number in parentheses following the citation. These can be obtained by writing to: Librarian, ERL-Duluth, U.S. EPA, 6201 Congdon Boulevard, Duluth, MN 55804. EPA research reports can be obtained by writing to: National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22151. All other articles are not available from ERL-Duluth or NTIS, but can be found in most major libraries.« less

  12. MSU-DOE Plant Research Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    This document is the compiled progress reports of research funded through the Michigan State University/Department of Energy Plant Research Laboratory. Fourteen reports are included, covering the molecular basis of plant/microbe symbiosis, cell wall biosynthesis and proteins, gene expression, stress responses, plant hormone biosynthesis, interactions between the nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and trafficking, regulation of lipid metabolism, molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria, and hormonal involvement in environmental control of plant growth. 320 refs., 26 figs., 3 tabs. (MHB)

  13. Laboratory directed research and development program FY 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.« less

  14. Focus group discussion in built environment qualitative research practice

    NASA Astrophysics Data System (ADS)

    Omar, D.

    2018-02-01

    Focus groups discussion is a useful way in built environment for qualitative research practice. Drawing upon recent reviews of focus group discussion and examples of how focus group discussions have been used by researchers and educators, this paper provides what actually happens in focus group discussion as practiced. There is difference between group of people and topic of interest. This article examines the focus group discussions as practiced in built environment. Thus, there is broad form of focus group discussions as practiced in built environment and the applications are varied.

  15. Laboratory Directed Research and Development annual report, fiscal year 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through themore » appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.« less

  16. Laboratory Directed Research and Development Program Activities for FY 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annuallymore » in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and

  17. 24. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, Natick, Mass, Climatic Building, First Floor Plan, Architectural. Drawing No. 35-07-01, Sheet 2 of 72, 1952, updated to 1985. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  18. 25. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, Natick, Mass. Climatic Building, First Floor Plan, Refrigeration and Engineering. Drawing No. 35-07-01, Sheet 52 of 72, 1952. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  19. Research Assistant Training Manual: Focus Groups

    ERIC Educational Resources Information Center

    Eaton, Sarah Elaine

    2017-01-01

    This manual is a practical training guide for graduate and undergraduate research assistants (RAs) working in the Werklund School of Education, University of Calgary. It may also be applicable to research assistants working in other fields or institutions. The purpose of this manual is to train RAs on how to plan and conduct focus groups for…

  20. Laboratory Directed Research and Development FY2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammeraad, J E; Jackson, K J; Sketchley, J A

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal yearmore » 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities

  1. Sandia, California Tritium Research Laboratory transition and reutilization project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, T.B.

    1997-02-01

    This paper describes a project within Sandia National Laboratory to convert the shut down Tritium Research Laboratory into a facility which could be reused within the laboratory complex. In the process of decommissioning and decontaminating the facility, the laboratory was able to save substantial financial resources by transferring much existing equipment to other DOE facilities, and then expeditiously implementing a decontamination program which has resulted in the building being converted into laboratory space for new lab programs. This project of facility reuse has been a significant financial benefit to the laboratory.

  2. Sandia National Laboratories: Visiting Research Scholars

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  3. Frederick National Laboratory Scientists to Present Advanced Technologies in Cancer Research | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- Hundreds of science and business professionals are expected to attend the second annual Technology Showcase at the Frederick National Laboratory for Cancer Research, scheduled for June 13.  The event will feature technologies bei

  4. The viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames

    NASA Technical Reports Server (NTRS)

    Clipson, Colin

    1994-01-01

    This paper will review and summarize research initiatives conducted between 1987 and 1992 at NASA Ames Research Center by a research team from the University of Michigan Architecture Research Laboratory. These research initiatives, funded by a NASA grant NAG2-635, examined the viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames in California. Collaborative Research Environments are envisioned as a way of enhancing the work of NASA research teams, optimizing the use of shared resources, and providing superior environments for housing research activities. The Integrated Simulation Project at NASA, Ames Human Performance Research Laboratory is one of the current realizations of this initiative.

  5. Leaf LIMS: A Flexible Laboratory Information Management System with a Synthetic Biology Focus.

    PubMed

    Craig, Thomas; Holland, Richard; D'Amore, Rosalinda; Johnson, James R; McCue, Hannah V; West, Anthony; Zulkower, Valentin; Tekotte, Hille; Cai, Yizhi; Swan, Daniel; Davey, Robert P; Hertz-Fowler, Christiane; Hall, Anthony; Caddick, Mark

    2017-12-15

    This paper presents Leaf LIMS, a flexible laboratory information management system (LIMS) designed to address the complexity of synthetic biology workflows. At the project's inception there was a lack of a LIMS designed specifically to address synthetic biology processes, with most systems focused on either next generation sequencing or biobanks and clinical sample handling. Leaf LIMS implements integrated project, item, and laboratory stock tracking, offering complete sample and construct genealogy, materials and lot tracking, and modular assay data capture. Hence, it enables highly configurable task-based workflows and supports data capture from project inception to completion. As such, in addition to it supporting synthetic biology it is ideal for many laboratory environments with multiple projects and users. The system is deployed as a web application through Docker and is provided under a permissive MIT license. It is freely available for download at https://leaflims.github.io .

  6. [Some notes on the history of the experimental surgery laboratory. Reflections on its relevance in education and surgical research].

    PubMed

    de la Garza-Rodea, Anabel Sofía; Padilla-Sánchez, Luis; de la Garza-Aguilar, Javier; Neri-Vela, Rolando

    2007-01-01

    The progress of medicine has largely been due to research, and for surgery, in particular, the experimental surgical laboratory has been considered fundamental to the surgeon's education. In this study, a general view of experimental surgery is given in animal models based on bioethical norms as well as to design, create and apply different surgical procedures before performing in humans. Experimental surgery also facilitates surgical teaching and promotes the surgeon's scientific reasoning. Methods. This is a retrospective and descriptive study. Data were collected from direct and indirect sources of available publications on the historical, bioethical and educational aspects of medicine, focusing on surgery. The important facts corresponding to the field of experimental surgery and applicable in Mexico were selected. Concepts of experimental surgical models and of the experimental surgery laboratory were described. Bioethical considerations are emphasized for care of experimental animals. Finally, this work focuses on the importance of surgical experimentation in current and future development of the surgical researcher. Conclusions. Experimentation with animal models in a surgical laboratory is essential for surgical teaching and promotes development of the scientific thought in the surgeon. It is necessary for surgical research and is fundamental for making progress in surgery, treatment and medicine as science.

  7. United States Air Force Summer Research Program -- 1993. Volume 8. Phillips Laboratory

    DTIC Science & Technology

    1993-12-01

    Research Program Phillips Laboratory Kirtland Air Force Base Albuquerque. New Mexico Sponsored by...Best Available Copy UNITED STATES AIR FORCE SUMMER RESEARCH PROGRAM -- 1993 SUMMER RESEARCH PROGRAM FINAL REPORTS VOLUME 8 PHILLIPS LABORATORY ...Alabama Box 870344 Tuscaloosa, AL 35487-0344 Final Report for: Graduate Student Research Program Phillips Laboratory , Hanscom AFB Sponsored by: Air

  8. Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to sharemore » its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.« less

  9. QUALITY ASSURANCE IN RESEARCH LABORATORIES: RULES AND REASON

    EPA Science Inventory

    Quality Assurance in Research Laboratories: Rules and Reason

    Ron Rogers, Quality Assurance and Records Manager, Environmental Carcinogenesis Division, NHEERL/ORD/US EPA, Research Triangle Park, NC, 27709

    To anyone who has actively participated in research, as I have...

  10. Laboratory Directed Research and Development Program FY98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, T.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program providesmore » the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.« less

  11. Keeping the culture alive: the laboratory technician in mid-twentieth-century British medical research

    PubMed Central

    Tansey, E.M.

    2008-01-01

    This paper reports results from a detailed study of the careers of laboratory technicians in British medical research. Technicians and their contributions are very frequently missing from accounts of modern medicine, and this project is an attempt to correct that absence. The present paper focuses almost entirely on the Medical Research Council's National Institute for Medical Research in North London, from the first proposal of such a body in 1913 until the mid 1960s. The principal sources of information have been technical staff themselves, largely as recorded in an extensive series of oral history interviews. These have covered a wide range of issues and provide valuable perspectives about technicians' backgrounds and working lives. PMID:18548906

  12. Cookstove Laboratory Research - Fiscal Year 2016 Report ...

    EPA Pesticide Factsheets

    This report provides an overview of the work conducted by the EPA cookstove laboratory research team in Fiscal Year 2016. The report describes research and activities including (1) ISO standards development, (2) capacity building for international testing and knowledge centers, (3) laboratory assessments of cookstove systems, (4) journal publications, and (5) cookstove events. The U.S. Environmental Protection Agency’s (EPA’s) cookstove laboratory research program was first developed to assist the EPA-led Partnership for Clean Indoor Air and is now part of the U.S. Government’s commitment to the Global Alliance for Clean Cookstoves (the Alliance). Goals of the program are to: (1) support the development of testing protocols and standards for cookstoves through ISO (International Organization for Standardization) TC (Technical Committee) 285: Clean Cookstoves and Clean Cooking Solutions, (2) support the development of international Regional Testing and Knowledge Centers (many sponsored by the Alliance) for scientifically evaluating and certifying cookstoves to international standards, and (3) provide an independent source of data to Alliance partners. This work supports EPA’s mission to protect human health and the environment. Household air pollution, mainly from solid-fuel cookstoves in the developing world, is estimated to cause approximately 4 million premature deaths per year, and emissions of black carbon and other pollutants from cookstoves aff

  13. NATIONAL RISK MANAGEMENT RESEARCH LABORATORY - PROVIDING SOLUTIONS FOR A BETTER TOMORROW

    EPA Science Inventory

    As part of the U.S. Environmental Protection Agency's Office of Research and Development, the National Risk Management Research Laboratory (NRMRL) conducts research into ways to prevent and reduce pollution risks that threaten human health and the environment. The laboratory inve...

  14. United States Air Force Summer Research Program -- 1993. Volume 13. Phillips Laboratory

    DTIC Science & Technology

    1993-12-01

    Research Kirtland Air Force Base, Albuquerque, NM August 1993 14-1 My Summer Apprenticeship At Kirtland Air Force Base, Phillips Laboratory Andrea Garcia...AFOSR Summer Research Program Phillips Laboratory Sponsored By: Air Force Office of Scientific Research Kirtland Air Force Base, Albuquerque, NM... Phillips Laboratory Sponsored by: Air

  15. United States Air Force Summer Research Program -- 1993. Volume 3. Phillips Laboratory

    DTIC Science & Technology

    1993-12-01

    PHILLIPS LABORATORY KIRTLAND AIR FORCE BASE, NEW MEXICO SPONSORED BY: AIR FORCE OFFICE OF SCIENTIFIC RESEARCH ROLLING AIR FORCE BASE, WASHINGTON ,D.C...Report for. Summer Faculty Research Program at Phillips Laboratory Kirtland Air Force Base Sponsored by: Air Force Offlce of Scientific Research ...Prcgram Phillips Laboratory Kirtland

  16. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  17. U.S. Army Aeromedical Research Laboratory Annual Progress Report: FY 84

    DTIC Science & Technology

    1984-10-01

    OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION U.S. Army Aeromedical Research (if applicable) U.S. Army Medical Research and Developmmt Laboratory...Group for Aerospace Research and Develop- ment--Aerospace Medical Panel ......................... 105 American National Standards Institute (ANSI...aviation specialities. Assists other US Army Medical Research and Development Command (USAMRDC) laboratories and institutes in research on the

  18. Savannah River Ecology Laboratory, annual technical progress report of ecological research for the year ending June 30, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wein, G.; Rosier, B.

    1998-12-31

    This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.

  19. Savannah River Ecology Laboratory, annual technical progress report of ecological research for the year ending June 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wein, G.; Rosier, B.

    1997-12-31

    This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.

  20. Visiting Scholars Program | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Visiting Scholars Program (VSP) provides a unique opportunity for scientists to collaborate with the Frederick National Laboratory for Cancer Research (FNLCR), the only federal national laboratory in the United States devoted exclusively to b

  1. Draftsmen at Work during Construction of the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1942-09-21

    The National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory was designed by a group of engineers at the Langley Memorial Aeronautical Laboratory in late 1940 and 1941. Under the guidance of Ernest Whitney, the men worked on drawings and calculations in a room above Langley’s Structural Research Laboratory. The main Aircraft Engine Research Laboratory design group originally consisted of approximately 30 engineers and draftsmen, but there were smaller groups working separately on specific facilities. The new engine lab would have six principal buildings: the Engine Research Building, hangar, Fuels and Lubricants Building, Administration Building, Propeller Test Stand, and Altitude Wind Tunnel. In December 1941 most of those working on the project transferred to Cleveland from Langley. Harrison Underwood and Charles Egan led 18 architectural, 26 machine equipment, 3 structural and 10 mechanical draftsmen. Initially these staff members were housed in temporary offices in the hangar. As sections of the four-acre Engine Research Building were completed in the summer of 1942, the design team began relocating there. The Engine Research Building contained a variety of test cells and laboratories to address virtually every aspect of piston engine research. It also contained a two-story office wing, seen in this photograph that would later house many of the powerplant research engineers.

  2. Kathleen Igo | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Directorate: Clinical Research Program Department or lab: Clinical Monitoring Research Program (CMRP) How many years have you worked at the Frederick National Laboratory? I am in my 7th year of employment.

  3. ORNLs Laboratory Directed Research and Development Program FY 2009 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2010-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2009. The associated FY 2009 ORNL LDRD Self-Assessment (ORNL/PPA-2010/2) provides financial data andmore » an internal evaluation of the program’s management process.« less

  4. ORNLs Laboratory Directed Research and Development Program FY 2013 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2013. The associated FY 2013 ORNL LDRD Self-Assessment (ORNL/PPA-2014/2) provides financial datamore » and an internal evaluation of the program’s management process.« less

  5. ORNLs Laboratory Directed Research and Development Program FY 2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2009-03-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2008. The associated FY 2008 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and anmore » internal evaluation of the program’s management process.« less

  6. ORNLs Laboratory Directed Research and Development Program FY 2012 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2013-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2012. The associated FY 2012 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial datamore » and an internal evaluation of the program’s management process.« less

  7. Air Force Officers Visit Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-08-21

    A group of 60 Army Air Forces officers visited the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory on August 27, 1945. The laboratory enacted strict security regulations throughout World War II. During the final months of the war, however, the NACA began opening its doors to groups of writers, servicemen, and aviation industry leaders. These events were the first exposure of the new engine laboratory to the outside world. Grandstands were built alongside the Altitude Wind Tunnel specifically for group photographs. George Lewis, Raymond Sharp, and Addison Rothrock (right to left) addressed this group of officers in the Administration Building auditorium. Lewis was the NACA’s Director of Aeronautical Research, Sharp was the lab’s manager, and Rothrock was the lab’s chief of research. Abe Silverstein, Jesse Hall and others watch from the rear of the room. The group toured several facilities after the talks, including the Altitude Wind Tunnel and a new small supersonic wind tunnel. The visit concluded with a NACA versus Army baseball game and cookout.

  8. Methodological Aspects of Focus Groups in Health Research: Results of Qualitative Interviews With Focus Group Moderators.

    PubMed

    Tausch, Anja P; Menold, Natalja

    2016-01-01

    Although focus groups are commonly used in health research to explore the perspectives of patients or health care professionals, few studies consider methodological aspects in this specific context. For this reason, we interviewed nine researchers who had conducted focus groups in the context of a project devoted to the development of an electronic personal health record. We performed qualitative content analysis on the interview data relating to recruitment, communication between the focus group participants, and appraisal of the focus group method. The interview data revealed aspects of the focus group method that are particularly relevant for health research and that should be considered in that context. They include, for example, the preferability of face-to-face recruitment, the necessity to allow participants in patient groups sufficient time to introduce themselves, and the use of methods such as participant-generated cards and prioritization.

  9. Laboratory Directed Research and Development FY 2000 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R

    This Annual Report provides an overview of the FY2000 Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) and presents a summary of the results achieved by each project during the year.

  10. US Army Research Laboratory and University of Notre Dame Distributed Sensing: Software Overview

    DTIC Science & Technology

    2017-09-01

    ARL-TN-0847 ● Sep 2017 US Army Research Laboratory US Army Research Laboratory and University of Notre Dame Distributed Sensing...Destroy this report when it is no longer needed. Do not return it to the originator. ARL-TN-0847 ● Sep 2017 US Army Research Laboratory...US Army Research Laboratory and University of Notre Dame Distributed Sensing: Software Overview by Neal Tesny Sensors and Electron Devices

  11. Four Decades of Ground-Breaking Research in the Reproductive and Developmental Sciences: The Infant Primate Research Laboratory at the University of Washington National Primate Research Center

    PubMed Central

    Burbacher, Thomas M.; Grant, Kimberly S.; Worlein, Julie; Ha, James; Curnow, Eliza; Juul, Sandra; Sackett, Gene P.

    2017-01-01

    The Infant Primate Research Laboratory (IPRL) was established in the 1970s at the University of Washington as a visionary project of Dr. Gene (Jim) P. Sackett. Supported by a collaboration between the Washington National Primate Research Center and the Center on Human Health and Disability, the IPRL operates under the principle that learning more about the causes of abnormal development in macaque monkeys will provide important insights into mechanisms underlying childhood neurodevelopmental disorders. Over the past forty years, a broad range of research projects have been conducted at the IPRL. Some have described the normal expression of species-typical behaviors in nursery-reared macaques while others have focused on specific issues in perinatal medicine and research. This article will review the unique history of the IPRL and the scientific contributions produced by research conducted in the laboratory. Past and present investigations at the IPRL have explored the consequences of adverse early rearing, low-birth-weight, prematurity, epilepsy, chemical/drug exposure, viral infection, diarrheal disease, vaccine safety, assisted reproductive technologies and perinatal hypoxia on growth and development. New directions of investigation include the production of a transgenic primate model using our embryonic stem cell-based technology to better understand and treat heritable forms of human mental retardation such as fragile X. PMID:23873400

  12. Summer Research Program (1992). Summer Faculty Research Program (SFRP) Reports. Volume 5A. Wright Laboratory

    DTIC Science & Technology

    1992-12-01

    1992 6-~1 SOME RESULTS IN MACIIINE- LEARNING Mike Breen Assistant Professor Department of Mathematics Tennessee Technological Universitv Abstract The...Research Laboratory; Wilford Hall Medical Center 12 High School Apprenticeship Program Reports: Armstrong Laboratory 13 High School Apprenticeship ...Program Reports: Phillips Laboratory 14 High School Apprenticeship Program Reports: Rome Laboratory 15 High School Apprenticeship Program Reports

  13. Laboratory-Directed Research and Development 2016 Summary Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillai, Rekha Sukamar; Jacobson, Julie Ann

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclearmore » Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world’s energy future and secure our critical infrastructure. Operating since 1949, INL is the nation’s leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL’s research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear

  14. The Naval Health Research Center Respiratory Disease Laboratory.

    PubMed

    Ryan, M; Gray, G; Hawksworth, A; Malasig, M; Hudspeth, M; Poddar, S

    2000-07-01

    Concern about emerging and reemerging respiratory pathogens prompted the development of a respiratory disease reference laboratory at the Naval Health Research Center. Professionals working in this laboratory have instituted population-based surveillance for pathogens that affect military trainees and responded to threats of increased respiratory disease among high-risk military groups. Capabilities of this laboratory that are unique within the Department of Defense include adenovirus testing by viral shell culture and microneutralization serotyping, influenza culture and hemagglutination inhibition serotyping, and other special testing for Streptococcus pneumoniae, Streptococcus pyogenes, Mycoplasma pneumonia, and Chlamydia pneumoniae. Projected capabilities of this laboratory include more advanced testing for these pathogens and testing for other emerging pathogens, including Bordetella pertussis, Legionella pneumoniae, and Haemophilus influenzae type B. Such capabilities make the laboratory a valuable resource for military public health.

  15. Enabling UAS Research at the NASA EAV Laboratory

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey A.

    2015-01-01

    The Exploration Aerial Vehicles (EAV) Laboratory at NASA Ames Research Center leads research into intelligent autonomy and advanced control systems, bridging the gap between simulation and full-scale technology through flight test experimentation on unmanned sub-scale test vehicles.

  16. The Virtual Robotics Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kress, R.L.; Love, L.J.

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well asmore » many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.« less

  17. The role of veterinary research laboratories in the provision of veterinary services.

    PubMed

    Verwoerd, D W

    1998-08-01

    Veterinary research laboratories play an essential role in the provision of veterinary services in most countries. These laboratories are the source of new knowledge, innovative ideas and improved technology for the surveillance, prevention and control of animal diseases. In addition, many laboratories provide diagnostic and other services. To ensure the optimal integration of various veterinary activities, administrators must understand the functions and constraints of research laboratories. Therefore, a brief discussion is presented of the following: organisational structures methods for developing research programmes outputs of research scientists and how these are measured the management of quality assurance funding of research. Optimal collaboration can only be attained by understanding the environment in which a research scientist functions and the motivational issues at stake.

  18. SeedUSoon: A New Software Program to Improve Seed Stock Management and Plant Line Exchanges between Research Laboratories

    PubMed Central

    Charavay, Céline; Segard, Stéphane; Pochon, Nathalie; Nussaume, Laurent; Javot, Hélène

    2017-01-01

    Plant research is supported by an ever-growing collection of mutant or transgenic lines. In the past, a typical basic research laboratory would focus on only a few plant lines that were carefully isolated from collections of lines containing random mutations. The subsequent technological breakthrough in high-throughput sequencing, combined with novel and highly efficient mutagenesis techniques (including site-directed mutagenesis), has led to a recent exponential growth in plant line collections used by individual researchers. Tracking the generation and genetic properties of these genetic resources is thus becoming increasingly challenging for researchers. Another difficulty for researchers is controlling the use of seeds protected by a Material Transfer Agreement, as often only the original recipient of the seeds is aware of the existence of such documents. This situation can thus lead to difficult legal situations. Simultaneously, various institutions and the general public now demand more information about the use of genetically modified organisms (GMOs). In response, researchers are seeking new database solutions to address the triple challenge of research competition, legal constraints, and institutional/public demands. To help plant biology laboratories organize, describe, store, trace, and distribute their seeds, we have developed the new program SeedUSoon, with simplicity in mind. This software contains data management functions that allow the separate tracking of distinct mutations, even in successive crossings or mutagenesis. SeedUSoon reflects the biotechnological diversity of mutations and transgenes contained in any specific line, and the history of their inheritance. It can facilitate GMO certification procedures by distinguishing mutations on the basis of the presence/absence of a transgene, and by recording the technology used for their generation. Its interface can be customized to match the context and rules of any laboratory. In addition, Seed

  19. Faculty and Student Teams and National Laboratories: Expanding the Reach of Research Opportunities and Workforce Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackburn,N.; White, K.; Stegman, M.

    The Faculty and Student Teams (FaST) Program, a cooperative effort between the US Department of Energy (DOE) Office of Science and the National Science Foundation (NSF), brings together collaborative research teams composed of a researcher at Brookhaven National Laboratory, and a faculty member with two or three undergraduate students from a college or university. Begun by the Department of Energy in 2000 with the primary goal of building research capacity at a faculty member's home institution, the FaST Program focuses its recruiting efforts on faculty from colleges and universities with limited research facilities and those institutions that serve populations under-representedmore » in the fields of science, engineering and technology, particularly women and minorities. Once assembled, a FaST team spends a summer engaged in hands-on research working alongside a laboratory scientist. This intensely collaborative environment fosters sustainable relationships between the faulty members and BNL that allow faculty members and their BNL colleagues to submit joint proposals to federal agencies, publish papers in peer-reviewed journals, reform local curriculum, and develop new or expand existing research labs at their home institutions.« less

  20. Progress of applied superconductivity research at Materials Research Laboratories, ITRI (Taiwan)

    NASA Technical Reports Server (NTRS)

    Liu, R. S.; Wang, C. M.

    1995-01-01

    A status report based on the applied high temperature superconductivity (HTS) research at Materials Research Laboratories (MRL), Industrial Technology Research Institute (ITRI) is given. The aim is to develop fabrication technologies for the high-TC materials appropriate to the industrial application requirements. To date, the majorities of works have been undertaken in the areas of new materials, wires/tapes with long length, prototypes of magnets, large-area thin films, SQUID's and microwave applications.

  1. Research Update: The USDA-ARS-Conservation and Production Research Laboratory, Bushland, Texas

    USDA-ARS?s Scientific Manuscript database

    This presentation/manuscript provide a brief summary of beef cattle feeding-related research conducted at the USDA-ARS-Conservation and Production Research Laboratory, Bushland, Texas, over the past four years. It summarizes data that has been published in scientific journals, in symposia and confer...

  2. Revealing all: misleading self-disclosure rates in laboratory-based online research.

    PubMed

    Callaghan, Diana E; Graff, Martin G; Davies, Joanne

    2013-09-01

    Laboratory-based experiments in online self-disclosure research may be inadvertently compromising the accuracy of research findings by influencing some of the factors known to affect self-disclosure behavior. Disclosure-orientated interviews conducted with 42 participants in the laboratory and in nonlaboratory settings revealed significantly greater breadth of self-disclosure in laboratory interviews, with message length and intimacy of content also strongly related. These findings suggest that a contrived online setting with a researcher presence may stimulate motivation for greater self-disclosure than would occur naturally in an online environment of an individual's choice. The implications of these findings are that researchers should consider the importance of experimental context and motivation in self-disclosure research.

  3. Focus Group in Community Mental Health Research: Need for Adaption.

    PubMed

    Zupančič, Vesna; Pahor, Majda; Kogovšek, Tina

    2018-04-27

    The article presents an analysis of the use of focus groups in researching community mental health users, starting with the reasons for using them, their implementation in mental health service users' research, and the adaptations of focus group use when researching the experiences of users. Based on personal research experience and a review of scientific publications in the Google Scholar, Web of Science, ProQuest, EBSCOhost, and Scopus databases, 20 articles published between 2010 and 2016 were selected for targeted content analysis. A checklist for reporting on the use of focus groups with community mental health service users, aiming to improve the comparability, verifiability and validity was developed. Adaptations of the implementation of focus groups in relation to participants' characteristics were suggested. Focus groups are not only useful as a scientific research technique, but also for ensuring service users' participation in decision-making in community mental health and evaluating the quality of the mental health system and services .

  4. Aerial View of NACA's Lewis Flight Propulsion Research Laboratory

    NASA Image and Video Library

    1946-05-21

    The National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory in Cleveland, Ohio as seen from the west in May 1946. The Cleveland Municipal Airport is located directly behind. The laboratory was built in the early 1940s to resolve problems associated with aircraft engines. The initial campus contained seven principal buildings: the Engine Research Building, hangar, Fuels and Lubricants Building, Administration Building, Engine Propeller Research Building, Altitude Wind Tunnel, and Icing Research Tunnel. These facilities and their associated support structures were located within an area occupying approximately one-third of the NACA’s property. After World War II ended, the NACA began adding new facilities to address different problems associated with the newer, more powerful engines and high speed flight. Between 1946 and 1955, four new world-class test facilities were built: the 8- by 6-Foot Supersonic Wind Tunnel, the Propulsion Systems Laboratory, the Rocket Engine Test Facility, and the 10- by 10-Foot Supersonic Wind Tunnel. These large facilities occupied the remainder of the NACA’s semicircular property. The Lewis laboratory expanded again in the late 1950s and early 1960s as the space program commenced. Lewis purchased additional land in areas adjacent to the original laboratory and acquired a large 9000-acre site located 60 miles to the west in Sandusky, Ohio. The new site became known as Plum Brook Station.

  5. Integrating Interdisciplinary Research-Based Experiences in Biotechnology Laboratories

    ERIC Educational Resources Information Center

    Iyer, Rupa S.; Wales, Melinda E.

    2012-01-01

    The increasingly interdisciplinary nature of today's scientific research is leading to the transformation of undergraduate education. In addressing these needs, the University of Houston's College of Technology has developed a new interdisciplinary research-based biotechnology laboratory curriculum. Using the pesticide degrading bacterium,…

  6. An overview of Quality Management System implementation in a research laboratory

    NASA Astrophysics Data System (ADS)

    Molinéro-Demilly, Valérie; Charki, Abdérafi; Jeoffrion, Christine; Lyonnet, Barbara; O'Brien, Steve; Martin, Luc

    2018-02-01

    The aim of this paper is to show the advantages of implementing a Quality Management System (QMS) in a research laboratory in order to improve the management of risks specific to research programmes and to increase the reliability of results. This paper also presents experience gained from feedback following the implementation of the Quality process in a research laboratory at INRA, the French National Institute for Agronomic Research and details the various challenges encountered and solutions proposed to help achieve smoother adoption of a QMS process. The 7Ms (Management, Measurement, Manpower, Methods, Materials, Machinery, Mother-nature) methodology based on the Ishikawa `Fishbone' diagram is used to show the effectiveness of the actions considered by a QMS, which involve both the organization and the activities of the laboratory. Practical examples illustrate the benefits and improvements observed in the laboratory.

  7. An overview of the U.S. Army Research Laboratory's Sensor Information Testbed for Collaborative Research Environment (SITCORE) and Automated Online Data Repository (AODR) capabilities

    NASA Astrophysics Data System (ADS)

    Ward, Dennis W.; Bennett, Kelly W.

