Sample records for laboratory reservoir characterization

  1. An Effective Reservoir Parameter for Seismic Characterization of Organic Shale Reservoir

    NASA Astrophysics Data System (ADS)

    Zhao, Luanxiao; Qin, Xuan; Zhang, Jinqiang; Liu, Xiwu; Han, De-hua; Geng, Jianhua; Xiong, Yineng

    2017-12-01

    Sweet spots identification for unconventional shale reservoirs involves detection of organic-rich zones with abundant porosity. However, commonly used elastic attributes, such as P- and S-impedances, often show poor correlations with porosity and organic matter content separately and thus make the seismic characterization of sweet spots challenging. Based on an extensive analysis of worldwide laboratory database of core measurements, we find that P- and S-impedances exhibit much improved linear correlations with the sum of volume fraction of organic matter and porosity than the single parameter of organic matter volume fraction or porosity. Importantly, from the geological perspective, porosity in conjunction with organic matter content is also directly indicative of the total hydrocarbon content of shale resources plays. Consequently, we propose an effective reservoir parameter (ERP), the sum of volume fraction of organic matter and porosity, to bridge the gap between hydrocarbon accumulation and seismic measurements in organic shale reservoirs. ERP acts as the first-order factor in controlling the elastic properties as well as characterizing the hydrocarbon storage capacity of organic shale reservoirs. We also use rock physics modeling to demonstrate why there exists an improved linear correlation between elastic impedances and ERP. A case study in a shale gas reservoir illustrates that seismic-derived ERP can be effectively used to characterize the total gas content in place, which is also confirmed by the production well.

  2. Microseismic monitoring: a tool for reservoir characterization.

    NASA Astrophysics Data System (ADS)

    Shapiro, S. A.

    2011-12-01

    Characterization of fluid-transport properties of rocks is one of the most important, yet one of most challenging goals of reservoir geophysics. There are some fundamental difficulties related to using active seismic methods for estimating fluid mobility. However, it would be very attractive to have a possibility of exploring hydraulic properties of rocks using seismic methods because of their large penetration range and their high resolution. Microseismic monitoring of borehole fluid injections is exactly the tool to provide us with such a possibility. Stimulation of rocks by fluid injections belong to a standard development practice of hydrocarbon and geothermal reservoirs. Production of shale gas and of heavy oil, CO2 sequestrations, enhanced recovery of oil and of geothermal energy are branches that require broad applications of this technology. The fact that fluid injection causes seismicity has been well-established for several decades. Observations and data analyzes show that seismicity is triggered by different processes ranging from linear pore pressure diffusion to non-linear fluid impact onto rocks leading to their hydraulic fracturing and strong changes of their structure and permeability. Understanding and monitoring of fluid-induced seismicity is necessary for hydraulic characterization of reservoirs, for assessments of reservoir stimulation and for controlling related seismic hazard. This presentation provides an overview of several theoretical, numerical, laboratory and field studies of fluid-induced microseismicity, and it gives an introduction into the principles of seismicity-based reservoir characterization.

  3. Gypsy Field project in reservoir characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castagna, John P.; Jr., O'Meara, Daniel J.

    The overall objective of this project was to use extensive Gypsy Field Laboratory and data as a focus for developing and testing reservoir characterization methods that are targeted at improved recovery of conventional oil. This report describes progress since project report DOE/BC/14970-7 and covers the period June 1997-September 1998 and represents one year of funding originally allocated for the year 1996. During the course of the work previously performed, high resolution geophysical and outcrop data revealed the importance of fractures at the Gypsy site. In addition, personnel changes and alternative funding (OCAST and oil company support of various kinds) allowedmore » the authors to leverage DOE contributions and focus more on geophysical characterization.« less

  4. 4. International reservoir characterization technical conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energymore » Science and Technology database.« less

  5. Integrated reservoir characterization for unconventional reservoirs using seismic, microseismic and well log data

    NASA Astrophysics Data System (ADS)

    Maity, Debotyam

    This study is aimed at an improved understanding of unconventional reservoirs which include tight reservoirs (such as shale oil and gas plays), geothermal developments, etc. We provide a framework for improved fracture zone identification and mapping of the subsurface for a geothermal system by integrating data from different sources. The proposed ideas and methods were tested primarily on data obtained from North Brawley geothermal field and the Geysers geothermal field apart from synthetic datasets which were used to test new algorithms before actual application on the real datasets. The study has resulted in novel or improved algorithms for use at specific stages of data acquisition and analysis including improved phase detection technique for passive seismic (and teleseismic) data as well as optimization of passive seismic surveys for best possible processing results. The proposed workflow makes use of novel integration methods as a means of making best use of the available geophysical data for fracture characterization. The methodology incorporates soft computing tools such as hybrid neural networks (neuro-evolutionary algorithms) as well as geostatistical simulation techniques to improve the property estimates as well as overall characterization efficacy. The basic elements of the proposed characterization workflow involves using seismic and microseismic data to characterize structural and geomechanical features within the subsurface. We use passive seismic data to model geomechanical properties which are combined with other properties evaluated from seismic and well logs to derive both qualitative and quantitative fracture zone identifiers. The study has resulted in a broad framework highlighting a new technique for utilizing geophysical data (seismic and microseismic) for unconventional reservoir characterization. It provides an opportunity to optimally develop the resources in question by incorporating data from different sources and using their temporal

  6. A hybrid framework for reservoir characterization using fuzzy ranking and an artificial neural network

    NASA Astrophysics Data System (ADS)

    Wang, Baijie; Wang, Xin; Chen, Zhangxin

    2013-08-01

    Reservoir characterization refers to the process of quantitatively assigning reservoir properties using all available field data. Artificial neural networks (ANN) have recently been introduced to solve reservoir characterization problems dealing with the complex underlying relationships inherent in well log data. Despite the utility of ANNs, the current limitation is that most existing applications simply focus on directly implementing existing ANN models instead of improving/customizing them to fit the specific reservoir characterization tasks at hand. In this paper, we propose a novel intelligent framework that integrates fuzzy ranking (FR) and multilayer perceptron (MLP) neural networks for reservoir characterization. FR can automatically identify a minimum subset of well log data as neural inputs, and the MLP is trained to learn the complex correlations from the selected well log data to a target reservoir property. FR guarantees the selection of the optimal subset of representative data from the overall well log data set for the characterization of a specific reservoir property; and, this implicitly improves the modeling and predication accuracy of the MLP. In addition, a growing number of industrial agencies are implementing geographic information systems (GIS) in field data management; and, we have designed the GFAR solution (GIS-based FR ANN Reservoir characterization solution) system, which integrates the proposed framework into a GIS system that provides an efficient characterization solution. Three separate petroleum wells from southwestern Alberta, Canada, were used in the presented case study of reservoir porosity characterization. Our experiments demonstrate that our method can generate reliable results.

  7. CarbonSAFE Rocky Mountain Phase I : Seismic Characterization of the Navajo Reservoir, Buzzard Bench, Utah

    NASA Astrophysics Data System (ADS)

    Haar, K. K.; Balch, R. S.; Lee, S. Y.

    2017-12-01

    The CarbonSAFE Rocky Mountain project team is in the initial phase of investigating the regulatory, financial and technical feasibility of commercial-scale CO2 capture and storage from two coal-fired power plants in the northwest region of the San Rafael Swell, Utah. The reservoir interval is the Jurassic Navajo Sandstone, an eolian dune deposit that at present serves as the salt water disposal reservoir for Ferron Sandstone coal-bed methane production in the Drunkards Wash field and Buzzard Bench area of central Utah. In the study area the Navajo sandstone is approximately 525 feet thick and is at an average depth of about 7000 feet below the surface. If sufficient porosity and permeability exist, reservoir depth and thickness would provide storage for up to 100,000 metric tonnes of CO2 per square mile, based on preliminary estimates. This reservoir has the potential to meet the DOE's requirement of having the ability to store at least 50 million metric tons of CO2 and fulfills the DOE's initiative to develop protocols for commercially sequestering carbon sourced from coal-fired power plants. A successful carbon storage project requires thorough structural and stratigraphic characterization of the reservoir, seal and faults, thereby allowing the creation of a comprehensive geologic model with subsequent simulations to evaluate CO2/brine migration and long-term effects. Target formation lithofacies and subfacies data gathered from outcrop mapping and laboratory analysis of core samples were developed into a geologic model. Synthetic seismic was modeled from this, allowing us to seismically characterize the lithofacies of the target formation. This seismic characterization data was then employed in the interpretation of 2D legacy lines which provided stratigraphic and structural control for more accurate model development of the northwest region of the San Rafael Swell. Developing baseline interpretations such as this are crucial toward long-term carbon storage

  8. Reservoir Characterization for Unconventional Resource Potential, Pitsanulok Basin, Onshore Thailand

    NASA Astrophysics Data System (ADS)

    Boonyasatphan, Prat

    The Pitsanulok Basin is the largest onshore basin in Thailand. Located within the basin is the largest oil field in Thailand, the Sirikit field. As conventional oil production has plateaued and EOR is not yet underway, an unconventional play has emerged as a promising alternative to help supply the energy needs. Source rocks in the basin are from the Oligocene lacustrine shale of the Chum Saeng Formation. This study aims to quantify and characterize the potential of shale gas/oil development in the Chum Saeng Formation using advanced reservoir characterization techniques. The study starts with rock physics analysis to determine the relationship between geophysical, lithological, and geomechanical properties of rocks. Simultaneous seismic inversion is later performed. Seismic inversion provides spatial variation of geophysical properties, i.e. P-impedance, S-impedance, and density. With results from rock physics analysis and from seismic inversion, the reservoir is characterized by applying analyses from wells to the inverted seismic data. And a 3D lithofacies cube is generated. TOC is computed from inverted AI. Static moduli are calculated. A seismic derived brittleness cube is calculated from Poisson's ratio and Young's modulus. The reservoir characterization shows a spatial variation in rock facies and shale reservoir properties, including TOC, brittleness, and elastic moduli. From analysis, the most suitable location for shale gas/oil pilot exploration and development are identified. The southern area of the survey near the MD-1 well with an approximate depth around 650-850 m has the highest shale reservoir potential. The shale formation is thick, with intermediate brittleness and high TOC. These properties make it as a potential sweet spot for a future shale reservoir exploration and development.

  9. Seismic Reservoir Characterization for Assessment of CO2 EOR at the Mississippian Reservoir in South-Central Kansas

    NASA Astrophysics Data System (ADS)

    Tsoflias, G. P.; Graham, B.; Haga, L.; Watney, L.

    2017-12-01

    The Mississippian in Kansas and Oklahoma is a highly heterogeneous, fractured, oil producing reservoir with thickness typically below seismic resolution. At Wellington field in south-central Kansas CO2 was injected in the Mississippian reservoir for enhanced oil recovery. This study examines the utility of active source surface seismic for characterization of Mississippian reservoir properties and monitoring CO2. Analysis of post-stack 3D seismic data showed the expected response of a gradational transition (ramp velocity) where thicker reservoir units corresponded with lower reflection amplitudes, lower frequency and a 90o phase change. Reflection amplitude could be correlated to reservoir thickness. Pre-stack gather analysis showed that porosity zones of the Mississippian reservoir exhibit characteristic AVO response. Simultaneous AVO inversion estimated P- and S-Impedances, which along with formation porosity logs and post-stack seismic data attributes were incorporated in multi-attribute linear-regression analysis and predicted reservoir porosity with an overall correlation of 0.90 to well data. The 3D survey gather azimuthal anisotropy analysis (AVAZ) provided information on the fault and fracture network and showed good agreement to the regional stress field and well data. Mississippian reservoir porosity and fracture predictions agreed well with the observed mobility of the CO2 in monitoring wells. Fluid substitution modeling predicted acoustic impedance reduction in the Mississippian carbonate reservoir introduced by the presence of CO2. Future work includes the assessment of time-lapse seismic, acquired after the injection of CO2. This work demonstrates that advanced seismic interpretation methods can be used successfully for characterization of the Mississippian reservoir and monitoring of CO2.

  10. Laboratory characterization of shale pores

    NASA Astrophysics Data System (ADS)

    Nur Listiyowati, Lina

    2018-02-01

    To estimate the potential of shale gas reservoir, one needs to understand the characteristics of pore structures. Characterization of shale gas reservoir microstructure is still a challenge due to ultra-fine grained micro-fabric and micro level heterogeneity of these sedimentary rocks. The sample used in the analysis is a small portion of any reservoir. Thus, each measurement technique has a different result. It raises the question which methods are suitable for characterizing pore shale. The goal of this paper is to summarize some of the microstructure analysis tools of shale rock to get near-real results. The two analyzing pore structure methods are indirect measurement (MIP, He, NMR, LTNA) and direct observation (SEM, TEM, Xray CT). Shale rocks have a high heterogeneity; thus, it needs multiscale quantification techniques to understand their pore structures. To describe the complex pore system of shale, several measurement techniques are needed to characterize the surface area and pore size distribution (LTNA, MIP), shapes, size and distribution of pore (FIB-SEM, TEM, Xray CT), and total porosity (He pycnometer, NMR). The choice of techniques and methods should take into account the purpose of the analysis and also the time and budget.

  11. Integration of seismic and petrophysics to characterize reservoirs in "ALA" oil field, Niger Delta.

    PubMed

    Alao, P A; Olabode, S O; Opeloye, S A

    2013-01-01

    In the exploration and production business, by far the largest component of geophysical spending is driven by the need to characterize (potential) reservoirs. The simple reason is that better reservoir characterization means higher success rates and fewer wells for reservoir exploitation. In this research work, seismic and well log data were integrated in characterizing the reservoirs on "ALA" field in Niger Delta. Three-dimensional seismic data was used to identify the faults and map the horizons. Petrophysical parameters and time-depth structure maps were obtained. Seismic attributes was also employed in characterizing the reservoirs. Seven hydrocarbon-bearing reservoirs with thickness ranging from 9.9 to 71.6 m were delineated. Structural maps of horizons in six wells containing hydrocarbon-bearing zones with tops and bottoms at range of -2,453 to -3,950 m were generated; this portrayed the trapping mechanism to be mainly fault-assisted anticlinal closures. The identified prospective zones have good porosity, permeability, and hydrocarbon saturation. The environments of deposition were identified from log shapes which indicate a transitional-to-deltaic depositional environment. In this research work, new prospects have been recommended for drilling and further research work. Geochemical and biostratigraphic studies should be done to better characterize the reservoirs and reliably interpret the depositional environments.

  12. Characterization of oil and gas reservoir heterogeneity; Final report, November 1, 1989--June 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, G.D.

    1993-09-01

    The Alaskan North Slope comprises one of the Nation`s and the world`s most prolific oil province. Original oil in place (OOIP) is estimated at nearly 70 BBL (Kamath and Sharma, 1986). Generalized reservoir descriptions have been completed by the University of Alaska`s Petroleum Development Laboratory over North Slope`s major fields. These fields include West Sak (20 BBL OOIP), Ugnu (15 BBL OOIP), Prudhoe Bay (23 BBL OOIP), Kuparuk (5.5 BBL OOIP), Milne Point (3 BBL OOIP), and Endicott (1 BBL OOIP). Reservoir description has included the acquisition of open hole log data from the Alaska Oil and Gas Conservation Commissionmore » (AOGCC), computerized well log analysis using state-of-the-art computers, and integration of geologic and logging data. The studies pertaining to fluid characterization described in this report include: experimental study of asphaltene precipitation for enriched gases, CO{sup 2} and West Sak crude system, modeling of asphaltene equilibria including homogeneous as well as polydispersed thermodynamic models, effect of asphaltene deposition on rock-fluid properties, fluid properties of some Alaskan north slope reservoirs. Finally, the last chapter summarizes the reservoir heterogeneity classification system for TORIS and TORIS database.« less

  13. Petrofacies Analysis - A Petrophysical Tool for Geologic/Engineering Reservoir Characterization

    USGS Publications Warehouse

    Watney, W.L.; Guy, W.J.; Doveton, J.H.; Bhattacharya, S.; Gerlach, P.M.; Bohling, Geoffrey C.; Carr, T.R.

    1998-01-01

    Petrofacies analysis is defined as the characterization and classification of pore types and fluid saturations as revealed by petrophysical measurements of a reservoir. The word "petrofacies" makes an explicit link between petroleum engineers' concerns with pore characteristics as arbiters of production performance and the facies paradigm of geologists as a methodology for genetic understanding and prediction. In petrofacies analysis, the porosity and resistivity axes of the classical Pickett plot are used to map water saturation, bulk volume water, and estimated permeability, as well as capillary pressure information where it is available. When data points are connected in order of depth within a reservoir, the characteristic patterns reflect reservoir rock character and its interplay with the hydrocarbon column. A third variable can be presented at each point on the crossplot by assigning a color scale that is based on other well logs, often gamma ray or photoelectric effect, or other derived variables. Contrasts between reservoir pore types and fluid saturations are reflected in changing patterns on the crossplot and can help discriminate and characterize reservoir heterogeneity. Many hundreds of analyses of well logs facilitated by spreadsheet and object-oriented programming have provided the means to distinguish patterns typical of certain complex pore types (size and connectedness) for sandstones and carbonate reservoirs, occurrences of irreducible water saturation, and presence of transition zones. The result has been an improved means to evaluate potential production, such as bypassed pay behind pipe and in old exploration wells, or to assess zonation and continuity of the reservoir. Petrofacies analysis in this study was applied to distinguishing flow units and including discriminating pore type as an assessment of reservoir conformance and continuity. The analysis is facilitated through the use of colorimage cross sections depicting depositional sequences

  14. Annex 2: Reservoir characterization and enhanced oil recovery research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, G.A.; Lake, L.W.; Schecter, R.S.

    1989-01-01

    The objective of this project is to increase our understanding of EOR processes as they relate to realistic settings for increased efficiencies and decreased risks in known reservoirs in the State of Texas. The primary activities of the Project will include (1) systematic reservoir characterizations, (2) modeling and scaleup of chemical flooding techniques, (3) gaining a broader understanding and providing fundamental information on CO{sub 2}-surfactant phase behavior. This quarter's tasks include: (a) Use of geochemical flow to determine the geometric patterns in porosity and permeability that result from diagenetic processes; and, to define the patterns of permeability in carbonate formationsmore » and the occurrence of calcite cement inclusions caused by both bacterial action and thermochemical processes; (b) Fine-mesh simulations of first-contact miscible displacements have been performed using UTCHEM. The results match the production history of a laboratory-scale core flood. An empirical viscous fingering model has also been implemented and tested. The model can successfully match the recovery curve of a first-contact miscible linear unstable displacement. Better results can be obtained by adjusting the viscosity mixing parameter; and (c) A study of CO{sub 2}-surfactant-water interactions as a means of developing a thermodynamic model to predict conditions of precipitation and the chemical potential of surfactants in aqueous solutions. 16 refs., 5 figs., 2 tabs.« less

  15. Integrated reservoir assessment and characterization: Final report, October 1, 1985--September 30, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honarpour, M.; Szpakiewicz, M.; Sharma, B.

    This report covers the development of a generic approach to reservoir characterization, the preliminary studies leading to the selection of an appropriate depositional system for detailed study, the application of outcrop studies to quantified reservoir characterization, and the construction of a quantified geological/engineering model used to screen the effects and scales of various geological heterogeneities within a reservoir. These heterogeneities result in large production/residual oil saturation contrasts over small distances. 36 refs., 124 figs., 38 tabs.

  16. Unconventional Tight Reservoirs Characterization with Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Santiago, C. J. S.; Solatpour, R.; Kantzas, A.

    2017-12-01

    The increase in tight reservoir exploitation projects causes producing many papers each year on new, modern, and modified methods and techniques on estimating characteristics of these reservoirs. The most ambiguous of all basic reservoir property estimations deals with permeability. One of the logging methods that is advertised to predict permeability but is always met by skepticism is Nuclear Magnetic Resonance (NMR). The ability of NMR to differentiate between bound and movable fluids and providing porosity increased the capability of NMR as a permeability prediction technique. This leads to a multitude of publications and the motivation of a review paper on this subject by Babadagli et al. (2002). The first part of this presentation is dedicated to an extensive review of the existing correlation models for NMR based estimates of tight reservoir permeability to update this topic. On the second part, the collected literature information is used to analyze new experimental data. The data are collected from tight reservoirs from Canada, the Middle East, and China. A case study is created to apply NMR measurement in the prediction of reservoir characterization parameters such as porosity, permeability, cut-offs, irreducible saturations etc. Moreover, permeability correlations are utilized to predict permeability. NMR experiments were conducted on water saturated cores. NMR T2 relaxation times were measured. NMR porosity, the geometric mean relaxation time (T2gm), Irreducible Bulk Volume (BVI), and Movable Bulk Volume (BVM) were calculated. The correlation coefficients were computed based on multiple regression analysis. Results are cross plots of NMR permeability versus the independently measured Klinkenberg corrected permeability. More complicated equations are discussed. Error analysis of models is presented and compared. This presentation is beneficial in understanding existing tight reservoir permeability models. The results can be used as a guide for choosing

  17. Advances in coalbed methane reservoirs using integrated reservoir characterization and hydraulic fracturing in Karaganda coal basin, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Ivakhnenko, Aleksandr; Aimukhan, Adina; Kenshimova, Aida; Mullagaliyev, Fandus; Akbarov, Erlan; Mullagaliyeva, Lylia; Kabirova, Svetlana; Almukhametov, Azamat

    2017-04-01

    Coalbed methane from Karaganda coal basin is considered to be an unconventional source of energy for the Central and Eastern parts of Kazakhstan. These regions are situated far away from the main traditional sources of oil and gas related to Precaspian petroleum basin. Coalbed methane fields in Karaganda coal basin are characterized by geological and structural complexity. Majority of production zones were characterized by high methane content and extremely low coal permeability. The coal reservoirs also contained a considerable natural system of primary, secondary, and tertiary fractures that were usually capable to accommodate passing fluid during hydraulic fracturing process. However, after closing was often observed coal formation damage including the loss of fluids, migration of fines and higher pressures required to treat formation than were expected. Unusual or less expected reservoir characteristics and values of properties of the coal reservoir might be the cause of the unusual occurred patterns in obtained fracturing, such as lithological peculiarities, rock mechanical properties and previous natural fracture systems in the coals. Based on these properties we found that during the drilling and fracturing of the coal-induced fractures have great sensitivity to complex reservoir lithology and stress profiles, as well as changes of those stresses. In order to have a successful program of hydraulic fracturing and avoid unnecessary fracturing anomalies we applied integrated reservoir characterization to monitor key parameters. In addition to logging data, core sample analysis was applied for coalbed methane reservoirs to observe dependence tiny lithological variations through the magnetic susceptibility values and their relation to permeability together with expected principal stress. The values of magnetic susceptibility were measured by the core logging sensor, which is equipped with the probe that provides volume magnetic susceptibility parameters

  18. The influence of hydrocarbons in changing the mechanical and acoustic properties of a carbonate reservoir: implications of laboratory results on larger scale processes

    NASA Astrophysics Data System (ADS)

    Trippetta, Fabio; Ruggieri, Roberta; Geremia, Davide; Brandano, Marco

    2017-04-01

    Understanding hydraulic and mechanical processes that acted in reservoir rocks and their effect on the rock properties is of a great interest for both scientific and industry fields. In this work we investigate the role of hydrocarbons in changing the petrophysical properties of rock by merging laboratory, outcrops, and subsurface data focusing on the carbonate-bearing Majella reservoir (Bolognano formation). This reservoir represents an interesting analogue for subsurface carbonate reservoirs and is made of high porosity (8 to 28%) ramp calcarenites saturated by hydrocarbon in the state of bitumen at the surface. Within this lithology clean and bitumen bearing samples were investigated. For both groups, density, porosity, P and S wave velocity, at increasing confining pressure and deformation tests were conducted on cylindrical specimens with BRAVA apparatus at the HP-HT Laboratory of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Rome, Italy. The performed petrophysical characterization, shows a very good correlation between Vp, Vs and porosity and a pressure independent Vp/Vs ratio while the presence of bitumen within samples increases both Vp and Vs. P-wave velocity hysteresis measured at ambient pressure after 100 MPa of applied confining pressure, suggests an almost pure elastic behaviour for bitumen-bearing samples and a more inelastic behaviour for cleaner samples. Calculated dynamic Young's modulus is larger for bitumen-bearing samples and these data are confirmed by cyclic deformation tests where the same samples generally record larger strength, larger Young's modulus and smaller permanent strain respect to clean samples. Starting from laboratory data, we also derived a synthetic acoustic model highlighting an increase in acoustic impedance for bitumen-bearing samples. Models have been also performed simulating a saturation with decreasing API° hydrocarbons, showing opposite effects on the seismic properties of the reservoir respect to

  19. Reservoir Stimulation Optimization with Operational Monitoring for Creation of EGS

    DOE Data Explorer

    Fernandez, Carlos A.

    2013-09-25

    EGS field projects have not sustained production at rates greater than ½ of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igneous rock within the 3,000-10,000 ft depth range. Our goal is to develop a novel fracturing fluid technology that maximizes reservoir permeability while reducing stimulation cost and environmental impact. Laboratory equipment development to advance laboratory characterization/monitoring is also a priority of this project to study and optimize the physicochemical properties of these fracturing fluids in a range of reservoir conditions. Barrier G is the primarily intended GTO barrier to be addressed as well as support addressing barriers D, E and I.

  20. Reservoir Stimulation Optimization with Operational Monitoring for Creation of EGS

    DOE Data Explorer

    Carlos A. Fernandez

    2014-09-15

    EGS field projects have not sustained production at rates greater than ½ of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igneous rock within the 3,000-10,000 ft depth range. Our goal is to develop a novel fracturing fluid technology that maximizes reservoir permeability while reducing stimulation cost and environmental impact. Laboratory equipment development to advance laboratory characterization/monitoring is also a priority of this project to study and optimize the physicochemical properties of these fracturing fluids in a range of reservoir conditions. Barrier G is the primarily intended GTO barrier to be addressed as well as support addressing barriers D, E and I.

  1. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensormore » packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and

  2. Natural and laboratory compaction bands in porous carbonates: a three-dimensional characterization using synchrotron X-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Cilona, A.; Arzilli, F.; Mancini, L.; Emanuele, T.

    2014-12-01

    Porous carbonates form important reservoirs for water and hydrocarbons. The fluid flow properties of carbonate reservoirs may be affected by post-depositional processes (e.g., mechanical and chemical), which need to be quantified. Field-based studies described bed-parallel compaction bands (CBs) within carbonates with a wide range of porosities. These burial-related structures accommodate volumetric strain by grain rotation, translation, pore collapse and pressure solution. Recently, the same structures have been reproduced for the first time in the laboratory by performing triaxial compaction experiments on porous grainstones. These laboratory studies characterized and compared the microstructures of natural and laboratory CBs, but no analysis of pore connectivity has been performed. In this paper, we use an innovative approach to characterize the pore networks (e.g. porosity, connectivity) of natural and laboratory CBs and compare them with the host rock one. We collected the data using the synchrotron X-ray computed microtomography technique at the SYRMEP beamline of the Elettra-Sincrotrone Trieste Laboratory (Italy). Quantitative analyses of the samples were performed with the Pore3D software library. The porosity was calculated from segmented 3D images of pristine and deformed carbonates. A process of skeletonization was then applied to quantify the number of connected pores within the rock volume. The analysis of the skeleton allowed us to highlight the differences between natural and laboratory CBs, and to investigate how pore connectivity evolves as a function of different deformation pathways. Both pore volume and connectivity are reduced within the CBs respect to the pristine rock and the natural CB has a lower porosity with respect to the laboratory one. The grain contacts in the natural CB are welded, whereas in the laboratory one they have more irregular shapes and grain crushing is the predominant process.

  3. Reservoir characterization combining elastic velocities and electrical resistivity measurements

    NASA Astrophysics Data System (ADS)

    Gomez, Carmen Teresa

    2009-12-01

    The elastic and electric parameters of rocks that can be obtained from seismic and electromagnetic data depend on porosity, texture, mineralogy, and fluid. However, seismic data seldom allow us to accurately quantify hydrocarbon saturation. On the other hand, in the case of common reservoir rocks (i.e., sandstones and carbonates), resistivity strongly depends on porosity and saturation. Therefore, the recent progress of controlled-source-electromagnetic (CSEM) methods opens new possibilities in identifying and quantifying potential hydrocarbon reservoirs, although its resolution is much lower than that of seismic data. Hence, a combination of seismic and CSEM data arguably offers a powerful means of finally resolving the problem of remote sensing of saturation. The question is how to combine the two data sources (elastic data and electrical resistivity data) to better characterize a reservoir. To address this question, we introduce the concept of P-wave impedance and resistivity templates as a tool to estimate porosity and saturation from well log data. Adequate elastic and resistivity models, according to the lithology, cementation, fluid properties must be chosen to construct these templates. These templates can be upscaled to seismic and CSEM scale using Backus average for seismic data, and total resistance for CSEM data. We also measured velocity and resistivity in Fontainebleau samples in the laboratory. Fontainebleau formation corresponds to clean sandstones (i.e., low clay content). We derived an empirical relation between these P-wave velocity and resistivity at 40MPa effective pressure, which is around 3 km depth at normal pressure gradients. We were not able to test if this relation could be used at well or field data scales (once appropriate upscaling was applied), since we did not have a field dataset over a stiff sandstone reservoir. A relationship between velocity and resistivity laboratory data was also found for a set of carbonates. This expression

  4. Reservoir Characterization of the Lower Green River Formation, Southwest Uinta Basin, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Craig D.; Chidsey, Jr., Thomas C.; McClure, Kevin P.

    The objectives of the study were to increase both primary and secondary hydrocarbon recovery through improved characterization (at the regional, unit, interwell, well, and microscopic scale) of fluvial-deltaic lacustrine reservoirs, thereby preventing premature abandonment of producing wells. The study will encourage exploration and establishment of additional water-flood units throughout the southwest region of the Uinta Basin, and other areas with production from fluvial-deltaic reservoirs.

  5. Materials Characterization Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    | NREL Materials Characterization Laboratory Materials Characterization Laboratory The Energy Systems Integration Facility's Materials Characterization Laboratory supports the physical and photo -electrochemical characterization of novel materials. Photo of an NREL researcher preparing samples for a gas

  6. Petro-elastic modelling and characterization of solid-filled reservoirs: Comparative analysis on a Triassic North Sea reservoir

    NASA Astrophysics Data System (ADS)

    Auduson, Aaron E.

    2018-07-01

    One of the most common problems in the North Sea is the occurrence of salt (solid) in the pores of Triassic sandstones. Many wells have failed due to interpretation errors based conventional substitution as described by the Gassmann equation. A way forward is to device a means to model and characterize the salt-plugging scenarios. Modelling the effects of fluid and solids on rock velocity and density will ascertain the influence of pore material types on seismic data. In this study, two different rock physics modelling approaches are adopted in solid-fluid substitution, namely the extended Gassmann theory and multi-mineral mixing modelling. Using the modified new Gassmann equation, solid-and-fluid substitutions were performed from gas or water filling in the hydrocarbon reservoirs to salt materials being the pore-filling. Inverse substitutions were also performed from salt-filled case to gas- and water-filled scenarios. The modelling results show very consistent results - Salt-plugged wells clearly showing different elastic parameters when compared with gas- and water-bearing wells. While the Gassmann equation-based modelling was used to discretely compute effective bulk and shear moduli of the salt plugs, the algorithm based on the mineral-mixing (Hashin-Shtrikman) can only predict elastic moduli in a narrow range. Thus, inasmuch as both of these methods can be used to model elastic parameters and characterize pore-fill scenarios, the New Gassmann-based algorithm, which is capable of precisely predicting the elastic parameters, is recommended for use in forward seismic modelling and characterization of this reservoir and other reservoir types. This will significantly help in reducing seismic interpretation errors.

  7. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott Hara

    2001-06-27

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands,more » high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.« less

  8. An application of geostatistics and fractal geometry for reservoir characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aasum, Y.; Kelkar, M.G.; Gupta, S.P.

    1991-03-01

    This paper presents an application of geostatistics and fractal geometry concepts for 2D characterization of rock properties (k and {phi}) in a dolomitic, layered-cake reservoir. The results indicate that lack of closely spaced data yield effectively random distributions of properties. Further, incorporation of geology reduces uncertainties in fractal interpolation of wellbore properties.

  9. Reservoir Identification: Parameter Characterization or Feature Classification

    NASA Astrophysics Data System (ADS)

    Cao, J.

    2017-12-01

    The ultimate goal of oil and gas exploration is to find the oil or gas reservoirs with industrial mining value. Therefore, the core task of modern oil and gas exploration is to identify oil or gas reservoirs on the seismic profiles. Traditionally, the reservoir is identify by seismic inversion of a series of physical parameters such as porosity, saturation, permeability, formation pressure, and so on. Due to the heterogeneity of the geological medium, the approximation of the inversion model and the incompleteness and noisy of the data, the inversion results are highly uncertain and must be calibrated or corrected with well data. In areas where there are few wells or no well, reservoir identification based on seismic inversion is high-risk. Reservoir identification is essentially a classification issue. In the identification process, the underground rocks are divided into reservoirs with industrial mining value and host rocks with non-industrial mining value. In addition to the traditional physical parameters classification, the classification may be achieved using one or a few comprehensive features. By introducing the concept of seismic-print, we have developed a new reservoir identification method based on seismic-print analysis. Furthermore, we explore the possibility to use deep leaning to discover the seismic-print characteristics of oil and gas reservoirs. Preliminary experiments have shown that the deep learning of seismic data could distinguish gas reservoirs from host rocks. The combination of both seismic-print analysis and seismic deep learning is expected to be a more robust reservoir identification method. The work was supported by NSFC under grant No. 41430323 and No. U1562219, and the National Key Research and Development Program under Grant No. 2016YFC0601

  10. Optical Characterization Laboratory | Energy Systems Integration Facility |

    Science.gov Websites

    Laboratory offers the following capabilities. Solar Thermal Calibration The Optical Characterization collectors for solar thermal energy generation to enable the study of increasingly stable (less intermittent Characterization Laboratory's environmental characterization hub offers high-temperature/humidity thermal chambers

  11. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which aremore » common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application

  12. Microbial Life in an Underground Gas Storage Reservoir

    NASA Astrophysics Data System (ADS)

    Bombach, Petra; van Almsick, Tobias; Richnow, Hans H.; Zenner, Matthias; Krüger, Martin

    2015-04-01

    While underground gas storage is technically well established for decades, the presence and activity of microorganisms in underground gas reservoirs have still hardly been explored today. Microbial life in underground gas reservoirs is controlled by moderate to high temperatures, elevated pressures, the availability of essential inorganic nutrients, and the availability of appropriate chemical energy sources. Microbial activity may affect the geochemical conditions and the gas composition in an underground reservoir by selective removal of anorganic and organic components from the stored gas and the formation water as well as by generation of metabolic products. From an economic point of view, microbial activities can lead to a loss of stored gas accompanied by a pressure decline in the reservoir, damage of technical equipment by biocorrosion, clogging processes through precipitates and biomass accumulation, and reservoir souring due to a deterioration of the gas quality. We present here results from molecular and cultivation-based methods to characterize microbial communities inhabiting a porous rock gas storage reservoir located in Southern Germany. Four reservoir water samples were obtained from three different geological horizons characterized by an ambient reservoir temperature of about 45 °C and an ambient reservoir pressure of about 92 bar at the time of sampling. A complementary water sample was taken at a water production well completed in a respective horizon but located outside the gas storage reservoir. Microbial community analysis by Illumina Sequencing of bacterial and archaeal 16S rRNA genes indicated the presence of phylogenetically diverse microbial communities of high compositional heterogeneity. In three out of four samples originating from the reservoir, the majority of bacterial sequences affiliated with members of the genera Eubacterium, Acetobacterium and Sporobacterium within Clostridiales, known for their fermenting capabilities. In

  13. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allan, M.E.; Wilson, M.L.; Wightman, J.

    1996-12-31

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity & permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based onmore » marker correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic & petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.« less

  14. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allan, M.E.; Wilson, M.L.; Wightman, J.

    1996-01-01

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based on markermore » correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.« less

  15. Acoustic emission characterization of microcracking in laboratory-scale hydraulic fracturing tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, Jesse; Gutierrez, Marte; Matzar, Luis

    Understanding microcracking near coalesced fracture generation is critically important for hydrocarbon and geothermal reservoir characterization as well as damage evaluation in civil engineering structures. Dense and sometimes random microcracking near coalesced fracture formation alters the mechanical properties of the nearby virgin material. Individual microcrack characterization is also significant in quantifying the material changes near the fracture faces (i.e. damage). Acoustic emission (AE) monitoring and analysis provide unique information regarding the microcracking process temporally, and information concerning the source characterization of individual microcracks can be extracted. In this context, laboratory hydraulic fracture tests were carried out while monitoring the AEs frommore » several piezoelectric transducers. In-depth post-processing of the AE event data was performed for the purpose of understanding the individual source mechanisms. Several source characterization techniques including moment tensor inversion, event parametric analysis, and volumetric deformation analysis were adopted. Post-test fracture characterization through coring, slicing and micro-computed tomographic imaging was performed to determine the coalesced fracture location and structure. Distinct differences in fracture characteristics were found spatially in relation to the openhole injection interval. Individual microcrack AE analysis showed substantial energy reduction emanating spatially from the injection interval. Lastly, it was quantitatively observed that the recorded AE signals provided sufficient information to generalize the damage radiating spatially away from the injection wellbore.« less

  16. Acoustic emission characterization of microcracking in laboratory-scale hydraulic fracturing tests

    DOE PAGES

    Hampton, Jesse; Gutierrez, Marte; Matzar, Luis; ...

    2018-06-11

    Understanding microcracking near coalesced fracture generation is critically important for hydrocarbon and geothermal reservoir characterization as well as damage evaluation in civil engineering structures. Dense and sometimes random microcracking near coalesced fracture formation alters the mechanical properties of the nearby virgin material. Individual microcrack characterization is also significant in quantifying the material changes near the fracture faces (i.e. damage). Acoustic emission (AE) monitoring and analysis provide unique information regarding the microcracking process temporally, and information concerning the source characterization of individual microcracks can be extracted. In this context, laboratory hydraulic fracture tests were carried out while monitoring the AEs frommore » several piezoelectric transducers. In-depth post-processing of the AE event data was performed for the purpose of understanding the individual source mechanisms. Several source characterization techniques including moment tensor inversion, event parametric analysis, and volumetric deformation analysis were adopted. Post-test fracture characterization through coring, slicing and micro-computed tomographic imaging was performed to determine the coalesced fracture location and structure. Distinct differences in fracture characteristics were found spatially in relation to the openhole injection interval. Individual microcrack AE analysis showed substantial energy reduction emanating spatially from the injection interval. Lastly, it was quantitatively observed that the recorded AE signals provided sufficient information to generalize the damage radiating spatially away from the injection wellbore.« less

  17. Suggested Best Practice for seismic monitoring and characterization of non-conventional reservoirs

    NASA Astrophysics Data System (ADS)

    Malin, P. E.; Bohnhoff, M.; terHeege, J. H.; Deflandre, J. P.; Sicking, C.

    2017-12-01

    High rates of induced seismicity and gas leakage in non-conventional production have become a growing issue of public concern. It has resulted in calls for independent monitoring before, during and after reservoir production. To date no uniform practice for it exists and few reservoirs are locally monitored at all. Nonetheless, local seismic monitoring is a pre-requisite for detecting small earthquakes, increases of which can foreshadow damaging ones and indicate gas leaks. Appropriately designed networks, including seismic reflection studies, can be used to collect these and Seismic Emission Tomography (SET) data, the latter significantly helping reservoir characterization and exploitation. We suggest a Step-by-Step procedure for implementing such networks. We describe various field kits, installations, and workflows, all aimed at avoiding damaging seismicity, as indicators of well stability, and improving reservoir exploitation. In Step 1, a single downhole seismograph is recommended for establishing baseline seismicity before development. Subsequent Steps are used to decide cost-effective ways of monitoring treatments, production, and abandonment. We include suggestions for monitoring of disposal and underground storage. We also describe how repeated SET observations improve reservoir management as well as regulatory monitoring. Moreover, SET acquisition can be included at incremental cost in active surveys or temporary passive deployments.

  18. Beyond the replication-competent HIV reservoir: transcription and translation-competent reservoirs.

    PubMed

    Baxter, Amy E; O'Doherty, Una; Kaufmann, Daniel E

    2018-02-02

    Recent years have seen a substantial increase in the number of tools available to monitor and study HIV reservoirs. Here, we discuss recent technological advances that enable an understanding of reservoir dynamics beyond classical assays to measure the frequency of cells containing provirus able to propagate a spreading infection (replication-competent reservoir). Specifically, we focus on the characterization of cellular reservoirs containing proviruses able to transcribe viral mRNAs (so called transcription-competent) and translate viral proteins (translation-competent). We suggest that the study of these alternative reservoirs provides complementary information to classical approaches, crucially at a single-cell level. This enables an in-depth characterization of the cellular reservoir, both following reactivation from latency and, importantly, directly ex vivo at baseline. Furthermore, we propose that the study of cellular reservoirs that may not contain fully replication-competent virus, but are able to produce HIV mRNAs and proteins, is of biological importance. Lastly, we detail some of the key contributions that the study of these transcription and translation-competent reservoirs has made thus far to investigations into HIV persistence, and outline where these approaches may take the field next.

  19. basement reservoir geometry and properties

    NASA Astrophysics Data System (ADS)

    Walter, bastien; Geraud, yves; Diraison, marc

    2017-04-01

    Basement reservoirs are nowadays frequently investigated for deep-seated fluid resources (e.g. geothermal energy, groundwater, hydrocarbons). The term 'basement' generally refers to crystalline and metamorphic formations, where matrix porosity is negligible in fresh basement rocks. Geothermal production of such unconventional reservoirs is controlled by brittle structures and altered rock matrix, resulting of a combination of different tectonic, hydrothermal or weathering phenomena. This work aims to characterize the petro-structural and petrophysical properties of two basement surface analogue case studies in geological extensive setting (the Albert Lake rift in Uganda; the Ifni proximal margin of the South West Morocco Atlantic coast). Different datasets, using field structural study, geophysical acquisition and laboratory petrophysical measurements, were integrated to describe the multi-scale geometry of the porous network of such fractured and weathered basement formations. This study points out the multi-scale distribution of all the features constituting the reservoir, over ten orders of magnitude from the pluri-kilometric scale of the major tectonics structures to the infra-millimetric scale of the secondary micro-porosity of fractured and weathered basements units. Major fault zones, with relatively thick and impermeable fault core structures, control the 'compartmentalization' of the reservoir by dividing it into several structural blocks. The analysis of these fault zones highlights the necessity for the basement reservoirs to be characterized by a highly connected fault and fracture system, where structure intersections represent the main fluid drainage areas between and within the reservoir's structural blocks. The suitable fluid storage areas in these reservoirs correspond to the damage zone of all the fault structures developed during the tectonic evolution of the basement and the weathered units of the basement roof developed during pre

  20. Fracture characterization in a deep geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Rühaak, Wolfram; Hehn, Vera; Hassanzadegan, Alireza; Tischner, Torsten

    2017-04-01

    At the geothermal research drilling Horstberg in North West Germany studies for the characterization of a vertical fracture are performed. The fracture was created by a massive hydraulic stimulation in 2003 in approx. 3700 m depth within rocks of the middle Buntsandstein. The fracture surface is in the order of 100,000 m2, depending on the flow rate at which water is injected. Besides hydraulic characterization, multiple tracer tests are planned. At the depth of interest the reservoir temperature is around 150 °C, pressure is around 600 bar (60 MPa) and due to salinity the water density is around 1200 kg/m3. Knowledge of tracer stability and behavior at these reservoir conditions is limited. Additionally, the planned tracer tests will be performed within one single borehole. In a closed cycle water is injected into the inner pipe of the well (tubing), which is separated by a permanent packer from the outer pipe (annulus). The water is produced back from the annulus approximately 150 m above the injection point. Thus, the circulation of thermal water between two sandstone layers via an artificial fracture can be achieved. Tests will be carried out with different flow rates and accordingly with different pressures, resulting in different fracture areas. Due to this test setup tracer signals will be stacked and will remain for a longer time in the fracture - which is the reason why different tracers are required. For an optimal characterization both conservative and reactive tracers will be used and different injection methods (continuous, instantaneous and pulsed) will be applied. For a proper setup of the tracer test numerical modelling studies are performed in advance. The relevant thermal, hydraulic and chemical processes (mainly adsorption and degredation) are coupled, resulting in a THC model; additionally the dependence of fracture aperture and area on fluid pressure has to be considered. Instead of applying a mechanically coupled model (THMC) a simplified

  1. Using laboratory flow experiments and reactive chemical transport modeling for designing waterflooding of the Agua Fria Reservoir, Poza Rica-Altamira Field, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkle, P.; Pruess, K.; Xu, T.

    Waterflooding for enhanced oil recovery requires that injected waters must be chemically compatible with connate reservoir waters, in order to avoid mineral dissolution-and-precipitation cycles that could seriously degrade formation permeability and injectivity. Formation plugging is a concern especially in reservoirs with a large content of carbonates, such as calcite and dolomite, as such minerals typically react rapidly with an aqueous phase, and have strongly temperature-dependent solubility. Clay swelling can also pose problems. During a preliminary waterflooding pilot project, the Poza Rica-Altamira oil field, bordering the Gulf coast in the eastern part of Mexico, experienced injectivity loss after five months ofmore » reinjection of formation waters into well AF-847 in 1999. Acidizing with HCl restored injectivity. We report on laboratory experiments and reactive chemistry modeling studies that were undertaken in preparation for long-term waterflooding at Agua Frma. Using analogous core plugs obtained from the same reservoir interval, laboratory coreflood experiments were conducted to examine sensitivity of mineral dissolution and precipitation effects to water composition. Native reservoir water, chemically altered waters, and distilled water were used, and temporal changes in core permeability, mineral abundances and aqueous concentrations of solutes were monitored. The experiments were simulated with the multi-phase, nonisothermal reactive transport code TOUGHREACT, and reasonable to good agreement was obtained for changes in solute concentrations. Clay swelling caused an additional impact on permeability behavior during coreflood experiments, whereas the modeled permeability depends exclusively on chemical processes. TOUGHREACT was then used for reservoir-scale simulation of injecting ambient-temperature water (30 C, 86 F) into a reservoir with initial temperature of 80 C (176 F). Untreated native reservoir water was found to cause serious porosity

  2. Strontium isotopic signatures of oil-field waters: Applications for reservoir characterization

    USGS Publications Warehouse

    Barnaby, R.J.; Oetting, G.C.; Gao, G.

    2004-01-01

    The 87Sr/86Sr compositions of formation waters that were collected from 71 wells producing from a Pennsylvanian carbonate reservoir in New Mexico display a well-defined distribution, with radiogenic waters (up to 0.710129) at the updip western part of the reservoir, grading downdip to less radiogenic waters (as low as 0.708903 to the east. Salinity (2800-50,000 mg/L) displays a parallel trend; saline waters to the west pass downdip to brackish waters. Elemental and isotopic data indicate that the waters originated as meteoric precipitation and acquired their salinity and radiogenic 87Sr through dissolution of Upper Permian evaporites. These meteoric-derived waters descended, perhaps along deeply penetrating faults, driven by gravity and density, to depths of more than 7000 ft (2100 m). The 87 Sr/86Sr and salinity trends record influx of these waters along the western field margin and downdip flow across the field, consistent with the strong water drive, potentiometric gradient, and tilted gas-oil-water contacts. The formation water 87Sr/86Sr composition can be useful to evaluate subsurface flow and reservoir behavior, especially in immature fields with scarce pressure and production data. In mature reservoirs, Sr Sr isotopes can be used to differentiate original formation water from injected water for waterflood surveillance. Strontium isotopes thus provide a valuable tool for both static and dynamic reservoir characterization in conjunction with conventional studies using seismic, log, core, engineering, and production data. Copyright ??2004. The American Association of Petroleum Geologist. All rights reserved.

  3. Bluebell Field, Uinta Basin: reservoir characterization for improved well completion and oil recovery

    USGS Publications Warehouse

    Montgomery, S.L.; Morgan, C.D.

    1998-01-01

    Bluefield Field is the largest oil-producing area in the Unita basin of northern Utah. The field inclucdes over 300 wells and has produced 137 Mbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine and fluvial deposits of the Green River and Wasatch (Colton) formations. Oil and gas are produced at depths of 10 500-13 000 ft (3330-3940 m), with the most prolific reservoirs existing in over-pressured sandstones of the Colton Formation and the underlying Flagstaff Member of the lower Green River Formation. Despite a number of high-recovery wells (1-3 MMbbl), overall field recovery remains low, less than 10% original oil in place. This low recovery rate is interpreted to be at least partly a result of completion practices. Typically, 40-120 beds are perforated and stimulated with acid (no proppant) over intervals of up to 3000 ft (900 m). Little or no evaluation of individual beds is performed, preventing identification of good-quality reservoir zones, water-producing zones, and thief zones. As a result, detailed understanding of Bluebell reservoirs historically has been poor, inhibiting any improvements in recovery strategies. A recent project undertaken in Bluebell field as part of the U.S. Department of Energy's Class 1 (fluvial-deltaic reservoir) Oil Demonstration program has focused considerable effort on reservoir characterization. This effort has involved interdisciplinary analysis of core, log, fracture, geostatistical, production, and other data. Much valuable new information on reservoir character has resulted, with important implications for completion techniques and recovery expectations. Such data should have excellent applicability to other producing areas in the Uinta Basin withi reservoirs in similar lacustrine and related deposits.Bluebell field is the largest oil-producing area in the Uinta basin of northern Utah. The field includes over 300 wells and has produced 137 MMbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine

  4. Characterization of ecological risks at the Milltown Reservoir-Clark Fork River Sediments Superfund Site, Montana

    USGS Publications Warehouse

    Pascoe, Gary A.; Blanchet, Richard J.; Linder, Greg L.; Palawski, Don; Brumbaugh, William G.; Canfield, Tim J.; Kemble, Nile E.; Ingersoll, Chris G.; Farag, Aïda M.; DalSoglio, Julie A.

    1994-01-01

    A comprehensive field and laboratory approach to the ecological risk assessment for the Milltown Reservoir-Clark Fork River Sediments Site, a Superfund site in the Rocky Mountains of Montana, has been described in the preceding reports of this series. The risk assessment addresses concerns over the ecological impacts of upstream releases of mining wastes to fisheries of the upper Clark Fork River (CFR) and the benthic and terrestrial habitats further downstream in Milltown Reservoir. The risk characterization component of the process integrated results from a triad of information sources: (a) chemistry studies of environmental media to identify and quantify exposures of terrestrial and aquatic organisms to site-related contaminants; (b) ecological or population studies of terrestrial vegetation, birds, benthic communities, and fish; and (c) in situ and laboratory toxicity studies with terrestrial and aquatic invertebrates and plants, small mammals, amphibians, and fish exposed to contaminated surface water, sediments, wetland soils, and food sources. Trophic transfer studies were performed on waterfowl, mammals, and predatory birds using field measurement data on metals concentrations in environmental media and lower trophic food sources. Studies with sediment exposures were incorporated into the Sediment Quality Triad approach to evaluate risks to benthic ecology. Overall results of the wetland and terrestrial studies suggested that acute adverse biological effects were largely absent from the wetland; however, adverse effects to reproductive, growth, and physiological end points of various terrestrial and aquatic species were related to metals exposures in more highly contaminated depositional areas. Feeding studies with contaminated diet collected from the upper CFR indicated that trout are at high risk from elevated metals concentrations in surface water, sediment, and aquatic invertebrates. Integration of chemical analyses with toxicological and ecological

  5. Integrated reservoir characterization and flow simulation for well targeting and reservoir management, Iagifu-Hedinia field, Southern Highlands Province, Papua New Guinea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franklin, S.P.; Livingston, J.E.; Fitzmorris, R.E.

    Infill drilling based on integrated reservoir characterization and flow simulation is increasing recoverable reserves by 20 MMBO, in lagifu-Hedinia Field (IHF). Stratigraphically-zoned models are input to window and full-field flow simulations, and results of the flow simulations target deviated and horizontal wells. Logging and pressure surveys facilitate detailed reservoir management. Flooding surfaces are the dominant control on differential depletion within and between reservoirs. The primary reservoir is the basal Cretaceous Toro Sandstone. Within the IHF, Toro is a 100 m quartz sandstone composed of stacked, coarsening-upward parasequences within a wave-dominated deltaic complex. Flooding surfaces are used to form a hydraulicmore » zonation. The zonation is refined using discontinuities in RIFT pressure gradients and logs from development wells. For flow simulation, models use 3D geostatistical techniques. First, variograms defining spatial correlation are developed. The variograms are used to construct 3D porosity and permeability models which reflect the stratigraphic facies models. Structure models are built using dipmeter, biostratigraphic, and surface data. Deviated wells often cross axial surfaces and geometry is predicted from dip domain and SCAT. Faults are identified using pressure transient data and dipmeter. The Toro reservoir is subnormally pressured and fluid contacts are hydrodynamically tilted. The hydrodynamic flow and tilted contacts are modeled by flow simulation and constrained by maps of the potentiometric surface.« less

  6. Characterizing flow in oil reservoir rock using SPH: absolute permeability

    NASA Astrophysics Data System (ADS)

    Holmes, David W.; Williams, John R.; Tilke, Peter; Leonardi, Christopher R.

    2016-04-01

    In this paper, a three-dimensional smooth particle hydrodynamics (SPH) simulator for modeling grain scale fluid flow in porous rock is presented. The versatility of the SPH method has driven its use in increasingly complex areas of flow analysis, including flows related to permeable rock for both groundwater and petroleum reservoir research. While previous approaches to such problems using SPH have involved the use of idealized pore geometries (cylinder/sphere packs etc), in this paper we detail the characterization of flow in models with geometries taken from 3D X-ray microtomographic imaging of actual porous rock; specifically 25.12 % porosity dolomite. This particular rock type has been well characterized experimentally and described in the literature, thus providing a practical `real world' means of verification of SPH that will be key to its acceptance by industry as a viable alternative to traditional reservoir modeling tools. The true advantages of SPH are realized when adding the complexity of multiple fluid phases, however, the accuracy of SPH for single phase flow is, as yet, under developed in the literature and will be the primary focus of this paper. Flow in reservoir rock will typically occur in the range of low Reynolds numbers, making the enforcement of no-slip boundary conditions an important factor in simulation. To this end, we detail the development of a new, robust, and numerically efficient method for implementing no-slip boundary conditions in SPH that can handle the degree of complexity of boundary surfaces, characteristic of an actual permeable rock sample. A study of the effect of particle density is carried out and simulation results for absolute permeability are presented and compared to those from experimentation showing good agreement and validating the method for such applications.

  7. Characterization of a penny-shaped reservoir in a hot dry rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekine, H.; Mura, T.

    1980-07-10

    The mechanical stability of a penny-shaped revervoir is characterized by fracture mechanics including thermoelastic effects in connection with research into the extraction of geothermal energy from hot dry rocks. The condition for stability of a reservoir, which is not changing radius by propagating or closing, requires 0m/sub 0/>m/sub asterisk/; and case 3; m/sub 0/=m/sub asterisk/.

  8. Attenuation and Dispersion Analysis in Laboratory Measured Elastic Properties in the Middle East Carbonate Reservoir Rocks

    NASA Astrophysics Data System (ADS)

    Sharma, R.

    2016-12-01

    Carbonate rocks are sensitive to circulation of fluid types that leads to diagenetic alterations and therefore to heterogeneity in distribution of porosity and permeability. These heterogeneities in turn, lead to heterogeneity in saturations varying from partial to patchy to uniform. Depending on the interaction between fluids and rock matrix, a weakening or strengthening in shear modulus of carbonate rocks can also develop (Eberli et al., 2003; Adam et al., 2006; Sharma et al., 2009; Sharma et al., 2013). Thus the elastic response over the production life of the carbonate reservoirs can change considerably. Efforts to couple fluid flow with varying seismic properties of these reservoirs are limited in success due to the differences between static elastic properties derived from reservoir simulation and dynamic elastic properties derived from inverted seismic. An additional limitation arises from the assumption that shear modulus does not change with fluid type and saturations. To overcome these limitations, we need to understand the relationships between the static and the dynamic elastic properties using laboratory measurements made at varying pressures, frequencies and with varying saturants. I will present the following results: 1) errors associated with using dynamic (2 - 2000 Hz and 1 MHz) elastic properties data for static ( 0 Hz) reservoir properties, 2) shear modulus variation in carbonates upon saturation with varying saturants The results will enable us to estimate, 1) distribution of stress-strain relations in reservoir rocks and 2) modulus dispersion to correct seismic-derived moduli as inputs for reservoir simulators. The results are critical to estimate, 1) modulus dispersion correction and 2) occurrence and amount of shear modulus variation with fluid change vital for rock stability analysis

  9. T-R Cycle Characterization and Imaging: Advanced Diagnostic Methodology for Petroleum Reservoir and Trap Detection and Delineation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini

    Characterization of stratigraphic sequences (T-R cycles or sequences) included outcrop studies, well log analysis and seismic reflection interpretation. These studies were performed by researchers at the University of Alabama, Wichita State University and McGill University. The outcrop, well log and seismic characterization studies were used to develop a depositional sequence model, a T-R cycle (sequence) model, and a sequence stratigraphy predictive model. The sequence stratigraphy predictive model developed in this study is based primarily on the modified T-R cycle (sequence) model. The T-R cycle (sequence) model using transgressive and regressive systems tracts and aggrading, backstepping, and infilling intervals or sectionsmore » was found to be the most appropriate sequence stratigraphy model for the strata in the onshore interior salt basins of the Gulf of Mexico to improve petroleum stratigraphic trap and specific reservoir facies imaging, detection and delineation. The known petroleum reservoirs of the Mississippi Interior and North Louisiana Salt Basins were classified using T-R cycle (sequence) terminology. The transgressive backstepping reservoirs have been the most productive of oil, and the transgressive backstepping and regressive infilling reservoirs have been the most productive of gas. Exploration strategies were formulated using the sequence stratigraphy predictive model and the classification of the known petroleum reservoirs utilizing T-R cycle (sequence) terminology. The well log signatures and seismic reflector patterns were determined to be distinctive for the aggrading, backstepping and infilling sections of the T-R cycle (sequence) and as such, well log and seismic data are useful for recognizing and defining potential reservoir facies. The use of the sequence stratigraphy predictive model, in combination with the knowledge of how the distinctive characteristics of the T-R system tracts and their subdivisions are expressed in well log

  10. Discrete Fracture Network Characterization of Fractured Shale Reservoirs with Implications to Hydraulic Fracturing Optimization

    NASA Astrophysics Data System (ADS)

    Jin, G.

    2016-12-01

    Shales are important petroleum source rocks and reservoir seals. Recent developments in hydraulic fracturing technology have facilitated high gas production rates from shale and have had a strong impact on the U.S. gas supply and markets. Modeling of effective permeability for fractured shale reservoirs has been challenging because the presence of a fracture network significantly alters the reservoir hydrologic properties. Due to the frequent occurrence of fracture networks, it is of vital importance to characterize fracture networks and to investigate how these networks can be used to optimize the hydraulic fracturing. We have conducted basic research on 3-D fracture permeability characterization and compartmentization analyses for fractured shale formations, which takes the advantages of the discrete fracture networks (DFN). The DFN modeling is a stochastic modeling approach using the probabilistic density functions of fractures. Three common scenarios of DFN models have been studied for fracture permeability mapping using our previously proposed techniques. In DFN models with moderately to highly concentrated fractures, there exists a representative element volume (REV) for fracture permeability characterization, which indicates that the fractured reservoirs can be treated as anisotropic homogeneous media. Hydraulic fracturing will be most effective if the orientation of the hydraulic fracture is perpendicular to the mean direction of the fractures. A DFN model with randomized fracture orientations, on the other hand, lacks an REV for fracture characterization. Therefore, a fracture permeability tensor has to be computed from each element. Modeling of fracture interconnectivity indicates that there exists no preferred direction for hydraulic fracturing to be most effective oweing to the interconnected pathways of the fracture network. 3-D fracture permeability mapping has been applied to the Devonian Chattanooga Shale in Alabama and the results suggest that an

  11. Geothermal reservoir engineering research

    NASA Technical Reports Server (NTRS)

    Ramey, H. J., Jr.; Kruger, P.; Brigham, W. E.; London, A. L.

    1974-01-01

    The Stanford University research program on the study of stimulation and reservoir engineering of geothermal resources commenced as an interdisciplinary program in September, 1972. The broad objectives of this program have been: (1) the development of experimental and computational data to evaluate the optimum performance of fracture-stimulated geothermal reservoirs; (2) the development of a geothermal reservoir model to evaluate important thermophysical, hydrodynamic, and chemical parameters based on fluid-energy-volume balances as part of standard reservoir engineering practice; and (3) the construction of a laboratory model of an explosion-produced chimney to obtain experimental data on the processes of in-place boiling, moving flash fronts, and two-phase flow in porous and fractured hydrothermal reservoirs.

  12. Reservoir characterization of the Upper Jurassic geothermal target formations (Molasse Basin, Germany): role of thermofacies as exploration tool

    NASA Astrophysics Data System (ADS)

    Homuth, S.; Götz, A. E.; Sass, I.

    2015-06-01

    The Upper Jurassic carbonates of the southern German Molasse Basin are the target of numerous geothermal combined heat and power production projects since the year 2000. A production-orientated reservoir characterization is therefore of high economic interest. Outcrop analogue studies enable reservoir property prediction by determination and correlation of lithofacies-related thermo- and petrophysical parameters. A thermofacies classification of the carbonate formations serves to identify heterogeneities and production zones. The hydraulic conductivity is mainly controlled by tectonic structures and karstification, whilst the type and grade of karstification is facies related. The rock permeability has only a minor effect on the reservoir's sustainability. Physical parameters determined on oven-dried samples have to be corrected, applying reservoir transfer models to water-saturated reservoir conditions. To validate these calculated parameters, a Thermo-Triaxial-Cell simulating the temperature and pressure conditions of the reservoir is used and calorimetric and thermal conductivity measurements under elevated temperature conditions are performed. Additionally, core and cutting material from a 1600 m deep research drilling and a 4850 m (total vertical depth, measured depth: 6020 m) deep well is used to validate the reservoir property predictions. Under reservoir conditions a decrease in permeability of 2-3 magnitudes is observed due to the thermal expansion of the rock matrix. For tight carbonates the matrix permeability is temperature-controlled; the thermophysical matrix parameters are density-controlled. Density increases typically with depth and especially with higher dolomite content. Therefore, thermal conductivity increases; however the dominant factor temperature also decreases the thermal conductivity. Specific heat capacity typically increases with increasing depth and temperature. The lithofacies-related characterization and prediction of reservoir

  13. Intergrated 3-D Ground-Penetrating Radar,Outcrop,and Boreholoe Data Applied to Reservoir Characterization and Flow Simulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMechan et al.

    2001-08-31

    Existing reservoir models are based on 2-D outcrop;3-D aspects are inferred from correlation between wells,and so are inadequately constrained for reservoir simulations. To overcome these deficiencies, we initiated a multidimensional characterization of reservoir analogs in the Cretaceous Ferron Sandstone in Utah.The study was conducted at two sites(Corbula Gulch Coyote Basin); results from both sites are contained in this report. Detailed sedimentary facies maps of cliff faces define the geometry and distribution of potential reservoir flow units, barriers and baffles at the outcrop. High resolution 2-D and 3-D ground penetrating radar(GPR) images extend these reservoir characteristics into 3-D to allow developmentmore » of realistic 3-D reservoir models. Models use geometric information from the mapping and the GPR data, petrophysical data from surface and cliff-face outcrops, lab analyses of outcrop and core samples, and petrography. The measurements are all integrated into a single coordinate system using GPS and laser mapping of the main sedimentologic features and boundaries. The final step is analysis of results of 3-D fluid flow modeling to demonstrate applicability of our reservoir analog studies to well siting and reservoir engineering for maximization of hydrocarbon production. The main goals of this project are achieved. These are the construction of a deterministic 3-D reservoir analog model from a variety of geophysical and geologic measurements at the field sites, integrating these into comprehensive petrophysical models, and flow simulation through these models. This unique approach represents a significant advance in characterization and use of reservoir analogs. To data,the team has presented five papers at GSA and AAPG meetings produced a technical manual, and completed 15 technical papers. The latter are the main content of this final report. In addition,the project became part of 5 PhD dissertations, 3 MS theses,and two senior undergraduate

  14. Reservoir characterization using core, well log, and seismic data and intelligent software

    NASA Astrophysics Data System (ADS)

    Soto Becerra, Rodolfo

    We have developed intelligent software, Oilfield Intelligence (OI), as an engineering tool to improve the characterization of oil and gas reservoirs. OI integrates neural networks and multivariate statistical analysis. It is composed of five main subsystems: data input, preprocessing, architecture design, graphics design, and inference engine modules. More than 1,200 lines of programming code as M-files using the language MATLAB been written. The degree of success of many oil and gas drilling, completion, and production activities depends upon the accuracy of the models used in a reservoir description. Neural networks have been applied for identification of nonlinear systems in almost all scientific fields of humankind. Solving reservoir characterization problems is no exception. Neural networks have a number of attractive features that can help to extract and recognize underlying patterns, structures, and relationships among data. However, before developing a neural network model, we must solve the problem of dimensionality such as determining dominant and irrelevant variables. We can apply principal components and factor analysis to reduce the dimensionality and help the neural networks formulate more realistic models. We validated OI by obtaining confident models in three different oil field problems: (1) A neural network in-situ stress model using lithology and gamma ray logs for the Travis Peak formation of east Texas, (2) A neural network permeability model using porosity and gamma ray and a neural network pseudo-gamma ray log model using 3D seismic attributes for the reservoir VLE 196 Lamar field located in Block V of south-central Lake Maracaibo (Venezuela), and (3) Neural network primary ultimate oil recovery (PRUR), initial waterflooding ultimate oil recovery (IWUR), and infill drilling ultimate oil recovery (IDUR) models using reservoir parameters for San Andres and Clearfork carbonate formations in west Texas. In all cases, we compared the results from

  15. Reservoir-host amplification of disease impact in an endangered amphibian.

    PubMed

    Scheele, Ben C; Hunter, David A; Brannelly, Laura A; Skerratt, Lee F; Driscoll, Don A

    2017-06-01

    Emerging wildlife pathogens are an increasing threat to biodiversity. One of the most serious wildlife diseases is chytridiomycosis, caused by the fungal pathogen, Batrachochytrium dendrobatidis (Bd), which has been documented in over 500 amphibian species. Amphibians vary greatly in their susceptibility to Bd; some species tolerate infection, whereas others experience rapid mortality. Reservoir hosts-species that carry infection while maintaining high abundance but are rarely killed by disease-can increase extinction risk in highly susceptible, sympatric species. However, whether reservoir hosts amplify Bd in declining amphibian species has not been examined. We investigated the role of reservoir hosts in the decline of the threatened northern corroboree frog (Pseudophryne pengilleyi) in an amphibian community in southeastern Australia. In the laboratory, we characterized the response of a potential reservoir host, the (nondeclining) common eastern froglet (Crinia signifera), to Bd infection. In the field, we conducted frog abundance surveys and Bd sampling for both P. pengilleyi and C. signifera. We built multinomial logistic regression models to test whether Crinia signifera and environmental factors were associated with P. pengilleyi decline. C. signifera was a reservoir host for Bd. In the laboratory, many individuals maintained intense infections (>1000 zoospore equivalents) over 12 weeks without mortality, and 79% of individuals sampled in the wild also carried infections. The presence of C. signifera at a site was strongly associated with increased Bd prevalence in sympatric P. pengilleyi. Consistent with disease amplification by a reservoir host, P. pengilleyi declined at sites with high C. signifera abundance. Our results suggest that when reservoir hosts are present, population declines of susceptible species may continue long after the initial emergence of Bd, highlighting an urgent need to assess extinction risk in remnant populations of other declined

  16. Reservoir characterization of the Mt. Simon Sandstone, Illinois Basin, USA

    USGS Publications Warehouse

    Frailey, S.M.; Damico, J.; Leetaru, H.E.

    2011-01-01

    The integration of open hole well log analyses, core analyses and pressure transient analyses was used for reservoir characterization of the Mt. Simon sandstone. Characterization of the injection interval provides the basis for a geologic model to support the baseline MVA model, specify pressure design requirements of surface equipment, develop completion strategies, estimate injection rates, and project the CO2 plume distribution.The Cambrian-age Mt. Simon Sandstone overlies the Precambrian granite basement of the Illinois Basin. The Mt. Simon is relatively thick formation exceeding 800 meters in some areas of the Illinois Basin. In the deeper part of the basin where sequestration is likely to occur at depths exceeding 1000 m, horizontal core permeability ranges from less than 1 ?? 10-12 cm 2 to greater than 1 ?? 10-8 cm2. Well log and core porosity can be up to 30% in the basal Mt. Simon reservoir. For modeling purposes, reservoir characterization includes absolute horizontal and vertical permeability, effective porosity, net and gross thickness, and depth. For horizontal permeability, log porosity was correlated with core. The core porosity-permeability correlation was improved by using grain size as an indication of pore throat size. After numerous attempts to identify an appropriate log signature, the calculated cementation exponent from Archie's porosity and resistivity relationships was used to identify which porosity-permeability correlation to apply and a permeability log was made. Due to the relatively large thickness of the Mt. Simon, vertical permeability is an important attribute to understand the distribution of CO2 when the injection interval is in the lower part of the unit. Only core analyses and specifically designed pressure transient tests can yield vertical permeability. Many reservoir flow models show that 500-800 m from the injection well most of the CO2 migrates upward depending on the magnitude of the vertical permeability and CO2 injection

  17. A Parallel Stochastic Framework for Reservoir Characterization and History Matching

    DOE PAGES

    Thomas, Sunil G.; Klie, Hector M.; Rodriguez, Adolfo A.; ...

    2011-01-01

    The spatial distribution of parameters that characterize the subsurface is never known to any reasonable level of accuracy required to solve the governing PDEs of multiphase flow or species transport through porous media. This paper presents a numerically cheap, yet efficient, accurate and parallel framework to estimate reservoir parameters, for example, medium permeability, using sensor information from measurements of the solution variables such as phase pressures, phase concentrations, fluxes, and seismic and well log data. Numerical results are presented to demonstrate the method.

  18. Micro- and macro-scale petrophysical characterization of potential reservoir units from the Northern Israel

    NASA Astrophysics Data System (ADS)

    Haruzi, Peleg; Halisch, Matthias; Katsman, Regina; Waldmann, Nicolas

    2016-04-01

    Lower Cretaceous sandstone serves as hydrocarbon reservoir in some places over the world, and potentially in Hatira formation in the Golan Heights, northern Israel. The purpose of the current research is to characterize the petrophysical properties of these sandstone units. The study is carried out by two alternative methods: using conventional macroscopic lab measurements, and using CT-scanning, image processing and subsequent fluid mechanics simulations at a microscale, followed by upscaling to the conventional macroscopic rock parameters (porosity and permeability). Comparison between the upscaled and measured in the lab properties will be conducted. The best way to upscale the microscopic rock characteristics will be analyzed based the models suggested in the literature. Proper characterization of the potential reservoir will provide necessary analytical parameters for the future experimenting and modeling of the macroscopic fluid flow behavior in the Lower Cretaceous sandstone.

  19. Late Pleistocene - Holocene ruptures of the Lima Reservoir fault, SW Montana

    NASA Astrophysics Data System (ADS)

    Anastasio, David J.; Majerowicz, Christina N.; Pazzaglia, Frank J.; Regalla, Christine A.

    2010-12-01

    Active tectonics within the northern Basin and Range province provide a natural laboratory for the study of normal fault growth, linkage, and interaction. Here, we present new geologic mapping and morphologic fault-scarp modeling within the Centennial Valley, Montana to characterize Pleistocene - Holocene ruptures of the young and active Lima Reservoir fault. Geologic relationships and rupture ages indicate Middle Pleistocene activity on the Henry Gulch (>50 ka and 23-10 ka), Trail Creek (>43 ka and ˜13 ka), and reservoir (˜23 ka) segments. Offset Quaternary deposits also record Holocene rupture of the reservoir segment (˜8 ka), but unfaulted modern streams show that no segments of the Lima Reservoir fault have experienced a large earthquake in at least several millennia. The clustered pattern of rupture ages on the Lima Reservoir fault segments suggests a seismogenic linkage though segment length and spacing make a physical connection at depth unlikely. Trail Creek and reservoir segment slip rates were non-steady and appear to be increasing. The fault helps accommodate differential horizontal surface velocity measured by GPS geodesy across the boundary between the northern Basin and Range province and the Snake River Plain.

  20. Fractured reservoir characterization through injection, falloff, and flowback tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, C.P.; Singh, P.K.; Halvorsen, H.

    1992-09-01

    This paper presents the development of a multiphase pressure-transient-analysis technique for naturally fractured reservoirs and the analysis of a series of field tests performed to evaluate the water injection potential and the reservoir characteristics of a naturally fractured reservoir. These included step-rate, water-injectivity, pressure-falloff, and flowback tests. Through these tests, a description of the reservoir was obtained.

  1. INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.O. Hitzman; S.A. Bailey

    This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery.This microbial technology has the capability of producing multiple oil releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery. Research has begun on the program and experimental laboratory work is underway. Polymer-producing cultures have been isolated frommore » produced water samples and initially characterized. Concurrently, a microcosm scale sand-packed column has been designed and developed for testing cultures of interest, including polymer-producing strains. In research that is planned to begin in future work, comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents will be conducted in sand pack and cores with synthetic and natural field waters at concentrations, flooding rates, and with cultures and conditions representative of oil reservoirs.« less

  2. Practical characterization of eolian reservoirs for development: Nugget Sandstone, Utah—Wyoming thrust belt

    NASA Astrophysics Data System (ADS)

    Lindquist, Sandra J.

    1988-04-01

    The Jurassic eolian Nugget Sandstone of the Utah-Wyoming thrust belt is a texturally heterogeneous formation with anisotropic reservoir inherited primarily from the depositional environment. Original reservoir quality has been reduced somewhat by cementation and slightly enhanced by dissolution. Low-permeability, gouge-filled micro-faults compartmentalize the formation, whereas intermittently open fractures provide effective permeability paths locally. Where productive, the Nugget Sandstone ranges from approximately 800 to 1050 ft (244-320 m) thick at subsurface depths of 7500 to 15,000 ft (2286-4572 m). Porosity ranges from several percent to 25%, and permeability covers five orders of magnitude from hundredths of milliDarcies to Darcies. Some Nugget reservoirs are fully charged with hydrocarbons. Different stratification types have unique depositional textures, primary and diagenetic mineralogies, and deformational fabrics resulting in characteristic porosity, permeability, permeability directionality, and pore geometry attributes. Such characteristics can be determined from core analysis, mercury injection, nuclear magnetic resonance, conventional log, dipmeter and production data. Nugget dune deposits (good reservoir facies) primarily consist of grainflow and wind-ripple cross-strata, the former of which have the better reservoir quality and the lesser heterogeneity in bedding texture. High-permeability facies are commonly affected by local quartz and nodular carbonate cementation, chlorite (and lesser illite) precipitation, and minor framework and cement dissolution. Gouge-filled micro-faults are the predominant deformational overprint. Interdune, sand-sheet, and other water-associated deposits (poor reservoir facies) are characterized by low-angle wind-ripple laminae and more irregular bedding, some of which is associated with damp or wet conditions. Water-associated Nugget stratification generally contains the finest grained depositional textures and has the

  3. Geological modeling for methane hydrate reservoir characterization in the eastern Nankai Trough, offshore Japan

    NASA Astrophysics Data System (ADS)

    Tamaki, M.; Komatsu, Y.; Suzuki, K.; Takayama, T.; Fujii, T.

    2012-12-01

    The eastern Nankai trough, which is located offshore of central Japan, is considered as an attractive potential resource field of methane hydrates. Japan Oil, Gas and Metals National Corporation is planning to conduct a production test in early 2013 at the AT1 site in the north slope of Daini-Atsumi Knoll in the eastern Nankai Trough. The depositional environment of methane hydrate-bearing sediments around the production test site is a deep submarine-fan turbidite system, and it is considered that the reservoir properties should show lateral as well as vertical heterogeneity. Since the variations in the reservoir heterogeneity have an impact on the methane hydrate dissociation and gas production performance, precise geological models describing reservoir heterogeneity would be required for the evaluation of reservoir potentials. In preparation for the production test, 3 wells; two monitoring boreholes (AT1-MC and AT1-MT1) and a coring well (AT1-C), were newly acquired in 2012. In addition to a geotechnical hole drilling survey in 2011 (AT1-GT), totally log data from 2 wells and core data from 2 wells were obtained around the production test site. In this study, we conducted well correlations between AT1 and A1 wells drilled in 2003 and then, 3D geological models were updated including AT1 well data in order to refine hydrate reservoir characterization around the production test site. The results of the well correlations show that turbidite sand layers are characterized by good lateral continuity, and give significant information for the distribution morphology of sand-rich channel fills. We also reviewed previously conducted 3D geological models which consist of facies distributions and petrophysical properties distributions constructed from integration of 3D seismic data and a well data (A1 site) adopting a geostatistical approach. In order to test the practical validity of the previously generated models, cross-validation was conducted using AT1 well data. The

  4. Calibration of Seismic Attributes for Reservoir Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayne D. Pennington

    2002-09-29

    The project, "Calibration of Seismic Attributes for Reservoir Characterization," is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, inlcuding several that are in final stages of preparation ormore » printing; one of these is a chapter on "Reservoir Geophysics" for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along 'phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we

  5. Integrated workflow for characterizing and modeling fracture network in unconventional reservoirs using microseismic data

    NASA Astrophysics Data System (ADS)

    Ayatollahy Tafti, Tayeb

    We develop a new method for integrating information and data from different sources. We also construct a comprehensive workflow for characterizing and modeling a fracture network in unconventional reservoirs, using microseismic data. The methodology is based on combination of several mathematical and artificial intelligent techniques, including geostatistics, fractal analysis, fuzzy logic, and neural networks. The study contributes to scholarly knowledge base on the characterization and modeling fractured reservoirs in several ways; including a versatile workflow with a novel objective functions. Some the characteristics of the methods are listed below: 1. The new method is an effective fracture characterization procedure estimates different fracture properties. Unlike the existing methods, the new approach is not dependent on the location of events. It is able to integrate all multi-scaled and diverse fracture information from different methodologies. 2. It offers an improved procedure to create compressional and shear velocity models as a preamble for delineating anomalies and map structures of interest and to correlate velocity anomalies with fracture swarms and other reservoir properties of interest. 3. It offers an effective way to obtain the fractal dimension of microseismic events and identify the pattern complexity, connectivity, and mechanism of the created fracture network. 4. It offers an innovative method for monitoring the fracture movement in different stages of stimulation that can be used to optimize the process. 5. Our newly developed MDFN approach allows to create a discrete fracture network model using only microseismic data with potential cost reduction. It also imposes fractal dimension as a constraint on other fracture modeling approaches, which increases the visual similarity between the modeled networks and the real network over the simulated volume.

