Sample records for laboratory ryerson physical

  1. "Pretty Rad": Explorations in User Satisfaction with a Discovery Layer at Ryerson University

    ERIC Educational Resources Information Center

    Lundrigan, Courtney; Manuel, Kevin; Yan, May

    2015-01-01

    Web-scale discovery systems are becoming prevalent in research libraries. Although a number of studies have explored various impacts of discovery systems, few studies exist on user satisfaction. The investigators of this study evaluated user satisfaction with the discovery service Summon at Ryerson University, using online questionnaires and…

  2. Physics Laboratory in UEC

    NASA Astrophysics Data System (ADS)

    Takada, Tohru; Nakamura, Jin; Suzuki, Masaru

    All the first-year students in the University of Electro-Communications (UEC) take "Basic Physics I", "Basic Physics II" and "Physics Laboratory" as required subjects; Basic Physics I and Basic Physics II are calculus-based physics of mechanics, wave and oscillation, thermal physics and electromagnetics. Physics Laboratory is designed mainly aiming at learning the skill of basic experimental technique and technical writing. Although 95% students have taken physics in the senior high school, they poorly understand it by connecting with experience, and it is difficult to learn Physics Laboratory in the university. For this reason, we introduced two ICT (Information and Communication Technology) systems of Physics Laboratory to support students'learning and staff's teaching. By using quantitative data obtained from the ICT systems, we can easily check understanding of physics contents in students, and can improve physics education.

  3. Laboratory space physics: Investigating the physics of space plasmas in the laboratory

    NASA Astrophysics Data System (ADS)

    Howes, Gregory G.

    2018-05-01

    Laboratory experiments provide a valuable complement to explore the fundamental physics of space plasmas without the limitations inherent to spacecraft measurements. Specifically, experiments overcome the restriction that spacecraft measurements are made at only one (or a few) points in space, enable greater control of the plasma conditions and applied perturbations, can be reproducible, and are orders of magnitude less expensive than launching spacecraft. Here, I highlight key open questions about the physics of space plasmas and identify the aspects of these problems that can potentially be tackled in laboratory experiments. Several past successes in laboratory space physics provide concrete examples of how complementary experiments can contribute to our understanding of physical processes at play in the solar corona, solar wind, planetary magnetospheres, and the outer boundary of the heliosphere. I present developments on the horizon of laboratory space physics, identifying velocity space as a key new frontier, highlighting new and enhanced experimental facilities, and showcasing anticipated developments to produce improved diagnostics and innovative analysis methods. A strategy for future laboratory space physics investigations will be outlined, with explicit connections to specific fundamental plasma phenomena of interest.

  4. The Physics Laboratory in Honduras.

    ERIC Educational Resources Information Center

    Zuniga, M. A.

    1979-01-01

    This paper, presented at the conference on the role of the laboratory in physics education, which was held in Oxford, England in July 1978, describes the role of the laboratory in school and university physics in Honduras. (HM)

  5. RealTime Physics: Active learning laboratory

    NASA Astrophysics Data System (ADS)

    Thornton, Ronald K.; Sokoloff, David R.

    1997-03-01

    Our research shows that student learning of physics concepts in introductory physics courses is enhanced by the use of special guided discovery laboratory curricula which embody the results of educational research and which are supported by the use of the Tools for Scientific Thinking microcomputer-based laboratory (MBL) tools. In this paper we first describe the general characteristics of the research-based RealTime Physics laboratory curricula developed for use in introductory physics classes in colleges, universities and high schools. We then describe RealTime Physics Mechanics in detail. Finally we examine student learning of dynamics in traditional physics courses and in courses using RealTime Physics Mechanics, primarily by the use of correlated questions on the Force and Motion Conceptual Evaluation. We present considerable evidence that students who use the new laboratory curricula demonstrate significantly improved learning and retention of dynamics concepts compared to students taught by traditional methods.