    2017-05-01

    The Sensor Information Testbed COllaberative Research Environment (SITCORE) and the Automated Online Data Repository (AODR) are significant enablers of the U.S. Army Research Laboratory (ARL)'s Open Campus Initiative and together create a highly-collaborative research laboratory and testbed environment focused on sensor data and information fusion. SITCORE creates a virtual research development environment allowing collaboration from other locations, including DoD, industry, academia, and collation facilities. SITCORE combined with AODR provides end-toend algorithm development, experimentation, demonstration, and validation. The AODR enterprise allows the U.S. Army Research Laboratory (ARL), as well as other government organizations, industry, and academia to store and disseminate multiple intelligence (Multi-INT) datasets collected at field exercises and demonstrations, and to facilitate research and development (R and D), and advancement of analytical tools and algorithms supporting the Intelligence, Surveillance, and Reconnaissance (ISR) community. The AODR provides a potential central repository for standards compliant datasets to serve as the "go-to" location for lessons-learned and reference products. Many of the AODR datasets have associated ground truth and other metadata which provides a rich and robust data suite for researchers to develop, test, and refine their algorithms. Researchers download the test data to their own environments using a sophisticated web interface. The AODR allows researchers to request copies of stored datasets and for the government to process the requests and approvals in an automated fashion. Access to the AODR requires two-factor authentication in the form of a Common Access Card (CAC) or External Certificate Authority (ECA)

  8. Location | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland. Satellite locations include leased and government facilities extending s

  9. NASA Integrated Systems Research with an Environmental Focus

    NASA Technical Reports Server (NTRS)

    Wolfe, Jean; Collier, Fay

    2010-01-01

    This slide presentation reviews the Integrated Systems Research Program (ISRP) with a focus on the work being done on reduction of environmental impact from aeronautics. The focus of the ISRP is to Conduct research at an integrated system-level on promising concepts and technologies and explore, assess, or demonstrate the benefits in a relevant environment. The presentation reviews the criteria for an ISRP project, and discusses the Environmentally Responsible Aviation (ERA) project, and the technical challenges.

  10. Outcomes of a Research-Driven Laboratory and Literature Course Designed to Enhance Undergraduate Contributions to Original Research

    ERIC Educational Resources Information Center

    Rasche, Madeline E.

    2004-01-01

    This work describes outcomes of a research-driven advanced microbiology laboratory and literature research course intended to enhance undergraduate preparation for and contributions to original research. The laboratory section was designed to teach fundamental biochemistry and molecular biology techniques in the context of an original research…

  11. NASA DC-8 airborne research laboratory

    NASA Technical Reports Server (NTRS)

    Degreef, Leo H.

    1991-01-01

    Since the summer of 1987, NASA Ames Research Center has been operating a DC-8 equipped with CFM 56 engines as a flying research laboratory. In this relatively short time, the DC-8, with its tremendous capabilities, has made significant contributions to numerous scientific fields. Capable of staying aloft for over 12 hours, the DC-8 has flown directly over both the North and South Poles, gathering data relating to the ozone hole. Operating from a few thousand feet to over 40,000 feet above sea level the interchangeable payload capability of the DC-8 has made it a versatile scientific tool. The DC-8 also plays a vital role in the development of new satellite-borne sensors as very often those sensors are test-flown on the DC-8 before they are launched into space. The tremendous range and instrument carrying capability make the DC-8 an ideal flying laboratory. A few of the programs the DC-8 has participated in as well as a sampling of the instruments carried are outlined.

  12. Laboratory Directed Research and Development FY 1998 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Vigil; Kyle Wheeler

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  13. Laboratory directed research and development: FY 1997 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  14. Laboratory Directed Research and Development Program FY2016 Annual Summary of Completed Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    ORNL FY 2016 Annual Summary of Laboratory Directed Research and Development Program (LDRD) Completed Projects. The Laboratory Directed Research and Development (LDRD) program at ORNL operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (October 22, 2015), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. The LDRD program funds are obtained through a charge to all Laboratory programs. ORNL reports its status to DOE in March of each year.

  15. Laboratory directed research and development FY98 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R; Holzrichter, J

    1999-05-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNLmore » with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs.« less

  16. Open- and closed-formula laboratory animal diets and their importance to research.

    PubMed

    Barnard, Dennis E; Lewis, Sherry M; Teter, Beverly B; Thigpen, Julius E

    2009-11-01

    Almost 40 y ago the scientific community was taking actions to control environmental factors that contribute to variation in the responses of laboratory animals to scientific manipulation. Laboratory animal diet was recognized as an important variable. During the 1970s, the American Institute of Nutrition, National Academy of Science, Institute of Laboratory Animal Resources, and Laboratory Animals Centre Diets Advisory Committee supported the use of 'standard reference diets' in biomedical research as a means to improve the ability to replicate research. As a result the AIN76 purified diet was formulated. During this same time, the laboratory animal nutritionist at the NIH was formulating open-formula, natural-ingredient diets to meet the need for standardized laboratory animal diets. Since the development of open-formula diets, fixed-formula and constant-nutrient-concentration closed-formula laboratory animal natural ingredient diets have been introduced to help reduce the potential variation diet can cause in research.

  17. Open- and Closed-Formula Laboratory Animal Diets and Their Importance to Research

    PubMed Central

    Barnard, Dennis E; Lewis, Sherry M; Teter, Beverly B; Thigpen, Julius E

    2009-01-01

    Almost 40 y ago the scientific community was taking actions to control environmental factors that contribute to variation in the responses of laboratory animals to scientific manipulation. Laboratory animal diet was recognized as an important variable. During the 1970s, the American Institute of Nutrition, National Academy of Science, Institute of Laboratory Animal Resources, and Laboratory Animals Centre Diets Advisory Committee supported the use of ‘standard reference diets’ in biomedical research as a means to improve the ability to replicate research. As a result the AIN76 purified diet was formulated. During this same time, the laboratory animal nutritionist at the NIH was formulating open-formula, natural-ingredient diets to meet the need for standardized laboratory animal diets. Since the development of open-formula diets, fixed-formula and constant-nutrient–concentration closed-formula laboratory animal natural ingredient diets have been introduced to help reduce the potential variation diet can cause in research. PMID:19930817

  18. M2 .50-cal. Multishot Capabilities at the US Army Research Laboratory

    DTIC Science & Technology

    2015-09-01

    a platform was designed to simulate the 2-round burst of the M2 .50-caliber Browning machine gun (BMG). The 2-round-burst cyclic rate was achieved...ARL-TN-0694 ● SEP 2015 US Army Research Laboratory M2 .50-cal. Multishot Capabilities at the US Army Research Laboratory by...longer needed. Do not return it to the originator. ARL-TN-0694 ● SEP 2015 US Army Research Laboratory M2 .50-cal. Multishot

  19. Postdoctoral Professional Fellowships in Laboratory Medicine.

    PubMed

    Straseski, Joely A

    2013-04-01

    Doctoral level scientists often pursue a traditional academic route, focusing their efforts on research and education. However, additional options exist for those that are interested in using their laboratory and research skills in a clinical setting. Clinical laboratory directors serve as the interface between the clinical laboratory and the users of laboratory test results. This article describes these career paths options for PhD scientists. Clinical laboratory directors are primarily trained via one of two routes: physicians that have been trained in clinical pathology or non-physician doctoral scientists that have completed professional fellowship training. This article will focus on the latter of these 2 routes. In the United States, completing a postdoctoral fellowship in laboratory-specific professional fields qualifies non-physician doctoral scientists as laboratory directors and consultants. Their expert consultation provides invaluable insight into testing procedures such as possible sources of interference or inaccurate test results, preferred testing for specific clinical situations, and confirmatory methods. They must also be knowledgeable about current instrumentation, assay limitations, and the newest available technologies. One of the older and more developed professional fellowships in the United States, clinical chemistry, encompasses many laboratory disciplines and will be highlighted in detail. Training information specific to clinical immunology, clinical microbiology, and clinical genetics is also discussed.

  20. Research Notes. OERI's Regional Laboratory Technology Efforts.

    ERIC Educational Resources Information Center

    Garnette, Cheryl P., Ed.; Withrow, Frank B., Ed.

    1989-01-01

    Examines various educational technology projects that regional laboratories supported by the Office of Educational Research and Improvement (OERI) are undertaking. Highlights include innovative uses of instructional technology; tele-teaching using interactive audio conferencing; making informed decisions about technology; national teleconferences…

  1. Accessibility | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research campus is making every effort to ensure that the information available on our website is accessible to all. If you use special adaptive equipment to access the web and encounter problems when usin

  2. Sandia National Laboratories: Cooperative Research and Development

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  3. FRESHWATER FINDINGS, 1979-1982: RESEARCH PUBLICATIONS OF THE ENVIRONMENTAL RESEARCH LABORATORY, DULUTH, MINNESOTA

    EPA Science Inventory

    This report contains citations of publications for the years 1979-1982 on research conducted or supported by the Environmental Research Laboratory-Duluth. All published material has been organized into two major categories: (1) Journal Articles, Book Chapters, Proceedings, etc., ...

  4. Idaho National Laboratory Directed Research and Development FY-2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2010-03-01

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefitmore » each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are

  5. FY2007 Laboratory Directed Research and Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, W W; Sketchley, J A; Kotta, P R

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted frommore » the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.« less

  6. Model of the NACA's Aircraft Engine Research Laboratory during its Construction

    NASA Image and Video Library

    1942-08-21

    Zella Morewitz poses with a model of the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory, currently the NASA Glenn Research Center. The model was displayed in the Administration Building during the construction of the laboratory in the early 1940s. Detailed models of the individual test facilities were also fabricated and displayed in the facilities. The laboratory was built on a wedge of land between the Cleveland Municipal Airport on the far side and the deep curving valley etched by the Rocky River on the near end. Roughly only a third of the laboratory's semicircle footprint was initially utilized. Additional facilities were added to the remaining areas in the years after World War II. In the late 1950s the site was supplemented by the acquisition of additional adjacent land. Morewitz joined the NACA in 1935 as a secretary in the main office at the Langley Memorial Aeronautical Laboratory. In September 1940 she took on the task of setting up and guiding an office dedicated to the design of the NACA’s new engine research laboratory. Morewitz and the others in the design office transferred to Cleveland in December 1941 to expedite the construction. Morewitz served as Manager Ray Sharp’s secretary for six years and was a popular figure at the new laboratory. In December 1947 Morewitz announced her engagement to Langley researcher Sidney Batterson and moved back to Virginia.

  7. A 50-year research journey. From laboratory to clinic.

    PubMed

    Ross, John

    2009-01-01

    Prior important research is not always cited, exemplified by Oswald Avery's pioneering discovery that DNA is the genetic transforming factor; it was not cited by Watson and Crick 10 years later. My first laboratory research (National Institutes of Health 1950s) resulted in the clinical development of transseptal left heart catheterization. Laboratory studies on cardiac muscle mechanics in normal and failing hearts led to the concept of afterload mismatch with limited preload reserve. At the University of California, San Diego in La Jolla (1968) laboratory experiments on coronary artery reperfusion after sustained coronary occlusion showed salvage of myocardial tissue, a potential treatment for acute myocardial infarction proven in clinical trials of thrombolysis 14 years later. Among 60 trainees who worked with me in La Jolla, one-third were Japanese and some of their important laboratory experiments are briefly recounted, beginning with Sasayama, Tomoike and Shirato in the 1970 s. Recently, we developed a method for cardiac gene transfer, and subsequently we showed that gene therapy for the defect in cardiomyopathic hamsters halted the progression of advanced disease. Cardiovascular research and medicine are producing continuing advances in technologies for gene transfer and embryonic stem cell transplantation, targeting of small molecules, and tissue and organ engineering.

  8. Air conditioning a vaccine laboratory. [Connaught Medical Research Laboratory, Toronto, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross J.

    1976-05-01

    In 1974, the new Bacterial Vaccine Building of Connaught Medical Research Laboratories, Toronto, Canada, was opened to produce such vaccines as pertussis, typhoid, paratyphoids, and cholera and such toxoids as staphylococcus, diphtheria, and tetanus. It also produces other medicinal products. The layout of the complex and the air conditioning system necessary in all zones are described and schematically shown. (MCW)

  9. Research Opportunities at Storm Peak Laboratory

    NASA Astrophysics Data System (ADS)

    Hallar, A. G.; McCubbin, I. B.

    2006-12-01

    The Desert Research Institute (DRI) operates a high elevation facility, Storm Peak Laboratory (SPL), located on the west summit of Mt. Werner in the Park Range near Steamboat Springs, Colorado at an elevation of 3210 m MSL (Borys and Wetzel, 1997). SPL provides an ideal location for long-term research on the interactions of atmospheric aerosol and gas- phase chemistry with cloud and natural radiation environments. The ridge-top location produces almost daily transition from free tropospheric to boundary layer air which occurs near midday in both summer and winter seasons. Long-term observations at SPL document the role of orographically induced mixing and convection on vertical pollutant transport and dispersion. During winter, SPL is above cloud base 25% of the time, providing a unique capability for studying aerosol-cloud interactions (Borys and Wetzel, 1997). A comprehensive set of continuous aerosol measurements was initiated at SPL in 2002. SPL includes an office-type laboratory room for computer and instrumentation setup with outside air ports and cable access to the roof deck, a cold room for precipitation and cloud rime ice sample handling and ice crystal microphotography, a 150 m2 roof deck area for outside sampling equipment, a full kitchen and two bunk rooms with sleeping space for nine persons. The laboratory is currently well equipped for aerosol and cloud measurements. Particles are sampled from an insulated, 15 cm diameter manifold within approximately 1 m of its horizontal entry point through an outside wall. The 4 m high vertical section outside the building is capped with an inverted can to exclude large particles.

  10. Interpreting Outcomes: Using Focus Groups in Evaluation Research

    ERIC Educational Resources Information Center

    Ansay, Sylvia J.; Perkins, Daniel F.; Nelson, John

    2004-01-01

    Although focus groups continue to gain popularity in marketing and social science research, their use in program evaluation has been limited. Here we demonstrate how focus groups can benefit evaluators, program staff, policy makers and administrators by providing an in-depth understanding of program effectiveness from the perspective of…

  11. Preparing chimpanzees for laboratory research.

    PubMed

    Bloomsmith, Mollie A; Schapiro, Steven J; Strobert, Elizabeth A

    2006-01-01

    The chimpanzee is the only representative of the Great Apes that is extensively involved in biomedical research in primate laboratories. These apes are used as animal models in a variety of studies, including research on infectious disease, parasitic disease, pharmacokinetic studies, neuroscience, cognition, and behavior. Chimpanzees used in biomedical research in the United States reside largely in six specialized research and holding facilities, and most of the research with them is conducted at these sites. Given the relatively small population of chimpanzees and its importance to biomedical research, it is imperative that we carefully manage the care, production, and use of these animals in biomedical research studies. Selection criteria and preparation techniques are reviewed in this article in an effort to begin a discussion on best practices for choosing and handling chimpanzees participating in biomedical research. The use of routine health assessment information is described for subject selection, as are behavioral issues to be considered. Due to the relatively small number of chimpanzees available, issues related to experimental design and multiple uses of chimpanzees are discussed. Practices related to the transportation and acclimation of chimpanzees are described. Finally, behavioral conditioning procedures are discussed, including habituation, desensitization, and positive reinforcement training that have been applied to reduce animal distress and improve the quality of the science being conducted with chimpanzee subjects.

  12. Focusing ecological research for conservation.

    PubMed

    Cristescu, Bogdan; Boyce, Mark S

    2013-11-01

    Ecologists are increasingly actively involved in conservation. We identify five key topics from a broad sweep of ecology that merit research attention to meet conservation needs. We examine questions from landscape ecology, behavioral ecology, ecosystem dynamics, community ecology, and nutrient cycling related to key topics. Based on literature review and publication trend assessment, consultation with colleagues, and roundtable discussions at the 24th International Congress for Conservation Biology, focused research on the following topics could benefit conservation while advancing ecological understanding: 1. Carbon sequestration, requiring increased linkages to biodiversity conservation; 2. Ecological invasiveness, challenging our ability to find solutions to ecological aliens; 3. Individual variation, having applications in the conservation of rare species; 4. Movement of organisms, integrating ecological processes across landscapes and scales and addressing habitat fragmentation; and 5. Trophic-level interactions, driving ecological dynamics at the ecosystem-level. Addressing these will require cross-disciplinary research under the overarching framework of conservation ecology.

  13. A laboratory medicine residency training program that includes clinical consultation and research.

    PubMed

    Spitzer, E D; Pierce, G F; McDonald, J M

    1990-04-01

    We describe a laboratory medicine residency training program that includes ongoing interaction with both clinical laboratories and clinical services as well as significant research experience. Laboratory medicine residents serve as on-call consultants in the interpretation of test results, design of testing strategies, and assurance of test quality. The consultative on-call beeper system was evaluated and is presented as an effective method of clinical pathology training that is well accepted by the clinical staff. The research component of the residency program is also described. Together, these components provide training in real-time clinical problem solving and prepare residents for the changing technological environment of the clinical laboratory. At the completion of the residency, the majority of the residents are qualified laboratory subspecialists and are also capable of running an independent research program.

  14. Mobile robotics research at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morse, W.D.

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  15. A professional development model for medical laboratory scientists working in the microbiology laboratory.

    PubMed

    Amerson, Megan H; Pulido, Lila; Garza, Melinda N; Ali, Faheem A; Greenhill, Brandy; Einspahr, Christopher L; Yarsa, Joseph; Sood, Pramilla K; Hu, Peter C

    2012-01-01

    The University of Texas M.D. Anderson Cancer Center, Division of Pathology and Laboratory Medicine is committed to providing the best pathology and medicine through: state-of-the art techniques, progressive ground-breaking research, education and training for the clinical diagnosis and research of cancer and related diseases. After surveying the laboratory staff and other hospital professionals, the Department administrators and Human Resource generalists developed a professional development model for Microbiology to support laboratory skills, behavior, certification, and continual education within its staff. This model sets high standards for the laboratory professionals to allow the labs to work at their fullest potential; it provides organization to training technologists based on complete laboratory needs instead of training technologists in individual areas in which more training is required if the laboratory needs them to work in other areas. This model is a working example for all microbiology based laboratories who want to set high standards and want their staff to be acknowledged for demonstrated excellence and professional development in the laboratory. The PDM model is designed to focus on the needs of the laboratory as well as the laboratory professionals.

  16. Regional Educational Laboratory Researcher-Practitioner Partnerships: Documenting the Research Alliance Experience. REL 2018-291

    ERIC Educational Resources Information Center

    Scher, Lauren; McCowan, Ronald; Castaldo-Walsh, Cynthia

    2018-01-01

    This report provides a detailed account of the Regional Educational Laboratory (REL) Program's experience establishing and supporting research-practice partnerships (called "research alliances") during its 2012-17 contract cycle. The report adds to the growing literature base on researcher-practitioner partnerships by sharing how the…

  17. Redefining Authentic Research Experiences in Introductory Biology Laboratories and Barriers to Their Implementation

    PubMed Central

    Spell, Rachelle M.; Guinan, Judith A.; Miller, Kristen R.; Beck, Christopher W.

    2014-01-01

    Incorporating authentic research experiences in introductory biology laboratory classes would greatly expand the number of students exposed to the excitement of discovery and the rigor of the scientific process. However, the essential components of an authentic research experience and the barriers to their implementation in laboratory classes are poorly defined. To guide future reform efforts in this area, we conducted a national survey of biology faculty members to determine 1) their definitions of authentic research experiences in laboratory classes, 2) the extent of authentic research experiences currently experienced in their laboratory classes, and 3) the barriers that prevent incorporation of authentic research experiences into these classes. Strikingly, the definitions of authentic research experiences differ among faculty members and tend to emphasize either the scientific process or the discovery of previously unknown data. The low level of authentic research experiences in introductory biology labs suggests that more development and support is needed to increase undergraduate exposure to research experiences. Faculty members did not cite several barriers commonly assumed to impair pedagogical reform; however, their responses suggest that expanded support for development of research experiences in laboratory classes could address the most common barrier. PMID:24591509

  18. Redefining authentic research experiences in introductory biology laboratories and barriers to their implementation.

    PubMed

    Spell, Rachelle M; Guinan, Judith A; Miller, Kristen R; Beck, Christopher W

    2014-01-01

    Incorporating authentic research experiences in introductory biology laboratory classes would greatly expand the number of students exposed to the excitement of discovery and the rigor of the scientific process. However, the essential components of an authentic research experience and the barriers to their implementation in laboratory classes are poorly defined. To guide future reform efforts in this area, we conducted a national survey of biology faculty members to determine 1) their definitions of authentic research experiences in laboratory classes, 2) the extent of authentic research experiences currently experienced in their laboratory classes, and 3) the barriers that prevent incorporation of authentic research experiences into these classes. Strikingly, the definitions of authentic research experiences differ among faculty members and tend to emphasize either the scientific process or the discovery of previously unknown data. The low level of authentic research experiences in introductory biology labs suggests that more development and support is needed to increase undergraduate exposure to research experiences. Faculty members did not cite several barriers commonly assumed to impair pedagogical reform; however, their responses suggest that expanded support for development of research experiences in laboratory classes could address the most common barrier.

  19. The taming of the prairie: A century of agricultural research at the Northern Great Plains Research Laboratory

    USDA-ARS?s Scientific Manuscript database

    Nearly a century after Congress authorized the Northern Great Plains Research Laboratory, it had approximately 35 employees and an annual budget of 3.4 million dollars. The long history of research accomplishments from the Laboratory have been well accepted by the agricultural community and have ide...

  20. Comparison of microbiological diagnosis of urinary tract infection in young children by routine health service laboratories and a research laboratory: Diagnostic cohort study.

    PubMed

    Birnie, Kate; Hay, Alastair D; Wootton, Mandy; Howe, Robin; MacGowan, Alasdair; Whiting, Penny; Lawton, Michael; Delaney, Brendan; Downing, Harriet; Dudley, Jan; Hollingworth, William; Lisles, Catherine; Little, Paul; O'Brien, Kathryn; Pickles, Timothy; Rumsby, Kate; Thomas-Jones, Emma; Van der Voort, Judith; Waldron, Cherry-Ann; Harman, Kim; Hood, Kerenza; Butler, Christopher C; Sterne, Jonathan A C

    2017-01-01

    To compare the validity of diagnosis of urinary tract infection (UTI) through urine culture between samples processed in routine health service laboratories and those processed in a research laboratory. We conducted a prospective diagnostic cohort study in 4808 acutely ill children aged <5 years attending UK primary health care. UTI, defined as pure/predominant growth ≥105 CFU/mL of a uropathogen (the reference standard), was diagnosed at routine health service laboratories and a central research laboratory by culture of urine samples. We calculated areas under the receiver-operator curve (AUC) for UTI predicted by pre-specified symptoms, signs and dipstick test results (the "index test"), separately according to whether samples were obtained by clean catch or nappy (diaper) pads. 251 (5.2%) and 88 (1.8%) children were classified as UTI positive by health service and research laboratories respectively. Agreement between laboratories was moderate (kappa = 0.36; 95% confidence interval [CI] 0.29, 0.43), and better for clean catch (0.54; 0.45, 0.63) than nappy pad samples (0.20; 0.12, 0.28). In clean catch samples, the AUC was lower for health service laboratories (AUC = 0.75; 95% CI 0.69, 0.80) than the research laboratory (0.86; 0.79, 0.92). Values of AUC were lower in nappy pad samples (0.65 [0.61, 0.70] and 0.79 [0.70, 0.88] for health service and research laboratory positivity, respectively) than clean catch samples. The agreement of microbiological diagnosis of UTI comparing routine health service laboratories with a research laboratory was moderate for clean catch samples and poor for nappy pad samples and reliability is lower for nappy pad than for clean catch samples. Positive results from the research laboratory appear more likely to reflect real UTIs than those from routine health service laboratories, many of which (particularly from nappy pad samples) could be due to contamination. Health service laboratories should consider adopting procedures used in

  1. Comparison of microbiological diagnosis of urinary tract infection in young children by routine health service laboratories and a research laboratory: Diagnostic cohort study

    PubMed Central

    Birnie, Kate; Hay, Alastair D.; Wootton, Mandy; Howe, Robin; MacGowan, Alasdair; Whiting, Penny; Lawton, Michael; Delaney, Brendan; Downing, Harriet; Dudley, Jan; Hollingworth, William; Lisles, Catherine; Little, Paul; O’Brien, Kathryn; Pickles, Timothy; Rumsby, Kate; Thomas-Jones, Emma; Van der Voort, Judith; Waldron, Cherry-Ann; Harman, Kim; Hood, Kerenza; Butler, Christopher C.; Sterne, Jonathan A. C.

    2017-01-01

    Objectives To compare the validity of diagnosis of urinary tract infection (UTI) through urine culture between samples processed in routine health service laboratories and those processed in a research laboratory. Population and methods We conducted a prospective diagnostic cohort study in 4808 acutely ill children aged <5 years attending UK primary health care. UTI, defined as pure/predominant growth ≥105 CFU/mL of a uropathogen (the reference standard), was diagnosed at routine health service laboratories and a central research laboratory by culture of urine samples. We calculated areas under the receiver-operator curve (AUC) for UTI predicted by pre-specified symptoms, signs and dipstick test results (the “index test”), separately according to whether samples were obtained by clean catch or nappy (diaper) pads. Results 251 (5.2%) and 88 (1.8%) children were classified as UTI positive by health service and research laboratories respectively. Agreement between laboratories was moderate (kappa = 0.36; 95% confidence interval [CI] 0.29, 0.43), and better for clean catch (0.54; 0.45, 0.63) than nappy pad samples (0.20; 0.12, 0.28). In clean catch samples, the AUC was lower for health service laboratories (AUC = 0.75; 95% CI 0.69, 0.80) than the research laboratory (0.86; 0.79, 0.92). Values of AUC were lower in nappy pad samples (0.65 [0.61, 0.70] and 0.79 [0.70, 0.88] for health service and research laboratory positivity, respectively) than clean catch samples. Conclusions The agreement of microbiological diagnosis of UTI comparing routine health service laboratories with a research laboratory was moderate for clean catch samples and poor for nappy pad samples and reliability is lower for nappy pad than for clean catch samples. Positive results from the research laboratory appear more likely to reflect real UTIs than those from routine health service laboratories, many of which (particularly from nappy pad samples) could be due to contamination. Health service

  2. Groundbreaking for the NACA’s Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1941-01-21

    Local politicians and National Advisory Committee for Aeronautics (NACA) officials were on hand for the January 23, 1941 groundbreaking for the NACA’s Aircraft Engine Research Laboratory (AERL). The NACA was established in 1915 to coordinate the nation’s aeronautical research. The committee opened a research laboratory at Langley Field in 1920. By the late 1930s, however, European nations, Germany in particular, were building faster and higher flying aircraft. The NACA decided to expand with a new Ames Aeronautical Laboratory dedicated to high-speed flight and the AERL to handle engine-related research. The NACA examined a number of Midwest locations for its new engine lab before deciding on Cleveland. At the time, Cleveland possessed the nation’s most advanced airport, several key aircraft manufacturing companies, and was home to the National Air Races. Local officials were also able to broker a deal with the power company to discount its electricity rates if the large wind tunnels were operated overnight. The decision was made in October 1940, and the groundbreaking alongside the airport took place on January 23, 1941. From left to right: William Hopkins, John Berry, Ray Sharp, Frederick Crawford, George Brett, Edward Warner, Sydney Kraus, Edward Blythin, and George Lewis

  3. Laboratory Directed Research and Development Program FY 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.« less

  4. Laboratory Directed Research and Development Program Assessment for FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatton, Diane; Flynn, Liz

    2017-03-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2C, and this report fulfills that requirement.

  5. Laboratory Directed Research and Development Program Assessment for FY 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Jack; Flynn, Liz

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2C. This report fulfills that requirement.

  6. Collaboration Agreement | Frederick National Laboratory for Cancer Research

    Cancer.gov

    A Collaboration Agreement is appropriate for research collaboration involving intellectual and material contributions by the Frederick National Laboratory and external partner(s). It is useful for proof-of-concept studies. Includes brief re

  7. Guidelines for Biosafety Training Programs for Workers Assigned to BSL-3 Research Laboratories.

    PubMed

    Homer, Lesley C; Alderman, T Scott; Blair, Heather Ann; Brocard, Anne-Sophie; Broussard, Elaine E; Ellis, Robert P; Frerotte, Jay; Low, Eleanor W; McCarthy, Travis R; McCormick, Jessica M; Newton, JeT'Aime M; Rogers, Francine C; Schlimgen, Ryan; Stabenow, Jennifer M; Stedman, Diann; Warfield, Cheryl; Ntiforo, Corrie A; Whetstone, Carol T; Zimmerman, Domenica; Barkley, Emmett

    2013-03-01

    The Guidelines for Biosafety Training Programs for Workers Assigned to BSL-3 Research Laboratories were developed by biosafety professionals who oversee training programs for the 2 national biocontainment laboratories (NBLs) and the 13 regional biocontainment laboratories (RBLs) that participate in the National Institute of Allergy and Infectious Diseases (NIAID) NBL/RBL Network. These guidelines provide a general training framework for biosafety level 3 (BSL-3) high-containment laboratories, identify key training concepts, and outline training methodologies designed to standardize base knowledge, understanding, and technical competence of laboratory personnel working in high-containment laboratories. Emphasis is placed on building a culture of risk assessment-based safety through competency training designed to enhance understanding and recognition of potential biological hazards as well as methods for controlling these hazards. These guidelines may be of value to other institutions and academic research laboratories that are developing biosafety training programs for BSL-3 research.

  8. USE OF FOCUS GROUPS FOR THE ENVIRONMENTAL HEALTH RESEARCHER

    EPA Science Inventory

    Qualitative research techniques are often under-utilized by the environmental health researcher. Focus groups, one such qualitative method, can provide rich data sets for study planning and implementation, risk perception, program and policy research, and exploration into future...

  9. Laboratory challenges conducting international clinical research in resource-limited settings.

    PubMed

    Fitzgibbon, Joseph E; Wallis, Carole L

    2014-01-01

    There are many challenges to performing clinical research in resource-limited settings. Here, we discuss several of the most common laboratory issues that must be addressed. These include issues relating to organization and personnel, laboratory facilities and equipment, standard operating procedures, external quality assurance, shipping, laboratory capacity, and data management. Although much progress has been made, innovative ways of addressing some of these issues are still very much needed.

  10. Focus on Basics: Connecting Research & Practice. Volume 7, Issue D

    ERIC Educational Resources Information Center

    Garner, Barbara, Ed.

    2005-01-01

    "Focus on Basics" is the quarterly publication of the National Center for the Study of Adult Learning and Literacy. It presents best practices, current research on adult learning and literacy, and how research is used by adult basic education teachers, counselors, program administrators, and policymakers. "Focus on Basics" is…

  11. Focus on Basics: Connecting Research & Practice. Volume 8, Issue B

    ERIC Educational Resources Information Center

    Garner, Barbara, Ed.