  6. Fractal characterization of a fractured chalk reservoir - The Laegerdorf case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoelum, H.H.; Koestler, A.G.; Feder, J.

    1991-03-01

    What is the matrix block size distribution of a fractured reservoir In order to answer this question and assess the potential of fractal geometry as a method of characterization of fracture networks, a pilot study has been done of the fractured chalk quarry in Laegerdorf. The fractures seen on the quarry walls were traced in the field for a total area of {approximately}200 {times} 45 m. The digitized pictures have been analyzed by a standard box-counting method. This analysis gave a fractal dimension of similarity varying from 1.33 for fractured areas between faults, to 1.43 for the fault zone, andmore » 1.53 for the highly deformed fault gouge. The amplitude showed a similar trend. The fractal dimension for the whole system of fractures is {approximately}1.55. In other words, fracture networks in chalk have a nonlinear, fractal geometry, and so matrix block size is a scaling property of chalk reservoirs. In terms of rock mechanics, the authors interpret the variation of the fractal dimension as follows: A small fractal dimension and amplitude are associated with brittle deformation in the elastic regime, while a large fractal dimension and amplitude are associated with predominantly ductile, strain softening deformation in the plastic regime. The interaction between the two regimes of deformation in the rock body is a key element of successful characterization and may be approached by seeing the rock as a non-Newtonian viscoelastic medium. The fractal dimension for the whole is close to a material independent limit that constrains the development of fractures.« less

  7. Improved reservoir characterization of the Rose Run sandstone on the East Randolph Field, Portage County, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safley, I.E.; Thomas, J.B.

    1996-09-01

    The East Randolph Field, located in Randolph Township, Portage County, Ohio, produces oil and gas from the Cambrian Rose Run sandstone unit, a member of the Knox Supergroup. Field development and infill drilling opportunities illustrate the need for improved reservoir characterization of the hydrocarbon productive intervals. This reservoir study is conducted under the Department of Energy`s Reservoir Management Program with professionals from BDM-Oklahoma and Belden & Blake Corporation. Well log and core analyses were conducted to determine the reservoir distribution, the heterogeneity of the hydrocarbon producing intervals, and the effects of faulting and fracturing on well productivity. The Rose Runmore » sandstones and interbedded dolomites were subdivided into three productive intervals. Cross sections were constructed for correlation of individual layers and identification of localized faulting. The geologic data was input into GeoGraphix software for construction of structure, net pay, production, and gas- and water-oil ratio maps.« less

  8. Advanced Reservoir Characterization and Evaluation of CO2 Gravity Drainage in the Naturally Fractured Spraberry Trend Area, Class III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, Bill; Schechter, David S.

    The goal of this project was to assess the economic feasibility of CO2 flooding the naturally fractured Spraberry Trend Area in west Texas. This objective was accomplished through research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. This provides results of the final year of the six-year project for each of the four areas.

  9. Fluvial reservoir characterization using topological descriptors based on spectral analysis of graphs

    NASA Astrophysics Data System (ADS)

    Viseur, Sophie; Chiaberge, Christophe; Rhomer, Jérémy; Audigane, Pascal

    2015-04-01

    Fluvial systems generate highly heterogeneous reservoir. These heterogeneities have major impact on fluid flow behaviors. However, the modelling of such reservoirs is mainly performed in under-constrained contexts as they include complex features, though only sparse and indirect data are available. Stochastic modeling is the common strategy to solve such problems. Multiple 3D models are generated from the available subsurface dataset. The generated models represent a sampling of plausible subsurface structure representations. From this model sampling, statistical analysis on targeted parameters (e.g.: reserve estimations, flow behaviors, etc.) and a posteriori uncertainties are performed to assess risks. However, on one hand, uncertainties may be huge, which requires many models to be generated for scanning the space of possibilities. On the other hand, some computations performed on the generated models are time consuming and cannot, in practice, be applied on all of them. This issue is particularly critical in: 1) geological modeling from outcrop data only, as these data types are generally sparse and mainly distributed in 2D at large scale but they may locally include high-resolution descriptions (e.g.: facies, strata local variability, etc.); 2) CO2 storage studies as many scales of investigations are required, from meter to regional ones, to estimate storage capacities and associated risks. Recent approaches propose to define distances between models to allow sophisticated multivariate statistics to be applied on the space of uncertainties so that only sub-samples, representative of initial set, are investigated for dynamic time-consuming studies. This work focuses on defining distances between models that characterize the topology of the reservoir rock network, i.e. its compactness or connectivity degree. The proposed strategy relies on the study of the reservoir rock skeleton. The skeleton of an object corresponds to its median feature. A skeleton is

  10. Fracture-network 3D characterization in a deformed chalk reservoir analogue -- the Laegerdorf case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koestler, A.G.; Reksten, K.

    1995-09-01

    Quantitative descriptions of 3D fracture networks in terms of fracture characteristics and connectivity are necessary for reservoir evaluation, management, and EOR programs of fractured reservoirs. The author`s research has focused on an analogue to North Sea fractured chalk reservoirs that is excellently exposed near Laegerdorf, northwest Germany. An underlying salt diapir uplifted and deformed Upper Cretaceous chalk; the cement industry now exploits it. The fracture network in the production wall of the quarry was characterized and mapped at different scales, and 12 profiles of the 230-m wide and 35-m high production wall were investigated as the wall receded 25 m.more » In addition, three wells were drilled into the chalk volume. The wells were cored and the wellbores were imaged with both the resistivity formation micro scanner (FMS) and the sonic circumferential borehole image logger (CBIL). The large amount of fracture data was analyzed with respect to parameters, such as fracture density distribution, orientation, and length distribution, and in terms of the representativity and predictability of data sets collected from restricted rock volumes.« less

  11. On the importance of the heterogeneity assumption in the characterization of reservoir geomechanical properties

    NASA Astrophysics Data System (ADS)

    Zoccarato, C.; Baù, D.; Bottazzi, F.; Ferronato, M.; Gambolati, G.; Mantica, S.; Teatini, P.

    2016-10-01

    The geomechanical analysis of a highly compartmentalized reservoir is performed to simulate the seafloor subsidence due to gas production. The available observations over the hydrocarbon reservoir consist of bathymetric surveys carried out before and at the end of a 10-yr production life. The main goal is the calibration of the reservoir compressibility cM, that is, the main geomechanical parameter controlling the surface response. Two conceptual models are considered: in one (i) cM varies only with the depth and the vertical effective stress (heterogeneity due to lithostratigraphic variability); in another (ii) cM varies also in the horizontal plane, that is, it is spatially distributed within the reservoir stratigraphic units. The latter hypothesis accounts for a possible partitioning of the reservoir due to the presence of sealing faults and thrusts that suggests the idea of a block heterogeneous system with the number of reservoir blocks equal to the number of uncertain parameters. The method applied here relies on an ensemble-based data assimilation (DA) algorithm (i.e. the ensemble smoother, ES), which incorporates the information from the bathymetric measurements into the geomechanical model response to infer and reduce the uncertainty of the parameter cM. The outcome from conceptual model (i) indicates that DA is effective in reducing the cM uncertainty. However, the maximum settlement still remains underestimated, while the areal extent of the subsidence bowl is overestimated. We demonstrate that the selection of the heterogeneous conceptual model (ii) allows to reproduce much better the observations thus removing a clear bias of the model structure. DA allows significantly reducing the cM uncertainty in the five blocks (out of the seven) characterized by large volume and large pressure decline. Conversely, the assimilation of land displacements only partially constrains the prior cM uncertainty in the reservoir blocks marginally contributing to the

  12. SU-E-T-112: Experimental Characterization of a Novel Thermal Reservoir for Consistent and Accurate Annealing of High-Sensitivity TLDs.

    PubMed

    Donahue, W; Bongiorni, P; Hearn, R; Rodgers, J; Nath, R; Chen, Z

    2012-06-01

    To develop and characterize a novel thermal reservoir for consistent and accurate annealing of high-sensitivity thermoluminescence dosimeters (TLD-100H) for dosimetry of brachytherapy sources. The sensitivity of TLD-100H is about 18 times that of TLD-100 which has clear advantages in for interstitial brachytherapy sources. However, the TLD-100H requires a short high temperature annealing cycle (15 min.) and opening and closing the oven door causes significant temperature fluctuations leading to unreliable measurements. A new thermal reservoir made of aluminum alloy was developed to provide stable temperature environment in a standard hot air oven. The thermal reservoir consisted of a 20 cm × 20 cm × 8 cm Al block with a machine-milled chamber in the middle to house the aluminum TLD holding tray. The thermal reservoir was placed inside the oven until it reaches thermal equilibrium with oven chamber. The temperatures of the oven chamber, heat reservoir, and TLD holding tray were monitored by two independent thermo-couples which interfaced digitally to a control computer. A LabView interface was written for monitoring and recording the temperatures in TLD holding tray, the thermal reservoir, and oven chamber. The temperature profiles were measured as a function of oven-door open duration. The settings for oven chamber temperature and oven door open-close duration were optimized to achieve a stable temperature of 240 0C in the TLD holding tray. Complete temperature profiles of the TLD annealing tray over the entire annealing process were obtained. A LabView interface was written for monitoring and recording the temperatures in TLD holding The use of the thermal reservoir has significantly reduced the temperature fluctuations caused by the opening of oven door when inserting the TLD holding tray into the oven chamber. It has enabled consistent annealing of high-sensitivity TLDs. A comprehensive characterization of a custom-built novel thermal reservoir for annealing

  13. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  14. The reservoir-wave approach to characterize pulmonary vascular-right ventricular interactions in humans.

    PubMed

    Ghimire, Anukul; Andersen, Mads J; Burrowes, Lindsay M; Bouwmeester, J Christopher; Grant, Andrew D; Belenkie, Israel; Fine, Nowell M; Borlaug, Barry A; Tyberg, John V

    2016-12-01

    Using the reservoir-wave approach (RWA) we previously characterized pulmonary vasculature mechanics in a normal canine model. We found reflected backward-traveling waves that decrease pressure and increase flow in the proximal pulmonary artery (PA). These waves decrease right ventricular (RV) afterload and facilitate RV ejection. With pathological alterations to the pulmonary vasculature, these waves may change and impact RV performance. Our objective in this study was to characterize PA wave reflection and the alterations in RV performance in cardiac patients, using the RWA. PA pressure, Doppler-flow velocity, and pulmonary arterial wedge pressure were measured in 11 patients with exertional dyspnea. The RWA was employed to analyze PA pressure and flow; wave intensity analysis characterized PA waves. Wave-related pressure was partitioned into two components: pressures due to forward-traveling and to backward-traveling waves. RV performance was assessed by examining the work done in raising reservoir pressure and that associated with the wave components of systolic PA pressure. Wave-related work, the mostly nonrecoverable energy expended by the RV to eject blood, tended to vary directly with mean PA pressure. Where PA pressures were lower, there were pressure-decreasing/flow-increasing backward waves that aided RV ejection. Where PA pressures were higher, there were pressure-increasing/flow-decreasing backward waves that impeded RV ejection. Pressure-increasing/flow-decreasing backward waves were responsible for systolic notches in the Doppler flow velocity profiles in patients with the highest PA pressure. Pulmonary hypertension is characterized by reflected waves that impede RV ejection and an increase in wave-related work. The RWA may facilitate the development of therapeutic strategies. Copyright © 2016 the American Physiological Society.

  15. Multiscale properties of unconventional reservoir rocks

    NASA Astrophysics Data System (ADS)

    Woodruff, W. F.

    A multidisciplinary study of unconventional reservoir rocks is presented, providing the theory, forward modeling and Bayesian inverse modeling approaches, and laboratory protocols to characterize clay-rich, low porosity and permeability shales and mudstones within an anisotropic framework. Several physical models characterizing oil and gas shales are developed across multiple length scales, ranging from microscale phenomena, e.g. the effect of the cation exchange capacity of reactive clay mineral surfaces on water adsorption isotherms, and the effects of infinitesimal porosity compaction on elastic and electrical properties, to meso-scale phenomena, e.g. the role of mineral foliations, tortuosity of conduction pathways and the effects of organic matter (kerogen and hydrocarbon fractions) on complex conductivity and their connections to intrinsic electrical anisotropy, as well as the macro-scale electrical and elastic properties including formulations for the complex conductivity tensor and undrained stiffness tensor within the context of effective stress and poroelasticity. Detailed laboratory protocols are described for sample preparation and measurement of these properties using spectral induced polarization (SIP) and ultrasonics for the anisotropic characterization of shales for both unjacketed samples under benchtop conditions and jacketed samples under differential loading. An ongoing study of the effects of kerogen maturation through hydrous pyrolysis on the complex conductivity is also provided in review. Experimental results are catalogued and presented for various unconventional formations in North America including the Haynesville, Bakken, and Woodford shales.

  16. Characterization of water quality in Bushy Park Reservoir, South Carolina, 2013–15

    USGS Publications Warehouse

    Conrads, Paul A.; Journey, Celeste A.; Petkewich, Matthew D.; Lanier, Timothy H.; Clark, Jimmy M.

    2018-04-25

    The Bushy Park Reservoir is the principal water supply for 400,000 people in the greater Charleston, South Carolina, area, which includes homes as well as businesses and industries in the Bushy Park Industrial Complex. Charleston Water System and the U.S. Geological Survey conducted a cooperative study during 2013–15 to assess the circulation of Bushy Park Reservoir and its effects on water-quality conditions, specifically, recurring taste-and-odor episodes. This report describes the water-quality data collected for the study that included a combination of discrete water-column sampling at seven locations in the reservoir and longitudinal water-quality profiling surveys of the reservoir and tributaries to characterize the temporal and spatial water-quality dynamics of Bushy Park Reservoir. Water-quality profiling surveys were conducted with an autonomous underwater vehicle equipped with a multiparameter water-quality-sonde bulkhead. Data collected by the autonomous underwater vehicle included water temperature, dissolved oxygen, pH, specific conductance, turbidity, total chlorophyll as fluorescence (estimate of algal biomass), and phycocyanin as fluorescence (estimate of cyanobacteria biomass) data.Characterization of the water-quality conditions in the reservoir included comparison to established State nutrient guidelines, identification of any spatial and seasonal variation in water-quality conditions and phytoplankton community structures, and assessment of the degree of influence of water-quality conditions related to Foster Creek and Durham Canal inflows, especially during periods of elevated taste-and-odor concentrations. Depth-profile and autonomous underwater vehicle survey data were used to identify areas within the reservoir where greater phytoplankton and cyanobacteria densities were most likely occurring.Water-quality survey results indicated that Bushy Park Reservoir tended to stratify thermally at a depth of about 20 feet from June to early October

  17. Modeling Reservoir-River Networks in Support of Optimizing Seasonal-Scale Reservoir Operations

    NASA Astrophysics Data System (ADS)

    Villa, D. L.; Lowry, T. S.; Bier, A.; Barco, J.; Sun, A.

    2011-12-01

    HydroSCOPE (Hydropower Seasonal Concurrent Optimization of Power and the Environment) is a seasonal time-scale tool for scenario analysis and optimization of reservoir-river networks. Developed in MATLAB, HydroSCOPE is an object-oriented model that simulates basin-scale dynamics with an objective of optimizing reservoir operations to maximize revenue from power generation, reliability in the water supply, environmental performance, and flood control. HydroSCOPE is part of a larger toolset that is being developed through a Department of Energy multi-laboratory project. This project's goal is to provide conventional hydropower decision makers with better information to execute their day-ahead and seasonal operations and planning activities by integrating water balance and operational dynamics across a wide range of spatial and temporal scales. This presentation details the modeling approach and functionality of HydroSCOPE. HydroSCOPE consists of a river-reservoir network model and an optimization routine. The river-reservoir network model simulates the heat and water balance of river-reservoir networks for time-scales up to one year. The optimization routine software, DAKOTA (Design Analysis Kit for Optimization and Terascale Applications - dakota.sandia.gov), is seamlessly linked to the network model and is used to optimize daily volumetric releases from the reservoirs to best meet a set of user-defined constraints, such as maximizing revenue while minimizing environmental violations. The network model uses 1-D approximations for both the reservoirs and river reaches and is able to account for surface and sediment heat exchange as well as ice dynamics for both models. The reservoir model also accounts for inflow, density, and withdrawal zone mixing, and diffusive heat exchange. Routing for the river reaches is accomplished using a modified Muskingum-Cunge approach that automatically calculates the internal timestep and sub-reach lengths to match the conditions of

  18. Reservoir characterization of the Mississippian Ratcliffe, Richland County, Montana, Williston Basin. Topical report, September 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sippel, M.; Luff, K.D.; Hendricks, M.L.

    1998-07-01

    This topical report is a compilation of characterizations by different disciplines of the Mississippian Ratcliffe in portions of Richland County, MT. Goals of the report are to increase understanding of the reservoir rocks, oil-in-place, heterogeneity and methods for improved recovery. The report covers investigations of geology, petrography, reservoir engineering and seismic. The Ratcliffe is a low permeability oil reservoir which appears to be developed across much of the study area and occurs across much of the Williston Basin. The reservoir has not been a primary drilling target in the study area because average reserves have been insufficient to payout themore » cost of drilling and completion despite the application of hydraulic fracture stimulation. Oil trapping does not appear to be structurally controlled. For the Ratcliffe to be a viable drilling objective, methods need to be developed for (1) targeting better reservoir development and (2) better completions. A geological model is presented for targeting areas with greater potential for commercial reserves in the Ratcliffe. This model can be best utilized with the aid of 3D seismic. A 3D seismic survey was acquired and is used to demonstrate a methodology for targeting the Ratcliffe. Other data obtained during the project include oriented core, special formation-imaging log, pressure transient measurements and oil PVT. Although re-entry horizontal drilling was unsuccessfully tested, this completion technology should improve the economic viability of the Ratcliffe. Reservoir simulation of horizontal completions with productivity of three times that of a vertical well suggested two or three horizontal wells in a 258-ha (640-acre) area could recover sufficient reserves for profitable drilling.« less

  19. Oligo-Miocene reservoir sequence characterization and structuring in the Sisseb El Alem-Kalaa Kebira regions (Northeastern Tunisia)

    NASA Astrophysics Data System (ADS)

    Houatmia, Faten; Khomsi, Sami; Bédir, Mourad

    2015-11-01

    The Sisseb El Alem-Enfidha basin is located in the northeastern Tunisia, It is borded by Nadhour - Saouaf syncline to the north, Kairouan plain to the south, the Mediterranean Sea to the east and Tunisian Atlassic "dorsale" to the west. Oligocene and Miocene deltaic deposits present the main potential deep aquifers in this basin with high porosity (25%-30%). The interpretation of twenty seismic reflection profiles, calibrated by wire line logging data of twelve oil wells, hydraulic wells and geologic field sections highlighted the impact of tectonics on the structuring geometry of Oligo-Miocene sandstones reservoirs and their distribution in raised structures and subsurface depressions. Miocene seismostratigraphy analysis from Ain Ghrab Formation (Langhian) to the Segui Formation (Quaternary) showed five third-order seismic sequence deposits and nine extended lenticular sandy bodies reservoirs limited by toplap and downlap surfaces unconformities, Oligocene deposits presented also five third- order seismic sequences with five extended lenticular sandy bodies reservoirs. The Depth and the thickness maps of these sequence reservoir packages exhibited the structuring of this basin in sub-basins characterized by important lateral and vertical geometric and thichness variations. Petroleum wells wire line logging correlation with clay volume calculation showed an heterogeneous multilayer reservoirs of Oligocene and Miocene formed by the arrangement of fourteen sandstone bodies being able to be good reservoirs, separated by impermeable clay packages and affected by faults. Reservoirs levels correspond mainly to the lower system tract (LST) of sequences. Intensive fracturing by deep seated faults bounding the different sub-basins play a great role for water surface recharge and inter-layer circulations between affected reservoirs. The total pore volume of the Oligo-Miocene reservoir sandy bodies in the study area, is estimated to about 4 × 1012 m3 and equivalent to 4

  20. Niobrara Discrete Fracture Network: From Outcrop Surveys to Subsurface Reservoir Models

    NASA Astrophysics Data System (ADS)

    Grechishnikova, Alena

    Heterogeneity of an unconventional reservoir is one of the main factors affecting production. Well performance depends on the size and efficiency of the interconnected fracture "plumbing system", as influenced by multistage hydraulic fracturing. A complex, interconnected natural fracture network can significantly increase the size of stimulated reservoir volume, provide additional surface area contact and enhance permeability. In 2013 the Reservoir Characterization Project (RCP) at the Colorado School of Mines began Phase XV to study Niobrara shale reservoir management. Anadarko Petroleum Corporation and RCP jointly acquired time-lapse multicomponent seismic data in Wattenberg Field, Denver Basin. Anadarko also provided RCP with a regional 3D seismic survey and a rich well dataset. The purpose of this study is to characterize the natural fracture patterns occurring in the unconventional Niobrara reservoir and to determine the drivers that influenced fracture trends and distributions. The findings are integrated into a reservoir model though DFN (Discrete Fracture Network) for further prediction of reservoir performance using reservoir simulations. Aiming to better understand the complexity of the natural fracture system I began my fracture analysis work at an active mine site that provides a Niobrara exposure. Access to a "fresh" outcrop surface created a perfect natural laboratory. Ground-based LIDAR and photogrammetry facilitated construction of a geological model and a DFN model for the mine site. The work was carried into subsurface where the information gained served to improve reservoir characterization at a sub-seismic scale and can be used in well planning. I then embarked on a challenging yet essential task of outcrop-to-subsurface data calibration and application to RCP's Wattenberg Field study site. In this research the surface data was proven to be valid for comparative use in the subsurface. The subsurface fracture information was derived from image

  1. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurhandoko, Bagus Endar B., E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com; Rock Fluid Imaging Lab., Bandung; Susilowati, E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com

    2015-04-16

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied aboutmore » the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.« less

  2. Reservoir characterization of Mesaverde (Campanian) bedload fluvial meanderbelt sandstones, northwestern Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, J.R. Jr.

    1984-04-01

    Reservoir characterization of Mesaverde meanderbelt sandstones is used to determined directional continuity of permeable zones. A 500-m (1600 ft) wide fluvial meanderbelt in the Mesaverde Group is exposed as laterally continuous 3-10-m (10-33-ft) high sandstone cliffs north of Rangely, Colorado. Forty-eight detailed measured sections through 3 point bar complexes oriented at right angles to the long axis of deposition and 1 complex oriented parallel to deposition were prepared. Sections were tied together by detailed sketches delineating and tracing major bounding surfaces such as scours and clay drapes. These complexes contain 3 to 8 multilateral sandstone packages separated by 5-20 cmmore » (2-8 in.) interbedded siltstone and shale beds. Component facies are point bars, crevasse splays, chute bars, and floodplain/overbank deposits. Two types of lateral accretion surfaces are recognized in the point bar facies. Gently dipping lateral accretions containing fining-upward sandstone packages. Large scale trough cross-bedding at the base grades upward into ripples and plane beds. Steeply dipping lateral accretion surfaces enclose beds characterized by climbing ripple cross laminations. Bounding surfaces draped by shale lags can seal vertically stacked point bars from reservoir communication. Scoured boundaries allow communication in some stacked point bars. Crevasse splays showing climbing ripples form tongues of very fine-grained sandstone which flank point bars. Chute channels commonly cut upper point bar surfaces at their downstream end. Chute facies are upward-fining with small scale troughs and common dewatering structures. Siltstones and shales underlie the point bar complexes and completely encase the meanderbelt system. Bounding surfaces at the base of the complexes are erosional and contain large shale rip-up clasts.« less

  3. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  4. Results of the multiwell experiment in situ stresses, natural fractures, and other geological controls on reservoirs

    NASA Astrophysics Data System (ADS)

    Lorenz, John C.; Warpinski, Norman R.; Teufel, Lawrence W.; Branagan, Paul T.; Sattler, Allan R.; Northrop, David A.

    Hundreds of millions of cubic meters of natural gas are locked up in low-permeability, natural gas reservoirs. The Multiwell Experiment (MWX) was designed to characterize such reservoirs, typical of much of the western United States, and to assess and develop a technology for the production of this unconventional resource. Flow-rate tests of the MWX reservoirs indicate a system permeability that is several orders of magnitude higher than laboratory permeability measurements made on matrix-rock sandstones. This enhanced permeability is caused by natural fractures. The single set of fractures present in the reservoirs provides a significant permeability anisotropy that is aligned with the maximum in situ horizontal stress. Hydraulic fractures therefore form parallel to the natural fractures and are consequently an inefficient mechanism for stimulation. Successful stimulation may be possible by perturbing the local stress field with a large hydraulic fracture in one well so that a second hydraulic fracture in an offset well propagates transverse to the natural fracture permeability trend.

  5. Geochemical analysis of atlantic rim water, carbon county, wyoming: New applications for characterizing coalbed natural gas reservoirs

    USGS Publications Warehouse

    McLaughlin, J.F.; Frost, C.D.; Sharma, Shruti

    2011-01-01

    Coalbed natural gas (CBNG) production typically requires the extraction of large volumes of water from target formations, thereby influencing any associated reservoir systems. We describe isotopic tracers that provide immediate data on the presence or absence of biogenic natural gas and the identify methane-containing reservoirs are hydrologically confined. Isotopes of dissolved inorganic carbon and strontium, along with water quality data, were used to characterize the CBNG reservoirs and hydrogeologic systems of Wyoming's Atlantic Rim. Water was analyzed from a stream, springs, and CBNG wells. Strontium isotopic composition and major ion geochemistry identify two groups of surface water samples. Muddy Creek and Mesaverde Group spring samples are Ca-Mg-S04-type water with higher 87Sr/86Sr, reflecting relatively young groundwater recharged from precipitation in the Sierra Madre. Groundwaters emitted from the Lewis Shale springs are Na-HCO3-type waters with lower 87Sr/86Sr, reflecting sulfate reduction and more extensive water-rock interaction. To distinguish coalbed waters, methanogenically enriched ??13CDIC wasused from other natural waters. Enriched ??13CDIC, between -3.6 and +13.3???, identified spring water that likely originates from Mesaverde coalbed reservoirs. Strongly positive ??13CDIC, between +12.6 and +22.8???, identified those coalbed reservoirs that are confined, whereas lower ??13CDIC, between +0.0 and +9.9???, identified wells within unconfined reservoir systems. Copyright ?? 2011. The American Association of Petroleum Geologists. All rights reserved.

  6. Reservoir characterization of the Smackover Formation in southwest Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.

    1993-02-01

    The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- andmore » improved-recovery methods from the Smackover of Alabama.« less

  7. Revitalizing a mature oil play: Strategies for finding and producing oil in Frio Fluvial-Deltaic Sandstone reservoirs of South Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knox, P.R.; Holtz, M.H.; McRae, L.E.

    Domestic fluvial-dominated deltaic (FDD) reservoirs contain more than 30 Billion barrels (Bbbl) of remaining oil, more than any other type of reservoir, approximately one-third of which is in danger of permanent loss through premature field abandonments. The U.S. Department of Energy has placed its highest priority on increasing near-term recovery from FDD reservoirs in order to prevent abandonment of this important strategic resource. To aid in this effort, the Bureau of Economic Geology, The University of Texas at Austin, began a 46-month project in October, 1992, to develop and demonstrate advanced methods of reservoir characterization that would more accurately locatemore » remaining volumes of mobile oil that could then be recovered by recompleting existing wells or drilling geologically targeted infill. wells. Reservoirs in two fields within the Frio Fluvial-Deltaic Sandstone (Vicksburg Fault Zone) oil play of South Texas, a mature play which still contains 1.6 Bbbl of mobile oil after producing 1 Bbbl over four decades, were selected as laboratories for developing and testing reservoir characterization techniques. Advanced methods in geology, geophysics, petrophysics, and engineering were integrated to (1) identify probable reservoir architecture and heterogeneity, (2) determine past fluid-flow history, (3) integrate fluid-flow history with reservoir architecture to identify untapped, incompletely drained, and new pool compartments, and (4) identify specific opportunities for near-term reserve growth. To facilitate the success of operators in applying these methods in the Frio play, geologic and reservoir engineering characteristics of all major reservoirs in the play were documented and statistically analyzed. A quantitative quick-look methodology was developed to prioritize reservoirs in terms of reserve-growth potential.« less

  8. Seismic Characterization of EGS Reservoirs

    NASA Astrophysics Data System (ADS)

    Templeton, D. C.; Pyle, M. L.; Matzel, E.; Myers, S.; Johannesson, G.

    2014-12-01

    To aid in the seismic characterization of Engineered Geothermal Systems (EGS), we enhance the traditional microearthquake detection and location methodologies at two EGS systems. We apply the Matched Field Processing (MFP) seismic imaging technique to detect new seismic events using known discrete microearthquake sources. Events identified using MFP are typically smaller magnitude events or events that occur within the coda of a larger event. Additionally, we apply a Bayesian multiple-event seismic location algorithm, called MicroBayesLoc, to estimate the 95% probability ellipsoids for events with high signal-to-noise ratios (SNR). Such probability ellipsoid information can provide evidence for determining if a seismic lineation could be real or simply within the anticipated error range. We apply this methodology to the Basel EGS data set and compare it to another EGS dataset. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. 3D characterization of the fracture network in a deformed chalk reservoir analogue: The Lagerdorf case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koestler, A.G.; Reksten, K.

    1994-12-31

    Quantitative descriptions of the 3D fracture networks in terms of connectivity, fracture types, fracture surface roughness and flow characteristics are necessary for reservoir evaluation, management, and enhanced oil recovery programs of fractured reservoirs. For a period of 2 years, a research project focused on an analogue to fractured chalk reservoirs excellently exposed near Laegerdorf, NW Germany. Upper Cretaceous chalk has been uplifted and deformed by an underlying salt diapir, and is now exploited for the cement industry. In the production wall of a quarry, the fracture network of the deformed chalk was characterized and mapped at different scales. The wallmore » was scraped off as chalk exploitation proceeded, continuously revealing new sections through the faulted and fractured chalk body. A 230 m long part of the 35m high production wall was investigated during its recess of 25m. The large amount of fracture data were analyzed with respect to parameters such as fracture density distribution, orientation- and length distribution, and in terms of the representativity of data sets collected from restricted rock volumes. This 3D description and analysis of a fracture network revealed quantitative generic parameters of importance for modeling chalk reservoirs with less data and lower data quality.« less

  10. Inverse Theory for Petroleum Reservoir Characterization and History Matching

    NASA Astrophysics Data System (ADS)

    Oliver, Dean S.; Reynolds, Albert C.; Liu, Ning

    This book is a guide to the use of inverse theory for estimation and conditional simulation of flow and transport parameters in porous media. It describes the theory and practice of estimating properties of underground petroleum reservoirs from measurements of flow in wells, and it explains how to characterize the uncertainty in such estimates. Early chapters present the reader with the necessary background in inverse theory, probability and spatial statistics. The book demonstrates how to calculate sensitivity coefficients and the linearized relationship between models and production data. It also shows how to develop iterative methods for generating estimates and conditional realizations. The text is written for researchers and graduates in petroleum engineering and groundwater hydrology and can be used as a textbook for advanced courses on inverse theory in petroleum engineering. It includes many worked examples to demonstrate the methodologies and a selection of exercises.

  11. Structural characterization and numerical simulations of flow properties of standard and reservoir carbonate rocks using micro-tomography

    NASA Astrophysics Data System (ADS)

    Islam, Amina; Chevalier, Sylvie; Sassi, Mohamed

    2018-04-01

    With advances in imaging techniques and computational power, Digital Rock Physics (DRP) is becoming an increasingly popular tool to characterize reservoir samples and determine their internal structure and flow properties. In this work, we present the details for imaging, segmentation, as well as numerical simulation of single-phase flow through a standard homogenous Silurian dolomite core plug sample as well as a heterogeneous sample from a carbonate reservoir. We develop a procedure that integrates experimental results into the segmentation step to calibrate the porosity. We also look into using two different numerical tools for the simulation; namely Avizo Fire Xlab Hydro that solves the Stokes' equations via the finite volume method and Palabos that solves the same equations using the Lattice Boltzmann Method. Representative Elementary Volume (REV) and isotropy studies are conducted on the two samples and we show how DRP can be a useful tool to characterize rock properties that are time consuming and costly to obtain experimentally.

  12. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanks, Catherine

    permeability trends. The Lower Grandstand sand consists of two coarsening-upward shoreface sands sequences while the Upper Grandstand consists of a single coarsening-upward shoreface sand. Each of the shoreface sands shows a distinctive permeability profile with high horizontal permeability at the top getting progressively poorer towards the base of the sand. In contrast, deltaic sandstones in the overlying Ninuluk are more permeable at the base of the sands, with decreasing permeability towards the sand top. These trends impart a strong permeability anisotropy to the reservoir and are being incorporated into the reservoir model. These observations also suggest that horizontal wells should target the upper part of the major sands. Natural fractures may superimpose another permeability pattern on the Umiat reservoir that need to be accounted for in both the simulation and in drilling. Examination of legacy core from Umiat field indicate that fractures are present in the subsurface, but don't provide information on their orientation and density. Nearby surface exposures of folds in similar stratigraphy indicate there are at least three possible fracture sets: an early, N/S striking set that may predate folding and two sets possibly related to folding: an EW striking set of extension fractures that are parallel to the fold axes and a set of conjugate shear fractures oriented NE and NW. Analysis of fracture spacing suggests that these natural fractures are fairly widely spaced (25-59 cm depending upon the fracture set), but could provide improved reservoir permeability in horizontal legs drilled perpendicular to the open fracture set. The phase behavior of the Umiat fluid needed to be well understood in order for the reservoir simulation to be accurate. However, only a small amount of Umiat oil was available; this oil was collected in the 1940’s and was severely weathered. The composition of this ‘dead’ Umiat fluid was characterized by gas chromatography. This analysis was

  13. Reservoir Characterization using geostatistical and numerical modeling in GIS with noble gas geochemistry

    NASA Astrophysics Data System (ADS)

    Vasquez, D. A.; Swift, J. N.; Tan, S.; Darrah, T. H.

    2013-12-01

    The integration of precise geochemical analyses with quantitative engineering modeling into an interactive GIS system allows for a sophisticated and efficient method of reservoir engineering and characterization. Geographic Information Systems (GIS) is utilized as an advanced technique for oil field reservoir analysis by combining field engineering and geological/geochemical spatial datasets with the available systematic modeling and mapping methods to integrate the information into a spatially correlated first-hand approach in defining surface and subsurface characteristics. Three key methods of analysis include: 1) Geostatistical modeling to create a static and volumetric 3-dimensional representation of the geological body, 2) Numerical modeling to develop a dynamic and interactive 2-dimensional model of fluid flow across the reservoir and 3) Noble gas geochemistry to further define the physical conditions, components and history of the geologic system. Results thus far include using engineering algorithms for interpolating electrical well log properties across the field (spontaneous potential, resistivity) yielding a highly accurate and high-resolution 3D model of rock properties. Results so far also include using numerical finite difference methods (crank-nicholson) to solve for equations describing the distribution of pressure across field yielding a 2D simulation model of fluid flow across reservoir. Ongoing noble gas geochemistry results will also include determination of the source, thermal maturity and the extent/style of fluid migration (connectivity, continuity and directionality). Future work will include developing an inverse engineering algorithm to model for permeability, porosity and water saturation.This combination of new and efficient technological and analytical capabilities is geared to provide a better understanding of the field geology and hydrocarbon dynamics system with applications to determine the presence of hydrocarbon pay zones (or

  14. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibilitymore » problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and

  15. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott Hara

    2000-02-18

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 1999, project work has been completed related to data preparation, basic reservoir engineering, developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model, and a rock-log model, well drilling and completions, and surface facilities. Work is continuing on the stochastic geologic model, developing a 3-D stochastic thermal reservoir simulation model of the Fault Block IIA Tarmore » (Tar II-A) Zone, and operational work and research studies to prevent thermal-related formation compaction. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the steamflood project. Last quarter on January 12, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations. Seven water injection wells were placed in service in November and December 1998 on the flanks of the Phase 1 steamflood area to pressure up the reservoir to fill up the existing steam chest. Intensive reservoir engineering and geomechanics studies are continuing to determine the best ways to shut down the steamflood operations in Fault Block II while minimizing any future surface subsidence. The new 3-D deterministic thermal reservoir simulator model is being used to provide sensitivity cases to optimize production, steam injection, future flank cold water injection and reservoir temperature and pressure. According to the model, reservoir fill up of the steam chest at the current injection rate of 28,000 BPD

  16. Characterization of Suspended-Sediment Loading to and from John Redmond Reservoir, East-Central Kansas, 2007-2008

    USGS Publications Warehouse

    Lee, Casey J.; Rasmussen, Patrick P.; Ziegler, Andrew C.

    2008-01-01

    Storage capacity in John Redmond Reservoir is being lost to sedimentation more rapidly than in other federal impoundments in Kansas. The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, initiated a study to characterize suspended-sediment loading to and from John Redmond Reservoir from February 21, 2007, through February 21, 2008. Turbidity sensors were installed at two U.S. Geological Survey stream gages upstream (Neosho River near Americus and the Cottonwood River near Plymouth) and one stream gage downstream (Neosho River at Burlington) from the reservoir to compute continuous, real-time (15-minute) measurements of suspended-sediment concentration and loading. About 1,120,000 tons of suspended-sediment were transported to, and 100,700 tons were transported from John Redmond Reservoir during the study period. Dependent on the bulk density of sediment stored in the reservoir, 5.0 to 1.4 percent of the storage in the John Redmond conservation pool was lost during the study period, with an average deposition of 3.4 to 1.0 inches. Nearly all (98-99 percent) of the incoming sediment load was transported during 9 storms which occurred 25 to 27 percent of the time. The largest storm during the study period (peak-flow recurrence interval of about 4.6-4.9 years) transported about 37 percent of the sediment load to the reservoir. Suspended-sediment yield from the unregulated drainage area upstream from the Neosho River near Americus was 530 tons per square mile, compared to 400 tons per square mile upstream from the Cottonwood River near Plymouth. Comparison of historical (1964-78) to current (2007) sediment loading estimates indicate statistically insignificant (99 percent) decrease in sediment loading at the Neosho River at Burlington. Ninety-percent confidence intervals of streamflow-derived estimates of total sediment load were 7 to 21 times larger than turbidity-derived estimates. Results from this study can be used by natural resource

  17. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area, Class III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckman, Tracy; Schechter, David S.

    2000-04-11

    The overall goal of this project was to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective was accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) analytical and numerical simulation of Spraberry reservoirs, and, (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the fourth year of the five-year project for each of the four areas including a status report of field activities leading upmore » to injection of CO{sub 2}.« less

  18. CO2 Driven Mineral Transformations in Fractured Reservoir

    NASA Astrophysics Data System (ADS)

    Schaef, T.

    2015-12-01

    Engineering fracture systems in low permeable formations to increase energy production, accelerate heat extraction, or to enhance injectivity for storing anthropogenic CO2, is a challenging endeavor. To complicate matters, caprocks, essential components of subsurface reservoirs, need to maintain their sealing integrity in this modified subsurface system. Supercritical CO2 (scCO2), a proposed non-aqueous based working fluid, is capable of driving mineral transformations in fracture environments. Water dissolution in scCO2 significantly impacts the reactivity of this fluid, largely due to the development of thin adsorbed H2O films on the surfaces of exposed rocks and minerals. Adsorbed H2O films are geochemically complex microenvironments that host mineral dissolution and precipitation processes that could be tailored to influence overall formation permeability. Furthermore, manipulating the composition of injected CO2 (e.g., moisture content and/or reactive gases such as O2, NOx, or SOx) could stimulate targeted mineral transformations that enhance or sustain reservoir performance. PNNL has developed specialized experimental techniques that can be used to characterize chemical reactions occurring between minerals and pressurized gases. For example, hydration of a natural shale sample (Woodford Shale) has been characterized by an in situ infrared spectroscopic technique as water partitions from the scCO2 onto the shale. Mineral dissolution and carbonate precipitation reactions were tracked by monitoring changes of Si-O and C-O stretching bands, respectively Structural changes indicated expandable clays in the shale such as montmorillonite are intercalated with scCO2, a process not observed with the non-expandable kaolinite component. Extreme scale ab initio molecular dynamics simulations were used in conjunction with model mineral systems to identify the driving force and mechanism of water films. They showed that the film nucleation and formation on minerals is

  19. Exploring the effects of data quality, data worth, and redundancy of CO2 gas pressure and saturation data on reservoir characterization through PEST Inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zhufeng; Hou, Zhangshuan; Lin, Guang

    2014-04-01

    This study examined the impacts of reservoir properties on CO2 migration after subsurface injection and evaluated the possibility of characterizing reservoir properties using CO2 monitoring data such as saturation distribution. The injection reservoir was assumed to be located 1400-1500 m below the ground surface such that CO2 remained in the supercritical state. The reservoir was assumed to contain layers with alternating conductive and resistive properties, which is analogous to actual geological formations such as the Mount Simon Sandstone unit. The CO2 injection simulation used a cylindrical grid setting in which the injection well was situated at the center of themore » domain, which extended up to 8000 m from the injection well. The CO2 migration was simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). We adopted a nonlinear parameter estimation and optimization modeling software package, PEST, for automated reservoir parameter estimation. We explored the effects of data quality, data worth, and data redundancy on the detectability of reservoir parameters using CO2 saturation monitoring data, by comparing PEST inversion results using data with different levels of noises, various numbers of monitoring wells and locations, and different data collection spacing and temporal sampling intervals. This study yielded insight into the use of CO2 saturation monitoring data for reservoir characterization and how to design the monitoring system to optimize data worth and reduce data redundancy.« less

  20. Characterization of the deep microbial life in the Altmark natural gas reservoir

    NASA Astrophysics Data System (ADS)

    Morozova, D.; Alawi, M.; Vieth-Hillebrand, A.; Kock, D.; Krüger, M.; Wuerdemann, H.; Shaheed, M.

    2010-12-01

    Within the framework of the CLEAN project (CO2 Largescale Enhanced gas recovery in the Altmark Natural gas field) technical basics with special emphasis on process monitoring are explored by injecting CO2 into a gas reservoir. Our study focuses on the investigation of the in-situ microbial community of the Rotliegend natural gas reservoir in the Altmark, located south of the city Salzwedel, Germany. In order to characterize the microbial life in the extreme habitat we aim to localize and identify microbes including their metabolism influencing the creation and dissolution of minerals. The ability of microorganisms to speed up dissolution and formation of minerals might result in changes of the local permeability and the long-term safety of CO2 storage. However, geology, structure and chemistry of the reservoir rock and the cap rock as well as interaction with saline formation water and natural gases and the injected CO2 affect the microbial community composition and activity. The reservoir located at the depth of approximately 3500 m, is characterised by high salinity (420 g/l) and temperatures up to 127°C. It represents an extreme environment for microbial life and therefore the main focus is on hyperthermophilic, halophilic anaerobic microorganisms. In consequence of the injection of large amounts of CO2 in the course of a commercial EGR (Enhanced Gas Recovery), the environmental conditions (e.g. pH, temperature, pressure and solubility of minerals) for the autochthonous microorganisms will change. Genetic profiling of amplified 16S rRNA genes are applied for detecting structural changes in the community by using PCR- SSCP (PCR-Single-Strand-Conformation Polymorphism), DGGE (Denaturing Gradient Gel Electrophoresis) and 16S rRNA cloning. First results of the baseline survey indicate the presence of microorganisms similar to representatives from other deep environments. The sequence analyses revealed the presence of several H2-oxidising bacteria (Hydrogenophaga sp

  1. Reservoir and aquifer characterization of fluvial architectural elements: Stubensandstein, Upper Triassic, southwest Germany

    NASA Astrophysics Data System (ADS)

    Hornung, Jens; Aigner, Thomas

    1999-12-01

    This paper aims at a quantitative sedimentological and petrophysical characterization of a terminal alluvial plain system exemplified by the Stubensandstein, South German Keuper Basin. The study follows the outcrop-analogue approach, where information derived from outcrops is collected in order to enhance interpretation of comparable subsurface successions. Quantitative data on sandbody geometries, porosities and permeabilities are presented in order to constrain modelling of subsurface sandbodies and permeability barriers. For sedimentological characterization the method of architectural element analysis (Miall, A.D., 1996. The Geology of Fluvial Deposits. Springer, Berlin) was used, and modified to include poroperm facies. A special photo-technique with a precise theodolite survey was developed to create optically corrected photomosaics for outcrop wall maps from up to 20,000 m 2 large outcrops. Nine architectural elements have been classified and quantified. Bedload, mixed-load and suspended-load channel fills are separated. The petrophysical characterization of the architectural elements integrated porosity and permeability measurements of core-plugs with gamma-ray measurements along representative sections. It could be demonstrated, that certain architectural elements show a characteristic poroperm facies. Four scales of sedimentary cycles have been recognized in the Stubensandstein. Cyclic sedimentation causes changing lithofacies patterns within the architectural elements, depending on their position in the sedimentary cycle. Stratigraphic position exerts only some, paleogeographic position exerts significant influence on porosity and permeability of the sandbodies. The highest poroperm values were found in proximal areas of the alluvial plain and in middle parts within sedimentary macrocycles. The strong internal heterogeneity on the alluvial plain system is important for its reservoir and aquifer characteristics. Compartments of bedload channel sandstones

  2. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. O. Hitzman; A. K. Stepp; D. M. Dennis

    This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work is underway. Microbial cultures have been isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters withmore » cultures and conditions representative of oil reservoirs. Field pilot studies are underway.« less

  3. Analysis and application of classification methods of complex carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Li, Xiongyan; Qin, Ruibao; Ping, Haitao; Wei, Dan; Liu, Xiaomei

    2018-06-01

    There are abundant carbonate reservoirs from the Cenozoic to Mesozoic era in the Middle East. Due to variation in sedimentary environment and diagenetic process of carbonate reservoirs, several porosity types coexist in carbonate reservoirs. As a result, because of the complex lithologies and pore types as well as the impact of microfractures, the pore structure is very complicated. Therefore, it is difficult to accurately calculate the reservoir parameters. In order to accurately evaluate carbonate reservoirs, based on the pore structure evaluation of carbonate reservoirs, the classification methods of carbonate reservoirs are analyzed based on capillary pressure curves and flow units. Based on the capillary pressure curves, although the carbonate reservoirs can be classified, the relationship between porosity and permeability after classification is not ideal. On the basis of the flow units, the high-precision functional relationship between porosity and permeability after classification can be established. Therefore, the carbonate reservoirs can be quantitatively evaluated based on the classification of flow units. In the dolomite reservoirs, the average absolute error of calculated permeability decreases from 15.13 to 7.44 mD. Similarly, the average absolute error of calculated permeability of limestone reservoirs is reduced from 20.33 to 7.37 mD. Only by accurately characterizing pore structures and classifying reservoir types, reservoir parameters could be calculated accurately. Therefore, characterizing pore structures and classifying reservoir types are very important to accurate evaluation of complex carbonate reservoirs in the Middle East.

  4. Hydrologic characterization of Bushy Park Reservoir, South Carolina, 2013–15

    USGS Publications Warehouse

    Conrads, Paul; Petkewich, Matthew D.; Falls, W. Fred; Lanier, Timothy H.

    2017-06-14

    The Bushy Park Reservoir is a relatively shallow impoundment in a semi-tropical climate and is the principal water supply for the 400,000 people of the city of Charleston, South Carolina, and the surrounding areas including the Bushy Park Industrial Complex. Although there is an adequate supply of freshwater in the reservoir, taste-and-odor water-quality issues are a concern. The U.S. Geological Survey conducted an investigation in cooperation with the Charleston Water System to study the hydrology and hydrodynamics of the Bushy Park Reservoir to identify factors affecting water-quality conditions. Specifically, five areas for monitoring and (or) analysis were addressed: (1) hydrologic monitoring of the reservoir to establish a water budget, (2) flow monitoring in the tunnels to compute flow from Bushy Park Reservoir and at critical distribution junctions, (3) water-quality sampling, profiling, and continuous monitoring to identify the causes of taste-and-odor occurrence, (4) technical evaluation of appropriate hydrodynamic and water-quality simulation models for the reservoir, and (5) preliminary evaluation of alternative reservoir operations scenarios.This report describes the hydrodynamic and hydrologic data collected from 2013 to 2015 to support the application and calibration of a three-dimensional hydrodynamic model and the water-quality monitoring and analysis to gain insight into the principal causes of the Bushy Park Reservoir taste-and-odor episodes. The existing U.S. Geological Survey real-time network on the West Branch of the Cooper River was augmented with a tidal flow gage on Durham Canal Back River, and Foster Creek. The Charleston Water System intake structure was instrumented to collect water-level, water temperature (top and bottom probes), specific conductance (top and bottom probes), wind speed and direction, and photosynthetically active radiation data. In addition to the gages attached to fixed structures, four bottom-mounted velocity

  5. Feasibility Assessment of CO2 Sequestration and Enhanced Recovery in Gas Shale Reservoirs

    NASA Astrophysics Data System (ADS)

    Vermylen, J. P.; Hagin, P. N.; Zoback, M. D.

    2008-12-01

    CO2 sequestration and enhanced methane recovery may be feasible in unconventional, organic-rich, gas shale reservoirs in which the methane is stored as an adsorbed phase. Previous studies have shown that organic-rich, Appalachian Devonian shales adsorb approximately five times more carbon dioxide than methane at reservoir conditions. However, the enhanced recovery and sequestration concept has not yet been tested for gas shale reservoirs under realistic flow and production conditions. Using the lessons learned from previous studies on enhanced coalbed methane (ECBM) as a starting point, we are conducting laboratory experiments, reservoir modeling, and fluid flow simulations to test the feasibility of sequestration and enhanced recovery in gas shales. Our laboratory work investigates both adsorption and mechanical properties of shale samples to use as inputs for fluid flow simulation. Static and dynamic mechanical properties of shale samples are measured using a triaxial press under realistic reservoir conditions with varying gas saturations and compositions. Adsorption is simultaneously measured using standard, static, volumetric techniques. Permeability is measured using pulse decay methods calibrated to standard Darcy flow measurements. Fluid flow simulations are conducted using the reservoir simulator GEM that has successfully modeled enhanced recovery in coal. The results of the flow simulation are combined with the laboratory results to determine if enhanced recovery and CO2 sequestration is feasible in gas shale reservoirs.

  6. The application of ANN for zone identification in a complex reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, A.C.; Molnar, D.; Aminian, K.

    1995-12-31

    Reservoir characterization plays a critical role in appraising the economic success of reservoir management and development methods. Nearly all reservoirs show some degree of heterogeneity, which invariably impacts production. As a result, the production performance of a complex reservoir cannot be realistically predicted without accurate reservoir description. Characterization of a heterogeneous reservoir is a complex problem. The difficulty stems from the fact that sufficient data to accurately predict the distribution of the formation attributes are not usually available. Generally the geophysical logs are available from a considerable number of wells in the reservoir. Therefore, a methodology for reservoir description andmore » characterization utilizing only well logs data represents a significant technical as well as economic advantage. One of the key issues in the description and characterization of heterogeneous formations is the distribution of various zones and their properties. In this study, several artificial neural networks (ANN) were successfully designed and developed for zone identification in a heterogeneous formation from geophysical well logs. Granny Creek Field in West Virginia has been selected as the study area in this paper. This field has produced oil from Big Injun Formation since the early 1900`s. The water flooding operations were initiated in the 1970`s and are currently still in progress. Well log data on a substantial number of wells in this reservoir were available and were collected. Core analysis results were also available from a few wells. The log data from 3 wells along with the various zone definitions were utilized to train the networks for zone recognition. The data from 2 other wells with previously determined zones, based on the core and log data, were then utilized to verify the developed networks predictions. The results indicated that ANN can be a useful tool for accurately identifying the zones in complex reservoirs.« less

  7. Reservoir characterization and seal integrity of Jemir field in Niger Delta, Nigeria

    NASA Astrophysics Data System (ADS)

    Adagunodo, Theophilus Aanuoluwa; Sunmonu, Lukman Ayobami; Adabanija, Moruffdeen Adedapo

    2017-05-01

    Ignoring fault seal and depending solely on reservoir parameters and estimated hydrocarbon contacts can lead to extremely unequal division of reserves especially in oil fields dominated by structural traps where faults play an important role in trapping of hydrocarbons. These faults may be sealing or as conduit to fluid flow. In this study; three-dimensional seismic and well log data has been used to characterize the reservoirs and investigate the seal integrity of fault plane trending NW-SE and dip towards south in Jemir field, Niger-Delta for enhanced oil recovery. The petrophysical and volumetric analysis of the six reservoirs that were mapped as well as structural interpretation of the faults were done both qualitatively and quantitatively. In order to know the sealing potential of individual hydrocarbon bearing sand, horizon-fault intersection was done, volume of shale was determined, thickness of individual bed was estimated, and quality control involving throw analysis was done. Shale Gouge Ratio (SGR) and Hydrocarbon Column Height (HCH) (supportable and structure-supported) were also determined to assess the seal integrity of the faults in Jemir field. The petrophysical analysis indicated the porosity of traps on Jemir field ranged from 0.20 to 0.29 and the volumetric analyses showed that the Stock Tank Original Oil in Place varied between 5.5 and 173.4 Mbbl. The SGR ranged from leaking (<20%) to sealing (>60%) fault plane suggesting poor to moderate sealing. The supportable HCH of Jemir field ranged from 98.3 to 446.2 m while its Structure-supported HCH ranged from 12.1 to 101.7 m. The porosities of Jemir field are good enough for hydrocarbon production as exemplified by its oil reserve estimates. However, improper sealing of the fault plane might enhance hydrocarbon leakage.

  8. Heavy oil reservoirs recoverable by thermal technology

    NASA Astrophysics Data System (ADS)

    Kujawa, P.

    1981-02-01

    Reservoir, production, and project data for target reservoirs which contain heavy oil in the 8 to 25(0) API gravity range and are susceptible to recovery by in situ combustion and steam drive are presented. The reservoirs for steam recovery are less than 2500 feet deep to comply with state of the art technology. In cases where one reservoir would be a target for in situ combustion or steam drive, that reservoir is reported in both sections. Data were collected from three source types: hands-on, once removed, and twice removed. In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. A complete listing of operators and projects is included as well as a bibliography of source material.

  9. Quantum Bayesian perspective for intelligence reservoir characterization, monitoring and management

    NASA Astrophysics Data System (ADS)

    Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia; de Jesús Correa, María

    2017-10-01

    The paper starts with a brief review of the literature about uncertainty in geological, geophysical and petrophysical data. In particular, we present the viewpoints of experts in geophysics on the application of Bayesian inference and subjective probability. Then we present arguments that the use of classical probability theory (CP) does not match completely the structure of geophysical data. We emphasize that such data are characterized by contextuality and non-Kolmogorovness (the impossibility to use the CP model), incompleteness as well as incompatibility of some geophysical measurements. These characteristics of geophysical data are similar to the characteristics of quantum physical data. Notwithstanding all this, contextuality can be seen as a major deviation of quantum theory from classical physics. In particular, the contextual probability viewpoint is the essence of the Växjö interpretation of quantum mechanics. We propose to use quantum probability (QP) for decision-making during the characterization, modelling, exploring and management of the intelligent hydrocarbon reservoir. Quantum Bayesianism (QBism), one of the recently developed information interpretations of quantum theory, can be used as the interpretational basis for such QP decision-making in geology, geophysics and petroleum projects design and management. This article is part of the themed issue `Second quantum revolution: foundational questions'.

  10. Quantum Bayesian perspective for intelligence reservoir characterization, monitoring and management.

    PubMed

    Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia; de Jesús Correa, María

    2017-11-13

    The paper starts with a brief review of the literature about uncertainty in geological, geophysical and petrophysical data. In particular, we present the viewpoints of experts in geophysics on the application of Bayesian inference and subjective probability. Then we present arguments that the use of classical probability theory (CP) does not match completely the structure of geophysical data. We emphasize that such data are characterized by contextuality and non-Kolmogorovness (the impossibility to use the CP model), incompleteness as well as incompatibility of some geophysical measurements. These characteristics of geophysical data are similar to the characteristics of quantum physical data. Notwithstanding all this, contextuality can be seen as a major deviation of quantum theory from classical physics. In particular, the contextual probability viewpoint is the essence of the Växjö interpretation of quantum mechanics. We propose to use quantum probability (QP) for decision-making during the characterization, modelling, exploring and management of the intelligent hydrocarbon reservoir Quantum Bayesianism (QBism), one of the recently developed information interpretations of quantum theory, can be used as the interpretational basis for such QP decision-making in geology, geophysics and petroleum projects design and management.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).

  11. Sequence stratigraphic controls on reservoir characterization and architecture: case study of the Messinian Abu Madi incised-valley fill, Egypt

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Mohamed I.; Slatt, Roger M.

    2013-12-01

    Understanding sequence stratigraphy architecture in the incised-valley is a crucial step to understanding the effect of relative sea level changes on reservoir characterization and architecture. This paper presents a sequence stratigraphic framework of the incised-valley strata within the late Messinian Abu Madi Formation based on seismic and borehole data. Analysis of sand-body distribution reveals that fluvial channel sandstones in the Abu Madi Formation in the Baltim Fields, offshore Nile Delta, Egypt, are not randomly distributed but are predictable in their spatial and stratigraphic position. Elucidation of the distribution of sandstones in the Abu Madi incised-valley fill within a sequence stratigraphic framework allows a better understanding of their characterization and architecture during burial. Strata of the Abu Madi Formation are interpreted to comprise two sequences, which are the most complex stratigraphically; their deposits comprise a complex incised valley fill. The lower sequence (SQ1) consists of a thick incised valley-fill of a Lowstand Systems Tract (LST1)) overlain by a Transgressive Systems Tract (TST1) and Highstand Systems Tract (HST1). The upper sequence (SQ2) contains channel-fill and is interpreted as a LST2 which has a thin sandstone channel deposits. Above this, channel-fill sandstone and related strata with tidal influence delineates the base of TST2, which is overlain by a HST2. Gas reservoirs of the Abu Madi Formation (present-day depth ˜3552 m), the Baltim Fields, Egypt, consist of fluvial lowstand systems tract (LST) sandstones deposited in an incised valley. LST sandstones have a wide range of porosity (15 to 28%) and permeability (1 to 5080mD), which reflect both depositional facies and diagenetic controls. This work demonstrates the value of constraining and evaluating the impact of sequence stratigraphic distribution on reservoir characterization and architecture in incised-valley deposits, and thus has an important impact on

  12. Mathematical and field analysis of longitudinal reservoir infill

    NASA Astrophysics Data System (ADS)

    Ke, W. T.; Capart, H.

    2016-12-01

    In reservoirs, severe problems are caused by infilled sediment deposits. In long term, the sediment accumulation reduces the capacity of reservoir storage and flood control benefits. In the short term, the sediment deposits influence the intakes of water-supply and hydroelectricity generation. For the management of reservoir, it is important to understand the deposition process and then to predict the sedimentation in reservoir. To investigate the behaviors of sediment deposits, we propose a one-dimensional simplified theory derived by the Exner equation to predict the longitudinal sedimentation distribution in idealized reservoirs. The theory models the reservoir infill geomorphic actions for three scenarios: delta progradation, near-dam bottom deposition, and final infill. These yield three kinds of self-similar analytical solutions for the reservoir bed profiles, under different boundary conditions. Three analytical solutions are composed by error function, complementary error function, and imaginary error function, respectively. The theory is also computed by finite volume method to test the analytical solutions. The theoretical and numerical predictions are in good agreement with one-dimensional small-scale laboratory experiment. As the theory is simple to apply with analytical solutions and numerical computation, we propose some applications to simulate the long-profile evolution of field reservoirs and focus on the infill sediment deposit volume resulting the uplift of near-dam bottom elevation. These field reservoirs introduced here are Wushe Reservoir, Tsengwen Reservoir, Mudan Reservoir in Taiwan, Lago Dos Bocas in Puerto Rico, and Sakuma Dam in Japan.

  13. Characterization of floodflows along the Arkansas River without regulation by Pueblo Reservoir, Portland to John Martin Reservoir, Southeastern Colorado

    USGS Publications Warehouse

    Little, John R.; Bauer, Daniel P.

    1981-01-01

    The need for a method for estimating flow characteristics of flood hydrographs between Portland, Colo., and John Martin Reservoir has been promoted with the construction of the Pueble Reservoir. To meet this need a procedure was developed for predicting floodflow peaks, traveltimes, and volumes at any point along the Arkansas River between Portland and John Martin Reservoir without considering the existing Pueble Reservoir detention effects. A streamflow-routing model was calibrated initially and then typical flood simulations were made for the 164.8-mile study reach. Simulations were completed for varying magnitudes of floods and antecedent streamflow conditions. Multiple regression techniques were then used with simulation results as input to provide predictive relationships for food peak, volume, and traveltime. Management practices that may be used to benefit water users in the area include providing methods for the distribution and allotment of the flood waters upstream of Portland to different downstream water users according to Colorado water law and also under the Arkansas River Compact. (USGS)

  14. Reservoir Models for Gas Hydrate Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Boswell, R.

    2016-12-01

    Scientific and industrial drilling programs have now providing detailed information on gas hydrate systems that will increasingly be the subject of field experiments. The need to carefully plan these programs requires reliable prediction of reservoir response to hydrate dissociation. Currently, a major emphasis in gas hydrate modeling is the integration of thermodynamic/hydrologic phenomena with geomechanical response for both reservoir and bounding strata. However, also critical to the ultimate success of these efforts is the appropriate development of input geologic models, including several emerging issues, including (1) reservoir heterogeneity, (2) understanding of the initial petrophysical characteristics of the system (reservoirs and seals), the dynamic evolution of those characteristics during active dissociation, and the interdependency of petrophysical parameters and (3) the nature of reservoir boundaries. Heterogeneity is ubiquitous aspect of every natural reservoir, and appropriate characterization is vital. However, heterogeneity is not random. Vertical variation can be evaluated with core and well log data; however, core data often are challenged by incomplete recovery. Well logs also provide interpretation challenges, particularly where reservoirs are thinly-bedded due to limitation in vertical resolution. This imprecision will extend to any petrophysical measurements that are derived from evaluation of log data. Extrapolation of log data laterally is also complex, and should be supported by geologic mapping. Key petrophysical parameters include porosity, permeability and it many aspects, and water saturation. Field data collected to date suggest that the degree of hydrate saturation is strongly controlled by/dependant upon reservoir quality and that the ratio of free to bound water in the remaining pore space is likely also controlled by reservoir quality. Further, those parameters will also evolve during dissociation, and not necessary in a simple

  15. Characterization and Quantification of the Pore Structures of the Shale Oil Reservoir Formations in Multiscale

    NASA Astrophysics Data System (ADS)

    Liu, K.; Ostadhassan, M.

    2016-12-01

    Due to the fast development of hydraulic fracturing and horizontal drilling, shale formations now are one important resource of energy in North America. Characterizing the pore structure of these shale formations is of critical importance in understanding the original oil/gas in place and also the flow properties of the rock matrix. Pore with different properties such as pore size and pore shape can impact the physical, mechanical and chemical properties including strength, elastic modulus, permeability and conductivity. Nowadays, image analysis has been a robust method to quantify the pore information from the porous medium.SEM has been one of the most useful tools to study the pore microstructures due to its high depth of focus which can provide detailed topographical information about the surface. The suitable difference between solid matrix and pores due to the different gray level pixels can be used to study the pore structures.In this paper, we characterized and quantified the pore structures of rock samples from Middle Bakken Formation which is a typical unconventional reservoir in North America. High resolution SEM images of five samples we chose based on the gamma logs were derived after sample preparation. After determining the threshold of the images, we extracted the pore spaces. Then we analyzed the pore structures properties such as pore size distributions and pore shape distributions of the five samples and compared based on their mineral compositions. After that, we analyzed their heterogeneity and isotropy properties which have been identified as an important factor affecting reservoir productivity. Finally, we studied the impact of scale effect on the pore structures characterization.

  16. Characterization of Orbital Debris via Hyper-Velocity Laboratory-Based Tests

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather; Liou, J.-C.; Anz-Meador, Phillip; Sorge, Marlon; Opiela, John; Fitz-Coy, Norman; Huynh, Tom; Krisko, Paula

    2017-01-01

    Existing DOD and NASA satellite breakup models are based on a key laboratory test, Satellite Orbital debris Characterization Impact Test (SOCIT), which has supported many applications and matched on-orbit events involving older satellite designs reasonably well over the years. In order to update and improve these models, the NASA Orbital Debris Program Office, in collaboration with the Air Force Space and Missile Systems Center, The Aerospace Corporation, and the University of Florida, replicated a hypervelocity impact using a mock-up satellite, DebriSat, in controlled laboratory conditions. DebriSat is representative of present-day LEO satellites, built with modern spacecraft materials and construction techniques. Fragments down to 2 mm in size will be characterized by their physical and derived properties. A subset of fragments will be further analyzed in laboratory radar and optical facilities to update the existing radar-based NASA Size Estimation Model (SEM) and develop a comparable optical-based SEM. A historical overview of the project, status of the characterization process, and plans for integrating the data into various models will be discussed herein.

  17. Characterization of Orbital Debris via Hyper-Velocity Laboratory-Based Tests

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather; Liou, J.-C.; Krisko, Paula; Opiela, John; Fitz-Coy, Norman; Sorge, Marlon; Huynh, Tom

    2017-01-01

    Existing DoD and NASA satellite breakup models are based on a key laboratory test, Satellite Orbital debris Characterization Impact Test (SOCIT), which has supported many applications and matched on-orbit events involving older satellite designs reasonably well over the years. In order to update and improve these models, the NASA Orbital Debris Program Office, in collaboration with the Air Force Space and Missile Systems Center, The Aerospace Corporation, and the University of Florida, replicated a hypervelocity impact using a mock-up satellite, DebriSat, in controlled laboratory conditions. DebriSat is representative of present-day LEO satellites, built with modern spacecraft materials and construction techniques. Fragments down to 2 mm in size will be characterized by their physical and derived properties. A subset of fragments will be further analyzed in laboratory radar and optical facilities to update the existing radar-based NASA Size Estimation Model (SEM) and develop a comparable optical-based SEM. A historical overview of the project, status of the characterization process, and plans for integrating the data into various models will be discussed herein.

  18. Background Radioactivity in River and Reservoir Sediments near Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.G.McLin; D.W. Lyons

    2002-05-05

    As part of its continuing Environmental Surveillance Program, regional river and lake-bottom sediments have been collected annually by Los Alamos National Laboratory (the Laboratory) since 1974 and 1979, respectively. These background samples are collected from three drainage basins at ten different river stations and five reservoirs located throughout northern New Mexico and southern Colorado. Radiochemical analyses for these sediments include tritium, strontium-90, cesium-137, total uranium, plutonium-238, plutonium-239,-240, americium-241, gross alpha, gross beta, and gross gamma radioactivity. Detection-limit radioactivity originates as worldwide fallout from aboveground nuclear weapons testing and satellite reentry into Earth's atmosphere. Spatial and temporal variations in individual analytemore » levels originate from atmospheric point-source introductions and natural rate differences in airborne deposition and soil erosion. Background radioactivity values on sediments reflect this variability, and grouped river and reservoir sediment samples show a range of statistical distributions that appear to be analyte dependent. Traditionally, both river and reservoir analyte data were blended together to establish background levels. In this report, however, we group background sediment data according to two criteria. These include sediment source (either river or reservoir sediments) and station location relative to the Laboratory (either upstream or downstream). These grouped data are statistically evaluated through 1997, and background radioactivity values are established for individual analytes in upstream river and reservoir sediments. This information may be used to establish the existence and areal extent of trace-level environmental contamination resulting from historical Laboratory research activities since the early 1940s.« less

  19. A Statistical Graphical Model of the California Reservoir System

    NASA Astrophysics Data System (ADS)

    Taeb, A.; Reager, J. T.; Turmon, M.; Chandrasekaran, V.

    2017-11-01

    The recent California drought has highlighted the potential vulnerability of the state's water management infrastructure to multiyear dry intervals. Due to the high complexity of the network, dynamic storage changes in California reservoirs on a state-wide scale have previously been difficult to model using either traditional statistical or physical approaches. Indeed, although there is a significant line of research on exploring models for single (or a small number of) reservoirs, these approaches are not amenable to a system-wide modeling of the California reservoir network due to the spatial and hydrological heterogeneities of the system. In this work, we develop a state-wide statistical graphical model to characterize the dependencies among a collection of 55 major California reservoirs across the state; this model is defined with respect to a graph in which the nodes index reservoirs and the edges specify the relationships or dependencies between reservoirs. We obtain and validate this model in a data-driven manner based on reservoir volumes over the period 2003-2016. A key feature of our framework is a quantification of the effects of external phenomena that influence the entire reservoir network. We further characterize the degree to which physical factors (e.g., state-wide Palmer Drought Severity Index (PDSI), average temperature, snow pack) and economic factors (e.g., consumer price index, number of agricultural workers) explain these external influences. As a consequence of this analysis, we obtain a system-wide health diagnosis of the reservoir network as a function of PDSI.

  20. Reservoir characterization of the Smackover Formation in southwest Alabama. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.

    1993-02-01

    The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- andmore » improved-recovery methods from the Smackover of Alabama.« less

  1. Application of Fractal Geometry in Evaluation of Effective Stimulated Reservoir Volume in Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Sheng, Guanglong; Su, Yuliang; Wang, Wendong; Javadpour, Farzam; Tang, Meirong

    According to hydraulic-fracturing practices conducted in shale reservoirs, effective stimulated reservoir volume (ESRV) significantly affects the production of hydraulic fractured well. Therefore, estimating ESRV is an important prerequisite for confirming the success of hydraulic fracturing and predicting the production of hydraulic fracturing wells in shale reservoirs. However, ESRV calculation remains a longstanding challenge in hydraulic-fracturing operation. In considering fractal characteristics of the fracture network in stimulated reservoir volume (SRV), this paper introduces a fractal random-fracture-network algorithm for converting the microseismic data into fractal geometry. Five key parameters, including bifurcation direction, generating length (d), deviation angle (α), iteration times (N) and generating rules, are proposed to quantitatively characterize fracture geometry. Furthermore, we introduce an orthogonal-fractures coupled dual-porosity-media representation elementary volume (REV) flow model to predict the volumetric flux of gas in shale reservoirs. On the basis of the migration of adsorbed gas in porous kerogen of REV with different fracture spaces, an ESRV criterion for shale reservoirs with SRV is proposed. Eventually, combining the ESRV criterion and fractal characteristic of a fracture network, we propose a new approach for evaluating ESRV in shale reservoirs. The approach has been used in the Eagle Ford shale gas reservoir, and results show that the fracture space has a measurable influence on migration of adsorbed gas. The fracture network can contribute to enhancement of the absorbed gas recovery ratio when the fracture space is less than 0.2 m. ESRV is evaluated in this paper, and results indicate that the ESRV accounts for 27.87% of the total SRV in shale gas reservoirs. This work is important and timely for evaluating fracturing effect and predicting production of hydraulic fracturing wells in shale reservoirs.

  2. Biogeochemical characterization of the Cointzio reservoir (Morelia, Mexico) and identification of a watershed-dependent cycling of nutrients

    NASA Astrophysics Data System (ADS)

    Némery, J.; Alvarado, R.; Gratiot, N.; Duvert, C.; Mahé, F.; Duwig, C.; Bonnet, M.; Prat, C.; Esteves, M.

    2009-12-01

    The Cointzio reservoir (capacity 70 Mm3) is an essential component of the drinking water supply (20 %) of Morelia city (1 M inhabitants, Michoacán, Mexico). The watershed is 627 km2 and mainly forested (45 %) and cultivated (43 %) with recent increase of avocados plantations. The mean population density is 65 inh./km2 and there are no waste water treatment plants in the villages leading locally to high levels of organic and nutritive pollution. Soils are mostly volcanic and recent deforestations have led to important processes of erosion especially during the wet season (from June to October). As a result the reservoir presents a high turbidity level (Secchi < 20 cm) and has lost 20 % of its storage capacity through siltation since its building in 1940. The high turbidity renders the water potabilization processes difficult. Moreover, eutrophication and development of undesirable algae such as Cyanobacteria may even increase the water treatment cost. A weekly composite sampling was realized in 2009 at the reservoir entry and exit in order to determine nutrients mass balance. At the reservoir entrance, discharges were measured continuously. At the exit, discharges were obtained from the Comición Nacional Del Agua (CNA). The water residence time in the reservoir is lower than one year. Nutrients fluxes entering and exiting the reservoir were calculated as the product of water discharges and weekly concentrations of nutrients. Within the reservoir, the vertical distributions of temperature, oxygen, turbidity, pH (with a Hydrolab probe), nutrients (PO43-, NH4+, NO3-), Dissolved Organic Carbon, chlorophyll a (laboratory analysis with a Hach Lange spectrophotometer), phytoplankton and zooplankton (variety and abundance) were measured every month to determine its seasonal dynamics. Samples of deposited sediments were also taken to assess phosphorus (P) stock. Nutrient inputs revealed to be strongly conditioned by the watershed hydrology. During low flow period (November

  3. Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs.

    PubMed

    Orphan, V J; Taylor, L T; Hafenbradl, D; Delong, E F

    2000-02-01

    Recent investigations of oil reservoirs in a variety of locales have indicated that these habitats may harbor active thermophilic prokaryotic assemblages. In this study, we used both molecular and culture-based methods to characterize prokaryotic consortia associated with high-temperature, sulfur-rich oil reservoirs in California. Enrichment cultures designed for anaerobic thermophiles, both autotrophic and heterotrophic, were successful at temperatures ranging from 60 to 90 degrees C. Heterotrophic enrichments from all sites yielded sheathed rods (Thermotogales), pleomorphic rods resembling Thermoanaerobacter, and Thermococcus-like isolates. The predominant autotrophic microorganisms recovered from inorganic enrichments using H(2), acetate, and CO(2) as energy and carbon sources were methanogens, including isolates closely related to Methanobacterium, Methanococcus, and Methanoculleus species. Two 16S rRNA gene (rDNA) libraries were generated from total community DNA collected from production wellheads, using either archaeal or universal oligonucleotide primer sets. Sequence analysis of the universal library indicated that a large percentage of clones were highly similar to known bacterial and archaeal isolates recovered from similar habitats. Represented genera in rDNA clone libraries included Thermoanaerobacter, Thermococcus, Desulfothiovibrio, Aminobacterium, Acidaminococcus, Pseudomonas, Halomonas, Acinetobacter, Sphingomonas, Methylobacterium, and Desulfomicrobium. The archaeal library was dominated by methanogen-like rDNAs, with a lower percentage of clones belonging to the Thermococcales. Our results strongly support the hypothesis that sulfur-utilizing and methane-producing thermophilic microorganisms have a widespread distribution in oil reservoirs and the potential to actively participate in the biogeochemical transformation of carbon, hydrogen, and sulfur in situ.