  6. The Laboratory for Terrestrial Physics

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Laboratory for Terrestrial Physics is dedicated to the advancement of knowledge in Earth and planetary science, by conducting innovative research using space technology. The Laboratory's mission and activities support the work and new initiatives at NASA's Goddard Space Flight Center (GSFC). The Laboratory's success contributes to the Earth Science Directorate as a national resource for studies of Earth from Space. The Laboratory is part of the Earth Science Directorate based at the GSFC in Greenbelt, MD. The Directorate itself is comprised of the Global Change Data Center (GCDC), the Space Data and Computing Division (SDCD), and four science Laboratories, including Laboratory for Terrestrial Physics, Laboratory for Atmospheres, and Laboratory for Hydrospheric Processes all in Greenbelt, MD. The fourth research organization, Goddard Institute for Space Studies (GISS), is in New York, NY. Relevant to NASA's Strategic Plan, the Laboratory ensures that all work undertaken and completed is within the vision of GSFC. The philosophy of the Laboratory is to balance the completion of near term goals, while building on the Laboratory's achievements as a foundation for the scientific challenges in the future.

  7. Introductory Physics Laboratories for Life Scientists - Hands on Physics of Complex Systems

    NASA Astrophysics Data System (ADS)

    Losert, Wolfgang; Moore, Kim

    2015-03-01

    We have developed a set of laboratories and hands on activities to accompany a new two-semester interdisciplinary physics course that has been successfully implemented as the required physics course for premeds at the University of Maryland. The laboratories include significant content on physics relevant to cellular scales, from chemical interactions to random motion and charge screening in fluids. We also introduce the students to research-grade equipment and modern physics analysis tools in contexts relevant to biology, while maintaining the pedagogically valuable open-ended laboratory structure of reformed laboratories.

  8. Modernisation of the intermediate physics laboratory

    NASA Astrophysics Data System (ADS)

    Kontro, Inkeri; Heino, Olga; Hendolin, Ilkka; Galambosi, Szabolcs

    2018-03-01

    The intermediate laboratory courses at the Department of Physics, University of Helsinki, were reformed using desired learning outcomes as the basis for design. The reformed laboratory courses consist of weekly workshops and small-group laboratory sessions. Many of the laboratory exercises are open-ended and have several possible ways of execution. They were designed around affordable devices, to allow for the purchase of multiple sets of laboratory equipment. This allowed students to work on the same problems simultaneously. Thus, it was possible to set learning goals which build on each other. Workshop sessions supported the course by letting the students solve problems related to conceptual and technical aspects of each laboratory exercise. The laboratory exercises progressed biweekly to allow for iterative problem solving. Students reached the learning goals well and the reform improved student experiences. Neither positive or negative changes in expert-like attitudes towards experimental physics (measured by E-CLASS questionnaire) were observed.

  9. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  10. Student Teachers' Attitudes about Basic Physics Laboratory

    ERIC Educational Resources Information Center

    Yesilyurt, Mustafa

    2004-01-01

    In this study an attitude questionnaire was developed and applied to identify student teachers' interests and attitudes for basic physics laboratory. In physics laboratory practices run by a higher education institution a new attitude questionnaire was developed and applied twice in two terms by researchers to increase student teachers' success…

  11. Institute of Geophyics and Planetary Physics. Annual report for FY 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryerson, F.J.

    1995-09-29

    The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and in related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, Riverside, and Irvine and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography andmore » space physics, which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the six branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in seismology, geochemistry, cosmochemistry, high-pressure sciences, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and is structured around three research centers. The Center for Geosciences, headed by George Zandt and Frederick Ryerson, focuses on research in geophysics and geochemistry. The Center for High-Pressure Sciences, headed by William Nellis, sponsors research on the properties of planetary materials and on the synthesis and preparation of new materials using high-pressure processing.« less

  12. Introduction of optical tweezers in advanced physics laboratory

    NASA Astrophysics Data System (ADS)

    Wang, Gang

    2017-08-01

    Laboratories are an essential part of undergraduate optoelectronics and photonics education. Of particular interest are the sequence of laboratories which offer students meaningful research experience within a reasonable time-frame limited by regular laboratory hours. We will present our introduction of optical tweezers into the upper-level physics laboratory. We developed the sequence of experiments in the Advanced Lab to offer students sufficient freedom to explore, rather than simply setting up a demonstration following certain recipes. We will also present its impact on our current curriculum of optoelectronics concentration within the physics program.