    2006-01-01

    "Focus on Basics" is the quarterly publication of the National Center for the Study of Adult Learning and Literacy. It presents best practices, current research on adult learning and literacy, and how research is used by adult basic education teachers, counselors, program administrators, and policymakers. "Focus on Basics" is…

  12. Focus on Basics: Connecting Research & Practice. Volume 6, Issue A

    ERIC Educational Resources Information Center

    Garner, Barbara, Ed.

    2002-01-01

    "Focus on Basics" is the quarterly publication of the National Center for the Study of Adult Learning and Literacy. It presents best practices, current research on adult learning and literacy, and how research is used by adult basic education teachers, counselors, program administrators, and policymakers. "Focus on Basics" is…

  13. Focus on Basics: Connecting Research & Practice. Volume 9, Issue B

    ERIC Educational Resources Information Center

    Garner, Barbara, Ed.

    2008-01-01

    "Focus on Basics" is a publication of the U.S. Division of World Education, Inc. It presents best practices, current research on adult learning and literacy, and how research is used by adult basic education teachers, counselors, program administrators, and policymakers. "Focus on Basics" is dedicated to connecting research…

  14. NEESPI focus issues in Environmental Research Letters

    NASA Astrophysics Data System (ADS)

    Norman, Julian; Groisman, Pavel; Soja, Amber J.

    2010-05-01

    In 2007 and 2009 Environmental Research Letters published focus issues (edited by Pavel Groisman and Amber J Soja) made up of work carried out by NEESPI participants. Here, we present the content of those focus issues as an invaluable resource for researchers working in the NEESPI study area. The first of the two issues, published in 2007 with title 'Northern Hemisphere High Latitude Climate and Environmental Change', presents a diverse collection of articles that are assembled into five groups devoted to studies of climate and hydrology, land cover and land use, the biogeochemical cycle and its feedbacks, the cryosphere, and human dimensions. The second issue, published in 2009, with title 'Climatic and Environmental Change in Northern Eurasia' presents diverse, assorted studies of different aspects of contemporary change, representing the diversity of climates and ecosystems across Northern Eurasia.

  15. Research and Laboratory Instruction--An Experiment in Teaching

    ERIC Educational Resources Information Center

    Kramm, Kenneth R.

    1976-01-01

    Describes an attempt to incorporate research into laboratory work in an introductory ecology class and a senior seminar. The investigation involves the examination of rhythms of food consumption and circadian activities in humans. (GS)

  16. Contact Us | Frederick National Laboratory for Cancer Research

    Cancer.gov

    E-mail:fnlwebsite@nih.gov Phone:(301) 846-1000 Postal Mail: Frederick National Laboratory for Cancer Research P.O. Box B Frederick, MD 21702-1201 Human Resources Office of Recruitment (301) 846-5362 Jim

  17. Focus on Basics: Connecting Research & Practice. Volume 6, Issue B

    ERIC Educational Resources Information Center

    Garner, Barbara, Ed.

    2003-01-01

    "Focus on Basics" is the quarterly publication of the National Center for the Study of Adult Learning and Literacy. It presents best practices, current research on adult learning and literacy, and how research is used by adult basic education teachers, counselors, program administrators, and policymakers. "Focus on Basics" is dedicated to…

  18. Global Impact | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Through its direct support of clinical research, Frederick National Laboratory activities are not limited to national programs. The labis actively involved in more than 400 domestic and international studies related to cancer; influenza, HIV, E

  19. Locations Accessible | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland.Operations and Technical Support contractor Leidos Biomedical Resea

  20. Steam Plant at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-09-21

    The Steam Plant at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory supplies steam to the major test facilities and office buildings. Steam is used for the Icing Research Tunnel's spray system and the Engine Research Building’s desiccant air dryers. In addition, its five boilers supply heat to various buildings and the cafeteria. Schirmer-Schneider Company built the $141,000 facility in the fall of 1942, and it has been in operation ever since.

  1. Mapping Maize Genes: A Series of Research-Based Laboratory Exercises

    ERIC Educational Resources Information Center

    Makarevitch, Irina; Kralich, Elizabeth

    2011-01-01

    Open-ended, inquiry-based multiweek laboratory exercises are the key elements to increasing students' understanding and retention of the major biological concepts. Including original research into undergraduate teaching laboratories has also been shown to motivate students and improve their learning. Here, we present a series of original…

  2. Integrating teaching and research in the field and laboratory settings

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kaseke, K. F.; Daryanto, S.; Ravi, S.

    2015-12-01

    Field observations and laboratory measurements are great ways to engage students and spark students' interests in science. Typically these observations are separated from rigorous classroom teaching. Here we assessed the potential of integrating teaching and research in the field and laboratory setting in both US and abroad and worked with students without strong science background to utilize simple laboratory equipment and various environmental sensors to conduct innovative projects. We worked with students in Namibia and two local high school students in Indianapolis to conduct leaf potential measurements, soil nutrient extraction, soil infiltration measurements and isotope measurements. The experience showed us the potential of integrating teaching and research in the field setting and working with people with minimum exposure to modern scientific instrumentation to carry out creative projects.

  3. Michigan/Air Force Research Laboratory (AFRL) Collaborative Center in Control Science (MACCCS)

    DTIC Science & Technology

    2016-09-01

    AFRL-RQ-WP-TR-2016-0139 MICHIGAN/AIR FORCE RESEARCH LABORATORY (AFRL) COLLABORATIVE CENTER IN CONTROL SCIENCE (MACCCS) Anouck Girard...Final 18 April 2007 – 30 September 2016 4. TITLE AND SUBTITLE MICHIGAN/AIR FORCE RESEARCH LABORATORY (AFRL) COLLABORATIVE CENTER IN CONTROL SCIENCE...and amplify an internationally recognized center of excellence in control science research and education, through interaction between the faculty and

  4. Improving validity of informed consent for biomedical research in Zambia using a laboratory exposure intervention.

    PubMed

    Zulu, Joseph Mumba; Lisulo, Mpala Mwanza; Besa, Ellen; Kaonga, Patrick; Chisenga, Caroline C; Chomba, Mumba; Simuyandi, Michelo; Banda, Rosemary; Kelly, Paul

    2014-01-01

    Complex biomedical research can lead to disquiet in communities with limited exposure to scientific discussions, leading to rumours or to high drop-out rates. We set out to test an intervention designed to address apprehensions commonly encountered in a community where literacy is uncommon, and where complex biomedical research has been conducted for over a decade. We aimed to determine if it could improve the validity of consent. Data were collected using focus group discussions, key informant interviews and observations. We designed an intervention that exposed participants to a detailed demonstration of laboratory processes. Each group was interviewed twice in a day, before and after exposure to the intervention in order to assess changes in their views. Factors that motivated people to participate in invasive biomedical research included a desire to stay healthy because of the screening during the recruitment process, regular advice from doctors, free medical services, and trust in the researchers. Inhibiting factors were limited knowledge about samples taken from their bodies during endoscopic procedures, the impact of endoscopy on the function of internal organs, and concerns about the use of biomedical samples. The belief that blood can be used for Satanic practices also created insecurities about drawing of blood samples. Further inhibiting factors included a fear of being labelled as HIV positive if known to consult heath workers repeatedly, and gender inequality. Concerns about the use and storage of blood and tissue samples were overcome by a laboratory exposure intervention. Selecting a group of members from target community and engaging them in a laboratory exposure intervention could be a useful tool for enhancing specific aspects of consent for biomedical research. Further work is needed to determine the extent to which improved understanding permeates beyond the immediate group participating in the intervention.

  5. Improving Validity of Informed Consent for Biomedical Research in Zambia Using a Laboratory Exposure Intervention

    PubMed Central

    Zulu, Joseph Mumba; Lisulo, Mpala Mwanza; Besa, Ellen; Kaonga, Patrick; Chisenga, Caroline C.; Chomba, Mumba; Simuyandi, Michelo; Banda, Rosemary; Kelly, Paul

    2014-01-01

    Background Complex biomedical research can lead to disquiet in communities with limited exposure to scientific discussions, leading to rumours or to high drop-out rates. We set out to test an intervention designed to address apprehensions commonly encountered in a community where literacy is uncommon, and where complex biomedical research has been conducted for over a decade. We aimed to determine if it could improve the validity of consent. Methods Data were collected using focus group discussions, key informant interviews and observations. We designed an intervention that exposed participants to a detailed demonstration of laboratory processes. Each group was interviewed twice in a day, before and after exposure to the intervention in order to assess changes in their views. Results Factors that motivated people to participate in invasive biomedical research included a desire to stay healthy because of the screening during the recruitment process, regular advice from doctors, free medical services, and trust in the researchers. Inhibiting factors were limited knowledge about samples taken from their bodies during endoscopic procedures, the impact of endoscopy on the function of internal organs, and concerns about the use of biomedical samples. The belief that blood can be used for Satanic practices also created insecurities about drawing of blood samples. Further inhibiting factors included a fear of being labelled as HIV positive if known to consult heath workers repeatedly, and gender inequality. Concerns about the use and storage of blood and tissue samples were overcome by a laboratory exposure intervention. Conclusion Selecting a group of members from target community and engaging them in a laboratory exposure intervention could be a useful tool for enhancing specific aspects of consent for biomedical research. Further work is needed to determine the extent to which improved understanding permeates beyond the immediate group participating in the intervention

  6. Smart Electronic Laboratory Notebooks for the NIST Research Environment.

    PubMed

    Gates, Richard S; McLean, Mark J; Osborn, William A

    2015-01-01

    Laboratory notebooks have been a staple of scientific research for centuries for organizing and documenting ideas and experiments. Modern laboratories are increasingly reliant on electronic data collection and analysis, so it seems inevitable that the digital revolution should come to the ordinary laboratory notebook. The most important aspect of this transition is to make the shift as comfortable and intuitive as possible, so that the creative process that is the hallmark of scientific investigation and engineering achievement is maintained, and ideally enhanced. The smart electronic laboratory notebooks described in this paper represent a paradigm shift from the old pen and paper style notebooks and provide a host of powerful operational and documentation capabilities in an intuitive format that is available anywhere at any time.

  7. Smart Electronic Laboratory Notebooks for the NIST Research Environment

    PubMed Central

    Gates, Richard S.; McLean, Mark J.; Osborn, William A.

    2015-01-01

    Laboratory notebooks have been a staple of scientific research for centuries for organizing and documenting ideas and experiments. Modern laboratories are increasingly reliant on electronic data collection and analysis, so it seems inevitable that the digital revolution should come to the ordinary laboratory notebook. The most important aspect of this transition is to make the shift as comfortable and intuitive as possible, so that the creative process that is the hallmark of scientific investigation and engineering achievement is maintained, and ideally enhanced. The smart electronic laboratory notebooks described in this paper represent a paradigm shift from the old pen and paper style notebooks and provide a host of powerful operational and documentation capabilities in an intuitive format that is available anywhere at any time. PMID:26958447

  8. Becoming a scientist: A qualitative study of the educational experience of undergraduates working in an American and a Brazilian research laboratory

    NASA Astrophysics Data System (ADS)

    Pascoa, Maria Beatriz Amorim

    Because the production of scientific and technological innovations has been at the center of debates for economic growth, scientists are recognized as important actors in the current global market. In this study, I will examine the undergraduate education of future scientists by focusing on students working in research projects of faculty members. This research activity has been promoted by American and Brazilian public agencies as an attempt to attract more college students to scientific careers as well as to improve their future performance in science. Evaluations of these programs have focused on important quantitative indicators focusing mainly on the amount of students that later choose to pursue scientific careers. However, these studies fail to address important educational aspects of undergraduates' experience. In this research, I explore the educational processes taking place as students are introduced to the making of science in order to understand how and what they are learning. Three bodies of literature illuminates the formulation and the analysis of the research questions: (1) theories of globalization situate the education of scientists within the dynamics of a broader social, economic, cultural, and historical framework; (2) the critical pedagogy of Paulo Freire is the basis for the understanding of the pedagogical processes shaping undergraduate students' experiences within the research site; (3) Critical and Cultural Studies of Science and Technology illuminate the analysis of the complex interactions and practices constructed within the laboratory. In order to understand the educational processes shaping the experiences of undergraduate students engaged in research activities, I conducted a qualitative investigation based on participant-observation and in-depth interviews in an American and a Brazilian laboratories. The two sites constituted insightful case studies that illuminated the understanding of inquires about the training of students in

  9. Dental Laboratory Technology. Project Report Phase I with Research Findings.

    ERIC Educational Resources Information Center

    Sappe', Hoyt; Smith, Debra S.

    This report provides results of Phase I of a project that researched the occupational area of dental laboratory technology, established appropriate committees, and conducted task verification. These results are intended to guide development of a program designed to train dental laboratory technicians. Section 1 contains general information:…

  10. Frontiers: Research highlights 1946-1996 [50th Anniversary Edition. Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    This special edition of 'Frontiers' commemorates Argonne National Laboratory's 50th anniversary of service to science and society. America's first national laboratory, Argonne has been in the forefront of U.S. scientific and technological research from its beginning. Past accomplishments, current research, and future plans are highlighted.

  11. Frontiers: Research Highlights 1946-1996 [50th Anniversary Edition. Argonne National Laboratory

    DOE R&D Accomplishments Database

    1996-01-01

    This special edition of 'Frontiers' commemorates Argonne National Laboratory's 50th anniversary of service to science and society. America's first national laboratory, Argonne has been in the forefront of U.S. scientific and technological research from its beginning. Past accomplishments, current research, and future plans are highlighted.

  12. The focus group technique in library research: an introduction.

    PubMed Central

    Glitz, B

    1997-01-01

    The focus group technique is one example of a qualitative research methodology used to explore the opinions, knowledge, perceptions, and concerns of individuals in regard to a particular topic. The focus group typically involves six to ten individuals who have some knowledge of or experience with the topic. The group discussion is led by a moderator who guides participants through a series of open-ended questions. The information gathered can provide important clues to human attitudes and values as they relate to the topic. Such information can be extremely useful to libraries that are trying to gain a better understanding of their patrons' needs and thus make better management decisions to help satisfy those needs. The technique can also be used successfully in conjunction with other research tools, such as surveys, either to help develop a questionnaire or to explain specific survey results. This paper introduces the use of focus groups in library research, the skills needed to conduct groups, and their strengths and weaknesses. Examples of the use of focus groups in health sciences libraries are presented, including the results of a survey from these libraries. PMID:9431428

  13. The focus group technique in library research: an introduction.

    PubMed

    Glitz, B

    1997-10-01

    The focus group technique is one example of a qualitative research methodology used to explore the opinions, knowledge, perceptions, and concerns of individuals in regard to a particular topic. The focus group typically involves six to ten individuals who have some knowledge of or experience with the topic. The group discussion is led by a moderator who guides participants through a series of open-ended questions. The information gathered can provide important clues to human attitudes and values as they relate to the topic. Such information can be extremely useful to libraries that are trying to gain a better understanding of their patrons' needs and thus make better management decisions to help satisfy those needs. The technique can also be used successfully in conjunction with other research tools, such as surveys, either to help develop a questionnaire or to explain specific survey results. This paper introduces the use of focus groups in library research, the skills needed to conduct groups, and their strengths and weaknesses. Examples of the use of focus groups in health sciences libraries are presented, including the results of a survey from these libraries.

  14. Material Transfer Agreement (MTA) | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Material Transfer Agreements are appropriate for exchange of materials into or out of the Frederick National Laboratory for research or testing purposes, with no collaborative research by parties involving the materials.

  15. 76 FR 1212 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board Panel for Eligibility; Notice of Meeting The Department of Veterans Affairs (VA) gives notice under the Public Law 92-463 (Federal Advisory...

  16. 75 FR 57833 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board; Notice of Meetings The Department of Veterans Affairs gives notice under the Public Law 92-463 (Federal Advisory Committee Act) that...

  17. 76 FR 66367 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board; Notice of Meetings The Department of Veterans Affairs gives notice under the Public Law 92-463 (Federal Advisory Committee Act) that...

  18. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board, Notice of Meeting Amendment The Department of Veterans Affairs (VA) gives notice under the Public Law 92-463 (Federal Advisory Committee Act...

  19. 76 FR 79273 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board Panel for Eligibility, Notice of Meeting The Department of Veterans Affairs (VA) gives notice under Public Law 92-463 (Federal Advisory...

  20. Summer Research Experiences with a Laboratory Tokamak

    NASA Astrophysics Data System (ADS)

    Farley, N.; Mauel, M.; Navratil, G.; Cates, C.; Maurer, D.; Mukherjee, S.; Shilov, M.; Taylor, E.

    1998-11-01

    Columbia University's Summer Research Program for Secondary School Science Teachers seeks to improve middle and high school student understanding of science. The Program enhances science teachers' understanding of the practice of science by having them participate for two consecutive summers as members of laboratory research teams led by Columbia University faculty. In this poster, we report the research and educational activities of two summer internships with the HBT-EP research tokamak. Research activities have included (1) computer data acquisition and the representation of complex plasma wave phenomena as audible sounds, and (2) the design and construction of pulsed microwave systems to experience the design and testing of special-purpose equipment in order to achieve a specific technical goal. We also present an overview of the positive impact this type of plasma research involvement has had on high school science teaching.

  1. STAR: Preparing future science and math teachers through authentic research experiences at national laboratories

    NASA Astrophysics Data System (ADS)

    Keller, John; Rebar, Bryan

    2012-11-01

    The STEM Teacher and Researcher (STAR) Program provides 9-week paid summer research experiences at national research laboratories for future science and math teachers. The program, run by the Cal Poly Center for Excellence in Science and Mathematics Education (CESaME) on behalf of the entire California State University (CSU) System, has arranged 290 research internships for 230 STEM undergraduates and credential candidates from 43 campuses over the past 6 years. The program has partnered with seven Department of Energy labs, four NASA centers, three NOAA facilities, and the National Optical Astronomy Observatory (NOAO). Primary components of the summer experience include a) conducting research with a mentor or mentor team, b) participating in weekly 2-3 hour workshops focused on translating lessons learned from summer research into classroom practice, and c) presenting a research poster or oral presentation and providing a lesson plan linked to the summer research experience. The central premise behind the STAR Program is that future science and math teachers can more effectively prepare the next generation of science, math, and engineering students if they themselves have authentic experiences as researchers.

  2. New Research Findings on Emotionally Focused Therapy: Introduction to Special Section

    ERIC Educational Resources Information Center

    Johnson, Susan M.; Wittenborn, Andrea K.

    2012-01-01

    This article introduces the special section "New Research Findings on Emotionally Focused Therapy." Emotionally focused couple therapy researchers have a strong tradition of outcome and process research and this special section presents new findings from three recent studies. The first study furthers the goal of determining the kinds of clients…

  3. US Naval Research Laboratory's Current Space Photovoltaic Experiemtns

    NASA Astrophysics Data System (ADS)

    Jenkins, Phillip; Walters, Robert; Messenger, Scott; Krasowski, Michael

    2008-09-01

    The US Naval Research Laboratory (NRL) has a rich history conducting space photovoltaic (PV) experiments starting with Vanguard I, the first solar powered satellite in 1958. Today, NRL in collaboration with the NASA Glenn Research Center, is engaged in three flight experiments demonstrating a wide range of PV technologies in both LEO and HEO orbits. The Forward Technology Solar Cell Experiment (FTSCE)[1], part of the 5th Materials on the International Space Station Experiment (MISSE-5), flew for 13 months on the International Space Station in 2005-2006. The FTSCE provided in-situ I-V monitoring of advanced III-V multi-junction cells and laboratory prototypes of thin film and other next generation technologies. Two experiments under development will provide more opportunities to demonstrate advanced solar cells and characterization electronics that are easily integrated on a wide variety of spacecraft bus architectures.

  4. Optical laboratory facilities at the Finnish Meteorological Institute - Arctic Research Centre

    NASA Astrophysics Data System (ADS)

    Lakkala, Kaisa; Suokanerva, Hanne; Matti Karhu, Juha; Aarva, Antti; Poikonen, Antti; Karppinen, Tomi; Ahponen, Markku; Hannula, Henna-Reetta; Kontu, Anna; Kyrö, Esko

    2016-07-01

    This paper describes the laboratory facilities at the Finnish Meteorological Institute - Arctic Research Centre (FMI-ARC, http://fmiarc.fmi.fi). They comprise an optical laboratory, a facility for biological studies, and an office. A dark room has been built, in which an optical table and a fixed lamp test system are set up, and the electronics allow high-precision adjustment of the current. The Brewer spectroradiometer, NILU-UV multifilter radiometer, and Analytical Spectral Devices (ASD) spectroradiometer of the FMI-ARC are regularly calibrated or checked for stability in the laboratory. The facilities are ideal for responding to the needs of international multidisciplinary research, giving the possibility to calibrate and characterize the research instruments as well as handle and store samples.

  5. Research and Teaching: The Impact of a Four-Step Laboratory Pedagogical Framework on Biology Students' Perceptions of Laboratory Skills, Knowledge, and Interest in Research

    ERIC Educational Resources Information Center

    McLaughlin, Jacqueline Shea; Favre, David E.; Weinstein, Suzanne E.; Goedhart, Christine M.

    2017-01-01

    Authentic undergraduate research laboratory experiences are essential to aid in the implementation of science education reform mandates and to effectively train a new generation of biology students. Here we present assessment data on a unique four-step laboratory pedagogical framework that allows students to develop scientific thinking and…

  6. Laboratory directed research and development 2006 annual report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westrich, Henry Roger

    2007-03-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2006. In addition to a programmatic and financial overview, the report includes progress reports from 430 individual R&D projects in 17 categories.

  7. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board; Notice of Meetings; Amendment The Department of Veterans Affairs (VA) gives notice under the Federal Advisory Committee Act, 5 U.S.C. App...

  8. The Los Alamos Scientific Laboratory - An Isolated Nuclear Research Establishment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradbury, Norris E.; Meade, Roger Allen

    Early in his twenty-five year career as the Director of the Los Alamos Scientific Laboratory, Norris Bradbury wrote at length about the atomic bomb and the many implications the bomb might have on the world. His themes were both technical and philosophical. In 1963, after nearly twenty years of leading the nation’s first nuclear weapons laboratory, Bradbury took the opportunity to broaden his writing. In a paper delivered to the International Atomic Energy Agency’s symposium on the “Criteria in the Selection of Sites for the Construction of Reactors and Nuclear Research Centers,” Bradbury took the opportunity to talk about themore » business of nuclear research and the human component of operating a scientific laboratory. This report is the transcript of his talk.« less

  9. Unbridle biomedical research from the laboratory cage

    PubMed Central

    Lahvis, Garet P

    2017-01-01

    Many biomedical research studies use captive animals to model human health and disease. However, a surprising number of studies show that the biological systems of animals living in standard laboratory housing are abnormal. To make animal studies more relevant to human health, research animals should live in the wild or be able to roam free in captive environments that offer a natural range of both positive and negative experiences. Recent technological advances now allow us to study freely roaming animals and we should make use of them. PMID:28661398

  10. Methodology in diagnostic laboratory test research in clinical chemistry and clinical chemistry and laboratory medicine.

    PubMed

    Lumbreras-Lacarra, Blanca; Ramos-Rincón, José Manuel; Hernández-Aguado, Ildefonso

    2004-03-01

    The application of epidemiologic principles to clinical diagnosis has been less developed than in other clinical areas. Knowledge of the main flaws affecting diagnostic laboratory test research is the first step for improving its quality. We assessed the methodologic aspects of articles on laboratory tests. We included articles that estimated indexes of diagnostic accuracy (sensitivity and specificity) and were published in Clinical Chemistry or Clinical Chemistry and Laboratory Medicine in 1996, 2001, and 2002. Clinical Chemistry has paid special attention to this field of research since 1996 by publishing recommendations, checklists, and reviews. Articles were identified through electronic searches in Medline. The strategy combined the Mesh term "sensitivity and specificity" (exploded) with the text words "specificity", "false negative", and "accuracy". We examined adherence to seven methodologic criteria used in the study by Reid et al. (JAMA1995;274:645-51) of papers published in general medical journals. Three observers evaluated each article independently. Seventy-nine articles fulfilled the inclusion criteria. The percentage of studies that satisfied each criterion improved from 1996 to 2002. Substantial improvement was observed in reporting of the statistical uncertainty of indices of diagnostic accuracy, in criteria based on clinical information from the study population (spectrum composition), and in avoidance of workup bias. Analytical reproducibility was reported frequently (68%), whereas information about indeterminate results was rarely provided. The mean number of methodologic criteria satisfied showed a statistically significant increase over the 3 years in Clinical Chemistry but not in Clinical Chemistry and Laboratory Medicine. The methodologic quality of the articles on diagnostic test research published in Clinical Chemistry and Clinical Chemistry and Laboratory Medicine is comparable to the quality observed in the best general medical journals

  11. Criteria for Selecting Types of Foreign-Language Laboratory Systems. ERIC Focus Reports on the Teaching of Foreign Languages, Number 20.

    ERIC Educational Resources Information Center

    Hutchinson, Joseph C.; Hutchinson, June O.

    Focusing on the current status of the language laboratory in instructional use, this report stresses the need to employ a systems approach in the selection and operation of laboratory equipment. The author points out the interrelatedness of the key factors in any system, including: (1) people, (2) method, (3) instructional materials, (4)…

  12. Laboratory Directed Research and Development LDRD-FY-2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    2012-03-01

    This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

  13. The NASA Lewis Research Center High Temperature Fatigue and Structures Laboratory

    NASA Technical Reports Server (NTRS)

    Mcgaw, M. A.; Bartolotta, P. A.

    1987-01-01

    The physical organization of the NASA Lewis Research Center High Temperature Fatigue and Structures Laboratory is described. Particular attention is given to uniaxial test systems, high cycle/low cycle testing systems, axial torsional test systems, computer system capabilities, and a laboratory addition. The proposed addition will double the floor area of the present laboratory and will be equipped with its own control room.

  14. The Complete Guide to Focus Group Marketing Research for Higher Education.

    ERIC Educational Resources Information Center

    Topor, Robert S.

    This guide discusses the use of focus groups in marketing research for higher education. It describes the differences between qualitative and quantitative research, and examines when it is appropriate to use focus group research, when it is not, and why. The guide describes a step-by-step approach in how to plan, formulate, moderate, and report…

  15. A Report on the Activities, Publications, and Pending Research of DHS/DOD Sponsored Post-doctoral Research Associate at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, Floyd E.; Tandon, Lav

    Since beginning at Los Alamos National Laboratory in February of 2012, I have been working as a DHS./DNDO Postdoctoral Research Associate under the mentorship of Lav Tandon and Khalil Spencer (NA-22 and mass spectrometry). The focus of my efforts, in addition to pursuing needed training and qualifications, has been the application of various instrumental approaches (e.g. Thermal Ionization Mass Spectrometry; TIMS) to a range of systems of interest in materials characterization and nuclear forensics. Research to be pursued in the coming months shall include the continued use of such approaches to advance current methods for: modified total evaporation, monitoring criticalmore » minor isotope systems, and chronometry. Each of the above points will be discussed.« less

  16. The Research Focus of Nations: Economic vs. Altruistic Motivations

    PubMed Central

    2017-01-01

    What motivates the research strategies of nations and institutions? We suggest that research primarily serves two masters–altruism and economic growth. Some nations focus more research in altruistic (or non-economic) fields while others focus more research in fields associated with economic growth. What causes this difference? Are there characteristics that would suggest why a nation is more aligned with altruism or economic growth? To answer this question, we have identified nine major fields of research by analyzing the publication activity of 4429 institutions using Scopus data. Two fields of research are clearly altruistic (there is relatively little involvement by industry) and two fields are clearly aligned with economic growth. The altruistic vs. economic nature of nations based on their publication profiles across these fields is correlated with national indicators on wealth, education, capitalism, individualism, power, religion, and language. While previous research has suggested that national research strategy is aligned with national wealth, our analysis shows that national wealth is not highly correlated with the tradeoff between altruistic and economic motives. Instead, the tradeoff is largely captured by a culture of individualism. Accordingly, implications for national research strategies are discussed. PMID:28056043

  17. The Research Focus of Nations: Economic vs. Altruistic Motivations.

    PubMed

    Klavans, Richard; Boyack, Kevin W

    2017-01-01

    What motivates the research strategies of nations and institutions? We suggest that research primarily serves two masters-altruism and economic growth. Some nations focus more research in altruistic (or non-economic) fields while others focus more research in fields associated with economic growth. What causes this difference? Are there characteristics that would suggest why a nation is more aligned with altruism or economic growth? To answer this question, we have identified nine major fields of research by analyzing the publication activity of 4429 institutions using Scopus data. Two fields of research are clearly altruistic (there is relatively little involvement by industry) and two fields are clearly aligned with economic growth. The altruistic vs. economic nature of nations based on their publication profiles across these fields is correlated with national indicators on wealth, education, capitalism, individualism, power, religion, and language. While previous research has suggested that national research strategy is aligned with national wealth, our analysis shows that national wealth is not highly correlated with the tradeoff between altruistic and economic motives. Instead, the tradeoff is largely captured by a culture of individualism. Accordingly, implications for national research strategies are discussed.

  18. Cryptosporidiosis outbreak at an academic animal research laboratory-Colorado, 2014.

    PubMed

    Hancock-Allen, Jessica; Alden, Nisha B; Cronquist, Alicia B

    2017-02-01

    After cryptosporidiosis was reported in three workers caring for preweaned calves at an academic research laboratory, we sought to identify cases, determine risk factors, and implement control measures. A cryptosporidiosis case was defined as diarrhea duration ≥72 hr, abdominal cramps, or vomiting in an animal research laboratory worker during July 14-July 31. A confirmed case had laboratory evidence of Cryptosporidium infection. Staff were interviewed regarding illness, potential exposures, training, and personal protective equipment (PPE) standard operating procedures (SOPs). The cryptosporidiosis attack rate (AR) was 74% (20/27); five were laboratory-confirmed. Median job training was 2 hr including respiratory-fit testing. No SOPs existed for doffing PPE. AR for workers who removed their gloves first was 84% (16/19) compared with 20% (1/5) for workers who removed gloves last (risk ratio = 4.2; P < 0.02). This outbreak highlights the importance of adequate training, enforced proper PPE procedures, and promoting a culture of safety. Am. J. Ind. Med. 60:208-214, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. NATIONAL LABORATORIES: Better Performance Reporting Could Aid Oversight of Laboratory-Directed R&D Program

    DTIC Science & Technology

    2001-09-01

    Development ( LDRD ) program, which formalized a long-standing policy of allowing its multi-program national laboratories discretion to conduct self...initiated, independent research and development (R&D). DOE requires that LDRD work must focus on the advanced study of scientific or technical problems...