  4. Silurian "Clinton" Sandstone Reservoir Characterization for Evaluation of CO2-EOR Potential in the East Canton Oil Field, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronald Riley; John Wicks; Christopher Perry

    The purpose of this study was to evaluate the efficacy of using CO2-enhanced oil recovery (EOR) in the East Canton oil field (ECOF). Discovered in 1947, the ECOF in northeastern Ohio has produced approximately 95 million barrels (MMbbl) of oil from the Silurian 'Clinton' sandstone. The original oil-in-place (OOIP) for this field was approximately 1.5 billion bbl and this study estimates by modeling known reservoir parameters, that between 76 and 279 MMbbl of additional oil could be produced through secondary recovery in this field, depending on the fluid and formation response to CO2 injection. A CO2 cyclic test ('Huff-n-Puff') wasmore » conducted on a well in Stark County to test the injectivity in a 'Clinton'-producing oil well in the ECOF and estimate the dispersion or potential breakthrough of the CO2 to surrounding wells. Eighty-one tons of CO2 (1.39 MMCF) were injected over a 20-hour period, after which the well was shut in for a 32-day 'soak' period before production was resumed. Results demonstrated injection rates of 1.67 MMCF of gas per day, which was much higher than anticipated and no CO2 was detected in gas samples taken from eight immediately offsetting observation wells. All data collected during this test was analyzed, interpreted, and incorporated into the reservoir characterization study and used to develop the geologic model. The geologic model was used as input into a reservoir simulation performed by Fekete Associates, Inc., to estimate the behavior of reservoir fluids when large quantities of CO2 are injected into the 'Clinton' sandstone. Results strongly suggest that the majority of the injected CO2 entered the matrix porosity of the reservoir pay zones, where it diffused into the oil. Evidence includes: (A) the volume of injected CO2 greatly exceeded the estimated capacity of the hydraulic fracture and natural fractures; (B) there was a gradual injection and pressure rate build-up during the test; (C) there was a subsequent, gradual

  5. CALIBRATION OF SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayne D. Pennington; Horacio Acevedo; Aaron Green

    2002-10-01

    The project, ''Calibration of Seismic Attributes for Reservoir Calibration,'' is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, including several that are in final stages of preparation ormore » printing; one of these is a chapter on ''Reservoir Geophysics'' for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along ''phantom'' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we

  6. Structural and petrophysical characterization: from outcrop rock analogue to reservoir model of deep geothermal prospect in Eastern France

    NASA Astrophysics Data System (ADS)

    Bertrand, Lionel; Géraud, Yves; Diraison, Marc; Damy, Pierre-Clément

    2017-04-01

    The Scientific Interest Group (GIS) GEODENERGIES with the REFLET project aims to develop a geological and reservoir model for fault zones that are the main targets for deep geothermal prospects in the West European Rift system. In this project, several areas are studied with an integrated methodology combining field studies, boreholes and geophysical data acquisition and 3D modelling. In this study, we present the results of reservoir rock analogues characterization of one of these prospects in the Valence Graben (Eastern France). The approach used is a structural and petrophysical characterization of the rocks outcropping at the shoulders of the rift in order to model the buried targeted fault zone. The reservoir rocks are composed of fractured granites, gneiss and schists of the Hercynian basement of the graben. The matrix porosity, permeability, P-waves velocities and thermal conductivities have been characterized on hand samples coming from fault zones at the outcrop. Furthermore, fault organization has been mapped with the aim to identify the characteristic fault orientation, spacing and width. The fractures statistics like the orientation, density, and length have been identified in the damaged zones and unfaulted blocks regarding the regional fault pattern. All theses data have been included in a reservoir model with a double porosity model. The field study shows that the fault pattern in the outcrop area can be classified in different fault orders, with first order scale, larger faults distribution controls the first order structural and lithological organization. Between theses faults, the first order blocks are divided in second and third order faults, smaller structures, with characteristic spacing and width. Third order fault zones in granitic rocks show a significant porosity development in the fault cores until 25 % in the most locally altered material, as the damaged zones develop mostly fractures permeabilities. In the gneiss and schists units, the

  7. QUANTITATIVE METHODS FOR RESERVOIR CHARACTERIZATION AND IMPROVED RECOVERY: APPLICATION TO HEAVY OIL SANDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James W. Castle; Fred J. Molz; Ronald W. Falta

    2002-10-30

    Improved prediction of interwell reservoir heterogeneity has the potential to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involves application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation, particularly in heavy oil sands. The investigation was performed in collaboration with Chevron Production Company U.S.A. as an industrial partner, and incorporates data from the Temblor Formation in Chevron's West Coalinga Field. Observations of lateral variabilitymore » and vertical sequences observed in Temblor Formation outcrops has led to a better understanding of reservoir geology in West Coalinga Field. Based on the characteristics of stratigraphic bounding surfaces in the outcrops, these surfaces were identified in the subsurface using cores and logs. The bounding surfaces were mapped and then used as reference horizons in the reservoir modeling. Facies groups and facies tracts were recognized from outcrops and cores of the Temblor Formation and were applied to defining the stratigraphic framework and facies architecture for building 3D geological models. The following facies tracts were recognized: incised valley, estuarine, tide- to wave-dominated shoreline, diatomite, and subtidal. A new minipermeameter probe, which has important advantages over previous methods of measuring outcrop permeability, was developed during this project. The device, which measures permeability at the distal end of a small drillhole, avoids surface weathering effects and provides a superior seal compared with previous methods for measuring outcrop permeability. The new probe was used successfully for obtaining a high-quality permeability data set from an outcrop in southern Utah. Results

  8. Volume sharing of reservoir water

    NASA Astrophysics Data System (ADS)

    Dudley, Norman J.

    1988-05-01

    Previous models optimize short-, intermediate-, and long-run irrigation decision making in a simplified river valley system characterized by highly variable water supplies and demands for a single decision maker controlling both reservoir releases and farm water use. A major problem in relaxing the assumption of one decision maker is communicating the stochastic nature of supplies and demands between reservoir and farm managers. In this paper, an optimizing model is used to develop release rules for reservoir management when all users share equally in releases, and computer simulation is used to generate an historical time sequence of announced releases. These announced releases become a state variable in a farm management model which optimizes farm area-to-irrigate decisions through time. Such modeling envisages the use of growing area climatic data by the reservoir authority to gauge water demand and the transfer of water supply data from reservoir to farm managers via computer data files. Alternative model forms, including allocating water on a priority basis, are discussed briefly. Results show lower mean aggregate farm income and lower variance of aggregate farm income than in the single decision-maker case. This short-run economic efficiency loss coupled with likely long-run economic efficiency losses due to the attenuated nature of property rights indicates the need for quite different ways of integrating reservoir and farm management.

  9. CO2 geosequestration at the laboratory scale: Combined geophysical and hydromechanical assessment of weakly-cemented shallow Sleipner-like reservoirs

    NASA Astrophysics Data System (ADS)

    Falcon-Suarez, I.; North, L. J.; Best, A. I.

    2017-12-01

    To date, the most promising mitigation strategy for reducing global carbon emissions is Carbon Capture and Storage (CCS). The storage technology (i.e., CO2 geosequestration, CGS) consists of injecting CO2 into deep geological formations, specifically selected for such massive-scale storage. To guarantee the mechanical stability of the reservoir during and after injection, it is crucial to improve existing monitoring techniques for controlling CGS activities. We developed a comprehensive experimental program to investigate the integrity of the Sleipner CO2 storage site in the North Sea - the first commercial CCS project in history where 1 Mtn/y of CO2 has been injected since 1996. We assessed hydro-mechanical effects and the related geophysical signatures of three synthetic sandstones and samples from the Utsira Sand formation (main reservoir at Sleipner), at realistic pressure-temperature (PT) conditions and fluid compositions. Our experimental approach consists of brine-CO2 flow-through tests simulating variable inflation/depletion scenarios, performed in the CGS-rig (Fig. 1; Falcon-Suarez et al., 2017) at the National Oceanography Centre (NOC) in Southampton. The rig is designed for simultaneous monitoring of ultrasonic P- and S-wave velocities and attenuations, electrical resistivity, axial and radial strains, pore pressure and flow, during the co-injection of up to two fluids under controlled PT conditions. Our results show velocity-resistivity and seismic-geomechanical relations of practical importance for the distinction between pore pressure and pore fluid distribution during CGS activities. By combining geophysical and thermo-hydro-mechano-chemical coupled information, we can provide laboratory datasets that complement in situ seismic, geomechanical and electrical survey information, useful for the CO2 plume monitoring in Sleipner site and other shallow weakly-cemented sand CCS reservoirs. Falcon-Suarez, I., Marín-Moreno, H., Browning, F., Lichtschlag, A

  10. Subcutaneous implants for long-acting drug therapy in laboratory animals may generate unintended drug reservoirs.

    PubMed

    Guarnieri, Michael; Tyler, Betty M; Detolla, Louis; Zhao, Ming; Kobrin, Barry

    2014-01-01

    Long-acting therapy in laboratory animals offers advantages over the current practice of 2-3 daily drug injections. Yet little is known about the disintegration of biodegradable drug implants in rodents. Compare bioavailability of buprenorphine with the biodegradation of lipid-encapsulated subcutaneous drug pellets. Pharmacokinetic and histopathology studies were conducted in BALB/c female mice implanted with cholesterol-buprenorphine drug pellets. Drug levels are below the level of detection (0.5 ng/mL plasma) within 4-5 days of implant. However, necroscopy revealed that interstitial tissues begin to seal implants within a week. Visual inspection of the implant site revealed no evidence of inflammation or edema associated with the cholesterol-drug residue. Chemical analyses demonstrated that the residues contained 10-13% of the initial opiate dose for at least two weeks post implant. The results demonstrate that biodegradable scaffolds can become sequestered in the subcutaneous space. Drug implants can retain significant and unintended reservoirs of drugs.

  11. Subcutaneous implants for long-acting drug therapy in laboratory animals may generate unintended drug reservoirs

    PubMed Central

    Guarnieri, Michael; Tyler, Betty M.; DeTolla, Louis; Zhao, Ming; Kobrin, Barry

    2014-01-01

    Background: Long-acting therapy in laboratory animals offers advantages over the current practice of 2-3 daily drug injections. Yet little is known about the disintegration of biodegradable drug implants in rodents. Objective: Compare bioavailability of buprenorphine with the biodegradation of lipid-encapsulated subcutaneous drug pellets. Methods: Pharmacokinetic and histopathology studies were conducted in BALB/c female mice implanted with cholesterol-buprenorphine drug pellets. Results: Drug levels are below the level of detection (0.5 ng/mL plasma) within 4-5 days of implant. However, necroscopy revealed that interstitial tissues begin to seal implants within a week. Visual inspection of the implant site revealed no evidence of inflammation or edema associated with the cholesterol-drug residue. Chemical analyses demonstrated that the residues contained 10-13% of the initial opiate dose for at least two weeks post implant. Discussion: The results demonstrate that biodegradable scaffolds can become sequestered in the subcutaneous space. Conclusion: Drug implants can retain significant and unintended reservoirs of drugs. PMID:24459402

  12. Deep microbial life in the Altmark natural gas reservoir: baseline characterization prior CO2 injection

    NASA Astrophysics Data System (ADS)

    Morozova, Daria; Shaheed, Mina; Vieth, Andrea; Krüger, Martin; Kock, Dagmar; Würdemann, Hilke

    2010-05-01

    Within the framework of the CLEAN project (CO2 Largescale Enhanced gas recovery in the Altmark Natural gas field) technical basics with special emphasis on process monitoring are explored by injecting CO2 into a gas reservoir. Our study focuses on the investigation of the in-situ microbial community of the Rotliegend natural gas reservoir in the Altmark, located south of the city Salzwedel, Germany. In order to characterize the microbial life in the extreme habitat we aim to localize and identify microbes including their metabolism influencing the creation and dissolution of minerals. The ability of microorganisms to speed up dissolution and formation of minerals might result in changes of the local permeability and the long-term safety of CO2 storage. However, geology, structure and chemistry of the reservoir rock and the cap rock as well as interaction with saline formation water and natural gases and the injected CO2 affect the microbial community composition and activity. The reservoir located at the depth of about 3500m, is characterised by high salinity fluid and temperatures up to 127° C. It represents an extreme environment for microbial life and therefore the main focus is on hyperthermophilic, halophilic anaerobic microorganisms. In consequence of the injection of large amounts of CO2 in the course of a commercial EGR (Enhanced Gas Recovery) the environmental conditions (e.g. pH, temperature, pressure and solubility of minerals) for the autochthonous microorganisms will change. Genetic profiling of amplified 16S rRNA genes are applied for detecting structural changes in the community by using PCR- SSCP (PCR-Single-Strand-Conformation Polymorphism) and DGGE (Denaturing Gradient Gel Electrophoresis). First results of the baseline survey indicate the presence of microorganisms similar to representatives from other saline, hot, anoxic, deep environments. However, due to the hypersaline and hyperthermophilic reservoir conditions, cell numbers are low, so that

  13. Hydraulic characterization of aquifers, reservoir rocks, and soils: A history of ideas

    NASA Astrophysics Data System (ADS)

    Narasimhan, T. N.

    1998-01-01

    Estimation of the hydraulic properties of aquifers, petroleum reservoir rocks, and soil systems is a fundamental task in many branches of Earth sciences and engineering. The transient diffusion equation proposed by Fourier early in the 19th century for heat conduction in solids constitutes the basis for inverting hydraulic test data collected in the field to estimate the two basic parameters of interest, namely, hydraulic conductivity and hydraulic capacitance. Combining developments in fluid mechanics, heat conduction, and potential theory, the civil engineers of the 19th century, such as Darcy, Dupuit, and Forchheimer, solved many useful problems of steady state seepage of water. Interest soon shifted towards the understanding of the transient flow process. The turn of the century saw Buckingham establish the role of capillary potential in governing moisture movement in partially water-saturated soils. The 1920s saw remarkable developments in several branches of the Earth sciences; Terzaghi's analysis of deformation of watersaturated earth materials, the invention of the tensiometer by Willard Gardner, Meinzer's work on the compressibility of elastic aquifers, and the study of the mechanics of oil and gas reservoirs by Muskat and others. In the 1930s these led to a systematic analysis of pressure transients from aquifers and petroleum reservoirs through the work of Theis and Hurst. The response of a subsurface flow system to a hydraulic perturbation is governed by its geometric attributes as well as its material properties. In inverting field data to estimate hydraulic parameters, one makes the fundamental assumption that the flow geometry is known a priori. This approach has generally served us well in matters relating to resource development primarily concerned with forecasting fluid pressure declines. Over the past two decades, Earth scientists have become increasingly concerned with environmental contamination problems. The resolution of these problems

  14. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    NASA Astrophysics Data System (ADS)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Swiler, Laura

    2017-12-01

    In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated - reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.

  15. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    DOE PAGES

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; ...

    2017-10-17

    In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less

  16. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan

    In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less

  17. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan

    In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic amplitude versus angle (AVA) and controlled source electromagnetic (CSEM) data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo (MCMC) sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis (DREAM) and Adaptive Metropolis (AM) samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and CSEM data. The multi-chain MCMC is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration,more » the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic AVA and CSEM joint inversion provides better estimation of reservoir saturations than the seismic AVA-only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated – reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less

  18. Characterizing the deformation of reservoirs using interferometry, gravity, and seismic analyses

    NASA Astrophysics Data System (ADS)

    Schiek, Cara Gina

    In this dissertation, I characterize how reservoirs deform using surface and subsurface techniques. The surface technique I employ is radar interferometry, also known as InSAR (Interferometric Synthetic Aperture Radar). The subsurface analyses I explore include gravity modeling and seismic techniques consisting of determining earthquake locations from a small-temporary seismic network of six seismometers. These techniques were used in two different projects to determine how reservoirs deform in the subsurface and how this deformation relates to its remotely sensed surface deformation. The first project uses InSAR to determine land subsidence in the Mimbres basin near Deming, NM. The land subsidence measurements are visually compared to gravity models in order to determine the influence of near surface faults on the subsidence and the physical properties of the aquifers in these basins. Elastic storage coefficients were calculated for the Mimbres basin to aid in determining the stress regime of the aquifers. In the Mimbres basin, I determine that it is experiencing elastic deformation at differing compaction rates. The west side of the Mimbres basin is deforming faster, 17 mm/yr, while the east side of the basin is compacting at a rate of 11 mm/yr. The second project focuses on San Miguel volcano, El Salvador. Here, I integrate InSAR with earthquake locations using surface deformation forward modeling to investigate the explosive volcanism in this region. This investigation determined the areas around the volcano that are undergoing deformation, and that could lead to volcanic hazards such as slope failure from a fractured volcano interior. I use the earthquake epicenters with field data to define the subsurface geometry of the deformation source, which I forward model to produce synthetic interferograms. Residuals between the synthetic and observed interferograms demonstrate that the observed deformation is a direct result of the seismic activity along the San

  19. Characterization and modeling of turbidity density plume induced into stratified reservoir by flood runoffs.

    PubMed

    Chung, S W; Lee, H S

    2009-01-01

    In monsoon climate area, turbidity flows typically induced by flood runoffs cause numerous environmental impacts such as impairment of fish habitat and river attraction, and degradation of water supply efficiency. This study was aimed to characterize the physical dynamics of turbidity plume induced into a stratified reservoir using field monitoring and numerical simulations, and to assess the effect of different withdrawal scenarios on the control of downstream water quality. Three different turbidity models (RUN1, RUN2, RUN3) were developed based on a two-dimensional laterally averaged hydrodynamic and transport model, and validated against field data. RUN1 assumed constant settling velocity of suspended sediment, while RUN2 estimated the settling velocity as a function of particle size, density, and water temperature to consider vertical stratification. RUN3 included a lumped first-order turbidity attenuation rate taking into account the effects of particles aggregation and degradable organic particles. RUN3 showed best performance in replicating the observed variations of in-reservoir and release turbidity. Numerical experiments implemented to assess the effectiveness of different withdrawal depths showed that the alterations of withdrawal depth can modify the pathway and flow regimes of the turbidity plume, but its effect on the control of release water quality could be trivial.

  20. Identification and evaluation of fluvial-dominated deltaic (Class I oil) reservoirs in Oklahoma. Quarterly technical progress report, July 1--September 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankin, C.J.; Banken, M.K.

    The Oklahoma Geological Survey (OGS), the Geo Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaged in a program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection and evaluation of information on all of Oklahoma`s FDD reservoirs and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. This data collection and evaluation effort will be the foundation for an aggressive, multifaceted technology transfer program that is designed to support all ofmore » Oklahoma`s oil industry, with particular emphasis on smaller companies and independent operators in their attempts to maximize the economic producibility of FDD reservoirs. Specifically, this project will identify all FDD oil reservoirs in the State; group those reservoirs into plays that have similar depositional origins; collect, organize and analyze all available data conduct characterization and simulation studies on selected reservoirs in each play; and implement a technology transfer program targeted to the operators of FDD reservoirs. Activities were focused primarily on technology transfer elements of the project. This included regional play analysis and mapping, geologic field studies, and reservoir modeling for secondary water flood simulations as used in publication folios and workshops. The computer laboratory was fully operational for operator use. Computer systems design and database development activities were ongoing.« less

  1. Sedimentological Characterization of a Deepwater Methane Hydrate Reservoir in Green Canyon 955, Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Meazell, K.; Flemings, P. B.

    2017-12-01

    Grain size is a controlling factor of hydrate saturation within a Pleistocene channel-levee system investigated by the UT-GOM2-1 expedition within the deepwater northern Gulf of Mexico. Laser diffraction and settling experiments conducted on sediments from 413-440 meters below the seafloor reveal the presence of two interbedded lithologic units, identified as a silty sand and a clayey silt, according Shepard's classification system. The sand-rich lithofacies has low density and high p-wave velocity, suggesting a high degree of hydrate saturation. Conversely, the clay and silt dominated lithofacies is characterized by a higher density and low p-wave velocity, suggesting low hydrate saturation. The sand-rich lithofacies is well-sorted and displays abundant ripple lamination, indicative of deposition within a high-energy environment. The clayey-silt is poorly-sorted and lacks sedimentary structures. The two lithofacies are interbedded throughout the reservoir unit; however, the relative abundance of the sand-rich lithofacies increases with depth, suggesting a potential decrease in flow energy or sediment flux over time, resulting in the most favorable reservoir properties near the base of the unit.

  2. Characterizing High School Students' Written Explanations in Biology Laboratories

    ERIC Educational Resources Information Center

    Peker, Deniz; Wallace, Carolyn S.

    2011-01-01

    The purpose of this qualitative interpretive research study was to examine high school students' written scientific explanations during biology laboratory investigations. Specifically, we characterized the types of epistemologies and forms of reasoning involved in students' scientific explanations and students' perceptions of scientific…

  3. Field aided characterization of a sandstone reservoir: Arroyo Grande Oil Field, California, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonellini, M.; Aydin, A.

    1995-08-01

    The Arroyo Grande Oil Field in Central California has been productive since 1905 from the miopliocene Edna member of the Pismo formation. The Edna member is a massive poorly consolidated sandstone unit with an average porosity of 0.2 and a permeability of 1000-5000 md; the producing levels are shallow, 100 to 500 m from the ground surface. Excellent surface exposures of the same formation along road cuts across the field and above the reservoir provide an opportunity to study reservoir rocks at the surface and to relate fracture and permeability distribution obtained from cores to folds and faults observed inmore » outcrops. We mapped in outcrops the major structures of the oil field and determine the statistical distribution and orientation of small faults (deformation bands) that have been observed both in cores and outcrop. The relation between deformation bands and major structures has also been characterized with detailed mapping. By using synthetic logs it is possible to determine the log signature of structural heterogeneities such as deformation bands in sandstone; these faults cause a neutron porosity drop respect to the host rock in the order of 1-4%. Image analysis has been used to determine the petrophysical properties of the sandstone in outcrop and in cores; permeability is three orders of magnitude lower in faults than in the host rock and capillary pressure is 1-2 orders of magnitude larger in faults than in the host rock. Faults with tens of meters offsets are associated with an high density of deformation bands (10 to 250 m{sup -1}) and with zones of cement precipitation up to 30 m from the fault. By combining well and field data, we propose a structural model for the oil field in which high angle reverse faults with localized deformation bands control the distribution of the hydrocarbons on the limb of a syncline, thereby explaining the seemingly unexpected direction of slope of the top surface of the reservoir which was inferred by well data

  4. Silurian "Clinton" Sandstone Reservoir Characterization for Evaluation of CO2-EOR Potential in the East Canton Oil Field, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Ronald; Wicks, John; Perry, Christopher

    The purpose of this study was to evaluate the efficacy of using CO2-enhanced oil recovery (EOR) in the East Canton oil field (ECOF). Discovered in 1947, the ECOF in northeastern Ohio has produced approximately 95 million barrels (MMbbl) of oil from the Silurian “Clinton” sandstone. The original oil-in-place (OOIP) for this field was approximately 1.5 billion bbl and this study estimates by modeling known reservoir parameters, that between 76 and 279 MMbbl of additional oil could be produced through secondary recovery in this field, depending on the fluid and formation response to CO2 injection. A CO2 cyclic test (“Huff-n-Puff”) wasmore » conducted on a well in Stark County to test the injectivity in a “Clinton”-producing oil well in the ECOF and estimate the dispersion or potential breakthrough of the CO2 to surrounding wells. Eighty-one tons of CO2 (1.39 MMCF) were injected over a 20-hour period, after which the well was shut in for a 32-day “soak” period before production was resumed. Results demonstrated injection rates of 1.67 MMCF of gas per day, which was much higher than anticipated and no CO2 was detected in gas samples taken from eight immediately offsetting observation wells. All data collected during this test was analyzed, interpreted, and incorporated into the reservoir characterization study and used to develop the geologic model. The geologic model was used as input into a reservoir simulation performed by Fekete Associates, Inc., to estimate the behavior of reservoir fluids when large quantities of CO2 are injected into the “Clinton” sandstone. Results strongly suggest that the majority of the injected CO2 entered the matrix porosity of the reservoir pay zones, where it diffused into the oil. Evidence includes: (A) the volume of injected CO2 greatly exceeded the estimated capacity of the hydraulic fracture and natural fractures; (B) there was a gradual injection and pressure rate build-up during the test; (C) there was a

  5. Reservoir competence of native North American birds for the Lyme disease spirochete, Borrelia burgdorferi

    USGS Publications Warehouse

    Ginsberg, Howard S.; Buckley, P.A.; Balmforth, Maxon G.; Zhioua, Elyes; Mitra, Shaibal; Buckley, Francine G.

    2005-01-01

    Reservoir competence for the Lyme disease spirochete, Borrelia burgdorferi, was tested for six species of native North American birds: American robin, gray catbird, brown thrasher, eastern towhee, song sparrow, and northern cardinal. Wild birds collected by mist netting on Fire Island, NY, were held in a field laboratory in cages over water and locally collected larval ticks were placed on the birds, harvested from the water after engorgement, and tested for infection by direct fluorescent-antibody staining after molting to the nymphal stage. American robins were competent reservoirs, infecting 16.1% of larvae applied to wild-caught birds, compared with 0% of control ticks placed on uninfected laboratory mice. Robins that were previously infected in the laboratory by nymphal feeding infected 81.8% of applied larvae. Wild-caught song sparrows infected 4.8% of applied larvae and 21.1% when infected by nymphal feeding. Results suggest moderate levels of reservoir competence for northern cardinals, lower levels for gray catbirds, and little evidence of reservoir competence for eastern towhees or brown thrashers. Lower infection rates in larvae applied to wild-caught birds compared with birds infected in the laboratory suggest that infected birds display temporal variability in infectiousness to larval ticks. Engorged larvae drop from birds abundantly during daylight, so the abundance of these bird species in the peridomestic environment suggests that they might contribute infected ticks to lawns and gardens.

  6. Incorporating Scale-Dependent Fracture Stiffness for Improved Reservoir Performance Prediction

    NASA Astrophysics Data System (ADS)

    Crawford, B. R.; Tsenn, M. C.; Homburg, J. M.; Stehle, R. C.; Freysteinson, J. A.; Reese, W. C.

    2017-12-01

    We present a novel technique for predicting dynamic fracture network response to production-driven changes in effective stress, with the potential for optimizing depletion planning and improving recovery prediction in stress-sensitive naturally fractured reservoirs. A key component of the method involves laboratory geomechanics testing of single fractures in order to develop a unique scaling relationship between fracture normal stiffness and initial mechanical aperture. Details of the workflow are as follows: tensile, opening mode fractures are created in a variety of low matrix permeability rocks with initial, unstressed apertures in the micrometer to millimeter range, as determined from image analyses of X-ray CT scans; subsequent hydrostatic compression of these fractured samples with synchronous radial strain and flow measurement indicates that both mechanical and hydraulic aperture reduction varies linearly with the natural logarithm of effective normal stress; these stress-sensitive single-fracture laboratory observations are then upscaled to networks with fracture populations displaying frequency-length and length-aperture scaling laws commonly exhibited by natural fracture arrays; functional relationships between reservoir pressure reduction and fracture network porosity, compressibility and directional permeabilities as generated by such discrete fracture network modeling are then exported to the reservoir simulator for improved naturally fractured reservoir performance prediction.

  7. Bathymetry of Totten Reservoir, Montezuma County, Colorado, 2011

    USGS Publications Warehouse

    Kohn, Michael S.

    2012-01-01

    In order to better characterize the water supply capacity of Totten Reservoir, Montezuma County, Colorado, the U.S. Geological Survey, in cooperation with the Dolores Water Conservancy District, conducted a bathymetric survey of Totten Reservoir. The study was performed in June 2011 using a man-operated boat-mounted multibeam echo sounder integrated with a global positioning system and a terrestrial real-time kinematic global positioning system. The two collected datasets were merged and imported into geographic information system software. A bathymetric map of the reservoir was generated in addition to plots for the stage-area and the stage-volume relations.

  8. Bathymetry of Groundhog Reservoir, Dolores County, Colorado, 2011

    USGS Publications Warehouse

    Kohn, Michael S.

    2012-01-01

    In order to better characterize the water supply capacity of Groundhog Reservoir, Dolores County, Colorado, the U.S. Geological Survey, in cooperation with the Dolores Water Conservancy District, conducted a bathymetric survey of Groundhog Reservoir. The study was performed in June 2011 using a man-operated boat-mounted multibeam echo sounder integrated with a global positioning system and a terrestrial real-time kinematic global positioning system. The two collected datasets were merged and imported into geographic information system software. A bathymetric map of the reservoir was generated in addition to plots for the stage-area and the stage-volume relations.

  9. Reservoir computing with a single time-delay autonomous Boolean node

    NASA Astrophysics Data System (ADS)

    Haynes, Nicholas D.; Soriano, Miguel C.; Rosin, David P.; Fischer, Ingo; Gauthier, Daniel J.

    2015-02-01

    We demonstrate reservoir computing with a physical system using a single autonomous Boolean logic element with time-delay feedback. The system generates a chaotic transient with a window of consistency lasting between 30 and 300 ns, which we show is sufficient for reservoir computing. We then characterize the dependence of computational performance on system parameters to find the best operating point of the reservoir. When the best parameters are chosen, the reservoir is able to classify short input patterns with performance that decreases over time. In particular, we show that four distinct input patterns can be classified for 70 ns, even though the inputs are only provided to the reservoir for 7.5 ns.

  10. Interlaboratory quality control of total HIV-1 DNA load measurement for multicenter reservoir studies.

    PubMed

    Gantner, Pierre; Mélard, Adeline; Damond, Florence; Delaugerre, Constance; Dina, Julia; Gueudin, Marie; Maillard, Anne; Sauné, Karine; Rodallec, Audrey; Tuaillon, Edouard; Plantier, Jean-Christophe; Rouzioux, Christine; Avettand-Fenoel, Véronique

    2017-11-01

    Viral reservoirs represent an important barrier to HIV cure. Accurate markers of HIV reservoirs are needed to develop multicenter studies. The aim of this multicenter quality control (QC) was to evaluate the inter-laboratory reproducibility of total HIV-1-DNA quantification. Ten laboratories of the ANRS-AC11 working group participated by quantifying HIV-DNA with a real-time qPCR assay (Biocentric) in four samples (QCMD). Good reproducibility was found between laboratories (standard deviation ≤ 0.2 log 10 copies/10 6 PBMC) for the three positive QC that were correctly classified by each laboratory (QC1

  11. Characterization of selected radionuclides in sediment and surface water in Standley Lake, Great Western Reservoir, and Mower Reservoir, Jefferson County, Colorado, 1992

    USGS Publications Warehouse

    Clow, D.W.; Johncox, D.A.

    1995-01-01

    Lake sediment and surface water from Standley Lake, Great Western Reservoir, and Mower Reservoir, near Denver, Colorado, were sampled and analyzed for selected radionuclides during August through October, 1992. Sample concentrations were summarized and compared to results from a study conducted in 1983-84. Median plutonium-239,240 (239,240Pu) concentrations in lake-sediment grab samples from Standley Lake, Great Western Reservoir, and Mower Reservoir were 0.037, 0.105, and 0.351 picocuries per gram (pCi/g). The maximum concen- tration of 239,240Pu dissolved in lake water was 0.009 picocuries per liter, substantially below limits suggested by the Colorado Department of Health and the Environment. Dissolved concentrations of gross alpha and uranium isotopes were below National Drinking Water Standards in all water samples. There was no statistically significant difference between 239,240Pu concentration in lake-sediment grab samples collected from Standley Lake in 1983-84 and in 1992; however, there was a small, but statistically significant, difference at Great Western Reservoir (p<0.05). In 1992 at Great Western Reservoir, median 239,240Pu concentrations were 0.040 pCi/g lower than in 1983-84. There was a small, but statistically significant (p<0.05) difference in 239,240Pu concentrations in lake- bottom-sediment cores collected in 1983-84 and in 1992. Measured concentrations tended to be higher in 1983-84 than in 1992. The differences were greatest at concentrations above 1.5 pCi/g; in those samples concentrations were 10 to 30% higher in 1983-84 than in 1992.

  12. Calibration of Seismic Attributes for Reservoir Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennington, Wayne D.; Acevedo, Horacio; Green, Aaron

    2002-01-29

    This project has completed the initially scheduled third year of the contract, and is beginning a fourth year, designed to expand upon the tech transfer aspects of the project. From the Stratton data set, demonstrated that an apparent correlation between attributes derived along `phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the Boonsville data set , developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures,more » to subdivide regional facies determined from logs into productive and non-productive subfacies, and developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Teal South data set provided a surprising set of data, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines.« less

  13. Advancing reservoir operation description in physically based hydrological models

    NASA Astrophysics Data System (ADS)

    Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir

  14. Bacterial diversity characterization in petroleum samples from Brazilian reservoirs

    PubMed Central

    de Oliveira, Valéria Maia; Sette, Lara Durães; Simioni, Karen Christina Marques; dos Santos Neto, Eugênio Vaz

    2008-01-01

    This study aimed at evaluating potential differences among the bacterial communities from formation water and oil samples originated from biodegraded and non-biodegraded Brazilian petroleum reservoirs by using a PCR-DGGE based approach. Environmental DNA was isolated and used in PCR reactions with bacterial primers, followed by separation of 16S rDNA fragments in the DGGE. PCR products were also cloned and sequenced, aiming at the taxonomic affiliation of the community members. The fingerprints obtained allowed the direct comparison among the bacterial communities from oil samples presenting distinct degrees of biodegradation, as well as between the communities of formation water and oil sample from the non-biodegraded reservoir. Very similar DGGE band profiles were observed for all samples, and the diversity of the predominant bacterial phylotypes was shown to be low. Cloning and sequencing results revealed major differences between formation water and oil samples from the non-biodegraded reservoir. Bacillus sp. and Halanaerobium sp. were shown to be the predominant components of the bacterial community from the formation water sample, whereas the oil sample also included Alicyclobacillus acidoterrestris, Rhodococcus sp., Streptomyces sp. and Acidithiobacillus ferrooxidans. The PCR-DGGE technique, combined with cloning and sequencing of PCR products, revealed the presence of taxonomic groups not found previously in these samples when using cultivation-based methods and 16S rRNA gene library assembly, confirming the need of a polyphasic study in order to improve the knowledge of the extent of microbial diversity in such extreme environments. PMID:24031244

  15. A qualitative characterization of an introductory college nonmajors biology laboratory

    NASA Astrophysics Data System (ADS)

    Lee, Cherin Ann

    The nature of an undergraduate, nonmajors biology laboratory was investigated in this study. Student participants were enrolled in a general education biology laboratory course at the University of Northern Iowa. The researcher's purpose was to gain a characterization of the instructional format and laboratory activities experienced by students. Interpretation of student and instructor responses enabled an insider's view of the biology laboratory. The laboratory period was consistently described by both students and instructors as having three parts, Beginning, Middle, and End, with the End being of special importance for conceptual development. The instructional format of the three instructors differed within the three portions of the laboratory period, ranging from an inquiry-oriented, partial learning cycle to a fairly expository model labeled inform/verify/practice. There was striking similarity in intrasectional student and teacher descriptions of instructional format. Additionally, students experiencing the alternate instructor provided the same characterizations of instructional format as those provided by the instructor's usual students. There were no discernible patterns of instructional format based on sex or reasoning level. In addition to the central role of instructional format, three areas of importance emerged: the social aspects of learning, the collaborative and cooperative nature of laboratory work and learning, and the role of self-efficacy. Theory developed from and grounded in the data showed six factors important in the introductory college biology laboratory: collaborative and cooperative learning, student-student and teacher-student interactions, attitude and self-efficacy, learning process and learning style, effective instructional format, and science content. These factors were found to be similar to factors identified in the literature as important in K-12 science education. These factors were set in the context of schooling and learning

  16. Advanced Reservoir Characterization and Development through High-Resolution 3C3D Seismic and Horizontal Drilling: Eva South Marrow Sand Unit, Texas County, Oklahoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler,David M.; Miller, William A.; Wilson, Travis C.

    2002-03-11

    The Eva South Morrow Sand Unit is located in western Texas County, Oklahoma. The field produces from an upper Morrow sandstone, termed the Eva sandstone, deposited in a transgressive valley-fill sequence. The field is defined as a combination structural stratigraphic trap; the reservoir lies in a convex up -dip bend in the valley and is truncated on the west side by the Teepee Creek fault. Although the field has been a successful waterflood since 1993, reservoir heterogeneity and compartmentalization has impeded overall sweep efficiency. A 4.25 square mile high-resolution, three component three-dimensional (3C3D) seismic survey was acquired in order tomore » improve reservoir characterization and pinpoint the optimal location of a new horizontal producing well, the ESU 13-H.« less

  17. Characterization of BEGe detectors in the HADES underground laboratory

    NASA Astrophysics Data System (ADS)

    Andreotti, Erica; Gerda Collaboration

    2013-08-01

    This paper describes the characterization of newly produced Broad Energy Germanium (BEGe) detectors, enriched in the isotope 76Ge. These detectors have been produced in the frame of the GERDA experiment. The aim of the characterization campaign consists in the determination of all the important operational parameters (active volume, dead layer thickness and uniformity, energy resolution, detector stability in time, quality of pulse shape discrimination). A protocol test procedure and devoted set-ups, partially automated, have been developed in view of the large number (∼ 25) of BEGe's detectors to be tested. The characterization is carried out in the HADES underground laboratory, located 225 m below ground (∼ 500 m water equivalent) in Mol, Belgium.

  18. Bathymetry of Clear Creek Reservoir, Chaffee County, Colorado, 2016

    USGS Publications Warehouse

    Kohn, Michael S.; Kinzel, Paul J.; Mohrmann, Jacob S.

    2017-03-06

    To better characterize the water supply capacity of Clear Creek Reservoir, Chaffee County, Colorado, the U.S. Geological Survey, in cooperation with the Pueblo Board of Water Works and Colorado Mountain College, carried out a bathymetry survey of Clear Creek Reservoir. A bathymetry map of the reservoir is presented here with the elevation-surface area and the elevation-volume relations. The bathymetry survey was carried out June 6–9, 2016, using a man-operated boat-mounted, multibeam echo sounder integrated with a Global Positioning System and a terrestrial survey using real-time kinematic Global Navigation Satellite Systems. The two collected datasets were merged and imported into geographic information system software. The equipment and methods used in this study allowed water-resource managers to maintain typical reservoir operations, eliminating the need to empty the reservoir to carry out the survey.

  19. Identification and evaluation of fluvial-dominated deltaic (Class 1 oil) reservoirs in Oklahoma. Quarterly technical progress report, January 1, 1995--March 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankin, C.J.; Banken, M.K.

    The Oklahoma Geological Survey (OGS), the Geological Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaging in a program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection and evaluation of information on all of Oklahoma`s FDD reservoirs and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. This data collection and evaluation effort will be the foundation for an aggressive, multifaceted technology transfer program that is designed to support all ofmore » Oklahoma`s oil industry, with particular emphasis on smaller companies and independent operators in their attempts to maximize the economic producibility of FDD reservoirs. Specifically, this project will identify all FDD oil reservoirs in the State; group those reservoirs into plays that have similar depositional and subsequent geologic histories; collect, organize and analyze all available data; conduct characterization and simulation studies on selected reservoirs in each play; and implement a technology transfer program targeted to the operators of FDD reservoirs to sustain the life expectancy of existing wells with the ultimate objective of increasing oil recovery. The elements of the technology transfer program include developing and publishing play portfolios, holding workshops to release play analyses and identify opportunities in each of the plays, and establishing a computer laboratory that is available for industry users.« less

  20. Simultaneous laboratory measurements of CO2 and H2O adsorption on palagonite: Implications for the Martian climate and volatile reservoir

    NASA Technical Reports Server (NTRS)

    Zent, A. P.; Quinn, R.

    1993-01-01

    We are measuring the simultaneous adsorption of H2O and CO2 on palagonite materials in order to improve the formulation of climate models for Mars. We report on the initial co-adsorption data. Models of the Martian climate and volatile inventory indicate that the regolith serves as one of the primary reservoirs of outgassed volatiles and that it exchanges H2O and CO2 with the atmosphere in response to changes in insolation associated with astronomical cycles. Physical adsorbate must exist on the surfaces of the cold particulates that constitute the regolith, and the size of that reservoir can be assessed through laboratory measurements of adsorption on terrestrial analogs. Many studies of the independent adsorption of H2O and CO2 on Mars analog were made and appear in the literature. Empirical expressions that relate the adsorptive coverage of each gas to the temperature of the soil and partial pressure have been derived based on the laboratory data. Numerical models incorporate these adsorption isotherms into climatic models, which predict how the adsorptive coverage of the regolith and hence, the pressure of each gas in the atmosphere will vary as the planet moves through its orbit. These models suggest that the regolith holds several tens to hundreds of millibars of CO2 and that during periods of high obliquity warming of the high-latitude regolith will result in desorption of the CO2, and a consequent increase in atmospheric pressure. At lower obliquities, the caps cool and the equator warms forcing the desorption of several tens of millibars of CO2, which is trapped into quasipermanent CO2 caps.

  1. Innovative techniques for the description of reservoir heterogeneity using tracers. Second technical annual progress report, October 1991--September 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, G.A.; Sepehrnoori, K.

    1992-12-31

    This second annual report on innovative uses of tracers for reservoir characterization contains four sections each describing a novel use of oilfield tracers. The first section describes and illustrates the use of a new single-well tracer test to estimate wettability. This test consists of the injection of brine containing tracers followed by oil containing tracers, a shut-in period to allow some of the tracers to react, and then production of the tracers. The inclusion of the oil injection slug with tracers is unique to this test, and this is what makes the test work. We adapted our chemical simulator, UTCHEM,more » to enable us to study this tracer method and made an extensive simulation study to evaluate the effects of wettability based upon characteristic curves for relative permeability and capillary pressure for differing wetting states typical of oil reservoirs. The second section of this report describes a new method for analyzing interwell tracer data based upon a type-curve approach. Theoretical frequency response functions were used to build type curves of ``transfer function`` and ``phase spectrum`` that have dimensionless heterogeneity index as a parameter to characterize a stochastic permeability field. We illustrate this method by analyzing field tracer data. The third section of this report describes a new theory for interpreting interwell tracer data in terms of channeling and dispersive behavior for reservoirs. Once again, a stochastic approach to reservoir description is taken. The fourth section of this report describes our simulation of perfluorocarbon gas tracers. This new tracer technology developed at Brookhaven National Laboratory is being tested at the Elk Hills Naval Petroleum Reserve No. 1 in California. We report preliminary simulations made of these tracers in one of the oil reservoirs under evaluation with these tracers in this field. Our compostional simulator (UTCOMP) was used for this simulation study.« less

  2. The Alphabet Soup of HIV Reservoir Markers.

    PubMed

    Sharaf, Radwa R; Li, Jonathan Z

    2017-04-01

    Despite the success of antiretroviral therapy in suppressing HIV, life-long therapy is required to avoid HIV reactivation from long-lived viral reservoirs. Currently, there is intense interest in searching for therapeutic interventions that can purge the viral reservoir to achieve complete remission in HIV patients off antiretroviral therapy. The evaluation of such interventions relies on our ability to accurately and precisely measure the true size of the viral reservoir. In this review, we assess the most commonly used HIV reservoir assays, as a clear understanding of the strengths and weaknesses of each is vital for the accurate interpretation of results and for the development of improved assays. The quantification of intracellular or plasma HIV RNA or DNA levels remains the most commonly used tests for the characterization of the viral reservoir. While cost-effective and high-throughput, these assays are not able to differentiate between replication-competent or defective fractions or quantify the number of infected cells. Viral outgrowth assays provide a lower bound for the fraction of cells that can produce infectious virus, but these assays are laborious, expensive and substantially underestimate the potential reservoir of replication-competent provirus. Newer assays are now available that seek to overcome some of these problems, including full-length proviral sequencing, inducible HIV RNA assays, ultrasensitive p24 assays and murine adoptive transfer techniques. The development and evaluation of strategies for HIV remission rely upon our ability to accurately and precisely quantify the size of the remaining viral reservoir. At this time, all current HIV reservoir assays have drawbacks such that combinations of assays are generally needed to gain a more comprehensive view of the viral reservoir. The development of novel, rapid, high-throughput assays that can sensitively quantify the levels of the replication-competent HIV reservoir is still needed.

  3. Integrated petrophysical and reservoir characterization workflow to enhance permeability and water saturation prediction

    NASA Astrophysics Data System (ADS)

    Al-Amri, Meshal; Mahmoud, Mohamed; Elkatatny, Salaheldin; Al-Yousef, Hasan; Al-Ghamdi, Tariq

    2017-07-01

    Accurate estimation of permeability is essential in reservoir characterization and in determining fluid flow in porous media which greatly assists optimize the production of a field. Some of the permeability prediction techniques such as Porosity-Permeability transforms and recently artificial intelligence and neural networks are encouraging but still show moderate to good match to core data. This could be due to limitation to homogenous media while the knowledge about geology and heterogeneity is indirectly related or absent. The use of geological information from core description as in Lithofacies which includes digenetic information show a link to permeability when categorized into rock types exposed to similar depositional environment. The objective of this paper is to develop a robust combined workflow integrating geology and petrophysics and wireline logs in an extremely heterogeneous carbonate reservoir to accurately predict permeability. Permeability prediction is carried out using pattern recognition algorithm called multi-resolution graph-based clustering (MRGC). We will bench mark the prediction results with hard data from core and well test analysis. As a result, we showed how much better improvements are achieved in the permeability prediction when geology is integrated within the analysis. Finally, we use the predicted permeability as an input parameter in J-function and correct for uncertainties in saturation calculation produced by wireline logs using the classical Archie equation. Eventually, high level of confidence in hydrocarbon volumes estimation is reached when robust permeability and saturation height functions are estimated in presence of important geological details that are petrophysically meaningful.

  4. Integrated core-log petrofacies analysis in the construction of a reservoir geomodel: A case study of a mature Mississippian carbonate reservoir using limited data

    USGS Publications Warehouse

    Bhattacharya, S.; Doveton, J.H.; Carr, T.R.; Guy, W.R.; Gerlach, P.M.

    2005-01-01

    Small independent operators produce most of the Mississippian carbonate fields in the United States mid-continent, where a lack of integrated characterization studies precludes maximization of hydrocarbon recovery. This study uses integrative techniques to leverage extant data in an Osagian and Meramecian (Mississippian) cherty carbonate reservoir in Kansas. Available data include petrophysical logs of varying vintages, limited number of cores, and production histories from each well. A consistent set of assumptions were used to extract well-level porosity and initial saturations, from logs of different types and vintages, to build a geomodel. Lacking regularly recorded well shut-in pressures, an iterative technique, based on material balance formulations, was used to estimate average reservoir-pressure decline that matched available drillstem test data and validated log-analysis assumptions. Core plugs representing the principal reservoir petrofacies provide critical inputs for characterization and simulation studies. However, assigning plugs among multiple reservoir petrofacies is difficult in complex (carbonate) reservoirs. In a bottom-up approach, raw capillary pressure (Pc) data were plotted on the Super-Pickett plot, and log- and core-derived saturation-height distributions were reconciled to group plugs by facies, to identify core plugs representative of the principal reservoir facies, and to discriminate facies in the logged interval. Pc data from representative core plugs were used for effective pay evaluation to estimate water cut from completions, in infill and producing wells, and guide-selective perforations for economic exploitation of mature fields. The results from this study were used to drill 22 infill wells. Techniques demonstrated here can be applied in other fields and reservoirs. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.

  5. Multicomponent seismic reservoir characterization of a steam-assisted gravity drainage (SAGD) heavy oil project, Athabasca oil sands, Alberta

    NASA Astrophysics Data System (ADS)

    Schiltz, Kelsey Kristine

    Steam-assisted gravity drainage (SAGD) is an in situ heavy oil recovery method involving the injection of steam in horizontal wells. Time-lapse seismic analysis over a SAGD project in the Athabasca oil sands deposit of Alberta reveals that the SAGD steam chamber has not developed uniformly. Core data confirm the presence of low permeability shale bodies within the reservoir. These shales can act as barriers and baffles to steam and limit production by prohibiting steam from accessing the full extent of the reservoir. Seismic data can be used to identify these shale breaks prior to siting new SAGD well pairs in order to optimize field development. To identify shale breaks in the study area, three types of seismic inversion and a probabilistic neural network prediction were performed. The predictive value of each result was evaluated by comparing the position of interpreted shales with the boundaries of the steam chamber determined through time-lapse analysis. The P-impedance result from post-stack inversion did not contain enough detail to be able to predict the vertical boundaries of the steam chamber but did show some predictive value in a spatial sense. P-impedance from pre-stack inversion exhibited some meaningful correlations with the steam chamber but was misleading in many crucial areas, particularly the lower reservoir. Density estimated through the application of a probabilistic neural network (PNN) trained using both PP and PS attributes identified shales most accurately. The interpreted shales from this result exhibit a strong relationship with the boundaries of the steam chamber, leading to the conclusion that the PNN method can be used to make predictions about steam chamber growth. In this study, reservoir characterization incorporating multicomponent seismic data demonstrated a high predictive value and could be useful in evaluating future well placement.

  6. Reservoir Simulations of Low-Temperature Geothermal Reservoirs

    NASA Astrophysics Data System (ADS)

    Bedre, Madhur Ganesh

    The eastern United States generally has lower temperature gradients than the western United States. However, West Virginia, in particular, has higher temperature gradients compared to other eastern states. A recent study at Southern Methodist University by Blackwell et al. has shown the presence of a hot spot in the eastern part of West Virginia with temperatures reaching 150°C at a depth of between 4.5 and 5 km. This thesis work examines similar reservoirs at a depth of around 5 km resembling the geology of West Virginia, USA. The temperature gradients used are in accordance with the SMU study. In order to assess the effects of geothermal reservoir conditions on the lifetime of a low-temperature geothermal system, a sensitivity analysis study was performed on following seven natural and human-controlled parameters within a geothermal reservoir: reservoir temperature, injection fluid temperature, injection flow rate, porosity, rock thermal conductivity, water loss (%) and well spacing. This sensitivity analysis is completed by using ‘One factor at a time method (OFAT)’ and ‘Plackett-Burman design’ methods. The data used for this study was obtained by carrying out the reservoir simulations using TOUGH2 simulator. The second part of this work is to create a database of thermal potential and time-dependant reservoir conditions for low-temperature geothermal reservoirs by studying a number of possible scenarios. Variations in the parameters identified in sensitivity analysis study are used to expand the scope of database. Main results include the thermal potential of reservoir, pressure and temperature profile of the reservoir over its operational life (30 years for this study), the plant capacity and required pumping power. The results of this database will help the supply curves calculations for low-temperature geothermal reservoirs in the United States, which is the long term goal of the work being done by the geothermal research group under Dr. Anderson at

  7. Yersinia pestis Survival and Replication in Potential Ameba Reservoir

    PubMed Central

    Antolin, Michael F.; Bowen, Richard A.; Wheat, William H.; Woods, Michael; Gonzalez-Juarrero, Mercedes; Jackson, Mary

    2018-01-01

    Plague ecology is characterized by sporadic epizootics, then periods of dormancy. Building evidence suggests environmentally ubiquitous amebae act as feral macrophages and hosts to many intracellular pathogens. We conducted environmental genetic surveys and laboratory co-culture infection experiments to assess whether plague bacteria were resistant to digestion by 5 environmental ameba species. First, we demonstrated that Yersinia pestis is resistant or transiently resistant to various ameba species. Second, we showed that Y. pestis survives and replicates intracellularly within Dictyostelium discoideum amebae for ˃48 hours postinfection, whereas control bacteria were destroyed in <1 hour. Finally, we found that Y. pestis resides within ameba structures synonymous with those found in infected human macrophages, for which Y. pestis is a competent pathogen. Evidence supporting amebae as potential plague reservoirs stresses the importance of recognizing pathogen-harboring amebae as threats to public health, agriculture, conservation, and biodefense. PMID:29350155

  8. Applications of the SWOT Mission to Reservoirs in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Bonnema, M.; Hossain, F.

    2017-12-01

    The forthcoming Surface Water and Ocean Topography (SWOT) mission has the potential to significantly improve our ability to observe artificial reservoirs globally from a remote sensing perspective. By providing simultaneous estimates of reservoir water surface extent and elevation with near global coverage, reservoir storage changes can be estimated. Knowing how reservoir storage changes over time is critical for understanding reservoir impacts on river systems. In data limited regions, remote sensing is often the only viable method of retrieving such information about reservoir operations. When SWOT launches in 2021, it will join an array of satellite sensors with long histories of reservoir observation and monitoring capabilities. There are many potential synergies in the complimentary use of future SWOT observations with observations from current satellite sensors. The work presented here explores the potential benefits of utilizing SWOT observations over 20 reservoirs in the Mekong River Basin. The SWOT hydrologic simulator, developed by NASA Jet Propulsion Laboratory, is used to generate realistic SWOT observations, which are then inserted into a previously established remote sensing modeling framework of the 20 Mekong Basin reservoirs. This framework currently combines data from Landsat missions, Jason radar altimeters, and the Shuttle Radar and Topography Mission (SRTM), to provide monthly estimates of reservoir storage change. The incorporation of SWOT derived reservoir surface area and elevation into the model is explored in an effort to improve both accuracy and temporal resolution of observed reservoir operations.

  9. Combined geophysical, geochemical and geological investigations of geothermal reservoir characteristics in Lower Saxony, Germany

    NASA Astrophysics Data System (ADS)

    Hahne, B.; Thomas, R.

    2012-04-01

    The North German basin provides a significant geothermal potential, although temperature gradients are moderate. However, deep drilling up to several thousand meters is required to reach temperatures high enough for efficient generation of geothermal heat and electric power. In these depths we have not much information yet about relevant physical properties like porosity or permeability of the rock formations. Therefore the costs of developing a geothermal reservoir and the risk of missing the optimum drilling location are high. The collaborative research association "Geothermal Energy and High Performance Drilling" (gebo) unites several universities and research institutes in Lower Saxony, Germany. It aims at a significant increase of economic efficiency by introducing innovative technology and high tech materials resisting temperatures up to 200 °C in the drilling process. Furthermore, a better understanding of the geothermal reservoir is essential. gebo is structured into four main fields: Drilling Technology, Materials, Technical Systems and Geosystem. Here, we show the combined work of the Geosystem group, which focuses on the exploration of geological fault zones as a potential geothermal reservoir as well as on modeling the stress field, heat transport, coupled thermo-hydro-mechanical processes, geochemical interactions and prediction of the long-term behavior of the reservoir. First results include combined seismic and geoelectric images of the Leinetalgraben fault system, a comparison of seismic images from P- and S-wave measurements, mechanical properties of North German rocks from field and laboratory measurements as well as from drill cores, seismological characterization of stimulated reservoirs, a thermodynamic "gebo" database for modeling hydrogeochemical processes in North German formation waters with high salinity and at high temperatures, stress models for specific sites in northern Germany, and modeling results of permeability and heat transport

  10. Calibration of NMR well logs from carbonate reservoirs with laboratory NMR measurements and μXRCT

    DOE PAGES

    Mason, Harris E.; Smith, Megan M.; Hao, Yue; ...

    2014-12-31

    The use of nuclear magnetic resonance (NMR) well log data has the potential to provide in-situ porosity, pore size distributions, and permeability of target carbonate CO₂ storage reservoirs. However, these methods which have been successfully applied to sandstones have yet to be completely validated for carbonate reservoirs. Here, we have taken an approach to validate NMR measurements of carbonate rock cores with independent measurements of permeability and pore surface area to volume (S/V) distributions using differential pressure measurements and micro X-ray computed tomography (μXRCT) imaging methods, respectively. We observe that using standard methods for determining permeability from NMR data incorrectlymore » predicts these values by orders of magnitude. However, we do observe promise that NMR measurements provide reasonable estimates of pore S/V distributions, and with further independent measurements of the carbonate rock properties that universally applicable relationships between NMR measured properties may be developed for in-situ well logging applications of carbonate reservoirs.« less

  11. Calibration of NMR well logs from carbonate reservoirs with laboratory NMR measurements and μXRCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, Harris E.; Smith, Megan M.; Hao, Yue

    The use of nuclear magnetic resonance (NMR) well log data has the potential to provide in-situ porosity, pore size distributions, and permeability of target carbonate CO₂ storage reservoirs. However, these methods which have been successfully applied to sandstones have yet to be completely validated for carbonate reservoirs. Here, we have taken an approach to validate NMR measurements of carbonate rock cores with independent measurements of permeability and pore surface area to volume (S/V) distributions using differential pressure measurements and micro X-ray computed tomography (μXRCT) imaging methods, respectively. We observe that using standard methods for determining permeability from NMR data incorrectlymore » predicts these values by orders of magnitude. However, we do observe promise that NMR measurements provide reasonable estimates of pore S/V distributions, and with further independent measurements of the carbonate rock properties that universally applicable relationships between NMR measured properties may be developed for in-situ well logging applications of carbonate reservoirs.« less

  12. A systematic procedure for reservoir characterization: Annual report for the period October 1, 1985-September 30, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lake, L.W.; Kocurek, G.A.; Miller, M.A.

    1987-12-01

    This report deals with a variety of topics all centered around the main goal of making numerical reservoir simulation results conform more closely with geologic descriptions. The first part of the report discusses results on conditional simulations of miscible displacements in randomly heterogeneous permeable media. The focus here is on local or macroscopic dispersion, the dispersion experienced at a fixed point in the medium. Macroscopic dispersivity has many of the same dependencies on reservoir properties as does megascopic dispersivity, but it seems to be less time dependent and is always smaller. We have not discovered a mathematical model to describemore » its behavior. A major portion of the report deals with statistical descriptions. We investigate the bias and precision of standard measures of heterogeneity, the Lorenz and Dykstra-Parsons coefficient. After this, the work explores the benefits of using a distribution type characterization parameter in exploring heterogeneity. The final major protion of the report describes our mapping efforts on the Page sandstone outcrop in northern Arizona. The mapping is to be used in generating both deterministic descriptions and in calibrating the stochastic descriptions discussed above. 128 refs., 95 figs., 10 tabs.« less

  13. Stochastic modeling of phosphorus transport in the Three Gorges Reservoir by incorporating variability associated with the phosphorus partition coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lei; Fang, Hongwei; Xu, Xingya

    Phosphorus (P) fate and transport plays a crucial role in the ecology of rivers and reservoirs in which eutrophication is limited by P. A key uncertainty in models used to help manage P in such systems is the partitioning of P to suspended and bed sediments. By analyzing data from field and laboratory experiments, we stochastically characterize the variability of the partition coefficient (Kd) and derive spatio-temporal solutions for P transport in the Three Gorges Reservoir (TGR). We formulate a set of stochastic partial different equations (SPDEs) to simulate P transport by randomly sampling Kd from the measured distributions, tomore » obtain statistical descriptions of the P concentration and retention in the TGR. The correspondence between predicted and observed P concentrations and P retention in the TGR combined with the ability to effectively characterize uncertainty suggests that a model that incorporates the observed variability can better describe P dynamics and more effectively serve as a tool for P management in the system. This study highlights the importance of considering parametric uncertainty in estimating uncertainty/variability associated with simulated P transport.« less

  14. Stochastic modeling of phosphorus transport in the Three Gorges Reservoir by incorporating variability associated with the phosphorus partition coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lei; Fang, Hongwei; Xu, Xingya

    Phosphorus (P) fate and transport plays a crucial role in the ecology of rivers and reservoirs in which eutrophication is limited by P. A key uncertainty in models used to help manage P in such systems is the partitioning of P to suspended and bed sediments. By analyzing data from field and laboratory experiments, we stochastically characterize the variability of the partition coefficient (Kd) and derive spatio-temporal solutions for P transport in the Three Gorges Reservoir (TGR). Here, we formulate a set of stochastic partial different equations (SPDEs) to simulate P transport by randomly sampling Kd from the measured distributions,more » to obtain statistical descriptions of the P concentration and retention in the TGR. Furthermore, the correspondence between predicted and observed P concentrations and P retention in the TGR combined with the ability to effectively characterize uncertainty suggests that a model that incorporates the observed variability can better describe P dynamics and more effectively serve as a tool for P management in the system. Our study highlights the importance of considering parametric uncertainty in estimating uncertainty/variability associated with simulated P transport.« less

  15. Stochastic modeling of phosphorus transport in the Three Gorges Reservoir by incorporating variability associated with the phosphorus partition coefficient

    DOE PAGES

    Huang, Lei; Fang, Hongwei; Xu, Xingya; ...

    2017-08-01

    Phosphorus (P) fate and transport plays a crucial role in the ecology of rivers and reservoirs in which eutrophication is limited by P. A key uncertainty in models used to help manage P in such systems is the partitioning of P to suspended and bed sediments. By analyzing data from field and laboratory experiments, we stochastically characterize the variability of the partition coefficient (Kd) and derive spatio-temporal solutions for P transport in the Three Gorges Reservoir (TGR). Here, we formulate a set of stochastic partial different equations (SPDEs) to simulate P transport by randomly sampling Kd from the measured distributions,more » to obtain statistical descriptions of the P concentration and retention in the TGR. Furthermore, the correspondence between predicted and observed P concentrations and P retention in the TGR combined with the ability to effectively characterize uncertainty suggests that a model that incorporates the observed variability can better describe P dynamics and more effectively serve as a tool for P management in the system. Our study highlights the importance of considering parametric uncertainty in estimating uncertainty/variability associated with simulated P transport.« less

  16. Model Studies on the Effectiveness of MBBR Reactors for the Restoration of Small Water Reservoirs

    NASA Astrophysics Data System (ADS)

    Nowak, Agata; Mazur, Robert; Panek, Ewa; Chmist, Joanna

    2018-02-01

    The authors present the Moving Bed Biofilm Reactor (MBBR) model with a quasi-continuous flow for small water reservoir restoration, characterized by high concentrations of organic pollutants. To determine the efficiency of wastewater treatment the laboratory analysis of physic-chemical parameters were conducted for the model on a semi-technical scale of 1:3. Wastewater treatment process was carried out in 24 h for 1 m3 for raw sewage. The startup period was 2 weeks for all biofilters (biological beds). Approximately 50% reduction in COD and BOD5 was obtained on average for the studied bioreactors. Significant improvements were achieved in theclarity of the treated wastewater, with the reduction of suspension by 60%. The oxygen profile has improved significantly in 7 to 9 hours of the process, and a diametric reduction in the oxidative reduction potential was recorded. A preliminary model of biological treatment effectiveness was determined based on the conducted studies. In final stages, the operation mode was set in real conditions of polluted water reservoirs.

  17. Modular reservoir concept for MEMS-based transdermal drug delivery systems

    NASA Astrophysics Data System (ADS)

    Cantwell, Cara T.; Wei, Pinghung; Ziaie, Babak; Rao, Masaru P.

    2014-11-01

    While MEMS-based transdermal drug delivery device development efforts have typically focused on tightly-integrated solutions, we propose an alternate conception based upon a novel, modular drug reservoir approach. By decoupling the drug storage functionality from the rest of the delivery system, this approach seeks to minimize cold chain storage volume, enhance compatibility with conventional pharmaceutical practices, and allow independent optimization of reservoir device design, materials, and fabrication. Herein, we report the design, fabrication, and preliminary characterization of modular reservoirs that demonstrate the virtue of this approach within the application context of transdermal insulin administration for diabetes management.

  18. Water reservoir characteristics derivation from pubicly available global elevation data

    NASA Astrophysics Data System (ADS)

    Van De Giesen, N.; van Bemmelen, C.; Mann, M.; de Ridder, M.; Gupta, V.; Rutten, M.

    2017-12-01

    In order to assess human impact on the global hydrological cycle, it is imperative to characterize all major man made reservoirs. One important characteristic is the relationship between the surface area of a reservoir and its stored water volume. Surface areas can readily be determined through optical and radar satellite remote sensing. Once the relationship between the surface area of a reservoir and its stored water volume is known, one can determine the stored volumes over time using remotely sensed surface areas. It has been known for some time that this relationship between surface and stored volume shows a very high level of regional consistency [1]. This implies that if one knows this relationship in a certain region, one can predict the same for any nearby reservoir. We have tried to exploit this fact by examining whether one can build virtual dams in the neighborhood of an existing dam to determine the general relationship between surface area and stored volume. We examined twelve reservoirs around the world and found, generally, very good results. Especially in geomorphologically homogeneous areas, the relationships could reliable be extrapolated over space. Even in very heterogeneous areas, the final results were acceptable and much better than generic relationships used so far. Finally, we have examined to what extent it is possible to select virtual dam sites automatically. The first results for this are promising and show that it may be possible to characterize most major dams in the world according to this approach. It is likely that there will be the need for human detection for a reasonable percentage. For these relatively rare case, some human micro-tasking may be the way forward. It is expected, however, that >90% of the worldś dams can be characterized automatically [1] Liebe, J., N. Van De Giesen, and Marc Andreini. "Estimation of small reservoir storage capacities in a semi-arid environment: A case study in the Upper East Region of Ghana

  19. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blunt, Martin J.; Orr, Franklin M.

    This report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1997 - September 1998 under the second year of a three-year grant from the Department of Energy on the "Prediction of Gas Injection Performance for Heterogeneous Reservoirs." The research effort is an integrated study of the factors affecting gas injection, from the pore scale to the field scale, and involves theoretical analysis, laboratory experiments, and numerical simulation. The original proposal described research in four areas: (1) Pore scale modeling of three phase flow in porous media; (2) Laboratory experiments and analysis of factorsmore » influencing gas injection performance at the core scale with an emphasis on the fundamentals of three phase flow; (3) Benchmark simulations of gas injection at the field scale; and (4) Development of streamline-based reservoir simulator. Each state of the research is planned to provide input and insight into the next stage, such that at the end we should have an integrated understanding of the key factors affecting field scale displacements.« less

  20. INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.O. Hitzman; A.K. Stepp; D.M. Dennis

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions and technologies for improving oil production. The goal was to identify and utilize indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work in model sandpack cores was conducted using microbial cultures isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted inmore » sand packs with natural field waters using cultures and conditions representative of oil reservoirs. Increased oil recovery in multiple model sandpack systems was achieved and the technology and results were verified by successful field studies. Direct application of the research results has lead to the development of a feasible, practical, successful, and cost-effective technology which increases oil recovery. This technology is now being commercialized and applied in numerous field projects to increase oil recovery. Two field applications of the developed technology reported production increases of 21% and 24% in oil recovery.« less

  1. Assessing the effects of microbial metabolism and metabolities on reservoir pore structure

    USGS Publications Warehouse

    Udegbunam, E.O.; Adkins, J.P.; Knapp, R.M.; McInerney, M.J.; Tanner, R.S.

    1991-01-01

    The effect of microbial treatment on pore structure of sandstone and carbonatereservoirs was determined. Understanding how different bacterial strains and their metabolic bioproducts affect reservoir pore structure will permit the prudent application of microorganisms for enhanced oil recovery. The microbial strains tested included Clostridium acetobutylicum, a polymer-producing Bacillus strain, and an unidentified halophilic anaerobe that mainly produced acids and gases. Electrical conductivity, absolute permeability, porosity and centrifuge capillary pressure were used to examine rock pore structures. Modifications of the pore structure observed in the laboratory cores included pore enlargement due to acid dissolution of carbonates and poare throat reduction due to biomass plugging. This paper shows that careful selection of microbes based on proper understanding of the reservoir petrophysical characteristics is necessary for applications of microbially enhanced oil recovery. These methods and results can be useful to field operators and laboratory researchers involved in design and screening of reservoirs for MEOR. The methods are also applicable in evaluation of formation damage caused by drilling, injection or completion fluids or stimulation caused by acids.

  2. Observations of mechanical-hydraulic-geochemical interactions due to drainage of a surface water reservoir in Switzerland

    NASA Astrophysics Data System (ADS)

    Lunn, R. J.; Kinali, M.; Pytharouli, S.; Shipton, Z.; Stillings, M.; Lord, R.

    2016-12-01

    The drainage and refilling of a surface water reservoir beside the Grimsel Test Site (GTS) underground rock laboratory in Switzerland, has provided a unique opportunity to study in-situ rock mechanical, hydraulic and chemical interactions under large-scale stress changes. The reservoir was drained in October/November 2014 to enable dam maintenance and extension of the regional hydropower tunnel system. Reservoir drainage will have caused rapid unloading of the surrounding rock mass. The GTS sits 37m below the top of the reservoir and 200-600m away laterally within the mountainside on the eastern bank of the reservoir. Gradual refilling of the reservoir, via natural snowmelt and runoff, commenced in February 2015. As part of the European LASMO Project, researchers at Strathclyde, funded by Radioactive Waste Management Ltd., have been investigating mechanical-chemical-hydraulic coupling within the rock mass as an analogue for glacial unloading and loading of a future Geological Disposal Facility. We have deployed three 3-component and 6 single-component micro-seismometers within the GTS and surrounding hydropower tunnel network. In parallel, we have implemented a groundwater sampling programme, using boreholes within the GTS, for temporal determination of geochemistry and flow rate. Preliminary data analyses show geochemical anomalies during unloading, as well as detection of microseismic events. The signal-to-noise ratio of the micro-seismic data is extremely poor. Noise amplitude, and frequency content, variy throughout each day, between days, and from month-to-month on a highly unpredictable basis. This is probably due to the multitude of hydropower turbines and pump-storage systems within the surrounding mountains. To discriminate micro-seismic events, we have developed a new methodology for characterizing background noise within the seismic signal and combined this with cross-correlations techniques generally applied in microseismic analysis of hydraulic

  3. Spatiotemporal sedimentological and petrophysical characterization of El Gueria reservoir (Ypresian) in sFAX and Gulf of Gabes Basins (SE-Tunisia)

    NASA Astrophysics Data System (ADS)

    Nadhem, Kassabi; Zahra, Njahi; Ménendez, Béatriz; Salwa, Jeddi; Jamel, Touir

    2017-06-01

    El Gueria carbonate Formation (Ypresian) in Tunisia is a proven hydrocarbon reservoir. In the Gulf of Gabes, El Gueria reservoir consists mainly of a nummulitic limestone which is developed in an inner shelf environment. In order to characterize the depositional facies evolution and the petrophysical parameters, and to understand the origin of heterogeneity of El Gueria reservoir, we firstly conducted a sedimentological and a sequence stratigraphy study of this Formation in more than 10 wells especially in P1, then we established a detailed petrophysical study of El Gueria reservoir in P1, P3c and P7d cores. Based on lithostratigraphic and gamma ray correlations of an important number of wells in the study area, a detailed sedimentological study has been established. This latter shows that: (i): The Ypresien deposits are deposited in an inner shelf (El Gueria Formation) in the south and in an outer shelf (Boudabbous Formation) in the north of the study area with the form of horsts and grabens, (ii): 3 distinct members and 7 principal facies within El Gueria Formation have been distinguished. The coupling of data logging and data of the P1 core shows that the El Gueria deposits include 10 transgressive-regressive depositional sequences, while showing from bottom to top a broad regressive tendancy from a subtidal domain during the early Ypresian to an intertidal domain during the middle Ypresian reaching the supratidal environnement during the late Ypresian-early Lutetian. The petrophysical parameters (porosity and permeability) of El Gueria reservoir vary in time and space (laterally and vertically variation) following the deposit environment variation. Particularly, the porosity variation is controlled by eustatic cycles so that high porosities are linked with transgressive phases and low porosities with regressive phases. In addition, the vertical evolution of porosity through the El Gueria reservoir varies following the (i) deposit environments, (ii) type and

  4. Dual stimuli responsive self-reporting material for chemical reservoir coating

    NASA Astrophysics Data System (ADS)

    Lee, Tae Hee; Song, Young Kyu; Park, Sun Hee; Park, Young Il; Noh, Seung Man; Kim, Jin Chul

    2018-03-01

    In this study, we introduce a novel dual stimuli responsive self-reporting thiol-epoxy thermoset (DSRTET) coatings which can detect both crack occurrence and pH variation. For crack detection, microcapsule containing tetraphenylethylene (TPE) which exhibits aggregation induced emission (AIE) effect was prepared via multi-step emulsion polymerization and dispersed in DSRTET coatings. For pH variation detection, commercial thymol blue as a pH indicator was added into the polymer matrix. The effect of microcapsule contents in DSRTET on their curing behavior, material properties, and crack sensitivity was characterized using an oscillatory rheology, rigid body pendulum test (RPT), nano-indentation test (NST), universal test machine (UTM) and scratch tester. It was revealed that crack sensitivity of DSRTET coatings was greatly influenced by material properties as well as microcapsule content. The color transition of DSRTET coatings in response to acid or base solution were quantitatively investigated using a multi-angle spectrophotometer after simple acid and base solution drop tests. The color of DSRTET coatings changed from a pale green to red for acidic solution and to blue for basic solution. Finally, The DSRTET used in this study was applied to laboratory scale chemical reservoirs in order to verify the potential as a dual stimuli response self-reporting coating which can detect both crack in coating material and chemical spill caused by the leakage or breakage of the reservoir part.

  5. Surface and Subsurface Geodesy Combined with Active Borehole Experimentation for the Advanced Characterization of EGS Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsworth, Derek; Im, Kyungjae; Guglielmi, Yves

    2016-11-14

    We explore the utility of combining active downhole experimentation with borehole and surface geodesy to determine both the characteristics and evolving state of EGS reservoirs during stimulation through production. The study is divided into two parts. We demonstrate the feasibility of determining in situ reservoir characteristics of reservoir size, strain and fracture permeability and their dependence on feedbacks of stress and temperature using surface and borehole geodetic measurements (Part I). We then define the opportunity to apply the unique hydraulic pulse protocol (HPP) borehole tool to evaluate reservoir state. This can be accomplished by monitoring and co-inverting measured reservoir characteristicsmore » (from the HPP tool) with surface geodetic measurements of deformation, tilt and strain with continuous measurements of borehole-wall strain (via optical fiber and fiber Bragg gratings) and measured flow rates (Part II).« less

  6. Characterization of biocenoses in the storage reservoirs of liquid radioactive wastes of Mayak PA. Initial descriptive report.

    PubMed

    Pryakhin, E A; Mokrov, Yu G; Tryapitsina, G A; Ivanov, I A; Osipov, D I; Atamanyuk, N I; Deryabina, L V; Shaposhnikova, I A; Shishkina, E A; Obvintseva, N A; Egoreichenkov, E A; Styazhkina, E V; Osipova, O F; Mogilnikova, N I; Andreev, S S; Tarasov, O V; Geras'kin, S A; Trapeznikov, A V; Akleyev, A V

    2016-01-01

    As a result of operation of the Mayak Production Association (Mayak PA), Chelyabinsk Oblast, Russia, an enterprise for production and separation of weapon-grade plutonium in the Soviet Union, ecosystems of a number of water bodies have been radioactively contaminated. The article presents information about the current state of ecosystems of 6 special industrial storage reservoirs of liquid radioactive waste from Mayak PA: reservoirs R-3, R-4, R-9, R-10, R-11 and R-17. At present the excess of the radionuclide content in the water of the studied reservoirs and comparison reservoirs (Shershnyovskoye and Beloyarskoye reservoirs) is 9 orders of magnitude for (90)Sr and (137)Cs, and 6 orders of magnitude for alpha-emitting radionuclides. According to the level of radioactive contamination, the reservoirs of the Mayak PA could be arranged in the ascending order as follows: R-11, R-10, R-4, R-3, R-17 and R-9. In 2007-2012 research of the status of the biocenoses of these reservoirs in terms of phytoplankton, zooplankton, bacterioplankton, zoobenthos, aquatic plants, ichthyofauna, avifauna parameters was performed. The conducted studies revealed decrease in species diversity in reservoirs with the highest levels of radioactive and chemical contamination. This article is an initial descriptive report on the status of the biocenoses of radioactively contaminated reservoirs of the Mayak PA, and is the first article in a series of publications devoted to the studies of the reaction of biocenoses of the fresh-water reservoirs of the Mayak PA to a combination of natural and man-made factors, including chronic radiation exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Altering Reservoir Wettability to Improve Production from Single Wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. W. Weiss

    2006-09-30

    Many carbonate reservoirs are naturally fractured and typically produce less than 10% original oil in place during primary recovery. Spontaneous imbibition has proven an important mechanism for oil recovery from fractured reservoirs, which are usually weak waterflood candidates. In some situations, chemical stimulation can promote imbibition of water to alter the reservoir wettability toward water-wetness such that oil is produced at an economic rate from the rock matrix into fractures. In this project, cores and fluids from five reservoirs were used in laboratory tests: the San Andres formation (Fuhrman Masho and Eagle Creek fields) in the Permian Basin of Texasmore » and New Mexico; and the Interlake, Stony Mountain, and Red River formations from the Cedar Creek Anticline in Montana and South Dakota. Solutions of nonionic, anionic, and amphoteric surfactants with formation water were used to promote waterwetness. Some Fuhrman Masho cores soaked in surfactant solution had improved oil recovery up to 38%. Most Eagle Creek cores did not respond to any of the tested surfactants. Some Cedar Creek anticline cores had good response to two anionic surfactants (CD 128 and A246L). The results indicate that cores with higher permeability responded better to the surfactants. The increased recovery is mainly ascribed to increased water-wetness. It is suspected that rock mineralogy is also an important factor. The laboratory work generated three field tests of the surfactant soak process in the West Fuhrman Masho San Andres Unit. The flawlessly designed tests included mechanical well clean out, installation of new pumps, and daily well tests before and after the treatments. Treatments were designed using artificial intelligence (AI) correlations developed from 23 previous surfactant soak treatments. The treatments were conducted during the last quarter of 2006. One of the wells produced a marginal volume of incremental oil through October. It is interesting to note that the

  8. Characterization of Gas and Particle Emissions from Laboratory Burns of Peat

    EPA Science Inventory

    Peat cores collected from two locations in eastern North Carolina (NC, USA) were burned in a laboratory facility to characterize emissions during simulated field combustion. Particle and gas samples were analyzed to quantify emission factors for particulate matter (PM2.5), organi...

  9. Reservoir heterogeneity in Carboniferous sandstone of the Black Warrior basin. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.

    1994-04-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes themore » geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.« less

  10. New Laboratory Methods for Characterizing the Immersion Factors for Irradiance

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Zibordi, Giuseppe; DAlimonte, Davide; vaderLinde, Dirk; Brown, James W.

    2003-01-01

    The experimental determination of the immersion factor, I(sub f)(lambda), of irradiance collectors is a requirement of any in-water radiometer. The eighth SeaWiFS Intercalibration Round-Robin Experiment (SIRREX-8) showed different implementations, at different laboratories, of the same I(sub f)(lambda) measurement protocol. The different implementations make use of different setups, volumes, and water types. Consequently, they exhibit different accuracies and require different execution times for characterizing an irradiance sensor. In view of standardizing the characterization of I(sub f)(lambda) values for in-water radiometers, together with an increase in the accuracy of methods and a decrease in the execution time, alternative methods are presented, and assessed versus the traditional method. The proposed new laboratory methods include: a) the continuous method, in which optical measurements taken with discrete water depths are substituted by continuous profiles created by removing the water from the water vessel at a constant flow rate (which significantly reduces the time required for the characterization of a single radiometer); and b) the Compact Portable Advanced Characterization Tank (ComPACT) method, in which the commonly used large tanks are replaced by a small water vessel, thereby allowing the determination of I(sub f)(lambda) values with a small water volume, and more importantly, permitting I(sub f)(lambda) characterizations with pure water. Intercomparisons between the continuous and the traditional method showed results within the variance of I(sub f) (lambda) determinations. The use of the continuous method, however, showed a much shorter realization time. Intercomparisons between the ComPACT and the traditional method showed generally higher I(sub f)(lambda) values for the former. This is in agreement with the generalized expectations of a reduction in scattering effects, because of the use of pure water with the ComPACT method versus the use of

  11. Detection and molecular identification of Cryptosporidium species in laboratory rats (Rattus norvegicus) in Ibadan, Nigeria

    PubMed

    Ayinmode, Adekunle Bamidele; Ogbonna, Nkeiruka Fortunate; Widmer, Giovanni

    To study the occurrence of Cryptosporidium infection in laboratory rats (Rattus norvegicus) raised for experimental usage, 134 faecal samples were obtained from two rearing houses in Ibadan and examined for the presence of Cryptosporidium oocyst using the modified acid fast staining technique. Cryptosporidium species in 2 samples positive for microscopy were further characterized by a nested polymerase chain reaction (PCR) amplifying the 18S rRNA gene. Two of 134 samples were positive for the Cryptosporidium oocysts. Sequencing of the small-subunit rRNA amplicons identified the species in the two PCR positive samples as Cryptosporidium andersoni and Cryptosporidium rat genotype. These findings showed that laboratory rat is a potential reservoir for diverse Cryptosporidium species and suggests that laboratory rats should be screened for Cryptosporidium infection prior to experiments, especially where pathogen free animals are not available. This the first report to identify Cryptosporidium species infecting laboratory rats in Nigeria.