  13. Laboratory for Extraterrestrial Physics

    NASA Technical Reports Server (NTRS)

    Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    The NASA Goddard Space Flight Center (GSFC) Laboratory for Extraterrestrial Physics (LEP) performs experimental and theoretical research on the heliosphere, the interstellar medium, and the magnetospheres and upper atmospheres of the planets, including Earth. LEP space scientists investigate the structure and dynamics of the magnetospheres of the planets including Earth. Their research programs encompass the magnetic fields intrinsic to many planetary bodies as well as their charged-particle environments and plasma-wave emissions. The LEP also conducts research into the nature of planetary ionospheres and their coupling to both the upper atmospheres and their magnetospheres. Finally, the LEP carries out a broad-based research program in heliospheric physics covering the origins of the solar wind, its propagation outward through the solar system all the way to its termination where it encounters the local interstellar medium. Special emphasis is placed on the study of solar coronal mass ejections (CME's), shock waves, and the structure and properties of the fast and slow solar wind. LEP planetary scientists study the chemistry and physics of planetary stratospheres and tropospheres and of solar system bodies including meteorites, asteroids, comets, and planets. The LEP conducts a focused program in astronomy, particularly in the infrared and in short as well as very long radio wavelengths. We also perform an extensive program of laboratory research, including spectroscopy and physical chemistry related to astronomical objects. The Laboratory proposes, develops, fabricates, and integrates experiments on Earth-orbiting, planetary, and heliospheric spacecraft to measure the characteristics of planetary atmospheres and magnetic fields, and electromagnetic fields and plasmas in space. We design and develop spectrometric instrumentation for continuum and spectral line observations in the x-ray, gamma-ray, infrared, and radio regimes; these are flown on spacecraft to study

  14. Oral anatomy laboratory examinations in a physical therapy program.

    PubMed

    Fabrizio, Philip A

    2013-01-01

    The process of creating and administering traditional tagged anatomy laboratory examinations is time consuming for instructors and limits laboratory access for students. Depending on class size and the number of class, sections, creating, administering, and breaking down a tagged laboratory examination may involve one to two eight-hour days. During the time that a tagged examination is being created, student productivity may be reduced as the anatomy laboratory is inaccessible to students. Further, the type of questions that can be asked in a tagged laboratory examination may limit student assessment to lower level cognitive abilities and may limit the instructors' ability to assess the students' understanding of anatomical and clinical concepts. Anatomy is a foundational science in the Physical Therapy curriculum and a thorough understanding of anatomy is necessary to progress through the subsequent clinical courses. Physical therapy curricula have evolved to reflect the changing role of physical therapists to primary caregivers by introducing a greater scope of clinical courses earlier in the curriculum. Physical therapy students must have a thorough understanding of clinical anatomy early in the education process. However, traditional anatomy examination methods may not be reflective of the clinical thought processes required of physical therapy students. Traditional laboratory examination methods also reduce student productivity by limiting access during examination set-up and breakdown. To provide a greater complexity of questions and reduced overall laboratory time required for examinations, the Physical Therapy Program at Mercer University has introduced oral laboratory examinations for the gross anatomy course series. © 2012 American Association of Anatomists.

  15. VIEW OF STEEL PLATE DOOR IN NUCLEAR PHYSICS LABORATORY, BETWEEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF STEEL PLATE DOOR IN NUCLEAR PHYSICS LABORATORY, BETWEEN LABORATORY AND SP-SE REACTOR ROOM,LEVEL -15’, LOOKING NORTHWEST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  16. Physics Laboratory Project Book, 1979-80.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Bureau of Vocational-Technical Schools.