  20. The Automated Primate Research Laboratory (APRL)

    NASA Technical Reports Server (NTRS)

    Pace, N.; Smith, G. D.

    1972-01-01

    A description is given of a self-contained automated primate research laboratory to study the effects of weightlessness on subhuman primates. Physiological parameters such as hemodynamics, respiration, blood constituents, waste, and diet and nutrition are analyzed for abnormalities in the simulated space environment. The Southeast Asian pig-tailed monkey (Macaca nemistrina) was selected for the experiments owing to its relative intelligence and learning capacity. The objective of the program is to demonstrate the feasibility of a man-tended primate space flight experiment.

  1. Nanotechnology Laboratory Collaborates with Army to Develop Botulism Vaccine | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Nanotechnology Characterization Laboratory (NCL) is collaborating with the Army to develop a candidate vaccine against botulism. Under a collaboration agreement between the National Cancer Institute and the U.S. Army Medical Research Institute of

  2. CSI flight experiment projects of the Naval Research Laboratory

    NASA Technical Reports Server (NTRS)

    Fisher, Shalom

    1993-01-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  3. CSI flight experiment projects of the Naval Research Laboratory

    NASA Astrophysics Data System (ADS)

    Fisher, Shalom

    1993-02-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  4. Mont Terri Underground Rock Laboratory, Switzerland-Research Program And Key Results

    NASA Astrophysics Data System (ADS)

    Nussbaum, C. O.; Bossart, P. J.

    2012-12-01

    Argillaceous formations generally act as aquitards because of their low hydraulic conductivities. This property, together with the large retention capacity of clays for cationic contaminants and the potential for self-sealing, has brought clay formations into focus as potential host rocks for the geological disposal of radioactive waste. Excavated in the Opalinus Clay formation, the Mont Terri underground rock laboratory in the Jura Mountains of NW Switzerland is an important international test site for researching clay formations. Research is carried out in the underground facility, which is located adjacent to the security gallery of the Mont Terri motorway tunnel. Fifteen partners from European countries, USA, Canada and Japan participate in the project. The objectives of the research program are to analyze the hydrogeological, geochemical and rock mechanical properties of the Opalinus Clay, to determine the changes induced by the excavation of galleries and by heating of the rock formation, to test sealing and container emplacement techniques and to evaluate and improve suitable investigation techniques. For the safety of deep geological disposal, it is of key importance to understand the processes occurring in the undisturbed argillaceous environment, as well as the processes in a disturbed system, during the operation of the repository. The objectives are related to: 1. Understanding processes and mechanisms in undisturbed clays and 2. Experiments related to repository-induced perturbations. Experiments of the first group are dedicated to: i) Improvement of drilling and excavation technologies and sampling methods; ii) Estimation of hydrogeological, rock mechanical and geochemical parameters of the undisturbed Opalinus Clay. Upscaling of parameters from laboratory to in situ scale; iii) Geochemistry of porewater and natural gases; evolution of porewater over time scales; iv) Assessment of long-term hydraulic transients associated with erosion and thermal

  5. Educational-research laboratory "electric circuits" on the base of digital technologies

    NASA Astrophysics Data System (ADS)

    Koroteyev, V. I.; Florentsev, V. V.; Florentseva, N. I.

    2017-01-01

    The problem of research activity of trainees' activation in the educational-research laboratory "Electric Circuits" using innovative methodological solutions and digital technologies is considered. The main task is in creation of the unified experimental research information-educational environment "Electrical Engineering". The problems arising during the developing and application of the modern software and hardware, experimental and research stands and digital control and measuring systems are presented. This paper presents the main stages of development and creation of educational-research laboratory "Electrical Circuits" at the Department of Electrical Engineering of NRNU MEPhI. The authors also consider the analogues of the described research complex offered by various educational institutions and companies. The analysis of their strengths and weaknesses, on which the advantages of the proposed solution are based, is held.

  6. National Research Council Research Associateships Program with Methane Hydrates Fellowships Program/National Energy Technology Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basques, Eric O.

    2014-03-20

    This report summarizes work carried out over the period from July 5, 2005-January 31, 2014. The work was carried out by the National Research Council Research Associateships Program of the National Academies, under the US Department of Energy's National Energy Technology Laboratory (NETL) program. This Technical Report consists of a description of activity from 2005 through 2014, broken out within yearly timeframes, for NRC/NETL Associateships researchers at NETL laboratories which includes individual tenure reports from Associates over this time period. The report also includes individual tenure reports from associates over this time period. The report also includes descriptions of programmore » promotion efforts, a breakdown of the review competitions, awards offered, and Associate's activities during their tenure.« less

  7. Research Timeline: Form-Focused Instruction and Second Language Acquisition

    ERIC Educational Resources Information Center

    Nassaji, Hossein

    2016-01-01

    This article provides a timeline of research on form-focused instruction (FFI). Over the past 40 years, research on the role of instruction has undergone many changes. Much of the early research concentrated on determining whether formal instruction makes any difference in the development of learner language. This question was motivated in part by…

  8. Strategic Plan for the ORD National Exposure Research Laboratory (NERL)

    EPA Science Inventory

    The National Exposure Research Laboratory (NERL) has a valued reputation for supporting the Agency’s mission of protecting human health and the environment with multidisciplinary expertise that brings cutting-edge research and technology to address critical exposure questions and...

  9. Radar research at The Pennsylvania State University Radar and Communications Laboratory

    NASA Astrophysics Data System (ADS)

    Narayanan, Ram M.

    2017-05-01

    The Radar and Communications Laboratory (RCL) at The Pennsylvania State University is at the forefront of radar technology and is engaged in cutting edge research in all aspects of radar, including modeling and simulation studies of novel radar paradigms, design and development of new types of radar architectures, and extensive field measurements in realistic scenarios. This paper summarizes the research at The Pennsylvania State University's Radar and Communications Laboratory and relevant collaborative research with several groups over the past 15 years in the field of radar and related technologies, including communications, radio frequency identification (RFID), and spectrum sensing.

  10. Potato-related research at USDA-ARS laboratories in Washington and Idaho

    USDA-ARS?s Scientific Manuscript database

    Potato-related research currently being conducted at three USDA-ARS laboratories in Idaho and Washington is reviewed. Objectives of research programs at the Temperate Tree Fruit & Vegetable Research Unit (Wapato, WA), the Irrigated Agriculture Research and Extension Center (Prosser, WA), and the Sm...

  11. Sandia National Laboratories focus issue: introduction.

    PubMed

    Boye, Robert

    2014-08-20

    For more than six decades, Sandia has provided the critical science and technology to address the nation's most challenging issues. Our original nuclear weapons mission has been complemented with work in defense systems, energy and climate, as well as international and homeland security. Our vision is to be a premier science and engineering laboratory for technology solutions to the most challenging problems that threaten peace and freedom for our nation and the globe.

  12. NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY - ACCOMPLISHMENTS FOR FY 2001

    EPA Science Inventory

    This Annual Report showcases some of the scientific activities of the National Health and Environmental Effects Research Laboratory (NHEERL) in various health and environmental effects research areas. Where appropriate, the contributions of other collaborating research organizat...

  13. Focus on environmental justice: new directions in international research

    NASA Astrophysics Data System (ADS)

    Chakraborty, Jayajit

    2017-03-01

    More than three decades since the emergence of the environmental justice (EJ) movement in the U.S., environmental injustices continue to unfold across the world to include new narratives of air and water pollution, as well as new forms of injustices associated with climate change, energy use, natural disasters, urban greenspaces, and public policies that adversely affect socially disadvantaged communities and future generations. This focus issue of Environmental Research Letters provides an interdisciplinary forum for conceptual, methodological, and empirical scholarship on EJ activism, research, and policy that highlights the continuing salience of an EJ perspective to understanding nature-society linkages. The 16 letters published in this focus issue address a variety of environmental issues and social injustices in multiple countries across the world, and advance EJ research by: (1) demonstrating how environmental injustice emerges through particular policies and political processes; (2) exploring environmental injustices associated with industrialization and industrial pollution; and (3) documenting unjust exposure to various environmental hazards in specific urban landscapes. As the discourse of EJ continues to evolve both topically and geographically, we hope that this focus issue will help establish research agendas for the next generation of EJ scholarship on distributive, procedural, participatory, and other forms of injustices, as well as their interrelationships.

  14. A Hybrid Integrated Laboratory and Inquiry-Based Research Experience: Replacing Traditional Laboratory Instruction with a Sustainable Student-Led Research Project

    ERIC Educational Resources Information Center

    Hartings, Matthew R.; Fox, Douglas M.; Miller, Abigail E.; Muratore, Kathryn E.

    2015-01-01

    The Department of Chemistry at American University has replaced its junior- and senior-level laboratory curriculum with two, two-semester long, student-led research projects as part of the department's American Chemical Society-accredited program. In the first semester of each sequence, a faculty instructor leads the students through a set of…

  15. Restrike Particle Beam Experiments on a Dense Plasma Focus. Opening Switch Research on a Dense Plasma Focus.

    DTIC Science & Technology

    1985-06-01

    Research on this grant has focused on plasma focus experiments in the areas of particle beam generation and as a potential repetitive opening switch...as were scaling laws for the increase of electron energy and current with input energy. The potential of the plasma focus as an opening switch was...delay line technique. The observed frequencies were most consistent with the lower hybrid frequency. Keywords include: Dense Plasma Focus , Particle Beam Generation, Opening Switch, Load Experiments, Pulsed Power.

  16. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FOX, K.J.

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE)more » annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2006.« less

  17. LDRD 2013 Annual Report: Laboratory Directed Research and Development Program Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bookless, W.

    This LDRD project establishes a research program led by Jingguang Chen, who has started a new position as a Joint Appointee between BNL and Columbia University as of FY2013. Under this project, Dr. Chen will establish a new program in catalysis science at BNL and Columbia University. The LDRD program will provide initial research funding to start research at both BNL and Columbia. At BNL, Dr. Chen will initiate laboratory research, including hiring research staff, and will collaborate with the existing BNL catalysis and electrocatalysis research groups. At Columbia, a subcontract to Dr. Chen will provide startup funding for hismore » laboratory research, including initial graduate student costs. The research efforts will be linked under a common Catalysis Program in Sustainable Fuels. The overall impact of this project will be to strengthen the BNL catalysis science program through new linked research thrusts and the addition of an internationally distinguished catalysis scientist.« less

  18. Laboratory directed research and development program FY 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  19. Identifying and Addressing Challenges to Research in University Laboratory Preschools

    ERIC Educational Resources Information Center

    File, Nancy

    2012-01-01

    Research Findings: This essay offers a review of challenges that university laboratory preschools face in providing a site for research that fits with other components of the program mission. An argument is made to consider paradigm shifts in research questions and methods that move away from traditions within the fields that study children's…

  20. General Henry Arnold Visits the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1944-11-21

    General Henry “Hap” Arnold, Commander of the US Army Air Forces during World War II, addresses the staff at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory on November 9, 1944. Arnold told the employees assembled in the hangar, “You’ve got a dual task. You’ve got a job ahead of you to keep the army and the navy air forces equipped with the finest equipment that you can for this war. You also have the job of looking forward into the future and starting now those developments, those experiments, that are going to keep us in our present situation—ahead of the world in the air. And that is quite a large order, and I leave it right in your laps.” Arnold served on the NACA’s Executive Committee in Washington from 1938 to 1944 and had been a strong advocate for the creation of the new engine research facility in Cleveland. Arnold believed in continual research and development. He pressed the nation’s aviation leaders to pursue the new jet engine technology, while simultaneously pushing to increase the performance of the nation’s largest piston engine for the B–29 Superfortress program. The general’s hectic wartime agenda limited his visit to the Cleveland laboratory to just a few hours, but he toured several of the NACA’s new test facilities including the Static Jet Propulsion Laboratory, the Icing Research Tunnel, and a B–24 Liberator in the hangar.

  1. A 13-week research-based biochemistry laboratory curriculum.

    PubMed

    Lefurgy, Scott T; Mundorff, Emily C

    2017-09-01

    Here, we present a 13-week research-based biochemistry laboratory curriculum designed to provide the students with the experience of engaging in original research while introducing foundational biochemistry laboratory techniques. The laboratory experience has been developed around the directed evolution of an enzyme chosen by the instructor, with mutations designed by the students. Ideal enzymes for this curriculum are able to be structurally modeled, solubly expressed, and monitored for activity by UV/Vis spectroscopy, and an example curriculum for haloalkane dehalogenase is given. Unique to this curriculum is a successful implementation of saturation mutagenesis and high-throughput screening of enzyme function, along with bioinformatics analysis, homology modeling, structural analysis, protein expression and purification, polyacrylamide gel electrophoresis, UV/Vis spectroscopy, and enzyme kinetics. Each of these techniques is carried out using a novel student-designed mutant library or enzyme variant unique to the lab team and, importantly, not described previously in the literature. Use of a well-established set of protocols promotes student data quality. Publication may result from the original student-generated hypotheses and data, either from the class as a whole or individual students that continue their independent projects upon course completion. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):437-448, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  2. NATIONAL RISK MANAGEMENT RESEARCH LABORATORY: PROVIDING SOLUTIONS FOR A BETTER TOMORROW

    EPA Science Inventory

    This small, two-fold flyer contains general information introducing EPA's National Risk Management Research Laboratory and its research program. The key overarching areas of research described are: Protection of drinking water; control of air pollution; pollution prevention and e...

  3. Focus on Basics: Connecting Research and Practice. Volume 6, Issue D

    ERIC Educational Resources Information Center

    National Center for the Study of Adult Learning and Literacy (NCSALL), Harvard University, 2004

    2004-01-01

    "Focus on Basics" is the quarterly publication of the National Center for the Study of Adult Learning and Literacy. It presents best practices, current research on adult learning and literacy, and how research is used by adult basic education teachers, counselors, program administrators, and policymakers. "Focus on Basics" is dedicated to…

  4. Frederick National Laboratory, National Cancer Institute of Mexico to Offer Training Fellowships | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- The Frederick National Laboratory for Cancer Research will extend its scientific mentoring across international borders for the first time by offering postdoctoral research fellowships to scientists under an agreement with the Nati

  5. Avoiding biohazards in medical, veterinary and research laboratories.

    PubMed

    Grizzle, W E; Fredenburgh, J

    2001-07-01

    Personnel in medical, veterinary or research laboratories may be exposed to a wide variety of pathogens that range from deadly to debilitating. For some of these pathogens, no treatment is available, and in other cases the treatment does not fully control the disease. It is important that personnel in laboratories that process human or microbiological specimens follow universal precautions when handling tissues, cells, or microbiological specimens owing to the increasing numbers of individuals infected with hepatitis C and HIV in the US and the possibility that an individual may be asymptomatic when a specimen is obtained. Similar precautions must be followed in laboratories that use animal tissues owing to the possibility of exposure to agents that are pathogenic in humans. Personnel with conditions associated with immunosuppression should evaluate carefully whether or not specific laboratory environments put them at increased risk of disease. We offer here some general approaches to identifying biohazards and to minimizing the potential risk of exposure. The issues discussed can be used to develop a general safety program as required by regulatory or accrediting agencies, including the Occupational Safety and Health Administration.

  6. Effects of light at night on laboratory animals and research outcomes.

    PubMed

    Emmer, Kathryn M; Russart, Kathryn L G; Walker, William H; Nelson, Randy J; DeVries, A Courtney

    2018-06-28

    Light has substantial influences on the physiology and behavior of most laboratory animals. As such, lighting conditions within animal rooms are potentially significant and often underappreciated variables within experiments. Disruption of the light/dark cycle, primarily by exposing animals to light at night (LAN), disturbs biological rhythms and has widespread physiological consequences because of mechanisms such as melatonin suppression, sympathetic stimulation, and altered circadian clock gene expression. Thus, attention to the lighting environment of laboratory animals and maintaining consistency of a light/dark cycle is imperative for study reproducibility. Light intensity, as well as wavelength, photoperiod, and timing, are all important variables. Although modern rodent facilities are designed to facilitate appropriate light cycling, there are simple ways to modify rooms to prevent extraneous light exposure during the dark period. Attention to lighting conditions of laboratory animals by both researchers and research care staff ensures best practices for maintaining animal welfare, as well as reproducibility of research results. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Laboratory directed research and development. FY 1995 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  8. Integrating teaching and authentic research in the field and laboratory settings

    NASA Astrophysics Data System (ADS)

    Daryanto, S.; Wang, L.; Kaseke, K. F.; Ravi, S.

    2016-12-01

    Typically authentic research activities are separated from rigorous classroom teaching. Here we assessed the potential of integrating teaching and research activities both in the field and in the laboratory. We worked with students from both US and abroad without strong science background to utilize advanced environmental sensors and statistical tool to conduct innovative projects. The students include one from Namibia and two local high school students in Indianapolis (through Project SEED, Summer Experience for the Economically Disadvantaged). They conducted leaf potential measurements, isotope measurements and meta-analysis. The experience showed us the great potential of integrating teaching and research in both field and laboratory settings.

  9. Human Toxocariasis: Prevalence and Factors Associated with Biosafety in Research Laboratories

    PubMed Central

    Mattos, Gabriela Torres; dos Santos, Paula Costa; Telmo, Paula de Lima; Berne, Maria Elisabeth Aires; Scaini, Carlos James

    2016-01-01

    Human toxocariasis is a neglected parasitic disease worldwide. Researchers studying this disease use infectious strains of Toxocara for experiments. Health workers are at risk in the course of their daily routine and must adhere to biosafety standards while carrying out the activities. Researchers on biosafety concerning working with these parasites are insufficient. The aim of this study was to determine the rate of seroprevalence of Toxocara species among health-care research laboratory workers (professors, technicians, and students), and to investigate the risk factors of Toxocara infection associated with laboratory practices. This cross-sectional study involved 74 researchers at two federal universities in southern Brazil from February 2014 to February 2015; 29 researchers manipulated infective strains of Toxocara canis (test group) and 45 did not (control group). Serum samples were examined using enzyme-linked immunosorbent assay. Epidemiological data were obtained via a questionnaire containing information about laboratory routine, eating behavior, and contact with dogs. The seroprevalence of anti-T. canis IgG was 14.9% (11/74; 13.8% [4/29] in the test group and 15.6% [7/45] in the control group). Most individuals in the test group correctly understood the primary mode of infection; however, 13.8% did not use gloves while manipulating T. canis eggs. Knowledge of biosafety must be well understood by health-care professionals doing laboratory work with biological agents. To our knowledge, this is the first study to investigate the rate of seroprevalence of IgG against Toxocara spp. among professionals and students who handle infective forms of the nematode T. canis. PMID:27698276

  10. The Laboratory is Vital in Science Instruction in the Secondary School.

    ERIC Educational Resources Information Center

    Klein, Sarah E.; And Others

    1982-01-01

    Presents the National Science Teachers Associations's (NSTA) position statement on the place of the laboratory in science education followed by other statements unique for teaching science in middle, junior, and senior high schools. Statements focus on teaching, research, and curriculum perspectives, laboratory's role, and laboratory's enhancement…

  11. Redefining Authentic Research Experiences in Introductory Biology Laboratories and Barriers to Their Implementation

    ERIC Educational Resources Information Center

    Spell, Rachelle M.; Guinan, Judith A.; Miller, Kristen R.; Beck, Christopher W.

    2014-01-01

    Incorporating authentic research experiences in introductory biology laboratory classes would greatly expand the number of students exposed to the excitement of discovery and the rigor of the scientific process. However, the essential components of an authentic research experience and the barriers to their implementation in laboratory classes are…

  12. Laboratory of Viral Diseases Guest Researcher Seminar Series | Center for Cancer Research

    Cancer.gov

    Laboratory of Viral Diseases Guest Researcher Seminar Series New Epigenetic Regulators of HIV Latency Speaker: Melanie Ott, M.D., Ph.D, Senior Investigator & Professor of Medicine Gladstone Institutes & University of California Building 33, Main Conference Room 1N09 Main NIH CAMPUS *BLDG 33 is a secure facility, please allow time to pass through security.

  13. Zoonoses of occupational health importance in contemporary laboratory animal research.

    PubMed

    Hankenson, F Claire; Johnston, Nancy A; Weigler, Benjamin J; Di Giacomo, Ronald F

    2003-12-01

    In contemporary laboratory animal facilities, workplace exposure to zoonotic pathogens, agents transmitted to humans from vertebrate animals or their tissues, is an occupational hazard. The primary (e.g., macaques, pigs, dogs, rabbits, mice, and rats) and secondary species (e.g., sheep, goats, cats, ferrets, and pigeons) of animals commonly used in biomedical research, as classified by the American College of Laboratory Animal Medicine, are established or potential hosts for a large number of zoonotic agents. Diseases included in this review are principally those wherein a risk to biomedical facility personnel has been documented by published reports of human cases in laboratory animal research settings, or under reasonably similar circumstances. Diseases are listed alphabetically, and each section includes information about clinical disease, transmission, occurrence, and prevention in animal reservoir species and humans. Our goal is to provide a resource for veterinarians, health-care professionals, technical staff, and administrators that will assist in the design and on-going evaluation of institutional occupational health and safety programs.

  14. Lawrence Livermore National Laboratory FY 2016 Laboratory Directed Research and Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R.; Gard, E.; Sketchley, J.

    The LDRD annual report for FY2016 consists of two parts: The Overview. This section contains a broad description of the LDRD Program, highlights of recent accomplishments and awards, Program statistics, and the LDRD portfolio-management processes. Project Reports. Project reports are submitted by all principal investigators at the end of the fiscal year. The length and depth of the report depends on the project’s lifecycle. For projects that will be continuing the following year, the principal investigator submits a continuing project report, which is a brief update containing descriptions of the goals, scope, motivation, relevance (to DOE/NNSA and Livermore mission areas),more » and technical progress achieved in FY16, as well as a list of selected publications and presentations that resulted from the research. For projects that concluded in FY16, a more detailed final report is provided that is technical in nature and includes the background, objectives, scientific approach, accomplishments, and impacts on the Laboratory missions, as well as a list of publications and presentations that resulted from the research. Project reports are listed under their research topics and organized by year and type, such as exploratory research (ER), feasibility study (FS), laboratory-wide competition (LW), and strategic initiative (SI). Each project is assigned a unique tracking code, an identifier that consists of three elements. The first is the fiscal year in which the project began, the second represents the project type, and the third identifies the serial number of the project for that fiscal year. For example, 16-ERD-100 means the project is an exploratory research project that began in FY16. The three-digit number (100) represents the serial number for the project.« less

  15. Development and implications of technology in reform-based physics laboratories

    NASA Astrophysics Data System (ADS)

    Chen, Sufen; Lo, Hao-Chang; Lin, Jing-Wen; Liang, Jyh-Chong; Chang, Hsin-Yi; Hwang, Fu-Kwun; Chiou, Guo-Li; Wu, Ying-Tien; Lee, Silvia Wen-Yu; Wu, Hsin-Kai; Wang, Chia-Yu; Tsai, Chin-Chung

    2012-12-01

    Technology has been widely involved in science research. Researchers are now applying it to science education in an attempt to bring students’ science activities closer to authentic science activities. The present study synthesizes the research to discuss the development of technology-enhanced laboratories and how technology may contribute to fulfilling the instructional objectives of laboratories in physics. To be more specific, this paper discusses the engagement of technology to innovate physics laboratories and the potential of technology to promote inquiry, instructor and peer interaction, and learning outcomes. We then construct a framework for teachers, scientists, and programmers to guide and evaluate technology-integrated laboratories. The framework includes inquiry learning and openness supported by technology, ways of conducting laboratories, and the diverse learning objectives on which a technology-integrated laboratory may be focused.

  16. Laboratory directed research and development: Annual report to the Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    As one of the premier scientific laboratories of the DOE, Brookhaven must continuously foster the development of new ideas and technologies, promote the early exploration and exploitation of creative and innovative concepts, and develop new fundable R and D projects and programs. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is a major factor in achievingmore » and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments are described in this report. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums.« less

  17. Cyclotron laboratory of the Institute for Nuclear Research and Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Tonev, D.; Goutev, N.; Georgiev, L. S.

    2016-06-01

    An accelerator laboratory is presently under construction in Sofia at the Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences. The laboratory will use a TR24 type of cyclotron, which provides a possibility to accelerate a proton beam with an energy of 15 to 24 MeV and current of up to 0.4 mA. An accelerator with such parameters allows to produce a large variety of radioisotopes for development of radiopharmaceuticals. The most common radioisotopes that could be produced with such a cyclotron are PET isotopes like: 11C, 13N, 15O, 18F, 124I, 64Cu, 68Ge/68Ga, and SPECT isotopes like: 123I, 111In, 67Ga, 57Co, 99m Tc. Our aim is to use the cyclotron facility for research in the fields of radiopharmacy, radiochemistry, radiobiology, nuclear physics, solid state physics, applied research, new materials and for education in all these fields including nuclear energy. The building of the laboratory will be constructed nearby the Institute for Nuclear Research and Nuclear Energy and the cyclotron together with all the equipment needed will be installed there.

  18. Research Collaborations Between Universities and Department of Defense Laboratories

    DTIC Science & Technology

    2014-07-31

    collaboration and often combines government, industry , and university partners. Must be competed. Medium to long term Yes Yes Yes Yes...can reach out to third parties such as industry or Federally Funded Research and Development Centers (FFRDCs) without the having to go through...position at DOD laboratories. Students learn about research that is important to the DOD, and university- industry collaborations are a great way to

  19. Space Electric Research Test in the Electric Propulsion Laboratory

    NASA Image and Video Library

    1964-06-21

    Technicians prepare the Space Electric Research Test (SERT-I) payload for a test in Tank Number 5 of the Electric Propulsion Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers had been studying different methods of electric rocket propulsion since the mid-1950s. Harold Kaufman created the first successful engine, the electron bombardment ion engine, in the early 1960s. These electric engines created and accelerated small particles of propellant material to high exhaust velocities. Electric engines have a very small amount of thrust, but once lofted into orbit by workhorse chemical rockets, they are capable of small, continuous thrust for periods up to several years. The electron bombardment thruster operated at a 90-percent efficiency during testing in the Electric Propulsion Laboratory. The package was rapidly rotated in a vacuum to simulate its behavior in space. The SERT-I mission, launched from Wallops Island, Virginia, was the first flight test of Kaufman’s ion engine. SERT-I had one cesium engine and one mercury engine. The suborbital flight was only 50 minutes in duration but proved that the ion engine could operate in space. The Electric Propulsion Laboratory included two large space simulation chambers, one of which is seen here. Each uses twenty 2.6-foot diameter diffusion pumps, blowers, and roughing pumps to remove the air inside the tank to create the thin atmosphere. A helium refrigeration system simulates the cold temperatures of space.

  20. CNR LARA project, Italy: Airborne laboratory for environmental research

    NASA Technical Reports Server (NTRS)

    Bianchi, R.; Cavalli, R. M.; Fiumi, L.; Marino, C. M.; Pignatti, S.

    1995-01-01

    The increasing interest for the environmental problems and the study of the impact on the environment due to antropic activity produced an enhancement of remote sensing applications. The Italian National Research Council (CNR) established a new laboratory for airborne hyperspectral imaging, the LARA Project (Laboratorio Aero per Ricerche Ambientali - Airborne Laboratory for Environmental Research), equipping its airborne laboratory, a CASA-212, mainly with the Daedalus AA5000 MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) instrument. MIVIS's channels, spectral bandwidths, and locations are chosen to meet the needs of scientific research for advanced applications of remote sensing data. MIVIS can make significant contributions to solving problems in many diverse areas such as geologic exploration, land use studies, mineralogy, agricultural crop studies, energy loss analysis, pollution assessment, volcanology, forest fire management and others. The broad spectral range and the many discrete narrow channels of MIVIS provide a fine quantization of spectral information that permits accurate definition of absorption features from a variety of materials, allowing the extraction of chemical and physical information of our environment. The availability of such a hyperspectral imager, that will operate mainly in the Mediterranean area, at the present represents a unique opportunity for those who are involved in environmental studies and land-management to collect systematically large-scale and high spectral-spatial resolution data of this part of the world. Nevertheless, MIVIS deployments will touch other parts of the world, where a major interest from the international scientific community is present.

  1. [Biosafety in laboratories concerning exposure to biological agents].

    PubMed

    Vonesch, N; Tomao, P; Di Renzi, S; Vita, S; Signorini, S

    2006-01-01

    Laboratory workers are exposed to a variety of potential occupational health hazards including those deriving from infectious materials and cultures, radiations, toxic and flammable chemicals, as well as mechanical and electrical hazard. Although all of them are significant, this paper will focus on biological hazards present in clinical and research laboratories. In fact, in spite of numerous publications, guidelines and regulations, laboratory workers are still subject to infections acquired in the course of their researches. This paper describes some aspects that include good microbiological practices (GMPs), appropriate containment equipment, practices and operational procedures to minimize workers' risk of injury or illness.

  2. Laboratory Directed Research and Development FY2011 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundationalmore » science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser

  3. Laboratory Astrophysics White Paper

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy; Federman, Steve; Kwong, Victor; Salama, Farid; Savin, Daniel; Stancil, Phillip; Weingartner, Joe; Ziurys, Lucy

    2006-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomical and planetary research and will remain so for many generations to come. From the level of scientific conception to that of the scientific return, it is our understanding of the underlying processes that allows us to address fundamental questions regarding the origins and evolution of galaxies, stars, planetary systems, and life in the cosmos. In this regard, laboratory astrophysics is much like detector and instrument development at NASA and NSF; these efforts are necessary for the astronomical research being funded by the agencies. The NASA Laboratory Astrophysics Workshop met at the University of Nevada, Las Vegas (UNLV) from 14-16 February, 2006 to identify the current laboratory data needed to support existing and future NASA missions and programs in the Astrophysics Division of the Science Mission Directorate (SMD). Here we refer to both laboratory and theoretical work as laboratory astrophysics unless a distinction is necessary. The format for the Workshop involved invited talks by users of laboratory data, shorter contributed talks and poster presentations by both users and providers that highlighted exciting developments in laboratory astrophysics, and breakout sessions where users and providers discussed each others' needs and limitations. We also note that the members of the Scientific Organizing Committee are users as well as providers of laboratory data. As in previous workshops, the focus was on atomic, molecular, and solid state physics.