  12. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs (Annex 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watney, W.L.

    1992-01-01

    Interdisciplinary studies of the Upper Pennsylvanian Lansing and Kansas City groups have been undertaken in order to improve the geologic characterization of petroleum reservoirs and to develop a quantitative understanding of the processes responsible for formation of associated depositional sequences. To this end, concepts and methods of sequence stratigraphy are being used to define and interpret the three-dimensional depositional framework of the Kansas City Group. The investigation includes characterization of reservoir rocks in oil fields in western Kansas, description of analog equivalents in near-surface and surface sites in southeastern Kansas, and construction of regional structural and stratigraphic framework to linkmore » the site specific studies. Geologic inverse and simulation models are being developed to integrate quantitative estimates of controls on sedimentation to produce reconstructions of reservoir-bearing strata in an attempt to enhance our ability to predict reservoir characteristics.« less

  13. Using microstructure observations to quantify fracture properties and improve reservoir simulations. Final report, September 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laubach, S.E.; Marrett, R.; Rossen, W.

    The research for this project provides new technology to understand and successfully characterize, predict, and simulate reservoir-scale fractures. Such fractures have worldwide importance because of their influence on successful extraction of resources. The scope of this project includes creation and testing of new methods to measure, interpret, and simulate reservoir fractures that overcome the challenge of inadequate sampling. The key to these methods is the use of microstructures as guides to the attributes of the large fractures that control reservoir behavior. One accomplishment of the project research is a demonstration that these microstructures can be reliably and inexpensively sampled. Specificmore » goals of this project were to: create and test new methods of measuring attributes of reservoir-scale fractures, particularly as fluid conduits, and test the methods on samples from reservoirs; extrapolate structural attributes to the reservoir scale through rigorous mathematical techniques and help build accurate and useful 3-D models of the interwell region; and design new ways to incorporate geological and geophysical information into reservoir simulation and verify the accuracy by comparison with production data. New analytical methods developed in the project are leading to a more realistic characterization of fractured reservoir rocks. Testing diagnostic and predictive approaches was an integral part of the research, and several tests were successfully completed.« less

  14. Modeling dolomitized carbonate-ramp reservoirs: A case study of the Seminole San Andres unit. Part 2 -- Seismic modeling, reservoir geostatistics, and reservoir simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, F.P.; Dai, J.; Kerans, C.

    1998-11-01

    In part 1 of this paper, the authors discussed the rock-fabric/petrophysical classes for dolomitized carbonate-ramp rocks, the effects of rock fabric and pore type on petrophysical properties, petrophysical models for analyzing wireline logs, the critical scales for defining geologic framework, and 3-D geologic modeling. Part 2 focuses on geophysical and engineering characterizations, including seismic modeling, reservoir geostatistics, stochastic modeling, and reservoir simulation. Synthetic seismograms of 30 to 200 Hz were generated to study the level of seismic resolution required to capture the high-frequency geologic features in dolomitized carbonate-ramp reservoirs. Outcrop data were collected to investigate effects of sampling interval andmore » scale-up of block size on geostatistical parameters. Semivariogram analysis of outcrop data showed that the sill of log permeability decreases and the correlation length increases with an increase of horizontal block size. Permeability models were generated using conventional linear interpolation, stochastic realizations without stratigraphic constraints, and stochastic realizations with stratigraphic constraints. Simulations of a fine-scale Lawyer Canyon outcrop model were used to study the factors affecting waterflooding performance. Simulation results show that waterflooding performance depends strongly on the geometry and stacking pattern of the rock-fabric units and on the location of production and injection wells.« less

  15. Characterization of fish assemblages and population structure of freshwater fish in two Tunisian reservoirs: implications for fishery management.

    PubMed

    Mili, Sami; Ennouri, Rym; Dhib, Amel; Laouar, Houcine; Missaoui, Hechmi; Aleya, Lotfi

    2016-06-01

    To monitor and assess the state of Tunisian freshwater fisheries, two surveys were undertaken at Ghezala and Lahjar reservoirs. Samples were taken in April and May 2013, a period when the fish catchability is high. The selected reservoirs have different surface areas and bathymetries. Using multi-mesh gill nets (EN 14575 amended) designed for sampling fish in lakes, standard fishing methods were applied to estimate species composition, abundance, biomass, and size distribution. Four species were caught in the two reservoirs: barbel, mullet, pike-perch, and roach. Fish abundance showed significant change according to sampling sites, depth strata, and the different mesh sizes used. From the reservoir to the tributary, it was concluded that fish biomass distribution was governed by depth and was most abundant in the upper water layers. Species size distribution differed significantly between the two reservoirs, exceeding the length at first maturity. Species composition and abundance were greater in Lahjar reservoir than in Ghezala. Both reservoirs require support actions to improve fish productivity.

  16. Identification and evaluation of fluvial-dominated deltaic (Class 1 oil) reservoirs in Oklahoma. Yearly technical progress report, January 1--December 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankin, C.J.; Banken, M.K.

    The Oklahoma Geological Survey and the University of Oklahoma are engaged in a five-year program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection, evaluation, and distribution of information on all of Oklahoma`s FDD oil reservoirs and the recovery technologies that can be applied to those reservoirs with commercial success. To date, the lead geologists have defined the initial geographic extents of Oklahoma`s FDD plays, and compiled known information about those plays. Nine plays have been defined, all of them Pennsylvanian in age and most from the Cherokeemore » Group. A bibliographic database has been developed to record the literature sources and their related plays. Trend maps are being developed to identify the FDD portions of the relevant reservoirs, through accessing current production databases and through compiling the literature results. A reservoir database system also has been developed, to record specific reservoir data elements that are identified through the literature, and through public and private data sources. The project team is working with the Oklahoma Nomenclature Committee of the Mid-Continent Oil and Gas Association to update oil field boundary definitions in the project area. Also, team members are working with several private companies to develop demonstration reservoirs for the reservoir characterization and simulation activities. All of the information gathered through these efforts will be transferred to the Oklahoma petroleum industry through a series of publications and workshops. Additionally, plans are being developed, and hardware and software resources are being acquired, in preparation for the opening of a publicly-accessible computer users laboratory, one component of the technology transfer program.« less

  17. Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dilley, Lorie M.

    2015-04-13

    The purpose of this project was to: 1) evaluate the relationship between geothermal fluid processes and the compositions of the fluid inclusion gases trapped in the reservoir rocks; and 2) develop methodologies for interpreting fluid inclusion gas data in terms of the chemical, thermal and hydrological properties of geothermal reservoirs. Phase 1 of this project was designed to conduct the following: 1) model the effects of boiling, condensation, conductive cooling and mixing on selected gaseous species; using fluid compositions obtained from geothermal wells, 2) evaluate, using quantitative analyses provided by New Mexico Tech (NMT), how these processes are recorded bymore » fluid inclusions trapped in individual crystals; and 3) determine if the results obtained on individual crystals can be applied to the bulk fluid inclusion analyses determined by Fluid Inclusion Technology (FIT). Our initial studies however, suggested that numerical modeling of the data would be premature. We observed that the gas compositions, determined on bulk and individual samples were not the same as those discharged by the geothermal wells. Gases discharged from geothermal wells are CO 2-rich and contain low concentrations of light gases (i.e. H 2, He, N, Ar, CH4). In contrast many of our samples displayed enrichments in these light gases. Efforts were initiated to evaluate the reasons for the observed gas distributions. As a first step, we examined the potential importance of different reservoir processes using a variety of commonly employed gas ratios (e.g. Giggenbach plots). The second technical target was the development of interpretational methodologies. We have develop methodologies for the interpretation of fluid inclusion gas data, based on the results of Phase 1, geologic interpretation of fluid inclusion data, and integration of the data. These methodologies can be used in conjunction with the relevant geological and hydrological information on the system to create fluid

  18. TEMPORAL AND SPATIAL PATTERNS OF METHANE EMISSIONS FROM A RESERVOIR DRAINING AN AGRICULTURAL WATERSHED

    EPA Science Inventory

    We used multiple approaches to characterize temporal and spatial patterns in methane (CH4) emissions from a mid-latitude reservoir (William H. Harsha Lake, Ohio, USA) draining an agricultural watershed. Weekly to monthly monitoring at six sites in the reservoir during a 13 month...

  19. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    DOE PAGES

    Reagan, Matthew T.; Moridis, George J.; Keen, Noel D.; ...

    2015-04-18

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on twomore » general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.« less

  20. Analysis and reduction of well failures in diatomite reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, L.; Jacobsen, J.; Horsman, J.

    1995-12-31

    Well damage induced by compactable formation deformation has occurred in oil fields in the Gulf of Mexico, the mid-continent region, the North Sea, on-shore Europe, Asia, and South America. The diatomite reservoirs of California are particularly susceptible to compaction due to the very high porosity of the diatomite. In these reservoirs well replacement, lost production and abandonment costs have exceeded $200 million to date. In 1994 alone about 40 wells were damaged. A study is currently underway involving data analysis and 3-D visualization, laboratory testing, and numerical modelling to improve understanding of casing damage due to reservoir compaction and tomore » develop tools and operating strategies to reduce casing damage. The study is focused on the South Belridge field. Results to date show a consistent correlation between failure and structural markers and apparent influence of local production and injection supporting the need for 3-D simulation.« less

  1. Elastic full-waveform inversion and parameterization analysis applied to walk-away vertical seismic profile data for unconventional (heavy oil) reservoir characterization

    NASA Astrophysics Data System (ADS)

    Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu

    2018-03-01

    Seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter tradeoff, arising from the covariance between different physical parameters, which increases nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parameterization and acquisition arrangement. An appropriate choice of model parameterization is critical to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parameterizations in isotropic-elastic FWI with walk-away vertical seismic profile (W-VSP) dataset for unconventional heavy oil reservoir characterization. Six model parameterizations are considered: velocity-density (α, β and ρ΄), modulus-density (κ, μ and ρ), Lamé-density (λ, μ΄ and ρ‴), impedance-density (IP, IS and ρ″), velocity-impedance-I (α΄, β΄ and I_P^'), and velocity-impedance-II (α″, β″ and I_S^'). We begin analyzing the interparameter tradeoff by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. In this paper, we discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter tradeoffs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter tradeoffs for various model parameterizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parameterization, the inverted density

  2. Elastic full-waveform inversion and parameterization analysis applied to walk-away vertical seismic profile data for unconventional (heavy oil) reservoir characterization

    DOE PAGES

    Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu

    2018-03-06

    We report seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter tradeoff, arising from the covariance between different physical parameters, which increases nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parameterization and acquisition arrangement. An appropriate choice of model parameterization is critical to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parameterizations in isotropic-elastic FWI with walk-away vertical seismicmore » profile (W-VSP) dataset for unconventional heavy oil reservoir characterization. Six model parameterizations are considered: velocity-density (α, β and ρ'), modulus-density (κ, μ and ρ), Lamé-density (λ, μ' and ρ'''), impedance-density (IP, IS and ρ''), velocity-impedance-I (α', β' and I' P), and velocity-impedance-II (α'', β'' and I'S). We begin analyzing the interparameter tradeoff by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. In this paper, we discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter tradeoffs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter tradeoffs for various model parameterizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parameterization, the inverted

  3. Elastic full-waveform inversion and parameterization analysis applied to walk-away vertical seismic profile data for unconventional (heavy oil) reservoir characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu

    We report seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter tradeoff, arising from the covariance between different physical parameters, which increases nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parameterization and acquisition arrangement. An appropriate choice of model parameterization is critical to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parameterizations in isotropic-elastic FWI with walk-away vertical seismicmore » profile (W-VSP) dataset for unconventional heavy oil reservoir characterization. Six model parameterizations are considered: velocity-density (α, β and ρ'), modulus-density (κ, μ and ρ), Lamé-density (λ, μ' and ρ'''), impedance-density (IP, IS and ρ''), velocity-impedance-I (α', β' and I' P), and velocity-impedance-II (α'', β'' and I'S). We begin analyzing the interparameter tradeoff by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. In this paper, we discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter tradeoffs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter tradeoffs for various model parameterizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parameterization, the inverted

  4. Elastic full-waveform inversion and parametrization analysis applied to walk-away vertical seismic profile data for unconventional (heavy oil) reservoir characterization

    NASA Astrophysics Data System (ADS)

    Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu

    2018-06-01

    Seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter trade-off, arising from the simultaneous variations of different physical parameters, which increase the nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parametrization and acquisition arrangement. An appropriate choice of model parametrization is important to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parametrizations in isotropic-elastic FWI with walk-away vertical seismic profile (W-VSP) data for unconventional heavy oil reservoir characterization. Six model parametrizations are considered: velocity-density (α, β and ρ΄), modulus-density (κ, μ and ρ), Lamé-density (λ, μ΄ and ρ‴), impedance-density (IP, IS and ρ″), velocity-impedance-I (α΄, β΄ and I_P^' }) and velocity-impedance-II (α″, β″ and I_S^' }). We begin analysing the interparameter trade-off by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. We discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter trade-offs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter trade-offs for various model parametrizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parametrization, the inverted density

  5. Assessing contribution of DOC from sediments to a drinking-water reservoir using optical profiling

    USGS Publications Warehouse

    Downing, Bryan D.; Bergamaschi, Brian A.; Evans, David G.; Boss, Emmanuel

    2008-01-01

    Understanding the sources of dissolved organic carbon (DOC) in drinking-water reservoirs is an important management issue because DOC may form disinfection by-products, interfere with disinfection, or increase treatment costs. DOC may be derived from a host of sources-algal production of DOC in the reservoir, marginal production of DOC from mucks and vascular plants at the margins, and sediments in the reservoir. The purpose of this study was to assess if release of DOC from reservoir sediments containing ferric chloride coagulant was a significant source of DOC to the reservoir. We examined the source-specific contributions of DOC using a profiling system to measure the in situ distribution of optical properties of absorption and fluorescence at various locations in the reservoir. Vertical optical profiles were coupled with discrete water samples measured in the laboratory for DOC concentration and optical properties: absorption spectra and excitation emission matrix spectra (EEMs). Modeling the in situ optical data permitted estimation of the bulk DOC profile in the reservoir as well as separation into source-specific contributions. Analysis of the source-specific profiles and their associated optical characteristics indicated that the sedimentary source of DOC to the reservoir is significant and that this DOC is labile in the reservoir. We conclude that optical profiling is a useful technique for understanding complex biogeochemical processes in a reservoir.

  6. Stratigraphic and structural distribution of reservoirs in Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanescu, M.O.

    1991-08-01

    In Romania, there are reservoirs at different levels of the whole Cambrian-Pliocene interval, but only some of these levels have the favorable structural conditions to accumulate hydrocarbons in commercial quantities. These levels are the Devonian, Triassic, Middle Jurassic, Lower Cretaceous (locally including the uppermost Jurassic), Eocene, Oligocene-lower Miocene, middle and upper Miocene, and Pliocene. The productive reservoirs are represented either by carbonate rocks (in Devonian, Middle Triassic and uppermost Jurassic-Lower Cretaceous) or by detrital rocks (in Lower and Upper Triassic, Middle Jurassic, Eocene, Oligocene, Miocene, and Pliocene). From the structural point of view, the Romanian territory is characterized by themore » coexistence both of platforms (East European, Scythian, and Moesian platforms) and of the strongly tectonized orogenes (North Dobrogea and Carpathian orogenes). Each importance crust shortening was followed by the accumulation of post-tectonic covers, some of them being folded during subsequently tectonic movements. The youngest post-tectonic cover is common both for the platforms (foreland) and Carpathian orogene, representing the Carpathian foredeep. Producing reservoirs are present in the East European and Moesian platforms, in the outer Carpathian units (Tarcau and Marginal folds nappes) and in certain post-tectonic covers which fill the Carpathian foredeep and the Transylvanian and Pannonian basins. In the platforms, hydrocarbons accumulated both in calcareous and detrital reservoirs, whereas in the Carpathian units and in their reservoirs, whereas in the Carpathian units and in their post-tectonic covers, hydrocarbons accumulated only in detrital reservoirs.« less

  7. Sediment-water interactions affecting dissolved-mercury distributions in Camp Far West Reservoir, California

    USGS Publications Warehouse

    Kuwabara, James S.; Alpers, Charles N.; Marvin-DiPasquale, Mark; Topping, Brent R.; Carter, James L.; Stewart, A. Robin; Fend, Steven V.; Parcheso, Francis; Moon, Gerald E.; Krabbenhoft, David P.

    2003-01-01

    Field and laboratory studies were conducted in April and November 2002 to provide the first direct measurements of the benthic flux of dissolved (0.2-micrometer filtered) mercury species (total and methylated forms) between the bottom sediment and water column at three sampling locations within Camp Far West Reservoir, California: one near the Bear River inlet to the reservoir, a second at a mid-reservoir site of comparable depth to the inlet site, and the third at the deepest position in the reservoir near the dam (herein referred to as the inlet, midreservoir and near-dam sites, respectively; Background, Fig. 1). Because of interest in the effects of historic hydraulic mining and ore processing in the Sierra Nevada foothills just upstream of the reservoir, dissolved-mercury species and predominant ligands that often control the mercury speciation (represented by dissolved organic carbon, and sulfides) were the solutes of primary interest. Benthic flux, sometimes referred to as internal recycling, represents the transport of dissolved chemical species between the water column and the underlying sediment. Because of the affinity of mercury to adsorb onto particle surfaces and to form insoluble precipitates (particularly with sulfides), the mass transport of mercury in mining-affected watersheds is typically particle dominated. As these enriched particles accumulate at depositional sites such as reservoirs, benthic processes facilitate the repartitioning, transformation, and transport of mercury in dissolved, biologically reactive forms (dissolved methylmercury being the most bioavailable for trophic transfer). These are the forms of mercury examined in this study. In contrast to typical scientific manuscripts, this report is formatted in a pyramid-like structure to serve the needs of diverse groups who may be interested in reviewing or acquiring information at various levels of technical detail (Appendix 1). The report enables quick transitions between the initial

  8. Laboratory studies of volcanic jets

    NASA Astrophysics Data System (ADS)

    Kieffer, Susan Werner; Sturtevant, Bradford

    1984-09-01

    The study of the fluid dynamics of violent volcanic eruptions by laboratory experiment is described, and the important fluid-dynamic processes that can be examined in laboratory models are discussed in detail. In preliminary experiments, pure gases are erupted from small reservoirs. The gases used are Freon 12 and Freon 22, two gases of high molecular weight and high density that are good analogs of heavy and particulate-laden volcanic gases; nitrogen, a moderate molecular weight, moderate density gas for which the thermodynamic properties are well known; and helium, a low molecular weight, lowdensity gas that is used as a basis for comparison with the behavior of the heavier gases and as an analog of steam, the gas that dominates many volcanic eruptions. Transient jets erupt from the reservoir into the laboratory upon rupture of a thin diaphragm at the exit of a convergent nozzle. The gas accelerates from rest in the reservoir to high velocity in the jet. Reservoir pressures and geometries are such that the fluid velocity in the jets is initially supersonic and later decays to subsonic. The measured reservoir pressure decreases as the fluid expands through repetitively reflecting rarefaction waves, but for the conditions of these experiments, a simple steady-discharge model is sufficient to explain the pressure decay and to predict the duration of the flow. Density variations in the flow field have been visualized with schlieren and shadowgraph photography. The observed structure of the jet is correlated with the measured pressure history. The starting vortex generated when the diaphragm ruptures becomes the head of the jet. Though the exit velocity is sonic, the flow head in the helium jet decelerates to about one-third of sonic velocity in the first few nozzle diameters, the nitrogen head decelerates to about three-fourths of sonic velocity, while Freon maintains nearly sonic velocity. The impulsive acceleration of reservoir fluid into the surrounding atmosphere

  9. AN INTEGRATED APPROACH TO CHARACTERIZING BYPASSED OIL IN HETEROGENEOUS AND FRACTURED RESERVOIRS USING PARTITIONING TRACERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhil Datta-Gupta

    2003-08-01

    We explore the use of efficient streamline-based simulation approaches for modeling partitioning interwell tracer tests in hydrocarbon reservoirs. Specifically, we utilize the unique features of streamline models to develop an efficient approach for interpretation and history matching of field tracer response. A critical aspect here is the underdetermined and highly ill-posed nature of the associated inverse problems. We have adopted an integrated approach whereby we combine data from multiple sources to minimize the uncertainty and non-uniqueness in the interpreted results. For partitioning interwell tracer tests, these are primarily the distribution of reservoir permeability and oil saturation distribution. A novel approachmore » to multiscale data integration using Markov Random Fields (MRF) has been developed to integrate static data sources from the reservoir such as core, well log and 3-D seismic data. We have also explored the use of a finite difference reservoir simulator, UTCHEM, for field-scale design and optimization of partitioning interwell tracer tests. The finite-difference model allows us to include detailed physics associated with reactive tracer transport, particularly those related with transverse and cross-streamline mechanisms. We have investigated the potential use of downhole tracer samplers and also the use of natural tracers for the design of partitioning tracer tests. Finally, the behavior of partitioning tracer tests in fractured reservoirs is investigated using a dual-porosity finite-difference model.« less

  10. Three-dimensional audio-magnetotelluric sounding in monitoring coalbed methane reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Zhao, Shanshan; Hui, Jian; Qin, Qiming

    2017-03-01

    Audio-magnetotelluric (AMT) sounding is widely employed in rapid resistivity delineation of objective geometry in near surface exploration. According to reservoir patterns and electrical parameters obtained in Qinshui Basin, China, two-dimensional and three-dimensional synthetic "objective anomaly" models were designed and inverted with the availability of a modular system for electromagnetic inversion (ModEM). The results revealed that 3-D full impedance inversion yielded the subsurface models closest to synthetic models. One or more conductive targets were correctly recovered. Therefore, conductive aquifers in the study area, including hydrous coalbed methane (CBM) reservoirs, were suggested to be the interpretation signs for reservoir characterization. With the aim of dynamic monitoring of CBM reservoirs, the AMT surveys in continuous years (June 2013-May 2015) were carried out. 3-D inversion results demonstrated that conductive anomalies accumulated around the producing reservoirs at the corresponding depths if CBM reservoirs were in high water production rates. In contrast, smaller conductive anomalies were generally identical with rapid gas production or stopping production of reservoirs. These analyses were in accordance with actual production history of CBM wells. The dynamic traces of conductive anomalies revealed that reservoir water migrated deep or converged in axial parts and wings of folds, which contributed significantly to formations of CBM traps. Then the well spacing scenario was also evaluated based on the dynamic production analysis. Wells distributed near closed faults or flat folds, rather than open faults, had CBM production potential to ascertain stable gas production. Therefore, three-dimensional AMT sounding becomes an attractive option with the ability of dynamic monitoring of CBM reservoirs, and lays a solid foundation of quantitative evaluation of reservoir parameters.

  11. Characterizing High School Students' Written Explanations in Biology Laboratories

    NASA Astrophysics Data System (ADS)

    Peker, Deniz; Wallace, Carolyn S.

    2011-03-01

    The purpose of this qualitative interpretive research study was to examine high school students' written scientific explanations during biology laboratory investigations. Specifically, we characterized the types of epistemologies and forms of reasoning involved in students' scientific explanations and students' perceptions of scientific explanations. Sixteen students from a rural high school in the Southeastern United States were the participants of this research study. The data consisted of students' laboratory reports and individual interviews. The results indicated that students' explanations were primarily based on first-hand knowledge gained in the science laboratories and mostly representing procedural recounts. Most students did not give explanations based on a theory or a principle and did not use deductive reasoning in their explanations. The students had difficulties explaining phenomena that involved intricate cause-effect relationships. Students perceived scientific explanation as the final step of a scientific inquiry and as an account of what happened in the inquiry process, and held a constructivist-empiricist view of scientific explanations. Our results imply the need for more explicit guidance to help students construct better scientific explanations and explicit teaching of the explanatory genre with particular focus on theoretical and causal explanations.

  12. Fluid Pressure Variation in a Sedimentary Geothermal Reservoir in the North German Basin: Case Study Groß Schönebeck

    NASA Astrophysics Data System (ADS)

    Huenges, Ernst; Trautwein, Ute; Legarth, Björn; Zimmermann, Günter

    2006-10-01

    The Rotliegend of the North German basin is the target reservoir of an interdisciplinary investigation program to develop a technology for the generation of geothermal electricity from low-enthalpy reservoirs. An in situ downhole laboratory was established in the 4.3 km deep well Groβ Schönebeck with the purpose of developing appropriate stimulation methods to increase permeability of deep aquifers by enhancing or creating secondary porosity and flow paths. The goal is to learn how to enhance the inflow performance of a well from a variety of rock types in low permeable geothermal reservoirs. A change in effective stress due to fluid pressure was observed to be one of the key parameters influencing flow properties both downhole and in laboratory experiments on reservoir rocks. Fluid pressure variation was induced using proppant-gel-frac techniques as well as waterfrac techniques in several different new experiments in the borehole. A pressure step test indicates generation and extension of multiple fractures with closure pressures between 6 and 8.4 MPa above formation pressure. In a 24-hour production test 859 m3 water was produced from depth indicating an increase of productivity in comparison with former tests. Different depth sections and transmissibility values were observed in the borehole depending on fluid pressure. In addition, laboratory experiments were performed on core samples from the sandstone reservoir under uniaxial strain conditions, i.e., no lateral strain, constant axial load. The experiments on the borehole and the laboratory scale were realized on the same rock types under comparable stress conditions with similar pore pressure variations. Nevertheless, stress dependences of permeability are not easy to compare from scale to scale. Laboratory investigations reflect permeability variations due to microstructural heterogeneities and the behavior in the borehole is dominated by the generation of connections to large-scale structural patterns.

  13. Reservoir analysis of the Palinpinon geothermal field, Negros Oriental, Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amistoso, A.E.; Aquino, B.G.; Aunzo, Z.P.

    1993-10-01

    The Philippine National Oil Company and Lawrence Berkeley Laboratory have conducted an informal cooperative project on the reservoir evaluation of the Palinpinon geothermal field in the Philippines. The work involved the development of various numerical models of the field in order to understand the observed data. A three-dimensional porous medium model of the reservoir has been developed that matches well the observed pressure declines and enthalpy transients of the wells. Submodels representing the reservoir as a fractured porous medium were developed for the analysis of chemical transport of chlorides within the reservoir and the movement of the cold water frontmore » away from injection wells. These models indicate that the effective porosity of the reservoir varies between 1 and 7% and the effective permeability between 1 and 45 millidarcies. The numerical models were used to predict the future performance of the Palinpinon reservoir using various possible exploitation scenarios. A limited number of make-up wells were allocated to each sector of the field. When all the make-up wells had been put on line, power production gradually began to decline. The model indicates that under the assumed conditions it will not be possible to maintain the planned power production of 112.5 MWe at Palinpinon I and 80 MWe at Palinpinon II for the next 30 years, but the decline in power output will be within acceptable normal operating capacities of the plants.« less

  14. Suspended-sediment transport and storage: A demonstration of acoustic methods in the evaluation of reservoir management strategies for a small water-supply reservoir in western Colorado

    USGS Publications Warehouse

    Williams, Cory A.; Richards, Rodney J.; Collins, Kent L.

    2015-01-01

    The U.S. Bureau of Reclamation (USBR) and local stakeholder groups are evaluating reservoir-management strategies within Paonia Reservoir. This small reservoir fills to capacity each spring and requires approximately half of the snowmelt-runoff volume from its sediment-laden source waters, Muddy Creek. The U.S. Geological Survey is currently conducting high-resolution (15-minute data-recording interval) sediment monitoring to characterize incoming and outgoing sediment flux during reservoir operations at two sites on Muddy Creek. The high-resolution monitoring is being used to establish current rates of reservoir sedimentation, support USBR sediment transport and storage models, and assess the viability of water-storage recovery in Paonia Reservoir. These sites are equipped with in situ, single-frequency, side-looking acoustic Doppler current meters in conjunction with turbidity sensors to monitor sediment flux. This project serves as a demonstration of the capability of using surrogate techniques to predict suspended-sediment concentrations in small streams (less than 20 meters in width and 2 meters in depth). These two sites provide the ability to report near real-time suspended-sediment concentrations through the U.S. Geological Survey National Water Information System (NWIS) web interface and National Real-Time Water Quality websites (NRTWQ) to aid in reservoir operations and assessments.

  15. Recycling of Clay Sediments for Geopolymer Binder Production. A New Perspective for Reservoir Management in the Framework of Italian Legislation: The Occhito Reservoir Case Study

    PubMed Central

    Molino, Bruno; De Vincenzo, Annamaria; Ferone, Claudio; Messina, Francesco; Colangelo, Francesco; Cioffi, Raffaele

    2014-01-01

    Reservoir silting is an unavoidable issue. It is estimated that in Italy, the potential rate of silting-up in large reservoirs ranges from 0.1% to 1% in the presence of wooded river basins and intensive agricultural land use, respectively. In medium and small-sized reservoirs, these values vary between 0.3% and 2%. Considering both the types of reservoirs, the annual average loss of storage capacity would be of about 1.59%. In this paper, a management strategy aimed at sediment productive reuse is presented. Particularly, the main engineering outcomes of an extensive experimental program on geopolymer binder synthesis is reported. The case study deals with Occhito reservoir, located in Southern Italy. Clay sediments coming from this silted-up artificial lake were characterized, calcined and activated, by means of a wide set of alkaline activating solutions. The results showed the feasibility of this recovery process, optimizing a few chemical parameters. The possible reuse in building material production (binders, precast concrete, bricks, etc.) represents a relevant sustainable alternative to landfill and other more consolidated practices. PMID:28788149

  16. Recycling of Clay Sediments for Geopolymer Binder Production. A New Perspective for Reservoir Management in the Framework of Italian Legislation: The Occhito Reservoir Case Study.

    PubMed

    Molino, Bruno; De Vincenzo, Annamaria; Ferone, Claudio; Messina, Francesco; Colangelo, Francesco; Cioffi, Raffaele

    2014-07-31

    Reservoir silting is an unavoidable issue. It is estimated that in Italy, the potential rate of silting-up in large reservoirs ranges from 0.1% to 1% in the presence of wooded river basins and intensive agricultural land use, respectively. In medium and small-sized reservoirs, these values vary between 0.3% and 2%. Considering both the types of reservoirs, the annual average loss of storage capacity would be of about 1.59%. In this paper, a management strategy aimed at sediment productive reuse is presented. Particularly, the main engineering outcomes of an extensive experimental program on geopolymer binder synthesis is reported. The case study deals with Occhito reservoir, located in Southern Italy. Clay sediments coming from this silted-up artificial lake were characterized, calcined and activated, by means of a wide set of alkaline activating solutions. The results showed the feasibility of this recovery process, optimizing a few chemical parameters. The possible reuse in building material production (binders, precast concrete, bricks, etc. ) represents a relevant sustainable alternative to landfill and other more consolidated practices.

  17. Pore Characterization of Shale Rock and Shale Interaction with Fluids at Reservoir Pressure-Temperature Conditions Using Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hjelm, R.; Watkins, E.; Xu, H.; Pawar, R.

    2015-12-01

    Oil/gas produced from unconventional reservoirs has become strategically important for the US domestic energy independence. In unconventional realm, hydrocarbons are generated and stored in nanopores media ranging from a few to hundreds of nanometers. Fundamental knowledge of coupled thermo-hydro-mechanical-chemical (THMC) processes that control fluid flow and propagation within nano-pore confinement is critical for maximizing unconventional oil/gas production. The size and confinement of the nanometer pores creates many complex rock-fluid interface interactions. It is imperative to promote innovative experimental studies to decipher physical and chemical processes at the nanopore scale that govern hydrocarbon generation and mass transport of hydrocarbon mixtures in tight shale and other low permeability formations at reservoir pressure-temperature conditions. We have carried out laboratory investigations exploring quantitative relationship between pore characteristics of the Wolfcamp shale from Western Texas and the shale interaction with fluids at reservoir P-T conditions using small-angle neutron scattering (SANS). We have performed SANS measurements of the shale rock in single fluid (e.g., H2O and D2O) and multifluid (CH4/(30% H2O+70% D2O)) systems at various pressures up to 20000 psi and temperature up to 150 oF. Figure 1 shows our SANS data at different pressures with H2O as the pressure medium. Our data analysis using IRENA software suggests that the principal changes of pore volume in the shale occurred on smaller than 50 nm pores and pressure at 5000 psi (Figure 2). Our results also suggest that with increasing P, more water flows into pores; with decreasing P, water is retained in the pores.

  18. Imaging CO2 reservoirs using muons borehole detectors

    NASA Astrophysics Data System (ADS)

    Bonneville, A.; Bonal, N.; Lintereur, A.; Mellors, R. J.; Paulsson, B. N. P.; Rowe, C. A.; Varner, G. S.; Kouzes, R.; Flygare, J.; Mostafanezhad, I.; Yamaoka, J. A. K.; Guardincerri, E.; Chapline, G.

    2016-12-01

    Monitoring of the post-injection fate of CO2 in subsurface reservoirs is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We present a method of 4D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Although muon flux rapidly decreases with depth, preliminary analyses indicate that the muon technique is sufficiently sensitive to effectively map density variations caused by fluid displacement at depths consistent with proposed CO2reservoirs. The intensity of the muon flux is, to first order, inversely proportional to the density times the path length, with resolution increasing with measurement time. The primary technical challenge preventing deployment of this technology in subsurface locations is the lack of miniaturized muon-tracking detectors both capable of fitting in standard boreholes and that will be able to resist the harsh underground conditions (temperature, pressure, corrosion) for long periods of time. Such a detector with these capabilities has been developed through a collaboration supported by the U.S. Department of Energy. A prototype has been tested in underground laboratories during 2016. In particular, we will present results from a series of tests performed in a tunnel comparing efficiencies, and angular and position resolution to measurements collected at the same locations by large instruments developed by Los Alamos and Sandia National Laboratories. We will also present the results of simulations of muon detection for various CO2 reservoir situations and muon detector configurations. Finally, to improve imaging of 3D subsurface structures, a combination of seismic data, gravity data, and muons can be used. Because seismic waves, gravity anomalies, and muons are all sensitive to density, the combination of two or three of these measurements promises to be a powerful way to improve spatial

  19. Applying a probabilistic seismic-petrophysical inversion and two different rock-physics models for reservoir characterization in offshore Nile Delta

    NASA Astrophysics Data System (ADS)

    Aleardi, Mattia

    2018-01-01

    We apply a two-step probabilistic seismic-petrophysical inversion for the characterization of a clastic, gas-saturated, reservoir located in offshore Nile Delta. In particular, we discuss and compare the results obtained when two different rock-physics models (RPMs) are employed in the inversion. The first RPM is an empirical, linear model directly derived from the available well log data by means of an optimization procedure. The second RPM is a theoretical, non-linear model based on the Hertz-Mindlin contact theory. The first step of the inversion procedure is a Bayesian linearized amplitude versus angle (AVA) inversion in which the elastic properties, and the associated uncertainties, are inferred from pre-stack seismic data. The estimated elastic properties constitute the input to the second step that is a probabilistic petrophysical inversion in which we account for the noise contaminating the recorded seismic data and the uncertainties affecting both the derived rock-physics models and the estimated elastic parameters. In particular, a Gaussian mixture a-priori distribution is used to properly take into account the facies-dependent behavior of petrophysical properties, related to the different fluid and rock properties of the different litho-fluid classes. In the synthetic and in the field data tests, the very minor differences between the results obtained by employing the two RPMs, and the good match between the estimated properties and well log information, confirm the applicability of the inversion approach and the suitability of the two different RPMs for reservoir characterization in the investigated area.

  20. Large reservoirs: Chapter 17

    USGS Publications Warehouse

    Miranda, Leandro E.; Bettoli, Phillip William

    2010-01-01

    Large impoundments, defined as those with surface area of 200 ha or greater, are relatively new aquatic ecosystems in the global landscape. They represent important economic and environmental resources that provide benefits such as flood control, hydropower generation, navigation, water supply, commercial and recreational fisheries, and various other recreational and esthetic values. Construction of large impoundments was initially driven by economic needs, and ecological consequences received little consideration. However, in recent decades environmental issues have come to the forefront. In the closing decades of the 20th century societal values began to shift, especially in the developed world. Society is no longer willing to accept environmental damage as an inevitable consequence of human development, and it is now recognized that continued environmental degradation is unsustainable. Consequently, construction of large reservoirs has virtually stopped in North America. Nevertheless, in other parts of the world construction of large reservoirs continues. The emergence of systematic reservoir management in the early 20th century was guided by concepts developed for natural lakes (Miranda 1996). However, we now recognize that reservoirs are different and that reservoirs are not independent aquatic systems inasmuch as they are connected to upstream rivers and streams, the downstream river, other reservoirs in the basin, and the watershed. Reservoir systems exhibit longitudinal patterns both within and among reservoirs. Reservoirs are typically arranged sequentially as elements of an interacting network, filter water collected throughout their watersheds, and form a mosaic of predictable patterns. Traditional approaches to fisheries management such as stocking, regulating harvest, and in-lake habitat management do not always produce desired effects in reservoirs. As a result, managers may expend resources with little benefit to either fish or fishing. Some locally

  1. Characterization of CDOM absorption of reservoirs with its linkage of regions and ages across China.

    PubMed

    Shang, Yingxin; Song, Kaishan; Wen, Zhidan; Lyu, Lili; Zhao, Ying; Fang, Chong; Zhang, Bai

    2018-03-28

    The absorption of chromophoric dissolved organic matter (CDOM) is an important part of light absorptions in aquatic systems. The increasing eutrophication of reservoirs and regional characteristics would affect the CDOM properties sensitively which would be important for the application of remote sensing monitoring. The highest (4.07 ± 2.31 m -1 ) and lowest (0.79 ± 0.67 m -1 ) CDOM concentrations of reservoirs were observed in the northeastern lake region (NER) and Tibetan Plateau lake region (TPR), respectively. The differences between S 275-295 among the five lake regions were significant (p < 0.05) in which the steepest S 275-295 (0.0173 ± 0.0026 nm -1 ) was observed in TPR and the shallowest (0.0326 ± 0.0152 nm -1 ) in Yungui Plateau lake region (YGR). The strong relationships between a CDOM (355) and DOC appeared in the NER (R 2  = 0.43), eastern lake region (EAR) (R 2  = 0.69), Mengxin lake region (MXR) (R 2  = 0.61), and YGR (R 2  = 0.79) which would be a good proxy for DOC in regional reservoirs. Most of all, the correlation between reservoir's establishing time and CDOM absorption under oligotrophic states was relatively strong in the EAR and MXR regions. It indicated that the establishing time of reservoirs affected the CDOM absorption to some extent under the oligotrophic states without much human disturbance. Our results indicate CDOM absorption varies with regions, and the relationships between CDOM and DOC are variable for different regions. Therefore, DOC estimation in reservoirs through CDOM absorption needs to be considered according to lake regions and trophic states.

  2. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport.

    PubMed

    Reagan, Matthew T; Moridis, George J; Keen, Noel D; Johnson, Jeffrey N

    2015-04-01

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes. Short-term leakage fractured reservoirs requires high-permeability pathways Production strategy affects the likelihood and magnitude of gas release Gas release is likely short-term, without additional driving forces.

  3. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    PubMed Central

    Reagan, Matthew T; Moridis, George J; Keen, Noel D; Johnson, Jeffrey N

    2015-01-01

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes. Key Points: Short-term leakage fractured reservoirs requires high-permeability pathways Production strategy affects the likelihood and magnitude of gas release Gas release is likely short-term, without additional driving forces PMID

  4. TEMPORAL AND SPATIAL PATTERNS OF METHANE EMISSIONS FROM A RESERVOIR DRAINING AN AGRICULTURAL WATERSHED (abstract)

    EPA Science Inventory

    We used multiple approaches to characterize temporal and spatial patterns in methane (CH4) emissions from a mid-latitude reservoir (William H. Harsha Lake, Ohio, USA) draining an agricultural watershed. Weekly to monthly monitoring at six sites in the reservoir during a 13 month...

  5. Nutrient dynamics in five off-stream reservoirs in the lower South Platte River basin, March-September 1995

    USGS Publications Warehouse

    Sprague, Lori A.

    2002-01-01

    In 1995, the U.S. Geological Survey conducted a study to characterize nutrient concentrations in five off-stream reservoirs in the lower South Platte River Basin?Riverside, Jackson, Prewitt, North Sterling, and Julesburg. These reservoirs are critical sources of irrigation water for agricultural areas, and several also are used for fishing, boating, swimming, hunting, and camping. Data collected for this study include depth profiles of water temperature, dissolved oxygen, pH, and specific conductance; nutrient species concentrations in the water column, bottom sediment, and inflow and outflow canals; and chlorophyll-a concentrations in the water column. Data were collected during the irrigation season from March through September 1995 at five sites each in Riverside, Jackson, Prewitt, and Julesburg Reservoirs and at six sites in North Sterling Reservoir. The five reservoirs studied are located in similar geographic, climatic, and land-use areas and, as a result, have a number of similarities in their internal nutrient dynamics. Nitrogen concentrations in the reservoirs were highest in March and decreased through September as a result of dilution from river inflows and biological activity. From March through June, decreases in nitrogen concentrations in the river and biological activity contributed to decreases in reservoir concentrations. From July through September, inflows from the river were cut off, and biological activity in the reservoirs led to further decreases in nitrate concentrations, which fell to near or below detectable levels. Phosphorus concentrations in the reservoirs did not show the same consistent decrease from March through September. Phosphorus likely was recycled continuously back to algae during the study period through processes such as excretion from fish, decay of aquatic plants and animals, and release of orthophosphate from bottom sediment during periods of low oxygen. With the exception of phosphorus in Jackson Reservoir, the

  6. Seismic modeling of complex stratified reservoirs

    NASA Astrophysics Data System (ADS)

    Lai, Hung-Liang

    Turbidite reservoirs in deep-water depositional systems, such as the oil fields in the offshore Gulf of Mexico and North Sea, are becoming an important exploration target in the petroleum industry. Accurate seismic reservoir characterization, however, is complicated by the heterogeneous of the sand and shale distribution and also by the lack of resolution when imaging thin channel deposits. Amplitude variation with offset (AVO) is a very important technique that is widely applied to locate hydrocarbons. Inaccurate estimates of seismic reflection amplitudes may result in misleading interpretations because of these problems in application to turbidite reservoirs. Therefore, an efficient, accurate, and robust method of modeling seismic responses for such complex reservoirs is crucial and necessary to reduce exploration risk. A fast and accurate approach generating synthetic seismograms for such reservoir models combines wavefront construction ray tracing with composite reflection coefficients in a hybrid modeling algorithm. The wavefront construction approach is a modern, fast implementation of ray tracing that I have extended to model quasi-shear wave propagation in anisotropic media. Composite reflection coefficients, which are computed using propagator matrix methods, provide the exact seismic reflection amplitude for a stratified reservoir model. This is a distinct improvement over conventional AVO analysis based on a model with only two homogeneous half spaces. I combine the two methods to compute synthetic seismograms for test models of turbidite reservoirs in the Ursa field, Gulf of Mexico, validating the new results against exact calculations using the discrete wavenumber method. The new method, however, can also be used to generate synthetic seismograms for the laterally heterogeneous, complex stratified reservoir models. The results show important frequency dependence that may be useful for exploration. Because turbidite channel systems often display complex

  7. A physical model study of converted wave amplitude variation in a reservoir of systematically aligned vertical fractures

    NASA Astrophysics Data System (ADS)

    Chang, C.; Sun, L.; Lin, C.; Chang, Y.; Tseng, P.

    2013-12-01

    The existence of fractures not only provides spaces for the residence of oils and gases reside, but it also creates pathways for migration. Characterizing a fractured reservoir thus becomes an important subject and has been widely studied by exploration geophysicists and drilling engineers. In seismic anisotropy, a reservoir of systematically aligned vertical fractures (SAVF) is often treated as a transversely isotropic medium (TIM) with a horizontal axis of symmetry (HTI). Subjecting to HTI, physical properties vary in azimuth. P-wave reflection amplitude, which is susceptible to vary in azimuth, is one of the most popular seismic attributes which is widely used to delineate the fracture strike of an SAVF reservoir. Instead of going further on analyzing P-wave signatures, in this study, we focused on evaluating the feasibility of orienting the fracture strike of an SAVF reservoir using converted (C-) wave amplitude. For a C-wave is initiated by a downward traveling P-wave that is converted on reflection to an upcoming S-wave; the behaviors of both P- and S-waves should be theoretically woven in a C-wave. In our laboratory work, finite offset reflection experiments were carried out on the azimuthal plane of a HTI model at two different offset intervals. To demonstrate the azimuthal variation of C-wave amplitude in a HTI model, reflections were acquired along the principal symmetry directions and the diagonal direction of the HTI model. Inheriting from phenomenon of S-wave splitting in a transversely isotropic medium (TIM), P-waves get converted into both the fast (S1) and slow (S2) shear modes at all azimuths outside the vertical symmetry planes, thus producing split PS-waves (PS1 and PS2). In our laboratory data, the converted PS1- (C1-) wave were observed and identified. As the azimuth varies from the strike direction to the strike normal, C1-wave amplitude exhibits itself in a way of weakening and can be view from the common-reflection-point (CRP) gathers

  8. Borehole Tool for the Comprehensive Characterization of Hydrate-bearing Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Sheng; Santamarina, J. Carlos

    Reservoir characterization and simulation require reliable parameters to anticipate hydrate deposits responses and production rates. The acquisition of the required fundamental properties currently relies on wireline logging, pressure core testing, and/or laboratory observations of synthesized specimens, which are challenged by testing capabilities and innate sampling disturbances. The project reviews hydrate-bearing sediments, properties, and inherent sampling effects, albeit lessen with the developments in pressure core technology, in order to develop robust correlations with index parameters. The resulting information is incorporated into a tool for optimal field characterization and parameter selection with uncertainty analyses. Ultimately, the project develops a borehole tool formore » the comprehensive characterization of hydrate-bearing sediments at in situ, with the design recognizing past developments and characterization experience and benefited from the inspiration of nature and sensor miniaturization.« less

  9. Modeling a distributed environment for a petroleum reservoir engineering application with software product line

    NASA Astrophysics Data System (ADS)

    de Faria Scheidt, Rafael; Vilain, Patrícia; Dantas, M. A. R.

    2014-10-01

    Petroleum reservoir engineering is a complex and interesting field that requires large amount of computational facilities to achieve successful results. Usually, software environments for this field are developed without taking care out of possible interactions and extensibilities required by reservoir engineers. In this paper, we present a research work which it is characterized by the design and implementation based on a software product line model for a real distributed reservoir engineering environment. Experimental results indicate successfully the utilization of this approach for the design of distributed software architecture. In addition, all components from the proposal provided greater visibility of the organization and processes for the reservoir engineers.

  10. INTEGRATED LABORATORY AND FIELD CHARACTERIZATION OF ORGANIC CARBON IN PM 2.5 FORMED THROUGH CHEMICAL REACTIONS

    EPA Science Inventory

    An integrated laboratory and field research program is underway at the National Exposure Research Laboratory (NERL) to characterize organic carbon in PM2.5 (particulate matter) formed through chemical reactions. Information from this study will provide critical data ne...

  11. A time fractional convection-diffusion equation to model gas transport through heterogeneous soil and gas reservoirs

    NASA Astrophysics Data System (ADS)

    Chang, Ailian; Sun, HongGuang; Zheng, Chunmiao; Lu, Bingqing; Lu, Chengpeng; Ma, Rui; Zhang, Yong

    2018-07-01

    Fractional-derivative models have been developed recently to interpret various hydrologic dynamics, such as dissolved contaminant transport in groundwater. However, they have not been applied to quantify other fluid dynamics, such as gas transport through complex geological media. This study reviewed previous gas transport experiments conducted in laboratory columns and real-world oil-gas reservoirs and found that gas dynamics exhibit typical sub-diffusive behavior characterized by heavy late-time tailing in the gas breakthrough curves (BTCs), which cannot be effectively captured by classical transport models. Numerical tests and field applications of the time fractional convection-diffusion equation (fCDE) have shown that the fCDE model can capture the observed gas BTCs including their apparent positive skewness. Sensitivity analysis further revealed that the three parameters used in the fCDE model, including the time index, the convection velocity, and the diffusion coefficient, play different roles in interpreting the delayed gas transport dynamics. In addition, the model comparison and analysis showed that the time fCDE model is efficient in application. Therefore, the time fractional-derivative models can be conveniently extended to quantify gas transport through natural geological media such as complex oil-gas reservoirs.

  12. A location-based multiple point statistics method: modelling the reservoir with non-stationary characteristics

    NASA Astrophysics Data System (ADS)

    Yin, Yanshu; Feng, Wenjie

    2017-12-01

    In this paper, a location-based multiple point statistics method is developed to model a non-stationary reservoir. The proposed method characterizes the relationship between the sedimentary pattern and the deposit location using the relative central position distance function, which alleviates the requirement that the training image and the simulated grids have the same dimension. The weights in every direction of the distance function can be changed to characterize the reservoir heterogeneity in various directions. The local integral replacements of data events, structured random path, distance tolerance and multi-grid strategy are applied to reproduce the sedimentary patterns and obtain a more realistic result. This method is compared with the traditional Snesim method using a synthesized 3-D training image of Poyang Lake and a reservoir model of Shengli Oilfield in China. The results indicate that the new method can reproduce the non-stationary characteristics better than the traditional method and is more suitable for simulation of delta-front deposits. These results show that the new method is a powerful tool for modelling a reservoir with non-stationary characteristics.

  13. Characterization of Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, H.; Abercromby, K.; Barker, E.; Seitzer, P.; Schildknecht, T.

    2010-01-01

    To better characterize and model optical data acquired from ground-based telescopes, the Optical Measurements Center (OMC) at NASA/JSC attempts to emulate illumination conditions seen in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC uses a 75 Watt Xenon arc lamp as a solar simulator, an SBIG CCD camera with standard Johnson/Bessel filters, and a robotic arm to simulate an object's position and rotation. The laboratory uses known shapes, materials suspected to be consistent with the orbital debris population, and three phase angles to best match the lighting conditions of the telescope based data. The fourteen objects studied in the laboratory are fragments or materials acquired through ground-tests of scaled-model satellites/rocket bodies as well as material samples in more/less "flight-ready" condition. All fragments were measured at 10 increments in a full 360 rotation at 6 , 36 , and 60 phase angles. This paper will investigate published color photometric data for a series of orbital debris targets and compare it to the empirical photometric measurements generated in the OMC. Using the data acquired over specific rotational angles through different filters (B, V, R, I), a color index is acquired (B-R, R-I). Using these values and their associated lightcurves, this laboratory data is compared to observational data obtained on the 1 m telescope of the Astronomical Institute of the University of Bern (AUIB), the 0.9 m operated by the Small- and Medium-Aperture Research Telescope System (SMARTS) Consortium and the Curtis-Schmidt 0.6 m Michigan Orbital Debris Space Debris Telescope both located at Cerro Tololo Inter-American Observatory (CTIO). An empirical based optical characterization model will be presented to provide preliminary correlations between laboratory based and telescope-based data in the context of classification of GEO debris objects.

  14. Biomonitoring of cyanotoxins in two tropical reservoirs by cladoceran toxicity bioassays.

    PubMed

    da S Ferrão-Filho, Aloysio; Soares, Maria Carolina S; de Freitas Magalhães, Valeria; Azevedo, Sandra M F O

    2009-02-01

    This study evaluates the potential for the use of cladocerans in biomonitoring of cyanobacterial toxins. Two zooplankton species (Daphnia gessneri and Moina micrura) were cultivated in the laboratory for use in acute (48 h) and chronic (10 days) bioassays. Water samples were collected from two reservoirs and diluted in mineral water at four concentrations. Survivorship in the acute bioassays was used to calculate LC50, and survivorship and fecundity in chronic bioassays were used to calculate the intrinsic population growth rate (r) and the EC50. Analysis of phytoplankton in the water samples from one reservoir revealed that cyanobacteria were the dominant group, represented by the genera Anabaena, Cylindrospermopsis, and Microcystis. Results of bioassays showed adverse effects including death, paralysis, and reduced population growth rate, generally proportional to the reservoir water concentration. These effects may be related to the presence of cyanobacteria toxins (microcystins or saxitoxins) in the water.

  15. 3D architecture modeling of reservoir compartments in a Shingled Turbidite Reservoir using high-resolution seismic data and sparse well control, example from Mars {open_quotes}Pink{close_quotes} reservoir, Mississippi Canyon Area, Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapin, M.A.; Mahaffie, M.J.; Tiller, G.M.

    1996-12-31

    Economics of most deep-water development projects require large reservoir volumes to be drained with relatively few wells. The presence of reservoir compartments must therefore be detected and planned for in a pre-development stage. We have used 3-D seismic data to constrain large-scale, deterministic reservoir bodies in a 3-D architecture model of Pliocene-turbidite sands of the {open_quotes}E{close_quotes} or {open_quotes}Pink{close_quotes} reservoir, Prospect Mars, Mississippi Canyon Areas 763 and 807, Gulf of Mexico. Reservoir compartmentalization is influenced by stratigraphic shingling, which in turn is caused by low accommodation space predentin the upper portion of a ponded seismic sequence within a salt withdrawal mini-basin.more » The accumulation is limited by updip onlap onto a condensed section marl, and by lateral truncation by a large scale submarine erosion surface. Compartments were suggested by RFT pressure variations and by geochemical analysis of RFT fluid samples. A geological interpretation derived from high-resolution 3-D seismic and three wells was linked to 3-D architecture models through seismic inversion, resulting in a reservoir all available data. Distinguishing subtle stratigraphical shingles from faults was accomplished by detailed, loop-level mapping, and was important to characterize the different types of reservoir compartments. Seismic inversion was used to detune the seismic amplitude, adjust sandbody thickness, and update the rock properties. Recent development wells confirm the architectural style identified. This modeling project illustrates how high-quality seismic data and architecture models can be combined in a pre-development phase of a prospect, in order to optimize well placement.« less

  16. 3D architecture modeling of reservoir compartments in a Shingled Turbidite Reservoir using high-resolution seismic data and sparse well control, example from Mars [open quotes]Pink[close quotes] reservoir, Mississippi Canyon Area, Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapin, M.A.; Mahaffie, M.J.; Tiller, G.M.

    1996-01-01

    Economics of most deep-water development projects require large reservoir volumes to be drained with relatively few wells. The presence of reservoir compartments must therefore be detected and planned for in a pre-development stage. We have used 3-D seismic data to constrain large-scale, deterministic reservoir bodies in a 3-D architecture model of Pliocene-turbidite sands of the [open quotes]E[close quotes] or [open quotes]Pink[close quotes] reservoir, Prospect Mars, Mississippi Canyon Areas 763 and 807, Gulf of Mexico. Reservoir compartmentalization is influenced by stratigraphic shingling, which in turn is caused by low accommodation space predentin the upper portion of a ponded seismic sequence withinmore » a salt withdrawal mini-basin. The accumulation is limited by updip onlap onto a condensed section marl, and by lateral truncation by a large scale submarine erosion surface. Compartments were suggested by RFT pressure variations and by geochemical analysis of RFT fluid samples. A geological interpretation derived from high-resolution 3-D seismic and three wells was linked to 3-D architecture models through seismic inversion, resulting in a reservoir all available data. Distinguishing subtle stratigraphical shingles from faults was accomplished by detailed, loop-level mapping, and was important to characterize the different types of reservoir compartments. Seismic inversion was used to detune the seismic amplitude, adjust sandbody thickness, and update the rock properties. Recent development wells confirm the architectural style identified. This modeling project illustrates how high-quality seismic data and architecture models can be combined in a pre-development phase of a prospect, in order to optimize well placement.« less

  17. Characterization of petroleum reservoirs in the Eocene Green River Formation, Central Uinta Basin, Utah

    USGS Publications Warehouse

    Morgan, C.D.; Bereskin, S.R.

    2003-01-01

    The oil-productive Eocene Green River Formation in the central Uinta Basin of northeastern Utah is divided into five distinct intervals. In stratigraphically ascending order these are: 1) Uteland Butte, 2) Castle Peak, 3) Travis, 4) Monument Butte, and 5) Beluga. The reservoir in the Uteland Butte interval is mainly lacustrine limestone with rare bar sandstone beds, whereas the reservoirs in the other four intervals are mainly channel and lacustrine sandstone beds. The changing depositional environments of Paleocene-Eocene Lake Uinta controlled the characteristics of each interval and the reservoir rock contained within. The Uteland Butte consists of carbonate and rare, thin, shallow-lacustrine sandstone bars deposited during the initial rise of the lake. The Castle Peak interval was deposited during a time of numerous and rapid lake-level fluctuations, which developed a simple drainage pattern across the exposed shallow and gentle shelf with each fall and rise cycle. The Travis interval records a time of active tectonism that created a steeper slope and a pronounced shelf break where thick cut-and-fill valleys developed during lake-level falls and rises. The Monument Butte interval represents a return to a gentle, shallow shelf where channel deposits are stacked in a lowstand delta plain and amalgamated into the most extensive reservoir in the central Uinta Basin. The Beluga interval represents a time of major lake expansion with fewer, less pronounced lake-level falls, resulting in isolated single-storied channel and shallow-bar sandstone deposits.

  18. Appraisal of transport and deformation in shale reservoirs using natural noble gas tracers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heath, Jason E.; Kuhlman, Kristopher L.; Robinson, David G.

    2015-09-01

    This report presents efforts to develop the use of in situ naturally-occurring noble gas tracers to evaluate transport mechanisms and deformation in shale hydrocarbon reservoirs. Noble gases are promising as shale reservoir diagnostic tools due to their sensitivity of transport to: shale pore structure; phase partitioning between groundwater, liquid, and gaseous hydrocarbons; and deformation from hydraulic fracturing. Approximately 1.5-year time-series of wellhead fluid samples were collected from two hydraulically-fractured wells. The noble gas compositions and isotopes suggest a strong signature of atmospheric contribution to the noble gases that mix with deep, old reservoir fluids. Complex mixing and transport of fracturingmore » fluid and reservoir fluids occurs during production. Real-time laboratory measurements were performed on triaxially-deforming shale samples to link deformation behavior, transport, and gas tracer signatures. Finally, we present improved methods for production forecasts that borrow statistical strength from production data of nearby wells to reduce uncertainty in the forecasts.« less

  19. Isolation and characterization of microsatellite markers in Oligoryzomys longicaudatus (Muridae, Sigmodontinae, Oryzomini), the natural reservoir of genotype Andes hantavirus.

    PubMed

    González-Ittig, Raúl E; Salazar-Bravo, Jorge; Polop, Jaime J; Gardenal, Cristina N

    2008-11-01

    The rodent Oligoryzomys longicaudatus or long-tailed pygmy rice rat is the reservoir of the aetiological agent of the hantavirus pulmonary syndrome in southern Argentina and Chile. We characterize 11 polymorphic microsatellite loci which would be useful for studies on microgeographical population structure in the species. Amplification of these loci in 42 individuals from four natural populations revealed four to 21 alleles per locus, and values of observed heterozygosities ranging from 0.371 to 0.896. Cross-species amplifications showed that some of the primers designed may be useful for other species of the genus Oligoryzomys. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.

  20. Impact of Reservoir Operation to the Inflow Flood - a Case Study of Xinfengjiang Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, L.

    2017-12-01

    Building of reservoir shall impact the runoff production and routing characteristics, and changes the flood formation. This impact, called as reservoir flood effect, could be divided into three parts, including routing effect, volume effect and peak flow effect, and must be evaluated in a whole by using hydrological model. After analyzing the reservoir flood formation, the Liuxihe Model for reservoir flood forecasting is proposed. The Xinfengjiang Reservoir is studied as a case. Results show that the routing effect makes peak flow appear 4 to 6 hours in advance, volume effect is bigger for large flood than small one, and when rainfall focus on the reservoir area, this effect also increases peak flow largely, peak flow effect makes peak flow increase 6.63% to 8.95%. Reservoir flood effect is obvious, which have significant impact to reservoir flood. If this effect is not considered in the flood forecasting model, the flood could not be forecasted accurately, particularly the peak flow. Liuxihe Model proposed for Xinfengjiang Reservoir flood forecasting has a good performance, and could be used for real-time flood forecasting of Xinfengjiang Reservoir.Key words: Reservoir flood effect, reservoir flood forecasting, physically based distributed hydrological model, Liuxihe Model, parameter optimization

  1. Quantitative modeling of reservoir-triggered seismicity

    NASA Astrophysics Data System (ADS)

    Hainzl, S.; Catalli, F.; Dahm, T.; Heinicke, J.; Woith, H.

    2017-12-01

    Reservoir-triggered seismicity might occur as the response to the crustal stress caused by the poroelastic response to the weight of the water volume and fluid diffusion. Several cases of high correlations have been found in the past decades. However, crustal stresses might be altered by many other processes such as continuous tectonic stressing and coseismic stress changes. Because reservoir-triggered stresses decay quickly with distance, even tidal or rainfall-triggered stresses might be of similar size at depth. To account for simultaneous stress sources in a physically meaningful way, we apply a seismicity model based on calculated stress changes in the crust and laboratory-derived friction laws. Based on the observed seismicity, the model parameters can be determined by maximum likelihood method. The model leads to quantitative predictions of the variations of seismicity rate in space and time which can be used for hypothesis testing and forecasting. For case studies in Talala (India), Val d'Agri (Italy) and Novy Kostel (Czech Republic), we show the comparison of predicted and observed seismicity, demonstrating the potential and limitations of the approach.

  2. Assessment of conservation practices in the Fort Cobb Reservoir watershed, southwestern Oklahoma

    USGS Publications Warehouse

    Becker, Carol J.

    2011-01-01

    The Fort Cobb Reservoir watershed encompasses about 813 square kilometers of rural farm land in Caddo, Custer, and Washita Counties in southwestern Oklahoma. The Fort Cobb Reservoir and six stream segments were identified on the Oklahoma 1998 303(d) list as not supporting designated beneficial uses because of impairment by nutrients, suspended solids, sedimentation, pesticides, and unknown toxicity. As a result, State and Federal agencies, in collaboration with conservation districts and landowners, started conservation efforts in 2001 to decrease erosion and transport of sediments and nutrients to the reservoir and improve water quality in tributaries. The U.S. Department of Agriculture selected the Fort Cobb Reservoir watershed in 2003 as 1 of 14 benchmark watersheds under the Conservation Effectiveness Assessment Project with the objective of quantifying the environmental benefits derived from agricultural conservation programs in reducing inflows of sediments and phosphorus to the reservoir. In November 2004, the Biologic, Geographic, Geologic, and Water Disciplines of the U.S. Geological Survey, in collaboration with the Agricultural Research Service, Grazinglands Research Laboratory in El Reno, Oklahoma, began an interdisciplinary investigation to produce an integrated publication to complement this program. This publication is a compilation of 10 report chapters describing land uses, soils, geology, climate, and water quality in streams and the reservoir through results of field and remote sensing investigations from 2004 to 2007. The investigations indicated that targeting best-management practices to small intermittent streams draining to the reservoir and to the Cobb Creek subwatershed may effectively augment efforts to improve eutrophic to hypereutrophic conditions that continue to affect the reservoir. The three major streams flowing into the reservoir contribute nutrients causing eutrophication, but minor streams draining cultivated fields near the

  3. Geoengineering characterization of welded tuffs from laboratory and field investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, R.M.; Nimick, F.B.; Board, M.P.

    1984-12-31

    Welded tuff beneath Yucca Mountain adjacent to the Nevada Test Site (NTS) is being considered for development as a high-level radioactive waste repository by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Because access into Yucca Mountain has been limited to borehole explorations, early geoengineering materials characterizations have been derived from laboratory tests on cores from Yucca Mountain and from laboratory and field tests on welded tuffs located in G-Tunnel on the NTS. G-Tunnel contains welded tuffs that have similar properties and stress states to those at Yucca Mountain and has been the location for in situ rock mechanics testing.more » The purpose of this paper is to summarize the geoengineering material property data obtained to date and to compare appropriate laboratory and field data from G-Tunnel to findings from Yucca Mountain. Geomechanical and thermal data are provided and are augmented by limited geological and hydrological data. A comparison of results of laboratory measurements on tuffs from Yucca Mountain and G-Tunnel indicates good agreement between the bulk densities, saturations, moduli of elasticity, Poisson`s ratios, and P-wave velocities. The G-Tunnel tuff has slightly lower thermal conductivity, tensile strength, compressive strength and slightly higher matrix permeability than does the welded tuff near the proposed repository horizon at Yucca Mountain. From a laboratory-to-field scaling perspective, the modulus of deformation shows the most sensitivity to field conditions because of the presence of the joints found in the field. 14 references, 1 table.« less

  4. Geoengineering characterization of welded tuffs from laboratory and field investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, R.M.; Nimick, F.B.; Board, M.P.

    1984-12-31

    Welded tuff beneath Yucca Mountain adjacent to the Nevada Test Site (NTS) is being considered for development as a high-level radioactive waste repository by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Because access into Yucca Mountain has been limited to borehole explorations, early geoengineering materials characterizations have been derived from laboratory tests on cores from Yucca Mountain and from laboratory and field tests on welded tuffs located in G-Tunnel on the NTS. G-Tunnel contains welded tuffs that have similar properties and stress states to those at Yucca Mountain and has been the location for in situ rock mechanics testing.more » The purpose of this paper is to summarize the geoengineering material property data obtained to date and to compare appropriate laboratory and field data from G-Tunnel to findings from Yucca Mountain. Geomechanical and thermal data are provided and are augmented by limited geological and hydrological data. A comparison of results of laboratory measurements on tuffs from Yucca Mountain and G-Tunnel indicates good agreement between the bulk densities, saturations, moduli of elasticity, Poisson`s ratios, and P-wave velocities. The G-Tunnel tuff has slightly lower thermal conductivity, tensile strength, compressive strength and slightly higher matrix permeability than does the welded tuff near the proposed repository horizon at Yucca Mountain. From a laboratory-to-field scaling perspective, the modulus of deformation shows the most sensitivity to field conditions because of the presence of joints found in the field. 14 refs., 1 tab.« less

  5. CHARACTERIZATION OF SANDSTONE RESERVOIRS FOR ENHANCED OIL RECOVERY: THE PERMIAN UPPER MINNELUSA FORMATION, POWDER RIVER BASIN, WYOMING.

    USGS Publications Warehouse

    Schenk, C.J.; Schmoker, J.W.; Scheffler, J.M.

    1986-01-01

    Upper Minnelusa sandstones form a complex group of reservoirs because of variations in regional setting, sedimentology, and diagenetic alteration. Structural lineaments separate the reservoirs into northern and southern zones. Production in the north is from a single pay sand, and in the south from multi-pay sands due to differential erosion on top of the Upper Minnelusa. The intercalation of eolian dune, interdune, and sabkha sandstones with marine sandstones, carbonates, and anhydrites results in significant reservoir heterogeneity. Diagenetic alterations further enhance heterogeneity, because the degree of cementation and dissolution is partly facies-related.

  6. Method for determining formation quality factor from well log data and its application to seismic reservoir characterization

    DOEpatents

    Walls, Joel; Taner, M. Turhan; Dvorkin, Jack

    2006-08-08

    A method for seismic characterization of subsurface Earth formations includes determining at least one of compressional velocity and shear velocity, and determining reservoir parameters of subsurface Earth formations, at least including density, from data obtained from a wellbore penetrating the formations. A quality factor for the subsurface formations is calculated from the velocity, the density and the water saturation. A synthetic seismogram is calculated from the calculated quality factor and from the velocity and density. The synthetic seismogram is compared to a seismic survey made in the vicinity of the wellbore. At least one parameter is adjusted. The synthetic seismogram is recalculated using the adjusted parameter, and the adjusting, recalculating and comparing are repeated until a difference between the synthetic seismogram and the seismic survey falls below a selected threshold.

  7. Enhancement of seismic monitoring in hydrocarbon reservoirs

    NASA Astrophysics Data System (ADS)

    Caffagni, Enrico; Bokelmann, Götz

    2017-04-01

    Hydraulic Fracturing (HF) is widely considered as one of the most significant enablers of the successful exploitation of hydrocarbons in North America. Massive usage of HF is currently adopted to increase the permeability in shale and tight-sand deep reservoirs, despite the economical downturn. The exploitation success is less due to the subsurface geology, but in technology that improves exploration, production, and decision-making. This includes monitoring of the reservoir, which is vital. Indeed, the general mindset in the industry is to keep enhancing seismic monitoring. It allows understanding and tracking processes in hydrocarbon reservoirs, which serves two purposes, a) to optimize recovery, and b) to help minimize environmental impact. This raises the question of how monitoring, and especially seismic techniques could be more efficient. There is a pressing demand from seismic service industry to evolve quickly and to meet the oil-gas industry's changing needs. Nonetheless, the innovative monitoring techniques, to achieve the purpose, must enhance the characterization or the visualization of a superior-quality images of the reservoir. We discuss recent applications of seismic monitoring in hydrocarbon reservoirs, detailing potential enhancement and eventual limitations. The aim is to test the validity of these seismic monitoring techniques, qualitatively discuss their potential application to energy fields that are not only limited to HF. Outcomes from our investigation may benefit operators and regulators in case of future massive HF applications in Europe, as well. This work is part of the FracRisk consortium (www.fracrisk.eu), funded by the Horizon2020 research programme, whose aims is to help minimize the environmental footprint of the shale-gas exploration and exploitation.

  8. Joint Stochastic Inversion of Pre-Stack 3D Seismic Data and Well Logs for High Resolution Hydrocarbon Reservoir Characterization

    NASA Astrophysics Data System (ADS)

    Torres-Verdin, C.

    2007-05-01

    This paper describes the successful implementation of a new 3D AVA stochastic inversion algorithm to quantitatively integrate pre-stack seismic amplitude data and well logs. The stochastic inversion algorithm is used to characterize flow units of a deepwater reservoir located in the central Gulf of Mexico. Conventional fluid/lithology sensitivity analysis indicates that the shale/sand interface represented by the top of the hydrocarbon-bearing turbidite deposits generates typical Class III AVA responses. On the other hand, layer- dependent Biot-Gassmann analysis shows significant sensitivity of the P-wave velocity and density to fluid substitution. Accordingly, AVA stochastic inversion, which combines the advantages of AVA analysis with those of geostatistical inversion, provided quantitative information about the lateral continuity of the turbidite reservoirs based on the interpretation of inverted acoustic properties (P-velocity, S-velocity, density), and lithotype (sand- shale) distributions. The quantitative use of rock/fluid information through AVA seismic amplitude data, coupled with the implementation of co-simulation via lithotype-dependent multidimensional joint probability distributions of acoustic/petrophysical properties, yields accurate 3D models of petrophysical properties such as porosity and permeability. Finally, by fully integrating pre-stack seismic amplitude data and well logs, the vertical resolution of inverted products is higher than that of deterministic inversions methods.

  9. A chemical EOR benchmark study of different reservoir simulators

    NASA Astrophysics Data System (ADS)

    Goudarzi, Ali; Delshad, Mojdeh; Sepehrnoori, Kamy

    2016-09-01

    Interest in chemical EOR processes has intensified in recent years due to the advancements in chemical formulations and injection techniques. Injecting Polymer (P), surfactant/polymer (SP), and alkaline/surfactant/polymer (ASP) are techniques for improving sweep and displacement efficiencies with the aim of improving oil production in both secondary and tertiary floods. There has been great interest in chemical flooding recently for different challenging situations. These include high temperature reservoirs, formations with extreme salinity and hardness, naturally fractured carbonates, and sandstone reservoirs with heavy and viscous crude oils. More oil reservoirs are reaching maturity where secondary polymer floods and tertiary surfactant methods have become increasingly important. This significance has added to the industry's interest in using reservoir simulators as tools for reservoir evaluation and management to minimize costs and increase the process efficiency. Reservoir simulators with special features are needed to represent coupled chemical and physical processes present in chemical EOR processes. The simulators need to be first validated against well controlled lab and pilot scale experiments to reliably predict the full field implementations. The available data from laboratory scale include 1) phase behavior and rheological data; and 2) results of secondary and tertiary coreflood experiments for P, SP, and ASP floods under reservoir conditions, i.e. chemical retentions, pressure drop, and oil recovery. Data collected from corefloods are used as benchmark tests comparing numerical reservoir simulators with chemical EOR modeling capabilities such as STARS of CMG, ECLIPSE-100 of Schlumberger, REVEAL of Petroleum Experts. The research UTCHEM simulator from The University of Texas at Austin is also included since it has been the benchmark for chemical flooding simulation for over 25 years. The results of this benchmark comparison will be utilized to improve

  10. Effects of water-supply reservoirs on streamflow in Massachusetts

    USGS Publications Warehouse

    Levin, Sara B.

    2016-10-06

    reservoir simulation tool was used to simulate 35 single- and multiple-reservoir systems in Massachusetts over a 44-year period (water years 1961 to 2004) under two water-use scenarios. The no-pumping scenario assumes no water withdrawal pumping, and the pumping scenario incorporates average annual pumping rates from 2000 to 2004. By comparing the results of the two scenarios, the total streamflow alteration can be parsed into the portion of streamflow alteration caused by the presence of a reservoir and the additional streamflow alteration caused by the level of water use of the system.For each reservoir system, the following metrics were computed to characterize the frequency, duration, and magnitude of reservoir outflow volumes compared with unaltered streamflow conditions: (1) the median number of days per year in which the reservoir did not spill, (2) the median duration of the longest consecutive period of no-spill days per year, and (3) the lowest annual flow duration exceedance probability at which the outflows are significantly different from estimated unaltered streamflow at the 95-percent confidence level. Most reservoirs in the study do not spill during the summer months even under no-pumping conditions. The median number of days during which there was no spillage was less than 365 for all reservoirs in the study, indicating that, even under reported pumping conditions, the reservoirs refill to full volume and spill at least once during nondrought years, typically in the spring.Thirteen multiple-reservoir systems consisting of two or three hydrologically connected reservoirs were included in the study. Because operating rules used to manage multiple-reservoir systems are not available, these systems were simulated under two pumping scenarios, one in which water transfers between reservoirs are minimal and one in which reservoirs continually transferred water to intermediate or terminal reservoirs. These two scenarios provided upper and lower estimates of

  11. Reservoirs in the United States

    USGS Publications Warehouse

    Thomas, N.O.; Harbeck, G. Earl

    1956-01-01

    Reservoir storage facilities in the United States play an important part in the national economy. Storage facilities have enabled the country to utilize to a much fuller extent one of the most valuable natural resources: water. During recent years the construction of reservoirs has continued at a high rate. This report shows the status of these facilities on January 1, 1954, and describes briefly some of the reasons for growth of reservoir facilities in the United States. Descriptive data are given for reservoirs having a capacity of 5, 000 acre-feet or more and for natural lakes having a usable capacity of 5,000 acre-feet or more. Included are reservoirs and lakes completed as of January 1, 1954, and reservoirs under construction on that date. The total number of such reservoirs and lakes is 1, 300. A descriptive list of reservoirs in the United States was first published by the United States Geological Survey in March 1948. That report, Geological Survey Circular 23, entitled Reservoirs in the United States, included reservoirs completed as of January 1, 1947. Since January 1, 1947, reservoirs representing a total usable capacity of 115,000,000 acre-feet, or an increase of 71 percent, have been constructed or are under construction. Data about these new reservoirs are presented herein, and the data shown for reservoirs constructed before 1947 have been corrected on the basis of the latest available survey to determine reservoir capacity. The total usable capacity of reservoirs and lakes included in this compilation amounts to 278, 120, 000 acre-feet, and the corresponding surface area totals 11, 046, 000 acres.

  12. Forecast on Water Locking Damage of Low Permeable Reservoir with Quantum Neural Network

    NASA Astrophysics Data System (ADS)

    Zhao, Jingyuan; Sun, Yuxue; Feng, Fuping; Zhao, Fulei; Sui, Dianjie; Xu, Jianjun

    2018-01-01

    It is of great importance in oil-gas reservoir protection to timely and correctly forecast the water locking damage, the greatest damage for low permeable reservoir. An analysis is conducted on the production mechanism and various influence factors of water locking damage, based on which a quantum neuron is constructed based on the information processing manner of a biological neuron and the principle of quantum neural algorithm, besides, the quantum neural network model forecasting the water locking of the reservoir is established and related software is also made to forecast the water locking damage of the gas reservoir. This method has overcome the defects of grey correlation analysis that requires evaluation matrix analysis and complicated operation. According to the practice in Longxi Area of Daqing Oilfield, this method is characterized by fast operation, few system parameters and high accuracy rate (the general incidence rate may reach 90%), which can provide reliable support for the protection technique of low permeable reservoir.

  13. Characterization of heterogeneities from core X-ray scans and borehole wall images in a reefal carbonate reservoir: influence on the porosity structure.