    This Physics Laboratory Project Book, assembled through a survey of science instructors in vocational-technical schools in Connecticut, is an extension of the Chemistry-Materials Laboratory Project Book (see note) and is intended to meet a variety of needs. It can serve as an idea book, with the instructor taking from it as needed and adding or…

  17. OVERVIEW OF NUCLEAR PHYSICS LABORATORY (IMMEDIATELY EAST OF SPSE REACTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF NUCLEAR PHYSICS LABORATORY (IMMEDIATELY EAST OF SP-SE REACTOR ROOM), LEVEL -15’, LOOKING SOUTHWEST. NOTE SLIDING STEEL PLATE DOOR BETWEEN LABORATORY AND REACTOR ROOM - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  18. Simulation of General Physics laboratory exercise

    NASA Astrophysics Data System (ADS)

    Aceituno, P.; Hernández-Aceituno, J.; Hernández-Cabrera, A.

    2015-01-01

    Laboratory exercises are an important part of general Physics teaching, both during the last years of high school and the first year of college education. Due to the need to acquire enough laboratory equipment for all the students, and the widespread access to computers rooms in teaching, we propose the development of computer simulated laboratory exercises. A representative exercise in general Physics is the calculation of the gravity acceleration value, through the free fall motion of a metal ball. Using a model of the real exercise, we have developed an interactive system which allows students to alter the starting height of the ball to obtain different fall times. The simulation was programmed in ActionScript 3, so that it can be freely executed in any operative system; to ensure the accuracy of the calculations, all the input parameters of the simulations were modelled using digital measurement units, and to allow a statistical management of the resulting data, measurement errors are simulated through limited randomization.

  19. ALPhA Laboratory Immersion in Plasma Physics

    NASA Astrophysics Data System (ADS)

    Dominguez, A.; Zwicker, A.; Williams, J. D.

    2016-10-01

    According to the FESAC, as recently as 2014 there were a total of just 14 universities offering strong curricula in MFE sciences. Similarly, it was reported that 8 and 19 universities offer strong HEDPL and Discovery Plasma programs respectively. At the undergraduate level, there is also a lack of plasma physics in the curricula. This, regardless of its rich insights into the core subfields of physics, i.e., classical mechanics, electrodynamics, statistical mechanics and quantum phenomena. The coauthors have been leading a plasma physics workshop for the last 3 years directed at undergraduate physics professors and lecturers. The workshop is centered around a versatile and relatively inexpensive (< 10 k) plasma discharge experiment which lets students explore Panchen's Law, spectroscopy and Langmuir probes. The workshop is part of the Advanced Laboratory Physics Association (ALPhA) Laboratory Immersions, and its objective is for the participants to become familiar with the experiments and incorporate them into their home institution's curricula as junior labs, senior labs or independent student projects.

  20. Guided Anarchy in an Introductory Physics Laboratory

    ERIC Educational Resources Information Center

    Heller, Kenneth

    1973-01-01

    Describes a physics laboratory course which operates without written instructions and with no required experiments. Course is based upon one- or two-week topics in mechanics, heat, electromagnetism and optics with a student-designed experiment in modern physics as an extended project. (DF)

  1. Conceptualization, Development and Validation of an Instrument for Investigating Elements of Undergraduate Physics Laboratory Learning Environments: The UPLLES (Undergraduate Physics Laboratory Learning Environment Survey)

    ERIC Educational Resources Information Center

    Thomas, Gregory P; Meldrum, Al; Beamish, John

    2013-01-01

    First-year undergraduate physics laboratories are important physics learning environments. However, there is a lack of empirically informed literature regarding how students perceive their overall laboratory learning experiences. Recipe formats persist as the dominant form of instructional design in these sites, and these formats do not adequately…

  2. ARCHITECTURAL, 777M, PHYSICS ASSEMBLY LABORATORY BUILDING, EQUIPMENT ARRANGEMENT – SECTIONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARCHITECTURAL, 777-M, PHYSICS ASSEMBLY LABORATORY BUILDING, EQUIPMENT ARRANGEMENT – SECTIONS “B” AND “C” (W157132) - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  3. Analysis of graphical representation among freshmen in undergraduate physics laboratory

    NASA Astrophysics Data System (ADS)

    Adam, A. S.; Anggrayni, S.; Kholiq, A.; Putri, N. P.; Suprapto, N.