  4. Virtual Laboratory Enabling Collaborative Research in Applied Vehicle Technologies

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Cronin, Catherine K.; Scott, Laura E.

    2005-01-01

    The virtual laboratory is a new technology, based on the internet, that has had wide usage in a variety of technical fields because of its inherent ability to allow many users to participate simultaneously in instruction (education) or in the collaborative study of a common problem (real-world application). The leadership in the Applied Vehicle Technology panel has encouraged the utilization of this technology in its task groups for some time and its parent organization, the Research and Technology Agency, has done the same for its own administrative use. This paper outlines the application of the virtual laboratory to those fields important to applied vehicle technologies, gives the status of the effort, and identifies the benefit it can have on collaborative research. The latter is done, in part, through a specific example, i.e. the experience of one task group.

  5. Sequim Marine Research Laboratory routine environmental measurements during CY-1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, J.J.; Blumer, P.J.

    1977-05-01

    Beginning in 1976, a routine environmental program was established at the Marine Research Laboratory (MRL) at Sequim, Washington. The program is designed, primarily, to determine levels of radioactivity present in selected biota in Sequim Bay. The biota were selected because of their presence near the laboratory and their capacity to concentrate trace elements. Other samples were obtained to determine the radionuclides in Sequim Bay and laboratory drinking water, as well as the ambient radiation exposure levels and surface deposition of fallout radionuclides for the laboratory area. A summary of the analytical methods used is included. The present document includes datamore » obtained during CY 1976, the first year of the program. Radionuclides present in samples are attributed to fallout. Data are included on content of oil and Cu in seawater samples.« less

  6. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte harvests a potato grown in the Biomass Production Chamber of the Controlled environment Life Support system (CELSS) in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' His work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  7. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte (right) and Cheryl Mackowiak harvest potatoes grown in the Biomass Production Chamber of the Controlled Enviornment Life Support System (CELSS in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  8. Space Station Freedom: a unique laboratory for gravitational biology research

    NASA Technical Reports Server (NTRS)

    Phillips, R. W.; Cowing, K. L.

    1993-01-01

    The advent of Space Station Freedom (SSF) will provide a permanent laboratory in space with unparalleled opportunities to perform biological research. As with any spacecraft there will also be limitations. It is our intent to describe this space laboratory and present a picture of how scientists will conduct research in this unique environment we call space. SSF is an international venture which will continue to serve as a model for other peaceful international efforts. It is hoped that as the human race moves out from this planet back to the moon and then on to Mars that SSF can serve as a successful example of how things can and should be done.

  9. Human Toxocariasis: Prevalence and Factors Associated with Biosafety in Research Laboratories.

    PubMed

    Mattos, Gabriela Torres; Santos, Paula Costa Dos; Telmo, Paula de Lima; Berne, Maria Elisabeth Aires; Scaini, Carlos James

    2016-12-07

    Human toxocariasis is a neglected parasitic disease worldwide. Researchers studying this disease use infectious strains of Toxocara for experiments. Health workers are at risk in the course of their daily routine and must adhere to biosafety standards while carrying out the activities. Researchers on biosafety concerning working with these parasites are insufficient. The aim of this study was to determine the rate of seroprevalence of Toxocara species among health-care research laboratory workers (professors, technicians, and students), and to investigate the risk factors of Toxocara infection associated with laboratory practices. This cross-sectional study involved 74 researchers at two federal universities in southern Brazil from February 2014 to February 2015; 29 researchers manipulated infective strains of Toxocara canis (test group) and 45 did not (control group). Serum samples were examined using enzyme-linked immunosorbent assay. Epidemiological data were obtained via a questionnaire containing information about laboratory routine, eating behavior, and contact with dogs. The seroprevalence of anti-T. canis IgG was 14.9% (11/74; 13.8% [4/29] in the test group and 15.6% [7/45] in the control group). Most individuals in the test group correctly understood the primary mode of infection; however, 13.8% did not use gloves while manipulating T. canis eggs. Knowledge of biosafety must be well understood by health-care professionals doing laboratory work with biological agents. To our knowledge, this is the first study to investigate the rate of seroprevalence of IgG against Toxocara spp. among professionals and students who handle infective forms of the nematode T. canis. © The American Society of Tropical Medicine and Hygiene.

  10. Institutional training programs for research personnel conducted by laboratory-animal veterinarians.

    PubMed

    Dyson, Melissa C; Rush, Howard G

    2012-01-01

    Research institutions are required by federal law and national standards to ensure that individuals involved in animal research are appropriately trained in techniques and procedures used on animals. Meeting these requirements necessitates the support of institutional authorities; policies for the documentation and enforcement of training; resources to support and provide training programs; and high-quality, effective educational material. Because of their expertise, laboratory-animal veterinarians play an essential role in the design, implementation, and provision of educational programs for faculty, staff, and students in biomedical research. At large research institutions, provision of a training program for animal care and use personnel can be challenging because of the animal-research enterprise's size and scope. At the University of Michigan (UM), approximately 3,500 individuals have direct contact with animals used in research. We describe a comprehensive educational program for animal care and use personnel designed and provided by laboratory-animal veterinarians at UM and discuss the challenges associated with its implementation.

  11. Lumber drying and heat sterilization research at the U.S. Forest Products Laboratory

    Treesearch

    William T. Simpson

    2002-01-01

    The Forest Products Laboratory (FPL) has a long history of research and technology transfer in lumber drying. Many of the dry kiln schedules used in industry today were developed by the staff of the Laboratory, and for many years the Laboratory conducted a kiln drying short course for training dry kiln operators. The purpose of this report is to describe the Laboratory...

  12. New Visiting Scholars Program at Frederick National Laboratory | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research is now accepting Expressions of Interest to its new Visiting Scholars Program (VSP). VSP is a unique opportunity for researchers to work on important cancer and AIDS projects with teams of scientists at the only federal national laboratory in the United States devoted exclusively to biomedical research.

  13. Nanotechnology Characterization Laboratory Unveils New Technical Services for Drug Developers | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- Drug developers now have access to a shared analytical technology, developed and provided by the Frederick National Laboratory for Cancer Research, that helps fine-tune nanomedicine formulations and overcomes a key hurdle on the pat

  14. Bringing the Excitement and Motivation of Research to Students; Using Inquiry and Research-Based Learning in a Year-Long Biochemistry Laboratory: Part II--Research-Based Laboratory--A Semester-Long Research Approach Using Malate Dehydrogenase as a Research Model

    ERIC Educational Resources Information Center

    Knutson, Kristopher; Smith, Jennifer; Nichols, Paul; Wallert, Mark A.; Provost, Joseph J.

    2010-01-01

    Research-based learning in a teaching environment is an effective way to help bring the excitement and experience of independent bench research to a large number of students. The program described here is the second of a two-semester biochemistry laboratory series. Here, students are empowered to design, execute and analyze their own experiments…

  15. 1996 Laboratory directed research and development annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  16. Aircraft in the Flight Research Building at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1944-06-21

    A Consolidated B–24D Liberator (left), Boeing B–29 Superfortress (background), and Lockheed RA–29 Hudson (foreground) parked inside the Flight Research Building at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory in Cleveland, Ohio. A P–47G Thunderbolt and P–63A King Cobra are visible in the background. The laboratory utilized 15 different aircraft during the final 2.5 years of World War II. This starkly contrasts with the limited-quantity, but long-duration aircraft of the NASA’s modern fleet. The Flight Research Building is a 272- by 150-foot hangar with an internal height ranging from 40 feet at the sides to 90 feet at its apex. The steel support trusses were pin-connected at the top with tension members extending along the corrugated transite walls down to the floor. The 37.5-foot-tall and 250-foot-long doors on either side can be opened in sections. The hangar included a shop area and stock room along the far wall, and a single-story office wing with nine offices, behind the camera. The offices were later expanded. The hangar has been in continual use since its completion in December 1942. Nearly 70 different aircraft have been sheltered here over the years. Temporary offices were twice constructed over half of the floor area when office space was at a premium.

  17. Saxton Transportation Operations Laboratory : driving future highways

    DOT National Transportation Integrated Search

    2017-01-01

    The Saxton Laboratory is supplementing the Office of Operations R&Ds connected automation research program, which includes an initial focus on applications that use longitudinal control, with active driver engagement and advisory information, to i...

  18. Foil focusing of relativistic electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Jr., Carl August

    2017-10-26

    When an intense relativistic electron beams (IREB) passes through a grounded metal foil, the transverse electric field due to the beam space charge is locally shorted out, and the beam is focused by the magnetic field of its current. The effect can be treated as focusing by a thin lens with first order aberration. Expressions for the focal length and aberration coefficient of the equivalent thin lens are developed in this note. These are then applied to practical examples representative of IREB research at Los Alamos National Laboratory.

  19. Field Research Studying Whales in an Undergraduate Animal Behavior Laboratory

    ERIC Educational Resources Information Center

    MacLaren, R. David; Schulte, Dianna; Kennedy, Jen

    2012-01-01

    This work describes a new field research laboratory in an undergraduate animal behavior course involving the study of whale behavior, ecology and conservation in partnership with a non-profit research organization--the Blue Ocean Society for Marine Conservation (BOS). The project involves two weeks of training and five weekend trips on whale watch…

  20. Savannah River Ecology Laboratory. Annual technical progress report of ecological research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.H.

    1996-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory`s research mission was fulfilled with the publication of two books and 143 journal articles andmore » book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL).« less

  1. Laboratory for Energy-Related Health Research annual report, fiscal year 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abell, D.L.

    1989-02-01

    This report to the US Department of Energy summarizes research activities for the period from 1 October 1985--30 September 1986 at the Laboratory for Energy-related Health Research (LEHR) which is operated by the University of California, Davis. The laboratory's research objective is to provide new knowledge for an improved understanding of the potential bioenvironmental and occupational health problems associated with energy utilization to contribute to the safe and healthful development of energy resources for the benefit of mankind. This research encompasses several areas of basic investigation that relate to toxicological and biomedical problems associated with potentially toxic chemical and radioactivemore » substances and ionizing radiation, with particular emphasis on carcinogenicity. Studies of systemic injury and nuclear medical diagnostic and therapeutic methods are also involved. This is an interdisciplinary program spanning physics, chemistry, environmental engineering, biophysics and biochemistry, cellular and molecular biology, physiology, immunology, toxicology, both human and veterinary medicine, nuclear medicine, pathology, hematology, radiation biology, reproductive biology, oncology, biomathematics, and computer science. The principal themes of the research at LEHR center around the biology, radiobiology, and health status of the skeleton and its blood-forming constituents; the toxicology and properties of airborne materials; the beagle as an experimental animal model; carcinogenesis; and the scaling of the results from laboratory animal studies to man for appropriate assessment of risk.« less

  2. United States Air Force Summer Research Program -- 1993. Volume 16. Arnold Engineering Development Center. Frank J. Seiler Research Laboratory. Wilford Hall Medical Center

    DTIC Science & Technology

    1993-12-01

    A I 7f t UNITED STATE AIR FORCE SUMMER RESEARCH PROGRAM -- 1993 SUMMER RESEARCH PROGRAM FINAL REPORTS VOLUME 16 ARNOLD ENGINEERING DEVELOPMENT CENTER...FRANK J. SELLER RESEARCH LABORATORY WILFORD HALL MEDICAL CENTER RESEARCH & DEVELOPMENT LABORATORIES 5800 Uplander Way Culver City, CA 90230-6608...National Rd. Vol-Page No: 15-44 Dist Tecumseh High School 8.4 New Carlisle, OH 45344-0000 Barber, Jason Laboratory: AL/CF 1000 10th St. Vol-Page No

  3. Hood College, Frederick National Laboratory Will Renew Popular Scientific Symposium | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- Hood College and the Frederick National Laboratory for Cancer Research have partnered to cohost an annual scientific symposium in the tradition of the landmark Oncogene Meeting, a national fixture in Frederick for more than 20 year

  4. Leading Antibacterial Laboratory Research by Integrating Conventional and Innovative Approaches: The Laboratory Center of the Antibacterial Resistance Leadership Group.

    PubMed

    Manca, Claudia; Hill, Carol; Hujer, Andrea M; Patel, Robin; Evans, Scott R; Bonomo, Robert A; Kreiswirth, Barry N

    2017-03-15

    The Antibacterial Resistance Leadership Group (ARLG) Laboratory Center (LC) leads the evaluation, development, and implementation of laboratory-based research by providing scientific leadership and supporting standard/specialized laboratory services. The LC has developed a physical biorepository and a virtual biorepository. The physical biorepository contains bacterial isolates from ARLG-funded studies located in a centralized laboratory and they are available to ARLG investigators. The Web-based virtual biorepository strain catalogue includes well-characterized gram-positive and gram-negative bacterial strains published by ARLG investigators. The LC, in collaboration with the ARLG Leadership and Operations Center, developed procedures for review and approval of strain requests, guidance during the selection process, and for shipping strains from the distributing laboratories to the requesting investigators. ARLG strains and scientific and/or technical guidance have been provided to basic research laboratories and diagnostic companies for research and development, facilitating collaboration between diagnostic companies and the ARLG Master Protocol for Evaluating Multiple Infection Diagnostics (MASTERMIND) initiative for evaluation of multiple diagnostic devices from a single patient sampling event. In addition, the LC has completed several laboratory-based studies designed to help evaluate new rapid molecular diagnostics by developing, testing, and applying a MASTERMIND approach using purified bacterial strains. In collaboration with the ARLG's Statistical and Data Management Center (SDMC), the LC has developed novel analytical strategies that integrate microbiologic and genetic data for improved and accurate identification of antimicrobial resistance. These novel approaches will aid in the design of future ARLG studies and help correlate pathogenic markers with clinical outcomes. The LC's accomplishments are the result of a successful collaboration with the ARLG

  5. Frederick National Laboratory Rallies to Meet Demand for Zika Vaccine | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research is producing another round of Zika vaccine for ongoing studies to determine the best delivery method and dosage. This will lay the groundwork for additional tests to see if the vaccine prevents i

  6. First International Conference on Laboratory Research for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Fox, Kenneth (Editor); Allen, John E., Jr. (Editor); Stief, Louis J. (Editor); Quillen, Diana T. (Editor)

    1990-01-01

    Proceedings of the First International Conference on Laboratory Research for Planetary Atmospheres are presented. The covered areas of research include: photon spectroscopy, chemical kinetics, thermodynamics, and charged particle interactions. This report contains the 12 invited papers, 27 contributed poster papers, and 5 plenary review papers presented at the conference. A list of attendees and a reprint of the Report of the Subgroup on Strategies for Planetary Atmospheres Exploration (SPASE) are provided in two appendices.

  7. THE EPA NATIONAL EXPOSURE RESEARCH LABORATORY CHILDREN'S PESTICIDE EXPOSURE MEASUREMENT PROGRAM

    EPA Science Inventory

    The U.S. EPA's National Exposure Research Laboratory (NERL) conducts research in support of the Food Quality Protection Act (FQPA) of 1996. FQPA requires that children's risks to pesticide exposures be considered during the tolerance-setting process. The Act requires exposure...

  8. THE EPA NATIONAL EXPOSURE RESEARCH LABORATORY CHILDREN'S PESTICIDE EXPOSURE MEASUREMENT PROGRAM

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) National Exposure Research Laboratory (NERL) is performing research in support of the Food Quality Protection Act (FQPA) of 1996. This act requires that pesticide exposure assessments to be conducted for all potential sources, rou...

  9. 41 CFR 109-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Laboratory and research equipment. 109-25.109 Section 109-25.109 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS SUPPLY AND...

  10. THE NATIONAL EXPOSURE RESEARCH LABORATORY'S COMPREHENSIVE HUMAN ACTIVITY DATABASE

    EPA Science Inventory

    EPA's National Exposure Research Laboratory (NERL) has combined data from nine U.S. studies related to human activities into one comprehensive data system that can be accessed via the world-wide web. The data system is called CHAD-Consolidated Human Activity Database-and it is ...

  11. THE NATIONAL EXPOSURE RESEARCH LABORATORY'S CONSOLIDATED HUMAN ACTIVITY DATABASE

    EPA Science Inventory

    EPA's National Exposure Research Laboratory (NERL) has combined data from 12 U.S. studies related to human activities into one comprehensive data system that can be accessed via the Internet. The data system is called the Consolidated Human Activity Database (CHAD), and it is ...

  12. Raising Virtual Laboratories in Australia onto global platforms

    NASA Astrophysics Data System (ADS)

    Wyborn, L. A.; Barker, M.; Fraser, R.; Evans, B. J. K.; Moloney, G.; Proctor, R.; Moise, A. F.; Hamish, H.

    2016-12-01

    Across the globe, Virtual Laboratories (VLs), Science Gateways (SGs), and Virtual Research Environments (VREs) are being developed that enable users who are not co-located to actively work together at various scales to share data, models, tools, software, workflows, best practices, etc. Outcomes range from enabling `long tail' researchers to more easily access specific data collections, to facilitating complex workflows on powerful supercomputers. In Australia, government funding has facilitated the development of a range of VLs through the National eResearch Collaborative Tools and Resources (NeCTAR) program. The VLs provide highly collaborative, research-domain oriented, integrated software infrastructures that meet user community needs. Twelve VLs have been funded since 2012, including the Virtual Geophysics Laboratory (VGL); Virtual Hazards, Impact and Risk Laboratory (VHIRL); Climate and Weather Science Laboratory (CWSLab); Marine Virtual Laboratory (MarVL); and Biodiversity and Climate Change Virtual Laboratory (BCCVL). These VLs share similar technical challenges, with common issues emerging on integration of tools, applications and access data collections via both cloud-based environments and other distributed resources. While each VL began with a focus on a specific research domain, communities of practice have now formed across the VLs around common issues, and facilitate identification of best practice case studies, and new standards. As a result, tools are now being shared where the VLs access data via data services using international standards such as ISO, OGC, W3C. The sharing of these approaches is starting to facilitate re-usability of infrastructure and is a step towards supporting interdisciplinary research. Whilst the focus of the VLs are Australia-centric, by using standards, these environments are able to be extended to analysis on other international datasets. Many VL datasets are subsets of global datasets and so extension to global is a

  13. Eagleworks Laboratories: Advanced Propulsion Physics Research

    NASA Technical Reports Server (NTRS)

    White, Harold; March, Paul; Williams, Nehemiah; ONeill, William

    2011-01-01

    NASA/JSC is implementing an advanced propulsion physics laboratory, informally known as "Eagleworks", to pursue propulsion technologies necessary to enable human exploration of the solar system over the next 50 years, and enabling interstellar spaceflight by the end of the century. This work directly supports the "Breakthrough Propulsion" objectives detailed in the NASA OCT TA02 In-space Propulsion Roadmap, and aligns with the #10 Top Technical Challenge identified in the report. Since the work being pursued by this laboratory is applied scientific research in the areas of the quantum vacuum, gravitation, nature of space-time, and other fundamental physical phenomenon, high fidelity testing facilities are needed. The lab will first implement a low-thrust torsion pendulum (<1 uN), and commission the facility with an existing Quantum Vacuum Plasma Thruster. To date, the QVPT line of research has produced data suggesting very high specific impulse coupled with high specific force. If the physics and engineering models can be explored and understood in the lab to allow scaling to power levels pertinent for human spaceflight, 400kW SEP human missions to Mars may become a possibility, and at power levels of 2MW, 1-year transit to Neptune may also be possible. Additionally, the lab is implementing a warp field interferometer that will be able to measure spacetime disturbances down to 150nm. Recent work published by White [1] [2] [3] suggests that it may be possible to engineer spacetime creating conditions similar to what drives the expansion of the cosmos. Although the expected magnitude of the effect would be tiny, it may be a "Chicago pile" moment for this area of physics.

  14. Impacts: NIST Building and Fire Research Laboratory (technical and societal)

    NASA Astrophysics Data System (ADS)

    Raufaste, N. J.

    1993-08-01

    The Building and Fire Research Laboratory (BFRL) of the National Institute of Standards and Technology (NIST) is dedicated to the life cycle quality of constructed facilities. The report describes major effects of BFRL's program on building and fire research. Contents of the document include: structural reliability; nondestructive testing of concrete; structural failure investigations; seismic design and construction standards; rehabilitation codes and standards; alternative refrigerants research; HVAC simulation models; thermal insulation; residential equipment energy efficiency; residential plumbing standards; computer image evaluation of building materials; corrosion-protection for reinforcing steel; prediction of the service lives of building materials; quality of construction materials laboratory testing; roofing standards; simulating fires with computers; fire safety evaluation system; fire investigations; soot formation and evolution; cone calorimeter development; smoke detector standards; standard for the flammability of children's sleepwear; smoldering insulation fires; wood heating safety research; in-place testing of concrete; communication protocols for building automation and control systems; computer simulation of the properties of concrete and other porous materials; cigarette-induced furniture fires; carbon monoxide formation in enclosure fires; halon alternative fire extinguishing agents; turbulent mixing research; materials fire research; furniture flammability testing; standard for the cigarette ignition resistance of mattresses; support of navy firefighter trainer program; and using fire to clean up oil spills.

  15. Natural Pathogens of Laboratory Mice, Rats, and Rabbits and Their Effects on Research

    PubMed Central

    Baker, David G.

    1998-01-01

    Laboratory mice, rats, and rabbits may harbor a variety of viral, bacterial, parasitic, and fungal agents. Frequently, these organisms cause no overt signs of disease. However, many of the natural pathogens of these laboratory animals may alter host physiology, rendering the host unsuitable for many experimental uses. While the number and prevalence of these pathogens have declined considerably, many still turn up in laboratory animals and represent unwanted variables in research. Investigators using mice, rats, and rabbits in biomedical experimentation should be aware of the profound effects that many of these agents can have on research. PMID:9564563

  16. Modeling of Army Research Laboratory EMP simulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miletta, J.R.; Chase, R.J.; Luu, B.B.

    1993-12-01

    Models are required that permit the estimation of emitted field signatures from EMP simulators to design the simulator antenna structure, to establish the usable test volumes, and to estimate human exposure risk. This paper presents the capabilities and limitations of a variety of EMP simulator models useful to the Army's EMP survivability programs. Comparisons among frequency and time-domain models are provided for two powerful US Army Research Laboratory EMP simulators: AESOP (Army EMP Simulator Operations) and VEMPS II (Vertical EMP Simulator II).

  17. Customized laboratory information management system for a clinical and research leukemia cytogenetics laboratory.

    PubMed

    Bakshi, Sonal R; Shukla, Shilin N; Shah, Pankaj M

    2009-01-01

    We developed a Microsoft Access-based laboratory management system to facilitate database management of leukemia patients referred for cytogenetic tests in regards to karyotyping and fluorescence in situ hybridization (FISH). The database is custom-made for entry of patient data, clinical details, sample details, cytogenetics test results, and data mining for various ongoing research areas. A number of clinical research laboratoryrelated tasks are carried out faster using specific "queries." The tasks include tracking clinical progression of a particular patient for multiple visits, treatment response, morphological and cytogenetics response, survival time, automatic grouping of patient inclusion criteria in a research project, tracking various processing steps of samples, turn-around time, and revenue generated. Since 2005 we have collected of over 5,000 samples. The database is easily updated and is being adapted for various data maintenance and mining needs.

  18. Biosafety and Biosecurity in European Containment Level 3 Laboratories: Focus on French Recent Progress and Essential Requirements.

    PubMed

    Pastorino, Boris; de Lamballerie, Xavier; Charrel, Rémi

    2017-01-01

    Even if European Union (EU) Member States are obliged to implement EU Directives 2000/54/EC on the protection of workers from risks related to exposure to biological agents at work , national biosafety regulations and practices varied from country to country. In fact, EU legislation on biological agents and genetically modified microorganisms is often not specific enough to ensure harmonization leading to difficulties in implementation for most laboratories. In the same way, biosecurity is a relatively new concept and a few EU Member States are known to have introduced national laboratory biosecurity legislation. In France, recent regulations have reinforced biosafety/biosecurity in containment level 3 (CL-3) laboratories but they concern a specific list of pathogens with no correlation in other European Members States. The objective of this review was to summarize European biosafety/biosecurity measures concerning CL-3 facilities focusing on French specificities. Essential requirements needed to preserve efficient biosafety measures when manipulating risk group 3 biological agents are highlighted. In addition, International, European and French standards related to containment laboratory planning, operation or biosafety equipment are described to clarify optimal biosafety and biosecurity requirements.

  19. Biosafety and Biosecurity in European Containment Level 3 Laboratories: Focus on French Recent Progress and Essential Requirements

    PubMed Central

    Pastorino, Boris; de Lamballerie, Xavier; Charrel, Rémi

    2017-01-01

    Even if European Union (EU) Member States are obliged to implement EU Directives 2000/54/EC on the protection of workers from risks related to exposure to biological agents at work, national biosafety regulations and practices varied from country to country. In fact, EU legislation on biological agents and genetically modified microorganisms is often not specific enough to ensure harmonization leading to difficulties in implementation for most laboratories. In the same way, biosecurity is a relatively new concept and a few EU Member States are known to have introduced national laboratory biosecurity legislation. In France, recent regulations have reinforced biosafety/biosecurity in containment level 3 (CL-3) laboratories but they concern a specific list of pathogens with no correlation in other European Members States. The objective of this review was to summarize European biosafety/biosecurity measures concerning CL-3 facilities focusing on French specificities. Essential requirements needed to preserve efficient biosafety measures when manipulating risk group 3 biological agents are highlighted. In addition, International, European and French standards related to containment laboratory planning, operation or biosafety equipment are described to clarify optimal biosafety and biosecurity requirements. PMID:28620600

  20. From the Research Laboratory to the Operating Company: How Information Travels.

    ERIC Educational Resources Information Center

    Coppin, Ann S.; Palmer, Linda L.

    1980-01-01

    Reviews transmission processes of Chevron Oil Field Research Company (COFRC) research results from laboratories to end-user operating companies worldwide. Information dissemination methods described included informal communication, intercompany meetings, visits by COFRC personnel to operating company offices, distribution of written reports,…

  1. A Place for Materials Science: Laboratory Buildings and Interdisciplinary Research at the University of Pennsylvania

    ERIC Educational Resources Information Center

    Choi, Hyungsub; Shields, Brit

    2015-01-01

    The Laboratory for Research on the Structure of Matter (LRSM), University of Pennsylvania, was built in 1965 as part of the Advanced Research Projects Agency's (ARPA) Interdisciplinary Laboratories (IDL) program intended to foster interdisciplinary research and training in materials science. The process that led to the construction of the…

  2. USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory Tick & Biting Fly Research Unit scientific update

    USDA-ARS?s Scientific Manuscript database

    Ticks and biting flies cause tremendous economic damage to the U.S. livestock industry while also being a health concern to humans. Research on their biology and control is done at the Knipling-Bushland U.S. Livestock Insects Research Laboratory, Tick and Biting Fly Research Unit with scientists loc...

  3. Location for the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This diagram shows the planned locations of the Space Experiment Research and Processing Laboratory (SERPL) and the Space Station Commerce Park at Kennedy Space Center. The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for the planned 400- acre commerce park.

  4. Behavioral Economic Laboratory Research in Tobacco Regulatory Science.

    PubMed

    Tidey, Jennifer W; Cassidy, Rachel N; Miller, Mollie E; Smith, Tracy T

    2016-10-01

    Research that can provide a scientific foundation for the United States Food and Drug Administration (FDA) tobacco policy decisions is needed to inform tobacco regulatory policy. One factor that affects the impact of a tobacco product on public health is its intensity of use, which is determined, in part, by its abuse liability or reinforcing efficacy. Behavioral economic tasks have considerable utility for assessing the reinforcing efficacy of current and emerging tobacco products. This paper provides a narrative review of several behavioral economic laboratory tasks and identifies important applications to tobacco regulatory science. Behavioral economic laboratory assessments, including operant self-administration, choice tasks and purchase tasks, can be used generate behavioral economic data on the effect of price and other constraints on tobacco product consumption. These tasks could provide an expedited simulation of the effects of various tobacco control policies across populations of interest to the FDA. Tobacco regulatory research questions that can be addressed with behavioral economic tasks include assessments of the impact of product characteristics on product demand, assessments of the abuse liability of novel and potential modified risk tobacco products (MRTPs), and assessments of the impact of conventional and novel products in vulnerable populations.

  5. Xerox' Canadian Research Facility: The Multinational and the "Offshore" Laboratory.

    ERIC Educational Resources Information Center

    Marchessault, R. H.; Myers, M. B.

    1986-01-01

    The history, logistics, and strategy behind the Xerox Corporation's Canadian research laboratory, a subsidiary firm located outside the United States for reasons of manpower, tax incentives, and quality of life, are described. (MSE)

  6. Technical Service Agreement (TSA) | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Frederick National Laboratory for Cancer Research (FNLCR) scientists provide services and solutions to collaborators through the Technical Services Program, whose portfolio includes more than 200 collaborations with more than 80 partners. The Frederi

  7. Developing Therapies for Brain Tumors: The Impact of the Johns Hopkins Hunterian Neurosurgical Research Laboratory.

    PubMed

    Brem, Henry; Sankey, Eric W; Liu, Ann; Mangraviti, Antonella; Tyler, Betty M

    2017-01-01

    The Johns Hopkins Hunterian Neurosurgical Laboratory at the Johns Hopkins University School of Medicine was created in 1904 by Harvey Cushing and William Halsted and has had a long history of fostering surgical training, encouraging basis science research, and facilitating translational application. Over the past 30 years, the laboratory has addressed the paucity of brain tumor therapies. Pre-clinical work from the laboratory led to the development of carmustine wafers with initial US Food and Drug Administration (FDA) approval in 1996. Combining carmustine wafers, radiation, and temozolomide led to a significant increase in the median survival of patients with glioblastoma. The laboratory has also developed microchips and immunotherapy to further extend survival in this heretofore underserved population. These achievements were made possible by the dedication, commitment, and creativity of more than 300 trainees of the Hunterian Neurosurgical Laboratory. The laboratory demonstrates the beneficial influence of research experience as well its substantial impact on the field of biomedical research.