    NASA Astrophysics Data System (ADS)

    Hebert, V.; Garing, C.; Pezard, P. A.; Gouze, P.; Maria-Sube, Y.; Camoin, G.; Lapointe, P.

    2009-04-01

    Petrophysical properties of rocks can be largely influenced by heterogeneities. This is particularly true in reefal carbonates, with heterogeneities due to the primary structure of the reef, the degradation of that structure into a fossil form, and fluid circulations with associated dissolutions and recrystallization. We report here a study conducted on Miocene reefal carbonates drilled in the context of salt water intrusion in coastal reservoirs. Salt water intrusion along coastlines is highly influenced by geological and petrophysical structures. In particular, heterogeneities and anisotropy in porous media (karsts, vugs…) control fluid flow and dispersion. A new experimental site has been developed in the South East of Mallorca Island (Spain) in the context of the ALIANCE EC project (2002-2005). This project aimed at developing a strategy for the quantitative analysis and description of fluid flow and salt transport in coastal carbonate aquifers. The site drilled the Miocene carbonate reef platform at Ses Sitjoles, 6 km inland, near the city of Campos. Sea water is found there at 60 to 80 m depth. The geological structure present multi-scale heterogeneities, often bound to either lateral variations of geological facies, or dissolution patterns. The Campos site provides a unique laboratory to study the heterogeneities of carbonate rocks with a saltwater intrusion and develop new borehole investigation methods in this context. The present study focuses on borehole geophysical measurements and images, and core scans. New image analysis methods have been developed to better characterize the presence of heterogeneities in terms of grain-size distribution, formation factor changes and porosity. Cores scans from RX tomography can lead to the extraction of petrophysical parameters from 3D images. For this, the AVIZO software was used here to represent the micro-porosity and vuggy porosity structure. Beyond core analyses, the optical and acoustic borehole wall images

  14. Seasonal occurrence and degradation of 2-methylisoborneol in water supply reservoirs.

    PubMed

    Westerhoff, Paul; Rodriguez-Hernandez, M; Baker, Larry; Sommerfeld, Milton

    2005-12-01

    Methylisoborneol (MIB) and geosmin are cyanobacterial metabolites that occur at nanograms per liter levels in surface water supplies and are responsible for many taste and odor complaints about the aesthetics of drinking water. This study evaluated three water supply reservoirs with bottom-release (hypolimnion) outlet structures in Arizona. MIB concentrations were always higher than geosmin concentrations, but both followed similar seasonal trends. MIB concentrations increased from spring to late summer, and stratified vertically with depth in the water column; the highest concentrations were always in the upper 10 m of the water column. Thermal destratification in the autumn increased MIB concentrations released from the outlet of reservoirs and impacted downstream utilities for several months. By winter of each year MIB concentrations were non-detectable. Mass balance analyses on MIB indicated that in-reservoir reactions were more important in changing MIB concentrations than conservative hydraulic "flushing" of the reservoir. Maximum net loss rates for MIB in the field (R(F,max)) were on the order of 0.23-1.7 ng/L-day, and biodegradation appeared more important than volatilization, photolysis or adsorption. Using lake water in laboratory experiments, bacterial biodegradation rates (R(L)) ranged from 0.5-1 ng/L-day and were comparable to R(F,max) values. Based upon these rates, MIB concentrations in a reservoir would decrease by approximately 30 ng/L over a period of 1 month. This was the magnitude change in MIB concentrations commonly observed after autumn thermal destratification of the reservoirs.

  15. Monitoring small reservoirs' storage with satellite remote sensing in inaccessible areas

    NASA Astrophysics Data System (ADS)

    Avisse, Nicolas; Tilmant, Amaury; François Müller, Marc; Zhang, Hua

    2017-12-01

    In river basins with water storage facilities, the availability of regularly updated information on reservoir level and capacity is of paramount importance for the effective management of those systems. However, for the vast majority of reservoirs around the world, storage levels are either not measured or not readily available due to financial, political, or legal considerations. This paper proposes a novel approach using Landsat imagery and digital elevation models (DEMs) to retrieve information on storage variations in any inaccessible region. Unlike existing approaches, the method does not require any in situ measurement and is appropriate for monitoring small, and often undocumented, irrigation reservoirs. It consists of three recovery steps: (i) a 2-D dynamic classification of Landsat spectral band information to quantify the surface area of water, (ii) a statistical correction of DEM data to characterize the topography of each reservoir, and (iii) a 3-D reconstruction algorithm to correct for clouds and Landsat 7 Scan Line Corrector failure. The method is applied to quantify reservoir storage in the Yarmouk basin in southern Syria, where ground monitoring is impeded by the ongoing civil war. It is validated against available in situ measurements in neighbouring Jordanian reservoirs. Coefficients of determination range from 0.69 to 0.84, and the normalized root-mean-square error from 10 to 16 % for storage estimations on six Jordanian reservoirs with maximal water surface areas ranging from 0.59 to 3.79 km2.

  16. Comparative assessment of absolute cardiovascular disease risk characterization from non-laboratory-based risk assessment in South African populations

    PubMed Central

    2013-01-01

    Background All rigorous primary cardiovascular disease (CVD) prevention guidelines recommend absolute CVD risk scores to identify high- and low-risk patients, but laboratory testing can be impractical in low- and middle-income countries. The purpose of this study was to compare the ranking performance of a simple, non-laboratory-based risk score to laboratory-based scores in various South African populations. Methods We calculated and compared 10-year CVD (or coronary heart disease (CHD)) risk for 14,772 adults from thirteen cross-sectional South African populations (data collected from 1987 to 2009). Risk characterization performance for the non-laboratory-based score was assessed by comparing rankings of risk with six laboratory-based scores (three versions of Framingham risk, SCORE for high- and low-risk countries, and CUORE) using Spearman rank correlation and percent of population equivalently characterized as ‘high’ or ‘low’ risk. Total 10-year non-laboratory-based risk of CVD death was also calculated for a representative cross-section from the 1998 South African Demographic Health Survey (DHS, n = 9,379) to estimate the national burden of CVD mortality risk. Results Spearman correlation coefficients for the non-laboratory-based score with the laboratory-based scores ranged from 0.88 to 0.986. Using conventional thresholds for CVD risk (10% to 20% 10-year CVD risk), 90% to 92% of men and 94% to 97% of women were equivalently characterized as ‘high’ or ‘low’ risk using the non-laboratory-based and Framingham (2008) CVD risk score. These results were robust across the six risk scores evaluated and the thirteen cross-sectional datasets, with few exceptions (lower agreement between the non-laboratory-based and Framingham (1991) CHD risk scores). Approximately 18% of adults in the DHS population were characterized as ‘high CVD risk’ (10-year CVD death risk >20%) using the non-laboratory-based score. Conclusions We found a high level of

  17. Seismic profile analysis of sediment deposits in Brownlee and Hells Canyon Reservoirs near Cambridge, Idaho

    USGS Publications Warehouse

    Flocks, James; Kelso, Kyle; Fosness, Ryan; Welcker, Chris

    2014-01-01

    The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center, in cooperation with the USGS Idaho Water Science Center and the Idaho Power Company, collected high-resolution seismic reflection data in the Brownlee and Hells Canyon Reservoirs, in March of 2013.These reservoirs are located along the Snake River, and were constructed in 1958 (Brownlee) and 1967 (Hells Canyon). The purpose of the survey was to gain a better understanding of sediment accumulation within the reservoirs since their construction. The chirp system used in the survey was an EdgeTech Geo-Star Full Spectrum Sub-Bottom (FSSB) system coupled with an SB-424 towfish with a frequency range of 4 to 24 kHz. Approximately 325 kilometers of chirp data were collected, with water depths ranging from 0-90 meters. These reservoirs are characterized by very steep rock valley walls, very low flow rates, and minimal sediment input into the system. Sediments deposited in the reservoirs are characterized as highly fluid clays. Since the acoustic signal was not able to penetrate the rock substrate, only the thin veneer of these recent deposits were imaged. Results from the seismic survey indicate that throughout both of the Brownlee and Hells Canyon reservoirs the accumulation of sediments ranged from 0 to 2.5 m, with an average of 0.5 m. Areas of above average sediment accumulation may be related to lower slope, longer flooding history, and proximity to fluvial sources.

  18. Integrated Sedimentological Approach to Assess Reservoir Quality and Architecture of Khuff Carbonates: Outcrop Analog, Central Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Osman, Mutsim; Abdullatif, Osman

    2017-04-01

    The Permian to Triassic Khuff carbonate reservoirs (and equivalents) in the Middle East are estimated to contain about 38.4% of the world's natural gas reserves. Excellent exposed outcrops in central Saudi Arabia provide good outcrop equivalents to subsurface Khuff reservoirs. This study conduct high resolution outcrop scale investigations on an analog reservoir for upper Khartam of Khuff Formation. The main objective is to reconstruct litho- and chemo- stratigraphic outcrop analog model that may serve to characterize reservoir high resolution (interwell) heterogeneity, continuity and architecture. Given the fact of the limitation of subsurface data and toolsin capturing interwell reservoir heterogeneity, which in turn increases the value of this study.The methods applied integrate sedimentological, stratigraphic petrographic, petrophysical data and chemical analyses for major, trace and rare earth elements. In addition, laser scanning survey (LIDAR) was also utilized in this study. The results of the stratigraphic investigations revealed that the lithofacies range from mudstone, wackestone, packestone and grainstone. These lithofacies represent environments ranging from supratidal, intertidal, subtidal and shoal complex. Several meter-scale and less high resolution sequences and composite sequences within 4th and 5th order cycles were also recognized in the outcrop analog. The lithofacies and architectural analysis revealed several vertically and laterally stacked sequences at the outcrop as revealed from the stratigraphic sections and the lidar scan. Chemostratigraphy is effective in identifying lithofacies and sequences within the outcrop analog. Moreover, different chemical signatures were also recognized and allowed establishing and correlating high resolution lithofacies, reservoir zones, layers and surfaces bounding reservoirs and non-reservoir zones at scale of meters or less. The results of this high resolution outcrop analog study might help to understand

  19. A risk assessment of water salinization during the initial impounding period of a proposed reservoir in Tianjin, China.

    PubMed

    Zhu, Liqin; Jiang, Cuiling; Wang, Youheng; Peng, Yanmei; Zhang, Peng

    2013-09-01

    Water salinization of coastal reservoirs seriously threatens the safety of their water supply. To elucidate the mechanism of salinization and to quantitatively analyze the risk in the initial period of the impoundment of a proposed reservoir in Tianjin Binhai New Area, laboratory and field simulation experiments were implemented and integrated with the actual operation of Beitang Reservoir, which is located in the same region and has been operational for many years. The results suggested that water salinization of the proposed reservoir was mainly governed by soil saline release, evaporation and leakage. Saline release was the prevailing factor in the earlier stage of the impoundment, then the evaporation and leakage effects gradually became notable over time. By referring to the actual case of Beitang Reservoir, it was predicted that the chloride ion (Cl(-)) concentration of the water during the initial impounding period of the proposed reservoir would exceed the standard for quality of drinking water from surface water sources (250 mg L(-1)), and that the proposed reservoir had a high risk of water salinization.

  20. Role of reservoir simulation in development and management of complexly-faulted, multiple-reservoir Dulang field, offshore Malaysia: Holistic strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonrexa, K.; Aziz, A.; Solomon, G.J.

    1995-10-01

    The Dulang field, discovered in 1981, is a major oil filed located offshore Malaysia in the Malay Basin. The Dulang Unit Area constitutes the central part of this exceedingly heterogeneous field. The Unit Area consists of 19 stacked shaly sandstone reservoirs which are divided into about 90 compartments with multiple fluid contacts owing to severe faulting. Current estimated put the Original-Oil-In-Place (OOIP) in the neighborhood of 700 million stock tank barrels (MMSTB). Production commenced in March 1991 and the current production is more than 50,000 barrels of oil per day (BOPD). In addition to other more conventional means, reservoir simulationmore » has been employed form the very start as a vital component of the overall strategy to develop and manage this challenging field. More than 10 modeling studies have been completed by Petronas Carigali Sdn. Bhd. (Carigali) at various times during the short life of this field thus far. To add to that, Esso Production Malaysia Inc. (EPMI) has simultaneously conducted a number of independent studies. These studies have dealt with undersaturated compartments as well as those with small and large gas caps. They have paved the way for improved reservoir characterization, optimum development planning and prudent production practices. This paper discusses the modeling approaches and highlights the crucial role these studies have played on an ongoing basis in the development and management of the complexly-faulted, multi-reservoir Dulang Unit Area.« less

  1. Laboratory investigations of African Pouched Rats (Cricetomys gambianus) as a potential reservoir host species for Monkeypox Virus

    USGS Publications Warehouse

    Hutson, Christina L.; Nakazawa, Yoshinori J.; Self, Joshua; Olson, Victoria A.; Regnery, Russell L.; Braden, Zachary; Weiss, Sonja; Malekani, Jean; Jackson, Eddie; Tate, Mallory; Karem, Kevin L.; Rocke, Tonie E.; Osorio, Jorge E.; Damon, Inger K.; Carroll, Darin S.

    2015-01-01

    Monkeypox is a zoonotic disease endemic to central and western Africa, where it is a major public health concern. Although Monkeypox virus (MPXV) and monkeypox disease in humans have been well characterized, little is known about its natural history, or its maintenance in animal populations of sylvatic reservoir(s). In 2003, several species of rodents imported from Ghana were involved in a monkeypox outbreak in the United States with individuals of three African rodent genera (Cricetomys, Graphiurus, Funisciurus) shown to be infected with MPXV. Here, we examine the course of MPXV infection in Cricetomys gambianus (pouched Gambian rats) and this rodent species’ competence as a host for the virus. We obtained ten Gambian rats from an introduced colony in Grassy Key, Florida and infected eight of these via scarification with a challenge dose of 4X104 plaque forming units (pfu) from either of the two primary clades of MPXV: Congo Basin (C-MPXV: n = 4) or West African (W-MPXV: n = 4); an additional 2 animals served as PBS controls. Viral shedding and the effect of infection on activity and physiological aspects of the animals were measured. MPXV challenged animals had significantly higher core body temperatures, reduced activity and increased weight loss than PBS controls. Viable virus was found in samples taken from animals in both experimental groups (C-MPXV and W-MPXV) between 3 and 27 days post infection (p.i.) (up to 1X108pfu/ml), with viral DNA found until day 56 p.i. The results from this work show that Cricetomys gambianus (and by inference, probably the closely related species, Cricetomys emini) can be infected with MPXV and shed viable virus particles; thus suggesting that these animals may be involved in the maintenance of MPXV in wildlife mammalian populations. More research is needed to elucidate the epidemiology of MPXV and the role of Gambian rats and other species.

  2. Spatial and temporal assessment of the initial pattern of phytoplankton population in a newly built coastal reservoir

    NASA Astrophysics Data System (ADS)

    Ren, Xiangyu; Yang, Kai; Che, Yue; Wang, Mingwei; Zhou, Lili; Chen, Liqiao

    2016-09-01

    For decades, the main threat to the water security of a metropolis, such as the city of Shanghai, has been the rapidly growing demand for water and at the same time, the decrease in water quality, including eutrophication. Therefore Shanghai shifted the preferred freshwater source to the Yangtze Estuary and constructed the Qingcaosha Reservoir, which is subject to less eutrophic water from the Yangtze River. To assess the population of phytoplankton for the first time in the newly built reservoir, this study improved an integrated method to assess the phytoplankton pattern in large-water-area reservoirs and lakes, using partial triadic analysis and Geographic Information Systems. Monthly sampling and monitoring from 10 stations in the reservoir from July 2010 to December 2011 were conducted. The study examined the common pattern of the phytoplankton population structure and determined the differences in the specific composition of the phytoplankton community during the transition period of the reservoir. The results suggest that in all but three sampling stations in the upper parts of Qingcaosha Reservoir, there was a strong common compromise in 2011. The two most important periods occurred from late summer to autumn and from winter to early spring. The former was characterized by the dominance of cyanobacteria, whereas the latter was characterized by the dominance of both chlorophyta and diatoms. Cyanobacteria ( Microcystis spp. as the main genus) were the monopolistic dominant species in the summer after reservoir operation. The statistical analysis also indicated the necessity for regular monitoring to focus on the stations in the lower parts of the reservoir and on several limited species.

  3. Reservoirs override seasonal variability of phytoplankton communities in a regulated Mediterranean river.

    PubMed

    Tornés, E; Pérez, M C; Durán, C; Sabater, S

    2014-03-15

    Water hydrology, temperature and transparency, as well as nutrient retention downstream of the reservoirs alter the temporal and spatial distribution patterns of phytoplankton communities in regulated rivers. The seasonal dynamics of phytoplankton communities in the Ebro was analysed in contrasting water flow periods in sections upstream and downstream of three large reservoirs, as well as in an intermediate site. Phytoplankton communities changed in response to seasonal variations in the areas not influenced by the reservoirs, but the phytoplankton distribution downstream of the reservoirs was driven by their particular hydrodynamics. The change in environmental conditions promoted by reservoirs influenced the pattern of replacement between diatoms and green algae of the upstream section. Differences in the phytoplankton community structure, abundance and environmental variables between upstream and downstream sites were maximal during low flow periods. Chlorophytes and dinoflagellates were present during low flow periods upstream of the reservoirs and in the intermediate site. Cocconeis cf. placentula characterized the downstream section, associated to the presence of macrophytes in that section. The present study sheds light on the consequences of river regulation under potential scenarios of climate change, and results could be used to anticipate ecological problems in large regulated rivers under these circumstances. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Quantifying the clay content with borehole depth and impact on reservoir flow

    NASA Astrophysics Data System (ADS)

    Sarath Kumar, Aaraellu D.; Chattopadhyay, Pallavi B.

    2017-04-01

    This study focuses on the application of reservoir well log data and 3D transient numerical model for proper optimization of flow dynamics and hydrocarbon potential. Fluid flow through porous media depends on clay content that controls porosity, permeability and pore pressure. The pressure dependence of permeability is more pronounced in tight formations. Therefore, preliminary clay concentration analysis and geo-mechanical characterizations have been done by using wells logs. The assumption of a constant permeability for a reservoir is inappropriate and therefore the study deals with impact of permeability variation for pressure-sensitive formation. The study started with obtaining field data from available well logs. Then, the mathematical models are developed to understand the efficient extraction of oil in terms of reservoir architecture, porosity and permeability. The fluid flow simulations have been done using COMSOL Multiphysics Software by choosing time dependent subsurface flow module that is governed by Darcy's law. This study suggests that the reservoir should not be treated as a single homogeneous structure with unique porosity and permeability. The reservoir parameters change with varying clay content and it should be considered for effective planning and extraction of oil. There is an optimum drawdown for maximum production with varying permeability in a reservoir.

  5. Reservoir characterization of the Clough area, Barnett Shale, Wise County, Texas. Topical report, January-July 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, N.C.; Lancaster, D.E.

    1995-07-01

    The objective of this work was to learn more about the reservoir characteristics in the Barnett Shale. Specifically, from an analysis of pressure, production, interference, and fracture treatment data in three Mitchell Energy Corporation Cough area wells, the authors can infer the relationship between the induced hydraulic fractures and the natural fracture system in the reservoir. The authors are learning something about drainage area size, shape, and orientation.

  6. Sudden change of geometric quantum discord in finite temperature reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Ming-Liang, E-mail: mingliang0301@163.com; Sun, Jian

    2015-03-15

    We investigate sudden change (SC) behaviors of the distance-based measures of geometric quantum discords (GQDs) for two non-interacting qubits subject to the two-sided and the one-sided thermal reservoirs. We found that the GQDs defined by different distances exhibit different SCs, and thus the SCs are the combined result of the chosen discord measure and the property of a state. We also found that the thermal reservoir may generate states having different orderings related to different GQDs. These inherent differences of the GQDs reveal that they are incompatible in characterizing quantum correlations both quantitatively and qualitatively. - Highlights: • Comparable studymore » of different distance-based geometric quantum discords. • Evolution of the geometric quantum discords in finite temperature reservoirs. • Different geometric quantum discords exhibit distinct sudden changes. • Nonunique states ordering imposed by different geometric quantum discords.« less

  7. Characterization of water reservoirs affected by acid mine drainage: geochemical, mineralogical, and biological (diatoms) properties of the water.

    PubMed

    Valente, T; Rivera, M J; Almeida, S F P; Delgado, C; Gomes, P; Grande, J A; de la Torre, M L; Santisteban, M

    2016-04-01

    This work presents a combination of geochemical, mineralogical, and biological data obtained in water reservoirs located in one of the most paradigmatic mining regions, suffering from acid mine drainage (AMD) problems: the Iberian Pyrite Belt (IPB). Four water reservoirs located in the Spanish sector of the IBP, storing water for different purposes, were selected to achieve an environmental classification based on the effects of AMD: two mining dams (Gossan and Águas Ácidas), a reservoir for industrial use (Sancho), and one with water used for human supply (Andévalo). The results indicated that the four reservoirs are subject to the effect of metallic loads from polluted rivers, although with different levels: Águas Ácidas > Gossan > Sancho ≥ Andévalo. In accordance, epipsammic diatom communities have differences in the respective composition and dominant taxa. The dominant diatoms in each reservoir indicated acid water: Pinnularia acidophila and Pinnularia aljustrelica were found in the most acidic dams (Gossan and Águas Ácidas, with pH <3), Pinnularia subcapitata in Sancho (pH 2.48-5.82), and Eunotia exigua in Andévalo (pH 2.34-6.15).

  8. A micrometre-sized heat engine operating between bacterial reservoirs

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Sudeesh; Ghosh, Subho; Chatterji, Dipankar; Ganapathy, Rajesh; Sood, A. K.

    2016-12-01

    Artificial microscale heat engines are prototypical models to explore the mechanisms of energy transduction in a fluctuation-dominated regime. The heat engines realized so far on this scale have operated between thermal reservoirs, such that stochastic thermodynamics provides a precise framework for quantifying their performance. It remains to be seen whether these concepts readily carry over to situations where the reservoirs are out of equilibrium, a scenario of particular importance to the functioning of synthetic and biological microscale engines and motors. Here, we experimentally realize a micrometre-sized active Stirling engine by periodically cycling a colloidal particle in a time-varying optical potential across bacterial baths characterized by different degrees of activity. We find that the displacement statistics of the trapped particle becomes increasingly non-Gaussian with activity and contributes substantially to the overall power output and the efficiency. Remarkably, even for engines with the same energy input, differences in non-Gaussianity of reservoir noise results in distinct performances. At high activities, the efficiency of our engines surpasses the equilibrium saturation limit of Stirling efficiency, the maximum efficiency of a Stirling engine where the ratio of cold to hot reservoir temperatures is vanishingly small. Our experiments provide fundamental insights into the functioning of micromotors and engines operating out of equilibrium.

  9. Daily reservoir sedimentation model: Case study from the Fena Valley Reservoir, Guam

    USGS Publications Warehouse

    Marineau, Mathieu D.; Wright, Scott A.

    2017-01-01

    A model to compute reservoir sedimentation rates at daily timescales is presented. The model uses streamflow and sediment load data from nearby stream gauges to obtain an initial estimate of sediment yield for the reservoir’s watershed; it is then calibrated to the total deposition calculated from repeat bathymetric surveys. Long-term changes to reservoir trapping efficiency are also taken into account. The model was applied to the Fena Valley Reservoir, a water supply reservoir on the island of Guam. This reservoir became operational in 1951 and was recently surveyed in 2014. The model results show that the highest rate of deposition occurred during two typhoons (Typhoon Alice in 1953 and Typhoon Tingting in 2004); each storm decreased reservoir capacity by approximately 2–3% in only a few days. The presented model can be used to evaluate the impact of an extreme event, or it can be coupled with a watershed runoff model to evaluate potential impacts to storage capacity as a result of climate change or other hydrologic modifications.

  10. Three types of gas hydrate reservoirs in the Gulf of Mexico identified in LWD data

    USGS Publications Warehouse

    Lee, Myung Woong; Collett, Timothy S.

    2011-01-01

    High quality logging-while-drilling (LWD) well logs were acquired in seven wells drilled during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II in the spring of 2009. These data help to identify three distinct types of gas hydrate reservoirs: isotropic reservoirs in sands, vertical fractured reservoirs in shale, and horizontally layered reservoirs in silty shale. In general, most gas hydratebearing sand reservoirs exhibit isotropic elastic velocities and formation resistivities, and gas hydrate saturations estimated from the P-wave velocity agree well with those from the resistivity. However, in highly gas hydrate-saturated sands, resistivity-derived gas hydrate-saturation estimates appear to be systematically higher by about 5% over those estimated by P-wave velocity, possibly because of the uncertainty associated with the consolidation state of gas hydrate-bearing sands. Small quantities of gas hydrate were observed in vertical fractures in shale. These occurrences are characterized by high formation resistivities with P-wave velocities close to those of water-saturated sediment. Because the formation factor varies significantly with respect to the gas hydrate saturation for vertical fractures at low saturations, an isotropic analysis of formation factor highly overestimates the gas hydrate saturation. Small quantities of gas hydrate in horizontal layers in shale are characterized by moderate increase in P-wave velocities and formation resistivities and either measurement can be used to estimate gas hydrate saturations.

  11. 124. ARAI Reservoir (ARA727), later named water storage tank. Shows ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    124. ARA-I Reservoir (ARA-727), later named water storage tank. Shows plan of 100,000-gallon tank, elevation, image of "danger radiation hazard" sign, and other details. Norman Engineering Company 961-area/SF-727-S-1. Date: January 1959. Ineel index code no. 068-0727-60-613-102779. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  12. Factors controlling reservoir quality in tertiary sandstones and their significance to geopressured geothermal production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loucks, R.G.; Richmann, D.L.; Milliken, K.L.

    1981-01-01

    Variable intensity of diagenesis is the factor primarily responsible for contrasting regional reservoir quality of Tertiary sandstones from the upper and lower Texas coast. Detailed comparison of Frio sandstone from the Chocolate Bayou/Danbury Dome area, Brazoria County, and Vicksburg sandstones from the McAllen Ranch Field area, Hidalgo County, reveals that extent of diagenetic modification is most strongly influenced by (1) detrital mineralogy and (2) regional geothermal gradients. The regional reservoir quality of Frio sandstones from Brazoria County is far better than that characterizing Vicksburg sandstones from Hidalgo County, especially at depths suitable for geopressured geothermal energy production. However, in predictingmore » reservoir quality on a site-specific basis, locally variable factors such as relative proportions for porosity types, pore geometry as related to permeability, and local depositional environment must also be considered. Even in an area of regionally favorable reservoir quality, such local factors can significantly affect reservoir quality and, hence, the geothermal production potential of a specific sandstone unit.« less

  13. High spatial variability of carbon dioxide and methane emission in three tropical reservoirs

    NASA Astrophysics Data System (ADS)

    Reinaldo Paranaiba, José; Barros, Nathan O.; Mendonça, Raquel F.; Linkhorst, Annika; Isidorova, Anastasija; Roland, Fabio; Sobek, Sebastian

    2017-04-01

    In the tropics, many new large hydropower dams are being built, in order to produce renewable energy for economic growth. Most inland waters, such as rivers, lakes and reservoirs, emit greenhouse gases to the atmosphere, and especially tropical reservoirs have been pointed out as strong sources of methane. However, present estimates of greenhouse gas emission from reservoirs are limited by the amount of available data. In particular, the spatial variability of greenhouse gas emission from reservoirs is insufficiently understood. In order to test the hypothesis that the diffusive emission of carbon dioxide (CO2) and methane (CH4) from tropical reservoirs is characterized by strong spatial variability and incorrectly represented by measurements at one site only, we studied three reservoirs situated in different tropical climates, during the dry period. We conducted spatially resolved measurements of surface water concentrations of dissolved carbon dioxide and methane using an on-line equilibration system, as well as of the gas exchange velocity using floating chambers. We found pronounced spatial variability of diffusive CO2 and CH4 emission in all three reservoirs. River inflow areas were more likely to have high concentrations of particularly CH4, but also CO2, than other areas in the reservoirs. Close to the dam, CH4 concentrations were comparatively low in each reservoir. The variability of CH4 concentration was linked to geographical position, which we ascribe to hot spots of methanogenesis at sites of high sediment deposition, such as river inflow areas. The variability of CO2 concentration seemed instead rather to be linked to in-situ metabolism. Also the gas exchange velocity varied pronouncedly in each reservoir, but without any detectable systematic patterns, calling for further studies. We conclude that accurate upscaling of reservoir greenhouse gas emissions requires accounting for within-reservoir spatial variability, and that the anthropogenic increase

  14. Study on fracture identification of shale reservoir based on electrical imaging logging

    NASA Astrophysics Data System (ADS)

    Yu, Zhou; Lai, Fuqiang; Xu, Lei; Liu, Lin; Yu, Tong; Chen, Junyu; Zhu, Yuantong

    2017-05-01

    In recent years, shale gas exploration has made important development, access to a major breakthrough, in which the study of mud shale fractures is extremely important. The development of fractures has an important role in the development of gas reservoirs. Based on the core observation and the analysis of laboratory flakes and laboratory materials, this paper divides the lithology of the shale reservoirs of the XX well in Zhanhua Depression. Based on the response of the mudstone fractures in the logging curve, the fracture development and logging Response to the relationship between the conventional logging and electrical imaging logging to identify the fractures in the work, the final completion of the type of fractures in the area to determine and quantify the calculation of fractures. It is concluded that the fracture type of the study area is high and the microstructures are developed from the analysis of the XX wells in Zhanhua Depression. The shape of the fractures can be clearly seen by imaging logging technology to determine its type.

  15. THM modelling of hydrothermal circulation in deep geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Magnenet, Vincent; Fond, Christophe; Schmittbuhl, Jean; Genter, Albert

    2014-05-01

    Numerous models have been developped for describing deep geothermal reservoirs. Using the opensource finite element software ASTER developped by EDF R&D, we carried out 2D simulations of the hydrothermal circulation in the deep geothermal reservoir of Soultz-sous-Forêts. The model is based on the effective description of Thermo-Hydro-Mechanical (THM) coupling at large scale. Such a model has a fourfold interest: a) the physical integration of laboratory measurements (rock physics), well logging, well head parameters, geological description, and geophysics field measurements; b) the construction of a direct model mechanically based for geophysical inversion: fluid flow, fluid pressure, temperature profile, seismicity monitoring, deformation of the ground surface (INSAR/GPS) related to reservoir modification, gravity or electromagnetic geophysical measurements; c) the sensitivity analysis of the parameters involved in the hydrothermal circulation and identification of the dominant ones; d) the development of a decision tool for drilling planning, stimulation and exploitation. In our model, we introduced extended Thermo-Hydro-Mechanical coupling including not only poro-elastic behavior but also the sensitivity of the fluid density, viscosity, and heat capacity to temperature and pressure. The behavior of solid rock grains is assumed to be thermo-elastic and linear. Hydraulic and thermal phenomena are governed by Darcy and Fourier laws respectively, and most rock properties (like the specific heat at constant stress csσ(T), or the thermal conductivity Λ(T,φ)) are assumed to depend on the temperature T and/or porosity φ. The radioactivity of the rocks is taken into account through a heat source term appearing in the balance equation of enthalpy. To characterize as precisely as possible the convective movement of water and the associated heat flow, water properties (specific mass ρw(T,pw), specific enthalpy hmw(T,pw) dynamic viscosity μw(T), thermal dilation

  16. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watney, W.L.

    1994-12-01

    Reservoirs in the Lansing-Kansas City limestone result from complex interactions among paleotopography (deposition, concurrent structural deformation), sea level, and diagenesis. Analysis of reservoirs and surface and near-surface analogs has led to developing a {open_quotes}strandline grainstone model{close_quotes} in which relative sea-level stabilized during regressions, resulting in accumulation of multiple grainstone buildups along depositional strike. Resulting stratigraphy in these carbonate units are generally predictable correlating to inferred topographic elevation along the shelf. This model is a valuable predictive tool for (1) locating favorable reservoirs for exploration, and (2) anticipating internal properties of the reservoir for field development. Reservoirs in the Lansing-Kansas Citymore » limestones are developed in both oolitic and bioclastic grainstones, however, re-analysis of oomoldic reservoirs provides the greatest opportunity for developing bypassed oil. A new technique, the {open_quotes}Super{close_quotes} Pickett crossplot (formation resistivity vs. porosity) and its use in an integrated petrophysical characterization, has been developed to evaluate extractable oil remaining in these reservoirs. The manual method in combination with 3-D visualization and modeling can help to target production limiting heterogeneities in these complex reservoirs and moreover compute critical parameters for the field such as bulk volume water. Application of this technique indicates that from 6-9 million barrels of Lansing-Kansas City oil remain behind pipe in the Victory-Northeast Lemon Fields. Petroleum geologists are challenged to quantify inferred processes to aid in developing rationale geologically consistent models of sedimentation so that acceptable levels of prediction can be obtained.« less

  17. DebriSat - A Planned Laboratory-Based Satellite Impact Experiment for Breakup Fragment Characterization

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Fitz-Coy, N.; Werremeyer, M.; Huynh, T.; Voelker, M.; Opiela, J.

    2012-01-01

    DebriSat is a planned laboratory ]based satellite hypervelocity impact experiment. The goal of the project is to characterize the orbital debris that would be generated by a hypervelocity collision involving a modern satellite in low Earth orbit (LEO). The DebriSat project will update and expand upon the information obtained in the 1992 Satellite Orbital Debris Characterization Impact Test (SOCIT), which characterized the breakup of a 1960 's US Navy Transit satellite. There are three phases to this project: the design and fabrication of an engineering model representing a modern, 50-cm/50-kg class LEO satellite known as DebriSat; conduction of a laboratory-based hypervelocity impact to catastrophically break up the satellite; and characterization of the properties of breakup fragments down to 2 mm in size. The data obtained, including fragment size, area ]to ]mass ratio, density, shape, material composition, optical properties, and radar cross ]section distributions, will be used to supplement the DoD fs and NASA fs satellite breakup models to better describe the breakup outcome of a modern satellite. Updated breakup models will improve mission planning, environmental models, and event response. The DebriSat project is sponsored by the Air Force fs Space and Missile Systems Center and the NASA Orbital Debris Program Office. The design and fabrication of DebriSat is led by University of Florida with subject matter experts f support from The Aerospace Corporation. The major milestones of the project include the complete fabrication of DebriSat by September 2013, the hypervelocity impact of DebriSat at the Air Force fs Arnold Engineering Development Complex in early 2014, and fragment characterization and data analyses in late 2014.

  18. Geomechanical Behaviors of Laboratory-Formed Non-Cementing Hydrate-Bearing Sediments

    NASA Astrophysics Data System (ADS)

    Seol, Y.

    2015-12-01

    Natural hydrate-bearing sediments (HBS) have been known to exist with non-cementing pore habits, i.e., pore-filling, load-bearing, or patchy type. However, few laboratory studies have been conducted to characterize geomechanical behaviors of non-cementing CH4-HBS, which are of great importance in engineering the process of drilling and gas production in natural hydrate reservoir. In this study, we conducted multi-stage drained triaxial tests on laboratory synthesized CH4-HBS samples, which were formed in sand-clay mixtures (5%wt kaolinite) to have non-cementing habits. Three different effective confining stresses, σ3' = 0.69, 1.38, and 2.76 MPa, were applied on the HBS with the hydrate saturation, Sh, in the range of 0 to ~ 40%. The result confirms that the strength and stiffness of HBS increases with effective confining stress and hydrate saturation. It is also demonstrated that when compared to the cementing HBS, the non-cementing HBS has lower strength and cohesion, owing to less inter-particle adhesion effects from non-cementing hydrate.

  19. Paleogeographic evolution of carbonate reservoirs: geological and geophysical analysis at the Albian Campos Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Castillo Vincentelli, Maria Gabriela; Favoreto, Julia; Roemers-Oliveira, Eduardo

    2018-02-01

    An integrated geophysical and geological analysis of a carbonate reservoir can offer an effective method to better understand the paleogeographical evolution and distribution of a geological reservoir and non-reservoir facies. Therefore, we propose a better method for obtaining geological facies from geophysical facies, helping to characterize the permo-porous system of this kind of play. The goal is to determine the main geological phases from a specific hydrocarbon producer (Albian Campos Basin, Brazil). The applied method includes the use of a petrographic and qualitative description from the integrated reservoir with seismic interpretation of an attribute map (energy, root mean square, mean amplitude, maximum negative amplitude, etc), all calculated at the Albian level for each of the five identified phases. The studied carbonate reservoir is approximately 6 km long with a main direction of NE-SW, and it was sub-divided as follows (from bottom to top): (1) the first depositional sequence of the bank was composed mainly of packstone, indicating that the local structure adjacent to the main bank is protected from environmental conditions; (2) characterized by the presence of grainstone developed at the higher structure; (3) the main sequence of the peloidal packstone with mudstones oncoids; (4) corresponds to the oil production of carbonate reservoirs formed by oolitic grainstone deposited at the top of the carbonate bank; at this phase, rising sea levels formed channels that connected the open sea shelf with the restricted circulation shelf; and (5) mudstone and wackestone represent the system’s flooding phase.

  20. Transit losses and traveltimes of reservoir releases along the Arkansas River from Pueblo Reservoir to John Martin Reservoir, southeastern Colorado

    USGS Publications Warehouse

    Livingston, Russell K.

    1978-01-01

    The need for accurate information regarding the transit losses and traveltimes associated with releases from Pueblo Reservoir has been stimulated by construction of the U.S. Bureau of Reclamation's Fryingpan-Arkansas Project and a proposed winter-water storage program in Pueblo Reservoir. To meet this need, the U.S. Geological Survey, in cooperation with the Southeastern Colorado Water Conservancy District, studied the Arkansas River from Pueblo Reservoir to John Martin Reservoir, a distance of 142 river miles.The volumes of reservoir releases are decreased or delayed during tran-sit by bank storage, channel storage, and evaporation. Results from a com-puter model, calibrated by a controlled-test release from Pueblo Reservoir, indicate transit losses are greatest for small releases of short duration that are made during periods of low antecedent streamflow. For equivalent releases, transit losses during the winter are about 7 percent less than losses during the summer.Based on available streamflow records, the traveltime of reservoir releases in the study reach ranges from about 1.67 hours per mile at the downstream end of the study reach when antecedent streamflow is 10 cubic feet per second, to about 0.146 hour per mile at the upstream end of the study reach when antecedent streamflow is 3,000 cubic feet per second. Consequently, the traveltime of a release increases as antecedent streamflow diminishes.Management practices that may be used to benefit water users in the study area include selection of the optimum time, rate, and duration of a reservoir release to minimize the transit losses, determination of an accurate traveltime, and diversion at several incremental rates.

  1. A Microchip-based Endothelium Mimic Utilizing Open Reservoirs for Cell Immobilization and Integrated Carbon Ink Microelectrodes for Detection

    PubMed Central

    Hulvey, Matthew K; Martin, R. Scott

    2010-01-01

    This paper describes the fabrication and characterization of a microfluidic device that utilizes a reservoir-based approach for endothelial cell immobilization and integrated embedded carbon ink microelectrodes for the amperometric detection of extracellular nitric oxide (NO) release. The design utilizes a buffer channel to continuously introduce buffer or a plug of stimulant to the reservoir as well as a separate sampling channel that constantly withdraws buffer from the reservoir and over the microelectrode. A steel pin is used for both the fluidic connection to the sampling channel and to provide a quasi-reference electrode for the carbon ink microelectrode. Characterization of the device was performed using NO standards produced from a NONOate salt. Finally, NO release from a layer of immobilized endothelial cells was monitored and quantified using the system. This system holds promise as a means to electrochemically detect extracellular NO release from endothelial cells in either an array of reservoirs or concurrently with fluorescence-based intracellular NO measurements. PMID:18989663

  2. Large-band seismic characterization of the INFN Gran Sasso National Laboratory

    NASA Astrophysics Data System (ADS)

    Acernese, F.; Canonico, R.; De Rosa, R.; Giordano, G.; Romano, R.; Barone, F.

    2013-04-01

    In this paper we present the scientific data recorded by tunable mechanical monolithic horizontal seismometers located in the Gran Sasso National Laboratory of the INFN, within thermally insulating enclosures onto concrete slabs connected to the bedrock. The main goals of this long-term large-band measurements are for the seismic characterization of the site in the frequency band 10-6÷10Hz and the acquisition of all the relevant information for the optimization of the sensors.

  3. Spatial Variation in the Invertebrate Macrobenthos of Three Large Missouri River Reservoirs

    EPA Science Inventory

    Benthic macroinvertebrates assemblages are useful indicators of ecological condition for aquatic systems. This study was conducted to characterize benthic communities of three large reservoirs on the Missouri River. The information collected on abundance, distribution and varia...

  4. A rock physics and seismic reservoir characterization study of the Rock Springs Uplift, a carbon dioxide sequestration site in Southwestern Wyoming

    DOE PAGES

    Grana, Dario; Verma, Sumit; Pafeng, Josiane; ...

    2017-06-20

    We present a reservoir geophysics study, including rock physics modeling and seismic inversion, of a carbon dioxide sequestration site in Southwestern Wyoming, namely the Rock Springs Uplift, and build a petrophysical model for the potential injection reservoirs for carbon dioxide sequestration. Our objectives include the facies classification and the estimation of the spatial model of porosity and permeability for two sequestration targets of interest, the Madison Limestone and the Weber Sandstone. The available dataset includes a complete set of well logs at the location of the borehole available in the area, a set of 110 core samples, and a seismicmore » survey acquired in the area around the well. The proposed study includes a formation evaluation analysis and facies classification at the well location, the calibration of a rock physics model to link petrophysical properties and elastic attributes using well log data and core samples, the elastic inversion of the pre-stack seismic data, and the estimation of the reservoir model of facies, porosity and permeability conditioned by seismic inverted elastic attributes and well log data. In particular, the rock physics relations are facies-dependent and include granular media equations for clean and shaley sandstone, and inclusion models for the dolomitized limestone. The permeability model has been computed by applying a facies-dependent porosity-permeability relation calibrated using core sample measurements. Finally, the study shows that both formations show good storage capabilities. The Madison Limestone includes a homogeneous layer of high-porosity high-permeability dolomite; the Weber Sandstone is characterized by a lower average porosity but the layer is thicker than the Madison Limestone.« less

  5. A rock physics and seismic reservoir characterization study of the Rock Springs Uplift, a carbon dioxide sequestration site in Southwestern Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grana, Dario; Verma, Sumit; Pafeng, Josiane

    We present a reservoir geophysics study, including rock physics modeling and seismic inversion, of a carbon dioxide sequestration site in Southwestern Wyoming, namely the Rock Springs Uplift, and build a petrophysical model for the potential injection reservoirs for carbon dioxide sequestration. Our objectives include the facies classification and the estimation of the spatial model of porosity and permeability for two sequestration targets of interest, the Madison Limestone and the Weber Sandstone. The available dataset includes a complete set of well logs at the location of the borehole available in the area, a set of 110 core samples, and a seismicmore » survey acquired in the area around the well. The proposed study includes a formation evaluation analysis and facies classification at the well location, the calibration of a rock physics model to link petrophysical properties and elastic attributes using well log data and core samples, the elastic inversion of the pre-stack seismic data, and the estimation of the reservoir model of facies, porosity and permeability conditioned by seismic inverted elastic attributes and well log data. In particular, the rock physics relations are facies-dependent and include granular media equations for clean and shaley sandstone, and inclusion models for the dolomitized limestone. The permeability model has been computed by applying a facies-dependent porosity-permeability relation calibrated using core sample measurements. Finally, the study shows that both formations show good storage capabilities. The Madison Limestone includes a homogeneous layer of high-porosity high-permeability dolomite; the Weber Sandstone is characterized by a lower average porosity but the layer is thicker than the Madison Limestone.« less

  6. Using synchrotron X-ray microtomography to characterize the pore network of reservoir rocks: A case study on carbonates

    NASA Astrophysics Data System (ADS)

    Arzilli, F.; Cilona, A.; Mancini, L.; Tondi, E.

    2016-09-01

    In this work we propose a new methodology to calculate pore connectivity in granular rocks. This method is useful to characterize the pore networks of natural and laboratory compaction bands (CBs), and compare them with the host rock pore network. Data were collected using the synchrotron X-ray microtomography technique and quantitative analyses were carried out using the Pore3D software library. The porosity was calculated from segmented tridimensional images of deformed and pristine rocks. A process of skeletonization of the pore space was used to obtain the number of connected pores within the rock volume. By analyzing the skeletons the differences between natural and laboratory CBs were highlighted. The natural CB has a lower porosity than to the laboratory one. In natural CBs, the grain contacts appear welded, whereas laboratory CBs show irregular pore shape. Moreover, we assessed for the first time how pore connectivity evolves as a function of deformation, documenting the mechanism responsible for pore connectivity drop within the CBs.

  7. Surrogate Reservoir Model

    NASA Astrophysics Data System (ADS)

    Mohaghegh, Shahab

    2010-05-01

    Surrogate Reservoir Model (SRM) is new solution for fast track, comprehensive reservoir analysis (solving both direct and inverse problems) using existing reservoir simulation models. SRM is defined as a replica of the full field reservoir simulation model that runs and provides accurate results in real-time (one simulation run takes only a fraction of a second). SRM mimics the capabilities of a full field model with high accuracy. Reservoir simulation is the industry standard for reservoir management. It is used in all phases of field development in the oil and gas industry. The routine of simulation studies calls for integration of static and dynamic measurements into the reservoir model. Full field reservoir simulation models have become the major source of information for analysis, prediction and decision making. Large prolific fields usually go through several versions (updates) of their model. Each new version usually is a major improvement over the previous version. The updated model includes the latest available information incorporated along with adjustments that usually are the result of single-well or multi-well history matching. As the number of reservoir layers (thickness of the formations) increases, the number of cells representing the model approaches several millions. As the reservoir models grow in size, so does the time that is required for each run. Schemes such as grid computing and parallel processing helps to a certain degree but do not provide the required speed for tasks such as: field development strategies using comprehensive reservoir analysis, solving the inverse problem for injection/production optimization, quantifying uncertainties associated with the geological model and real-time optimization and decision making. These types of analyses require hundreds or thousands of runs. Furthermore, with the new push for smart fields in the oil/gas industry that is a natural growth of smart completion and smart wells, the need for real time

  8. Pennsylvanian carbonate buildups, Paradox basin: Increasing reserves in heterogeneous, shallow-shelf reservoirs

    USGS Publications Warehouse

    Montgomery, S.L.; Chidsey, T.C.; Eby, D.E.; Lorenz, D.M.; Culham, W.E.

    1999-01-01

    Productive carbonate buildups of Pennsylvanian age in the southern Paradox basin, Utah, contain up to 200 million bbl remaining oil potentially recoverable by enhanced recovery methods. These buildups comprise over 100 satellite fields to the giant Greater Aneth field, where secondary recovery operations thus far have been concentrated. Several types of satellite buildups exist and produce oil from the Desert Creek zone of the Paradox Formation. Many of the relevant fields have undergone early abandonment; wells in Desert Creek carbonate mounds commonly produce at very high initial rates (>1000 bbl/day) and then suffer precipitous declines. An important new study focused on the detailed characterization of five separate reservoirs has resulted in significant information relevant to their future redevelopment. Completed assessment of Anasazi field suggests that phylloid algal mounds, the major productive buildup type in this area, consist of ten separate lithotypes and can be described in terms of a two-level reservoir system with an underlying high-permeability mound-core interval overlain by a lower permeability but volumetrically larger supramound (mound capping) interval. Reservoir simulations and related performance predictions indicate that CO2 flooding of these reservoirs should have considerable success in recovering remaining oil reserves.Productive carbonate buildups of Pennsylvanian age in the southern Paradox basin, Utah, contain up to 200 million bbl remaining oil potentially recoverable by enhanced recovery methods. These buildups comprise over 100 satellite fields to the giant Greater Aneth field, where secondary recovery operations thus far have been concentrated. Several types of satellite buildups exist and produce oil from the Desert Creek zone of the Paradox Formation. Many of the relevant fields have undergone early abandonment; wells in Desert Creek carbonate mounds commonly produce at very high initial rates (>1000 bbl/day) and then suffer

  9. Predicting phase behavior of mixtures of reservoir fluids with carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigg, R.B.; Lingane, P.J.

    1983-01-01

    The use of an equation of state to predict phase behavior during carbon dioxide flooding is well established. The characterization of the C/sub 7/ fraction and the selection of interaction parameters are the most important variables. Single-contact phase behavior is presented for mixtures of Ford Geraldine (Delaware), Maljamar (Grayburg), West Sussex (Shannon), and Reservoir D reservoir fluids, and of a synthetic oil with carbon dioxide. The phase behavior of these mixtures can be reproduced using 3 to 5 pseudo components and common interaction parameters. The critical properties of the pseudo components are calculated from detailed oil characterizations. Because the parametersmore » are not further adjusted, this approach reduces the empiricism in fitting phase data and may result in a more accurate representation of the system as the composition of the oil changes during the approach to miscibility. 21 references.« less

  10. Static and Dynamic Reservoir Characterization Using High Resolution P-Wave Velocity Data in Delhi Field, la

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Davis, T.

    2012-12-01

    Static and dynamic reservoir characterization was done on high resolution P-wave seismic data in Delhi Field, LA to study the complex stratigraphy of the Holt-Bryant sands and to delineate the CO2 flow path. The field is undergoing CO2 injection for enhanced oil recovery. The seismic data was bandwidth extended by Geotrace to decrease the tuning thickness effect. Once the authenticity of the added frequencies in the data was determined, the interpretation helped map thin Tuscaloosa and Paluxy sands. Cross-equalization was done on the baseline and monitor surveys to remove the non-repeatable noise in the data. Acoustic impedance (AI) inversion was done on the baseline and monitor surveys to map the changes in AI with CO2 injection in the field. Figure 1 shows the AI percentage change at Base Paluxy. The analysis helped identify areas that were not being swept by CO2. Figure 2 shows the CO2 flow paths in Tuscaloosa formation. The percentage change of AI with CO2 injection and pressure increase corresponded with the fluid substitution modeling results. Time-lapse interpretation helped in delineating the channels, high permeability zones and the bypassed zones in the reservoir.; Figure 1: P-impedance percentage difference map with a 2 ms window centered at the base of Paluxy with the production data from June 2010 overlain; the black dashed line is the oil-water contact; notice the negative impedance change below the OWC. The lighter yellow color shows area where Paluxy is not being swept completely. ; Figure 2: P-impedance percentage difference map at TUSC 7 top; the white triangles are TUSC 7 injectors and the white circles are TUSC 7 producers; the black polygons show the flow paths of CO2.

  11. CACAO: A project for a laboratory for the production and characterization of thin radioactive layers

    NASA Astrophysics Data System (ADS)

    Bacri, C. O.; Petitbon, V.; Pierre, S.; Cacao Group

    2010-02-01

    CACAO, Chimie des Actinides et Cibles radioActives à Orsay (actinide chemistry and radioactive targets at Orsay), is a project under construction that consists of the installation of a hot laboratory dedicated to the production and characterization of thin radioactive layers. The project aims to be a joint CNRS-CEA national laboratory to overcome difficulties related mainly to safety issues and to the lack of knowledge and potential manpower. The first goal is to fulfill, at least, the needs of the whole French community, and to be able to coordinate the different activities related to radioactive targets. For this purpose, itis important to be complementary to already existing international installations. Inside this framework, it will of course be possible to produce and/or characterize targets for other users.

  12. Three-component seismic data in thin interbedded reservoir exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Yan; Wang, Yan-Chun; Pei, Jiang-Yun

    2015-03-01

    We present the first successful application of three-component seismic data to thin interbedded reservoir characterization in the Daqing placanticline of the LMD oilfield. The oilfield has reached the final high water cut stage and the principal problem is how to recognize the boundaries of sand layers that are thicker than 2 m. Conventional interpretation of single PP-wave seismic data results in multiple solutions, whereas the introduction of PS-wave enhances the reliability of interpretation. We analyze the gas reservoir characteristics by joint PP- and PS-waves, and use the amplitude and frequency decomposition attributes to delineate the gas reservoir boundaries because of the minimal effect of fluids on S-wave. We perform joint inversion of PP- and PS-waves to obtain V P/ V S, λρ, and µ ρ and map the lithology changes by using density, λρ, and µ ρ. The 3D-3C attribute λρ slices describe the sand layers distribution, while considering the well log data, and point to favorable region for tapping the remaining oil.

  13. Study of the relation between soil use, vegetation coverage, and the discharge of sediments from artificial reservoirs using MSS/LANDSAT images. Example: The Tres Marias reservoir and its supply basin

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Sausen, T. M.

    1981-01-01

    The land use and types of vegetation in the region of the upper Sao Francisco River, Brazil, are identified. This region comprises the supply basin of the Tres Marias reservoir. Imagery from channels 5 and 7 of the LANDSAT multispectral band scanner during wet and rainy seasons and ground truth data were employed to characterize and map the vegetation, land use, and sedimentary discharges from the reservoir. Agricultural and reforested lands, meadows, and forests are identified. Changes in land use due to human activity are demonstrated.

  14. Seismic spectral decomposition and analysis based on Wigner-Ville distribution for sandstone reservoir characterization in West Sichuan depression

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyang; Liu, Tianyou

    2010-06-01

    Reflections from a hydrocarbon-saturated zone are generally expected to have a tendency to be low frequency. Previous work has shown the application of seismic spectral decomposition for low-frequency shadow detection. In this paper, we further analyse the characteristics of spectral amplitude in fractured sandstone reservoirs with different fluid saturations using the Wigner-Ville distribution (WVD)-based method. We give a description of the geometric structure of cross-terms due to the bilinear nature of WVD and eliminate cross-terms using smoothed pseudo-WVD (SPWVD) with time- and frequency-independent Gaussian kernels as smoothing windows. SPWVD is finally applied to seismic data from West Sichuan depression. We focus our study on the comparison of SPWVD spectral amplitudes resulting from different fluid contents. It shows that prolific gas reservoirs feature higher peak spectral amplitude at higher peak frequency, which attenuate faster than low-quality gas reservoirs and dry or wet reservoirs. This can be regarded as a spectral attenuation signature for future exploration in the study area.

  15. The aging of America's reservoirs: In-reservoir and downstream physical changes and habitat implications

    USGS Publications Warehouse

    Juracek, Kyle E.

    2015-01-01

    Reservoirs are important for various purposes including flood control, water supply, power generation, and recreation. The aging of America's reservoirs and progressive loss of water storage capacity resulting from ongoing sedimentation, coupled with increasing societal needs, will cause the social, economic, environmental, and political importance of reservoirs to continually increase. The short- and medium-term (<50 years) environmental consequences of reservoir construction and operation are well known and include an altered flow regime, lost connectivity (longitudinal, floodplain), an altered sediment regime, substrate compositional change, and downstream channel degradation. In general, reservoir-related changes have had adverse consequences for the natural ecosystem. Longer term (>50 years) environmental changes as reservoirs enter “old” age are less understood. Additional research is needed to help guide the future management of aging reservoir systems and support the difficult decisions that will have to be made. Important research directions include assessment of climate change effects on aging and determination of ecosystem response to ongoing aging and various management actions that may be taken with the intent of minimizing or reversing the physical effects of aging.

  16. Carbon Sequestration in Unconventional Reservoirs: Advantages and Limitations

    NASA Astrophysics Data System (ADS)

    Zakharova, N. V.; Slagle, A. L.; Goldberg, D.

    2014-12-01

    To make a significant impact on anthropogenic CO2 emissions, geologic carbon sequestration would require thousands of CO2 repositories around the world. Unconventional reservoirs, such as igneous rocks and fractured formations, may add substantial storage capacity and diversify CO2 storage options. In particular, basaltic rocks represent a promising target due to their widespread occurrence, potentially suitable reservoir structure and high reactivity with CO2, but a comprehensive evaluation of worldwide CO2 sequestration capacity in unconventional reservoirs is lacking. In this presentation we summarize available data on storage potential of basaltic rocks and fractured formations illustrated by field examples from the Columbia River Basalt, the Newark Rift Basin and IODP Site 1256, and discuss potential limiting factors, such as effective porosity and the risk of inducing earthquakes by CO2 injections. Large Igneous Provinces (LIPs), low-volume flows and intrusions, and ocean floor basalt represent three general classes of basaltic reservoirs, each characterized by different structure and storage capacity. Oceanic plateaus and LIPs are projected to have the highest CO2 storage capacity, on the order of thousands gigatons (Gt) per site, followed by continental LIPs and ocean floor basalts (hundreds to thousands Gt per site). Isolated basalt flows and intrusions are likely to offer only low- to moderate-capacity options. An important limiting factor on CO2 injection volumes and rates is the risk of inducing earthquakes by increasing pore pressure in the subsurface. On continents, available in situ stress analysis suggests that local stress perturbations at depth may create relaxed stress conditions, allowing for pore pressure increase without reactivating fractures and faults. Remote storage sites on oceanic plateaus and below the seafloor are advantageous due to low impact of potential seismic and/or leakage events. Other effects, such as thermal stresses created

  17. Reactive Transport Modeling and Geophysical Monitoring of Bioclogging at Reservoir Scale

    NASA Astrophysics Data System (ADS)

    Surasani, V.; Commer, M.; Ajo Franklin, J. B.; Li, L.; Hubbard, S. S.

    2012-12-01

    In Microbial-Enhanced-Hydrocarbon-Recovery (MEHR), preferential bioclogging targets the growth of the biofilms (def. immobilized biopolymers with active cells embodied in it) in highly permeable thief zones to enhance sweep efficiency in oil reservoirs. During MEHR, understanding and controlling bioclogging is hindered by the lack of advanced modeling and monitoring tools; these deficiencies contribute to suboptimal performance. Our focus in this study was on developing a systematic approach to understand and monitor bioclogging at the reservoir scale using a combination of reactive transport modeling and geophysical imaging tools (EM & seismic). In this study, we created a realistic reservoir model from a heterogeneous gas reservoir in the Southern Sacramento basin, California; the model well (Citizen Green #1) was characterized using sonic, electrical, nuclear, and NMR logs for hydrologic and geophysical properties. From the simplified 2D log data model, a strip of size 150m x75m with several high permeability streaks is identified for bioclogging simulation experiments. From the NMR log data it is observed that a good linear correlation exist between logarithmic permeability (0.55- 3.34 log (mD)) versus porosity (0.041-0.28). L. mesenteroides was chosen as the model bacteria. In the presence of sucrose, it enzymatically catalyzes the production of dextran, a useful bioclogging agent. Using microbial kinetics from our laboratory experiment and reservoir heterogeneity, a reactive transport model (RTM) is established for two kinds of bioclogging treatments based on whether microbes are present in situ or are supplied externally. In both cases, sucrose media (1.5 M) is injected at the rate of 1 liter/s for 20 days into the center of high permeable strip to stimulate microbes. Simulations show that the high dextran production was deep into the formation from the injection well. This phenomenon can be explained precisely with bacterial kinetics and injection rate. In

  18. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir.

    PubMed

    Zhang, Fan; She, Yue-Hui; Li, Hua-Min; Zhang, Xiao-Tao; Shu, Fu-Chang; Wang, Zheng-Liang; Yu, Long-Jiang; Hou, Du-Jie

    2012-08-01

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes.

  19. A Study of the Optimal Planning Model for Reservoir Sustainable Management- A Case Study of Shihmen Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Ho, C. C.; Chang, L. C.

    2017-12-01

    The reservoir management in Taiwan faces lots of challenge. Massive sediment caused by landslide were flushed into reservoir, which will decrease capacity, rise the turbidity, and increase supply risk. Sediment usually accompanies nutrition that will cause eutrophication problem. Moreover, the unevenly distribution of rainfall cause water supply instability. Hence, how to ensure sustainable use of reservoirs has become an important task in reservoir management. The purpose of the study is developing an optimal planning model for reservoir sustainable management to find out an optimal operation rules of reservoir flood control and sediment sluicing. The model applies Genetic Algorithms to combine with the artificial neural network of hydraulic analysis and reservoir sediment movement. The main objective of operation rules in this study is to prevent reservoir outflow caused downstream overflow, minimum the gap between initial and last water level of reservoir, and maximum sluicing sediment efficiency. A case of Shihmen reservoir was used to explore the different between optimal operating rule and the current operation of the reservoir. The results indicate optimal operating rules tended to open desilting tunnel early and extend open duration during flood discharge period. The results also show the sluicing sediment efficiency of optimal operating rule is 36%, 44%, 54% during Typhoon Jangmi, Typhoon Fung-Wong, and Typhoon Sinlaku respectively. The results demonstrate the optimal operation rules do play a role in extending the service life of Shihmen reservoir and protecting the safety of downstream. The study introduces a low cost strategy, alteration of operation reservoir rules, into reservoir sustainable management instead of pump dredger in order to improve the problem of elimination of reservoir sediment and high cost.

  20. AVO in North of Paria, Venezuela: Gas methane versus condensate reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regueiro, J.; Pena, A.

    1996-07-01

    The gas fields of North of Paria, offshore eastern Venezuela, present a unique opportunity for amplitude variations with offset (AVO) characterization of reservoirs containing different fluids: gas-condensate, gas (methane) and water (brine). AVO studies for two of the wells in the area, one with gas-condensate and the other with gas (methane) saturated reservoirs, show interesting results. Water sands and a fluid contact (condensate-water) are present in one of these wells, thus providing a control point on brine-saturated properties. The reservoirs in the second well consist of sands highly saturated with methane. Clear differences in AVO response exist between hydrocarbon-saturated reservoirsmore » and those containing brine. However, it is also interesting that subtle but noticeable differences can be interpreted between condensate-and methane-saturated sands. These differences are attributed to differences in both in-situ fluid density and compressibility, and rock frame properties.« less

  1. Lithofacies classification of the Barnett Shale gas reservoir using neural network

    NASA Astrophysics Data System (ADS)

    Aliouane, Leila; Ouadfeul, Sid-Ali

    2017-04-01

    Here, we show the contribution of the artificial intelligence such as neural network to predict the lithofacies in the lower Barnett shale gas reservoir. The Multilayer Perceptron (MLP) neural network with Hidden Weight Optimization Algorithm is used. The input is raw well-logs data recorded in a horizontal well drilled in the Lower Barnett shale formation, however the output is the concentration of the Clay and the Quartz calculated using the ELAN model and confirmed with the core rock measurement. After training of the MLP machine weights of connection are calculated, the raw well-logs data of two other horizontal wells drilled in the same reservoir are propagated though the neural machine and an output is calculated. Comparison between the predicted and measured clay and Quartz concentrations in these two horizontal wells shows the ability of neural network to improve shale gas reservoirs characterization.

  2. A relationship between porosity and permeability of carbonate rock reservoirs

    NASA Astrophysics Data System (ADS)

    Lee, J.; Park, Y.; Jo, Y.; Jeong, J.; Eom, S.

    2009-12-01

    Most of oil reservoirs in the world occur in carbonate rocks. Thus, characterization of the carbonate reservoirs, including understanding the correlation between porosity and permeability is essentially required to enhance oil recovery. Compared with the other sedimentary rocks such as sandstone and shale, the carbonate rocks would exhibit a wide variety of vertical and horizontal heterogeneities. In general, pores of the carbonate rocks can be affected by mineral dissolution, replacement by other minerals and re-crystallization, which are the post-depositional processes. Permeability has been estimated at a wide scale by thin section image analysis, rock core experiments, geophysical well logging data and large scale aquifer tests. For the same porosity, the permeability might show a wide variation. In this study, a large number of the porosity and the permeability data pairs for world wide carbonate rocks (reservoirs) were collected from many literatures. The porosity and permeability data were grouped according to test scale, the reservoir location and the rock types. As is already known, the relation showed a rather scattered distribution also in this study, not monotonous, which indicates that higher porosity does not mean higher permeability of the rock formation. This study provides the analysis results and implications for oil production of the carbonate reservoirs. This research was funded by Energy Efficiency and Resources Program of KETEP (Korea Institute of Energy Technology Evaluation and Planning), Grant No. 2009T100200058.

  3. Hydromechanics of Reservoir Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Dura-Gomez, Inmaculada

    Data from five reservoirs were analyzed to investigate the various factors and possible pore pressure thresholds associated with Reservoir Induced Seismicity (RIS). Data was obtained from the following reservoirs: Koyna and Warna Reservoirs in India, Itoiz Reservoir in the western Pyrenees, Spain, and Jocassee and Monticello Reservoirs in South Carolina, U.S.A. Koyna Reservoir is one out of four reservoirs in the world where M≥6.0 induced earthquakes have occurred, whereas Warna Reservoir accounts for one out of ten cases with 5.0≤M≤5.9 induced earthquakes. Induced seismicity in the Koyna-Warna region is associated with annual filling cycles in the two reservoirs, large water level changes (30 to 45 m) and the presence of regional scale fractures. The Koyna-Warna case includes 19 M≥5.0 earthquakes at non-repeating hypocenters. The calculation of excess pore pressures associated with these earthquakes suggests values >300 kPa or >600 kPa, before or after 1993 respectively. The need for larger pore pressures from 1993 suggests that M≥5 earthquakes were induced on stronger faults in the region. The exceedance of the previous water level maxima (stress memory) is the most important, although not determining factor in inducing these M≥5.0 earthquakes. Itoiz Reservoir is one of twenty nine reservoirs with 4.0≤M≤4.9 induced earthquakes. The analysis of the RIS associated with the Itoiz Reservoir impoundment, between January 2004 and the end of 2008, shows that that pore pressures diffuse away from Itoiz Reservoir through the carbonate megabreccia systems of the Early to Middle Eocene Hecho Group, and a series of near-vertical thrust faults above the gently dipping Gavarnie thrust. Excess diffused pore pressures destabilize saturated critically stressed seismogenic fractures where RIS takes place. In particular, M≥3.0 earthquakes in the region are associated with excess pore pressures of the order of 100 to 200 kPa. Jocassee and Monticello Reservoirs in

  4. Assessing the potential of reservoir outflow management to reduce sedimentation using continuous turbidity monitoring and reservoir modelling

    USGS Publications Warehouse

    Lee, Casey; Foster, Guy

    2013-01-01

    In-stream sensors are increasingly deployed as part of ambient water quality-monitoring networks. Temporally dense data from these networks can be used to better understand the transport of constituents through streams, lakes or reservoirs. Data from existing, continuously recording in-stream flow and water quality monitoring stations were coupled with the two-dimensional hydrodynamic CE-QUAL-W2 model to assess the potential of altered reservoir outflow management to reduce sediment trapping in John Redmond Reservoir, located in east-central Kansas. Monitoring stations upstream and downstream from the reservoir were used to estimate 5.6 million metric tons of sediment transported to John Redmond Reservoir from 2007 through 2010, 88% of which was trapped within the reservoir. The two-dimensional model was used to estimate the residence time of 55 equal-volume releases from the reservoir; sediment trapping for these releases varied from 48% to 97%. Smaller trapping efficiencies were observed when the reservoir was maintained near the normal operating capacity (relative to higher flood pool levels) and when average residence times were relatively short. An idealized, alternative outflow management scenario was constructed, which minimized reservoir elevations and the length of time water was in the reservoir, while continuing to meet downstream flood control end points identified in the reservoir water control manual. The alternative scenario is projected to reduce sediment trapping in the reservoir by approximately 3%, preventing approximately 45 000 metric tons of sediment from being deposited within the reservoir annually. This article presents an approach to quantify the potential of reservoir management using existing in-stream data; actual management decisions need to consider the effects on other reservoir benefits, such as downstream flood control and aquatic life.

  5. The use of novel DNA nanotracers to determine groundwater flow paths - a test study at the Grimsel Deep Underground Geothermal (DUG) Laboratory in Switzerland

    NASA Astrophysics Data System (ADS)

    Kittilä, Anniina; Evans, Keith; Puddu, Michela; Mikutis, Gediminas; Grass, Robert N.; Deuber, Claudia; Saar, Martin O.

    2016-04-01

    earlier test. In this study, we present the results of tests of applying novel DNA nanotracers to characterize groundwater flow properties and the flow pathways in a fracture-dominated reservoir in the Deep Underground Geothermal (DUG) Laboratory at the Grimsel Test Site in the Swiss Alps. This study is motivated by subsequent comparisons of similar characterizations of fractured rock masses after hydraulic stimulation. These will take place at the DUG Lab at the end of 2016. The results of the flow-path characterization are also compared with those obtained from classical solute tracer tests.

  6. Trap efficiency of reservoirs

    USGS Publications Warehouse

    Brune, Gunnar M.

    1953-01-01

    Forty-four records of reservoir trap efficiency and the factors affecting trap efficiency are analyzed. The capacity-inflow (C/I) ratio is found to offer a much closer correlation with trap efficiency than the capacity-watershed (C/W) ratio heretofore widely used. It appears likely from the cases studied that accurate timing of venting or sluicing operations to intercept gravity underflows can treble or quadruple the amount of sediment discharged from a reservoir. Desilting basins, because of their shape and method of operation, may have trap efficiencies above 90 pct even with very low C/I ratios.Semi-dry reservoirs with high C/I ratios, like John Martin Reservoir, may have trap efficiencies as low as 60 pct. Truly “dry” reservoirs, such as those in the Miami Conservancy District, probably have trap efficiencies in the 10 to 40 pct range, depending upon C/I ratio

  7. All-optical reservoir computing.

    PubMed

    Duport, François; Schneider, Bendix; Smerieri, Anteo; Haelterman, Marc; Massar, Serge

    2012-09-24

    Reservoir Computing is a novel computing paradigm that uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible.

  8. Characterization of SiGe thin films using a laboratory X-ray instrument.

    PubMed

    Ulyanenkova, Tatjana; Myronov, Maksym; Benediktovitch, Andrei; Mikhalychev, Alexander; Halpin, John; Ulyanenkov, Alex

    2013-08-01

    The technique of reciprocal space mapping using X-rays is a recognized tool for the nondestructive characterization of epitaxial films. X-ray scattering from epitaxial Si 0.4 Ge 0.6 films on Si(100) substrates using a laboratory X-ray source was investigated. It is shown that a laboratory source with a rotating anode makes it possible to investigate the material parameters of the super-thin 2-6 nm layers. For another set of partially relaxed layers, 50-200 nm thick, it is shown that from a high-resolution reciprocal space map, conditioned from diffuse scattering on dislocations, it is possible to determine quantitatively from the shape of a diffraction peak (possessing no thickness fringes) additional parameters such as misfit dislocation density and layer thickness as well as concentration and relaxation.

  9. DebriSat - A Planned Laboratory-Based Satellite Impact Experiment for Breakup Fragment Characterizations

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Clark, S.; Fitz-Coy, N.; Huynh, T.; Opiela, J.; Polk, M.; Roebuck, B.; Rushing, R.; Sorge, M.; Werremeyer, M.

    2013-01-01

    The goal of the DebriSat project is to characterize fragments generated by a hypervelocity collision involving a modern satellite in low Earth orbit (LEO). The DebriSat project will update and expand upon the information obtained in the 1992 Satellite Orbital Debris Characterization Impact Test (SOCIT), which characterized the breakup of a 1960 s US Navy Transit satellite. There are three phases to this project: the design and fabrication of DebriSat - an engineering model representing a modern, 60-cm/50-kg class LEO satellite; conduction of a laboratory-based hypervelocity impact to catastrophically break up the satellite; and characterization of the properties of breakup fragments down to 2 mm in size. The data obtained, including fragment size, area-to-mass ratio, density, shape, material composition, optical properties, and radar cross-section distributions, will be used to supplement the DoD s and NASA s satellite breakup models to better describe the breakup outcome of a modern satellite.

  10. Laboratory upwelled radiance and reflectance spectra of Kerr reservoir sediment waters

    NASA Technical Reports Server (NTRS)

    Witte, W. G.; Whitlock, C. H.; Morris, W. D.; Gurganus, E. A.

    1982-01-01

    Reflectance, chromaticity, and several other physical and chemical properties were measured for various water mixtures of bottom sediments taken from two sites at Kerr Reservoir, Virginia. Mixture concentrations ranged from 5 to 1000 ppm by weight of total suspended solids (TSS) in filtered deionized tap water. The two sets of radiance and reflectance spectra obtained were similar in shape and magnitude for comparable values of TSS. Upwelled reflectance was observed to be a nonlinear function of TSS with the degree of curvature a function of wavelength. Sediment from the downstream site contained a greater amount of particulate organic carbon than from the upstream site. No strong conclusions can be made regarding the effects of this difference on the radiance and reflectance spectra. Near-infrared wavelengths appear useful for measuring highly turbid water with concentrations up to 1000 ppm or more. Chromaticity characteristics do not appear useful for monitoring sediment loads above 150 ppm.

  11. Gas Reservoir Identification Basing on Deep Learning of Seismic-print Characteristics

    NASA Astrophysics Data System (ADS)

    Cao, J.; Wu, S.; He, X.

    2016-12-01

    Reservoir identification based on seismic data analysis is the core task in oil and gas geophysical exploration. The essence of reservoir identification is to identify the properties of rock pore fluid. We developed a novel gas reservoir identification method named seismic-print analysis by imitation of the vocal-print analysis techniques in speaker identification. The term "seismic-print" is referred to the characteristics of the seismic waveform which can identify determinedly the property of the geological objectives, for instance, a nature gas reservoir. Seismic-print can be characterized by one or a few parameters named as seismic-print parameters. It has been proven that gas reservoirs are of characteristics of negative 1-order cepstrum coefficient anomaly and Positive 2-order cepstrum coefficient anomaly, concurrently. The method is valid for sandstone gas reservoir, carbonate reservoir and shale gas reservoirs, and the accuracy rate may reach up to 90%. There are two main problems to deal with in the application of seismic-print analysis method. One is to identify the "ripple" of a reservoir on the seismogram, and another is to construct the mapping relationship between the seismic-print and the gas reservoirs. Deep learning developed in recent years is of the ability to reveal the complex non-linear relationship between the attribute and the data, and of ability to extract automatically the features of the objective from the data. Thus, deep learning could been used to deal with these two problems. There are lots of algorithms to carry out deep learning. The algorithms can be roughly divided into two categories: Belief Networks Network (DBNs) and Convolutional Neural Network (CNN). DBNs is a probabilistic generative model, which can establish a joint distribution of the observed data and tags. CNN is a feedforward neural network, which can be used to extract the 2D structure feature of the input data. Both DBNs and CNN can be used to deal with seismic data

  12. Longitudinal gradients along a reservoir cascade

    USGS Publications Warehouse

    Miranda, L.E.; Habrat, M.D.; Miyazono, S.

    2008-01-01

    Reservoirs have traditionally been regarded as spatially independent entities rather than as longitudinal segments of a river system that are connected upstream and downstream to the river and other reservoirs. This view has frustrated advancement in reservoir science by impeding adequate organization of available information and by hindering interchanges with allied disciplines that often consider impounded rivers at the basin scale. We analyzed reservoir morphology, water quality, and fish assemblage data collected in 24 reservoirs of the Tennessee River; we wanted to describe longitudinal changes occurring at the scale of the entire reservoir series (i.e., cascade) and to test the hypothesis that fish communities and environmental factors display predictable gradients like those recognized for unimpounded rivers. We used a data set collected over a 7-year period; over 3 million fish representing 94 species were included in the data set. Characteristics such as reservoir mean depth, relative size of the limnetic zone, water retention time, oxygen stratification, thermal stratification, substrate size, and water level fluctuations increased in upstream reservoirs. Conversely, reservoir area, extent of riverine and littoral zones, access to floodplains and associated wetlands, habitat diversity, and nutrient and sediment inputs increased in downstream reservoirs. Upstream reservoirs included few, largely lacustrine, ubiquitous fish taxa that were characteristic of the lentic upper reaches of the basin. Fish species richness increased in a downstream direction from 12 to 67 species/ reservoir as riverine species became more common. Considering impoundments at a basin scale by viewing them as sections in a river or links in a chain may generate insight that is not always available when the impoundments are viewed as isolated entities. Basin-scale variables are rarely controllable but constrain the expression of processes at smaller scales and can facilitate the

  13. Third workshop on geothermal reservoir engineering: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramey, H.J. Jr.; Kruger, P.

    1977-12-15

    . The Third Workshop under the Stanford Geothermal Program was supported by a grant from DOE through a subcontract with the Lawrence Berkeley Laboratory of the University of California. A second significant event was the first conference under the ERDA (DOE)-ENEL cooperative program where many of the results of well testing in both nations were discussed. The Proceedings of that conference should be an important contribution to the literature. These Proceedings of the Third Workshop should also make an important contribution to the literature on geothermal reservoir engineering. Much of the data presented at the Workshop were given for the first time, and full technical papers on these subjects will appear in the professional journals. The results of these studies will assist markedly in developing the research programs to be supported by the Federal agencies, and in reducing the costs of research for individual developers and utilities. It is expected that future workshops of the Stanford Geothermal Program will be as successful as this third one. Planning and execution of the Workshop... [see file; ljd, 10/3/2005] The Program Committee recommended two novel sessions for the Third Workshop, both of which were included in the program. The first was the three overviews given at the Workshop by George Pinder (Princeton) on the Academic aspect, James Bresee (DOE-DGE) on the Government aspect, and Charles Morris (Phillips Petroleum) on the Industry aspect. These constituted the invited slate of presentations from the several sectors of the geothermal community. The Program Committee acknowledges their contributions with gratitude. Recognition of the importance of reservoir assurance in opting for geothermal resources as an alternate energy source for electric energy generation resulted in a Panel Session on Various Definitions of Geothermal Reservoirs. Special acknowledgments are offered to Jack Howard and Werner Schwarz (LBL) and to Jack Howard as moderator; to the

  14. Diversity and community structure of cyanobacteria and other microbes in recycling irrigation reservoirs.

    PubMed

    Kong, Ping; Richardson, Patricia; Hong, Chuanxue

    2017-01-01

    Recycling irrigation reservoirs (RIRs) are emerging aquatic environments of global significance to crop production, water conservation and environmental sustainability. This study characterized the diversity and population structure of cyanobacteria and other detected microbes in water samples from eight RIRs and one adjacent runoff-free stream at three ornamental crop nurseries in eastern (VA1 and VA3) and central (VA2) Virginia after cloning and sequencing the 16S rRNA gene targeting cyanobacteria and chloroplast of eukaryotic phytoplankton. VA1 and VA2 utilize a multi-reservoir recycling irrigation system with runoff channeled to a sedimentation reservoir which then overflows into transition and retention reservoirs where water was pumped for irrigation. VA3 has a single sedimentation reservoir which was also used for irrigation. A total of 208 operational taxonomic units (OTU) were identified from clone libraries of the water samples. Among them, 53 OTUs (358 clones) were cyanobacteria comprising at least 12 genera dominated by Synechococcus species; 59 OTUs (387 clones) were eukaryotic phytoplankton including green algae and diatoms; and 96 were other bacteria (111 clones). Overall, cyanobacteria were dominant in sedimentation reservoirs, while eukaryotic phytoplankton and other bacteria were dominant in transition/retention reservoirs and the stream, respectively. These results are direct evidence demonstrating the negative impact of nutrient-rich horticultural runoff, if not contained, on natural water resources. They also help in understanding the dynamics of water quality in RIRs and have practical implications. Although both single- and multi-reservoir recycling irrigation systems reduce the environmental footprint of horticultural production, the former is expected to have more cyanobacterial blooming, and consequently water quality issues, than the latter. Thus, a multi-reservoir recycling irrigation system should be preferred where feasible.