    2018-03-01

    Physics concept understanding is the importance of the physics laboratory among freshmen in the undergraduate program. These include the ability to interpret the meaning of the graph to make an appropriate conclusion. This particular study analyses the graphical representation among freshmen in an undergraduate physics laboratory. This study uses empirical study with quantitative approach. The graphical representation covers 3 physics topics: velocity of sound, simple pendulum and spring system. The result of this study shows most of the freshmen (90% of the sample) make a graph based on the data from physics laboratory. It means the transferring process of raw data which illustrated in the table to physics graph can be categorised. Most of the Freshmen use the proportional principle of the variable in graph analysis. However, Freshmen can't make the graph in an appropriate variable to gain more information and can't analyse the graph to obtain the useful information from the slope.

  4. Development and implications of technology in reform-based physics laboratories

    NASA Astrophysics Data System (ADS)

    Chen, Sufen; Lo, Hao-Chang; Lin, Jing-Wen; Liang, Jyh-Chong; Chang, Hsin-Yi; Hwang, Fu-Kwun; Chiou, Guo-Li; Wu, Ying-Tien; Lee, Silvia Wen-Yu; Wu, Hsin-Kai; Wang, Chia-Yu; Tsai, Chin-Chung

    2012-12-01

    Technology has been widely involved in science research. Researchers are now applying it to science education in an attempt to bring students’ science activities closer to authentic science activities. The present study synthesizes the research to discuss the development of technology-enhanced laboratories and how technology may contribute to fulfilling the instructional objectives of laboratories in physics. To be more specific, this paper discusses the engagement of technology to innovate physics laboratories and the potential of technology to promote inquiry, instructor and peer interaction, and learning outcomes. We then construct a framework for teachers, scientists, and programmers to guide and evaluate technology-integrated laboratories. The framework includes inquiry learning and openness supported by technology, ways of conducting laboratories, and the diverse learning objectives on which a technology-integrated laboratory may be focused.

  5. Non-physics peer demonstrators in undergraduate laboratories: a study of students’ perceptions

    NASA Astrophysics Data System (ADS)

    Braun, Michael; Kirkup, Les

    2016-01-01

    Laboratory demonstrators play a crucial role in facilitating students’ learning in physics subjects. Inspired by the success of peer-led activities, we introduced peer demonstrators to support student learning in first-year physics subjects that enrol students not intending to major in physics. Surveys were administered to 1700 students over 4 years in four subjects to examine student perceptions of how demonstrators assisted them in the laboratory. Scores awarded to peer demonstrators by students were no lower than those awarded to demonstrators traditionally employed in the first year physics laboratory. These latter demonstrators were drawn mainly from the ranks of physics research students. The findings validate the recruitment of peer demonstrators and will be used to inform the recruitment and support programmes for laboratory demonstrators.

  6. Alfred P. Gage and the Introductory Physics Laboratory

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2016-01-01

    This article is about a late 19th-century teacher of secondary school physics. I was originally interested in the apparatus that he sold. This led me to the physics books that he wrote, and these took me to his unusual ideas about ways to use laboratory time to introduce students to the phenomena of physics. More than 100 years later educational…

  7. Physical Science Laboratory Manual, Experimental Version.

    ERIC Educational Resources Information Center

    Cooperative General Science Project, Atlanta, GA.

    Provided are physical science laboratory experiments which have been developed and used as a part of an experimental one year undergraduate course in general science for non-science majors. The experiments cover a limited number of topics representative of the scientific enterprise. Some of the topics are pressure and buoyancy, heat, motion,…

  8. The Correlated Lecture Laboratory Series in Diagnostic Radiological Physics.

    ERIC Educational Resources Information Center

    Lamel, David A.; And Others

    This series in diagnostic radiological physics has been designed to provide the physics background requisite for the proper conduct of medical diagnostic x-ray examinations. The basic goal of the series is to bridge physics theory and radiological practice, achieved by combining pertinent lecture material with laboratory exercises that illustrate…

  9. Applied Physics Laboratory, An Experimental Program for Aerospace Education, 12th Year.

    ERIC Educational Resources Information Center

    Abramson, David A.