  8. New Group of Researchers Focuses on Scientific Study

    ERIC Educational Resources Information Center

    Viadero, Debra

    2006-01-01

    The author of this article reports in late January 2006, a group of scholars announced the formation of a federally-backed professional society that will focus solely on advancing scientifically rigorous studies in education. The society, which is known as Society for Research on Educational Effectiveness, has caused ripples of controversy among…

  9. Biosafety and biosecurity in veterinary laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, Melissa R.; Astuto-Gribble, Lisa M.; Brass, Van Hildren

    Here, with recent outbreaks of MERS-Cov, Anthrax, Nipah, and Highly Pathogenic Avian Influenza, much emphasis has been placed on rapid identification of infectious agents globally. As a result, laboratories are building capacity, conducting more advanced and sophisticated research, increasing laboratory staff, and establishing collections of dangerous pathogens in an attempt to reduce the impact of infectious disease outbreaks and characterize disease causing agents. With this expansion, the global laboratory community has started to focus on laboratory biosafety and biosecurity to prevent the accidental and/or intent ional release o f these agents. Laboratory biosafety and biosecurity systems are used around themore » world to help mit igate the risks posed by dangerous pathogens in the laboratory. Veterinary laboratories carry unique responsibilities to workers and communities to safely and securely handle disease causing microorganisms. Many microorganisms studied in veterinary laboratories not only infect animals, but also have the potential to infect humans. This paper will discuss the fundamentals of laboratory biosafety and biosecurity.« less

  10. Four Argonne National Laboratory scientists receive Early Career Research

    Science.gov Websites

    Media Contacts Social Media Photos Videos Fact Sheets, Brochures and Reports Summer Science Writing Writing Internship Four Argonne National Laboratory scientists receive Early Career Research Program economic impact of cascading shortages. He will also seek to enable scaling on high-performance computing

  11. POLLUTION PREVENTION FOR CLEANER AIR: EPA'S AIR AND ENERGY ENGINEERING RESEARCH LABORATORY

    EPA Science Inventory

    The article discusses the role of EPA's Air and Energy Engineering Research Laboratory (AEERL) in pollution prevention research for cleaner air. For more than 20 years, AEERL has been conducting research to identify control approaches for the pollutants and sources which contribu...

  12. Reliability and validity of job content questionnaire for university research laboratory staff in Malaysia.

    PubMed

    Nehzat, F; Huda, B Z; Tajuddin, S H Syed

    2014-03-01

    Job Content Questionnaire (JCQ) has been proven a reliable and valid instrument to assess job stress in many countries and among various occupations. In Malaysia, both English and Malay versions of the JCQ have been administered to automotive workers, schoolteachers, and office workers. This study assessed the reliability and validity of the instrument with research laboratory staff in a university. A cross sectional study was conducted among 258 research laboratory staff in Universiti Putra Malaysia (UPM). Malaysian laboratory staff who have worked for at least one year were randomly selected from nine faculties and institutes in the university that have research laboratory. A self-administered English and Malay version of Job Content Questionnaire (JCQ) was used. Three major scales of JCQ: decision latitude, psychological job demands, and social support were assessed. Cronbach's alpha coefficients of two scales were acceptable, decision latitude and psychological job demands (0.70 and 0.72, respectively), while Cronbach's alpha coefficient for social support (0.86) was good. Exploratory factor analysis showed five factors that correspond closely to the theoretical construct of the questionnaire. The results of this research suggest that the JCQ is reliable and valid for examining psychosocial work situations and job strain among research laboratory staff. Further studies should be done for confirmative results, and further evaluation is needed on the decision authority subscale for this occupation.

  13. An Improved Dielectric Constant Cell for Use in Student and Research Laboratories.

    ERIC Educational Resources Information Center

    Thompson, H. Bradford.; Walmsley, Judith A.

    1979-01-01

    Describes the latest stage in the design of an economical dielectric constant cell, tested in both instructional and research applications, that is suitable for student laboratories and for precision research measurements. (BT)

  14. Hairy Root as a Model System for Undergraduate Laboratory Curriculum and Research

    ERIC Educational Resources Information Center

    Keyes, Carol A.; Subramanian, Senthil; Yu, Oliver

    2009-01-01

    Hairy root transformation has been widely adapted in plant laboratories to rapidly generate transgenic roots for biochemical and molecular analysis. We present hairy root transformations as a versatile and adaptable model system for a wide variety of undergraduate laboratory courses and research. This technique is easy, efficient, and fast making…

  15. Informal Physics Education: Outreach from a National Laboratory

    NASA Astrophysics Data System (ADS)

    Sanchez, Jose; Dixon, Patricia; Hughes, Roxanne

    2012-02-01

    This presentation highlights strategies for K-20 teaching and learning about materials research in informal settings. The National High Magnetic Field Laboratory's Center for Integrating Research & Learning is in a unique position to conduct programs that reach K-20 students and teachers. As part of a national laboratory the Center provides the infrastructure around which informal education programs are implemented, including the nationally-recognized programming as well as facilitating scientists' educational outreach in the community. Research Experiences for Undergraduates, focuses on encouraging women and other underrepresented groups to pursue STEM careers reaching approximately 200 students many of whom have pursued careers in research as well as academia. The Research Experiences for Teachers program has provided internships for over 150 teachers; the Center also reaches over 10,000 students each year through school and community outreach. Success of informal education programs relies heavily on establishing strong mentoring relationships between scientists and K-20 students and teachers. The Center's success at maintaining diverse programming that transforms how materials education is presented beyond the traditional classroom is the focus for this presentation.

  16. AudioGuides at a National Research Laboratory Supporting Visitors With Special Needs: Initial Lessons Learned

    NASA Astrophysics Data System (ADS)

    Munoz, R.; Foster, S. Q.; Johnson, R. M.; Carbone, L.; Lewis, H.; Abshire, W.; Mann, L.

    2003-12-01

    The National Center for Atmospheric Research (NCAR) Mesa Laboratory offers the public an opportunity to visit an internationally recognized research laboratory housed in an architectural landmark located in a dramatic geological setting. The Mesa Lab's exhibits are viewed by over 80,000 people each year. Exhibits provide information about NCAR's scientific mission, current research efforts, technology, and the societal benefits of weather and climate research. Nearly 13,000 of NCAR's visitors are served with staff-led guided tours, including 3,000 students in school groups. Frequently, these tours are tailored to address the interests, ages, nationality, and special needs of the visitors. In June 2003, an audioguide was unveiled in English and Spanish versions for both adults and children. Based on preliminary summer usage figures, the audioguides may reach an additional 7,000 visitors in the coming year, many of whom may have special needs. With this in mind, the University Corporation of Atmospheric Research (UCAR) Office of Education and Outreach (EO) contracted local experts as advisors on the needs of people with low-vision, hearing loss, and Spanish language accessibility as the audioguide was developed. The script was written with the help of scientists and an internationally recognized audioguide production firm. Since the installation of the audioguide in July, visitors of all ages appear to be enthusiastic about this service and better focused on their learning experiences while viewing the exhibits. Interviews are helping EO to learn more about how the audioguide is helpful or may be revised to more effectively serve visitors in general as well as visitors with special needs. The audioguide was made possible by grants from the National Science Foundation Geoscience Education Program and the Friends of UCAR Fund.

  17. Publication Bias in Laboratory Animal Research: A Survey on Magnitude, Drivers, Consequences and Potential Solutions

    PubMed Central

    ter Riet, Gerben; Korevaar, Daniel A.; Leenaars, Marlies; Sterk, Peter J.; Van Noorden, Cornelis J. F.; Bouter, Lex M.; Lutter, René; Elferink, Ronald P. Oude; Hooft, Lotty

    2012-01-01

    Context Publication bias jeopardizes evidence-based medicine, mainly through biased literature syntheses. Publication bias may also affect laboratory animal research, but evidence is scarce. Objectives To assess the opinion of laboratory animal researchers on the magnitude, drivers, consequences and potential solutions for publication bias. And to explore the impact of size of the animals used, seniority of the respondent, working in a for-profit organization and type of research (fundamental, pre-clinical, or both) on those opinions. Design Internet-based survey. Setting All animal laboratories in The Netherlands. Participants Laboratory animal researchers. Main Outcome Measure(s) Median (interquartile ranges) strengths of beliefs on 5 and 10-point scales (1: totally unimportant to 5 or 10: extremely important). Results Overall, 454 researchers participated. They considered publication bias a problem in animal research (7 (5 to 8)) and thought that about 50% (32–70) of animal experiments are published. Employees (n = 21) of for-profit organizations estimated that 10% (5 to 50) are published. Lack of statistical significance (4 (4 to 5)), technical problems (4 (3 to 4)), supervisors (4 (3 to 5)) and peer reviewers (4 (3 to 5)) were considered important reasons for non-publication (all on 5-point scales). Respondents thought that mandatory publication of study protocols and results, or the reasons why no results were obtained, may increase scientific progress but expected increased bureaucracy. These opinions did not depend on size of the animal used, seniority of the respondent or type of research. Conclusions Non-publication of “negative” results appears to be prevalent in laboratory animal research. If statistical significance is indeed a main driver of publication, the collective literature on animal experimentation will be biased. This will impede the performance of valid literature syntheses. Effective, yet efficient systems should be explored to

  18. A Research-Inspired Laboratory Sequence Investigating Acquired Drug Resistance

    ERIC Educational Resources Information Center

    Taylor, Elizabeth Vogel; Fortune, Jennifer A.; Drennan, Catherine L.

    2010-01-01

    Here, we present a six-session laboratory exercise designed to introduce students to standard biochemical techniques in the context of investigating a high impact research topic, acquired resistance to the cancer drug Gleevec. Students express a Gleevec-resistant mutant of the Abelson tyrosine kinase domain, the active domain of an oncogenic…

  19. IBBR and Frederick National Laboratory Collaborate to Study Vaccine-Boosting Compounds | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory and the University of Maryland’s Institute for Bioscience and Biotechnology Research (IBBR) will work under a formal collaboration to evaluate the effectiveness of new compounds that might be used to enhance the im

  20. United States Air Force Summer Research Program -- 1992 High School Apprenticeship Program (HSAP) Reports. Volume 13. Phillips Laboratory

    DTIC Science & Technology

    1992-01-01

    Research Program Phillips Laboratory I4oJ A*6Iv4 Sponsored by: Air Force Office of Scientific Research Kirtland Air ...UNITED STATES AIR FORCE SUMMER RESEARCH PROGki"A -- 1992 HIGH SCHOOL APPRENTICESHIP PROGRAM (HSAP) REPORTS VOLUME 13 (t PHILLIPS LABORATORY . RESEARCH ...Arlington High School Final Report for: Summer Research Program Geophysics Directorate Phillips Laboratory

  1. Simulation Based Low-Cost Composite Process Development at the US Air Force Research Laboratory

    NASA Technical Reports Server (NTRS)

    Rice, Brian P.; Lee, C. William; Curliss, David B.

    2003-01-01

    Low-cost composite research in the US Air Force Research Laboratory, Materials and Manufacturing Directorate, Organic Matrix Composites Branch has focused on the theme of affordable performance. Practically, this means that we use a very broad view when considering the affordability of composites. Factors such as material costs, labor costs, recurring and nonrecurring manufacturing costs are balanced against performance to arrive at the relative affordability vs. performance measure of merit. The research efforts discussed here are two projects focused on affordable processing of composites. The first topic is the use of a neural network scheme to model cure reaction kinetics, then utilize the kinetics coupled with simple heat transport models to predict, in real-time, future exotherms and control them. The neural network scheme is demonstrated to be very robust and a much more efficient method that mechanistic cure modeling approach. This enables very practical low-cost processing of thick composite parts. The second project is liquid composite molding (LCM) process simulation. LCM processing of large 3D integrated composite parts has been demonstrated to be a very cost effective way to produce large integrated aerospace components specific examples of LCM processes are resin transfer molding (RTM), vacuum assisted resin transfer molding (VARTM), and other similar approaches. LCM process simulation is a critical part of developing an LCM process approach. Flow simulation enables the development of the most robust approach to introducing resin into complex preforms. Furthermore, LCM simulation can be used in conjunction with flow front sensors to control the LCM process in real-time to account for preform or resin variability.

  2. 75 FR 15675 - Professional Research Experience Program in Chemical Science and Technology Laboratory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... in physics, chemistry, mathematics, computer science, or engineering. Institutions should have a 4..., mathematics, computer science, or engineering with work experiences in laboratories or other settings...-0141-01] Professional Research Experience Program in Chemical Science and Technology Laboratory...

  3. Federal Security Laboratory Governance Panels: Observations and Recommendations

    DTIC Science & Technology

    2013-01-01

    operates under a sole-source, cost-plus-fixed-fee contract administered by the U.S. Navy’s Naval Sea Systems Command. There are currently 14 UARCs, 13... system of research organizations that support science and technology for U.S. national security. Within this system , the Departments of Defense, Energy...and Homeland Security support about 80 laboratories that focus predominantly on national security matters. These laboratories have different

  4. The Advanced Interdisciplinary Research Laboratory: A Student Team Approach to the Fourth-Year Research Thesis Project Experience

    ERIC Educational Resources Information Center

    Piunno, Paul A. E.; Boyd, Cleo; Barzda, Virginijus; Gradinaru, Claudiu C.; Krull, Ulrich J.; Stefanovic, Sasa; Stewart, Bryan

    2014-01-01

    The advanced interdisciplinary research laboratory (AIRLab) represents a novel, effective, and motivational course designed from the interdisciplinary research interests of chemistry, physics, biology, and education development faculty members as an alternative to the independent thesis project experience. Student teams are assembled to work…

  5. U.S. Army Aeromedical Research Laboratory Annual Progress Report FY 1986

    DTIC Science & Technology

    1986-10-01

    19 Contracts ................................................. 19 Small Business Innovation...universities and businesses which parallels the research requirements of the laboratories under the USAMRDC command. Because of the scientific manpower...Software is being written to allow double entry verification of data. 2) Small business innovation research Each year, in compliance with the Small

  6. New Webpage Brings Increased Visibility to Frederick National Laboratory Subcontracting Opportunities | Frederick National Laboratory for Cancer Research

    Cancer.gov

    A new webpage will now make it easier for small businesses and others to find and apply for Frederick National Laboratory for Cancer Research business opportunities. The new solicitations page, which launched on the Frederick National Lab website Aug

  7. The Plant Genetic Engineering Laboratory For Desert Adaptation

    NASA Astrophysics Data System (ADS)

    Kemp, John D.; Phillips, Gregory C.

    1985-11-01

    The Plant Genetic Engineering Laboratory for Desert Adaptation (PGEL) is one of five Centers of Technical Excellence established as a part of the state of New Mexico's Rio Grande Research Corridor (RGRC). The scientific mission of PGEL is to bring innovative advances in plant biotechnology to bear on agricultural productivity in arid and semi-arid regions. Research activities focus on molecular and cellular genetics technology development in model systems, but also include stress physiology investigations and development of desert plant resources. PGEL interacts with the Los Alamos National Laboratory (LANL), a national laboratory participating in the RGRC. PGEL also has an economic development mission, which is being pursued through technology transfer activities to private companies and public agencies.

  8. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FOX,K.J.

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $460 million. There are about 2,800 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually inmore » March, as required by DOE Order 4 13.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff

  9. Focus on Formative Feedback. Research Report. ETS RR-07-11

    ERIC Educational Resources Information Center

    Shute, Valerie J.

    2007-01-01

    This paper reviews the corpus of research on feedback, with a particular focus on formative feedback--defined as information communicated to the learner that is intended to modify the learner's thinking or behavior for the purpose of improving learning. According to researchers in the area, formative feedback should be multidimensional,…

  10. Focus on Basics: Connecting Research & Practice. Volume 8, Issue D

    ERIC Educational Resources Information Center

    Garner, Barbara, Ed.

    2007-01-01

    Learning disabilities is the theme of the latest issue of "Focus on Basics," the World Education publication that brings together research, policy, and practice in adult basic education. Starting with an update on research on neurobiology and dyslexia, this issue also examines how the adult basic education system supports students with…

  11. How and Why I Built a Research Laboratory

    NASA Astrophysics Data System (ADS)

    Lakhdar, Zohra Ben

    2005-10-01

    The 2005 L'ORÉAL-UNESCO award for women in physics recognized Zohra Ben Lakhdar's contributions to research in Tunisia. But when Professor Ben Lakhdar was a young girl in 1950s Tunisia, girls did not go to school beyond the elementary grades, and she found herself under the tutelage of her mother learning how to take care of a family and home. Tunisia's independence in 1956 changed that, and Professor Ben Lakhdar soon became the only girl in an all-boys' college. In 1978 when she returned to Tunisia after earning her PhD in Paris, fewer than 10 Tunisians were doing research. But the number of students in the country was increasing and trained teachers were needed. Developing the capability to do research in Tunisia was urgent. So Professor Ben Lakhdar built a research laboratory in Tunisia. This paper tells the story.

  12. EPA/ORD NATIONAL EXPOSURE RESEARCH LABORATORY MEASUREMENT SCIENCE SUPPORT FOR HOMELAND SECURITY

    EPA Science Inventory

    This product describes the National Exposure Research Laboratory research and development support for homeland security through the proposed National Exposure Measurements Center (NEMC). Key NEMC functional areas depicted in this poster are: standardized analytical method develo...

  13. Instructional Efficiency of Tutoring in an Outreach Gene Technology Laboratory

    ERIC Educational Resources Information Center

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2013-01-01

    Our research objective focused on examining the instructional efficiency of tutoring as a form of instructional change as opposed to a non-tutoring approach in an outreach laboratory. We designed our laboratory based on cognitive load (CL) theory. Altogether, 269 twelfth-graders participated in our day-long module "Genetic Fingerprinting." In a…

  14. NASA Langley Research Center's Simulation-To-Flight Concept Accomplished through the Integration Laboratories of the Transport Research Facility

    NASA Technical Reports Server (NTRS)

    Martinez, Debbie; Davidson, Paul C.; Kenney, P. Sean; Hutchinson, Brian K.

    2004-01-01

    The Flight Simulation and Software Branch (FSSB) at NASA Langley Research Center (LaRC) maintains the unique national asset identified as the Transport Research Facility (TRF). The TRF is a group of facilities and integration laboratories utilized to support the LaRC's simulation-to-flight concept. This concept incorporates common software, hardware, and processes for both groundbased flight simulators and LaRC s B-757-200 flying laboratory identified as the Airborne Research Integrated Experiments System (ARIES). These assets provide Government, industry, and academia with an efficient way to develop and test new technology concepts to enhance the capacity, safety, and operational needs of the ever-changing national airspace system. The integration of the TRF enables a smooth continuous flow of the research from simulation to actual flight test.

  15. Cold Climate Foundation Retrofit Experimental Hygrothermal Performance. Cloquet Residential Research Facility Laboratory Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Louise F.; Harmon, Anna C.

    2015-04-09

    This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system experimental database to enable others to validate hygrothermal simulation codes. NREL focused on testing the moisture durability of practical basement wall interior insulation retrofit solutions for cold climates. The project has produced a physically credible and reliable long-term hygrothermal performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. These data currently span the periodmore » from November 10, 2012 through May 31, 2014 and are anticipated to be extended through November 2014. The experimental data were configured into a standard format that can be published online and that is compatible with standard commercially available spreadsheet and database software.« less

  16. Escambia Experimental Forest: A Living Laboratory for Long Term Longleaf Pine Research

    Treesearch

    Charles K. McMahon

    2000-01-01

    Experimental Forests have been used for many years by research organizations as "living laboratories" where long-term research studies can be conducted. For forestry and related natural resources research, "long term" can often mean decades of continuous study before meaningful results can be obtained. The Escambia Experimental Forest was...

  17. Engines and Innovation: Lewis Laboratory and American Propulsion Technology

    NASA Technical Reports Server (NTRS)

    Dawson, Virginia Parker

    1991-01-01

    This book is an institutional history of the NASA Lewis Research Center, located in Cleveland, Ohio, from 1940, when Congress authorized funding for a third laboratory for the National Advisory Committee for Aeronautics, through the 1980s. The history of the laboratory is discussed in relation to the development of American propulsion technology, with particular focus on the transition in the 1940s from the use of piston engines in airplanes to jet propulsion and that from air-breathing engines to rocket technology when the National Aeronautics and Space Administration was established in 1958. The personalities and research philosophies of the people who shaped the history of the laboratory are discussed, as is the relationship of Lewis Research Center to the Case Institute of Technology.

  18. Building a science of partnership-focused research: forging and sustaining partnerships to support child mental health prevention and services research.

    PubMed

    Bradshaw, Catherine P; Haynes, Katherine Taylor

    2012-07-01

    Building on growing interest in translational research, this paper provides an overview of a special issue of Administration and Policy in Mental Health and Mental Health Service Research, which is focused on the process of forging and sustaining partnerships to support child mental health prevention and services research. We propose that partnership-focused research is a subdiscipline of translational research which requires additional research to better refine the theoretical framework and the core principles that will guide future research and training efforts. We summarize some of the major themes across the eight original articles and three commentaries included in the special issue. By advancing the science of partnership-focused research we will be able to bridge the gap between child mental health prevention and services research and practice.

  19. Review of Army Research Laboratory Programs for Historically Black Colleges and Universities and Minority Institutions

    ERIC Educational Resources Information Center

    National Academies Press, 2014

    2014-01-01

    "Review of Army Research Laboratory Programs for Historically Black Colleges and Universities and Minority Institutions" examines the ways in which historically black colleges and universities and minority institutions have used the Army Research Laboratory (ARL) funds to enhance the science, technology, engineering, and mathematics…

  20. The NASA/NSERC Student Airborne Research Program Land Focus Group - a Paid Training Program in Multi-Disciplinary STEM Research for Terrestrial Remote Sensing

    NASA Astrophysics Data System (ADS)

    Kefauver, S. C.; Ustin, S.; Davey, S. W.; Furey, B. J.; Gartner, A.; Kurzweil, D.; Siebach, K. L.; Slawsky, L.; Snyder, E.; Trammell, J.; Young, J.; Schaller, E.; Shetter, R. E.

    2011-12-01

    The Student Airborne Research Program (SARP) of the National Aeronautics and Space Administration (NASA) and the National Suborbital Education and Research Center (NSERC) is a unique six week multidisciplinary paid training program which directly integrates students into the forefront of airborne remote sensing science. Students were briefly trained with one week of lectures and laboratory exercises and then immediately incorporated into ongoing research projects which benefit from access to the DC-8 airborne platform and the MODIS-ASTER Airborne Simulator (MASTER) sensor. Students were split into three major topical categories of Land, Ocean, and Air for the data collection and project portions of the program. This poster details the techniques and structure used for the student integration into ongoing research, professional development, hypothesis building and results as developed by the professor and mentor of the Land focus group. Upon assignment to the Land group, students were issued official research field protocols and split into four field specialty groups with additional specialty reading assignments. In the field each group spent more time in their respective specialty, but also participated in all field techniques through pairings with UC Davis research team members using midday rotations. After the field campaign, each specialty group then gave summary presentations on the techniques, preliminary results, and significance to overall group objectives of their specialty. Then students were required to submit project proposals within the bounds of Land airborne remote sensing science and encouraging, but not requiring the use of the field campaign data. These proposals are then reviewed by the professor and mentor and students are met with one by one to discuss the skills of each student and objectives of the proposed research project. The students then work under the supervision of the mentor and benefit again from professor feedback in a formal

  1. National Risk Management Research Laboratory Strategic plan and Implementation - Overview

    EPA Science Inventory

    This publication provides an overview of the strategic plan recently developed by the National Risk Management Research Laboratory (NRMRL). It includes a description of NRMRL's mission and goals and their alignment with Agency goals. Additionally, the overview contains a brief se...

  2. Using Focused Laboratory Management and Quality Improvement Projects to Enhance Resident Training and Foster Scholarship

    PubMed Central

    Ford, Bradley A.; Klutts, J. Stacey; Jensen, Chris S.; Briggs, Angela S.; Robinson, Robert A.; Bruch, Leslie A.; Karandikar, Nitin J.

    2017-01-01

    Training in patient safety, quality, and management is widely recognized as an important element of graduate medical education. These concepts have been intertwined in pathology graduate medical education for many years, although training programs face challenges in creating explicit learning opportunities in these fields. Tangibly involving pathology residents in management and quality improvement projects has the potential to teach and reinforce key concepts and further fulfill Accreditation Council for Graduate Medical Education goals for pursuing projects related to patient safety and quality improvement. In this report, we present our experience at a pathology residency program (University of Iowa) in engaging pathology residents in projects related to practical issues of laboratory management, process improvement, and informatics. In this program, at least 1 management/quality improvement project, typically performed during a clinical chemistry/management rotation, was required and ideally resulted in a journal publication. The residency program also initiated a monthly management/informatics series for pathology externs, residents, and fellows that covers a wide range of topics. Since 2010, all pathology residents at the University of Iowa have completed at least 1 management/quality improvement project. Many of the projects involved aspects of laboratory test utilization, with some projects focused on other areas such as human resources, informatics, or process improvement. Since 2012, 31 peer-reviewed journal articles involving effort from 26 residents have been published. Multiple projects resulted in changes in ongoing practice, particularly within the hospital electronic health record. Focused management/quality improvement projects involving pathology residents can result in both meaningful quality improvement and scholarly output. PMID:28913416

  3. Using Focused Laboratory Management and Quality Improvement Projects to Enhance Resident Training and Foster Scholarship.

    PubMed

    Krasowski, Matthew D; Ford, Bradley A; Klutts, J Stacey; Jensen, Chris S; Briggs, Angela S; Robinson, Robert A; Bruch, Leslie A; Karandikar, Nitin J

    2017-01-01

    Training in patient safety, quality, and management is widely recognized as an important element of graduate medical education. These concepts have been intertwined in pathology graduate medical education for many years, although training programs face challenges in creating explicit learning opportunities in these fields. Tangibly involving pathology residents in management and quality improvement projects has the potential to teach and reinforce key concepts and further fulfill Accreditation Council for Graduate Medical Education goals for pursuing projects related to patient safety and quality improvement. In this report, we present our experience at a pathology residency program (University of Iowa) in engaging pathology residents in projects related to practical issues of laboratory management, process improvement, and informatics. In this program, at least 1 management/quality improvement project, typically performed during a clinical chemistry/management rotation, was required and ideally resulted in a journal publication. The residency program also initiated a monthly management/informatics series for pathology externs, residents, and fellows that covers a wide range of topics. Since 2010, all pathology residents at the University of Iowa have completed at least 1 management/quality improvement project. Many of the projects involved aspects of laboratory test utilization, with some projects focused on other areas such as human resources, informatics, or process improvement. Since 2012, 31 peer-reviewed journal articles involving effort from 26 residents have been published. Multiple projects resulted in changes in ongoing practice, particularly within the hospital electronic health record. Focused management/quality improvement projects involving pathology residents can result in both meaningful quality improvement and scholarly output.

  4. Students' perceptions of academic dishonesty in the chemistry classroom laboratory

    NASA Astrophysics Data System (ADS)

    del Carlo, Dawn I.; Bodner, George M.

    2004-01-01

    Although the literature on both academic dishonesty and scientific misconduct is extensive, research on academic dishonesty has focused on quizzes, exams, and papers, with the virtual exclusion of the classroom laboratory. This study examined the distinctions undergraduate chemistry majors made between academic dishonesty in the classroom laboratory and scientific misconduct in the research laboratory. Across the spectrum of undergraduate chemistry courses, from the introductory course for first-semester chemistry majors to the capstone course in instrumental analysis, we noted that students believe the classroom lab is fundamentally different from a research or industrial lab. This difference is so significant that it carries over into students' perceptions of dishonesty in these two environments.

  5. Research and Its Relationship to Nurse Education: Focus and Capacity.

    ERIC Educational Resources Information Center

    Newell, Robert

    2002-01-01

    Examination of two British mental health journals and a government document on the future of nursing found a lack of focus on clinical research and little reference to the role of research and development in practice. The increasing importance of evidence-based practice demands a strategy for developing nurses' capacity to understand, undertake,…

  6. The availability and functional status of focused antenatal care laboratory services at public health facilities in Addis Ababa, Ethiopia.