  15. Diversity and community structure of cyanobacteria and other microbes in recycling irrigation reservoirs

    PubMed Central

    Kong, Ping; Richardson, Patricia; Hong, Chuanxue

    2017-01-01

    Recycling irrigation reservoirs (RIRs) are emerging aquatic environments of global significance to crop production, water conservation and environmental sustainability. This study characterized the diversity and population structure of cyanobacteria and other detected microbes in water samples from eight RIRs and one adjacent runoff-free stream at three ornamental crop nurseries in eastern (VA1 and VA3) and central (VA2) Virginia after cloning and sequencing the 16S rRNA gene targeting cyanobacteria and chloroplast of eukaryotic phytoplankton. VA1 and VA2 utilize a multi-reservoir recycling irrigation system with runoff channeled to a sedimentation reservoir which then overflows into transition and retention reservoirs where water was pumped for irrigation. VA3 has a single sedimentation reservoir which was also used for irrigation. A total of 208 operational taxonomic units (OTU) were identified from clone libraries of the water samples. Among them, 53 OTUs (358 clones) were cyanobacteria comprising at least 12 genera dominated by Synechococcus species; 59 OTUs (387 clones) were eukaryotic phytoplankton including green algae and diatoms; and 96 were other bacteria (111 clones). Overall, cyanobacteria were dominant in sedimentation reservoirs, while eukaryotic phytoplankton and other bacteria were dominant in transition/retention reservoirs and the stream, respectively. These results are direct evidence demonstrating the negative impact of nutrient-rich horticultural runoff, if not contained, on natural water resources. They also help in understanding the dynamics of water quality in RIRs and have practical implications. Although both single- and multi-reservoir recycling irrigation systems reduce the environmental footprint of horticultural production, the former is expected to have more cyanobacterial blooming, and consequently water quality issues, than the latter. Thus, a multi-reservoir recycling irrigation system should be preferred where feasible. PMID

  16. Application of Discrete Fracture Modeling and Upscaling Techniques to Complex Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Karimi-Fard, M.; Lapene, A.; Pauget, L.

    2012-12-01

    During the last decade, an important effort has been made to improve data acquisition (seismic and borehole imaging) and workflow for reservoir characterization which has greatly benefited the description of fractured reservoirs. However, the geological models resulting from the interpretations need to be validated or calibrated against dynamic data. Flow modeling in fractured reservoirs remains a challenge due to the difficulty of representing mass transfers at different heterogeneity scales. The majority of the existing approaches are based on dual continuum representation where the fracture network and the matrix are represented separately and their interactions are modeled using transfer functions. These models are usually based on idealized representation of the fracture distribution which makes the integration of real data difficult. In recent years, due to increases in computer power, discrete fracture modeling techniques (DFM) are becoming popular. In these techniques the fractures are represented explicitly allowing the direct use of data. In this work we consider the DFM technique developed by Karimi-Fard et al. [1] which is based on an unstructured finite-volume discretization. The mass flux between two adjacent control-volumes is evaluated using an optimized two-point flux approximation. The result of the discretization is a list of control-volumes with the associated pore-volumes and positions, and a list of connections with the associated transmissibilities. Fracture intersections are simplified using a connectivity transformation which contributes considerably to the efficiency of the methodology. In addition, the method is designed for general purpose simulators and any connectivity based simulator can be used for flow simulations. The DFM technique is either used standalone or as part of an upscaling technique. The upscaling techniques are required for large reservoirs where the explicit representation of all fractures and faults is not possible

  17. Sandia National Laboratories site-wide hydrogeologic characterization project calendar year 1992 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowson, D.; Gibson, J.D.; Haase, C.S.

    1993-10-01

    The Sandia National Laboratories, New Mexico (SNL/NM) Site-Wide Hydrogeologic Characterization (SWHC) project has been implemented as part of the SNL/NM Environmental Restoration (ER) Program to develop the regional hydrogeologic framework and baseline for the approximately 100 mi of Kirtland Air Force Base (KAFB) and adjacent withdrawn public lands upon which SNL/NM has performed research and development activities. Additionally, the SWHC project will investigate and characterize generic hydrogeologic issues associated with the 172 ER sites owned by SNL/NM across its facilities on KAFB. As called for in the Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Actmore » (RCRA) Part B permit agreement between the U.S. Environmental Protection Agency (EPA) as the permitter and the U.S. Department of Energy (DOE) and SNL/NM as the permittees, an annual report is to be prepared by the SWHC project team. This document serves two primary purposes: (1) to identify and describe the conceptual framework for the hydrogeologic system underlying SNL/NM and (2) to describe characterization activities undertaken in the preceding year that add to our understanding (reduce our uncertainties) regarding the conceptual and quantitative hydrogeologic framework. This SWHC project annual report focuses primarily on purpose 1, providing a summary description of the current {open_quotes}state of knowledge{close_quotes} of the Sandia National Laboratories/Kirtland Air Force Base (SNL/KAFB) hydrogeologic setting.« less

  18. Pre- and postprocessing for reservoir simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, W.L.; Ingalls, L.J.; Prasad, S.J.

    1991-05-01

    This paper describes the functionality and underlying programing paradigms of Shell's simulator-related reservoir-engineering graphics system. THis system includes the simulation postprocessing programs Reservoir Display System (RDS) and Fast Reservoir Engineering Displays (FRED), a hypertext-like on-line documentation system (DOC), and a simulator input preprocessor (SIMPLSIM). RDS creates displays of reservoir simulation results. These displays represent the areal or cross-section distribution of computer reservoir parameters, such as pressure, phase saturation, or temperature. Generation of these images at real-time animation rates is discussed. FRED facilitates the creation of plot files from reservoir simulation output. The use of dynamic memory allocation, asynchronous I/O, amore » table-driven screen manager, and mixed-language (FORTRAN and C) programming are detailed. DOC is used to create and access on-line documentation for the pre-and post-processing programs and the reservoir simulators. DOC can be run by itself or can be accessed from within any other graphics or nongraphics application program. DOC includes a text editor, which is that basis for a reservoir simulation tutorial and greatly simplifies the preparation of simulator input. The use of sharable images, graphics, and the documentation file network are described. Finally, SIMPLSIM is a suite of program that uses interactive graphics in the preparation of reservoir description data for input into reservoir simulators. The SIMPLSIM user-interface manager (UIM) and its graphic interface for reservoir description are discussed.« less

  19. Flow units classification for geostatisitical three-dimensional modeling of a non-marine sandstone reservoir: A case study from the Paleocene Funing Formation of the Gaoji Oilfield, east China

    NASA Astrophysics Data System (ADS)

    Zhang, Penghui; Zhang, Jinliang; Wang, Jinkai; Li, Ming; Liang, Jie; Wu, Yingli

    2018-05-01

    Flow units classification can be used in reservoir characterization. In addition, characterizing the reservoir interval into flow units is an effective way to simulate the reservoir. Paraflow units (PFUs), the second level of flow units, are used to estimate the spatial distribution of continental clastic reservoirs at the detailed reservoir description stage. In this study, we investigate a nonroutine methodology to predict the external and internal distribution of PFUs. The methodology outlined enables the classification of PFUs using sandstone core samples and log data. The relationships obtained between porosity, permeability and pore throat aperture radii (r35) values were established for core and log data obtained from 26 wells from the Funing Formation, Gaoji Oilfield, Subei Basin, China. The present study refines predicted PFUs at logged (0.125-m) intervals, whose scale is much smaller than routine methods. Meanwhile, three-dimensional models are built using sequential indicator simulation to characterize PFUs in wells. Four distinct PFUs are classified and located based on the statistical methodology of cluster analysis, and each PFU has different seepage ability. The results of this study demonstrate the obtained models are able to quantify reservoir heterogeneity. Due to different petrophysical characteristics and seepage ability, PFUs have a significant impact on the distribution of the remaining oil. Considering these allows a more accurate understanding of reservoir quality, especially within non-marine sandstone reservoirs.

  20. Favorable fragmentation: river reservoirs can impede downstream expansion of riparian weeds.

    PubMed

    Rood, Stewart B; Braatne, Jeffrey H; Goater, Lori A

    2010-09-01

    River valleys represent biologically rich corridors characterized by natural disturbances that create moist and barren sites suitable for colonization by native riparian plants, and also by weeds. Dams and reservoirs interrupt the longitudinal corridors and we hypothesized that this could restrict downstream weed expansion. To consider this "reservoir impediment" hypothesis we assessed the occurrences and abundances of weeds along a 315-km river valley corridor that commenced with an unimpounded reach of the Snake River and extended through Brownlee, Oxbow, and Hells Canyon reservoirs and dams, and downstream along the Snake River. Sampling along 206 belt transects with 3610 quadrats revealed 16 noxious and four invasive weed species. Ten weeds were upland plants, with Canada thistle (Cirsium arvense) restricted to the upstream reaches, where field morning glory (Convolvulus arvensis) was also more common. In contrast, St. John's wort (Hypericum perforatum) was more abundant below the dams, and medusahead wildrye (Taeniatherum caput-medusae) occurred primarily along the reservoirs. All seven riparian species were abundant in the upstream zones but sparse or absent below the dams. This pattern was observed for the facultative riparian species, poison hemlock (Conium maculatum) and perennial pepperweed (Lepidium latifolium), the obligate riparian, yellow nut sedge (Cyperus esculentus), the invasive perennial, reed canary grass (Phalaris arundinacea), and three invasive riparian trees, Russian olive (Elaeagnus angustifolia), false indigo (Amorpha fruticosa), and tamarisk (Tamarix spp.). The hydrophyte purple loosestrife (Lythrum salicaria) was also restricted to the upstream zone. These longitudinal patterns indicate that the reservoirs have impeded the downstream expansion of riparian weeds, and this may especially result from the repetitive draw-down and refilling of Brownlee Reservoir that imposes a lethal combination of drought and flood stress. The dams and

  1. High Frequency monitoring of cyanoHABs and cyanotoxin production to characterize periods of greatest risk on an inland reservoir

    EPA Science Inventory

    A monitoring approach combining wet chemistry and high frequency (HF) water quality sensors has been employed to improve our understanding of the ecology of an inland reservoir with a history of cyanoHAB events. Lake Harsha is a multi-use reservoir managed by the USACE in southwe...

  2. Hydrocarbon reservoirs of Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, P.K.

    1988-01-01

    The statistical distribution of over 12,000 producible hydrocarbon reservoirs from various biostratigraphic intervals of the Gulf of Mexico is presented. The average number, thickness, volume, subsurface depth, and ecozone of depositional environments of the reservoirs are grouped according to biostratigraphic intervals, trends, and geographic areas. The upper Pliocene and Pleistocene reservoirs account for more than 77% of the total number. Within the Miocene trend, Bigenerina H in the western Gulf of Bigenerina A and Bigenerina 2 in the central Gulf show significant concentration of reservoirs. The average depth of production for all trends gets deeper, both from west and east,more » toward Ship Shoal-South Timbalier areas. The average thickness varies slightly between trends; however, variation between areas is more significant. A significant majority of the reservoirs of all trends in the entire Gulf is reported from the outer shelf-upper slope ecozones (E3 and E4). According to volume, the E3-E5 reservoirs can be classified into three groups; larger than 10,000 acre-ft/reservoir, 5,000 to 10,000 acre-ft/reservoir, and smaller than 5,000 acre-ft/reservoir.« less

  3. Characterization of SiGe thin films using a laboratory X-ray instrument

    PubMed Central

    Ulyanenkova, Tatjana; Myronov, Maksym; Benediktovitch, Andrei; Mikhalychev, Alexander; Halpin, John; Ulyanenkov, Alex

    2013-01-01

    The technique of reciprocal space mapping using X-rays is a recognized tool for the nondestructive characterization of epitaxial films. X-ray scattering from epitaxial Si0.4Ge0.6 films on Si(100) substrates using a laboratory X-ray source was investigated. It is shown that a laboratory source with a rotating anode makes it possible to investigate the material parameters of the super-thin 2–6 nm layers. For another set of partially relaxed layers, 50–200 nm thick, it is shown that from a high-resolution reciprocal space map, conditioned from diffuse scattering on dislocations, it is possible to determine quantitatively from the shape of a diffraction peak (possessing no thickness fringes) additional parameters such as misfit dislocation density and layer thickness as well as concentration and relaxation. PMID:24046495

  4. Study of Carrying Capacity Assesment for Natural Fisheries in Jatibarang Reservoir In Semarang City

    NASA Astrophysics Data System (ADS)

    Sujono, Bambang; Anggoro, Sutrisno

    2018-02-01

    Jatibarang reservoir serves as water supply in dry season and controlling flood in Semarang City. This reservoir is stem Kreo River which cathment areas of 54 km2, pool of area 110 ha and volume is 20 billion m3. This reservoir is potential to develop as natural fisheries area. The goals of this research were to explore existing condition of physical, biological as well as chemical parameter; carrying capacity assessment for natural fisheries; determining appropriate fish species to be developed in Jatibarang reservoir. This research was done in descriptive explorative scheme. Field survey and laboratory analyses were conducted to identify physical, chemical and biological parameters of the water. Physical parameters measured were temperature and water brightness. Chemical parameters measured were pH, DO, phosphate, Ammonia, nitrites and nitrate, while biological parameter measured were chlorophyll-a concentration. Carrying capacity analyses was done referred to the Government Regulation Number 82, 2001 that regulate the management of water quality and water pollution control. Based on the research, it showed that the existing condition of physical, chemical and biological parameters were still good to be used for natural fisheries. Based on TSI index, it classified as eutrofic water. Furthermore, tilapia fish (Oreochromis mossambicus), nile tilapia (Oreochromis niloticus) tawes (Barbonymus gonionotus) and carper fish (Cyprinus carpio) were considered as best species for natural fisheries in Jatibarang Reservoir.

  5. Metabolic capability and in situ activity of microorganisms in an oil reservoir.

    PubMed

    Liu, Yi-Fan; Galzerani, Daniela Domingos; Mbadinga, Serge Maurice; Zaramela, Livia S; Gu, Ji-Dong; Mu, Bo-Zhong; Zengler, Karsten

    2018-01-05

    Microorganisms have long been associated with oxic and anoxic degradation of hydrocarbons in oil reservoirs and oil production facilities. While we can readily determine the abundance of microorganisms in the reservoir and study their activity in the laboratory, it has been challenging to resolve what microbes are actively participating in crude oil degradation in situ and to gain insight into what metabolic pathways they deploy. Here, we describe the metabolic potential and in situ activity of microbial communities obtained from the Jiangsu Oil Reservoir (China) by an integrated metagenomics and metatranscriptomics approach. Almost complete genome sequences obtained by differential binning highlight the distinct capability of different community members to degrade hydrocarbons under oxic or anoxic condition. Transcriptomic data delineate active members of the community and give insights that Acinetobacter species completely oxidize alkanes into carbon dioxide with the involvement of oxygen, and Archaeoglobus species mainly ferment alkanes to generate acetate which could be consumed by Methanosaeta species. Furthermore, nutritional requirements based on amino acid and vitamin auxotrophies suggest a complex network of interactions and dependencies among active community members that go beyond classical syntrophic exchanges; this network defines community composition and microbial ecology in oil reservoirs undergoing secondary recovery. Our data expand current knowledge of the metabolic potential and role in hydrocarbon metabolism of individual members of thermophilic microbial communities from an oil reservoir. The study also reveals potential metabolic exchanges based on vitamin and amino acid auxotrophies indicating the presence of complex network of interactions between microbial taxa within the community.

  6. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... NECESSARY FOR SAFE OPERATION Brakes § 393.50 Reservoirs required. (a) Reservoir capacity for air-braked... 49 Transportation 5 2011-10-01 2011-10-01 false Reservoirs required. 393.50 Section 393.50... trailers manufactured on or after January 1, 1975, must meet the reservoir requirements of FMVSS No. 121...

  7. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... NECESSARY FOR SAFE OPERATION Brakes § 393.50 Reservoirs required. (a) Reservoir capacity for air-braked... 49 Transportation 5 2010-10-01 2010-10-01 false Reservoirs required. 393.50 Section 393.50... trailers manufactured on or after January 1, 1975, must meet the reservoir requirements of FMVSS No. 121...

  8. Isolation and Characterization of Gram-Positive Biosurfactant-Producing Halothermophilic Bacilli From Iranian Petroleum Reservoirs

    PubMed Central

    Zargari, Saeed; Ramezani, Amin; Ostvar, Sassan; Rezaei, Rasool; Niazi, Ali; Ayatollahi, Shahab

    2014-01-01

    Background: Petroleum reservoirs have long been known as the hosts of extremophilic microorganisms. Some of these microorganisms are known for their potential biotechnological applications, particularly production of extra and intracellular polymers and enzymes. Objectives: Here, 14 petroleum liquid samples from southern Iranian oil reservoirs were screened for presence of biosurfactant‐producing halothermophiles. Materials and Methods: Mixture of the reservoir fluid samples with a minimal growth medium was incubated under an N2 atmosphere in 40°C; 0.5 mL samples were transferred from the aqueous phase to agar plates after 72 hours of incubation; 100 mL cell cultures were prepared using the MSS-1 (mineral salt solution 1) liquid medium with 5% (w/v) NaCl. The time-course samples were analyzed by recording the absorbance at 600 nm using a spectrophotometer. Incubation was carried out in 40°C with mild shaking in aerobic conditions. Thermotolerance was evaluated by growing the isolates at 40, 50, 60 and 70°C with varying NaCl concentrations of 5% and 10% (w/v). Halotolerance was evaluated using NaCl concentrations of 5%, 10%, 12.5% and 15% (w/v) and incubating them at 40°C under aerobic and anaerobic conditions. Different phenotypic characteristics were evaluated, as outlined in Bergey's manual of determinative bacteriology. Comparing 16S rDNA sequences is one of the most powerful tools for classification of microorganisms. Results: Among 34 isolates, 10 demonstrated biosurfactant production and growth at temperatures between 40°C and 70°C in saline media containing 5%‐15% w/v NaCl. Using partial 16S rDNA sequencing (and amplified ribosomal DNA restriction analysis [ARDRA]) and biochemical tests (API tests 20E and 50 CHB), all the 10 isolates proved to be facultative anaerobic, Gram-positive moderate thermohalophiles of the genus Bacillus (B. thermoglucosidasius, B. thermodenitrificans, B. thermoleovorans, B. stearothermophilus and B. licheniformis

  9. [Absorption Characteristics of Particulates and CDOM in Waters of Chagan Lake and Xinlicheng Reservoir in Autumn].

    PubMed

    Li, Si-jia; Song, Kai-shan; Zhao, Ying; Mu, Guang-yi; Shao, Tian-tian; Ma, Jian-hang

    2016-01-15

    Field surveys and laboratory analysis were carried out in Chagan Lake and Xinlicheng Reservoir under different salinity conditions in September 2012. In the laboratory, the absorption coefficients of particulates and chromophoric dissolved organic matter (CDOM) were measured, aiming to compare the absorption features, source of optical active substances and relative contribution of optical active constituents over the range of PAR (400-700 nm) in Chagan Lake and Xinlicheng Reservoir. The results showed that the Chagan Lake and Xinlicheng Reservoir were water bodies with medium eutrophication in autumn by TAL nutrient index and the absorption spectra of particulates matters were similar to those of phytoplankton. For the Chagan Lake with high salinity( EC = 988. 87 micro S x cm(-1)), the total particulate absorption was dominated by the nonalgal particles, and the contribution rate was in the order of nonalgal particles > phytoplankton > CDOM. For the Xinlicheng Reservoir with low salinity (EC = 311.67 microS x -cm(-1)), the total particulate absorption was dominated by the phytoplankton, and the contribution rate was ranked as phytoplankton > nonalgal particles > CDOM. Positive correlation was observed between a(p) (440), a(p) (675), a(d) (440) and total suspended matter (TSM), inorganic suspended matter (ISM), organic suspended matter (OSM) and Chl-a respectively in Chagan Lake, with correlation coefficients all above 0.55. Positive correlation was observed between a(p)(440), a(p) (675) and Chl-a (0.77 and 0.85, P < 0.05) , so did a(d) (440) and ISM (0.74, P < 0.01), while negative correlation was observed between a(p) (440) and OSM in the Xinlicheng Reservoir. In terms of Chagan Lake, negative correlation was merely observed between a(g) (440) and OSM (-0.54, P < 0.05) , but not in the Xinlicheng Reservoir. Both Sg, which was calculated by the fitting absorption curve from 250 to 400 nm, and relative molecular weight M showed that Sg[ (0.021 +/- 0.001) m(-1)] in

  10. Reservoir management cost-cutting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulati, M.S.

    This article by Mohinder S. Gulati, Chief Engineer, Unocal Geothermal Operations, discusses cost cutting in geothermal reservoir management. The reservoir engineer or geoscientist can make a big difference in the economical outcome of a project by improving well performance and thus making geothermal energy more competitive in the energy marketplace. Bringing plants online in less time and proving resources to reduce the cycle time are some of the ways to reduce reservoir management costs discussed in this article.

  11. Expression, Purification, and Characterization of a Carbohydrate-Active Enzyme: A Research-Inspired Methods Optimization Experiment for the Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Willbur, Jaime F.; Vail, Justin D.; Mitchell, Lindsey N.; Jakeman, David L.; Timmons, Shannon C.

    2016-01-01

    The development and implementation of research-inspired, discovery-based experiences into science laboratory curricula is a proven strategy for increasing student engagement and ownership of experiments. In the novel laboratory module described herein, students learn to express, purify, and characterize a carbohydrate-active enzyme using modern…

  12. 32 CFR 644.4 - Reservoir projects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... projects. 8.1Lands for reservoir construction and operation. 8.2Additional lands for correlative purposes... potentials of each reservoir. 8.1Lands for reservoir construction and operation. The fee title will be... 32 National Defense 4 2011-07-01 2011-07-01 false Reservoir projects. 644.4 Section 644.4 National...

  13. 32 CFR 644.4 - Reservoir Projects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... projects. 8.1Lands for reservoir construction and operation. 8.2Additional lands for correlative purposes... potentials of each reservoir. 8.1Lands for reservoir construction and operation. The fee title will be... 32 National Defense 4 2010-07-01 2010-07-01 true Reservoir Projects. 644.4 Section 644.4 National...

  14. Integrated Reservoir Modeling of CO2-EOR Performance and Storage Potential in the Farnsworth Field Unit, Texas.

    NASA Astrophysics Data System (ADS)

    Ampomah, W.; Balch, R. S.; Cather, M.; Dai, Z.

    2017-12-01

    We present a performance assessment methodology and storage potential for CO2 enhanced oil recovery (EOR) in partially depleted reservoirs. A three dimensional heterogeneous reservoir model was developed based on geological, geophysics and engineering data from Farnsworth field Unit (FWU). The model aided in improved characterization of prominent rock properties within the Pennsylvanian aged Morrow sandstone reservoir. Seismic attributes illuminated previously unknown faults and structural elements within the field. A laboratory fluid analysis was tuned to an equation of state and subsequently used to predict the thermodynamic minimum miscible pressure (MMP). Datasets including net-to-gross ratio, volume of shale, permeability, and burial history were used to model initial fault transmissibility based on Sperivick model. An improved history match of primary and secondary recovery was performed to set the basis for a CO2 flood study. The performance of the current CO2 miscible flood patterns was subsequently calibrated to historical production and injection data. Several prediction models were constructed to study the effect of recycling, addition of wells and /or new patterns, water alternating gas (WAG) cycles and optimum amount of CO2 purchase on incremental oil production and CO2 storage in the FWU. The history matching study successfully validated the presence of the previously undetected faults within FWU that were seen in the seismic survey. The analysis of the various prediction scenarios showed that recycling a high percentage of produced gas, addition of new wells and a gradual reduction in CO2 purchase after several years of operation would be the best approach to ensure a high percentage of recoverable incremental oil and sequestration of anthropogenic CO2 within the Morrow reservoir. Larger percentage of stored CO2 were dissolved in residual oil and less amount existed as supercritical free CO2. The geomechanical analysis on the caprock proved to an

  15. Utica Shale Energy and Environment Laboratory (USEEL)

    NASA Astrophysics Data System (ADS)

    Cole, D. R.

    2017-12-01

    Despite the rapid growth of the UOG industry in the Appalachian Basin of Pennsylvania and neighboring states, there are still fundamental concerns regarding the environmentally sound and cost efficient extraction of this unique asset. To address these concerns, Ohio State University has established the Department of Energy-funded Utica Shale Energy and Environment Laboratory, a dedicated research program where scientists from the university will work with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), academia, industry, and regulatory partners, to measure and monitor reservoir response to UOG development and any associated environmental concerns. The USEEL site will be located in Greene County, Pennsylvania, in the heart of the deep Utica-Pt. Pleasant Shale play of the Appalachian Basin. The USEEL project team will characterize and quantify the gas-producing attributes of one of the deepest portions of the Utica-Pt. Pleasant formations in the Appalachian Basin via a multi-disciplinary collaboration that leverages state-of-the-art capabilities in geochemistry, core assessment, well design and logging, 3-D and micro-seismic, DTS and DAS fiber optics, and reservoir modelling. Fracture and rock strength analyses will be complemented by a comprehensive suite of geophysical and geochemical logs, water and chip samples, and cores (pressure sidewall and whole core) to evaluate fluids, mineral alteration, microbes, pore structure, and hydrocarbon formation and alteration in the shale pore space. Located on an existing Marcellus drill pads in southwestern Pennsylvania, USEEL will provide an unprecedented opportunity to evaluate the economic and environmental effects of Marcellus pad expansion on the integrity of near-by existing production wells, ground disruption and slope stability, and ultimate efforts to conduct site reclamation. Combined with the overall goal of an improved understanding of the Utica-Pt. Pleasant system, USEEL

  16. Integrated Approach to Drilling Project in Unconventional Reservoir Using Reservoir Simulation

    NASA Astrophysics Data System (ADS)

    Stopa, Jerzy; Wiśniowski, Rafał; Wojnarowski, Paweł; Janiga, Damian; Skrzypaszek, Krzysztof

    2018-03-01

    Accumulation and flow mechanisms in unconventional reservoir are different compared to conventional. This requires a special approach of field management with drilling and stimulation treatments as major factor for further production. Integrated approach of unconventional reservoir production optimization assumes coupling drilling project with full scale reservoir simulation for determine best well placement, well length, fracturing treatment design and mid-length distance between wells. Full scale reservoir simulation model emulate a part of polish shale - gas field. The aim of this paper is to establish influence of technical factor for gas production from shale gas field. Due to low reservoir permeability, stimulation treatment should be direct towards maximizing the hydraulic contact. On the basis of production scenarios, 15 stages hydraulic fracturing allows boost gas production over 1.5 times compared to 8 stages. Due to the possible interference of the wells, it is necessary to determine the distance between the horizontal parts of the wells trajectories. In order to determine the distance between the wells allowing to maximize recovery factor of resources in the stimulated zone, a numerical algorithm based on a dynamic model was developed and implemented. Numerical testing and comparative study show that the most favourable arrangement assumes a minimum allowable distance between the wells. This is related to the volume ratio of the drainage zone to the total volume of the stimulated zone.

  17. Reservoir floodplains support distinct fish assemblages

    USGS Publications Warehouse

    Miranda, Leandro E.; Wigen, S. L.; Dagel, Jonah D.

    2014-01-01

    Reservoirs constructed on floodplain rivers are unique because the upper reaches of the impoundment may include extensive floodplain environments. Moreover, reservoirs that experience large periodic water level fluctuations as part of their operational objectives seasonally inundate and dewater floodplains in their upper reaches, partly mimicking natural inundations of river floodplains. In four flood control reservoirs in Mississippi, USA, we explored the dynamics of connectivity between reservoirs and adjacent floodplains and the characteristics of fish assemblages that develop in reservoir floodplains relative to those that develop in reservoir bays. Although fish species richness in floodplains and bays were similar, species composition differed. Floodplains emphasized fish species largely associated with backwater shallow environments, often resistant to harsh environmental conditions. Conversely, dominant species in bays represented mainly generalists that benefit from the continuous connectivity between the bay and the main reservoir. Floodplains in the study reservoirs provided desirable vegetated habitats at lower water level elevations, earlier in the year, and more frequently than in bays. Inundating dense vegetation in bays requires raising reservoir water levels above the levels required to reach floodplains. Therefore, aside from promoting distinct fish assemblages within reservoirs and helping promote diversity in regulated rivers, reservoir floodplains are valued because they can provide suitable vegetated habitats for fish species at elevations below the normal pool, precluding the need to annually flood upland vegetation that would inevitably be impaired by regular flooding. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  18. WATER PUMP HOUSE, TRA619, AND TWO WATER STORAGE RESERVOIRS. INDUSTRIAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WATER PUMP HOUSE, TRA-619, AND TWO WATER STORAGE RESERVOIRS. INDUSTRIAL WINDOWS AND COPING STRIPS AT TOP OF WALLS AND ENTRY VESTIBULE. BOLLARDS PROTECT UNDERGROUND FACILITIES. SWITCHYARD AT RIGHT EDGE OF VIEW. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON ORIGINAL NEGATIVE. INL NEGATIVE NO. 3816. Unknown Photographer, 11/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  19. Reservoir description and future development plans for the Unam/Mfem Fields, OML 67, Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kofron, B.M.; Jenkinson, J.T.; Maxwell, G.S.

    1995-08-01

    The Unam/Mfem fields, which are currently produced from three platforms, are, located 25 km offshore (southeastern Nigeria) in water depths of 60 feet to 100 feet. Over 100 MMBO have been produced to date from both unconformity bounded and fault trap reservoirs in the Upper and Middle Biafra Sands. These structural and stratigraphic geometries define at least eleven different reservoirs that are not interconnected. STOIIP for all eleven reservoirs is estimated to exceed 900 MMBO based on a recently completed reservoir characterization study. A two year reservoir description study followed the acquisition of a 1991 3-D seismic survey and resultedmore » in the drilling of six successful wells and two sidetracks. A 3-D model of reservoir geometries and fluid flow properties was generated by integrating geologic, geophysical, and reservoir engineering data. These diverse data sets were interpreted using a combination of workstations, software packages, and displays that included Landmark, IREX, wireline log and seismic correlation charts. A detailed stratigraphic zonation scheme with 28 zones was defined and correlated field wide and subregionally to build the reservoir framework. Twenty seismic horizons were created. More than 300 critical compute, generated grids were then used to calculate STOIIP volumes. This study led to the identification of new pay zones along with a much better understanding of the spatial distribution of all pays within the fields. A revised exploitation strategy has subsequently been proposed which calls for 5 new platforms and the drilling of 21 additional wells over the next few years.« less

  20. Improved Characterization and Modeling of Tight Oil Formations for CO 2 Enhanced Oil Recovery Potential and Storage Capacity Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorensen, James; Smith, Steven; Kurz, Bethany

    Tight oil formations such as those in the Bakken petroleum system are known to hold hundreds of billions of barrels of oil in place; however, the primary recovery factor for these plays is typically less than 10%. Tight oil formations, including the Bakken Formation, therefore, may be attractive candidates for enhanced oil recovery (EOR) using CO 2. Multiphase fluid behavior and flow in fluid-rich shales can vary substantially depending on the size of pore throats, and properties such as fluid viscosity and density are much different in nanoscale pores than in macroscale pores. Thus it is critical to understand themore » nature and distribution of nano-, micro-, and macroscale pores and fracture networks. To address these issues, the Energy & Environmental Research Center (EERC) has been conducting a research program entitled “Improved Characterization and Modeling of Tight Oil Formations for CO 2 Enhanced Oil Recovery Potential and Storage Capacity Estimation.” The objectives of the project are 1) the use of advanced characterization methods to better understand and quantify the petrophysical and geomechanical factors that control CO 2 and oil mobility within tight oil formation samples, 2) the determination of CO 2 permeation and oil extraction rates in tight reservoir rocks and organic-rich shales of the Bakken, and 3) the integration of the laboratory-based CO 2 permeation and oil extraction data and the characterization data into geologic models and dynamic simulations to develop predictions of CO 2 storage resource and EOR in the Bakken tight oil formation. A combination of standard and advanced petrophysical characterization techniques were applied to characterize samples of Bakken Formation tight reservoir rock and shales from multiple wells. Techniques included advanced computer tomography (CT) imaging, scanning electron microscopy (SEM) techniques, whole-core and micro x-ray CT imaging, field emission (FE) SEM, and focused ion beam (FIB) SEM

  1. Optoelectronic Reservoir Computing

    PubMed Central

    Paquot, Y.; Duport, F.; Smerieri, A.; Dambre, J.; Schrauwen, B.; Haelterman, M.; Massar, S.

    2012-01-01

    Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an optoelectronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations. PMID:22371825

  2. Thermal and dissolved oxygen characteristics of a South Carolina cooling reservoir

    USGS Publications Warehouse

    Oliver, James L.; Hudson, Patrick L.

    1987-01-01

    Temperature and dissolved oxygen concentrations were measured monthly from January 1971 to December 1982 at 1-m depth intervals at 13 stations in Keowee Reservoir in order to characterize spatial and temporal changes associated with operation of the Oconee Nuclear Station. The reservoir water column was i to 4°C warmer in operational than in non-operational years. The thermo-dine was at depths of 5 to 15 m before the operation of Oconee Nuclear Station, but was always below the upper level of the intake (20 m) after the station was in full operation; this suggests that pumping by the Oconee Nuclear Station had depleted all available cool hypolimnetic water to this depth. As a result summer water temperatures at depths greater than 10 m were usually 10°C higher after plant operation began than before. By fall the reservoir was nearly homothemious to a depth of 27 m, where a thermocine developed. Seasonal temperature profiles varied with distance from the plant; a cool water plume was evident in spring and a warm water plume was present in the summer, fall, and winter. A cold water plume also developed in the northern section of the reservoir due to the operation of Jocassee Pumped Storage Station. Increases in the mean water temperature of the reservoir during operational periods were correlated with the generating output of the power plant. The annual heat load to the reservoir increased by one-third after plant operations began. The alteration of the thermal stratification of the receiving water during the summer also caused the dissolved oxygen to mix to greater depths.

  3. Reservoir monitoring and characterization using satellite geodetic data: Interferometric Synthetic Aperture Radar observations from the Krechba field, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasco, D.W.; Ferretti, Alessandro; Novali, Fabrizio

    2008-05-01

    Deformation in the material overlying an active reservoir is used to monitor pressure change at depth. A sequence of pressure field estimates, eleven in all, allow us to construct a measure of diffusive travel time throughout the reservoir. The dense distribution of travel time values means that we can construct an exactly linear inverse problem for reservoir flow properties. Application to Interferometric Synthetic Aperture Radar (InSAR) data gathered over a CO{sub 2} injection in Algeria reveals pressure propagation along two northwest trending corridors. An inversion of the travel times indicates the existence of two northwest-trending high permeability zones. The highmore » permeability features trend in the same direction as the regional fault and fracture zones. Model parameter resolution estimates indicate that the features are well resolved.« less

  4. Geological model of supercritical geothermal reservoir related to subduction system

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Noriyoshi

    2017-04-01

    Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550

  5. Facies analysis of an Upper Jurassic carbonate platform for geothermal reservoir characterization

    NASA Astrophysics Data System (ADS)

    von Hartmann, Hartwig; Buness, Hermann; Dussel, Michael

    2017-04-01

    The Upper Jurassic Carbonate platform in Southern Germany is an important aquifer for the production of geothermal energy. Several successful projects were realized during the last years. 3D-seismic surveying has been established as a standard method for reservoir analysis and the definition of well paths. A project funded by the federal ministry of economic affairs and energy (BMWi) started in 2015 is a milestone for an exclusively regenerative heat energy supply of Munich. A 3D-seismic survey of 170 square kilometer was acquired and a scientific program was established to analyze the facies distribution within the area (http://www.liag-hannover.de/en/fsp/ge/geoparamol.html). Targets are primarily fault zones where one expect higher flow rates than within the undisturbed carbonate sediments. However, since a dense net of geothermal plants and wells will not always find appropriate fault areas, the reservoir properties should be analyzed in more detail, e.g. changing the viewpoint to karst features and facies distribution. Actual facies interpretation concepts are based on the alternation of massif and layered carbonates. Because of successive erosion of the ancient land surfaces, the interpretation of reefs, being an important target, is often difficult. We found that seismic sequence stratigraphy can explain the distribution of seismic pattern and improves the analysis of different facies. We supported this method by applying wavelet transformation of seismic data. The splitting of the seismic signal into successive parts of different bandwidths, especially the frequency content of the seismic signal, changed by tuning or dispersion, is extracted. The combination of different frequencies reveals a partition of the platform laterally as well as vertically. A cluster analysis of the wavelet coefficients further improves this picture. The interpretation shows a division into ramp, inner platform and trough, which were shifted locally and overprinted in time by other

  6. Quality of water and bottom material in Breckenridge Reservoir, Virginia, September 2008 through August 2009

    USGS Publications Warehouse

    Lotspeich, Russell

    2012-01-01

    the reservoir's relatively short length and the aerators that operate in the reservoir near the spillway. In general, the water-quality of Breckenridge Reservoir is similar to other reservoirs in the region, and the measurements made during this study indicate that the reservoir is healthy and is not in violation of published State Water Control Board ambient water-quality standards. Water samples at three reservoir sites were analyzed for 53 pesticides, but only atrazine was found to be above the laboratory minimum reporting level. Atrazine concentrations of 0.008 and 0.010 microgram per liter near the surface and bottom of the reservoir, respectively, were found at all three sampling locations. Bottom-material samples were collected for analysis of trace elements at all three reservoir sampling sites. Concentrations of arsenic, cadmium, and mercury in bottom material were similar to those analyzed in other reservoirs in the region. However, most other constituents that were collected from Breckenridge Reservoir, especially iron and lead, showed much higher concentrations than the other reservoirs. During the course of the study, increased turbidity and Escherichia coli bacteria counts were observed during or after periods of increased tributary discharge, and Secchi-disk depths decreased during those same periods. These streamflow and water-quality indicators suggest a close relationship between Breckenridge Reservoir and its tributaries.

  7. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs (Annex 1). Annual report, February 1, 1991--January 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watney, W.L.

    1992-08-01

    Interdisciplinary studies of the Upper Pennsylvanian Lansing and Kansas City groups have been undertaken in order to improve the geologic characterization of petroleum reservoirs and to develop a quantitative understanding of the processes responsible for formation of associated depositional sequences. To this end, concepts and methods of sequence stratigraphy are being used to define and interpret the three-dimensional depositional framework of the Kansas City Group. The investigation includes characterization of reservoir rocks in oil fields in western Kansas, description of analog equivalents in near-surface and surface sites in southeastern Kansas, and construction of regional structural and stratigraphic framework to linkmore » the site specific studies. Geologic inverse and simulation models are being developed to integrate quantitative estimates of controls on sedimentation to produce reconstructions of reservoir-bearing strata in an attempt to enhance our ability to predict reservoir characteristics.« less

  8. Fire flood method for recovering petroleum from oil reservoirs of low permeability and temperature

    DOEpatents

    Kamath, Krishna

    1984-08-14

    The present invention is directed to a method of enhanced oil recovery by fire flooding petroleum reservoirs characterized by a temperature of less than the critical temperature of carbon dioxide, a pore pressure greater than the saturated vapor pressure of carbon dioxide at said temperature (87.7.degree. F. at 1070 psia), and a permeability in the range of about 20 to 100 millidarcies. The in situ combustion of petroleum in the reservoir is provided by injecting into the reservoir a combustion supporting medium consisting essentially of oxygen, ozone, or a combination thereof. The heat of combustion and the products of this combustion which consist essentially of gaseous carbon dioxide and water vapor sufficiently decrease the viscosity of oil adjacent to fire front to form an oil bank which moves through the reservoir towards a recovery well ahead of the fire front. The gaseous carbon dioxide and the water vapor are driven into the reservoir ahead of the fire front by pressure at the injection well. As the gaseous carbon dioxide cools to less than about 88.degree. F. it is converted to liquid which is dissolved in the oil bank for further increasing the mobility thereof. By using essentially pure oxygen, ozone, or a combination thereof as the combustion supporting medium in these reservoirs the permeability requirements of the reservoirs are significantly decreased since the liquid carbon dioxide requires substantially less voidage volume than that required for gaseous combustion products.

  9. Geochemical characteristics and reservoir continuity of Silurian Acacus in Ghadames Basin, Southern Tunisia

    NASA Astrophysics Data System (ADS)

    Mahmoudi, S.; Mohamed, A. Belhaj; Saidi, M.; Rezgui, F.

    2017-11-01

    The present work is dealing with the study of lateral and vertical continuity of the multi-layers Acacus reservoir (Ghadames Basin-Southern Tunisia) using the distribution of hydrocarbon fraction. For this purpose, oil-oil and source rock-oil correlations as well as the composition of the light fractions and a number of saturate and aromatic biomarkers parameters, including C35/C34 hopanes and DBT/P, have been investigated. Based on the ratios of light fraction and their fingerprints, the Acacus reservoir from Well1 and Well2 have found to be laterally non-connected although the hydrocarbons they contain have the same source rock. Moreover, the two oil samples from two different Acacus reservoir layers crossed by Well3-A3 and A9, display a similar hydrocarbons distribution, suggesting vertical reservoir continuity. On the other hand, the biomarker distributions of the oils samples and source rocks assess a Silurian ;Hot shale; that is the source rock feeding the Acacus reservoir. The biomarker distribution is characterized by high tricyclic terpanes contents compared to hopanes for the Silurian source rock and the two crude oils. This result is also confirmed by the dendrogram that precludes the Devonian source rocks as a source rock in the study area.

  10. Experimental encephalomyocarditis virus infection in small laboratory rodents.

    PubMed

    Doi, K

    2011-01-01

    Encephalomyocarditis virus (EMCV) is a cardiovirus that belongs to the family Picornaviridae. EMCV is an important cause of acute myocarditis in piglets and of fetal death or abortion in pregnant sows. Small rodents, especially rats, have been suspected to be reservoir hosts or carriers. This virus also induces type 1 diabetes mellitus, encephalomyelitis, myocarditis, orchitis and/or sialodacryoadenitis in small laboratory rodents. This paper reviews the pathology and pathogenesis of experimental infection with EMCV in small laboratory rodents. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Characterization of dissolved and particulate natural organic matter (NOM) in Neversink Reservoir, New York

    USGS Publications Warehouse

    Wershaw, Robert L.; Leenheer, Jerry A.; Cox, Larry G.

    2005-01-01

    Natural organic matter (NOM) was isolated from the water of the Neversink Reservoir, part of the New York City water supply, located in the Catskill Mountains of New York. The NOM was fractionated into the following nine different fractions by the isolation procedure: (1) coarse particulates, (2) fine-particulate organics, (3) solvent-extractable organics, (4) hydrophobic neutrals (HPON fraction), (5) dissolved colloids, (6) bases, (7) hydrophobic acids (HPOA), (8) transphilic acids + neutrals (TPI-A+N), and (9) hydrophilic acids + neutrals (HPI-A+N). Each of these fractions, with exception of the first and the third which were too small for the complete series of analyses, was characterized by elemental, carbohydrate, and amino acid analyses, and by nuclear magnetic resonance and infrared spectrometry. The data obtained from these analyses indicate (1) that the fine-particulate organics and colloids are mainly composed of peptidoglycans, and lipopolysaccharides derived from algal, bacterial, and fungal cell walls, (2) that the HPO-N fraction most likely consists of a mixture of alicyclic terpenes and carbohydrates, (3) that the HPOA fraction consists mainly of lignin components conjugated to carbohydrates, (4) that the TPI-A+N and the HPI-A+N fractions most likely represent complex mixtures of relatively low molecular weight carboxylic acids derived from terpenes, carbohydrates, and peptides, and (5) that the base fraction is composed of free amino acids, browning reaction products, and peptide fragments.

  12. Purification and Characterization of Taq Polymerase: A 9-Week Biochemistry Laboratory Project for Undergraduate Students

    ERIC Educational Resources Information Center

    Bellin, Robert M.; Bruno, Mary K.; Farrow, Melissa A.

    2010-01-01

    We have developed a 9-week undergraduate laboratory series focused on the purification and characterization of "Thermus aquaticus" DNA polymerase (Taq). Our aim was to provide undergraduate biochemistry students with a full-semester continuing project simulating a research-like experience, while having each week's procedure focus on a single…

  13. Andrew integrated reservoir description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, S.P.

    1996-12-31

    The Andrew field is an oil and gas accumulation in Palaeocene deep marine sands in the Central North Sea. It is currently being developed with mainly horizontal oil producers. Because of the field`s relatively small reserves (mean 118 mmbbls), the performance of each of the 10 or so horizontal wells is highly important. Reservoir description work at sanction time concentrated on supporting the case that the field could be developed commercially with the minimum number of wells. The present Integrated Reservoir Description (IRD) is focussed on delivering the next level of detail that will impact the understanding of the localmore » reservoir architecture and dynamic performance of each well. Highlights of Andrew IRD Include: (1) Use of a Reservoir Uncertainty Statement (RUS) developed at sanction time to focus the descriptive effort of both asset, support and contract petrotechnical staff, (2) High resolution biostratigraphic correlation to support confident zonation of the reservoir, (3) Detailed sedimentological analysis of the core including the use of dipmeter to interpret channel/sheet architecture to provide new insights into reservoir heterogeneity; (4) Integrated petrographical and petrophysical investigation of the controls on Sw-Height and relative permeability of water; (5) Fluids description using oil geochemistry and Residual Salt Analysis Sr isotope studies. Andrew IRD has highlighted several important risks to well performance, including the influence of more heterolithic intervals on gas breakthrough and the controls on water coning exerted by suppressed water relative permeability in the transition zone.« less

  14. Andrew integrated reservoir description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, S.P.

    1996-01-01

    The Andrew field is an oil and gas accumulation in Palaeocene deep marine sands in the Central North Sea. It is currently being developed with mainly horizontal oil producers. Because of the field's relatively small reserves (mean 118 mmbbls), the performance of each of the 10 or so horizontal wells is highly important. Reservoir description work at sanction time concentrated on supporting the case that the field could be developed commercially with the minimum number of wells. The present Integrated Reservoir Description (IRD) is focussed on delivering the next level of detail that will impact the understanding of the localmore » reservoir architecture and dynamic performance of each well. Highlights of Andrew IRD Include: (1) Use of a Reservoir Uncertainty Statement (RUS) developed at sanction time to focus the descriptive effort of both asset, support and contract petrotechnical staff, (2) High resolution biostratigraphic correlation to support confident zonation of the reservoir, (3) Detailed sedimentological analysis of the core including the use of dipmeter to interpret channel/sheet architecture to provide new insights into reservoir heterogeneity; (4) Integrated petrographical and petrophysical investigation of the controls on Sw-Height and relative permeability of water; (5) Fluids description using oil geochemistry and Residual Salt Analysis Sr isotope studies. Andrew IRD has highlighted several important risks to well performance, including the influence of more heterolithic intervals on gas breakthrough and the controls on water coning exerted by suppressed water relative permeability in the transition zone.« less

  15. Destructive analysis capabilities for plutonium and uranium characterization at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tandon, Lav; Kuhn, Kevin J; Drake, Lawrence R

    Los Alamos National Laboratory's (LANL) Actinide Analytical Chemistry (AAC) group has been in existence since the Manhattan Project. It maintains a complete set of analytical capabilities for performing complete characterization (elemental assay, isotopic, metallic and non metallic trace impurities) of uranium and plutonium samples in different forms. For a majority of the customers there are strong quality assurance (QA) and quality control (QC) objectives including highest accuracy and precision with well defined uncertainties associated with the analytical results. Los Alamos participates in various international and national programs such as the Plutonium Metal Exchange Program, New Brunswick Laboratory's (NBL' s) Safeguardsmore » Measurement Evaluation Program (SME) and several other inter-laboratory round robin exercises to monitor and evaluate the data quality generated by AAC. These programs also provide independent verification of analytical measurement capabilities, and allow any technical problems with analytical measurements to be identified and corrected. This presentation will focus on key analytical capabilities for destructive analysis in AAC and also comparative data between LANL and peer groups for Pu assay and isotopic analysis.« less

  16. DEVELOPMENT AND LABORATORY CHARACTERIZATION OF A PROTOTYPE COARSE PARTICLE CONCENTRATOR FOR INHALATION TOXICOLOGICAL STUDIES. (R825270)

    EPA Science Inventory

    This paper presents the development and laboratory characterization of a prototype slit nozzle virtual impactor that can be used to concentrate coarse particles. A variety of physical design and flow parameters were evaluated including different acceleration and collection sli...

  17. Water-balance simulations of runoff and reservoir storage for the Upper Helmand watershed and Kajakai Reservoir, central Afghanistan

    USGS Publications Warehouse

    Vining, Kevin C.; Vecchia, Aldo V.

    2007-01-01

    A study was performed to provide information on monthly historical and hypothetical future runoff for the Upper Helmand watershed and reservoir storage in Kajakai Reservoir that could be used by Afghanistan authorities to make economic and demographic decisions concerning reservoir design and operation, reservoir sedimentation, and development along the Helmand River. Estimated reservoir volume at the current spillway elevation of 1,033.5 meters decreased by about 365 million cubic meters from 1968 to 2006 because of sedimentation. Water-balance simulations indicated a good fit between modeled and recorded monthly runoff at the two gaging stations in the watershed for water years 1956-79 and indicated an excellent fit between modeled and recorded monthly changes in Kajakai Reservoir storage for water years 1956-79. Future simulations, which included low starting reservoir water levels and a spillway raised to an elevation of 1,045 meters, indicated that the reservoir is likely to fill within 2 years. Although Kajakai Reservoir is likely to fill quickly, multiyear deficits may still occur. If future downstream irrigation demand doubles but future precipitation, temperature, and reservoir sedimentation remain similar to historical conditions, the reservoir would have more than a 50-percent chance of being full during April or May of a typical year. Future simulations with a 10-percent reduction in precipitation indicated that supply deficits would occur more than 1 in 4 years, on average, during August, September, or October. The reservoir would be full during April or May fewer than 1 in 2 years, on average, and multiyear supply deficits could occur. Increased sedimentation had little effect on reservoir levels during April through July, but the frequency of deficits increased substantially during September and October.

  18. Transport of Gas Phase Radionuclides in a Fractured, Low-Permeability Reservoir

    NASA Astrophysics Data System (ADS)

    Cooper, C. A.; Chapman, J.

    2001-12-01

    The U.S. Atomic Energy Commission (predecessor to the Department of Energy, DOE) oversaw a joint program between industry and government in the 1960s and 1970s to develop technology to enhance production from low-permeability gas reservoirs using nuclear stimulation rather than conventional means (e.g., hydraulic and/or acid fracturing). Project Rio Blanco, located in the Piceance Basin, Colorado, was the third experiment under the program. Three 30-kiloton nuclear explosives were placed in a 2134 m deep well at 1780, 1899, and 2039 m below the land surface and detonated in May 1973. Although the reservoir was extensively fractured, complications such as radionuclide contamination of the gas prevented production and subsequent development of the technology. Two-dimensional numerical simulations were conducted to identify the main transport processes that have occurred and are currently occurring in relation to the detonations, and to estimate the extent of contamination in the reservoir. Minor modifications were made to TOUGH2, the multiphase, multicomponent reservoir simulator developed at Lawrence Berkeley National Laboratories. The simulator allows the explicit incorporation of fractures, as well as heat transport, phase change, and first order radionuclide decay. For a fractured two-phase (liquid and gas) reservoir, the largest velocities are of gases through the fractures. In the gas phase, tritium and one isotope of krypton are the principle radionuclides of concern. However, in addition to existing as a fast pathway, fractures also permit matrix diffusion as a retardation mechanism. Another retardation mechanism is radionuclide decay. Simulations show that incorporation of fractures can significantly alter transport rates, and that radionuclides in the gas phase can preferentially migrate upward due to the downward gravity drainage of liquid water in the pores. This project was funded by the National Nuclear Security Administration, Nevada Operations Office

  19. Enhancing our View of the Reservoir: New Insights into Deepwater Gulf of Mexico fields using Frequency Decomposition

    NASA Astrophysics Data System (ADS)

    Murat, M.

    2017-12-01

    Color-blended frequency decomposition is a seismic attribute that can be used to educe or draw out and visualize geomorphological features enabling a better understanding of reservoir architecture and connectivity for both exploration and field development planning. Color-blended frequency decomposition was applied to seismic data in several areas of interest in the Deepwater Gulf of Mexico. The objective was stratigraphic characterization to better define reservoir extent, highlight depositional features, identify thicker reservoir zones and examine potential connectivity issues due to stratigraphic variability. Frequency decomposition is a technique to analyze changes in seismic frequency caused by changes in the reservoir thickness, lithology and fluid content. This technique decomposes or separates the seismic frequency spectra into discrete bands of frequency limited seismic data using digital filters. The workflow consists of frequency (spectral) decomposition, RGB color blending of three frequency slices, and horizon or stratal slicing of the color blended frequency data for interpretation. Patterns were visualized and identified in the data that were not obvious on standard stacked seismic sections. These seismic patterns were interpreted and compared to known geomorphological patterns and their environment of deposition. From this we inferred the distribution of potential reservoir sand versus non-reservoir shale and even finer scale details such as the overall direction of the sediment transport and relative thickness. In exploratory areas, stratigraphic characterization from spectral decomposition is used for prospect risking and well planning. Where well control exists, we can validate the seismic observations and our interpretation and use the stratigraphic/geomorphological information to better inform decisions on the need for and placement of development wells.

  20. Upper Cretaceous Shannon Sandstone Reservoirs, Powder River Basin, Wyoming: Evidence for organic acid diagenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansley, P.L.; Nuccio, V.F.

    Comparison of the petrology of shallow and deep oil reservoirs in the Upper Cretaceous Shannon Sandstone Beds of the Steele Member of the Cody Shale strongly suggests that organic acids have had a more significant impact on the diagenetic alteration of aluminosilicate grains and carbonate cements in the deep reservoirs than in the shallow reservoirs. In shallow reservoirs, detrital grains exhibit minor dissolution, sparse and small overgrowths, and secondary porosity created by dissolution of early calcite cement. However, deeper sandstones are characterized by extensive dissolution of detrital K-feldspar and detrital glauconite grains, and precipitation of abundant, large quartz and feldsparmore » overgrowths. Throughout the Shannon and Steele, dissolution of glauconite and degradation of kerogen were probably aided by clay mineral/organic catalysis, which caused simultaneous reduction of iron and oxidation of kerogen. This process resulted in release of ferrous iron and organic acids and was promoted in the deep reservoirs by higher formation temperatures accounting for more extensive dissolution of aluminosilicate grains. Carbonic acid produced from the dissolution of early calcite cement, decarboxylation of organic matter, and influx of meteoric water after Laramide uplift produced additional dissolution of cements and grains. Dissolution by organic acids and complexing by organic acid anions, however, best explain the intensity of diagenesis and absence of dissolution products in secondary pores and on etched surfaces of framework grains in deep reservoirs.« less

  1. Enhancing water supply through reservoir reoperation

    NASA Astrophysics Data System (ADS)

    Rajagopal, S.; Sterle, K. M.; Jose, L.; Coors, S.; Pohll, G.; Singletary, L.

    2017-12-01

    Snowmelt is a significant contributor to water supply in western U.S. which is stored in reservoirs for use during peak summer demand. The reservoirs were built to satisfy multiple objectives, but primarily to either enhance water supply and/or for flood mitigation. The operating rules for these water supply reservoirs are based on historical assumptions of stationarity of climate, assuming peak snowmelt occurs after April 1 and hence have to let water pass through if it arrived earlier. Using the Truckee River which originates in the eastern Sierra Nevada, has seven reservoirs and is shared between California and Nevada as an example, we show enhanced water storage by altering reservoir operating rules. These results are based on a coupled hydrology (Ground-Surface water Flow, GSFLOW) and water management model (RIverware) developed for the river system. All the reservoirs in the system benefit from altering the reservoir rules, but some benefit more than others. Prosser Creek reservoir for example, historically averaged 76% of capacity, which was lowered to 46% of capacity in the future as climate warms and shifts snowmelt to earlier days of the year. This reduction in storage can be mitigated by altering the reservoir operation rules and the reservoir storage increases to 64-76% of capacity. There are limitations to altering operating rules as reservoirs operated primarily for flood control are required to maintain lower storage to absorb a flood pulse, yet using modeling we show that there are water supply benefits to adopting a more flexible rules of operation. In the future, due to changing climate we anticipate the reservoirs in the western U.S. which were typically capturing spring- summer snowmelt will have to be managed more actively as the water stored in the snowpack becomes more variable. This study presents a framework for understanding, modeling and quantifying the consequences of such a shift in hydrology and water management.

  2. Stress heterogeneity above and within a deep geothermal reservoir: From borehole observations to geomechanical modelling

    NASA Astrophysics Data System (ADS)

    Seithel, Robin; Peters, Max; Lesueur, Martin; Kohl, Thomas

    2017-04-01

    Overpressured reservoir conditions, local stress concentrations or a locally rotated stress field can initiate substantial problems during drilling or reservoir exploitation. Increasing geothermal utilization in the Molasse basin area in S-Germany is faced with such problems of deeply seated reservoir sections. In several wells, radial fluid flow systems are interpreted as highly porous layers. However, in nearby wells a combination of linear fluid flow, local stress heterogeneities and structural geology hint to a rather fault dominated reservoir (Seithel et al. 2015). Due to missing knowledge of the stress magnitude, stress orientation and their coupling to reservoir response, we will present a THMC model of critical formations and the geothermal reservoir targeting nearby faults. In an area south of Munich, where several geothermal wells are constructed, such wells are interpreted and integrated into a 30 x 30 km simulated model area. One of the main objectives here is to create a geomechanical reservoir model in a thermo-mechanical manner in order to understand the coupling between reservoir heterogeneities and stress distributions. To this end, stress analyses of wellbore data and laboratory tests will help to calibrate a reliable model. In order to implement the complex geological structure of the studied wedge-shaped foreland basin, an automatic export of lithology, fault and borehole data (e.g. from Petrel) into a FE mesh is used. We will present a reservoir-scale model that considers thermo-mechanic effects and analyze their influence on reservoir deformation, fluid flow and stress concentration. We use the currently developed finite element application REDBACK (https://github.com/pou036/redback), inside the MOOSE framework (Poulet et al. 2016). We show that mechanical heterogeneities nearby fault zones and their orientation within the stress field correlate to fracture pattern, interpreted stress heterogeneities or variegated flow systems within the

  3. Characterization of Aerobic Chemical Processes in Reservoirs: Problem Description and Model Formulation.

    DTIC Science & Technology

    1983-10-01

    high oxygen demand, nitrate rapidly di1s- appears once the supply of oxygen is discontinued. Unless the bottom Personal Communication, S. W. Johnson...with time in the overlying waters of a stratified CE reservoir (Brezonik et al. 1969). In contrast to these findings , Delfino and Lee (1968) reported... dron , N. C. , Freedlrin, M. L. Spe i alIc, B. .. , and Z iiierman , M. J . 1 980. ’’Use of Eqn ib r itiur Programs ini Predict ing Phosphorus Avai

  4. Thermo-hydraulic characterization of a fractured shallow reservoir in Bergen (Norway) to improve the efficiency of a BHE field

    NASA Astrophysics Data System (ADS)

    Mandrone, Giuseppe; Giordano, Nicolò; Bastesen, Eivind; Wheeler, Walter; Chicco, Jessica

    2017-04-01

    Sustainable thermal energy production from GSHP systems is greatly dependent on the thermo-hydraulic field, yet there are few realistic case studies which capture the dynamics of such systems. Here we present initial work on the static model for one such case example. A BHE field consisting of 12 ground heat exchangers in fractured crystalline rock has been supplying thermal energy for the past 20 years to meet the heating needs of a school located in Bergen, Norway. In recent years the heat pump COP has significantly decreased, which has been ascribed to a depletion of the extractable energy surrounding the BHEs, that is, by extracting more energy in the heating season than is naturally replaced in the summer. A numerical model of the underground is constructed to show the thermal depletion and determine a sustainable thermal use of the shallow reservoir (0-200 m). At this stage, the model represents the geology and structure of the underground, which consists of metamorphic rocks of the Nordåsvatnet Complex (Minor Bergen Arc, Ordovician): amphibolites, micaschists, augen gneisses and quartz-schists depict the first 200 m below ground level. Preliminary well tests in some of these BHEs showed how complex and heterogeneous is the hydrogeological field. Some wells are clearly connected, others show hydraulic head difference of more than 15 m even though they are close by. Future flow tracer tests and down-hole fracture characterization will be carried out for in-depth representation of the flow field. Here we present and discuss laboratory thermal measurements on samples collected in the area, especially a comparison of two thermal conductivity measurement techniques. Thermal conductivity measurements were carried out with the thermal conductivity scanner by Lippmann and Rauen GbR and with the KD2 Pro by Decagon Devices. The optical scanning technology and the transient line source method were therefore compared to get the most valuable results. Electrical

  5. Purification and Characterization of Enzymes from Yeast: An Extended Undergraduate Laboratory Sequence for Large Classes

    ERIC Educational Resources Information Center

    Johanson, Kelly E.; Watt, Terry J.; McIntyre, Neil R.; Thompson, Marleesa

    2013-01-01

    Providing a project-based experience in an undergraduate biochemistry laboratory class can be complex with large class sizes and limited resources. We have designed a 6-week curriculum during which students purify and characterize the enzymes invertase and phosphatase from bakers yeast. Purification is performed in two stages via ethanol…

  6. A pragmatic method for estimating seepage losses for small reservoirs with application in rural India

    NASA Astrophysics Data System (ADS)

    Oblinger, Jennifer A.; Moysey, Stephen M. J.; Ravindrinath, Rangoori; Guha, Chiranjit

    2010-05-01

    SummaryThe informal construction of small dams to capture runoff and artificially recharge ground water is a widespread strategy for dealing with water scarcity. A lack of technical capacity for the formal characterization of these systems, however, is often an impediment to the implementation of effective watershed management practices. Monitoring changes in reservoir storage provides a conceptually simple approach to quantify seepage, but does not account for the losses occurring when seepage is balanced by inflows to the reservoir and the stage remains approximately constant. To overcome this problem we evaluate whether a physically-based volume balance model that explicitly represents watershed processes, including reservoir inflows, can be constrained by a limited set of data readily collected by non-experts, specifically records of reservoir stage, rainfall, and evaporation. To assess the impact of parameter non-uniqueness associated with the calibration of the non-linear model, we perform a Monte Carlo analysis to quantify uncertainty in the total volume of water contributed to the subsurface by the 2007 monsoon for a dam located in the Deccan basalts near the village of Salri in Madhya Pradesh, India. The Monte Carlo analysis demonstrated that subsurface losses from the reservoir could be constrained with the available data, but additional measurements are required to constrain reservoir inflows. Our estimate of seepage from the reservoir (7.0 ± 0.6 × 10 4 m 3) is 3.5 times greater than the recharge volume estimated by considering reservoir volume changes alone. This result suggests that artificial recharge could be significantly underestimated when reservoir inflows are not explicitly included in models. Our seepage estimate also accounts for about 11% of rainfall occurring upstream of the dam and is comparable in magnitude to natural ground water recharge, thereby indicating that the reservoir plays a significant role in the hydrology of this small

  7. Reservoir compartmentalization of deep-water Intra Qua Iboe sand (Pliocene), Edop field, offshore Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermance, W.E.; Olaifa, J.O.; Shanmugam, G.

    An integration of 3-D seismic and sedimentological information provides a basis for recognizing and mapping individual flow units within the Intra Qua Iboe (IQI) reservoir (Pliocene), Edop Field, offshore Nigeria. Core examination show the following depositional facies: A-Sandy slump/mass flow, B-Muddy slump/mass flow, C. Bottom current reworking. D-Non-channelized turbidity currents, E. Channelized (coalesced) turbidity currents. F-Channelized (isolated) turbidity currents, G-Pelagic/hemipelagic, H-Levee, I-Reworked slope, J-Wave dominated, and K-Tide dominated facies. With the exception of facies J and K, all these facies are of deep-water affinity. The IQI was deposited on an upper slope environment in close proximity to the shelf edge.more » Through time, as the shelf edge migrated scaward, deposition began with a channel dominated deep-water system (IQI 1 and 2) and progressed through a slump/debris flow dominated deep-water system (IQI 3, the principle reservoir) to a tide and wave dominated shallow-water system (IQI 4). Compositional and textural similarities between the deep-water facies result in similar log motifs. Furthermore, these depositional facies are not readily apparent as distinct seismic facies. Deep-water facies A, D, E, and F are reservoir facies, whereas facies B, C, G, H, and I are non-reservoir facies. However, Facies G is useful as a seismically mappable event throughout the study area. Mapping of these non-reservoir events provides the framework for understanding gross reservoir architecture. This study has resulted in seven defined reservoir units within the IQI, which serves as the architectural framework for ongoing reservoir characterization.« less

  8. Effects of fault-controlled CO2 alteration on mineralogical and geomechanical properties of reservoir and seal rocks, Crystal Geyser, Green River, Utah

    NASA Astrophysics Data System (ADS)

    Major, J. R.; Eichhubl, P.; Urquhart, A.; Dewers, T. A.

    2012-12-01

    An understanding of the coupled chemical and mechanical properties of reservoir and seal units undergoing CO2 injection is critical for modeling reservoir behavior in response to the introduction of CO2. The implementation of CO2 sequestration as a mitigation strategy for climate change requires extensive risk assessment that relies heavily on computer models of subsurface reservoirs. Numerical models are fundamentally limited by the quality and validity of their input parameters. Existing models generally lack constraints on diagenesis, failing to account for the coupled geochemical or geomechanical processes that affect reservoir and seal unit properties during and after CO2 injection. For example, carbonate dissolution or precipitation after injection of CO2 into subsurface brines may significantly alter the geomechanical properties of reservoir and seal units and thus lead to solution-enhancement or self-sealing of fractures. Acidified brines may erode and breach sealing units. In addition, subcritical fracture growth enhanced by the presence of CO2 could ultimately compromise the integrity of sealing units, or enhance permeability and porosity of the reservoir itself. Such unknown responses to the introduction of CO2 can be addressed by laboratory and field-based observations and measurements. Studies of natural analogs like Crystal Geyser, Utah are thus a critical part of CO2 sequestration research. The Little Grand Wash and Salt Wash fault systems near Green River, Utah, host many fossil and active CO2 seeps, including Crystal Geyser, serving as a faulted anticline CO2 reservoir analog. The site has been extensively studied for sequestration and reservoir applications, but less attention has been paid to the diagenetic and geomechanical aspects of the fault zone. XRD analysis of reservoir and sealing rocks collected along transects across the Little Grand Wash Fault reveal mineralogical trends in the Summerville Fm (a siltstone seal unit) with calcite and

  9. On the effects of adaptive reservoir operating rules in hydrological physically-based models

    NASA Astrophysics Data System (ADS)

    Giudici, Federico; Anghileri, Daniela; Castelletti, Andrea; Burlando, Paolo

    2017-04-01

    Recent years have seen a significant increase of the human influence on the natural systems both at the global and local scale. Accurately modeling the human component and its interaction with the natural environment is key to characterize the real system dynamics and anticipate future potential changes to the hydrological regimes. Modern distributed, physically-based hydrological models are able to describe hydrological processes with high level of detail and high spatiotemporal resolution. Yet, they lack in sophistication for the behavior component and human decisions are usually described by very simplistic rules, which might underperform in reproducing the catchment dynamics. In the case of water reservoir operators, these simplistic rules usually consist of target-level rule curves, which represent the average historical level trajectory. Whilst these rules can reasonably reproduce the average seasonal water volume shifts due to the reservoirs' operation, they cannot properly represent peculiar conditions, which influence the actual reservoirs' operation, e.g., variations in energy price or water demand, dry or wet meteorological conditions. Moreover, target-level rule curves are not suitable to explore the water system response to climate and socio economic changing contexts, because they assume a business-as-usual operation. In this work, we quantitatively assess how the inclusion of adaptive reservoirs' operating rules into physically-based hydrological models contribute to the proper representation of the hydrological regime at the catchment scale. In particular, we contrast target-level rule curves and detailed optimization-based behavioral models. We, first, perform the comparison on past observational records, showing that target-level rule curves underperform in representing the hydrological regime over multiple time scales (e.g., weekly, seasonal, inter-annual). Then, we compare how future hydrological changes are affected by the two modeling

  10. STRUCTURAL HETEROGENEITIES AND PALEO FLUID FLOW IN AN ANALOG SANDSTONE RESERVOIR 2001-2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollard, David; Aydin, Atilla

    2005-02-22

    Fractures and faults are brittle structural heterogeneities that can act both as conduits and barriers with respect to fluid flow in rock. This range in the hydraulic effects of fractures and faults greatly complicates the challenges faced by geoscientists working on important problems: from groundwater aquifer and hydrocarbon reservoir management, to subsurface contaminant fate and transport, to underground nuclear waste isolation, to the subsurface sequestration of CO2 produced during fossil-fuel combustion. The research performed under DOE grant DE-FG03-94ER14462 aimed to address these challenges by laying a solid foundation, based on detailed geological mapping, laboratory experiments, and physical process modeling, onmore » which to build our interpretive and predictive capabilities regarding the structure, patterns, and fluid flow properties of fractures and faults in sandstone reservoirs. The material in this final technical report focuses on the period of the investigation from July 1, 2001 to October 31, 2004. The Aztec Sandstone at the Valley of Fire, Nevada, provides an unusually rich natural laboratory in which exposures of joints, shear deformation bands, compaction bands and faults at scales ranging from centimeters to kilometers can be studied in an analog for sandstone aquifers and reservoirs. The suite of structures there has been documented and studied in detail using a combination of low-altitude aerial photography, outcrop-scale mapping and advanced computational analysis. In addition, chemical alteration patterns indicative of multiple paleo fluid flow events have been mapped at outcrop, local and regional scales. The Valley of Fire region has experienced multiple episodes of fluid flow and this is readily evident in the vibrant patterns of chemical alteration from which the Valley of Fire derives its name. We have successfully integrated detailed field and petrographic observation and analysis, process-based mechanical modeling, and

  11. Selection of reservoirs amenable to micellar flooding. First annual report, October 1978-December 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldburg, A.; Price, H.

    The overall project objective is to build a solid engineering base upon which the Department of Energy (DOE) can improve and accelerate the application of micellar-polymer recovery technology to Mid-Continent and California sandstone reservoirs. The purpose of the work carried out under these two contracts is to significantly aid, both DOE and the private sector, in gaining the following Project Objectives: to select the better micellar-polymer prospects in the Mid-Continent and California regions; to assess all of the available field and laboratory data which has a bearing on recovering oil by micellar-polymer projects in order to help identify and resolvemore » both the technical and economic constraints relating thereto; and to design and analyze improved field pilots and tests and to develop a micellar-polymer applications matrix for use by the potential technology users; i.e., owner/operators. The report includes the following: executive summary and project objectives; development of a predictive model for economic evaluation of reservoirs; reservoir data bank for micellar-polymer recovery evaluation; PECON program for preliminary economic evaluation; ordering of candidate reservoirs for additional data acquisition; validation of predictive model by numerical simulation; and work forecast. Tables, figures and references are included.« less

  12. An index of reservoir habitat impairment

    USGS Publications Warehouse

    Miranda, L.E.; Hunt, K.M.

    2011-01-01

    Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.

  13. Water resources review: Wheeler Reservoir, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallus, R.; Cox, J.P.

    1990-09-01

    Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is onemore » in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.« less

  14. Microbial diversity in degraded and non-degraded petroleum samples and comparison across oil reservoirs at local and global scales.

    PubMed

    Sierra-Garcia, Isabel Natalia; Dellagnezze, Bruna M; Santos, Viviane P; Chaves B, Michel R; Capilla, Ramsés; Santos Neto, Eugenio V; Gray, Neil; Oliveira, Valeria M

    2017-01-01

    Microorganisms have shown their ability to colonize extreme environments including deep subsurface petroleum reservoirs. Physicochemical parameters may vary greatly among petroleum reservoirs worldwide and so do the microbial communities inhabiting these different environments. The present work aimed at the characterization of the microbiota in biodegraded and non-degraded petroleum samples from three Brazilian reservoirs and the comparison of microbial community diversity across oil reservoirs at local and global scales using 16S rRNA clone libraries. The analysis of 620 16S rRNA bacterial and archaeal sequences obtained from Brazilian oil samples revealed 42 bacterial OTUs and 21 archaeal OTUs. The bacterial community from the degraded oil was more diverse than the non-degraded samples. Non-degraded oil samples were overwhelmingly dominated by gammaproteobacterial sequences with a predominance of the genera Marinobacter and Marinobacterium. Comparisons of microbial diversity among oil reservoirs worldwide suggested an apparent correlation of prokaryotic communities with reservoir temperature and depth and no influence of geographic distance among reservoirs. The detailed analysis of the phylogenetic diversity across reservoirs allowed us to define a core microbiome encompassing three bacterial classes (Gammaproteobacteria, Clostridia, and Bacteroidia) and one archaeal class (Methanomicrobia) ubiquitous in petroleum reservoirs and presumably owning the abilities to sustain life in these environments.

  15. Trophic State Evolution and Nutrient Trapping Capacity in a Transboundary Subtropical Reservoir: A 25-Year Study.

    PubMed

    Cunha, Davi Gasparini Fernandes; Benassi, Simone Frederigi; de Falco, Patrícia Bortoletto; Calijuri, Maria do Carmo

    2016-03-01

    Artificial reservoirs have been used for drinking water supply, other human activities, flood control and pollution abatement worldwide, providing overall benefits to downstream water quality. Most reservoirs in Brazil were built during the 1970s, but their long-term patterns of trophic status, water chemistry, and nutrient removal are still not very well characterized. We aimed to evaluate water quality time series (1985-2010) data from the riverine and lacustrine zones of the transboundary Itaipu Reservoir (Brazil/Paraguay). We examined total phosphorus and nitrogen, chlorophyll a concentrations, water transparency, and phytoplankton density to look for spatial and temporal trends and correlations with trophic state evolution and nutrient retention. There was significant temporal and spatial water quality variation (P < 0.01, ANCOVA). The results indicated that the water quality and structure of the reservoir were mainly affected by one internal force (hydrodynamics) and one external force (upstream cascading reservoirs). Nutrient and chlorophyll a concentrations tended to be lower in the lacustrine zone and decreased over the 25-year timeframe. Reservoir operational features seemed to be limiting primary production and phytoplankton development, which exhibited a maximum density of 6050  org/mL. The relatively small nutrient concentrations in the riverine zone were probably related to the effect of the cascade reservoirs upstream of Itaipu and led to relatively low removal percentages. Our study suggested that water quality problems may be more pronounced immediately after the filling phase of the artificial reservoirs, associated with the initial decomposition of drowned vegetation at the very beginning of reservoir operation.

  16. Trophic State Evolution and Nutrient Trapping Capacity in a Transboundary Subtropical Reservoir: A 25-Year Study

    NASA Astrophysics Data System (ADS)

    Cunha, Davi Gasparini Fernandes; Benassi, Simone Frederigi; de Falco, Patrícia Bortoletto; do Carmo Calijuri, Maria

    2016-03-01

    Artificial reservoirs have been used for drinking water supply, other human activities, flood control and pollution abatement worldwide, providing overall benefits to downstream water quality. Most reservoirs in Brazil were built during the 1970s, but their long-term patterns of trophic status, water chemistry, and nutrient removal are still not very well characterized. We aimed to evaluate water quality time series (1985-2010) data from the riverine and lacustrine zones of the transboundary Itaipu Reservoir (Brazil/Paraguay). We examined total phosphorus and nitrogen, chlorophyll a concentrations, water transparency, and phytoplankton density to look for spatial and temporal trends and correlations with trophic state evolution and nutrient retention. There was significant temporal and spatial water quality variation ( P < 0.01, ANCOVA). The results indicated that the water quality and structure of the reservoir were mainly affected by one internal force (hydrodynamics) and one external force (upstream cascading reservoirs). Nutrient and chlorophyll a concentrations tended to be lower in the lacustrine zone and decreased over the 25-year timeframe. Reservoir operational features seemed to be limiting primary production and phytoplankton development, which exhibited a maximum density of 6050 org/mL. The relatively small nutrient concentrations in the riverine zone were probably related to the effect of the cascade reservoirs upstream of Itaipu and led to relatively low removal percentages. Our study suggested that water quality problems may be more pronounced immediately after the filling phase of the artificial reservoirs, associated with the initial decomposition of drowned vegetation at the very beginning of reservoir operation.