    This physics laboratory manual is the result of curriculum development begun at Aviation High School (New York City) in 1967. It represents a semester of advanced laboratory work for those students who have completed the usual course in physics. The 91 laboratory experiments included in the manual have been developed and modified through use for…

  10. Introduction of Special Physics Topics (Geophysics) Through the Use of Physics Laboratory Projects

    ERIC Educational Resources Information Center

    Parker, R. H.; Whittles, A. B. L.

    1970-01-01

    Describes the objectives and content of a physics laboratory program for freshman students at the British Columbia Institute of Technology. The first part of the program consists of basic physics experiments, while the second part emphasizes student work on projects in geophysics that have direct technical applications. (LC)

  11. Alfred P. Gage and the Introductory Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2016-03-01

    This article is about a late 19th-century teacher of secondary school physics. I was originally interested in the apparatus that he sold. This led me to the physics books that he wrote, and these took me to his unusual ideas about ways to use laboratory time to introduce students to the phenomena of physics. More than 100 years later educational ideas have now come full circle, and it is time to bring Gage and his texts and ideas to 21st-century physics teachers.

  12. A computer-based physics laboratory apparatus: Signal generator software

    NASA Astrophysics Data System (ADS)

    Thanakittiviroon, Tharest; Liangrocapart, Sompong

    2005-09-01

    This paper describes a computer-based physics laboratory apparatus to replace expensive instruments such as high-precision signal generators. This apparatus uses a sound card in a common personal computer to give sinusoidal signals with an accurate frequency that can be programmed to give different frequency signals repeatedly. An experiment on standing waves on an oscillating string uses this apparatus. In conjunction with interactive lab manuals, which have been developed using personal computers in our university, we achieve a complete set of low-cost, accurate, and easy-to-use equipment for teaching a physics laboratory.

  13. An Analysis of Laboratory Activities in Two Modern Science Curricula: Project Physics and PSSC.

    ERIC Educational Resources Information Center

    Lunetta, Vincent N.; Tamir, Pinchas

    In evaluating whether the laboratory guides for Project Physics and for PSSC are consistent with the goals of their designers in demonstrating the interplay between experiment and theory in the development of physics, a system was developed for analyzing physics laboratory investigations, and the laboratory activities in the "PSSC Physics…

  14. An Exploratory Study of Objective Attainment in the Divergent Physics Laboratory.

    ERIC Educational Resources Information Center

    Lerch, Robert Donald

    Students enrolled in the introductory physics laboratory at New Mexico State University participated in this study. A stated set of objectives, developed by Dr. John M. Fowler of the Commission on College Physics, was used in the laboratory. This study attempted to measure student achievement based on the use of these objectives as opposed to the…

  15. Introducing Physical Geography: A Laboratory Sourcebook for Community Colleges.

    ERIC Educational Resources Information Center

    California Univ., Los Angeles. Office of Academic Interinstitutional Programs.

    This sourcebook contains a collection of laboratory exercises assembled for use in introductory physical geography classes taught at community colleges. Introductory sections address the origins of the sourcebook, the ways it differs from traditional laboratory manuals, and its form and anticipated use. Next, a list of terms or concepts,…

  16. Eagleworks Laboratories: Advanced Propulsion Physics Research

    NASA Technical Reports Server (NTRS)