    PubMed

    Desalegn, Daniel Melese; Abay, Serebe; Taye, Bineyam

    2016-08-11

    Provision of quality laboratory services is an essential aspect of a promoting safe motherhood and better outcomes for newborn. Therefore; this study was intended to assess status of focused antenatal care (FANC) laboratory services at public health facilities in Addis Ababa, Ethiopia. Institution based, descriptive cross-sectional study was conducted from April to May 2015. The study included 13 randomly selected health facilities and 13 purposively selected laboratory service providers. The status of FANC laboratory service was assessed by using pre-tested structured questionnaire and observation checklist. The study supplemented with qualitative data through in-depth interview of laboratory service providers. The quantitative data were coded and analysed by using SPSS Version 20 software and qualitative data was transcribed, coded, categorized and thematically analysed by the principal investigator. Only 5 (38.5 %) out of 13 visited health facilities reported the availability of all types of basic FANC laboratory investigations. Comparing the availability of individual tests in the study facilities, urine dipstick, urine microscopy and stool examination were available in all institutions. However, only 7 (53.8 %) of the health facilities reported the availability of hepatitis B virus screening test. Rapid syphilis (RPR) test was found in 10 (76.9 %) facilities. All laboratory facilities had at least one or more basic FANC laboratory tests interruption for more than a day within the last 1 year due to shortage of reagent and electric power disruption. Majority of the health facilities reported incomplete provision of FANC laboratory investigations. Laboratory supply shortage and electric power disruption were the facilities' major challenge to screen pregnant women for pregnancy related health conditions. Since such conditions may affect the outcome of pregnancy, therefore extensive efforts should be targeted to avoid services interruption by taking

  7. Embry-Riddle Aeronautical University multispectral sensor and data fusion laboratory: a model for distributed research and education

    NASA Astrophysics Data System (ADS)

    McMullen, Sonya A. H.; Henderson, Troy; Ison, David

    2017-05-01

    The miniaturization of unmanned systems and spacecraft, as well as computing and sensor technologies, has opened new opportunities in the areas of remote sensing and multi-sensor data fusion for a variety of applications. Remote sensing and data fusion historically have been the purview of large government organizations, such as the Department of Defense (DoD), National Aeronautics and Space Administration (NASA), and National Geospatial-Intelligence Agency (NGA) due to the high cost and complexity of developing, fielding, and operating such systems. However, miniaturized computers with high capacity processing capabilities, small and affordable sensors, and emerging, commercially available platforms such as UAS and CubeSats to carry such sensors, have allowed for a vast range of novel applications. In order to leverage these developments, Embry-Riddle Aeronautical University (ERAU) has developed an advanced sensor and data fusion laboratory to research component capabilities and their employment on a wide-range of autonomous, robotic, and transportation systems. This lab is unique in several ways, for example, it provides a traditional campus laboratory for students and faculty to model and test sensors in a range of scenarios, process multi-sensor data sets (both simulated and experimental), and analyze results. Moreover, such allows for "virtual" modeling, testing, and teaching capability reaching beyond the physical confines of the facility for use among ERAU Worldwide students and faculty located around the globe. Although other institutions such as Georgia Institute of Technology, Lockheed Martin, University of Dayton, and University of Central Florida have optical sensor laboratories, the ERAU virtual concept is the first such lab to expand to multispectral sensors and data fusion, while focusing on the data collection and data products and not on the manufacturing aspect. Further, the initiative is a unique effort among Embry-Riddle faculty to develop multi

  8. Lin Receives 2010 Natural Hazards Focus Group Award for Graduate Research

    NASA Astrophysics Data System (ADS)

    2010-11-01

    Ning Lin has been awarded the Natural Hazards Focus Group Award for Graduate Research, given annually to a recent Ph.D. recipient for outstanding contributions to natural hazards research. Lin's thesis is entitled “Multi-hazard risk analysis related to hurricanes.” She is scheduled to present an invited talk in the Extreme Natural Events: Modeling, Prediction, and Mitigation session (NH20) during the 2010 AGU Fall Meeting, held 13-17 December in San Francisco, Calif. Lin will be formally presented with the award at the Natural Hazards focus group reception on 14 December 2010.

  9. Brain-computer interaction research at the Computer Vision and Multimedia Laboratory, University of Geneva.

    PubMed

    Pun, Thierry; Alecu, Teodor Iulian; Chanel, Guillaume; Kronegg, Julien; Voloshynovskiy, Sviatoslav

    2006-06-01

    This paper describes the work being conducted in the domain of brain-computer interaction (BCI) at the Multimodal Interaction Group, Computer Vision and Multimedia Laboratory, University of Geneva, Geneva, Switzerland. The application focus of this work is on multimodal interaction rather than on rehabilitation, that is how to augment classical interaction by means of physiological measurements. Three main research topics are addressed. The first one concerns the more general problem of brain source activity recognition from EEGs. In contrast with classical deterministic approaches, we studied iterative robust stochastic based reconstruction procedures modeling source and noise statistics, to overcome known limitations of current techniques. We also developed procedures for optimal electroencephalogram (EEG) sensor system design in terms of placement and number of electrodes. The second topic is the study of BCI protocols and performance from an information-theoretic point of view. Various information rate measurements have been compared for assessing BCI abilities. The third research topic concerns the use of EEG and other physiological signals for assessing a user's emotional status.

  10. Sequim Marine Research Laboratory routine environmental measurements during CY-1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, J.J.; Blumer, P.J.

    1978-06-01

    Beginning in 1976, a routine environmental program was established at the Marine Research Laboratory (MRL) at Sequim, Washington. The program is intended to demonstrate the negligible impact of current MRL operations on the surrounding environs and to provide baseline data through which any cumulative impact could be detected. The sampling frequency is greater during the first 2 years of the program to provide sufficient initial information to allow reliable estimates of observed radionuclide concentrations and to construct a long-term sampling program. The program is designed, primarily, to determine levels of radioactivity present in selected biota in Sequim Bay. The biotamore » were selected because of their presence near the laboratory and their capacity to concentrate trace elements. Other samples were obtained to determine the radionuclides in Sequim Bay and laboratory drinking water, as well as the ambient radiation exposure levels and surface deposition of fallout radionuclides for the laboratory area. Appendix A provides a summary of the analytical methods used. The present document includes data obtained during CY 1977 in addition to CY-1976 data published previously.« less

  11. Artist rendition of the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The preliminary design for the Space Experiment Research and Processing Laboratory (SERPL) at Kennedy Space Center is shown in this artist's rendition. The SERPL is a planned 100,000-square- foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  12. A relic of the Wellcome Tropical Research Laboratories in Khartoum (1903-34).

    PubMed

    Adeel, Ahmed Awad

    2016-01-01

    This article explores the origins of an old brass monocular microscope in the Central Laboratory in Khartoum, which used to be the Wellcome Tropical Research Laboratory in Khartoum (1903-1934). Examination of the microscope and review of published literature gave clues to the historical background of this microscope. Identical microscopes were first manufactured by R and J Beck in 1898, and continued to be advertised in 1899. The microscope was probably among the instruments provided by Wellcome for the initial establishment of the laboratories in 1902-1903. The article includes a brief review of the development of light microscopy. The need for preservation and proper restoration of old relics of the Wellcome laboratories in Khartoum is emphasized.

  13. Multi-modal virtual environment research at Armstrong Laboratory

    NASA Technical Reports Server (NTRS)

    Eggleston, Robert G.

    1995-01-01

    One mission of the Paul M. Fitts Human Engineering Division of Armstrong Laboratory is to improve the user interface for complex systems through user-centered exploratory development and research activities. In support of this goal, many current projects attempt to advance and exploit user-interface concepts made possible by virtual reality (VR) technologies. Virtual environments may be used as a general purpose interface medium, an alternative display/control method, a data visualization and analysis tool, or a graphically based performance assessment tool. An overview is given of research projects within the division on prototype interface hardware/software development, integrated interface concept development, interface design and evaluation tool development, and user and mission performance evaluation tool development.

  14. The intellectual contribution of laboratory medicine professionals to research papers on laboratory medicine topics published in high-impact general medicine journals.

    PubMed

    Escobar, Pedro Medina; Nydegger, Urs; Risch, Martin; Risch, Lorenz

    2012-03-01

    An author is generally regarded as an individual "who has made substantial intellectual academic contributions to a published study". However, the extent of the contribution that laboratory medicine professionals have made as authors of research papers in high-impact medical journals remains unclear. From 1 January 2004 to 31 March 2009, 4837 original research articles appeared in the: New England Journal of Medicine, Lancet, Annals of Internal Medicine, JAMA and BMJ. Using authorship as an indicator of intellectual contribution, we analyzed articles that included laboratory medicine parameters in their titles in an observational cross-sectional study. We also extracted data regarding radiological topics that were published during the same time within the same journals. Out of 481 articles concerning laboratory medicine topics, 380 provided information on the affiliations of the authors. At least one author from an institution within the field of laboratory medicine was listed in 212 articles (55.8%). Out of 3943 co-authors, only 756 (19.2%) were affiliated with laboratory medicine institutions. Authors from laboratory medicine institutions were listed as the first, last or corresponding authors in 99 articles (26.1%). The comparative proportions for author affiliation from 55 radiology articles were significantly higher, as 72.7% (p=0.026) of articles and 24.8% (p=0.001) of authors indicated an affiliation with a radiology institution. Radiology professionals from 72.7% of the articles were listed as either the first, last or corresponding authors (p<0.0001). The subgroup analysis revealed that laboratory medicine professionals from North America were significantly less frequently involved as co-authors than were their colleagues from Europe (p=0.04). Laboratory medicine professionals are underrepresented as co-authors in laboratory medicine studies appearing in high-impact general medicine journals.

  15. Report on Research at AFGL July 1976 - December 1978

    DTIC Science & Technology

    1980-11-01

    Research at the Air Force Geophysics Laboratory . This report covers a two-and-one-half... Laboratories (AFCRL). The Air Force redesignated AFCRL to AFGL on January 15, 1976, in order to focus attention and effort into geophysics research and...USAF Commander Contents Th» Air Foro* GMphyalc« Laboratory C rganization and People . . . Annual Budgets . . . Field Sites . . . Research

  16. The latest progress in sugarcane molecular genetics research at the USDA-ARS, Sugarcane Research Laboratory

    USDA-ARS?s Scientific Manuscript database

    In 2005, two sugar molecular genetics tools were developed in the USDA-ARS, Southeast Area, Sugarcane Research Laboratory at Houma, LA. One is the high throughput fluorescence- and capillary electrophoregrams (CE)-based SSR genotyping tool and the other is single pollen collection and SSR genotyping...

  17. The SWRL Audio Laboratory System (ALS): An Integrated Configuration for Psychomusicology Research. Technical Report 51.

    ERIC Educational Resources Information Center

    Williams, David Brian; Hoskin, Richard K.

    This report describes features of the Audio Laboratory System (ALS), a device which supports research activities of the Southwest Regional Laboratory's Music Program. The ALS is used primarily to generate recorded audio tapes for psychomusicology research related to children's perception and learning of music concepts such as pitch, loudness,…

  18. Merging of Research and Teaching in Developmental Biology: Adaptation of Current Scientific Research Papers for Use in Undergraduate Laboratory Exercises

    ERIC Educational Resources Information Center

    Lee, H. H.; and others

    1970-01-01

    Describes two laboratory exercises adopted from current research papers for use in an undergraduate developmental biology course. Gives methods, summary of student results, and student comments. Lists lecture topics, text and reprint assignments, and laboratory exercises for course. (EB)

  19. AEERL (AIR AND ENERGY ENGINEERING RESEARCH LABORATORY) RESEARCH PLAN ON THE GLOBAL CLIMATE EMISSIONS ASSESSMENT AND STABILIZATION PROGRAM

    EPA Science Inventory

    The paper discusses the Environmental Protection Agency's (EPA) Air and Energy Engineering Research Laboratory (AEERL) research plan for work in the global climate area. The plan, written for discussion with senior scientists and program managers at EPA's Global Climate Change Re...

  20. Focus-tunable liquid cylindrical lens based on electrowetting

    NASA Astrophysics Data System (ADS)

    Tan, Yanting; Peng, Runling

    2017-10-01

    The double-liquid focus-tunable lens based on electrowetting on dielectrics is attracting many researchers' attention because of compact volume, quick responding speed, low consumption etc. In this paper, a focus-tunable liquid cylindrical lens based on electrowetting is designed, the structure and operating principles of this lens are introduced. COMSOL Multiphysics is chamber, and the focal length is varied continuously. According to the materials used in our laboratory, the focal length is estimated, ranging between (-∞, -38.6mm)υ(61.4mm, +∞).

  1. About the Director of EPA's National Health and Environmental Effects Research Laboratory (NHEERL)

    EPA Pesticide Factsheets

    Dr. Wayne Cascio serves as Acting Director for the National Health and Environmental Effects Research Laboratory (NHEERL) within the U.S. Environmental Protection Agency's Office of Research and Development (ORD).

  2. 21 CFR 312.160 - Drugs for investigational use in laboratory research animals or in vitro tests.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... research animals or in vitro tests. 312.160 Section 312.160 Food and Drugs FOOD AND DRUG ADMINISTRATION... Drugs for Investigational Use in Laboratory Research Animals or In Vitro Tests § 312.160 Drugs for investigational use in laboratory research animals or in vitro tests. (a) Authorization to ship. (1)(i) A person...

  3. 21 CFR 312.160 - Drugs for investigational use in laboratory research animals or in vitro tests.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... research animals or in vitro tests. 312.160 Section 312.160 Food and Drugs FOOD AND DRUG ADMINISTRATION... Drugs for Investigational Use in Laboratory Research Animals or In Vitro Tests § 312.160 Drugs for investigational use in laboratory research animals or in vitro tests. (a) Authorization to ship. (1)(i) A person...

  4. 21 CFR 312.160 - Drugs for investigational use in laboratory research animals or in vitro tests.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... research animals or in vitro tests. 312.160 Section 312.160 Food and Drugs FOOD AND DRUG ADMINISTRATION... Drugs for Investigational Use in Laboratory Research Animals or In Vitro Tests § 312.160 Drugs for investigational use in laboratory research animals or in vitro tests. (a) Authorization to ship. (1)(i) A person...

  5. 21 CFR 312.160 - Drugs for investigational use in laboratory research animals or in vitro tests.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... research animals or in vitro tests. 312.160 Section 312.160 Food and Drugs FOOD AND DRUG ADMINISTRATION... Drugs for Investigational Use in Laboratory Research Animals or In Vitro Tests § 312.160 Drugs for investigational use in laboratory research animals or in vitro tests. (a) Authorization to ship. (1)(i) A person...

  6. 21 CFR 312.160 - Drugs for investigational use in laboratory research animals or in vitro tests.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... research animals or in vitro tests. 312.160 Section 312.160 Food and Drugs FOOD AND DRUG ADMINISTRATION... Drugs for Investigational Use in Laboratory Research Animals or In Vitro Tests § 312.160 Drugs for investigational use in laboratory research animals or in vitro tests. (a) Authorization to ship. (1)(i) A person...

  7. A survey on faculty perspectives on the transition to a biochemistry course-based undergraduate research experience laboratory.

    PubMed

    Craig, Paul A

    2017-09-01

    It will always remain a goal of an undergraduate biochemistry laboratory course to engage students hands-on in a wide range of biochemistry laboratory experiences. In 2006, our research group initiated a project for in silico prediction of enzyme function based only on the 3D coordinates of the more than 3800 proteins "of unknown function" in the Protein Data Bank, many of which resulted from the Protein Structure Initiative. Students have used the ProMOL plugin to the PyMOL molecular graphics environment along with BLAST, Pfam, and Dali to predict protein functions. As young scientists, these undergraduate research students wanted to see if their predictions were correct and so they developed an approach for in vitro testing of predicted enzyme function that included literature exploration, selection of a suitable assay and the search for commercially available substrates. Over the past two years, a team of faculty members from seven different campuses (California Polytechnic San Luis Obispo, Hope College, Oral Roberts University, Rochester Institute of Technology, St. Mary's University, Ursinus College, and Purdue University) have transferred this approach to the undergraduate biochemistry teaching laboratory as a Course-based Undergraduate Research Experience. A series of ten course modules and eight instructional videos have been created (www.promol.org/home/basil-modules-1) and the group is now expanding these resources, creating assessments and evaluating how this approach helps student to grow as scientists. The focus of this manuscript will be the logistical implications of this transition on campuses that have different cultures, expectations, schedules, and student populations. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):426-436, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  8. The need for econometric research in laboratory animal operations.

    PubMed

    Baker, David G; Kearney, Michael T

    2015-06-01

    The scarcity of research funding can affect animal facilities in various ways. These effects can be evaluated by examining the allocation of financial resources in animal facilities, which can be facilitated by the use of mathematical and statistical methods to analyze economic problems, a discipline known as econometrics. The authors applied econometrics to study whether increasing per diem charges had a negative effect on the number of days of animal care purchased by animal users. They surveyed animal numbers and per diem charges at 20 research institutions and found that demand for large animals decreased as per diem charges increased. The authors discuss some of the challenges involved in their study and encourage research institutions to carry out more robust econometric studies of this and other economic questions facing laboratory animal research.

  9. Focusing on the Invisible

    ERIC Educational Resources Information Center

    Haley, Tim R.

    2008-01-01

    This article seeks to answer the question of whether or not the design and development of an educational laboratory really changes when the focus is on nanotechnology. It explores current laboratory building trends and the added considerations for building a nanotechnology laboratory. The author leaves the reader with additional points to consider…

  10. LBNL Laboratory Directed Research and Development Program FY2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, D.

    2017-03-01

    The Berkeley Lab Laboratory Directed Research and Development Program FY2016 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation and review.

  11. NCI and the Cancer Community: Focus on Patients Through Innovative Research

    Cancer.gov

    At the 2018 AACR Annual Meeting , NCI Director Norman Sharpless describes the key focus areas where NCI can be particularly important to the cancer research enterprise on advancing progress and explains how addressing the challenges of the cancer research landscape requires innovative thinking.

  12. The value-added laboratory: an opportunity to merge research and service objectives.

    PubMed

    McDonald, J M

    1997-01-01

    The changing health-care environment is creating a new opportunities for laboratory medicine professionals that correspond with the new health services research agendas. Proving cost-effectiveness and conducting outcomes assessment are becoming vital functions of laboratories in this era of managed care. Laboratorians must take advantage of the resulting opportunities to show how they add value and medical relevance to the health-care delivery system.

  13. Bringing ayahuasca to the clinical research laboratory.

    PubMed

    Riba, Jordi; Barbanoj, Manel J

    2005-06-01

    Since the winter of 1999, the authors and their research team have been conducting clinical studies involving the administration of ayahuasca to healthy volunteers. The rationale for conducting this kind of research is twofold. First, the growing interest of many individuals for traditional indigenous practices involving the ingestion of natural psychotropic drugs such as ayahuasca demands the systematic study of their pharmacological profiles in the target species, i.e., human beings. The complex nature of ayahuasca brews combining a large number of pharmacologically active compounds requires that research be carried out to establish the safety and overall pharmacological profile of these products. Second, the authors believe that the study of psychedelics in general calls for renewed attention. Although the molecular and electrophysiological level effects of these drugs are relatively well characterized, current knowledge of the mechanisms by which these compounds modify the higher order cognitive processes in the way they do is still incomplete, to say the least. The present article describes the development of the research effort carried out at the Autonomous University of Barcelona, commenting on several methodological aspects and reviewing the basic clinical findings. It also describes the research currently underway in our laboratory, and briefly comments on two new studies we plan to undertake in order to further our knowledge of the pharmacology of ayahuasca.

  14. Requirement analysis for an electronic laboratory notebook for sustainable data management in biomedical research.

    PubMed

    Menzel, Julia; Weil, Philipp; Bittihn, Philip; Hornung, Daniel; Mathieu, Nadine; Demiroglu, Sara Y

    2013-01-01

    Sustainable data management in biomedical research requires documentation of metadata for all experiments and results. Scientists usually document research data and metadata in laboratory paper notebooks. An electronic laboratory notebook (ELN) can keep metadata linked to research data resulting in a better understanding of the research results, meaning a scientific benefit [1]. Besides other challenges [2], the biggest hurdles for introducing an ELN seem to be usability, file formats, and data entry mechanisms [3] and that many ELNs are assigned to specific research fields such as biology, chemistry, or physics [4]. We aimed to identify requirements for the introduction of ELN software in a biomedical collaborative research center [5] consisting of different scientific fields and to find software fulfilling most of these requirements.

  15. Family-focused autism spectrum disorder research: a review of the utility of family systems approaches.

    PubMed

    Cridland, Elizabeth K; Jones, Sandra C; Magee, Christopher A; Caputi, Peter

    2014-04-01

    A family member with an autism spectrum disorder presents pervasive and bidirectional influences on the entire family system, suggesting a need for family-focused autism spectrum disorder research. While there has been increasing interest in this research area, family-focused autism spectrum disorder research can still be considered relatively recent, and there are limitations to the existing literature. The purpose of this article is to provide theoretical and methodological directions for future family-focused autism spectrum disorder research. In particular, this article proposes Family Systems approaches as a common theoretical framework for future family-focused autism spectrum disorder research by considering theoretical concepts such as Boundaries, Ambiguous Loss, Resilience and Traumatic Growth. We discuss reasons why these concepts are important to researching families living with autism spectrum disorder and provide recommendations for future research. The potential for research grounded in Family Systems approaches to influence clinical support services is also discussed.

  16. A Virtual Laboratory for Aviation and Airspace Prognostics Research

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan; Gorospe, George; Teubert, Christ; Quach, Cuong C.; Hogge, Edward; Darafsheh, Kaveh

    2017-01-01

    Integration of Unmanned Aerial Vehicles (UAVs), autonomy, spacecraft, and other aviation technologies, in the airspace is becoming more and more complicated, and will continue to do so in the future. Inclusion of new technology and complexity into the airspace increases the importance and difficulty of safety assurance. Additionally, testing new technologies on complex aviation systems and systems of systems can be challenging, expensive, and at times unsafe when implementing real life scenarios. The application of prognostics to aviation and airspace management may produce new tools and insight into these problems. Prognostic methodology provides an estimate of the health and risks of a component, vehicle, or airspace and knowledge of how that will change over time. That measure is especially useful in safety determination, mission planning, and maintenance scheduling. In our research, we develop a live, distributed, hardware- in-the-loop Prognostics Virtual Laboratory testbed for aviation and airspace prognostics. The developed testbed will be used to validate prediction algorithms for the real-time safety monitoring of the National Airspace System (NAS) and the prediction of unsafe events. In our earlier work1 we discussed the initial Prognostics Virtual Laboratory testbed development work and related results for milestones 1 & 2. This paper describes the design, development, and testing of the integrated tested which are part of milestone 3, along with our next steps for validation of this work. Through a framework consisting of software/hardware modules and associated interface clients, the distributed testbed enables safe, accurate, and inexpensive experimentation and research into airspace and vehicle prognosis that would not have been possible otherwise. The testbed modules can be used cohesively to construct complex and relevant airspace scenarios for research. Four modules are key to this research: the virtual aircraft module which uses the X

  17. Practice-based research networks (PBRNs) are promising laboratories for conducting dissemination and implementation research.

    PubMed

    Heintzman, John; Gold, Rachel; Krist, Alexander; Crosson, Jay; Likumahuwa, Sonja; DeVoe, Jennifer E

    2014-01-01

    Dissemination and implementation science addresses the application of research findings in varied health care settings. Despite the potential benefit of dissemination and implementation work to primary care, ideal laboratories for this science have been elusive. Practice-based research networks (PBRNs) have a long history of conducting research in community clinical settings, demonstrating an approach that could be used to execute multiple research projects over time in broad and varied settings. PBRNs also are uniquely structured and increasingly involved in pragmatic trials, a research design central to dissemination and implementation science. We argue that PBRNs and dissemination and implementation scientists are ideally suited to work together and that the collaboration of these 2 groups will yield great value for the future of primary care and the delivery of evidence-based health care. © Copyright 2014 by the American Board of Family Medicine.

  18. Laboratory Animal Facilities. Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Jonas, Albert M.

    1965-01-01

    Design of laboratory animal facilities must be functional. Accordingly, the designer should be aware of the complex nature of animal research and specifically the type of animal research which will be conducted in a new facility. The building of animal-care facilities in research institutions requires special knowledge in laboratory animal…

  19. Public health laboratory workforce outreach in Hawai'i: CLIA-focused student internship pilot program at the state laboratories.

    PubMed

    Whelen, A Christian; Kitagawa, Kent

    2013-01-01

    Chronically understaffed public health laboratories depend on a decreasing number of employees who must assume broader responsibilities in order to sustain essential functions for the many clients the laboratories support. Prospective scientists considering a career in public health are often not aware of the requirements associated with working in a laboratory regulated by the Clinical Laboratory Improvement Amendments (CLIA). The purpose of this pilot internship was two-fold; introduce students to operations in a regulated laboratory early enough in their academics so that they could make good career decisions, and evaluate internship methodology as one possible solution to workforce shortages. Four interns were recruited from three different local universities, and were paired with an experienced State Laboratories Division (SLD) staff mentor. Students performed tasks that demonstrated the importance of CLIA regulations for 10-15 hours per week over a 14 week period. Students also attended several directed group sessions on regulatory lab practice and quality systems. Both interns and mentors were surveyed periodically during the semester. Surveys of mentors and interns indicated overall positive experiences. One-on-one pairing of experienced public health professionals and students seems to be a mutually beneficial arrangement. Interns reported that they would participate if the internship was lower paid, unpaid, or for credit only. The internship appeared to be an effective tool to expose students to employment in CLIA-regulated laboratories, and potentially help address public health laboratory staffing shortfalls. Longer term follow up with multiple classes of interns may provide a more informed assessment.

  20. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare.

    PubMed

    Davies, Gail F; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G W; Applebee, Ken; Bellingan, Laura C; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J; Jayne, Kimberley; Johnson, Adam M; Johnson, Elizabeth R; Konold, Timm; Leach, Matthew C; Leonelli, Sabina; Lewis, David I; Lilley, Elliot J; Longridge, Emma R; McLeod, Carmen M; Miele, Mara; Nelson, Nicole C; Ormandy, Elisabeth H; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J; Scudamore, Cheryl L; Smith, Jane A; Whitfield, Lucy; Wolfensohn, Sarah

    2016-01-01

    Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the '3Rs'), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, 'cultures of care', harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across

  1. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare

    PubMed Central

    Davies, Gail F.; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G. W.; Applebee, Ken; Bellingan, Laura C.; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J.; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J.; Jayne, Kimberley; Johnson, Adam M.; Johnson, Elizabeth R.; Konold, Timm; Leach, Matthew C.; Leonelli, Sabina; Lewis, David I.; Lilley, Elliot J.; Longridge, Emma R.; McLeod, Carmen M.; Miele, Mara; Nelson, Nicole C.; Ormandy, Elisabeth H.; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J.; Scudamore, Cheryl L.; Smith, Jane A.; Whitfield, Lucy; Wolfensohn, Sarah

    2016-01-01

    Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the ‘3Rs’), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, ‘cultures of care’, harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across

  2. SOIL AND FILL LABORATORY SUPPORT - 1992 RADIOLOGICAL ANALYSES - FLORIDA RADON RESEARCH PROGRAM

    EPA Science Inventory

    The report gives results of soil analysis laboratory work by the University of Florida in support of the Florida Radon Research Program (FRRP). Analyses were performed on soil and fill samples collected during 1992 by the FRRP Research House Program and the New House Evaluation P...

  3. A Semester-Long Project-Oriented Biochemistry Laboratory Based on "Helicobacter pylori" Urease

    ERIC Educational Resources Information Center

    Farnham, Kate R.; Dube, Danielle H.

    2015-01-01

    Here we present the development of a 13 week project-oriented biochemistry laboratory designed to introduce students to foundational biochemical techniques and then enable students to perform original research projects once they have mastered these techniques. In particular, we describe a semester-long laboratory that focuses on a biomedically…

  4. Inaugural Technology Showcase Draws Hundreds | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Before a crowded auditorium of science and business professionals at the Frederick National Laboratory for Cancer Research’s Advanced Technology Research Facility (ATRF), Joost Oppenheim, M.D., had just finished his presentation about a compound th

  5. Lightweight Portable Plasma Medical Device - Plasma Engineering Research Laboratory

    DTIC Science & Technology

    2013-10-01

    Engineering Research Laboratory has made a momentous advancement on meeting the proposed milestones. The project has two objectives, in which the ...pressure plasma jet based on a dielectric barrier discharge configuration. The plasma and biological testing and characterization are in progress...1(b). Direct exposure of plasma involves, exposure of plasma directly on to a target treatment surface whereas the indirect plasma exposure involves

  6. A Focused Ethnographic Study of Alberta Cattle Veterinarians’ Decision Making about Diagnostic Laboratory Submissions and Perceptions of Surveillance Programs

    PubMed Central

    Sawford, Kate; Vollman, Ardene Robinson; Stephen, Craig

    2013-01-01

    The animal and public health communities need to address the challenge posed by zoonotic emerging infectious diseases. To minimize the impacts of future events, animal disease surveillance will need to enable prompt event detection and response. Diagnostic laboratory-based surveillance systems targeting domestic animals depend in large part on private veterinarians to submit samples from cases to a laboratory. In contexts where pre-diagnostic laboratory surveillance systems have been implemented, this group of veterinarians is often asked to input data. This scenario holds true in Alberta where private cattle veterinarians have been asked to participate in the Alberta Veterinary Surveillance Network-Veterinary Practice Surveillance, a platform to which pre-diagnostic disease and non-disease case data are submitted. Consequently, understanding the factors that influence these veterinarians to submit cases to a laboratory and the complex of factors that affect their participation in surveillance programs is foundational to interpreting disease patterns reported by laboratories and engaging veterinarians in surveillance. A focused ethnographic study was conducted with ten cattle veterinarians in Alberta. Individual in-depth interviews with participants were recorded and transcribed to enable thematic analysis. Laboratory submissions were biased toward outbreaks of unknown cause, cases with unusual mortality rates, and issues with potential herd-level implications. Decreasing cattle value and government support for laboratory testing have contributed to fewer submissions over time. Participants were willing participants in surveillance, though government support and collaboration were necessary. Changes in the beef industry and veterinary profession, as well as cattle producers themselves, present both challenges and opportunities in surveillance. PMID:23741397

  7. Getting Real: A General Chemistry Laboratory Program Focusing on "Real World" Substances

    NASA Astrophysics Data System (ADS)

    Kerber, Robert C.; Akhtar, Mohammad J.