  17. A real-time control framework for urban water reservoirs operation

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Goedbloed, A.; Schwanenberg, D.

    2012-04-01

    Drinking water demand in urban areas is growing parallel to the worldwide urban population, and it is acquiring an increasing part of the total water consumption. Since the delivery of sufficient water volumes in urban areas represents a difficult logistic and economical problem, different metropolitan areas are evaluating the opportunity of constructing relatively small reservoirs within urban areas. Singapore, for example, is developing the so-called 'Four National Taps Strategies', which detects the maximization of water yields from local, urban catchments as one of the most important water sources. However, the peculiar location of these reservoirs can provide a certain advantage from the logistical point of view, but it can pose serious difficulties in their daily management. Urban catchments are indeed characterized by large impervious areas: this results in a change of the hydrological cycle, with decreased infiltration and groundwater recharge, and increased patterns of surface and river discharges, with higher peak flows, volumes and concentration time. Moreover, the high concentrations of nutrients and sediments characterizing urban discharges can cause further water quality problems. In this critical hydrological context, the effective operation of urban water reservoirs must rely on real-time control techniques, which can exploit hydro-meteorological information available in real-time from hydrological and nowcasting models. This work proposes a novel framework for the real-time control of combined water quality and quantity objectives in urban reservoirs. The core of this framework is a non-linear Model Predictive Control (MPC) scheme, which employs the current state of the system, the future discharges furnished by a predictive model and a further model describing the internal dynamics of the controlled sub-system to determine an optimal control sequence over a finite prediction horizon. The main advantage of this scheme stands in its reduced

  18. Adapting Reservoir Operations to Reduce the Multi-Sectoral Impacts of Flood Intensification in the Lower Susquehanna

    NASA Astrophysics Data System (ADS)

    Zatarain-Salazar, J.; Reed, P. M.; Quinn, J.

    2017-12-01

    This study characterizes how changes in reservoir operations can be used to better balance growing flood intensities and the conflicting multi-sectorial demands in the Lower Susequehanna River Basin (LSRB), USA. Tensions in the LSRB are increasing with urban population pressures, evolving energy demands, and growing flood-based infrastructure vulnerabilities. This study explores how re-operation of the Conowingo Reservoir, located in the LSRB, can improve the balance between competing demands for hydropower production, urban water supply to Chester, PA and Baltimore, MD, cooling water supply for the Peach Bottom Atomic Power Plant, recreation, federal environmental flow requirements and improved mitigation of growing flood hazards. The LSRB is also one of the most flood prone basins in the US, impacted by hurricanes and rain-on-snow induced flood events causing on average $100 million in economic losses and infrastructure damages to downstream settlements every year. The purpose of this study is to evaluate the consequences of mathematical formulation choices, uncertainty characterization and the value of information when defining the Conowingo reservoir's multi-purpose operations. This work seeks to strike a balance between the complexity and the efficacy of rival framings for the problem formulations used to discover effective operating policies. More broadly, the problem of intensifying urban floods in reservoir systems with complex multi-sectoral demands is broadly relevant to developed river basins globally.

  19. Single well productivity prediction of carbonate reservoir

    NASA Astrophysics Data System (ADS)

    Le, Xu

    2018-06-01

    It is very important to predict the single-well productivity for the development of oilfields. The fracture structure of carbonate fractured-cavity reservoirs is complex, and the change of single-well productivity is inconsistent with that of sandstone reservoir. Therefore, the establishment of carbonate oil well productivity It is very important. Based on reservoir reality, three different methods for predicting the productivity of carbonate reservoirs have been established based on different types of reservoirs. (1) To qualitatively analyze the single-well capacity relations corresponding to different reservoir types, predict the production capacity according to the different wells encountered by single well; (2) Predict the productivity of carbonate reservoir wells by using numerical simulation technology; (3) According to the historical production data of oil well, fit the relevant capacity formula and make single-well productivity prediction; (4) Predict the production capacity by using oil well productivity formula of carbonate reservoir.

  20. Simulating reservoir leakage in ground-water models

    USGS Publications Warehouse

    Fenske, J.P.; Leake, S.A.; Prudic, David E.

    1997-01-01

    Leakage to ground water resulting from the expansion and contraction of reservoirs cannot be easily simulated by most ground-water flow models. An algorithm, entitled the Reservoir Package, was developed for the United States Geological Survey (USGS) three-dimensional finite-difference modular ground-water flow model MODFLOW. The Reservoir Package automates the process of specifying head-dependent boundary cells, eliminating the need to divide a simulation into many stress periods while improving accuracy in simulating changes in ground-water levels resulting from transient reservoir stage. Leakage between the reservoir and the underlying aquifer is simulated for each model cell corrresponding to the inundated area by multiplying the head difference between the reservoir and the aquifer with the hydraulic conductance of the reservoir-bed sediments.

  1. Determination of geostatistically representative sampling locations in Porsuk Dam Reservoir (Turkey)

    NASA Astrophysics Data System (ADS)

    Aksoy, A.; Yenilmez, F.; Duzgun, S.

    2013-12-01

    Several factors such as wind action, bathymetry and shape of a lake/reservoir, inflows, outflows, point and diffuse pollution sources result in spatial and temporal variations in water quality of lakes and reservoirs. The guides by the United Nations Environment Programme and the World Health Organization to design and implement water quality monitoring programs suggest that even a single monitoring station near the center or at the deepest part of a lake will be sufficient to observe long-term trends if there is good horizontal mixing. In stratified water bodies, several samples can be required. According to the guide of sampling and analysis under the Turkish Water Pollution Control Regulation, a minimum of five sampling locations should be employed to characterize the water quality in a reservoir or a lake. The European Union Water Framework Directive (2000/60/EC) states to select a sufficient number of monitoring sites to assess the magnitude and impact of point and diffuse sources and hydromorphological pressures in designing a monitoring program. Although existing regulations and guidelines include frameworks for the determination of sampling locations in surface waters, most of them do not specify a procedure in establishment of monitoring aims with representative sampling locations in lakes and reservoirs. In this study, geostatistical tools are used to determine the representative sampling locations in the Porsuk Dam Reservoir (PDR). Kernel density estimation and kriging were used in combination to select the representative sampling locations. Dissolved oxygen and specific conductivity were measured at 81 points. Sixteen of them were used for validation. In selection of the representative sampling locations, care was given to keep similar spatial structure in distributions of measured parameters. A procedure was proposed for that purpose. Results indicated that spatial structure was lost under 30 sampling points. This was as a result of varying water

  2. Reservoir transport and poroelastic properties from oscillating pore pressure experiments

    NASA Astrophysics Data System (ADS)

    Hasanov, Azar K.

    Hydraulic transport properties of reservoir rocks, permeability and storage capacity are traditionally defined as rock properties, responsible for the passage of fluids through the porous rock sample, as well as their storage. The evaluation of both is an important part of any reservoir characterization workflow. Moreover, permeability and storage capacity are main inputs into any reservoir simulation study, routinely performed by reservoir engineers on almost any major oil and gas field in the world. An accurate reservoir simulation is essential for production forecast and economic analysis, hence the transport properties directly control the profitability of the petroleum reservoir and their estimation is vital for oil and gas industry. This thesis is devoted to an integrated study of reservoir rocks' hydraulic, streaming potential and poroelastic properties as measured with the oscillating pore pressure experiment. The oscillating pore pressure method is traditionally used to measure hydraulic transport properties. We modified the method and built an experimental setup, capable of measuring all aforementioned rock properties simultaneously. The measurements were carried out for four conventional reservoir-rock quality samples at a range of oscillation frequencies and effective stresses. An apparent frequency dependence of permeability and streaming potential coupling coefficient was observed. Measured frequency dispersion of drained poroelastic properties indicates an intrinsically inelastic nature of the porous mineral rock frame. Standard Linear Model demonstrated the best fit to the experimental dispersion data. Pore collapse and grain crushing effects took place during hydrostatic loading of the dolomitic sample and were observed in permeability, coupling coefficient and poroelastic measurements simultaneously. I established that hydraulically-measured storage capacities are overestimated by almost one order of magnitude when compared to elastically

  3. Storage capacity in hot dry rock reservoirs

    DOEpatents

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  4. The Quality of Water and Bottom Material in Lunga Reservoir, Virginia, September 2004 through August 2005

    USGS Publications Warehouse

    Lotspeich, R. Russell

    2007-01-01

    throughout Lunga Reservoir ranged from 29 to 173 microsiemens per centimeter at 25 degrees Celsius during the study period, with a mean specific conductance of 68 microsiemens per centimeter at 25 degrees Celsius. Measurements of pH throughout the reservoir ranged from 4.8 to 7.6 standard units. Concentrations of chemical constituents analyzed in Lunga Reservoir samples were below any State Water Control Board criteria and generally were similar in concentration to the same chemical constituents in other reservoirs in the State. Four water samples were analyzed for 54 pesticides, and none of these pesticides were above the laboratory minimum reporting level.

  5. Coralville Reservoir Water Quality Project

    DTIC Science & Technology

    2006-05-01

    Description of the Area and Scope of the Project The Coralville flood control dam is located in Johnson County, Iowa , about three miles north of Iowa City...out of the reservoir. USGS 05453100 Iowa River at Marengo, IA USGS 05453520 Iowa River below Coralville Dam near Coralville , IA max min average...26: Pesticides in Fish. Coralville Reservoir Water Quality Pesticides in Fish Reservoir (Near Lake McBride Spillway) Downstream ( Iowa

  6. Sensitivity Analysis of Methane Hydrate Reservoirs: Effects of Reservoir Parameters on Gas Productivity and Economics

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Gaddipati, M.; Nyayapathi, L.

    2008-12-01

    This paper presents a parametric study on production rates of natural gas from gas hydrates by the method of depressurization, using CMG STARS. Seven factors/parameters were considered as perturbations from a base-case hydrate reservoir description based on Problem 7 of the International Methane Hydrate Reservoir Simulator Code Comparison Study led by the Department of Energy and the USGS. This reservoir is modeled after the inferred properties of the hydrate deposit at the Prudhoe Bay L-106 site. The included sensitivity variables were hydrate saturation, pressure (depth), temperature, bottom-hole pressure of the production well, free water saturation, intrinsic rock permeability, and porosity. A two-level (L=2) Plackett-Burman experimental design was used to study the relative effects of these factors. The measured variable was the discounted cumulative gas production. The discount rate chosen was 15%, resulting in the gas contribution to the net present value of a reservoir. Eight different designs were developed for conducting sensitivity analysis and the effects of the parameters on the real and discounted production rates will be discussed. The breakeven price in various cases and the dependence of the breakeven price on the production parameters is given in the paper. As expected, initial reservoir temperature has the strongest positive effect on the productivity of a hydrate deposit and the bottom-hole pressure in the production well has the strongest negative dependence. Also resulting in a positive correlation is the intrinsic permeability and the initial free water of the formation. Negative effects were found for initial hydrate saturation (at saturations greater than 50% of the pore space) and the reservoir porosity. These negative effects are related to the available sensible heat of the reservoir, with decreasing productivity due to decreasing available sensible heat. Finally, we conclude that for the base case reservoir, the break-even price (BEP

  7. AI techniques for optimizing multi-objective reservoir operation upon human and riverine ecosystem demands

    NASA Astrophysics Data System (ADS)

    Tsai, Wen-Ping; Chang, Fi-John; Chang, Li-Chiu; Herricks, Edwin E.

    2015-11-01

    Flow regime is the key driver of the riverine ecology. This study proposes a novel hybrid methodology based on artificial intelligence (AI) techniques for quantifying riverine ecosystems requirements and delivering suitable flow regimes that sustain river and floodplain ecology through optimizing reservoir operation. This approach addresses issues to better fit riverine ecosystem requirements with existing human demands. We first explored and characterized the relationship between flow regimes and fish communities through a hybrid artificial neural network (ANN). Then the non-dominated sorting genetic algorithm II (NSGA-II) was established for river flow management over the Shihmen Reservoir in northern Taiwan. The ecosystem requirement took the form of maximizing fish diversity, which could be estimated by the hybrid ANN. The human requirement was to provide a higher satisfaction degree of water supply. The results demonstrated that the proposed methodology could offer a number of diversified alternative strategies for reservoir operation and improve reservoir operational strategies producing downstream flows that could meet both human and ecosystem needs. Applications that make this methodology attractive to water resources managers benefit from the wide spread of Pareto-front (optimal) solutions allowing decision makers to easily determine the best compromise through the trade-off between reservoir operational strategies for human and ecosystem needs.

  8. Diesel and CNG Transit Bus Emissions Characterization By Two Chassis Dynamometer Laboratories: Results and Issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigel N. Clark, Mridul Gautam; Byron L. Rapp; Donald W. Lyons

    1999-05-03

    Emissions of six 32 passenger transit buses were characterized using one of the West Virginia University (WVU) Transportable Heavy Duty Emissions Testing Laboratories, and the fixed base chassis dynamometer at the Colorado Institute for Fuels and High Altitude Engine Research (CIFHAER). Three of the buses were powered with 1997 ISB 5.9 liter Cummins diesel engines, and three were powered with the 1997 5.9 liter Cummins natural gas (NG) counterpart. The NG engines were LEV certified. Objectives were to contrast the emissions performance of the diesel and NG units, and to compare results from the two laboratories. Both laboratories found thatmore » oxides of nitrogen and particulate matter (PM) emissions were substantially lower for the natural gas buses than for the diesel buses. It was observed that by varying the rapidity of pedal movement during accelerations in the Central Business District cycle (CBD), CO and PM emissions from the diesel buses could be varied by a factor of three or more. The driving styles may be characterized as aggressive and non-aggressive, but both styles followed the CBD speed command acceptably. PM emissions were far higher for the aggressive driving style. For the NG fueled vehicles driving style had a similar, although smaller, effect on NO{sub x}. It is evident that driver habits may cause substantial deviation in emissions for the CBD cycle. When the CO emissions are used as a surrogate for driver aggression, a regression analysis shows that NO{sub x} and PM emissions from the two laboratories agree closely for equivalent driving style. Implications of driver habit for emissions inventories and regulations are briefly considered.« less

  9. Geothermal prospection in the Greater Geneva Basin (Switzerland and France): Structural and reservoir quality assessment

    NASA Astrophysics Data System (ADS)

    Rusillon, Elme; Clerc, Nicolas; Makhloufi, Yasin; Brentini, Maud; Moscariello, Andrea

    2017-04-01

    A reservoir assessment was performed in the Greater Geneva Basin to evaluate the geothermal resources potential of low to medium enthalpy (Moscariello, 2016). For this purpose, a detail structural analysis of the basin was performed (Clerc et al., 2016) simultaneously with a reservoir appraisal study including petrophysical properties assessment in a consistent sedimentological and stratigraphical frame (Brentini et al., 2017). This multi-disciplinary study was organised in 4 steps: (1) investigation of the surrounding outcrops to understand the stratigraphy and lateral facies distribution of the sedimentary sequence from Permo-Carboniferous to Lower Cretaceous units; (2) development of 3D geological models derived from 2D seismic and well data focusing on the structural scheme of the basin to constrain better the tectonic influence on facies distribution and to assess potential hydraulic connectivity through faults between reservoir units ; (3) evaluation of the distribution, geometry, sedimentology and petrophysical properties of potential reservoir units from well data; (4) identification and selection of the most promising reservoir units for in-depth rock type characterization and 3D modeling. Petrophysical investigations revealed that the Kimmeridgian-Tithonian Reef Complex and the underlying Calcaires de Tabalcon units are the most promising geothermal reservoir targets (porosity range 10-20%; permeability to 1mD). Best reservoir properties are measured in patch reefs and high-energy peri-reefal depositional environments, which are surrounded by synchronous tight lagoonal deposits. Associated highly porous dolomitized intervals reported in the western part of the basin also provide enhanced reservoir quality. The distribution and geometry of best reservoir bodies is complex and constrained by (1) palaeotopography, which can be affected by synsedimentary fault activity during Mesozoic times, (2) sedimentary factors such as hydrodynamics, sea level variations

  10. Biogeochemical mercury methylation influenced by reservoir eutrophication, Salmon Falls Creek Reservoir, Idaho, USA

    USGS Publications Warehouse

    Gray, J.E.; Hines, M.E.

    2009-01-01

    Salmon Falls Creek Reservoir (SFCR) in southern Idaho has been under a mercury (Hg) advisory since 2001 as fish in this reservoir contain elevated concentrations of Hg. Concentrations of total Hg (HgT) and methyl-Hg (MeHg) were measured in reservoir water, bottom sediment, and porewater to examine processes of Hg methylation at the sediment/water interface in this reservoir. Rates of Hg methylation and MeHg demethylation were also measured in reservoir bottom sediment using isotopic tracer techniques to further evaluate methylation of Hg in SFCR. The highest concentrations for HgT and MeHg in sediment were generally found at the sediment/water interface, and HgT and MeHg concentrations declined with depth. Porewater extracted from bottom sediment contained highly elevated concentrations of HgT ranging from 11-230??ng/L and MeHg ranging from 0.68-8.5??ng/L. Mercury methylation was active at all sites studied. Methylation rate experiments carried out on sediment from the sediment/water interface show high rates of Hg methylation ranging from 2.3-17%/day, which is significantly higher than those reported in other Hg contaminant studies. Using porewater MeHg concentrations, we calculated an upward diffusive MeHg flux of 197??g/year for the entire reservoir. This sediment derived MeHg is delivered to the overlying SFCR water column, and eventually transferred to biota, such as fish. This study indicates that methylation of Hg is highly influenced by the hypolimnetic and eutrophic conditions in SFCR.

  11. Fluid identification based on P-wave anisotropy dispersion gradient inversion for fractured reservoirs

    NASA Astrophysics Data System (ADS)

    Zhang, J. W.; Huang, H. D.; Zhu, B. H.; Liao, W.

    2017-10-01

    Fluid identification in fractured reservoirs is a challenging issue and has drawn increasing attentions. As aligned fractures in subsurface formations can induce anisotropy, we must choose parameters independent with azimuths to characterize fractures and fluid effects such as anisotropy parameters for fractured reservoirs. Anisotropy is often frequency dependent due to wave-induced fluid flow between pores and fractures. This property is conducive for identifying fluid type using azimuthal seismic data in fractured reservoirs. Through the numerical simulation based on Chapman model, we choose the P-wave anisotropy parameter dispersion gradient (PADG) as the new fluid factor. PADG is dependent both on average fracture radius and fluid type but independent on azimuths. When the aligned fractures in the reservoir are meter-scaled, gas-bearing layer could be accurately identified using PADG attribute. The reflection coefficient formula for horizontal transverse isotropy media by Rüger is reformulated and simplified according to frequency and the target function for inverting PADG based on frequency-dependent amplitude versus azimuth is derived. A spectral decomposition method combining Orthogonal Matching Pursuit and Wigner-Ville distribution is used to prepare the frequency-division data. Through application to synthetic data and real seismic data, the results suggest that the method is useful for gas identification in reservoirs with meter-scaled fractures using high-qualified seismic data.

  12. A Cryogenic Detector Characterization Facility in the Shallow Underground Laboratory at the Technical University of Munich

    NASA Astrophysics Data System (ADS)

    Langenkämper, A.; Defay, X.; Ferreiro Iachellini, N.; Kinast, A.; Lanfranchi, J.-C.; Lindner, E.; Mancuso, M.; Mondragón, E.; Münster, A.; Ortmann, T.; Potzel, W.; Schönert, S.; Strauss, R.; Ulrich, A.; Wawoczny, S.; Willers, M.

    2018-04-01

    The Physics Department of the Technical University of Munich operates a shallow underground detector laboratory in Garching, Germany. It provides ˜ 160 {m^2} of laboratory space which is shielded from cosmic radiation by ˜ 6 m of gravel and soil, corresponding to a shielding of ˜ 15 {m.w.e.} . The laboratory also houses a cleanroom equipped with work- and wetbenches, a chemical fumehood as well as a spin-coater and a mask-aligner for photolithographic processing of semiconductor detectors. Furthermore, the shallow underground laboratory runs two high-purity germanium detector screening stations, a liquid argon cryostat and a ^3 He-^4 He dilution refrigerator with a base temperature of ≤ 12-14 mK . The infrastructure provided by the shallow laboratory is particularly relevant for the characterization of CaWO_4 target crystals for the CRESST-III experiment, detector fabrication and assembly for rare event searches. Future applications of the laboratory include detector development in the framework of coherent neutrino nucleus scattering experiments (ν -cleus) and studying its potential as a site to search for MeV-scale dark matter with gram-scale cryogenic detectors.

  13. Static reservoir modeling of the Bahariya reservoirs for the oilfields development in South Umbarka area, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Mohamed I.; Metwalli, Farouk I.; Mesilhi, El Sayed I.

    2018-02-01

    3D static reservoir modeling of the Bahariya reservoirs using seismic and wells data can be a relevant part of an overall strategy for the oilfields development in South Umbarka area (Western Desert, Egypt). The seismic data is used to build the 3D grid, including fault sticks for the fault modeling, and horizon interpretations and surfaces for horizon modeling. The 3D grid is the digital representation of the structural geology of Bahariya Formation. When we got a reasonably accurate representation, we fill the 3D grid with facies and petrophysical properties to simulate it, to gain a more precise understanding of the reservoir properties behavior. Sequential Indicator Simulation (SIS) and Sequential Gaussian Simulation (SGS) techniques are the stochastic algorithms used to spatially distribute discrete reservoir properties (facies) and continuous reservoir properties (shale volume, porosity, and water saturation) respectively within the created 3D grid throughout property modeling. The structural model of Bahariya Formation exhibits the trapping mechanism which is a fault assisted anticlinal closure trending NW-SE. This major fault breaks the reservoirs into two major fault blocks (North Block and South Block). Petrophysical models classified Lower Bahariya reservoir as a moderate to good reservoir rather than Upper Bahariya reservoir in terms of facies, with good porosity and permeability, low water saturation, and moderate net to gross. The Original Oil In Place (OOIP) values of modeled Bahariya reservoirs show hydrocarbon accumulation in economic quantity, considering the high structural dips at the central part of South Umbarka area. The powerful of 3D static modeling technique has provided a considerable insight into the future prediction of Bahariya reservoirs performance and production behavior.

  14. Digital Core Modelling for Clastic Oil and Gas Reservoir

    NASA Astrophysics Data System (ADS)

    Belozerov, I.; Berezovsky, V.; Gubaydullin, M.; Yur’ev, A.

    2018-05-01

    "Digital core" is a multi-purpose tool for solving a variety of tasks in the field of geological exploration and production of hydrocarbons at various stages, designed to improve the accuracy of geological study of subsurface resources, the efficiency of reproduction and use of mineral resources, as well as applying the results obtained in production practice. The actuality of the development of the "Digital core" software is that even a partial replacement of natural laboratory experiments with mathematical modelling can be used in the operative calculation of reserves in exploratory drilling, as well as in the absence of core material from wells. Or impossibility of its research by existing laboratory methods (weakly cemented, loose, etc. rocks). 3D-reconstruction of the core microstructure can be considered as a cheap and least time-consuming method for obtaining petrophysical information about the main filtration-capacitive properties and fluid motion in reservoir rocks.

  15. Estimating Western U.S. Reservoir Sedimentation

    NASA Astrophysics Data System (ADS)

    Bensching, L.; Livneh, B.; Greimann, B. P.

    2017-12-01

    Reservoir sedimentation is a long-term problem for water management across the Western U.S. Observations of sedimentation are limited to reservoir surveys that are costly and infrequent, with many reservoirs having only two or fewer surveys. This work aims to apply a recently developed ensemble of sediment algorithms to estimate reservoir sedimentation over several western U.S. reservoirs. The sediment algorithms include empirical, conceptual, stochastic, and processes based approaches and are coupled with a hydrologic modeling framework. Preliminary results showed that the more complex and processed based algorithms performed better in predicting high sediment flux values and in a basin transferability experiment. However, more testing and validation is required to confirm sediment model skill. This work is carried out in partnership with the Bureau of Reclamation with the goal of evaluating the viability of reservoir sediment yield prediction across the western U.S. using a multi-algorithm approach. Simulations of streamflow and sediment fluxes are validated against observed discharges, as well as a Reservoir Sedimentation Information database that is being developed by the US Army Corps of Engineers. Specific goals of this research include (i) quantifying whether inter-algorithm differences consistently capture observational variability; (ii) identifying whether certain categories of models consistently produce the best results, (iii) assessing the expected sedimentation life-span of several western U.S. reservoirs through long-term simulations.

  16. Reservoir Changes Derived from Seismic Observations at The Geysers Geothermal Field, CA, USA

    NASA Astrophysics Data System (ADS)

    Gritto, R.; Jarpre, S.

    2012-04-01

    Induced seismicity associated with the exploitation of geothermal fields is used as a tool to characterize and delineate changes associated with injection and production of fluids from the reservoir. At the same time public concern of felt seismicity has led to objections against the operation of geothermal reservoirs in close proximity to population centers. Production at the EGS sites in Basel (Switzerland) was stopped after renewed seismicity caused concern and objection from the public in the city. Operations in other geothermal reservoirs had to be scaled back or interrupted due to an unexpected increase in seismicity (Soultz-sous-forêt, France, Berlín, El Salvador). As a consequence of these concerns and in order to optimize the use of induced seismicity for reservoir engineering purposes, it becomes imperative to understand the relationship between seismic events and stress changes in the reservoir. We will address seismicity trends at The Geysers Geothermal Reservoir, CA USA, to understand the role of historical seismicity associated with past injection of water and/or production of steam. Our analysis makes use of a comprehensive database of earthquakes and associated phase arrivals from 2004 to 2011. A high-precision sub-set of the earthquake data was selected to analyze temporal changes in seismic velocities and Vp/Vs-ratio throughout the whole reservoir. We find relatively low Vp/Vs values in 2004 suggestive of a vapor dominated reservoir. With passing time, however, the observed temporal increase in Vp/Vs, coupled with a decrease in P- and S-wave velocities suggests the presence of fluid-filled fractured rock. Considering the start of a continuous water injection project in 2004, it can be concluded that the fluid saturation of the reservoir has successfully recovered. Preliminary results of 3-D velocity inversions of seismic data appear to corroborate earlier findings that the lowest Vp/Vs estimates are observed in the center of the reservoir

  17. Phytoplankton biodiversity changes in a shallow tropical reservoir during the hypertrophication process.

    PubMed

    Crossetti, L O; Bicudo, D C; Bicudo, C E M; Bini, L M

    2008-11-01

    Study aimed at evaluating phytoplankton biodiversity changes in a shallow tropical reservoir during its hypertrophication process. Samplings were carried out monthly during 8 consecutive years (1997-2004) in 5 depths. Conspicuous limnological changes in the reservoir derived from the presence and/or removal of the water hyacinth, characterized 3 different phases. Over the time series, reservoir changed from a typical polymictic eutrophic system to hypertrophic one, leading to a reduction of approximately 70 species (average 37%). Chlorophyceae accounted for the highest species richness (46%) among all algal classes and strictly followed total species richness variation. Internal feedback mechanisms intensification over phase III clearly promoted the sharp decrease in biodiversity. Highest decreases, mainly during springs, occurred simultaneously to the highest Cyanobacteria blooms. Increased turbidity due to heavy phytoplankton blooms suppressed all other algal groups, so that at the end of the present study even Cyanobacteria species richness decreased. Total dissolved phosphorous was included in most of the best selected models used to analyze the temporal patterns in species richness loss. Present data show that biodiversity loss following trophic change was not a single dimension of a single factor but, rather, a template of factors (e.g. light, stability) co-varying in consequence of the larger levels of biomass supported in the reservoir.

  18. Geothermal reservoir simulation

    NASA Technical Reports Server (NTRS)

    Mercer, J. W., Jr.; Faust, C.; Pinder, G. F.

    1974-01-01

    The prediction of long-term geothermal reservoir performance and the environmental impact of exploiting this resource are two important problems associated with the utilization of geothermal energy for power production. Our research effort addresses these problems through numerical simulation. Computer codes based on the solution of partial-differential equations using finite-element techniques are being prepared to simulate multiphase energy transport, energy transport in fractured porous reservoirs, well bore phenomena, and subsidence.

  19. Comparison of Mercury in Water, Bottom Sediment, and Zooplankton in Two Front Range Reservoirs in Colorado, 2008-09

    USGS Publications Warehouse

    Mast, M. Alisa; Krabbenhoft, David P.

    2010-01-01

    concentrations in hypolimnetic water indicate low potential for increased methylmercury production following the development of anoxic conditions in summer. Based on the limited dataset, water-level fluctuations and shoreline characteristics appear to best explain differences in fish-tissue mercury concentrations between the reservoirs. Due to the shallow depth and the large annual water-level fluctuations at Brush Hollow Reservoir, proportionally larger areas of shoreline at Brush Hollow Reservoir are subjected to annual reflooding compared to Pueblo Reservoir. Moreover, presence of macrophyte beds and regrowth of terrestrial vegetation likely increase the organic content of near-shore sediments in Brush Hollow Reservoir, which may stimulate methylmercury production in littoral areas subject to reflooding. Results of a laboratory incubation experiment were consistent with this hypothesis.

  20. Encapsulated microsensors for reservoir interrogation

    DOEpatents

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  1. Microbial diversity in methanogenic hydrocarbon-degrading enrichment cultures isolated from a water-flooded oil reservoir (Dagang oil field, China)

    NASA Astrophysics Data System (ADS)

    Jiménez, Núria; Cai, Minmin; Straaten, Nontje; Yao, Jun; Richnow, Hans H.; Krüger, Martin

    2015-04-01

    Microbial transformation of oil to methane is one of the main degradation processes taking place in oil reservoirs, and it has important consequences as it negatively affects the quality and economic value of the oil. Nevertheless, methane could constitute a recovery method of carbon from exhausted reservoirs. Previous studies combining geochemical and isotopic analysis with molecular methods showed evidence for in situ methanogenic oil degradation in the Dagang oil field, China (Jiménez et al., 2012). However, the main key microbial players and the underlying mechanisms are still relatively unknown. In order to better characterize these processes and identify the main microorganisms involved, laboratory biodegradation experiments under methanogenic conditions were performed. Microcosms were inoculated with production and injection waters from the reservoir, and oil or 13C-labelled single hydrocarbons (e.g. n-hexadecane or 2-methylnaphthalene) were added as sole substrates. Indigenous microbiota were able to extensively degrade oil within months, depleting most of the n-alkanes in 200 days, and producing methane at a rate of 76 ± 6 µmol day-1 g-1 oil added. They could also produce heavy methane from 13C-labeled 2-methylnaphthalene, suggesting that further methanogenesis may occur from the aromatic and polyaromatic fractions of Dagang reservoir fluids. Microbial communities from oil and 2-methyl-naphthalene enrichment cultures were slightly different. Although, in both cases Deltaproteobacteria, mainly belonging to Syntrophobacterales (e.g. Syntrophobacter, Smithella or Syntrophus) and Clostridia, mostly Clostridiales, were among the most represented taxa, Gammaproteobacteria could be only identified in oil-degrading cultures. The proportion of Chloroflexi, exclusively belonging to Anaerolineales (e.g. Leptolinea, Bellilinea) was considerably higher in 2-methyl-naphthalene degrading cultures. Archaeal communities consisted almost exclusively of representatives of

  2. Massachusetts reservoir simulation tool—User’s manual

    USGS Publications Warehouse

    Levin, Sara B.

    2016-10-06

    IntroductionThe U.S. Geological Survey developed the Massachusetts Reservoir Simulation Tool to examine the effects of reservoirs on natural streamflows in Massachusetts by simulating the daily water balance of reservoirs. The simulation tool was developed to assist environmental managers to better manage water withdrawals in reservoirs and to preserve downstream aquatic habitats.

  3. Time-lapse seismic waveform modelling and attribute analysis using hydromechanical models for a deep reservoir undergoing depletion

    NASA Astrophysics Data System (ADS)

    He, Y.-X.; Angus, D. A.; Blanchard, T. D.; Wang, G.-L.; Yuan, S.-Y.; Garcia, A.

    2016-04-01

    Extraction of fluids from subsurface reservoirs induces changes in pore pressure, leading not only to geomechanical changes, but also perturbations in seismic velocities and hence observable seismic attributes. Time-lapse seismic analysis can be used to estimate changes in subsurface hydromechanical properties and thus act as a monitoring tool for geological reservoirs. The ability to observe and quantify changes in fluid, stress and strain using seismic techniques has important implications for monitoring risk not only for petroleum applications but also for geological storage of CO2 and nuclear waste scenarios. In this paper, we integrate hydromechanical simulation results with rock physics models and full-waveform seismic modelling to assess time-lapse seismic attribute resolution for dynamic reservoir characterization and hydromechanical model calibration. The time-lapse seismic simulations use a dynamic elastic reservoir model based on a North Sea deep reservoir undergoing large pressure changes. The time-lapse seismic traveltime shifts and time strains calculated from the modelled and processed synthetic data sets (i.e. pre-stack and post-stack data) are in a reasonable agreement with the true earth models, indicating the feasibility of using 1-D strain rock physics transform and time-lapse seismic processing methodology. Estimated vertical traveltime shifts for the overburden and the majority of the reservoir are within ±1 ms of the true earth model values, indicating that the time-lapse technique is sufficiently accurate for predicting overburden velocity changes and hence geomechanical effects. Characterization of deeper structure below the overburden becomes less accurate, where more advanced time-lapse seismic processing and migration is needed to handle the complex geometry and strong lateral induced velocity changes. Nevertheless, both migrated full-offset pre-stack and near-offset post-stack data image the general features of both the overburden and

  4. Nonlinear Filtering Effects of Reservoirs on Flood Frequency Curves at the Regional Scale: RESERVOIRS FILTER FLOOD FREQUENCY CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Li, Hong-Yi; Leung, L. Ruby

    Anthropogenic activities, e.g., reservoir operation, may alter the characteristics of Flood Frequency Curve (FFC) and challenge the basic assumption of stationarity used in flood frequency analysis. This paper presents a combined data-modeling analysis of the nonlinear filtering effects of reservoirs on the FFCs over the contiguous United States. A dimensionless Reservoir Impact Index (RII), defined as the total upstream reservoir storage capacity normalized by the annual streamflow volume, is used to quantify reservoir regulation effects. Analyses are performed for 388 river stations with an average record length of 50 years. The first two moments of the FFC, mean annual maximummore » flood (MAF) and coefficient of variations (CV), are calculated for the pre- and post-dam periods and compared to elucidate the reservoir regulation effects as a function of RII. It is found that MAF generally decreases with increasing RII but stabilizes when RII exceeds a threshold value, and CV increases with RII until a threshold value beyond which CV decreases with RII. The processes underlying the nonlinear threshold behavior of MAF and CV are investigated using three reservoir models with different levels of complexity. All models capture the non-linear relationships of MAF and CV with RII, suggesting that the basic flood control function of reservoirs is key to the non-linear relationships. The relative roles of reservoir storage capacity, operation objectives, available storage prior to a flood event, and reservoir inflow pattern are systematically investigated. Our findings may help improve flood-risk assessment and mitigation in regulated river systems at the regional scale.« less

  5. Optimal Hedging Rule for Reservoir Refill Operation

    NASA Astrophysics Data System (ADS)

    Wan, W.; Zhao, J.; Lund, J. R.; Zhao, T.; Lei, X.; Wang, H.

    2015-12-01

    This paper develops an optimal reservoir Refill Hedging Rule (RHR) for combined water supply and flood operation using mathematical analysis. A two-stage model is developed to formulate the trade-off between operations for conservation benefit and flood damage in the reservoir refill season. Based on the probability distribution of the maximum refill water availability at the end of the second stage, three zones are characterized according to the relationship among storage capacity, expected storage buffer (ESB), and maximum safety excess discharge (MSED). The Karush-Kuhn-Tucker conditions of the model show that the optimality of the refill operation involves making the expected marginal loss of conservation benefit from unfilling (i.e., ending storage of refill period less than storage capacity) as nearly equal to the expected marginal flood damage from levee overtopping downstream as possible while maintaining all constraints. This principle follows and combines the hedging rules for water supply and flood management. A RHR curve is drawn analogously to water supply hedging and flood hedging rules, showing the trade-off between the two objectives. The release decision result has a linear relationship with the current water availability, implying the linearity of RHR for a wide range of water conservation functions (linear, concave, or convex). A demonstration case shows the impacts of factors. Larger downstream flood conveyance capacity and empty reservoir capacity allow a smaller current release and more water can be conserved. Economic indicators of conservation benefit and flood damage compete with each other on release, the greater economic importance of flood damage is, the more water should be released in the current stage, and vice versa. Below a critical value, improving forecasts yields less water release, but an opposing effect occurs beyond this critical value. Finally, the Danjiangkou Reservoir case study shows that the RHR together with a rolling

  6. Carbon emission from global hydroelectric reservoirs revisited.

    PubMed

    Li, Siyue; Zhang, Quanfa

    2014-12-01

    Substantial greenhouse gas (GHG) emissions from hydropower reservoirs have been of great concerns recently, yet the significant carbon emitters of drawdown area and reservoir downstream (including spillways and turbines as well as river reaches below dams) have not been included in global carbon budget. Here, we revisit GHG emission from hydropower reservoirs by considering reservoir surface area, drawdown zone and reservoir downstream. Our estimates demonstrate around 301.3 Tg carbon dioxide (CO2)/year and 18.7 Tg methane (CH4)/year from global hydroelectric reservoirs, which are much higher than recent observations. The sum of drawdown and downstream emission, which is generally overlooked, represents 42 % CO2 and 67 % CH4 of the total emissions from hydropower reservoirs. Accordingly, the global average emissions from hydropower are estimated to be 92 g CO2/kWh and 5.7 g CH4/kWh. Nonetheless, global hydroelectricity could currently reduce approximate 2,351 Tg CO2eq/year with respect to fuel fossil plant alternative. The new findings show a substantial revision of carbon emission from the global hydropower reservoirs.

  7. Reservoir assessment of the Nubian sandstone reservoir in South Central Gulf of Suez, Egypt

    NASA Astrophysics Data System (ADS)

    El-Gendy, Nader; Barakat, Moataz; Abdallah, Hamed

    2017-05-01

    The Gulf of Suez is considered as one of the most important petroleum provinces in Egypt and contains the Saqqara and Edfu oil fields located in the South Central portion of the Gulf of Suez. The Nubian sandstone reservoir in the Gulf of Suez basin is well known for its great capability to store and produce large volumes of hydrocarbons. The Nubian sandstone overlies basement rocks throughout most of the Gulf of Suez region. It consists of a sequence of sandstones and shales of Paleozoic to Cretaceous age. The Nubian sandstone intersected in most wells has excellent reservoir characteristics. Its porosity is controlled by sedimentation style and diagenesis. The cementation materials are mainly kaolinite and quartz overgrowths. The permeability of the Nubian sandstone is mainly controlled by grain size, sorting, porosity and clay content especially kaolinite and decreases with increase of kaolinite. The permeability of the Nubian Sandstone is evaluated using the Nuclear Magnetic Resonance (NMR technology) and formation pressure data in addition to the conventional logs and the results were calibrated using core data. In this work, the Nubian sandstone was investigated and evaluated using complete suites of conventional and advanced logging techniques to understand its reservoir characteristics which have impact on economics of oil recovery. The Nubian reservoir has a complicated wettability nature which affects the petrophysical evaluation and reservoir productivity. So, understanding the reservoir wettability is very important for managing well performance, productivity and oil recovery.

  8. Reservoir and canal system regulation for operation of the Raymond Reservoir Hydro Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, H.D.; Davidson, B.

    1995-12-31

    In 1989 LIMA Engineering Ltd. of Lethbridge, Alberta, Canada and Tudor Engineering Company of Oakland, California investigated the feasibility of installing a hydroelectric facility for the St. Mary River Irrigation District at Raymond Chute. This chute is a 29.3 m (96 ft) drop structure on the District`s main canal outside of the town of Raymond in southern Alberta. The chute discharges into the east end of Raymond Reservoir, a small regulating reservoir. The engineering team concluded that the project could be made more attractive by combining the drop at Raymond Chute with an additional 17.7 m (58 ft) of headmore » available at the upstream Milk River Ridge Reservoir. The result was the 20 MW Raymond Reservoir Hydro Project which went into commercial operation in May, 1994. Combining these two drops in elevation required the construction of a complete bypass system with a new approach canal and tailrace discharging into the west end of Raymond Reservoir, approximately 5 km (3 miles) west of the Raymond Chute. The system allows up to 56.7 cms (2,000 cfs) to be diverted through the powerhouse and thereby bypass Milk River Ridge Reservoir, Raymond Chute and approximately 6.5 km (4 miles) of canal. No synchronous bypass valve or spill facility was provided at the powerhouse. Rather, a system of rehabilitated or new check structures and controls were provided to automatically transfer flow from the power canal to the original system and thereby maintain a constant pre-set discharge downstream of the powerhouse following load rejections. This constant discharge is essential for meeting downstream irrigation demand.« less

  9. Storage capacity in hot dry rock reservoirs

    DOEpatents

    Brown, Donald W.

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  10. 21 CFR 868.5320 - Reservoir bag.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Reservoir bag. 868.5320 Section 868.5320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5320 Reservoir bag. (a) Identification. A reservoir bag is a...

  11. 21 CFR 868.5320 - Reservoir bag.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Reservoir bag. 868.5320 Section 868.5320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5320 Reservoir bag. (a) Identification. A reservoir bag is a...

  12. Temperature and oxygen in Missouri reservoirs

    USGS Publications Warehouse

    Jones, John R.; Knowlton, Matthew F.; Obrecht, Daniel V.; Graham, Jennifer L.

    2011-01-01

    Vertical profiles of water temperature (n = 7193) and dissolved oxygen (n = 6516) were collected from 235 Missouri reservoirs during 1989–2007; most data were collected during May–August and provide a regional summary of summer conditions. Collectively, surface water temperature ranged from a mean of ~22 C in May to 28 C in July, and individual summer maxima typically were 28–32 C. Most (~95%) reservoirs stably stratify by mid-May, but few are deep enough to have hypolimnia with near-uniform temperatures. Among stratified reservoirs, maximum effective length and maximum depth accounted for 75% of the variation in mixed depth and thermocline depth. Ephemeral, near-surface thermoclines occurred in 39% of summer profiles and were most frequent in small, turbid reservoirs. Isotherms below the mixed layer deepen during stratification, and the water column is >20 C by August in all but the deepest reservoirs. Most reservoirs showed incipient dissolved oxygen (DO) depletion by mid-May, and by August, 80% of profiles had DO minima of 50% of variation in DO below the mixed layer during summer. Warm summer temperatures and widespread low DO often limit available fish habitat in Missouri reservoirs and compress warm-water fish communities into subsurface layers that exceed their thermal preferences. This study provides a regional baseline of reservoir temperature and oxygen conditions useful for future evaluations of eutrophication and the effects of a warming climate.

  13. Carbon Sequestration in Unconventional Reservoirs: Geophysical, Geochemical and Geomechanical Considerations

    NASA Astrophysics Data System (ADS)

    Zakharova, Natalia V.

    In the face of the environmental challenges presented by the acceleration of global warming, carbon capture and storage, also called carbon sequestration, may provide a vital option to reduce anthropogenic carbon dioxide emissions, while meeting the world's energy demands. To operate on a global scale, carbon sequestration would require thousands of geologic repositories that could accommodate billions of tons of carbon dioxide per year. In order to reach such capacity, various types of geologic reservoirs should be considered, including unconventional reservoirs such as volcanic rocks, fractured formations, and moderate-permeability aquifers. Unconventional reservoirs, however, are characterized by complex pore structure, high heterogeneity, and intricate feedbacks between physical, chemical and mechanical processes, and their capacity to securely store carbon emissions needs to be confirmed. In this dissertation, I present my contribution toward the understanding of geophysical, geochemical, hydraulic, and geomechanical properties of continental basalts and fractured sedimentary formations in the context of their carbon storage capacity. The data come from two characterization projects, in the Columbia River Flood Basalt in Washington and the Newark Rift Basin in New York, funded by the U.S. Department of Energy through Big Sky Carbon Sequestration Partnerships and TriCarb Consortium for Carbon Sequestration. My work focuses on in situ analysis using borehole geophysical measurements that allow for detailed characterization of formation properties on the reservoir scale and under nearly unaltered subsurface conditions. The immobilization of injected CO2 by mineralization in basaltic rocks offers a critical advantage over sedimentary reservoirs for long-term CO2 storage. Continental flood basalts, such as the Columbia River Basalt Group, possess a suitable structure for CO2 storage, with extensive reservoirs in the interflow zones separated by massive impermeable

  14. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pressure or vacuum below 70 percent of that indicated by the air or vacuum gauge immediately before the.... Each service reservoir system on a motor vehicle shall be protected against a loss of air pressure or... NECESSARY FOR SAFE OPERATION Brakes § 393.50 Reservoirs required. (a) Reservoir capacity for air-braked...

  15. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... pressure or vacuum below 70 percent of that indicated by the air or vacuum gauge immediately before the.... Each service reservoir system on a motor vehicle shall be protected against a loss of air pressure or... NECESSARY FOR SAFE OPERATION Brakes § 393.50 Reservoirs required. (a) Reservoir capacity for air-braked...

  16. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pressure or vacuum below 70 percent of that indicated by the air or vacuum gauge immediately before the.... Each service reservoir system on a motor vehicle shall be protected against a loss of air pressure or... NECESSARY FOR SAFE OPERATION Brakes § 393.50 Reservoirs required. (a) Reservoir capacity for air-braked...

  17. 32 CFR 644.4 - Reservoir projects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Reservoir projects. 644.4 Section 644.4 National... HANDBOOK Project Planning Civil Works § 644.4 Reservoir projects. (a) Joint land acquisition policy for reservoir projects. The joint policies of the Department of the Interior and the Department of the Army...

  18. 32 CFR 644.4 - Reservoir projects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Reservoir projects. 644.4 Section 644.4 National... HANDBOOK Project Planning Civil Works § 644.4 Reservoir projects. (a) Joint land acquisition policy for reservoir projects. The joint policies of the Department of the Interior and the Department of the Army...

  19. 32 CFR 644.4 - Reservoir projects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Reservoir projects. 644.4 Section 644.4 National... HANDBOOK Project Planning Civil Works § 644.4 Reservoir projects. (a) Joint land acquisition policy for reservoir projects. The joint policies of the Department of the Interior and the Department of the Army...

  20. Predicting phase behavior of mixtures of reservoir fluids with carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigg, R.B.; Lingane, P.J.

    1983-10-01

    The use of an equation of state to predict phase behavior during carbon dioxide flooding is well established. There is consensus that the characterization of the C fraction, the grouping of this fraction into ''pseudo components'', and the selection of interaction parameters are the most important variables. However, the literature is vague as to how to best select the pseudo components, especially when aiming for a few-component representation as for a field scale compositional simulation. Single-contact phase behavior is presented for mixtures of Ford Geraldine (Delaware), Maljamar (Grayburg), West Sussex (Shannon), and Reservoir D reservoir fluids, and of a syntheticmore » oil C/C/C, with carbon dioxide. One can reproduce the phase behavior of these mixtures using 3-5 pseudo components and common interaction parameters. The critical properties of the pseudo components are calculated from detailed oil characterizations. Because the parameters are not further adjusted, this approach reduces the empiricism in fitting phase data and may result in a more accurate representation of the system as the composition of the oil changes during the approach to miscibility.« less

  1. Liquid-Rich Shale Potential of Utah’s Uinta and Paradox Basins: Reservoir Characterization and Development Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanden Berg, Michael; Morgan, Craig; Chidsey, Thomas

    assessed the undiscovered oil resource in the Cane Creek shale of the Paradox Basin at 103 million barrels at a 95 percent confidence level and 198 million barrels at a 50 percent confidence level. Nonetheless, limited research was available or published to further define the play and the reservoir characteristics. The specific objectives of the enclosed research were to (1) characterize geologic, geochemical, and geomechanical rock properties of target zones in the two designated basins by compiling data and by analyzing available cores, cuttings, and well logs; (2) describe outcrop reservoir analogs of GRF plays (Cane Creek shale is not exposed) and compare them to subsurface data; (3) map major regional trends for targeted intervals and identify “sweet spots” that have the greatest oil potential; (4) reduce exploration costs and drilling risks, especially in environmentally sensitive areas; (5) improve drilling and fracturing effectiveness by determining optimal well completion design; and (6) reduce field development costs, maximize oil recovery, and increase reserves. These objectives are all addressed in a series of nine publications that resulted from this extensive research project. Each publication is included in this report as an independent appendix.« less

  2. Biofilm composition in the Olt River (Romania) reservoirs impacted by a chlor-alkali production plant.

    PubMed

    Dranguet, P; Cosio, C; Le Faucheur, S; Hug Peter, D; Loizeau, J-L; Ungureanu, V-Gh; Slaveykova, V I

    2017-05-24

    Freshwater biofilms can be useful indicators of water quality and offer the possibility to assess contaminant effects at the community level. The present field study examines the effects of chlor-alkali plant effluents on the community composition of biofilms grown in the Olt River (Romania) reservoirs. The relationship between ambient water quality variables and community composition alterations was explored. Amplicon sequencing revealed a significant modification of the composition of microalgal, bacterial and fungal communities in the biofilms collected in the impacted reservoirs in comparison with those living in the uncontaminated control reservoir. The abundance corrected Simpson index showed lower richness and diversity in biofilms collected in the impacted reservoirs than in the control reservoir. The biofilm bacterial communities of the impacted reservoirs were characterized by the contaminant-tolerant Cyanobacteria and Bacteroidetes, whereas microalgal communities were predominantly composed of Bacillariophyta and fungal communities of Lecanoromycetes and Paraglomycetes. A principal component analysis revealed that major contaminants present in the waste water of the chlor-alkali production plant, i.e. Na + , Ca 2+ , Cl - and Hg, were correlated with the alteration of biofilm community composition in the impacted reservoirs. However, the biofilm composition was also influenced by water quality variables such as NO 3 - , SO 4 2- , DOC and Zn from unknown sources. The results of the present study imply that, even when below the environmental quality standards, typical contaminants of chlor-alkali plant releases may affect biofilm composition and that their impacts on the microbial biodiversity might be currently overlooked.

  3. HESS Opinions: Linking Darcy's equation to the linear reservoir

    NASA Astrophysics Data System (ADS)

    Savenije, Hubert H. G.

    2018-03-01

    In groundwater hydrology, two simple linear equations exist describing the relation between groundwater flow and the gradient driving it: Darcy's equation and the linear reservoir. Both equations are empirical and straightforward, but work at different scales: Darcy's equation at the laboratory scale and the linear reservoir at the watershed scale. Although at first sight they appear similar, it is not trivial to upscale Darcy's equation to the watershed scale without detailed knowledge of the structure or shape of the underlying aquifers. This paper shows that these two equations, combined by the water balance, are indeed identical provided there is equal resistance in space for water entering the subsurface network. This implies that groundwater systems make use of an efficient drainage network, a mostly invisible pattern that has evolved over geological timescales. This drainage network provides equally distributed resistance for water to access the system, connecting the active groundwater body to the stream, much like a leaf is organized to provide all stomata access to moisture at equal resistance. As a result, the timescale of the linear reservoir appears to be inversely proportional to Darcy's conductance, the proportionality being the product of the porosity and the resistance to entering the drainage network. The main question remaining is which physical law lies behind pattern formation in groundwater systems, evolving in a way that resistance to drainage is constant in space. But that is a fundamental question that is equally relevant for understanding the hydraulic properties of leaf veins in plants or of blood veins in animals.

  4. Functional wettability in carbonate reservoirs

    DOE PAGES

    Brady, Patrick V.; Thyne, Geoffrey

    2016-10-11

    Oil adsorbs to carbonate reservoirs indirectly through a relatively thick separating water layer, and directly to the surface through a relatively thin intervening water layer. Whereas directly sorbed oil desorbs slowly and incompletely in response to changes in reservoir conditions, indirectly sorbed oil can be rapidly desorbed by changing the chemistry of the separating water layer. The additional recovery might be as much as 30% original oil in place (OOIP) above the ~30% OOIP recovered from carbonates through reservoir depressurization (primary production) and viscous displacement (waterflooding). Electrostatic adhesive forces are the dominant control over carbonate reservoir wettability. A surface complexationmore » model that quantifies electrostatic adhesion accurately predicts oil recovery trends for carbonates. Furthermore, the approach should therefore be useful for estimating initial wettability and designing fluids that improve oil recovery.« less

  5. Reservoir computing on the hypersphere

    NASA Astrophysics Data System (ADS)

    Andrecut, M.

    Reservoir Computing (RC) refers to a Recurrent Neural Network (RNNs) framework, frequently used for sequence learning and time series prediction. The RC system consists of a random fixed-weight RNN (the input-hidden reservoir layer) and a classifier (the hidden-output readout layer). Here, we focus on the sequence learning problem, and we explore a different approach to RC. More specifically, we remove the nonlinear neural activation function, and we consider an orthogonal reservoir acting on normalized states on the unit hypersphere. Surprisingly, our numerical results show that the system’s memory capacity exceeds the dimensionality of the reservoir, which is the upper bound for the typical RC approach based on Echo State Networks (ESNs). We also show how the proposed system can be applied to symmetric cryptography problems, and we include a numerical implementation.

  6. Effect of trans-reservoir water supply on carbon and nitrogen stable isotope composition in hydrologically connected reservoirs in China

    NASA Astrophysics Data System (ADS)

    Zhang, Huajun; Peng, Liang; Gu, Binhe; Han, Bo-Ping

    2017-09-01

    Dajingshan, Fenghuangshan and Meixi reservoirs are located in Zhuhai, a coastal city in southern China, and they function to supply drinking water to Zhuhai and Macau. For effectively supplying waster, they are hydrologically connected and Dajingshan Reservoir first receives the water pumped from the river at Guangchang Pumping Station, and then feeds Fenghuangshan Reservoir, and the two well-connected reservoirs are mesotrophic. Meixi Reservoir is a small and oligotrophic water body and feeds Dajingshan Reservoir only in wet seasons when overflow occurs. Particulate organic matter (POM) was collected from three hydrologically connected water supply reservoirs, and seasonal variations of POM were ascertained from stable carbon and nitrogen isotopes in wet and dry seasons, and the effects of pumping water and reservoir connectivity on POM variations and composition were demonstrated by the relationships of the stable isotope ratios of POM. Seasonality and similarity of stable carbon and nitrogen isotopes of POM varied with hydrodynamics, connectivity and trophic states of the four studied water bodies. The two well-connected reservoirs displayed more similar seasonality for δ13CPOM than those between the river station and the two reservoirs. However, the opposite seasonality appeared for δ15NPOM between the above waters and indicates different processes affecting the stable carbon and nitrogen isotopes of POM. δ13CPOM and δ15NPOM changed little between wet and dry seasons in Meixi Reservoir-a low productive and rain-driven system, suggesting little POM response to environmental changes in that water system. As expected, connectivity enhanced the similarity of the stable isotope ratios of POM between the water bodies.

  7. Geochemical analysis of reservoir continuity and connectivity, Arab-D and Hanifa Reservoirs, Abqaiq Field, Saudia Arabia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahdi, A.A.; Grover, G.; Hwang, R.

    1995-08-01

    Organic geochemistry and its integration with geologic and reservoir engineering data is becoming increasingly utilized to assist geologists and petroleum engineers in solving production related problems. In Abqaiq Field of eastern Saudi Arabia, gas chromatographic analysis (FSCOT) of produced oils from the Arab-D and Hanifa reservoirs was used to evaluate vertical and lateral continuity within and between these reservoirs. Bulk and molecular properties of produced Arab-D oils do not vary significantly over the 70 km length and 10 km width of the reservoir. Hanifa oils, however, do reflect two compositionally distinct populations that are hot in lateral communication, compatible withmore » the occurrence of a large oil pool in the southern part of the field, and a separate, and smaller northern accumulation. The Arab-D and underlying Hanifa oil pools are separated by over 450 feet of impermeable carbonates of the Jubaila Formation, yet the Southern Hanifa pool and the Arab-D have been in pressure communication since onset of Hanifa production in 1954. Recent borehole imaging and core data from horizontal Hanifa wells confirmed the long suspected occurrence of fractures responsible for fluid transmissibility within the porous (up to 35%) but tight (<10md matrix K) Hanifa reservoir, and between the Hanifa and Arab-D. The nearly identical hydrocarbon composition of oils from the Arab-D and southern Hanifa pool provided the final confirmation of fluid communication between the two reservoirs, and extension of a Hanifa fracture-fault network via the Jubaila Formation. This work lead to acquisition of 3-D seismic to image and map the fracture-fault system. The molecular fingerprinting approach demonstrated that produced oils can be used to evaluate vertical and lateral reservoir continuity, and at Abqaiq Field confirmed, in part, the need to produce the Hanifa reservoir via horizontal wells to arrest the reservoir communication that occurs with existing vertical wells.« less

  8. 3D hybrid tectono-stochastic modeling of naturally fractured reservoir: Application of finite element method and stochastic simulation technique

    NASA Astrophysics Data System (ADS)

    Gholizadeh Doonechaly, N.; Rahman, S. S.

    2012-05-01

    Simulation of naturally fractured reservoirs offers significant challenges due to the lack of a methodology that can utilize field data. To date several methods have been proposed by authors to characterize naturally fractured reservoirs. Among them is the unfolding/folding method which offers some degree of accuracy in estimating the probability of the existence of fractures in a reservoir. Also there are statistical approaches which integrate all levels of field data to simulate the fracture network. This approach, however, is dependent on the availability of data sources, such as seismic attributes, core descriptions, well logs, etc. which often make it difficult to obtain field wide. In this study a hybrid tectono-stochastic simulation is proposed to characterize a naturally fractured reservoir. A finite element based model is used to simulate the tectonic event of folding and unfolding of a geological structure. A nested neuro-stochastic technique is used to develop the inter-relationship between the data and at the same time it utilizes the sequential Gaussian approach to analyze field data along with fracture probability data. This approach has the ability to overcome commonly experienced discontinuity of the data in both horizontal and vertical directions. This hybrid technique is used to generate a discrete fracture network of a specific Australian gas reservoir, Palm Valley in the Northern Territory. Results of this study have significant benefit in accurately describing fluid flow simulation and well placement for maximal hydrocarbon recovery.

  9. Characterization of Bacterial Communities and Asaia Infection with Field-Collected and Laboratory-Reared Aedes albopictus

    DTIC Science & Technology

    2016-08-18

    Characterization of bacterial communities and Asaia infection within field-collected and 1 laboratory-reared Aedes albopictus 2 3 4 Elizabeth S...Running Head: Bacterial communities within Ae. albopictus 10 11 #Address correspondence to Elizabeth S. Andrews, elizabeth.s.andrews11.ctr@mail.mil 12...189 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. UNCLASSIFIED Abstract 19 The bacterial communities within

  10. Ground-Water Contributions to Reservoir Storage and the Effect on Estimates of Firm Yield for Reservoirs in Massachusetts

    USGS Publications Warehouse

    Archfield, Stacey A.; Carlson, Carl S.

    2006-01-01

    Potential ground-water contributions to reservoir storage were determined for nine reservoirs in Massachusetts that had shorelines in contact with sand and gravel aquifers. The effect of ground water on firm yield was not only substantial, but furthermore, the firm yield of a reservoir in contact with a sand and gravel aquifer was always greater when the ground-water contribution was included in the water balance. Increases in firm yield ranged from 2 to 113 percent, with a median increase in firm yield of 10 percent. Additionally, the increase in firm yield in two reservoirs was greater than 85 percent. This study identified a set of equations that are based on an analytical solution to the ground-water-flow equation for the case of one-dimensional flow in a finite-width aquifer bounded by a linear surface-water feature such as a stream. These equations, which require only five input variables, were incorporated into an existing firm-yield-estimator (FYE) model, and the potential effect of ground water on firm yield was evaluated. To apply the FYE model to a reservoir in Massachusetts, the model requires that the drainage area to the reservoir be clearly defined and that some surface water flows into the reservoir. For surface-water-body shapes having a more realistic representation of a reservoir shoreline than a stream, a comparison of ground-water-flow rates simulated by the ground-water equations with flow rates simulated by a two-dimensional, finite-difference ground-water-flow model indicate that the agreement between the simulated flow rates is within ?10 percent when the ratio of the distance from the reservoir shoreline to the aquifer boundary to the length of shoreline in contact with the aquifer is between values of 0.5 and 3.5. Idealized reservoir-aquifer systems were assumed to verify that the ground-water-flow equations were implemented correctly into the existing FYE model; however, the modified FYE model has not been validated through a comparison

  11. Laboratory measurements of reservoir rock from the Geysers geothermal field, California

    USGS Publications Warehouse

    Lockner, D.A.; Summers, R.; Moore, D.; Byerlee, J.D.

    1982-01-01

    Rock samples taken from two outcrops, as well as rare cores from three well bores at the Geysers geothermal field, California, were tested at temperatures and pressures similar to those found in the geothermal field. Both intact and 30?? sawcut cylinders were deformed at confining pressures of 200-1000 bars, pore pressure of 30 bars and temperatures of 150?? and 240??C. Thin-section and X-ray analysis revealed that some borehole samples had undergone extensive alteration and recrystallization. Constant strain rate tests of 10-4 and 10-6 per sec gave a coefficient of friction of 0.68. Due to the highly fractured nature of the rocks taken from the production zone, intact samples were rarely 50% stronger than the frictional strength. This result suggests that the Geysers reservoir can support shear stresses only as large as its frictional shear strength. Velocity of p-waves (6.2 km/sec) was measured on one sample. Acoustic emission and sliding on a sawcut were related to changes in pore pressure. b-values computed from the acoustic emissions generated during fluid injection were typically about 0.55. An unusually high b-value (approximately 1.3) observed during sudden injection of water into the sample may have been related to thermal cracking. ?? 1982.

  12. Phytoplankton and water quality in a Mediterranean drinking-water reservoir (Marathonas Reservoir, Greece).

    PubMed

    Katsiapi, Matina; Moustaka-Gouni, Maria; Michaloudi, Evangelia; Kormas, Konstantinos Ar

    2011-10-01

    Phytoplankton and water quality of Marathonas drinking-water Reservoir were examined for the first time. During the study period (July-September 2007), phytoplankton composition was indicative of eutrophic conditions although phytoplankton biovolume was low (max. 2.7 mm³ l⁻¹). Phytoplankton was dominated by cyanobacteria and diatoms, whereas desmids and dinoflagellates contributed with lower biovolume values. Changing flushing rate in the reservoir (up to 0.7% of reservoir's water volume per day) driven by water withdrawal and occurring in pulses for a period of 15-25 days was associated with phytoplankton dynamics. Under flushing pulses: (1) biovolume was low and (2) both 'good' quality species and the tolerant to flushing 'nuisance' cyanobacterium Microcystis aeruginosa dominated. According to the Water Framework Directive, the metrics of phytoplankton biovolume and cyanobacterial percentage (%) contribution indicated a moderate ecological water quality. In addition, the total biovolume of cyanobacteria as well as the dominance of the known toxin-producing M. aeruginosa in the reservoir's phytoplankton indicated a potential hazard for human health according to the World Health Organization.

  13. AUTOMATED TECHNIQUE FOR FLOW MEASUREMENTS FROM MARIOTTE RESERVOIRS.

    USGS Publications Warehouse

    Constantz, Jim; Murphy, Fred

    1987-01-01

    The mariotte reservoir supplies water at a constant hydraulic pressure by self-regulation of its internal gas pressure. Automated outflow measurements from mariotte reservoirs are generally difficult because of the reservoir's self-regulation mechanism. This paper describes an automated flow meter specifically designed for use with mariotte reservoirs. The flow meter monitors changes in the mariotte reservoir's gas pressure during outflow to determine changes in the reservoir's water level. The flow measurement is performed by attaching a pressure transducer to the top of a mariotte reservoir and monitoring gas pressure changes during outflow with a programmable data logger. The advantages of the new automated flow measurement techniques include: (i) the ability to rapidly record a large range of fluxes without restricting outflow, and (ii) the ability to accurately average the pulsing flow, which commonly occurs during outflow from the mariotte reservoir.

  14. Monitoring Reservoirs Using MERIS And LANDSAT Fused Images : A Case Study Of Polyfitos Reservoir - West Macedonia - Greece

    NASA Astrophysics Data System (ADS)

    Stefouli, M.; Charou, E.; Vasileiou, E.; Stathopoulos, N.; Perrakis, A.

    2012-04-01

    Research and monitoring is essential to assess baseline conditions in reservoirs and their watershed and provide necessary information to guide decision-makers. Erosion and degradation of mountainous areas can lead to gradual aggradation of reservoirs reducing their lifetime. Collected measurements and observations have to be communicated to the managers of the reservoirs so as to achieve a common / comprehensive management of a large watershed and reservoir system. At this point Remote Sensing could help as the remotely sensed data are repeatedly and readily available to the end users. Aliakmon is the longest river in Greece, it's length is about 297 km and the surface of the river basin is 9.210 km2.The flow of the river starts from Northwest of Greece and ends in Thermaikos Gulf. The riverbed is not natural throughout the entire route, because constructed dams restrict water and create artificial lakes, such as lake of Polyfitos, that prevent flooding. This lake is used as reservoir, for covering irrigational water needs and the water is used to produce energy from the hydroelectric plant of Public Power Corporation-PPC. The catchment basin of Polyfitos' reservoir covers an area of 847.76 km2. Soil erosion - degradation in the mountainous watershed of streams of Polyfitos reservoir is taking place. It has been estimated that an annual volume of sediments reaching the reservoir is of the order of 244 m3. Geomatic based techniques are used in processing multiple data of the study area. A data inventory was formulated after the acquisition of topographic maps, compilation of geological and hydro-geological maps, compilation of digital elevation model for the area of interest based on satellite data and available maps. It also includes the acquisition of various hydro-meteorological data when available. On the basis of available maps and satellite data, digital elevation models are used in order to delineate the basic sub-catchments of the Polyfytos basin as well as

  15. Rodent reservoirs of future zoonotic diseases

    PubMed Central

    Han, Barbara A.; Schmidt, John Paul; Bowden, Sarah E.; Drake, John M.

    2015-01-01

    The increasing frequency of zoonotic disease events underscores a need to develop forecasting tools toward a more preemptive approach to outbreak investigation. We apply machine learning to data describing the traits and zoonotic pathogen diversity of the most speciose group of mammals, the rodents, which also comprise a disproportionate number of zoonotic disease reservoirs. Our models predict reservoir status in this group with over 90% accuracy, identifying species with high probabilities of harboring undiscovered zoonotic pathogens based on trait profiles that may serve as rules of thumb to distinguish reservoirs from nonreservoir species. Key predictors of zoonotic reservoirs include biogeographical properties, such as range size, as well as intrinsic host traits associated with lifetime reproductive output. Predicted hotspots of novel rodent reservoir diversity occur in the Middle East and Central Asia and the Midwestern United States. PMID:26038558

  16. Laboratory Diagnosis and Characterization of Fungal Disease in Patients with Cystic Fibrosis (CF): A Survey of Current UK Practice in a Cohort of Clinical Microbiology Laboratories.

    PubMed

    Boyle, Maeve; Moore, John E; Whitehouse, Joanna L; Bilton, Diana; Downey, Damian G

    2018-03-02

    There is much uncertainty as to how fungal disease is diagnosed and characterized in patients with cystic fibrosis (CF). A 19-question anonymous electronic questionnaire was developed and distributed to ascertain current practice in clinical microbiology laboratories providing a fungal laboratory service to CF centres in the UK. Analyses of responses identified the following: (1) current UK laboratory practice, in general, follows the current guidelines, but the scope and diversity of what is currently being delivered by laboratories far exceeds what is detailed in the guidelines; (2) there is a lack of standardization of fungal tests amongst laboratories, outside of the current guidelines; (3) both the UK CF Trust Laboratory Standards for Processing Microbiological Samples from People with Cystic Fibrosis and the US Cumulative Techniques and Procedures in Clinical Microbiology (Cumitech) Guidelines 43 Cystic Fibrosis Microbiology need to be updated to reflect both new methodological innovations, as well as better knowledge of fungal disease pathophysiology in CF; (4) there is a need for clinical medicine to decide upon a stratification strategy for the provision of new fungal assays that will add value to the physician in the optimal management of CF patients; (5) there is also a need to rationale what assays should be performed at local laboratory level and those which are best served at National Mycology Reference Laboratory level; and (6) further research is required in developing laboratory assays, which will help ascertain the clinical importance of 'old' fungal pathogens, as well as 'emerging' fungal pathogens.

  17. The Ogden Valley artesian reservoir

    USGS Publications Warehouse

    Thomas, H.E.

    1945-01-01

    Ogden Valley, in Weber County, Utah, contains an artesian reservoir from which the city of Ogden obtains all except a small part of its municipal water supply. A detailed investigation of the ground-water resources of Ogden Valley, and particularly of this artesian reservoir, was made by the Geological Survey, United States Department of the Interior, in cooperation with the city of Ogden between 1932 and 1934, and the results of this investigation have been reported by Leggette and Taylor.1 The present paper, which might be termed a sequel to that report, is based on data collected during those years, augmented by records that have been obtained (1935-1940) by the Geological Survey as part of a State-wide project in cooperation with the Utah State Engineer. The conclusions drawn from the study of these records and presented in detail in the following pages are as follows: (1) The artesian reservoir is filled to capacity nearly every year during the spring run-off from melting snow; (2) after the annual freshet, the recharge to the reservoir is insufficient to balance the discharge from artesian wells, which ordinarily is at a maximum during the summer; the reservoir is depleted and is not filled again until the following spring; (3) during the periods when the artesian reservoir is not full the rate of recharge is more or less proportional to the inflow to the valley by streams, except that rain on the recharge area may be of sufficient intensity to contribute some water by infiltration and deep penetration; and (4) the artesian reservoir thus serves to store water that would otherwise be lost to Great Salt Lake in the excess spring overflow, and available records indicate that water used by increased draft from wells would be replenished in normal years by increased recharge during the spring freshet.

  18. Preliminary Hydrogeologic Characterization Results from the Wallula Basalt Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.P. McGrail; E. C. Sullivan; F. A. Spane

    2009-12-01

    The DOE's Big Sky Regional Carbon Sequestration Partnership has completed drilling the first continental flood basalt sequestration pilot borehole to a total depth (TD) of 4,110 feet on the Boise White Paper Mill property at Wallula, Washington. Site suitability was assessed prior to drilling by the 2007-2008 acquisition, processing and analysis of a four-mile, five-line three component seismic swath, which was processed as a single data-dense line. Analysis of the seismic survey data indicated a composite basalt formation thickness of {approx}8,000 feet and absence of major geologic structures (i.e., faults) along the line imaged by the seismic swath. Drilling ofmore » Wallula pilot borehole was initiated on January 13, 2009 and reached TD on April 6, 2009. Based on characterization results obtained during drilling, three basalt breccia zones were identified between the depth interval of 2,716 and 2,910 feet, as being suitable injection reservoir for a subsequent CO2 injection pilot study. The targeted injection reservoir lies stratigraphically below the massive Umtanum Member of the Grande Ronde Basalt, whose flow-interior section possesses regionally recognized low-permeability characteristics. The identified composite injection zone reservoir provides a unique and attractive opportunity to scientifically study the reservoir behavior of three inter-connected reservoir intervals below primary and secondary caprock confining zones. Drill cuttings, wireline geophysical logs, and 31one-inch diameter rotary sidewall cores provided geologic data for characterization of rock properties. XRF analyses of selected rock samples provided geochemical characterizations of the rocks and stratigraphic control for the basalt flows encountered by the Wallula pilot borehole. Based on the geochemical results, the pilot borehole was terminated in the Wapshilla Ridge 1 flow of the Grande Ronde Basalt Formation. Detailed hydrologic test characterizations of 12 basalt interflow

  19. Estimating the impacts of reservoir elevation changes on kokanee emergence in flaming Gorge Reservoir, Wyoming-Utah

    USGS Publications Warehouse

    Modde, T.; Jeric, R.J.; Hubert, W.A.; Gipson, R.D.

    1997-01-01

    Flaming Gorge Reservoir, like many western North American reservoirs, is managed to release water during the winter months to allow for water storage associated with melting snow and rain during spring. Decreases in reservoir elevation during winter can cause mortalities of kokanee Oncorhynchus nerka spawned along the shoreline the previous fall. This study compared data on depth distribution of embryos and depth-adjusted survival to estimate the relative survival of emergent kokanee at different depths and the effect of winter drawdown on the proportion of deposited eggs that survive to emergence. Estimates of decreases in kokanee survival to emergence were 8.3% and 38.1% for reservoir elevation reductions of 1.0 m and 5.0 m, respectively.

  20. The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment

    NASA Astrophysics Data System (ADS)

    Amann, Florian; Gischig, Valentin; Evans, Keith; Doetsch, Joseph; Jalali, Reza; Valley, Benoît; Krietsch, Hannes; Dutler, Nathan; Villiger, Linus; Brixel, Bernard; Klepikova, Maria; Kittilä, Anniina; Madonna, Claudio; Wiemer, Stefan; Saar, Martin O.; Loew, Simon; Driesner, Thomas; Maurer, Hansruedi; Giardini, Domenico

    2018-02-01

    In this contribution, we present a review of scientific research results that address seismo-hydromechanically coupled processes relevant for the development of a sustainable heat exchanger in low-permeability crystalline rock and introduce the design of the In situ Stimulation and Circulation (ISC) experiment at the Grimsel Test Site dedicated to studying such processes under controlled conditions. The review shows that research on reservoir stimulation for deep geothermal energy exploitation has been largely based on laboratory observations, large-scale projects and numerical models. Observations of full-scale reservoir stimulations have yielded important results. However, the limited access to the reservoir and limitations in the control on the experimental conditions during deep reservoir stimulations is insufficient to resolve the details of the hydromechanical processes that would enhance process understanding in a way that aids future stimulation design. Small-scale laboratory experiments provide fundamental insights into various processes relevant for enhanced geothermal energy, but suffer from (1) difficulties and uncertainties in upscaling the results to the field scale and (2) relatively homogeneous material and stress conditions that lead to an oversimplistic fracture flow and/or hydraulic fracture propagation behavior that is not representative of a heterogeneous reservoir. Thus, there is a need for intermediate-scale hydraulic stimulation experiments with high experimental control that bridge the various scales and for which access to the target rock mass with a comprehensive monitoring system is possible. The ISC experiment is designed to address open research questions in a naturally fractured and faulted crystalline rock mass at the Grimsel Test Site (Switzerland). Two hydraulic injection phases were executed to enhance the permeability of the rock mass. During the injection phases the rock mass deformation across fractures and within intact rock

  1. Mechanical changes caused by CO2-driven cement dissolution in the Morrow B Sandstone at reservoir conditions: Experimental observations

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Luhmann, A. J.; Rinehart, A. J.; Mozley, P.; Dewers, T. A.

    2017-12-01

    Carbon Capture, Utilization and Storage (CCUS) in transmissive reservoirs is a proposed mechanism in reducing CO2 emissions. Injection of CO2 perturbs reservoir chemistry, and can modify porosity and permeability and alter mineralogy. However, little work has been done on the coupling of rock alteration by CO2 injection and the mechanical integrity of the reservoir. In this study, we perform flow-through experiments on calcite- and dolomite-cemented Pennsylvanian Morrow B Sandstone (West Texas, USA) cores. We hypothesize that poikilotopic calcite cement has a larger impact on chemo-mechanical alteration than disseminated dolomite cement given similar CO2 exposure. With one control brine flow-through experiment and two CO2-plus-brine flow-through experiments for each cement composition, flow rates of 0.1 and 0.01 ml/min were applied under 4200 psi pore fluid pressure and 5000 psi confining pressure at 71 °C. Fluid chemistry and permeability data enable monitoring of mineral dissolution. Ultrasonic velocities were measured pre-test using 1.2 MHz source-receiver pairs at 0.5 MPa axial load and show calcite-cemented samples with higher dynamic elastic moduli than dolomite-cemented samples. Velocities measured post-experiment will identify changes from fluid-rock interaction. We plan to conduct cylinder-splitting destructive mechanical test (Brazil test) to measure the pristine and altered tensile strength of different cemented sandstones. The experiments will identify extents to which cement composition and texture control chemo-mechanical degradation of CCUS reservoirs. Funding for this project is provided by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) through the Southwest Regional Partnership on Carbon Sequestration (SWP) under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of

  2. Seasonal variation of limnological features and trophic state index of two oligotrophic reservoirs of southeast Brazil.

    PubMed

    Oliveira, S A; Bicudo, C E M

    2017-01-01

    Limnological features of two reservoirs were studied in dry (August 2013) and rainy (January 2014) periods to evaluate the water quality that supply the city of Guarulhos, southeast Brazil. Water samples were collected in three depths and the following characteristics were measured: alkalinity, dissolved O2, free and total CO2, HCO3, soluble reactive silica, dissolved and total nitrogen and phosphorus, and chlorophyll-a. Water transparency was also measured and temperature, pH and electric conductivity profiles were obtained. Great seasonal and low spatial variability of the water characteristics occurred in the reservoirs. High values of water transparency, free CO2 availability, and low of pH, soluble reactive silica and total and dissolved nutrients values were recorded at the dry period, and different conditions were found at the rainy season. The two reservoirs were characterized by low nutrients, chlorophyll-a and turbidity, and high transparency, these features being typical of oligotrophic systems. The two reservoirs still remain under low anthropogenic impact conditions, and are presently considered reference systems for the SPMR, São Paulo Metropolitan Region. The need for actions that will reduce the input of nutrients from the neighboring cities and the main tributaries of the hydrographic basin is emphasized to maintain the ecological quality of the reservoirs and their reference conditions among the SPRM reservoirs.