    White, Harold; March, Paul; Williams, Nehemiah; ONeill, William

    2011-01-01

    NASA/JSC is implementing an advanced propulsion physics laboratory, informally known as "Eagleworks", to pursue propulsion technologies necessary to enable human exploration of the solar system over the next 50 years, and enabling interstellar spaceflight by the end of the century. This work directly supports the "Breakthrough Propulsion" objectives detailed in the NASA OCT TA02 In-space Propulsion Roadmap, and aligns with the #10 Top Technical Challenge identified in the report. Since the work being pursued by this laboratory is applied scientific research in the areas of the quantum vacuum, gravitation, nature of space-time, and other fundamental physical phenomenon, high fidelity testing facilities are needed. The lab will first implement a low-thrust torsion pendulum (<1 uN), and commission the facility with an existing Quantum Vacuum Plasma Thruster. To date, the QVPT line of research has produced data suggesting very high specific impulse coupled with high specific force. If the physics and engineering models can be explored and understood in the lab to allow scaling to power levels pertinent for human spaceflight, 400kW SEP human missions to Mars may become a possibility, and at power levels of 2MW, 1-year transit to Neptune may also be possible. Additionally, the lab is implementing a warp field interferometer that will be able to measure spacetime disturbances down to 150nm. Recent work published by White [1] [2] [3] suggests that it may be possible to engineer spacetime creating conditions similar to what drives the expansion of the cosmos. Although the expected magnitude of the effect would be tiny, it may be a "Chicago pile" moment for this area of physics.

  17. Impact Crater Experiments for Introductory Physics and Astronomy Laboratories

    ERIC Educational Resources Information Center

    Claycomb, J. R.

    2009-01-01

    Activity-based collisional analysis is developed for introductory physics and astronomy laboratory experiments. Crushable floral foam is used to investigate the physics of projectiles undergoing completely inelastic collisions with a low-density solid forming impact craters. Simple drop experiments enable determination of the average acceleration,…

  18. Physics in Oxford, 1839-1939 - Laboratories, Learning, and College Life

    NASA Astrophysics Data System (ADS)

    Fox, Robert; Gooday, Graeme

    2005-08-01

    Physics in Oxford 1839-1939 offers a challenging new interpretation of pre-war physics at the University of Oxford, which was far more dynamic than most historians and physicists have been prepared to believe. It explains, on the one hand, how attempts to develop the University's Clarendon Laboratory by Robert Clifton, Professor of Experimental Philosophy from 1865 to 1915, were thwarted by academic politics and funding problems, and latterly by Clifton's idiosyncratic concern with precision instrumentation. Conversely, by examining in detail the work of college fellows and their laboratories, the book reconstructs the decentralized environment that allowed physics to enter on a period of conspicuous vigor in the late nineteenth and early twentieth centuries, especially at the characteristically Oxonian intersections between physics, physical chemistry, mechanics, and mathematics. Whereas histories of Cambridge physics have tended to focus on the self-sustaining culture of the Cavendish Laboratory, it was Oxford's college-trained physicists who enabled the discipline to flourish in due course in university as well as college facilities, notably under the newly appointed professors, J. S. E. Townsend from 1900 and F. A. Lindemann from 1919. This broader perspective allows us to understand better the vitality with which physicists in Oxford responded to the demands of wartime research on radar and techniques relevant to atomic weapons and laid the foundations for the dramatic post-war expansion in teaching and research that has endowed Oxford with one of the largest and most dynamic schools of physics in the world.

  19. A multivariate assessment of the effect of the laboratory homework component of a microcomputer-based laboratory for a college freshman physics course

    NASA Astrophysics Data System (ADS)

    Ramlo, Susan E.

    Microcomputer-based laboratories (MBLs) have been defined as software that uses an electronic probe to collect information about a physical system and then converts that information into graphical systems in real-time. Realtime Physics Laboratories (RTP) are an example of laboratories that combine the use of MBLs with collaboration and guided-inquiry. RTP Mechanics Laboratories include both laboratory activities and laboratory homework for the first semester of college freshman physics courses. Prior research has investigated the effectiveness of the RTP laboratories as a package (laboratory activities with laboratory homework). In this study, an experimental-treatment had students complete both the RTP laboratory activity and the associated laboratory homework during the same laboratory period. Observations of this treatment indicated that students primarily consulted the laboratory instructor and referred to their completed laboratory activity while completing the homework in their collaborative groups. In the control-treatment, students completed the laboratory homework outside the laboratory period. Measures of force and motion conceptual understanding included the Force and Motion Conceptual Understanding (FMCE), a 47 multiple-choice question test. Analyses of the FMCE indicated that it is both a reliable and a valid measure of force and motion conceptual understanding. A distinct, five-factor structure for the FMCE post-test answers reflected specific concepts related to force and motion. However, the three FMCE pretest factors were less distinct. Analysis of the experimental-treatment, compared to a control-treatment, included multiple regression analysis with covariates of age, prior physics-classroom experience, and the three FMCE pretest factors. Criterion variables included each of the five post-test factors, the total laboratory homework score, and a group of seven exam questions. The results were all positive, in favor of the experimental

  20. Simple Exploration Apparatus for the Introductory Physics Laboratory

    ERIC Educational Resources Information Center

    Campbell, Thomas C.