    1996-11-01

    working with these materials, we present chemical structures wherever possible, but do not emphasize organic nomenclature or functional group chemistry beyond identifying, as appropriate, acidic and basic groups and other key structural features. 3. As can be appreciated from Table 1, the course organization is overtly based on the nature of the materials themselveshousehold "chemicals", food and beverages, pills, and plasticsrather than on abstract chemical principles. Organizing the course on the basis of the materials studied emphasizes their relevance to students and focuses interest on the actual results obtained by the individual students. Nevertheless, a coherent sequence of development of laboratory techniques and gradually increasing opportunity for less tightly directed student experiences is maintained. Laboratory exercises cover most of the usual topics, including stoichiometry, qualitative analysis, quantitative analyses by acid-base and redox titrations, and colorimetry. We have not, however, found or devised exercises dealing with thermochemistry or electrochemistry; readers' suggestions in these areas would be welcome. 4. The instruments, equipment, and techniques used in the laboratory initially were the same as previously used, so that we have been able to introduce this program without initial capital expenditure. The exercises rely substantially upon mass measurements and titrations, with pH meters and colorimeters brought into use as the year progresses. We are now in the process of introducing Fourier transform infrared (FTIR) methods into the laboratories. This will add a very powerful tool to the students' repertoire. Its use will greatly expand the opportunities for directed-inquiry investigations of real-world samples in the context of the course. 5. Some of the exercises in Table 1 will be recognized by readers of this Journal as standard ones, found in many lab manuals or available as commercial modules (2). To provide a comprehensive focus on

  8. Curriculum Development of a Research Laboratory Methodology Course for Complementary and Integrative Medicine Students

    PubMed Central

    Vasilevsky, Nicole; Schafer, Morgan; Tibbitts, Deanne; Wright, Kirsten; Zwickey, Heather

    2015-01-01

    Training in fundamental laboratory methodologies is valuable to medical students because it enables them to understand the published literature, critically evaluate clinical studies, and make informed decisions regarding patient care. It also prepares them for research opportunities that may complement their medical practice. The National College of Natural Medicine's (NCNM) Master of Science in Integrative Medicine Research (MSiMR) program has developed an Introduction to Laboratory Methods course. The objective of the course it to train clinical students how to perform basic laboratory skills, analyze and manage data, and judiciously assess biomedical studies. Here we describe the course development and implementation as it applies to complementary and integrative medicine students. PMID:26500806

  9. Focus group interview: an underutilized research technique for improving theory and practice in health education.

    PubMed

    Basch, C E

    1987-01-01

    The purpose of this article is to increase awareness about and stimulate interest in using focus group interviews, a qualitative research technique, to advance the state-of-the-art of education and learning about health. After a brief discussion of small group process in health education, features of focus group interviews are presented, and a theoretical framework for planning a focus group study is summarized. Then, literature describing traditional and health-related applications of focus group interviews is reviewed and a synthesis of methodological limitations and advantages of this technique is presented. Implications are discussed regarding: need for more inductive qualitative research in health education; utility of focus group interviews for research and for formative and summative evaluation of health education programs; applicability of marketing research to understanding and influencing consumer behavior, despite notable distinctions between educational initiatives and marketing; and need for professional preparation faculty to consider increasing emphasis on qualitative research methods.

  10. Naval Research Laboratory Industrial Chemical Analysis and Respiratory Filter Standards Development

    DTIC Science & Technology

    2017-09-29

    Filter Standards Development September 29, 2017 Approved for public release; distribution is unlimited. Thomas E. suTTo Materials and Systems Branch...LIMITATION OF ABSTRACT Naval Research Laboratory Industrial Chemical Analysis and Respiratory Filter Standards Development Thomas E. Sutto Naval Research...approach, developed by NRL, is tested by examining the filter behavior against a number of chemicals to determine if the NRL approach resulted in the

  11. LDRD 2014 Annual Report: Laboratory Directed Research and Development Program Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatton, Diane

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2014, as required. In FY 2014, the BNL LDRD Program funded 40 projects, 8 of which were new starts, at a total cost of $9.6M.

  12. LDRD 2012 Annual Report: Laboratory Directed Research and Development Program Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bookless, William

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY2012, as required. In FY2012, the BNL LDRD Program funded 52 projects, 14 of which were new starts, at a total cost of $10,061,292.

  13. LDRD 2015 Annual Report: Laboratory Directed Research and Development Program Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatton, D.

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2015, as required. In FY 2015, the BNL LDRD Program funded 43 projects, 12 of which were new starts, at a total cost of $9.5M.

  14. Safety Precautions and Operating Procedures in an (A)BSL-4 Laboratory: 1. Biosafety Level 4 Suit Laboratory Suite Entry and Exit Procedures

    PubMed Central

    Janosko, Krisztina; Holbrook, Michael R.; Adams, Ricky; Barr, Jason; Bollinger, Laura; Newton, Je T'aime; Ntiforo, Corrie; Coe, Linda; Wada, Jiro; Pusl, Daniela; Jahrling, Peter B.; Kuhn, Jens H.; Lackemeyer, Matthew G.

    2016-01-01

    Biosafety level 4 (BSL-4) suit laboratories are specifically designed to study high-consequence pathogens for which neither infection prophylaxes nor treatment options exist. The hallmarks of these laboratories are: custom-designed airtight doors, dedicated supply and exhaust airflow systems, a negative-pressure environment, and mandatory use of positive-pressure (“space”) suits. The risk for laboratory specialists working with highly pathogenic agents is minimized through rigorous training and adherence to stringent safety protocols and standard operating procedures. Researchers perform the majority of their work in BSL-2 laboratories and switch to BSL-4 suit laboratories when work with a high-consequence pathogen is required. Collaborators and scientists considering BSL-4 projects should be aware of the challenges associated with BSL-4 research both in terms of experimental technical limitations in BSL-4 laboratory space and the increased duration of such experiments. Tasks such as entering and exiting the BSL-4 suit laboratories are considerably more complex and time-consuming compared to BSL-2 and BSL-3 laboratories. The focus of this particular article is to address basic biosafety concerns and describe the entrance and exit procedures for the BSL-4 laboratory at the NIH/NIAID Integrated Research Facility at Fort Detrick. Such procedures include checking external systems that support the BSL-4 laboratory, and inspecting and donning positive-pressure suits, entering the laboratory, moving through air pressure-resistant doors, and connecting to air-supply hoses. We will also discuss moving within and exiting the BSL-4 suit laboratories, including using the chemical shower and removing and storing positive-pressure suits. PMID:27768063

  15. Safety Precautions and Operating Procedures in an (A)BSL-4 Laboratory: 1. Biosafety Level 4 Suit Laboratory Suite Entry and Exit Procedures.

    PubMed

    Janosko, Krisztina; Holbrook, Michael R; Adams, Ricky; Barr, Jason; Bollinger, Laura; Newton, Je T'aime; Ntiforo, Corrie; Coe, Linda; Wada, Jiro; Pusl, Daniela; Jahrling, Peter B; Kuhn, Jens H; Lackemeyer, Matthew G

    2016-10-03

    Biosafety level 4 (BSL-4) suit laboratories are specifically designed to study high-consequence pathogens for which neither infection prophylaxes nor treatment options exist. The hallmarks of these laboratories are: custom-designed airtight doors, dedicated supply and exhaust airflow systems, a negative-pressure environment, and mandatory use of positive-pressure ("space") suits. The risk for laboratory specialists working with highly pathogenic agents is minimized through rigorous training and adherence to stringent safety protocols and standard operating procedures. Researchers perform the majority of their work in BSL-2 laboratories and switch to BSL-4 suit laboratories when work with a high-consequence pathogen is required. Collaborators and scientists considering BSL-4 projects should be aware of the challenges associated with BSL-4 research both in terms of experimental technical limitations in BSL-4 laboratory space and the increased duration of such experiments. Tasks such as entering and exiting the BSL-4 suit laboratories are considerably more complex and time-consuming compared to BSL-2 and BSL-3 laboratories. The focus of this particular article is to address basic biosafety concerns and describe the entrance and exit procedures for the BSL-4 laboratory at the NIH/NIAID Integrated Research Facility at Fort Detrick. Such procedures include checking external systems that support the BSL-4 laboratory, and inspecting and donning positive-pressure suits, entering the laboratory, moving through air pressure-resistant doors, and connecting to air-supply hoses. We will also discuss moving within and exiting the BSL-4 suit laboratories, including using the chemical shower and removing and storing positive-pressure suits.

  16. Stanford Aerospace Research Laboratory research overview

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. L.; Alder, L. J.; Chen, V. W.; Dickson, W. C.; Ullman, M. A.

    1993-01-01

    Over the last ten years, the Stanford Aerospace Robotics Laboratory (ARL) has developed a hardware facility in which a number of space robotics issues have been, and continue to be, addressed. This paper reviews two of the current ARL research areas: navigation and control of free flying space robots, and modelling and control of extremely flexible space structures. The ARL has designed and built several semi-autonomous free-flying robots that perform numerous tasks in a zero-gravity, drag-free, two-dimensional environment. It is envisioned that future generations of these robots will be part of a human-robot team, in which the robots will operate under the task-level commands of astronauts. To make this possible, the ARL has developed a graphical user interface (GUI) with an intuitive object-level motion-direction capability. Using this interface, the ARL has demonstrated autonomous navigation, intercept and capture of moving and spinning objects, object transport, multiple-robot cooperative manipulation, and simple assemblies from both free-flying and fixed bases. The ARL has also built a number of experimental test beds on which the modelling and control of flexible manipulators has been studied. Early ARL experiments in this arena demonstrated for the first time the capability to control the end-point position of both single-link and multi-link flexible manipulators using end-point sensing. Building on these accomplishments, the ARL has been able to control payloads with unknown dynamics at the end of a flexible manipulator, and to achieve high-performance control of a multi-link flexible manipulator.

  17. Laboratory Directed Research and Development 1998 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pam Hughes; Sheila Bennett eds.

    1999-07-14

    The Laboratory's Directed Research and Development (LDRD) program encourages the advancement of science and the development of major new technical capabilities from which future research and development will grow. Through LDRD funding, Pacific Northwest continually replenishes its inventory of ideas that have the potential to address major national needs. The LDRD program has enabled the Laboratory to bring to bear its scientific and technical capabilities on all of DOE's missions, particularly in the arena of environmental problems. Many of the concepts related to environmental cleanup originally developed with LDRD funds are now receiving programmatic support from DOE, LDRD-funded work inmore » atmospheric sciences is now being applied to DOE's Atmospheric Radiation Measurement Program. We also have used concepts initially explored through LDRD to develop several winning proposals in the Environmental Management Science Program. The success of our LDRD program is founded on good management practices that ensure funding is allocated and projects are conducted in compliance with DOE requirements. We thoroughly evaluate the LDRD proposals based on their scientific and technical merit, as well as their relevance to DOE's programmatic needs. After a proposal is funded, we assess progress annually using external peer reviews. This year, as in years past, the LDRD program has once again proven to be the major enabling vehicle for our staff to formulate new ideas, advance scientific capability, and develop potential applications for DOE's most significant challenges.« less

  18. Laboratory-directed research and development: FY 1996 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear andmore » particle physics, and (9) biosciences.« less

  19. Virtual special issue on catalysis at the U.S. Department of Energy's National Laboratories

    DOE PAGES

    Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.; ...

    2016-04-21

    Here the catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE's mission to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions.

  20. The good and the bad of poisonous plants: an introduction to the USDA-ARS Poisonous Plant Research Laboratory.

    PubMed

    Welch, Kevin D; Panter, Kip E; Gardner, Dale R; Stegelmeier, Bryan L

    2012-06-01

    This article provides an overview of the Poisonous Plant Research Laboratory (PPRL), about the unique services and activities of the PPRL and the potential assistance that they can provide to plant poisoning incidences. The PPRL is a federal research laboratory. It is part of the Agricultural Research Service, the in-house research arm of the U.S. Department of Agriculture. The mission of the PPRL is to identify toxic plants and their toxic compounds, determine how the plants poison animals, and develop diagnostic and prognostic procedures for poisoned animals. Furthermore, the PPRL's mission is to identify the conditions under which poisoning occurs and develop management strategies and treatments to reduce losses. Information obtained through research efforts at the PPRL is mostly used by the livestock industry, natural resource managers, veterinarians, chemists, plant and animal scientists, extension personnel, and other state and federal agencies. PPRL currently has 9 scientists and 17 support staff, representing various disciplines consisting of toxicology, reproductive toxicology, veterinary medicine, chemistry, animal science, range science, and plant physiology. This team of scientists provides an interdisciplinary approach to applied and basic research to develop solutions to plant intoxications. While the mission of the PPRL primarily impacts the livestock industry, spinoff benefits such as development of animal models, isolation and characterization of novel compounds, elucidation of biological and molecular mechanisms of action, national and international collaborations, and outreach efforts are significant to biomedical researchers. The staff at the PPRL has extensive knowledge regarding a number of poisonous plants. Although the focus of their knowledge is on plants that affect livestock, oftentimes, these plants are also poisonous to humans, and thus, similar principles could apply for cases of human poisonings. Consequently, the information provided

  1. National Storage Laboratory: a collaborative research project

    NASA Astrophysics Data System (ADS)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard W.

    1993-01-01

    The grand challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. An industry-led collaborative project has been organized to investigate technology for storage systems that will be the future repositories of national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and provider of applications. The expected result is the creation of a National Storage Laboratory to serve as a prototype and demonstration facility. It is expected that this prototype will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte-class files at gigabit-per-second data rates. Specifically, the collaboration expects to make significant advances in hardware, software, and systems technology in four areas of need, (1) network-attached high performance storage; (2) multiple, dynamic, distributed storage hierarchies; (3) layered access to storage system services; and (4) storage system management.

  2. Intelligent software for laboratory automation.

    PubMed

    Whelan, Ken E; King, Ross D

    2004-09-01

    The automation of laboratory techniques has greatly increased the number of experiments that can be carried out in the chemical and biological sciences. Until recently, this automation has focused primarily on improving hardware. Here we argue that future advances will concentrate on intelligent software to integrate physical experimentation and results analysis with hypothesis formulation and experiment planning. To illustrate our thesis, we describe the 'Robot Scientist' - the first physically implemented example of such a closed loop system. In the Robot Scientist, experimentation is performed by a laboratory robot, hypotheses concerning the results are generated by machine learning and experiments are allocated and selected by a combination of techniques derived from artificial intelligence research. The performance of the Robot Scientist has been evaluated by a rediscovery task based on yeast functional genomics. The Robot Scientist is proof that the integration of programmable laboratory hardware and intelligent software can be used to develop increasingly automated laboratories.

  3. Personal epistemological growth in a college chemistry laboratory environment

    NASA Astrophysics Data System (ADS)

    Keen-Rocha, Linda S.

    The nature of this study was to explore changes in beliefs and lay a foundation for focusing on more specific features of reasoning related to personal epistemological and NOS beliefs in light of specific science laboratory instructional pedagogical practices (e.g., pre- and post-laboratory activities, laboratory work) for future research. This research employed a mixed methodology, foregrounding qualitative data. The total population consisted of 56 students enrolled in several sections of a general chemistry laboratory course, with the qualitative analysis focusing on the in-depth interviews. A quantitative NOS and epistemological beliefs measure was administered pre- and post-instruction. These measures were triangulated with pre-post interviews to assure the rigor of the descriptions generated. Although little quantitative change in NOS was observed from the pre-post NSKS assessment a more noticeable qualitative change was reflected by the participants during their final interviews. The NSKS results: the mean gain scores for the overall score and all dimensions, except for amoral were found to be significant at p ≤ .05. However there was a more moderate change in the populations' broader epistemological beliefs (EBAPS) which was supported during the final interviews. The EBAPS results: the mean gain scores for the overall score and all dimensions, except for the source of ability to learn were found to be significant at p ≤ .05. The participants' identified the laboratory work as the most effective instructional feature followed by the post-laboratory activities. The pre-laboratory was identified as being the least effective feature. The participants suggested the laboratory work offered real-life experiences, group discussions, and teamwork which added understanding and meaning to their learning. The post-laboratory was viewed as necessary in tying all the information together and being able to see the bigger picture. What one cannot infer at this point is

  4. The Most Proficient Enzyme as the Central Theme in an Integrated, Research-based Biochemistry Laboratory Course

    ERIC Educational Resources Information Center

    Smiley, Jeffrey A.

    2002-01-01

    The enzyme orotidine-5'-monophosphate decarboxylase is an attractive choice for the central theme of an integrated, research-based biochemistry laboratory course. A series of laboratory exercises common to most instructional laboratories, including enzyme assays, protein purification, enzymatic characterization, elementary kinetics, and…

  5. Developing Digital Courseware for a Virtual Nano-Biotechnology Laboratory: A Design-Based Research Approach

    ERIC Educational Resources Information Center

    Yueh, Hsiu-Ping; Chen, Tzy-Ling; Lin, Weijane; Sheen, Horn-Jiunn

    2014-01-01

    This paper first reviews applications of multimedia in engineering education, especially in laboratory learning. It then illustrates a model and accreditation criteria adopted for developing a specific set of nanotechnology laboratory courseware and reports the design-based research approach used in designing and developing the e-learning…

  6. Engine Propeller Research Building at the Lewis Flight Propulsion Laboratory

    NASA Image and Video Library

    1955-02-21

    The Engine Propeller Research Building, referred to as the Prop House, emits steam from its acoustic silencers at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. In 1942 the Prop House became the first completed test facility at the new NACA laboratory in Cleveland, Ohio. It contained four test cells designed to study large reciprocating engines. After World War II, the facility was modified to study turbojet engines. Two of the test cells were divided into smaller test chambers, resulting in a total of six engine stands. During this period the NACA Lewis Materials and Thermodynamics Division used four of the test cells to investigate jet engines constructed with alloys and other high temperature materials. The researchers operated the engines at higher temperatures to study stress, fatigue, rupture, and thermal shock. The Compressor and Turbine Division utilized another test cell to study a NACA-designed compressor installed on a full-scale engine. This design sought to increase engine thrust by increasing its airflow capacity. The higher stage pressure ratio resulted in a reduction of the number of required compressor stages. The last test cell was used at the time by the Engine Research Division to study the effect of high inlet densities on a jet engine. Within a couple years of this photograph the Prop House was significantly altered again. By 1960 the facility was renamed the Electric Propulsion Research Building to better describe its new role in electric propulsion.

  7. Strengthening LLNL Missions through Laboratory Directed Research and Development in High Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, D. K.

    2016-12-01

    High performance computing (HPC) has been a defining strength of Lawrence Livermore National Laboratory (LLNL) since its founding. Livermore scientists have designed and used some of the world’s most powerful computers to drive breakthroughs in nearly every mission area. Today, the Laboratory is recognized as a world leader in the application of HPC to complex science, technology, and engineering challenges. Most importantly, HPC has been integral to the National Nuclear Security Administration’s (NNSA’s) Stockpile Stewardship Program—designed to ensure the safety, security, and reliability of our nuclear deterrent without nuclear testing. A critical factor behind Lawrence Livermore’s preeminence in HPC ismore » the ongoing investments made by the Laboratory Directed Research and Development (LDRD) Program in cutting-edge concepts to enable efficient utilization of these powerful machines. Congress established the LDRD Program in 1991 to maintain the technical vitality of the Department of Energy (DOE) national laboratories. Since then, LDRD has been, and continues to be, an essential tool for exploring anticipated needs that lie beyond the planning horizon of our programs and for attracting the next generation of talented visionaries. Through LDRD, Livermore researchers can examine future challenges, propose and explore innovative solutions, and deliver creative approaches to support our missions. The present scientific and technical strengths of the Laboratory are, in large part, a product of past LDRD investments in HPC. Here, we provide seven examples of LDRD projects from the past decade that have played a critical role in building LLNL’s HPC, computer science, mathematics, and data science research capabilities, and describe how they have impacted LLNL’s mission.« less

  8. A Molecular Genetics Laboratory Course Applying Bioinformatics and Cell Biology in the Context of Original Research

    ERIC Educational Resources Information Center

    Brame, Cynthia J.; Pruitt, Wendy M.; Robinson, Lucy C.

    2008-01-01

    Research based laboratory courses have been shown to stimulate student interest in science and to improve scientific skills. We describe here a project developed for a semester-long research-based laboratory course that accompanies a genetics lecture course. The project was designed to allow students to become familiar with the use of…

  9. Family-Focused Autism Spectrum Disorder Research: A Review of the Utility of Family Systems Approaches

    ERIC Educational Resources Information Center

    Cridland, Elizabeth K.; Jones, Sandra C.; Magee, Christopher A.; Caputi, Peter

    2014-01-01

    A family member with an autism spectrum disorder presents pervasive and bidirectional influences on the entire family system, suggesting a need for family-focused autism spectrum disorder research. While there has been increasing interest in this research area, family-focused autism spectrum disorder research can still be considered relatively…

  10. Distributed and grid computing projects with research focus in human health.

    PubMed

    Diomidous, Marianna; Zikos, Dimitrios

    2012-01-01

    Distributed systems and grid computing systems are used to connect several computers to obtain a higher level of performance, in order to solve a problem. During the last decade, projects use the World Wide Web to aggregate individuals' CPU power for research purposes. This paper presents the existing active large scale distributed and grid computing projects with research focus in human health. There have been found and presented 11 active projects with more than 2000 Processing Units (PUs) each. The research focus for most of them is molecular biology and, specifically on understanding or predicting protein structure through simulation, comparing proteins, genomic analysis for disease provoking genes and drug design. Though not in all cases explicitly stated, common target diseases include research to find cure against HIV, dengue, Duchene dystrophy, Parkinson's disease, various types of cancer and influenza. Other diseases include malaria, anthrax, Alzheimer's disease. The need for national initiatives and European Collaboration for larger scale projects is stressed, to raise the awareness of citizens to participate in order to create a culture of internet volunteering altruism.

  11. Bridging the Gap between Instructional and Research Laboratories: Teaching Data Analysis Software Skills through the Manipulation of Original Research Data

    ERIC Educational Resources Information Center

    Hansen, Sarah J. R.; Zhu, Jieling; Karch, Jessica M.; Sorrento, Cristina M.; Ulichny, Joseph C.; Kaufman, Laura J.

    2016-01-01

    The gap between graduate research and introductory undergraduate teaching laboratories is often wide, but the development of teaching activities rooted within the research environment offers an opportunity for undergraduate students to have first-hand experience with research currently being conducted and for graduate students to develop…

  12. How Work Positions Affect the Research Activity and Information Behaviour of Laboratory Scientists in the Research Lifecycle: Applying Activity Theory

    ERIC Educational Resources Information Center

    Kwon, Nahyun

    2017-01-01

    Introduction: This study was conducted to investigate the characteristics of research and information activities of laboratory scientists in different work positions throughout a research lifecycle. Activity theory was applied as the conceptual and analytical framework. Method: Taking a qualitative research approach, in-depth interviews and field…

  13. RLE (Research Laboratory of Electronics) Progress Report Number 129.

    DTIC Science & Technology

    1987-01-01

    8217," ’,/’.’t MICROCOP ,"Y RESOLUTION TEST C-’HA"-/’%’.’."."% "-’- -" "."o -- - -" " OI FILE COPYAJ MASSACHUSETTS INSTITUTE OF EHOGYD The RESEARCH LABORATORY of...Intercalation Compound Structures and Transitions .................................. 59 10.0 Semiconductor Surface Studies...understanding of the HEMT, which is the basic block in building surface superlattices on III-V compound materials, our device structure has been simu

  14. Free-space optical communications research and demonstrations at the U.S. Naval Research Laboratory.

    PubMed

    Rabinovich, W S; Moore, C I; Mahon, R; Goetz, P G; Burris, H R; Ferraro, M S; Murphy, J L; Thomas, L M; Gilbreath, G C; Vilcheck, M; Suite, M R

    2015-11-01

    Free-space optical communication can allow high-bandwidth data links that are hard to detect, intercept, or jam. This makes them attractive for many applications. However, these links also require very accurate pointing, and their availability is affected by weather. These challenges have limited the deployment of free-space optical systems. The U.S. Naval Research Laboratory has, for the last 15 years, engaged in research into atmospheric propagation and photonic components with a goal of characterizing and overcoming these limitations. In addition several demonstrations of free-space optical links in real-world Navy applications have been conducted. This paper reviews this work and the principles guiding it.

  15. Engineered nanomaterials: toward effective safety management in research laboratories.

    PubMed

    Groso, Amela; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Hofmann, Heinrich; Meyer, Thierry

    2016-03-15

    It is still unknown which types of nanomaterials and associated doses represent an actual danger to humans and environment. Meanwhile, there is consensus on applying the precautionary principle to these novel materials until more information is available. To deal with the rapid evolution of research, including the fast turnover of collaborators, a user-friendly and easy-to-apply risk assessment tool offering adequate preventive and protective measures has to be provided. Based on new information concerning the hazards of engineered nanomaterials, we improved a previously developed risk assessment tool by following a simple scheme to gain in efficiency. In the first step, using a logical decision tree, one of the three hazard levels, from H1 to H3, is assigned to the nanomaterial. Using a combination of decision trees and matrices, the second step links the hazard with the emission and exposure potential to assign one of the three nanorisk levels (Nano 3 highest risk; Nano 1 lowest risk) to the activity. These operations are repeated at each process step, leading to the laboratory classification. The third step provides detailed preventive and protective measures for the determined level of nanorisk. We developed an adapted simple and intuitive method for nanomaterial risk management in research laboratories. It allows classifying the nanoactivities into three levels, additionally proposing concrete preventive and protective measures and associated actions. This method is a valuable tool for all the participants in nanomaterial safety. The users experience an essential learning opportunity and increase their safety awareness. Laboratory managers have a reliable tool to obtain an overview of the operations involving nanomaterials in their laboratories; this is essential, as they are responsible for the employee safety, but are sometimes unaware of the works performed. Bringing this risk to a three-band scale (like other types of risks such as biological, radiation

  16. The Pitt Innovation Challenge (PInCh): Driving Innovation in Translational Research Through an Incentive-Based, Problem-Focused Competition.

    PubMed

    Fitzpatrick, Nicole Edgar; Maier, John; Yasko, Laurel; Mathias, David; Qua, Kacy; Wagner, Erika; Miller, Elizabeth; Reis, Steven E

    2017-05-01

    Translational research aims to move scientific discoveries across the biomedical spectrum from the laboratory to humans, and to ultimately transform clinical practice and public health policies. Despite efforts to accelerate translational research through national initiatives, several major hurdles remain. The authors created the Pitt Innovation Challenge (PInCh) as an incentive-based, problem-focused approach to solving identified clinical or public health problems at the University of Pittsburgh Clinical and Translational Science Institute in spring 2014. With input from a broad range of stakeholders, PInCh leadership arrived at the challenge question: How do we empower individuals to take control of their own health outcomes? The authors developed the PInCh's three-round proposal submission and review process as well as an online contest management tool to support the process. Ninety-two teams submitted video proposals in round one. Proposals included mobile applications (29; 32%), other information technology (19; 21%), and community program (22; 24%) solutions. Ten teams advanced to the final round, where three were awarded $100,000 to implement their solution over 12 months. In a 6-month follow-up survey, 6/11 (55%) team leaders stated the PInCh helped to facilitate connections outside their normal sphere of collaborators. Additional educational training sessions related to problem-focused research will be developed. The PInCh will be expanded to engage investment and industry communities to facilitate the translation of solutions to clinical practice via commercialization pathways. External organizations and other universities will be engaged to use the PInCh as a mechanism to fuel innovation in their spaces.

  17. Laboratory challenges in the scaling up of HIV, TB, and malaria programs: The interaction of health and laboratory systems, clinical research, and service delivery.

    PubMed

    Birx, Deborah; de Souza, Mark; Nkengasong, John N

    2009-06-01

    Strengthening national health laboratory systems in resource-poor countries is critical to meeting the United Nations Millennium Development Goals. Despite strong commitment from the international community to fight major infectious diseases, weak laboratory infrastructure remains a huge rate-limiting step. Some major challenges facing laboratory systems in resource-poor settings include dilapidated infrastructure; lack of human capacity, laboratory policies, and strategic plans; and limited synergies between clinical and research laboratories. Together, these factors compromise the quality of test results and impact patient management. With increased funding, the target of laboratory strengthening efforts in resource-poor countries should be the integrating of laboratory services across major diseases to leverage resources with respect to physical infrastructure; types of assays; supply chain management of reagents and equipment; and maintenance of equipment.

  18. Research Activities at Plasma Research Laboratory at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.; Rao, M. V. V. S.; Meyyappan, Meyya

    2000-01-01

    In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies are being developed at NASA-Ames Research Center using a multi-discipline approach. The first step is to understand the basic physics of the chemical reactions in the area of plasma reactors and processes. Low pressure glow discharges are indispensable in the fabrication of microelectronic circuits. These plasmas are used to deposit materials and also etch fine features in device fabrication. However, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Although a great deal of laboratory-scale research has been performed on many of these processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. Our present research involves the study of such plasmas. An inductively-coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics. This ICP source generates plasmas with higher electron densities and lower operating pressures than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The research goal is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental

  19. The Observatory as Laboratory: Spectral Analysis at Mount Wilson Observatory

    NASA Astrophysics Data System (ADS)

    Brashear, Ronald

    2018-01-01

    This paper will discuss the seminal changes in astronomical research practices made at the Mount Wilson Observatory in the early twentieth century by George Ellery Hale and his staff. Hale’s desire to set the agenda for solar and stellar astronomical research is often described in terms of his new telescopes, primarily the solar tower observatories and the 60- and 100-inch telescopes on Mount Wilson. This paper will focus more on the ancillary but no less critical parts of Hale’s research mission: the establishment of associated “physical” laboratories as part of the observatory complex where observational spectral data could be quickly compared with spectra obtained using specialized laboratory equipment. Hale built a spectroscopic laboratory on the mountain and a more elaborate physical laboratory in Pasadena and staffed it with highly trained physicists, not classically trained astronomers. The success of Hale’s vision for an astronomical observatory quickly made the Carnegie Institution’s Mount Wilson Observatory one of the most important astrophysical research centers in the world.

  20. National University Consortium on Microwave Research (NUCOMR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, R.J.; Agee, F.J.

    1995-11-01

    This paper introduces a new cooperative research program of national scale that is focused on crucial research issues in the development of high energy microwave sources. These have many applications in the DOD and industry. The Air Force Office of Scientific Research (AFOSR), in cooperation with the Phillips Laboratory, the Naval Research Laboratory, and the Army Research Laboratory, has established a tri-service research consortium to investigate novel high energy microwave sources. To facilitate the rapid transition of research results into the industrial community, formal collaborative subcontracts are already in-place with James Benford at Physics International, Carter Armstrong at Northrop, andmore » Glen Huffman at Varian Associates. Although this new program officially only came into existence in mid-March of this year, it builds on over a decade of microwave research efforts funded by the plasma physics office at AFOSR. It also is synergistic with the ongoing Tri-Service Vacuum Electronics Initiative led by Robert Parker of NRL as well as with the AFOSR`s and Rome Laboratory`s long-standing Advanced Thermionic Research Initiative (ATRI). An overview will be given of the broad spectrum of research objectives encompassed by NUCOMR. Areas of collaboration and technology transfer will be highlighted. The areas in which the three university consortia will conduct research are described, and the connectivity to industry and to the DOD laboratories are discussed. There are a number of critical technical barriers to reaching the desired goals for high power and high energy sources. These are discussed and the planned focus of research to resolve them is also presented.« less