  3. Three-Dimensional Modeling of Fracture Clusters in Geothermal Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghassemi, Ahmad

    The objective of this is to develop a 3-D numerical model for simulating mode I, II, and III (tensile, shear, and out-of-plane) propagation of multiple fractures and fracture clusters to accurately predict geothermal reservoir stimulation using the virtual multi-dimensional internal bond (VMIB). Effective development of enhanced geothermal systems can significantly benefit from improved modeling of hydraulic fracturing. In geothermal reservoirs, where the temperature can reach or exceed 350oC, thermal and poro-mechanical processes play an important role in fracture initiation and propagation. In this project hydraulic fracturing of hot subsurface rock mass will be numerically modeled by extending the virtual multiplemore » internal bond theory and implementing it in a finite element code, WARP3D, a three-dimensional finite element code for solid mechanics. The new constitutive model along with the poro-thermoelastic computational algorithms will allow modeling the initiation and propagation of clusters of fractures, and extension of pre-existing fractures. The work will enable the industry to realistically model stimulation of geothermal reservoirs. The project addresses the Geothermal Technologies Office objective of accurately predicting geothermal reservoir stimulation (GTO technology priority item). The project goal will be attained by: (i) development of the VMIB method for application to 3D analysis of fracture clusters; (ii) development of poro- and thermoelastic material sub-routines for use in 3D finite element code WARP3D; (iii) implementation of VMIB and the new material routines in WARP3D to enable simulation of clusters of fractures while accounting for the effects of the pore pressure, thermal stress and inelastic deformation; (iv) simulation of 3D fracture propagation and coalescence and formation of clusters, and comparison with laboratory compression tests; and (v) application of the model to interpretation of injection experiments (planned by

  4. CO 2 utilization and storage in shale gas reservoirs: Experimental results and economic impacts

    DOE PAGES

    Schaef, Herbert T.; Davidson, Casie L.; Owen, Antionette Toni; ...

    2014-12-31

    Natural gas is considered a cleaner and lower-emission fuel than coal, and its high abundance from advanced drilling techniques has positioned natural gas as a major alternative energy source for the U.S. However, each ton of CO 2 emitted from any type of fossil fuel combustion will continue to increase global atmospheric concentrations. One unique approach to reducing anthropogenic CO 2 emissions involves coupling CO 2 based enhanced gas recovery (EGR) operations in depleted shale gas reservoirs with long-term CO 2 storage operations. In this paper, we report unique findings about the interactions between important shale minerals and sorbing gasesmore » (CH 4 and CO 2) and associated economic consequences. Where enhanced condensation of CO 2 followed by desorption on clay surface is observed under supercritical conditions, a linear sorption profile emerges for CH 4. Volumetric changes to montmorillonites occur during exposure to CO 2. Theory-based simulations identify interactions with interlayer cations as energetically favorable for CO 2 intercalation. Thus, experimental evidence suggests CH 4 does not occupy the interlayer and has only the propensity for surface adsorption. Mixed CH 4:CO 2 gas systems, where CH 4 concentrations prevail, indicate preferential CO 2 sorption as determined by in situ infrared spectroscopy and X-ray diffraction techniques. Collectively, these laboratory studies combined with a cost-based economic analysis provide a basis for identifying favorable CO 2-EOR opportunities in previously fractured shale gas reservoirs approaching final stages of primary gas production. Moreover, utilization of site-specific laboratory measurements in reservoir simulators provides insight into optimum injection strategies for maximizing CH 4/CO 2 exchange rates to obtain peak natural gas production.« less

  5. Water quality of Rob Roy Reservoir and Lake Owen, Albany County, and Granite Springs and Crystal Lake Reservoirs, Laramie County, Wyoming, 1997-98

    USGS Publications Warehouse

    Ogle, Kathy Muller; Peterson, D.A.; Spillman, Bud; Padilla, Rosie

    1999-01-01

    The water quality of four reservoirs was assessed during 1997 and 1998 as a cooperative project between the Cheyenne Board of Public Utilities and the U. S. Geological Survey. The four reservoirs, Rob Roy, Lake Owen, Granite Springs, and Crystal Lake, provide approximately 75 percent of the public water supply for Cheyenne, Wyoming. Samples of water and bottom sediment were collected and analyzed for selected physical, chemical, and biological characteristics to provide data about the reservoirs. Water flows between the reservoirs through a series of pipelines and stream channels. The reservoirs differ in physical characteristics such as elevation, volume, and depth.Profiles of temperature, dissolved oxygen, specific conductance, and pH were examined. Three of the four reservoirs exhibited stratification during the summer. The profiles indicate that stratification develops in all reservoirs except Lake Owen. Stratification developed in Rob Roy, Granite Springs, and Crystal Lake Reservoirs by mid-July in 1998 and continued until September, with the thickness of the epilimnion increasing during that time. Secchi disk readings indicated Rob Roy Reservoir had the clearest water of the four reservoirs studied.The composition of the phytoplankton community was different in the upper two reservoirs from that in the lower two reservoirs. Many of the species found in Rob Roy Reservoir and Lake Owen are associated with oligotrophic, nutrient-poor conditions. In contrast, many of the species found in Granite Springs and Crystal Lake Reservoirs are associated with mesotrophic or eutrophic conditions. The total number of taxa identified also increased downstream.The chemical water type in the reservoirs was similar, but dissolved-solids concentrations were greater in the downstream reservoirs. Water in all four reservoirs was a calcium-bicarbonate type. In the fall of 1997, Rob Roy Reservoir had the lowest dissolved-solids concentration (19 milligrams per liter), whereas

  6. Functional age as an indicator of reservoir senescence

    USGS Publications Warehouse

    Miranda, Leandro E.; Krogman, R. M.

    2015-01-01

    It has been conjectured that reservoirs differ in the rate at which they manifest senescence, but no attempt has been made to find an indicator of senescence that performs better than chronological age. We assembled an indicator of functional age by creating a multimetric scale consisting of 10 metrics descriptive of reservoir environments that were expected to change directionally with reservoir senescence. In a sample of 1,022 U.S. reservoirs, chronological age was not correlated with functional age. Functional age was directly related to percentage of cultivated land in the catchment and inversely related to reservoir depth. Moreover, aspects of reservoir fishing quality and fish population characteristics were related to functional age. A multimetric scale to indicate reservoir functional age presents the possibility for management intervention from multiple angles. If a reservoir is functionally aging at an accelerated rate, action may be taken to remedy the conditions contributing most to functional age. Intervention to reduce scores of selected metrics in the scale can potentially reduce the rate of senescence and increase the life expectancy of the reservoir. This leads to the intriguing implication that steps can be taken to reduce functional age and actually make the reservoir grow younger.

  7. Monitoring CCS Sites: Lessons Learned Studying Natural Laboratories.

    NASA Astrophysics Data System (ADS)

    Tartarello, M. C.; Beaubien, S. E.; Graziani, S.; Lombardi, S.; Ruggiero, L.

    2016-12-01

    Monitoring is one of the most important aspects of Carbon Capture and Storage (CCS), both for early recognition of leaks from the reservoir and for public safety. Natural analogues could be useful to understand the potential impact of a leakage on the local ecosystem and to develop new techniques of monitoring. These sites, called also "natural laboratories", are characterized by natural, geologically-produced CO2 constantly leaking from the seafloor or from the groundsurface. In the last 10 years, our group as partner of some EC funded projects focused on CCS (NASCENT (2000-2003), CO2GeoNet (2004-2009), CO2ReMoVe (2006-2011), RISCS (2010-2013), and ECO2 (2011-2015)), studied gas migration mechanisms in these "natural laboratories", applying near-surface geochemistry to monitoring. This method provides one of the most powerful tools to assess whether a CCS site is leaking and, if it is, to quantify that leakage. This is because rather than being a remote method that estimates amounts based on proxy associations, such as some geophysical tools, it is an exact measurement of the item of interest (in this case CO2) in the accessible biosphere where there is concern regarding its potential impact. In particular, we have been studied two sites in Italy, characterized by significant emissions of CO2, related to volcanic emissions: the Latera Caldera (in Central Italy) and the offshore emissions near Panarea Island. We combined continuous and discontinuous monitoring, structural surveys and gas flux measurements. The results show a strong correlation between fault architecture and leakage rates. Moreover, the monitoring of an area for long periods allows defining the baseline, which is the fluctuation of gas concentrations both spatially and temporally as a function of biological, chemical, geological, land-use and meteorological processes.

  8. An Advanced Reservoir Simulator for Tracer Transport in Multicomponent Multiphase Compositional Flow and Applications to the Cranfield CO2 Sequestration Site

    NASA Astrophysics Data System (ADS)

    Moortgat, J.

    2015-12-01

    Reservoir simulators are widely used to constrain uncertainty in the petrophysical properties of subsurface formations by matching the history of injection and production data. However, such measurements may be insufficient to uniquely characterize a reservoir's properties. Monitoring of natural (isotopic) and introduced tracers is a developing technology to further interrogate the subsurface for applications such as enhanced oil recovery from conventional and unconventional resources, and CO2 sequestration. Oak Ridge National Laboratory has been piloting this tracer technology during and following CO2 injection at the Cranfield, Mississippi, CO2 sequestration test site. Two campaigns of multiple perfluorocarbon tracers were injected together with CO2 and monitored at two wells at 68 m and 112 m from the injection site. The tracer data suggest that multiple CO2 flow paths developed towards the monitoring wells, indicative of either channeling through high permeability pathways or of fingering. The results demonstrate that tracers provide an important complement to transient pressure data. Numerical modeling is essential to further explain and interpret the observations. To aid the development of tracer technology, we enhanced a compositional multiphase reservoir simulator to account for tracer transport. Our research simulator uses higher-order finite element (FE) methods that can capture the small-scale onset of fingering on the coarse grids required for field-scale modeling, and allows for unstructured grids and anisotropic heterogeneous permeability fields. Mass transfer between fluid phases and phase behavior are modeled with rigorous equation-of-state based phase-split calculations. We present our tracer simulator and preliminary results related to the Cranfield experiments. Applications to noble gas tracers in unconventional resources are presented by Darrah et al.

  9. How Darcy's equation is linked to the linear reservoir at catchment scale

    NASA Astrophysics Data System (ADS)

    Savenije, Hubert H. G.

    2017-04-01

    In groundwater hydrology two simple linear equations exist that describe the relation between groundwater flow and the gradient that drives it: Darcy's equation and the linear reservoir. Both equations are empirical at heart: Darcy's equation at the laboratory scale and the linear reservoir at the watershed scale. Although at first sight they show similarity, without having detailed knowledge of the structure of the underlying aquifers it is not trivial to upscale Darcy's equation to the watershed scale. In this paper, a relatively simple connection is provided between the two, based on the assumption that the groundwater system is organized by an efficient drainage network, a mostly invisible pattern that has evolved over geological time scales. This drainage network provides equally distributed resistance to flow along the streamlines that connect the active groundwater body to the stream, much like a leaf is organized to provide all stomata access to moisture at equal resistance.

  10. Frederick National Laboratory Collaboration Success Stories | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Nanotechnology Characterization Laboratory Unveils New Technical Services for Drug Developers Drug developers now have access to a shared analytical technology, developed and provided by the Frederick National Laboratory, that helps fine-tune nano

  11. Characterizing Instructional Practices in the Laboratory: The Laboratory Observation Protocol for Undergraduate STEM

    ERIC Educational Resources Information Center

    Velasco, Jonathan B.; Knedeisen, Adam; Xue, Dihua; Vickrey, Trisha L.; Abebe, Marytza; Stains, Marilyne

    2016-01-01

    Chemistry laboratories play an essential role in the education of undergraduate Science, Technology, Engineering, and Mathematics (STEM) and non-STEM students. The extent of student learning in any educational environment depends largely on the effectiveness of the instructors. In chemistry laboratories at large universities, the instructors of…

  12. A review on multicomponent seismology: A potential seismic application for reservoir characterization

    PubMed Central

    Farfour, Mohammed; Yoon, Wang Jung

    2015-01-01

    Searching for hydrocarbon reserves in deep subsurface is the main concern of wide community of geophysicists and geoscientists in petroleum industry. Exploration seismology has substantially contributed to finding and developing giant fields worldwide. The technology has evolved from two to three-dimensional method, and later added a fourth dimension for reservoir monitoring. Continuous depletion of many old fields and the increasing world consumption of crude oil pushed to consistently search for techniques that help recover more reserves from old fields and find alternative fields in more complex and deeper formations either on land and in offshore. In such environments, conventional seismic with the compressional (P) wave alone proved to be insufficient. Multicomponent seismology came as a solution to most limitations encountered in P-wave imaging. That is, recording different components of the seismic wave field allowed geophysicists to map complex reservoirs and extract information that could not be extracted previously. The technology demonstrated its value in many fields and gained popularity in basins worldwide. In this review study, we give an overview about multicomponent seismology, its history, data acquisition, processing and interpretation as well as the state-of the-art of its applications. Recent examples from world basins are highlighted. The study concludes that despite the success achieved in many geographical areas such as deep offshore in the Gulf of Mexico, Western Canada Sedimentary Basin (WCSB), North Sea, Offshore Brazil, China and Australia, much work remains for the technology to gain similar acceptance in other areas such as Middle East, East Asia, West Africa and North Africa. However, with the tremendous advances reported in data recording, processing and interpretation, the situation may change. PMID:27222756

  13. A review on multicomponent seismology: A potential seismic application for reservoir characterization.

    PubMed

    Farfour, Mohammed; Yoon, Wang Jung

    2016-05-01

    Searching for hydrocarbon reserves in deep subsurface is the main concern of wide community of geophysicists and geoscientists in petroleum industry. Exploration seismology has substantially contributed to finding and developing giant fields worldwide. The technology has evolved from two to three-dimensional method, and later added a fourth dimension for reservoir monitoring. Continuous depletion of many old fields and the increasing world consumption of crude oil pushed to consistently search for techniques that help recover more reserves from old fields and find alternative fields in more complex and deeper formations either on land and in offshore. In such environments, conventional seismic with the compressional (P) wave alone proved to be insufficient. Multicomponent seismology came as a solution to most limitations encountered in P-wave imaging. That is, recording different components of the seismic wave field allowed geophysicists to map complex reservoirs and extract information that could not be extracted previously. The technology demonstrated its value in many fields and gained popularity in basins worldwide. In this review study, we give an overview about multicomponent seismology, its history, data acquisition, processing and interpretation as well as the state-of the-art of its applications. Recent examples from world basins are highlighted. The study concludes that despite the success achieved in many geographical areas such as deep offshore in the Gulf of Mexico, Western Canada Sedimentary Basin (WCSB), North Sea, Offshore Brazil, China and Australia, much work remains for the technology to gain similar acceptance in other areas such as Middle East, East Asia, West Africa and North Africa. However, with the tremendous advances reported in data recording, processing and interpretation, the situation may change.

  14. Nanoparticle Synthesis, Characterization, and Ecotoxicity: A Research-Based Set of Laboratory Experiments for a General Chemistry Course

    ERIC Educational Resources Information Center

    Amaris, Zoe N.; Freitas, Daniel N.; Mac, Karen; Gerner, Kyle T.; Nameth, Catherine; Wheeler, Korin E.

    2017-01-01

    A series of laboratory experiments were developed to introduce first-year chemistry students to nanoscience through a green chemistry approach. Students made and characterized the stability of silver nanoparticles using two different methods: UV-visible spectroscopy and dynamic light scattering. They then assessed the ecotoxicity of silver…

  15. Characterization of the Shielded Neutron Source at Triangle Universities Nuclear Laboratory

    NASA Astrophysics Data System (ADS)

    Hobson, Chad; Finch, Sean; Howell, Calvin; Malone, Ron; Tornow, Wernew

    2016-09-01

    In 2015, Triangle Universities Nuclear Laboratory rebuilt its shielded neutron source (SNS) with the goal of improving neutron beam collimation and reducing neutron and gamma-ray backgrounds. Neutrons are produced via the 2H(d,n)3He reaction and then collimated by heavy shielding to form a beam. The SNS has the ability to produce both a rectangular and circular neutron beam through use of two collimators with different beam apertures. Our work characterized both the neutron beam profiles as well as the neutron and gamma-ray backgrounds at various locations around the SNS. This characterization was performed to provide researchers who use the SNS with beam parameters necessary to plan and conduct an experiment. Vertical and horizontal beam profiles were measured at two different distances from the neutron production cell by scanning a small plastic scintillator across the face of the beam at various energies for each collimator. Background neutron and gamma-ray intensities were measured using time-of-flight techniques at 10 MeV and 16 MeV with the rectangular collimator. We present results on the position and size of neutron beam as well as on the structure and magnitude of the backgrounds.

  16. Long-Term Effect of Fault-Controlled CO2 Alteration on the Weakening and Strengthening of Reservoir and Seal Lithologies at Crystal Geyser, Green River, Utah

    NASA Astrophysics Data System (ADS)

    Major, J. R.; Eichhubl, P.; Dewers, T. A.

    2014-12-01

    An understanding of the coupled chemical and mechanical properties and behavior of reservoir and seal rocks is critical for assessing both the short and long term security of sequestered CO2. A combined structural diagenesis approach using observations from natural analogs has great advantages for understanding these properties over longer time scales than is possible using laboratory or numerical experiments. Current numerical models evaluating failure of reservoirs and seals during and after CO2 injection in the subsurface are just beginning to account for such coupled processes. Well-characterized field studies of natural analogs such as Crystal Geyser, Utah, are essential for providing realistic input parameters, calibration, and testing of numerical models across a range of spatial and temporal scales. Fracture mechanics testing was performed on a suite of naturally altered and unaltered reservoir and seal rocks exposed at the Crystal Geyser field site. These samples represent end-products of CO2-related alteration over geologic (>103 yr) time scales. Both the double torsion and short rod test methods yield comparable results on the same samples. Tests demonstrate that CO2-related alteration has weakened one reservoir sandstone lithology by approximately 50%, but the subcritical index is not significantly affected. An altered siltstone sample also shows a reduction in fracture toughness values and lowered subcritical index in comparison to unaltered siltstone. In contrast, elevated calcite content in shales due to CO2 alteration has increased fracture toughness. Similarly, fracture toughness was increased in what is otherwise a weak, poorly cemented sandstone unit due to increased calcite cement. Combined, these results demonstrate that CO2-related alteration generally weakens rock to fracturing (i.e. lowers fracture toughness), except in cases where calcite cementation is significantly increased. The natural system at Crystal Geyser demonstrates that water

  17. Spatially pooled depth-dependent reservoir storage, elevation, and water-quality data for selected reservoirs in Texas, January 1965-January 2010

    USGS Publications Warehouse

    Burley, Thomas E.; Asquith, William H.; Brooks, Donald L.

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with Texas Tech University, constructed a dataset of selected reservoir storage (daily and instantaneous values), reservoir elevation (daily and instantaneous values), and water-quality data from 59 reservoirs throughout Texas. The period of record for the data is as large as January 1965-January 2010. Data were acquired from existing databases, spreadsheets, delimited text files, and hard-copy reports. The goal was to obtain as much data as possible; therefore, no data acquisition restrictions specifying a particular time window were used. Primary data sources include the USGS National Water Information System, the Texas Commission on Environmental Quality Surface Water-Quality Management Information System, and the Texas Water Development Board monthly Texas Water Condition Reports. Additional water-quality data for six reservoirs were obtained from USGS Texas Annual Water Data Reports. Data were combined from the multiple sources to create as complete a set of properties and constituents as the disparate databases allowed. By devising a unique per-reservoir short name to represent all sites on a reservoir regardless of their source, all sampling sites at a reservoir were spatially pooled by reservoir and temporally combined by date. Reservoir selection was based on various criteria including the availability of water-quality properties and constituents that might affect the trophic status of the reservoir and could also be important for understanding possible effects of climate change in the future. Other considerations in the selection of reservoirs included the general reservoir-specific period of record, the availability of concurrent reservoir storage or elevation data to match with water-quality data, and the availability of sample depth measurements. Additional separate selection criteria included historic information pertaining to blooms of golden algae. Physical properties and constituents were water

  18. The Early Development of Satellite Characterization Capabilities at the Air Force Laboratories

    NASA Astrophysics Data System (ADS)

    Lambert, J.; Kissell, K.

    This presentation overviews the development of optical Space Object Identification (SOI) techniques at the Air Force laboratories during the two-decade "pre-operational" period prior to 1980 when the Groundbased Electro-Optical Deep Space Surveillance (GEODSS) sensors were deployed. Beginning with the launch of Sputnik in 1957, the United States Air Force has actively pursued the development and application of optical sensor technology for the detection, tracking, and characterization of artificial satellites. Until the mid-1980s, these activities were primarily conducted within Air Force research and development laboratories which supplied data to the operational components on a contributing basis. This presentation traces the early evolution of the optical space surveillance technologies from the early experimental sensors that led to the current generation of operationally deployed and research systems. The contributions of the participating Air Force organizations and facilities will be reviewed with special emphasis on the development of technologies for the characterization of spacecraft using optical signatures and imagery. The presentation will include descriptions and photographs of the early facilities and instrumentation, and examples of the SOI collection and analysis techniques employed. In this early period, computer support was limited so all aspects of space surveillance relied heavily on manual interaction. Many military, government, educational, and contractor agencies supported the development of instrumentation and analysis techniques. This overview focuses mainly on the role played by Air Force System Command and Office of Aerospace Research, and the closely related activities at the Department of Defense Advanced Research Projects Agency. The omission of other agencies from this review reflects the limitations of this presentation, not the significance of their contributions.

  19. Greenhouse Gas Emissions from Reservoir Water Surfaces: A ...

    EPA Pesticide Factsheets

    Collectively, reservoirs are an important anthropogenic source of greenhouse gases (GHGs) to the atmosphere. Attempts to model reservoir GHG fluxes, however, have been limited by inconsistencies in methodological approaches and data availability. An increase in the number of published reservoir GHG flux estimates during the last 15 years warrants a comprehensive analysis of the magnitude and potential controls on these fluxes. Here we synthesize worldwide reservoir CH4, CO2, and N2O emission data and estimate that GHG emissions from reservoirs account for 80.2 Tmol CO2 equivalents yr-1, thus constituting approximately 5% of anthropogenic radiative forcing. The majority (93%) of these emissions are from CH4, and mainly in the form of bubbles. While age and latitude have historically been linked to reservoir GHG emissions, we found that factors related to reservoir nutrient status and rainfall were better predictors. In particular, nutrient-rich eutrophic reservoirs were found to have an order of magnitude higher per-area CH4 fluxes, on average, than their nutrient-poor oligotrophic counterparts. Therefore, management measures to reduce reservoir eutrophication may result in an important co-benefit, the reduction of GHG emissions to the atmosphere. Greenhouse gas emissions (GHG)

  20. Constraining the effects of permeability uncertainty for geologic CO2 sequestration in a basalt reservoir

    NASA Astrophysics Data System (ADS)

    Jayne, R., Jr.; Pollyea, R.

    2016-12-01

    Carbon capture and sequestration (CCS) in geologic reservoirs is one strategy for reducing anthropogenic CO2 emissions from large-scale point-source emitters. Recent developments at the CarbFix CCS pilot in Iceland have shown that basalt reservoirs are highly effective for permanent mineral trapping on the basis of CO2-water-rock interactions, which result in the formation of carbonates minerals. In order to advance our understanding of basalt sequestration in large igneous provinces, this research uses numerical simulation to evaluate the feasibility of industrial-scale CO2 injections in the Columbia River Basalt Group (CRBG). Although bulk reservoir properties are well constrained on the basis of field and laboratory testing from the Wallula Basalt Sequestration Pilot Project, there remains significant uncertainty in the spatial distribution of permeability at the scale of individual basalt flows. Geostatistical analysis of hydrologic data from 540 wells illustrates that CRBG reservoirs are reasonably modeled as layered heterogeneous systems on the basis of basalt flow morphology; however, the regional dataset is insufficient to constrain permeability variability at the scale of an individual basalt flow. As a result, permeability distribution for this modeling study is established by centering the lognormal permeability distribution in the regional dataset over the bulk permeability measured at Wallula site, which results in a spatially random permeability distribution within the target reservoir. In order to quantify the effects of this permeability uncertainty, CO2 injections are simulated within 50 equally probable synthetic reservoir domains. Each model domain comprises three-dimensional geometry with 530,000 grid blocks, and fracture-matrix interaction is simulated as interacting continua for the two low permeability layers (flow interiors) bounding the injection zone. Results from this research illustrate that permeability uncertainty at the scale of

  1. Tectonic state: its significance and characterization in the assessment of seismic effects associated with reservoir impounding

    USGS Publications Warehouse

    Castle, R.O.; Clark, M.M.; Grantz, A.; Savage, J.C.

    1980-01-01

    Any analysis of seismicity associated with the filling of large reservoirs requires an evaluation of the natural tectonic state in order to determine whether impoundment is the basic source, a mechanically unrelated companion feature, or a triggering stimulus of the observed seismicity. Several arguments indicate that the associated seismicity is usually a triggered effect. Among the elements of tectonic state considered here (existing fractures, accumulated elastic strain, and deformational style), deformational style is especially critical in forecasting the occurrence of impoundment-induced seismicity. The observational evidence indicates that seismicity associated with impounding generally occurs in areas that combine steeply dipping faults, relatively high strain rates, and either extensional or horizontal-shear strain. Simple physical arguments suggest: (1) that increased fluid pressures resulting from increased reservoir head should enhance the likelihood of seismic activity, whatever the tectonic environment; (2) that stress changes resulting from surface loading may increase the likelihood of crustal failure in areas of normal and transcurrent faulting, whereas they generally inhibit failure in areas of thrust faulting. Comparisons with other earthquake-producing artificial and natural processes (underground explosions, fluid injection, underground mining, fluid extraction, volcanic emissions) indicate that reservoir loading may similarly modify the natural tectonic state. Subsurface loading resulting from fluid extraction may be a particularly close analogue of reservoir loading; "seismotectonic" events associated with fluid extraction have been recognized in both seismically active and otherwise aseismic regions. Because the historic record of seismicity and surface faulting commonly is short in comparison with recurrence intervals of earthquake and fault-slip events, tectonic state is most reliably appraised through combined studies of historic

  2. Geophysical monitoring in a hydrocarbon reservoir

    NASA Astrophysics Data System (ADS)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  3. Reservoir water level drawdown as a novel, substantial, and manageable control on methane release to the atmosphere

    NASA Astrophysics Data System (ADS)

    Harrison, J.; Deemer, B. R.; Birchfield, M. K.

    2014-12-01

    Reservoirs constitute a globally important source of atmospheric methane (CH4). Although it is reasonably well-established that hydrostatic and barometric pressure can influence rates of CH4 release from lake and tidal sediments, the relationship between water-level manipulation and CH4 release from man-made impoundments has not been quantified or characterized. Furthermore, cross-system controls on CH4 production and release to the atmosphere have not been established. We collected CH4 emission (diffusion and ebullition) data for 8 reservoirs in the U.S. Pacific Northwest that are subject to a range of trophic conditions and water level management regimes. Our aim was to: (1) characterize CH4 emissions from these systems, and (2) quantify effects of water level management and eutrophication on CH4 fluxes. Results indicate very high fluxes, in some cases the highest reported reservoir emission rates, and a strong correspondence between lake level reduction and CH4 emissions, including quantitatively important bursts of CH4 bubbling. In one reservoir, drawdown-associated CH4 fluxes accounted for over 25% of annual CH4 emissions in a period of just 16 days (4% of the year). Average CH4 ebullition rates in a reservoir managed for hydropower peaking were nearly three-fold higher than in a paired upstream reservoir managed to maintain a constant water level (528 mg CH4 m-2 d-1 and 187 mg CH4 m-2 d-1 respectively). Highest gas fluxes were observed during the water level drawdown component of the hydropower peaking cycle (14.3 g CH4 m-2 d-1). In addition we observe a strong, positive relationship between eutrophication (as indicated by surface Chl a concentrations) and CH4 production (r2 = 0.88; P<0.001) and between eutrophication and the sensitivity of CH4 emissions to drawdown (r2 = 0.84; P<0.001). This work suggests that manipulation of water levels can significantly affect CH4 emissions from reservoirs to the atmosphere, and that sampling programs that miss drawdown

  4. Online interactive U.S. Reservoir Sedimentation Survey Database

    USGS Publications Warehouse

    Gray, J.B.; Bernard, J.M.; Schwarz, G.E.; Stewart, D.W.; Ray, K.T.

    2009-01-01

    In April 2009, the U.S. Geological Survey and the Natural Resources Conservation Service (prior to 1994, the Soil Conservation Service) created the Reservoir Sedimentation Survey Database (RESSED) and Web site, the most comprehensive compilation of data from reservoir bathymetric and dry basin surveys in the United States. RESSED data can be useful for a number of purposes, including calculating changes in reservoir storage characteristics, quantifying rates of sediment delivery to reservoirs, and estimating erosion rates in a reservoir's watershed.

  5. Characterizing long-term radon concentration changes in a geothermal area for correlation with volcanic earthquakes and reservoir temperatures: A case study from Mt. Aso, southwestern Japan

    NASA Astrophysics Data System (ADS)

    Koike, Katsuaki; Yoshinaga, Tohru; Asaue, Hisafumi

    2014-04-01

    The purpose of this study is to characterize in detail the temporal changes in Rn (radon-222) concentration in soil gases near fumaroles and clarify its correlation with volcanic earthquakes and temperatures in two geothermal reservoirs. Mt. Aso crater in southwest Japan, which has two reservoirs on its western side estimated by magnetotelluric survey to be at about 2 km in depth, was selected for this study. For the long-term survey, the α scintillation counter method was used weekly for 12.5 years at the three hot springs within a 2-km range. Rn concentrations were calculated using the CRAS method, a calculation method that considers radioactive equilibrium or nonequilibrium state of the soil gas. Rn concentrations generally showed similar fluctuation patterns among the sites. CRAS was used as a new indicator for evaluating the age of the soil gas. This age corresponds to the elapsed time determined from the generation of Rn based on the measurement of the numbers of atoms of Rn and its daughter 218Po at the start of measurement. In comparing the Rn data with the history of earthquakes in the Aso caldera, volcanic seismicity was identified as a major controlling factor in the sudden increase and decrease in Rn concentration as a function of age. For more precise detections of change, Rn concentrations were measured continuously at one site by pumping soil gas from a borehole and using an ionization chamber over 2.5 years. Five chemical components (He, H2, N2, CH4, and CO2) were then measured by gas chromatography at 1-week intervals. Because Rn concentrations are affected strongly by atmospheric temperatures, the residual components were obtained by subtracting the trend of the components from the original data. Chemical component data were used to estimate the temperature and pressure in the reservoir at the site; temperatures ranged from 229 to 280 °C, (average 265 °C, average pressure 80 MPa). Residual Rn concentrations showed a clear correlation with

  6. Limno-reservoirs as a new landscape, environmental and touristic resource: Pareja Limno-reservoir as a case of study (Guadalajara, Spain)

    NASA Astrophysics Data System (ADS)

    Díaz-Carrión, I.; Sastre-Merlín, A.; Martínez-Pérez, S.; Molina-Navarro, E.; Bienes-Allas, R.

    2012-04-01

    A limno-reservoir is a hydrologic infrastructure with the main goal of generating a body of water with a constant level in the riverine zone of a reservoir, building a dam that makes de limno-reservoir independent from the main body of water. This dam can be built in the main river supplying the reservoir or any tributary as well flowing into it. Despite its novel conception and design, around a dozen are already operative in some Spanish reservoirs. This infrastructure allows the new water body to be independent of the main reservoir management, so the water level stability is its main distinctive characteristic. It leads to the development of environmental, sports and cultural initiatives; which may be included in a touristic exploitation in a wide sense. An opinion poll was designed in 2009 to be carried out the Pareja Limno-reservoir (Entrepeñas reservoir area, Tajo River Basin, central Spain). The results showed that for both, Pareja inhabitants and occasional visitors, the limno-reservoir has become an important touristic resource, mainly demanded during summer season. The performance of leisure activities (especially swimming) are being the main brand of this novel hydraulic and environmental infrastructure, playing a role as corrective and/or compensatory action which is needed to apply in order to mitigate the environmental impacts of the large hydraulic constructions.

  7. Reservoir heterogeneity in Carter Sandstone, North Blowhorn Creek oil unit and vicinity, Black Warrior Basin, Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kugler, R.L.; Pashin, J.C.

    1992-05-01

    This report presents accomplishments made in completing Task 3 of this project which involves development of criteria for recognizing reservoir heterogeneity in the Black Warrior basin. The report focuses on characterization of the Upper Mississippian Carter sandstone reservoir in North Blowhorn Creek and adjacent oil units in Lamar County, Alabama. This oil unit has produced more than 60 percent of total oil extracted from the Black Warrior basin of Alabama. The Carter sandstone in North Blowhorn Creek oil unit is typical of the most productive Carter oil reservoirs in the Black Warrior basin of Alabama. The first part of themore » report synthesizes data derived from geophysical well logs and cores from North Blowhorn Creek oil unit to develop a depositional model for the Carter sandstone reservoir. The second part of the report describes the detrital and diagenetic character of Carter sandstone utilizing data from petrographic and scanning electron microscopes and the electron microprobe. The third part synthesizes porosity and pore-throat-size-distribution data determined by high-pressure mercury porosimetry and commercial core analyses with results of the sedimentologic and petrographic studies. The final section of the report discusses reservoir heterogeneity within the context of the five-fold classification of Moore and Kugler (1990).« less

  8. Building more realistic reservoir optimization models using data mining - A case study of Shelbyville Reservoir

    NASA Astrophysics Data System (ADS)

    Hejazi, Mohamad I.; Cai, Ximing

    2011-06-01

    In this paper, we promote a novel approach to develop reservoir operation routines by learning from historical hydrologic information and reservoir operations. The proposed framework involves a knowledge discovery step to learn the real drivers of reservoir decision making and to subsequently build a more realistic (enhanced) model formulation using stochastic dynamic programming (SDP). The enhanced SDP model is compared to two classic SDP formulations using Lake Shelbyville, a reservoir on the Kaskaskia River in Illinois, as a case study. From a data mining procedure with monthly data, the past month's inflow ( Qt-1 ), current month's inflow ( Qt), past month's release ( Rt-1 ), and past month's Palmer drought severity index ( PDSIt-1 ) are identified as important state variables in the enhanced SDP model for Shelbyville Reservoir. When compared to a weekly enhanced SDP model of the same case study, a different set of state variables and constraints are extracted. Thus different time scales for the model require different information. We demonstrate that adding additional state variables improves the solution by shifting the Pareto front as expected while using new constraints and the correct objective function can significantly reduce the difference between derived policies and historical practices. The study indicates that the monthly enhanced SDP model resembles historical records more closely and yet provides lower expected average annual costs than either of the two classic formulations (25.4% and 4.5% reductions, respectively). The weekly enhanced SDP model is compared to the monthly enhanced SDP, and it shows that acquiring the correct temporal scale is crucial to model reservoir operation for particular objectives.

  9. Assessment of reservoir system variable forecasts

    NASA Astrophysics Data System (ADS)

    Kistenmacher, Martin; Georgakakos, Aris P.

    2015-05-01

    Forecast ensembles are a convenient means to model water resources uncertainties and to inform planning and management processes. For multipurpose reservoir systems, forecast types include (i) forecasts of upcoming inflows and (ii) forecasts of system variables and outputs such as reservoir levels, releases, flood damage risks, hydropower production, water supply withdrawals, water quality conditions, navigation opportunities, and environmental flows, among others. Forecasts of system variables and outputs are conditional on forecasted inflows as well as on specific management policies and can provide useful information for decision-making processes. Unlike inflow forecasts (in ensemble or other forms), which have been the subject of many previous studies, reservoir system variable and output forecasts are not formally assessed in water resources management theory or practice. This article addresses this gap and develops methods to rectify potential reservoir system forecast inconsistencies and improve the quality of management-relevant information provided to stakeholders and managers. The overarching conclusion is that system variable and output forecast consistency is critical for robust reservoir management and needs to be routinely assessed for any management model used to inform planning and management processes. The above are demonstrated through an application from the Sacramento-American-San Joaquin reservoir system in northern California.

  10. Modeling Wettability Alteration using Chemical EOR Processes in Naturally Fractured Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2007-09-30

    The objective of our search is to develop a mechanistic simulation tool by adapting UTCHEM to model the wettability alteration in both conventional and naturally fractured reservoirs. This will be a unique simulator that can model surfactant floods in naturally fractured reservoir with coupling of wettability effects on relative permeabilities, capillary pressure, and capillary desaturation curves. The capability of wettability alteration will help us and others to better understand and predict the oil recovery mechanisms as a function of wettability in naturally fractured reservoirs. The lack of a reliable simulator for wettability alteration means that either the concept that hasmore » already been proven to be effective in the laboratory scale may never be applied commercially to increase oil production or the process must be tested in the field by trial and error and at large expense in time and money. The objective of Task 1 is to perform a literature survey to compile published data on relative permeability, capillary pressure, dispersion, interfacial tension, and capillary desaturation curve as a function of wettability to aid in the development of petrophysical property models as a function of wettability. The new models and correlations will be tested against published data. The models will then be implemented in the compositional chemical flooding reservoir simulator, UTCHEM. The objective of Task 2 is to understand the mechanisms and develop a correlation for the degree of wettability alteration based on published data. The objective of Task 3 is to validate the models and implementation against published data and to perform 3-D field-scale simulations to evaluate the impact of uncertainties in the fracture and matrix properties on surfactant alkaline and hot water floods.« less

  11. a Study of a High Frequency Miniature Reservoir-Less Pulse Tube

    NASA Astrophysics Data System (ADS)

    Garaway, I.; Grossman, G.

    2008-03-01

    A miniature high frequency reservoir-less pulse tube cryocooler has been designed and tested in our laboratory. The cryocooler having a regenerator length of 12.0 mm and an overall volume of 2.3cc (excluding the compressor) reached a low temperature of 146K and provided 100mW of cooling at 160K. This experimental study shows that it is possible to miniaturize a pulse tube cryocooler to very short regenerator lengths by implementing a few basic principles: Most importantly, high operating frequencies at small tidal displacements, a regenerator matrix with small hydraulic diameters, and increased helium fill pressures. This study also shows that as the operating frequency of a miniature cryocooler increases, the reservoir becomes less necessary as a phase shifting device. At higher frequencies and appropriate inertance tube geometries, the impedance and capacitance of the inertance tube itself takes over the phase shifting task. An outline of the design and modeling principles is presented along with some details of the experimental apparatus and testing procedures.

  12. STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles McCormick; Roger Hester

    This sixth and final progress report for DOE Award Number DE-FC26-01BC15317 describes research during the period March 01, 2004 through August 31, 2004 performed at the University of Southern Mississippi on ''Stimuli Responsive Polymers with Enhanced Efficiency in Reservoir Recovery'' processes. Significantly, terpolymers that are responsive to changes in pH and ionic strength have been synthesized, characterized, and their solution properties have been extensively examined. Terpolymers composed of acrylamide, a carboxylated acrylamido monomer (AMBA), and a quaternary ammonium monomer (AMBATAC) with balanced compositions of the latter two, exhibit increases in aqueous solution viscosity as NaCl concentration is increased. This increasemore » in polymer coil size can be expected upon injection of this type of polymer into oil reservoirs of moderate-to-high salinity, leading to better mobility control. The opposite effect (loss of viscosity) is observed for conventional polymer systems. Additionally polymer mobility characteristics have been conducted for a number of hydrophilic copolymers utilizing an extensional flow apparatus and size exclusion chromatography. This study reveled that oil recovery enhancement through use of polymers in a water flood is due to the polymer's resistance to deformation as it flows through the reservoir. Individual polymers when in aqueous solution form coils. The larger the polymer's coil size, the greater the polymer's resistance to extensional flow and the more effective the polymer is in enhancing oil recovery. Large coil sizes are obtained by increasing the polymer molecular weight and having macromolecular structures that favor greater swelling of the coil by the aqueous solvent conditions (temperature, pH and electrolyte concentration) existing in the reservoir.« less

  13. Quantifying suspended sediment loads delivered to Cheney Reservoir, Kansas: Temporal patterns and management implications

    USGS Publications Warehouse

    Stone, Mandy L.; Juracek, Kyle E.; Graham, Jennifer L.; Foster, Guy

    2015-01-01

    Cheney Reservoir, constructed during 1962 to 1965, is the primary water supply for the city of Wichita, the largest city in Kansas. Sediment is an important concern for the reservoir as it degrades water quality and progressively decreases water storage capacity. Long-term data collection provided a unique opportunity to estimate the annual suspended sediment loads for the entire history of the reservoir. To quantify and characterize sediment loading to Cheney Reservoir, discrete suspended sediment samples and continuously measured streamflow data were collected from the North Fork Ninnescah River, the primary inflow to Cheney Reservoir, over a 48-year period. Continuous turbidity data also were collected over a 15-year period. These data were used together to develop simple linear regression models to compute continuous suspended sediment concentrations and loads from 1966 to 2013. The inclusion of turbidity as an additional explanatory variable with streamflow improved regression model diagnostics and increased the amount of variability in suspended sediment concentration explained by 14%. Using suspended sediment concentration from the streamflow-only model, the average annual suspended sediment load was 102,517 t (113,006 tn) and ranged from 4,826 t (5,320 tn) in 1966 to 967,569 t (1,066,562 tn) in 1979. The sediment load in 1979 accounted for about 20% of the total load over the 48-year history of the reservoir and 92% of the 1979 sediment load occurred in one 24-hour period during a 1% annual exceedance probability flow event (104-year flood). Nearly 60% of the reservoir sediment load during the 48-year study period occurred in 5 years with extreme flow events (9% to 1% annual exceedance probability, or 11- to 104-year flood events). A substantial portion (41%) of sediment was transported to the reservoir during five storm events spanning only eight 24-hour periods during 1966 to 2013. Annual suspended sediment load estimates based on streamflow were, on

  14. Associations between water physicochemistry and Prymnesium parvum presence, abundance, and toxicity in west Texas reservoirs

    USGS Publications Warehouse

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Southard, Greg M.; Patino, Reynaldo

    2015-01-01

    Toxic blooms of golden alga (Prymnesium parvum) have caused substantial ecological and economic harm in freshwater and marine systems throughout the world. In North America, toxic blooms have impacted freshwater systems including large reservoirs. Management of water chemistry is one proposed option for golden alga control in these systems. The main objective of this study was to assess physicochemical characteristics of water that influence golden alga presence, abundance, and toxicity in the Upper Colorado River basin (UCR) in Texas. The UCR contains reservoirs that have experienced repeated blooms and other reservoirs where golden alga is present but has not been toxic. We quantified golden alga abundance (hemocytometer counts), ichthyotoxicity (bioassay), and water chemistry (surface grab samples) at three impacted reservoirs on the Colorado River; two reference reservoirs on the Concho River; and three sites at the confluence of these rivers. Sampling occurred monthly from January 2010 to July 2011. Impacted sites were characterized by higher specific conductance, calcium and magnesium hardness, and fluoride than reference and confluence sites. At impacted sites, golden alga abundance and toxicity were positively associated with salinity-related variables and blooms peaked at ~10°C and generally did not occur above 20°C. Overall, these findings suggest management of land and water use to reduce hardness or salinity could produce unfavorable conditions for golden alga.

  15. The skin reservoir of sulphur mustard.

    PubMed

    Hattersley, I J; Jenner, J; Dalton, C; Chilcott, R P; Graham, J S

    2008-09-01

    Studies of the percutaneous reservoir of sulphur mustard (HD) formed during absorption carried out during WWI and WWII are inconclusive. More recent studies have indicated that a significant amount of unreacted HD remains in human epidermal membranes during percutaneous penetration studies in vitro. The present study investigated the nature and persistence of the HD reservoir formed during in vitro penetration studies using dermatomed slices of human and pig skin (0.5mm thick). Amounts of (14)C-HD that (a) penetrated, (b) remained on the surface, (c) were extractable from and (d) remained in the skin after extraction were estimated by liquid scintillation counting (confirmed using GC-MS analysis). The results demonstrated that there is a reservoir of HD in human and pig skin for up to 24 h after contamination of the skin surface in vitro with liquid agent. At least some of this reservoir could be extracted with acetonitrile, and the amounts of extracted and unextracted HD exceed the amount required to produce injury in vivo by at least 20 fold. The study demonstrated the presence of a reservoir whether the skin was covered (occluded) or left open to the air (unoccluded). The study concluded that the extractable reservoir was significant in terms of the amount of HD required to induce a vesicant response in human skin. The extractable reservoir was at least 20 times the amount required per cm(2) estimated to cause a response in all of the human population, as defined by studies carried out in human volunteers during the 1940s.

  16. Spatial and Temporal Correlates of Greenhouse Gas Diffusion from a Hydropower Reservoir in the Southern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosher, Jennifer; Fortner, Allison M.; Phillips, Jana Randolph

    Emissions of CO 2 and CH 4 from freshwater reservoirs constitute a globally significant source of atmospheric greenhouse gases (GHGs), but knowledge gaps remain with regard to spatiotemporal drivers of emissions. We document the spatial and seasonal variation in surface diffusion of CO 2 and CH 4 from Douglas Lake, a hydropower reservoir in Tennessee, USA. Monthly estimates across 13 reservoir sites from January to November 2010 indicated that surface diffusions ranged from 236 to 18,806 mg m -2 day -1 for CO 2 and 0 to 0.95 mg m -2 day -1 for CH 4. Next, we developed statisticalmore » models using spatial and physicochemical variables to predict surface diffusions of CO 2 and CH 4. Models explained 22.7 and 20.9% of the variation in CO 2 and CH4 diffusions, respectively, and identified pH, temperature, dissolved oxygen, and Julian day as the most informative important predictors. These findings provide baseline estimates of GHG emissions from a reservoir in eastern temperate North America a region for which estimates of reservoir GHGs emissions are limited. Our statistical models effectively characterized non-linear and threshold relationships between physicochemical predictors and GHG emissions. Further refinement of such models will aid in predicting current GHG emissions in unsampled reservoirs and forecasting future GHG emissions.« less

  17. Spatial and Temporal Correlates of Greenhouse Gas Diffusion from a Hydropower Reservoir in the Southern United States

    DOE PAGES

    Mosher, Jennifer; Fortner, Allison M.; Phillips, Jana Randolph; ...

    2015-10-29

    Emissions of CO 2 and CH 4 from freshwater reservoirs constitute a globally significant source of atmospheric greenhouse gases (GHGs), but knowledge gaps remain with regard to spatiotemporal drivers of emissions. We document the spatial and seasonal variation in surface diffusion of CO 2 and CH 4 from Douglas Lake, a hydropower reservoir in Tennessee, USA. Monthly estimates across 13 reservoir sites from January to November 2010 indicated that surface diffusions ranged from 236 to 18,806 mg m -2 day -1 for CO 2 and 0 to 0.95 mg m -2 day -1 for CH 4. Next, we developed statisticalmore » models using spatial and physicochemical variables to predict surface diffusions of CO 2 and CH 4. Models explained 22.7 and 20.9% of the variation in CO 2 and CH4 diffusions, respectively, and identified pH, temperature, dissolved oxygen, and Julian day as the most informative important predictors. These findings provide baseline estimates of GHG emissions from a reservoir in eastern temperate North America a region for which estimates of reservoir GHGs emissions are limited. Our statistical models effectively characterized non-linear and threshold relationships between physicochemical predictors and GHG emissions. Further refinement of such models will aid in predicting current GHG emissions in unsampled reservoirs and forecasting future GHG emissions.« less

  18. Well log characterization of natural gas-hydrates

    USGS Publications Warehouse

    Collett, Timothy S.; Lee, Myung W.

    2012-01-01

    In the last 25 years there have been significant advancements in the use of well-logging tools to acquire detailed information on the occurrence of gas hydrates in nature: whereas wireline electrical resistivity and acoustic logs were formerly used to identify gas-hydrate occurrences in wells drilled in Arctic permafrost environments, more advanced wireline and logging-while-drilling (LWD) tools are now routinely used to examine the petrophysical nature of gas-hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Resistivity- and acoustic-logging tools are the most widely used for estimating the gas-hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. Recent integrated sediment coring and well-log studies have confirmed that electrical-resistivity and acoustic-velocity data can yield accurate gas-hydrate saturations in sediment grain-supported (isotropic) systems such as sand reservoirs, but more advanced log-analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. New well-logging tools designed to make directionally oriented acoustic and propagation-resistivity log measurements provide the data needed to analyze the acoustic and electrical anisotropic properties of both highly interbedded and fracture-dominated gas-hydrate reservoirs. Advancements in nuclear magnetic resonance (NMR) logging and wireline formation testing (WFT) also allow for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids(i.e., free water along with clay- and capillary-bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms

  19. SIPCAn (Separation, Isolation, Purification, Characterization, and Analysis): A One-Term, Integrated Project for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Dintzner, Matthew R.; Kinzie, Charles R.; Pulkrabek, Kimberly A.; Arena, Anthony F.

    2011-01-01

    SIPCAn, an acronym for separation, isolation, purification, characterization, and analysis, is presented as a one-term, integrated project for the first-term undergraduate organic laboratory course. Students are assigned two mixtures of unknown organic compounds--a mixture of two liquid compounds and a mixture of two solid compounds--at the…

  20. Heterogeneities of mechanical properties in potential geothermal reservoir rocks of the North German Basin

    NASA Astrophysics Data System (ADS)

    Reyer, D.; Philipp, S. L.

    2012-04-01

    Heterogeneous rock properties in terms of layering and complex infrastructure of fault zones are typical phenomena in sedimentary basins such as the North German Basin. To be able to model reservoir stimulation in layered stratifications and to better adapt the drilling strategy to the rock mechanical conditions it is important to have knowledge about the effects of heterogeneous rock properties on fracture propagation and fault zone infrastructure for typical sedimentary reservoir rocks in the North German Basin. Therefore we aim at quantifying these properties by performing structural geological field studies in outcrop analogues combined with laboratory analyses. The field studies in Rotliegend sandstones (Lower Permian), the sandstones of the Middle Bunter (Lower Triassic) and the sandstones of the Upper Keuper (Upper Triassic) focus on 1) host rock fracture systems and 2) fault zone infrastructure. We analyse quantitatively the dimension, geometry, persistence and connectivity of fracture systems separately for host rocks and fault damage zones. The results show that in rocks with distinctive layering (sandstones and shales) natural fractures are often restricted to individual layers, that is, they are stratabound. The probability of fracture arrest seems to depend on the stiffness contrast between the two layers and on the thickness of the softer layer. The field studies are complemented by systematic sampling to obtain mechanical property variations caused by the layering. For the samples we measure the parameters Young's modulus, compressive and tensile strengths, elastic strain energy, density and porosity. The results show that the mechanical properties vary considerably and many samples are clearly anisotropic. That is, samples taken perpendicular to layering commonly have higher strengths but lower stiffnesses than those taken parallel to layering. We combine the results of laboratory analyses and field measurements to specify the mechanical

  1. 33 CFR 110.77 - Amistad Reservoir, Tex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Amistad Reservoir, Tex. 110.77... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.77 Amistad Reservoir, Tex. (a) Diablo East, Tex. That portion of the Amistad Reservoir enclosed by a line connecting the following points, excluding a 300-foot...

  2. Method of extracting heat from dry geothermal reservoirs

    DOEpatents

    Potter, R.M.; Robinson, E.S.; Smith, M.C.

    1974-01-22

    Hydraulic fracturing is used to interconnect two or more holes that penetrate a previously dry geothermal reservoir, and to produce within the reservoir a sufficiently large heat-transfer surface so that heat can be extracted from the reservoir at a usefully high rate by a fluid entering it through one hole and leaving it through another. Introduction of a fluid into the reservoir to remove heat from it and establishment of natural (unpumped) convective circulation through the reservoir to accomplish continuous heat removal are important and novel features of the method. (auth)

  3. Reservoir simulation with MUFITS code: Extension for double porosity reservoirs and flows in horizontal wells

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey

    2017-04-01

    Numerical modelling of multiphase flows in porous medium is necessary in many applications concerning subsurface utilization. An incomplete list of those applications includes oil and gas fields exploration, underground carbon dioxide storage and geothermal energy production. The numerical simulations are conducted using complicated computer programs called reservoir simulators. A robust simulator should include a wide range of modelling options covering various exploration techniques, rock and fluid properties, and geological settings. In this work we present a recent development of new options in MUFITS code [1]. The first option concerns modelling of multiphase flows in double-porosity double-permeability reservoirs. We describe internal representation of reservoir models in MUFITS, which are constructed as a 3D graph of grid blocks, pipe segments, interfaces, etc. In case of double porosity reservoir, two linked nodes of the graph correspond to a grid cell. We simulate the 6th SPE comparative problem [2] and a five-spot geothermal production problem to validate the option. The second option concerns modelling of flows in porous medium coupled with flows in horizontal wells that are represented in the 3D graph as a sequence of pipe segments linked with pipe junctions. The well completions link the pipe segments with reservoir. The hydraulics in the wellbore, i.e. the frictional pressure drop, is calculated in accordance with Haaland's formula. We validate the option against the 7th SPE comparative problem [3]. We acknowledge financial support by the Russian Foundation for Basic Research (project No RFBR-15-31-20585). References [1] Afanasyev, A. MUFITS Reservoir Simulation Software (www.mufits.imec.msu.ru). [2] Firoozabadi A. et al. Sixth SPE Comparative Solution Project: Dual-Porosity Simulators // J. Petrol. Tech. 1990. V.42. N.6. P.710-715. [3] Nghiem L., et al. Seventh SPE Comparative Solution Project: Modelling of Horizontal Wells in Reservoir Simulation

  4. Reservoir description is key to steamflood planning and implementation, Webster Reservoir, Midway-Sunset Field, Kern County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, B.R.; Link, M.H.

    1988-01-01

    The Webster reservoir at Midway-Sunset field, Kern County, California, is an unconsolidated sand reservoir of Miocene age (''Stevens equivalent,'' Monterey Formation). The Webster was discovered in 1910 but, due to poor heavy oil (14/sup 0/ API) economics, development for primary production and subsequent enhanced recovery were sporadic. Currently, the reservoir produces by cyclic steam stimulation in approximately 35 wells. Cumulative oil production for the Webster since 1910 is about 13 million bbl. The Webster is subdivided into two reservoirs - the Webster Intermediate and Webster Main. The Webster Intermediate directly overlies the Webster Main in one area but it ismore » separated by up to 300 ft of shale elsewhere. The combined thickness of both Webster reservoirs averages 250 ft and is located at a drilling depth of 1,100-1,800 ft. From evaluation of modern core data and sand distribution maps, the Webster sands are interpreted to have been deposited by turbidity currents that flowed from southwest to northeast in this area. Oil is trapped in the Webster reservoir where these turbidites were subsequently folded on a northwest-southeast-trending anticline. Detailed recorrelation on wireline logs, stratigraphic zonation, detailed reservoir description by zone, and sedimentary facies identification in modern cores has led to development of a geologic model for the Webster. This model indicates that the Webster Intermediate was deposited predominately by strongly channelized turbidity currents, resulting in channel-fill sands, and that the Webster Main was deposited by less restricted flows, resulting in more lobate deposits.« less

  5. A Single-Ion Reservoir as a High-Sensitive Sensor of Electric Signals.

    PubMed

    Domínguez, Francisco; Arrazola, Iñigo; Doménech, Jaime; Pedernales, Julen S; Lamata, Lucas; Solano, Enrique; Rodríguez, Daniel

    2017-08-21

    A single-ion reservoir has been tested, and characterized in order to be used as a highly sensitive optical detector of electric signals arriving at the trapping electrodes. Our system consists of a single laser-cooled 40 Ca + ion stored in a Paul trap with rotational symmetry. The performance is observed through the axial motion of the ion, which is equivalent to an underdamped and forced oscillator. Thus, the results can be projected also to Penning traps. We have found that, for an ion oscillator temperature T axial  ≲ 10 mK in the forced-frequency range ω z  = 2π × (80,200 kHz), the reservoir is sensitive to a time-varying electric field equivalent to an electric force of 5.3(2) neV/μm, for a measured quality factor Q = 3875(45), and a decay time constant γ z  = 88(2) s -1 . This method can be applied to measure optically the strength of an oscillating field or induced (driven) charge in this frequency range within times of tens of milliseconds. Furthermore the ion reservoir has been proven to be sensitive to electrostatic forces by measuring the ion displacement. Since the heating rate is below 0.3 μeV/s, this reservoir might be used as optical detector for any ion or bunch of charged particles stored in an adjacent trap.

  6. What is the Effect of Interannual Hydroclimatic Variability on Water Supply Reservoir Operations?

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Turner, S. W. D.

    2015-12-01

    Rather than deriving from a single distribution and uniform persistence structure, hydroclimatic data exhibit significant trends and shifts in their mean, variance, and lagged correlation through time. Consequentially, observed and reconstructed streamflow records are often characterized by features of interannual variability, including long-term persistence and prolonged droughts. This study examines the effect of these features on the operating performance of water supply reservoirs. We develop a Stochastic Dynamic Programming (SDP) model that can incorporate a regime-shifting climate variable. We then compare the performance of operating policies—designed with and without climate variable—to quantify the contribution of interannual variability to standard policy sub-optimality. The approach uses a discrete-time Markov chain to partition the reservoir inflow time series into small number of 'hidden' climate states. Each state defines a distinct set of inflow transition probability matrices, which are used by the SDP model to condition the release decisions on the reservoir storage, current-period inflow and hidden climate state. The experimental analysis is carried out on 99 hypothetical water supply reservoirs fed from pristine catchments in Australia—all impacted by the Millennium drought. Results show that interannual hydroclimatic variability is a major cause of sub-optimal hedging decisions. The practical import is that conventional optimization methods may misguide operators, particularly in regions susceptible to multi-year droughts.

  7. Real-time detection of dielectric anisotropy or isotropy in unconventional oil-gas reservoir rocks supported by the oblique-incidence reflectivity difference technique

    NASA Astrophysics Data System (ADS)

    Zhan, Honglei; Wang, Jin; Zhao, Kun; Lű, Huibin; Jin, Kuijuan; He, Liping; Yang, Guozhen; Xiao, Lizhi

    2016-12-01

    Current geological extraction theory and techniques are very limited to adequately characterize the unconventional oil-gas reservoirs because of the considerable complexity of the geological structures. Optical measurement has the advantages of non-interference with the earth magnetic fields, and is often useful in detecting various physical properties. One key parameter that can be detected using optical methods is the dielectric permittivity, which reflects the mineral and organic properties. Here we reported an oblique-incidence reflectivity difference (OIRD) technique that is sensitive to the dielectric and surface properties and can be applied to characterization of reservoir rocks, such as shale and sandstone core samples extracted from subsurface. The layered distribution of the dielectric properties in shales and the uniform distribution in sandstones are clearly identified using the OIRD signals. In shales, the micro-cracks and particle orientation result in directional changes of the dielectric and surface properties, and thus, the isotropy and anisotropy of the rock can be characterized by OIRD. As the dielectric and surface properties are closely related to the hydrocarbon-bearing features in oil-gas reservoirs, we believe that the precise measurement carried with OIRD can help in improving the recovery efficiency in well-drilling process.

  8. Reservoir-Based Drug Delivery Systems Utilizing Microtechnology

    PubMed Central

    Stevenson, Cynthia L.; Santini, John T.; Langer, Robert

    2012-01-01

    This review covers reservoir-based drug delivery systems that incorporate microtechnology, with an emphasis on oral, dermal, and implantable systems. Key features of each technology are highlighted such as working principles, fabrication methods, dimensional constraints, and performance criteria. Reservoir-based systems include a subset of microfabricated drug delivery systems and provide unique advantages. Reservoirs, whether external to the body or implanted, provide a well-controlled environment for a drug formulation, allowing increased drug stability and prolonged delivery times. Reservoir systems have the flexibility to accommodate various delivery schemes, including zero order, pulsatile, and on demand dosing, as opposed to a standard sustained release profile. Furthermore, the development of reservoir-based systems for targeted delivery for difficult to treat applications (e.g., ocular) has resulted in potential platforms for patient therapy. PMID:22465783

  9. Electrical Characterization Laboratory | Energy Systems Integration

    Science.gov Websites

    the ability of electrical equipment to withstand high-voltage surges and high-current faults. A capability. High-Voltage Characterization The high-voltage characterization hub offers a Class 1, Div 2 lab

  10. Comparative study of sickle cell anemia and hemoglobin SC disease: clinical characterization, laboratory biomarkers and genetic profiles.

    PubMed

    Aleluia, Milena Magalhães; Fonseca, Teresa Cristina Cardoso; Souza, Regiana Quinto; Neves, Fábia Idalina; da Guarda, Caroline Conceição; Santiago, Rayra Pereira; Cunha, Bruna Laís Almeida; Figueiredo, Camylla Villas Boas; Santana, Sânzio Silva; da Paz, Silvana Sousa; Ferreira, Júnia Raquel Dutra; Cerqueira, Bruno Antônio Veloso; Gonçalves, Marilda de Souza

    2017-01-01

    In this study, we evaluate the association of different clinical profiles, laboratory and genetic biomarkers in patients with sickle cell anemia (SCA) and hemoglobin SC disease (HbSC) in attempt to characterize the sickle cell disease (SCD) genotypes. We conducted a cross-sectional study from 2013 to 2014 in 200 SCD individuals (141 with SCA; 59 with HbSC) and analyzed demographic data to characterize the study population. In addition, we determined the association of hematological, biochemical and genetic markers including the β S -globin gene haplotypes and the 3.7 Kb deletion of α-thalassemia (-α 3.7Kb -thal), as well as the occurrence of clinical events in both SCD genotypes. Laboratory parameters showed a hemolytic profile associated with endothelial dysfunction in SCA individuals; however, the HbSC genotype was more associated with increased blood viscosity and inflammatory conditions. The BEN haplotype was the most frequently observed and was associated with elevated fetal hemoglobin (HbF) and low S hemoglobin (HbS). The -α 3.7Kb -thal prevalence was 0.09 (9%), and it was associated with elevated hemoglobin and hematocrit concentrations. Clinical events were more frequent in SCA patients. Our data emphasize the differences between SCA and HbSC patients based on laboratory parameters and the clinical and genetic profile of both genotypes.

  11. Gradients in Catostomid assemblages along a reservoir cascade

    USGS Publications Warehouse

    Miranda, Leandro E.; Keretz, Kevin R.; Gilliland, Chelsea R.

    2017-01-01

    Serial impoundment of major rivers leads to alterations of natural flow dynamics and disrupts longitudinal connectivity. Catostomid fishes (suckers, family Catostomidae) are typically found in riverine or backwater habitats yet are able to persist in impounded river systems. To the detriment of conservation, there is limited information about distribution of catostomid fishes in impounded rivers. We examined the longitudinal distribution of catostomid fishes over 23 reservoirs of the Tennessee River reservoir cascade, encompassing approximately 1600 km. Our goal was to develop a basin-scale perspective to guide conservation efforts. Catostomid species composition and assemblage structure changed longitudinally along the reservoir cascade. Catostomid species biodiversity was greatest in reservoirs lower in the cascade. Assemblage composition shifted from dominance by spotted sucker Minytrema melanops and buffalos Ictiobus spp. in the lower reservoirs to carpsuckers Carpiodes spp. midway through the cascade and redhorses Moxostoma spp. in the upper reservoirs. Most species did not extend the length of the cascade, and some species were rare, found in low numbers and in few reservoirs. The observed gradients in catostomid assemblages suggest the need for basin-scale conservation measures focusing on three broad areas: (1) conservation and management of the up-lake riverine reaches of the lower reservoirs, (2) maintenance of the access to quality habitat in tributaries to the upper reservoirs and (3) reintroductions into currently unoccupied habitat within species' historic distributions

  12. Reservoir area of influence and implications for fisheries management

    USGS Publications Warehouse

    Martin, Dustin R.; Chizinski, Christopher J.; Pope, Kevin L.

    2015-01-01

    Understanding the spatial area that a reservoir draws anglers from, defined as the reservoir's area of influence, and the potential overlap of that area of influence between reservoirs is important for fishery managers. Our objective was to define the area of influence for reservoirs of the Salt Valley regional fishery in southeastern Nebraska using kernel density estimation. We used angler survey data obtained from in-person interviews at 17 reservoirs during 2009–2012. The area of influence, defined by the 95% kernel density, for reservoirs within the Salt Valley regional fishery varied, indicating that anglers use reservoirs differently across the regional fishery. Areas of influence reveal angler preferences in a regional context, indicating preferred reservoirs with a greater area of influence. Further, differences in areas of influences across time and among reservoirs can be used as an assessment following management changes on an individual reservoir or within a regional fishery. Kernel density estimation provided a clear method for creating spatial maps of areas of influence and provided a two-dimensional view of angler travel, as opposed to the traditional mean travel distance assessment.

  13. Current in nanojunctions: Effects of reservoir coupling

    NASA Astrophysics Data System (ADS)

    Yadalam, Hari Kumar; Harbola, Upendra

    2018-07-01

    We study the effect of system reservoir coupling on currents flowing through quantum junctions. We consider two simple double-quantum dot configurations coupled to two external fermionic reservoirs and study the net current flowing between the two reservoirs. The net current is partitioned into currents carried by the eigenstates of the system and by the coherences between the eigenstates induced due to coupling with the reservoirs. We find that current carried by populations is always positive whereas current carried by coherences are negative for large couplings. This results in a non-monotonic dependence of the net current on the coupling strength. We find that in certain cases, the net current can vanish at large couplings due to cancellation between currents carried by the eigenstates and by the coherences. These results provide new insights into the non-trivial role of system-reservoir couplings on electron transport through quantum dot junctions. In the presence of weak coulomb interactions, net current as a function of system reservoir coupling strength shows similar trends as for the non-interacting case.

  14. Bathymetric contours of Breckenridge Reservoir, Quantico, Virginia

    USGS Publications Warehouse

    Wicklein, S.M.; Lotspeich, R.R.; Banks, R.B.

    2012-01-01

    Breckenridge Reservoir, built in 1938, is fed by Chopawamsic Creek and South Branch Chopawamsic Creek. The Reservoir is a main source of drinking water for the U.S. Marine Corps (USMC) Base in Quantico, Virginia. The U.S. Geological Survey (USGS), in cooperation with the USMC, conducted a bathymetric survey of Breckenridge Reservoir in March 2009. The survey was conducted to provide the USMC Natural Resources and Environmental Affairs (NREA) with information regarding reservoir storage capacity and general bathymetric properties. The bathymetric survey can provide a baseline for future work on sediment loads and deposition rates for the reservoir. Bathymetric data were collected using a boat-mounted Wide Area Augmentation System (WAAS) differential global positioning system (DGPS), echo depth-sounding equipment, and computer software. Data were exported into a geographic information system (GIS) for mapping and calculating area and volume. Reservoir storage volume at the time of the survey was about 22,500,000 cubic feet (517 acre-feet) with a surface area of about 1,820,000 square feet (41.9 acres).

  15. Experiments with Interaction between the National Water Model and the Reservoir System Simulation Model: A Case Study of Russian River Basin

    NASA Astrophysics Data System (ADS)

    Kim, J.; Johnson, L.; Cifelli, R.; Chandra, C. V.; Gochis, D.; McCreight, J. L.; Yates, D. N.; Read, L.; Flowers, T.; Cosgrove, B.

    2017-12-01

    NOAA National Water Center (NWC) in partnership with the National Centers for Environmental Prediction (NCEP), the National Center for Atmospheric Research (NCAR) and other academic partners have produced operational hydrologic predictions for the nation using a new National Water Model (NWM) that is based on the community WRF-Hydro modeling system since the summer of 2016 (Gochis et al., 2015). The NWM produces a variety of hydrologic analysis and prediction products, including gridded fields of soil moisture, snowpack, shallow groundwater levels, inundated area depths, evapotranspiration as well as estimates of river flow and velocity for approximately 2.7 million river reaches. Also included in the NWM are representations for more than 1,200 reservoirs which are linked into the national channel network defined by the USGS NHDPlusv2.0 hydrography dataset. Despite the unprecedented spatial and temporal coverage of the NWM, many known deficiencies exist, including the representation of lakes and reservoirs. This study addresses the implementation of a reservoir assimilation scheme through coupling of a reservoir simulation model to represent the influence of managed flows. We examine the use of the reservoir operations to dynamically update lake/reservoir storage volume states, characterize flow characteristics of river reaches flowing into and out of lakes and reservoirs, and incorporate enhanced reservoir operating rules for the reservoir model options within the NWM. Model experiments focus on a pilot reservoir domain-Lake Mendocino, CA, and its contributing watershed, the East Fork Russian River. This reservoir is modeled using United States Army Corps of Engineers (USACE) HEC-ResSim developed for application to examine forecast informed reservoir operations (FIRO) in the Russian River basin.

  16. PLANET TOPERS: Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS.

    PubMed

    Dehant, V; Asael, D; Baland, R M; Baludikay, B K; Beghin, J; Belza, J; Beuthe, M; Breuer, D; Chernonozhkin, S; Claeys, Ph; Cornet, Y; Cornet, L; Coyette, A; Debaille, V; Delvigne, C; Deproost, M H; De WInter, N; Duchemin, C; El Atrassi, F; François, C; De Keyser, J; Gillmann, C; Gloesener, E; Goderis, S; Hidaka, Y; Höning, D; Huber, M; Hublet, G; Javaux, E J; Karatekin, Ö; Kodolanyi, J; Revilla, L Lobo; Maes, L; Maggiolo, R; Mattielli, N; Maurice, M; McKibbin, S; Morschhauser, A; Neumann, W; Noack, L; Pham, L B S; Pittarello, L; Plesa, A C; Rivoldini, A; Robert, S; Rosenblatt, P; Spohn, T; Storme, J -Y; Tosi, N; Trinh, A; Valdes, M; Vandaele, A C; Vanhaecke, F; Van Hoolst, T; Van Roosbroek, N; Wilquet, V; Yseboodt, M

    2016-11-01

    The Interuniversity Attraction Pole (IAP) 'PLANET TOPERS' (Planets: Tracing the Transfer, Origin, Preservation, and Evolution of their Reservoirs) addresses the fundamental understanding of the thermal and compositional evolution of the different reservoirs of planetary bodies (core, mantle, crust, atmosphere, hydrosphere, cryosphere, and space) considering interactions and feedback mechanisms. Here we present the first results after 2 years of project work.

  17. Preliminary Three-Dimensional Simulation of Sediment and Cesium Transport in the Ogi Dam Reservoir using FLESCOT – Task 6, Subtask 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Yasuo; Kurikami, Hiroshi; Yokuda, Satoru T.

    2014-03-28

    After the accident at the Fukushima Daiichi Nuclear Power Plant in March 2011, the Japan Atomic Energy Agency and the Pacific Northwest National Laboratory initiated a collaborative project on environmental restoration. In October 2013, the collaborative team started a task of three-dimensional modeling of sediment and cesium transport in the Fukushima environment using the FLESCOT (Flow, Energy, Salinity, Sediment Contaminant Transport) code. As the first trial, we applied it to the Ogi Dam Reservoir that is one of the reservoirs in the Japan Atomic Energy Agency’s (JAEA’s) investigation project. Three simulation cases under the following different temperature conditions were studied:more » • incoming rivers and the Ogi Dam Reservoir have the same water temperature • incoming rivers have lower water temperature than that of the reservoir • incoming rivers have higher water temperature than that of the reservoir. The preliminary simulations suggest that seasonal temperature changes influence the sediment and cesium transport. The preliminary results showed the following: • Suspended sand, and cesium adsorbed by sand, coming into the reservoirs from upstream rivers is deposited near the reservoir entrance. • Suspended silt, and cesium adsorbed by silt, is deposited farther in the reservoir. • Suspended clay, and cesium adsorbed by clay, travels the farthest into the reservoir. With sufficient time, the dissolved cesium reaches the downstream end of the reservoir. This preliminary modeling also suggests the possibility of a suitable dam operation to control the cesium migration farther downstream from the dam. JAEA has been sampling in the Ogi Dam Reservoir, but these data were not yet available for the current model calibration and validation for this reservoir. Nonetheless these preliminary FLESCOT modeling results were qualitatively valid and confirmed the applicability of the FLESCOT code to the Ogi Dam Reservoir, and in general to other

  18. Bathymetry and capacity of Shawnee Reservoir, Oklahoma, 2016

    USGS Publications Warehouse

    Ashworth, Chad E.; Smith, S. Jerrod; Smith, Kevin A.

    2017-02-13

    Shawnee Reservoir (locally known as Shawnee Twin Lakes) is a man-made reservoir on South Deer Creek with a drainage area of 32.7 square miles in Pottawatomie County, Oklahoma. The reservoir consists of two lakes connected by an equilibrium channel. The southern lake (Shawnee City Lake Number 1) was impounded in 1935, and the northern lake (Shawnee City Lake Number 2) was impounded in 1960. Shawnee Reservoir serves as a municipal water supply, and water is transferred about 9 miles by gravity to a water treatment plant in Shawnee, Oklahoma. Secondary uses of the reservoir are for recreation, fish and wildlife habitat, and flood control. Shawnee Reservoir has a normal-pool elevation of 1,069.0 feet (ft) above North American Vertical Datum of 1988 (NAVD 88). The auxiliary spillway, which defines the flood-pool elevation, is at an elevation of 1,075.0 ft.The U.S. Geological Survey (USGS), in cooperation with the City of Shawnee, has operated a real-time stage (water-surface elevation) gage (USGS station 07241600) at Shawnee Reservoir since 2006. For the period of record ending in 2016, this gage recorded a maximum stage of 1,078.1 ft on May 24, 2015, and a minimum stage of 1,059.1 ft on April 10–11, 2007. This gage did not report reservoir storage prior to this report (2016) because a sufficiently detailed and thoroughly documented bathymetric (reservoir-bottom elevation) survey and corresponding stage-storage relation had not been published. A 2011 bathymetric survey with contours delineated at 5-foot intervals was published in Oklahoma Water Resources Board (2016), but that publication did not include a stage-storage relation table. The USGS, in cooperation with the City of Shawnee, performed a bathymetric survey of Shawnee Reservoir in 2016 and released the bathymetric-survey data in 2017. The purposes of the bathymetric survey were to (1) develop a detailed bathymetric map of the reservoir and (2) determine the relations between stage and reservoir storage

  19. Temperature and injection water source influence microbial community structure in four Alaskan North Slope hydrocarbon reservoirs

    PubMed Central

    Piceno, Yvette M.; Reid, Francine C.; Tom, Lauren M.; Conrad, Mark E.; Bill, Markus; Hubbard, Christopher G.; Fouke, Bruce W.; Graff, Craig J.; Han, Jiabin; Stringfellow, William T.; Hanlon, Jeremy S.; Hu, Ping; Hazen, Terry C.; Andersen, Gary L.

    2014-01-01

    A fundamental knowledge of microbial community structure in petroleum reservoirs can improve predictive modeling of these environments. We used hydrocarbon profiles, stable isotopes, and high-density DNA microarray analysis to characterize microbial communities in produced water from four Alaskan North Slope hydrocarbon reservoirs. Produced fluids from Schrader Bluff (24–27°C), Kuparuk (47–70°C), Sag River (80°C), and Ivishak (80–83°C) reservoirs were collected, with paired soured/non-soured wells sampled from Kuparuk and Ivishak. Chemical and stable isotope data suggested Schrader Bluff had substantial biogenic methane, whereas methane was mostly thermogenic in deeper reservoirs. Acetoclastic methanogens (Methanosaeta) were most prominent in Schrader Bluff samples, and the combined δD and δ13C values of methane also indicated acetoclastic methanogenesis could be a primary route for biogenic methane. Conversely, hydrogenotrophic methanogens (e.g., Methanobacteriaceae) and sulfide-producing Archaeoglobus and Thermococcus were more prominent in Kuparuk samples. Sulfide-producing microbes were detected in all reservoirs, uncoupled from souring status (e.g., the non-soured Kuparuk samples had higher relative abundances of many sulfate-reducers compared to the soured sample, suggesting sulfate-reducers may be living fermentatively/syntrophically when sulfate is limited). Sulfate abundance via long-term seawater injection resulted in greater relative abundances of Desulfonauticus, Desulfomicrobium, and Desulfuromonas in the soured Ivishak well compared to the non-soured well. In the non-soured Ivishak sample, several taxa affiliated with Thermoanaerobacter and Halomonas predominated. Archaea were not detected in the deepest reservoirs. Functional group taxa differed in relative abundance among reservoirs, likely reflecting differing thermal and/or geochemical influences. PMID:25147549

  20. Electrofacies vs. lithofacies sandstone reservoir characterization Campanian sequence, Arshad gas/oil field, Central Sirt Basin, Libya

    NASA Astrophysics Data System (ADS)

    Burki, Milad; Darwish, Mohamed

    2017-06-01

    The present study focuses on the vertically stacked sandstones of the Arshad Sandstone in Arshad gas/oil field, Central Sirt Basin, Libya, and is based on the conventional cores analysis and wireline log interpretation. Six lithofacies types (F1 to F6) were identified based on the lithology, sedimentary structures and biogenic features, and are supported by wireline log calibration. From which four types (F1-F4) represent the main Campanian sandstone reservoirs in the Arshad gas/oil field. Lithofacies F5 is the basal conglomerates at the lower part of the Arshad sandstones. The Paleozoic Gargaf Formation is represented by lithofacies F6 which is the source provenance for the above lithofacies types. Arshad sediments are interpreted to be deposited in shallow marginal and nearshore marine environment influenced by waves and storms representing interactive shelf to fluvio-marine conditions. The main seal rocks are the Campanian Sirte shale deposited in a major flooding events during sea level rise. It is contended that the syn-depositional tectonics controlled the distribution of the reservoir facies in time and space. In addition, the post-depositional changes controlled the reservoir quality and performance. Petrophysical interpretation from the porosity log values were confirmed by the conventional core measurements of the different sandstone lithofacies types. Porosity ranges from 5 to 20% and permeability is between 0 and 20 mD. Petrophysical cut-off summary of the lower part of the clastic dominated sequence (i. e. Arshad Sandstone) calculated from six wells includes net pay sand ranging from 19.5‧ to 202.05‧, average porosity from 7.7 to 15% and water saturation from 19 to 58%.