    1977-01-01

    Discusses the laboratory portion of a beginning noncalculus physics course that uses concrete examples of abstract concepts. Describes the use of coffee cans to explain oscillations and plastic darts to illustrate collisions. (MLH)

  1. Physical and virtual laboratories in science and engineering education.

    PubMed

    de Jong, Ton; Linn, Marcia C; Zacharia, Zacharias C

    2013-04-19

    The world needs young people who are skillful in and enthusiastic about science and who view science as their future career field. Ensuring that we will have such young people requires initiatives that engage students in interesting and motivating science experiences. Today, students can investigate scientific phenomena using the tools, data collection techniques, models, and theories of science in physical laboratories that support interactions with the material world or in virtual laboratories that take advantage of simulations. Here, we review a selection of the literature to contrast the value of physical and virtual investigations and to offer recommendations for combining the two to strengthen science learning.

  2. Physics Thematic Paths: Laboratorial Activities and Historical Scientific Instruments

    ERIC Educational Resources Information Center

    Pantano, O.; Talas, S.

    2010-01-01

    The Physics Department of Padua University keeps an important collection of historical physics instruments which alludes to the fruitful scientific activity of Padua through the centuries. This heritage led to the suggestion of setting up laboratory activities connected to the Museum collection for secondary school students. This article shows how…

  3. Concepts in Physical Education with Laboratories and Experiments. Second Edition.

    ERIC Educational Resources Information Center

    Corbin, Charles B.; And Others

    This text is designed for student use in introductory course of physical education at the college level and deals with the specific areas of physical activity, exercise, health, physical fitness, skill learning, and body mechanics. Twenty concepts and thirty accompanying laboratory exercises suitable for both men and women are presented. Two…

  4. A Virtual Rock Physics Laboratory Through Visualized and Interactive Experiments

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Di Bonito, C.; Clark, A. C.

    2014-12-01

    As new scientific challenges demand more comprehensive and multidisciplinary investigations, laboratory experiments are not expected to become simpler and/or faster. Experimental investigation is an indispensable element of scientific inquiry and must play a central role in the way current and future generations of scientist make decisions. To turn the complexity of laboratory work (and that of rocks!) into dexterity, engagement, and expanded learning opportunities, we are building an interactive, virtual laboratory reproducing in form and function the Stanford Rock Physics Laboratory, at Stanford University. The objective is to combine lectures on laboratory techniques and an online repository of visualized experiments consisting of interactive, 3-D renderings of equipment used to measure properties central to the study of rock physics (e.g., how to saturate rocks, how to measure porosity, permeability, and elastic wave velocity). We use a game creation system together with 3-D computer graphics, and a narrative voice to guide the user through the different phases of the experimental protocol. The main advantage gained in employing computer graphics over video footage is that students can virtually open the instrument, single out its components, and assemble it. Most importantly, it helps describe the processes occurring within the rock. These latter cannot be tracked while simply recording the physical experiment, but computer animation can efficiently illustrate what happens inside rock samples (e.g., describing acoustic waves, and/or fluid flow through a porous rock under pressure within an opaque core-holder - Figure 1). The repository of visualized experiments will complement lectures on laboratory techniques and constitute an on-line course offered through the EdX platform at Stanford. This will provide a virtual laboratory for anyone, anywhere to facilitate teaching/learning of introductory laboratory classes in Geophysics and expand the number of courses

  5. The Effect of Jigsaw Technique on the Students' Laboratory Material Recognition and Usage Skills in General Physics Laboratory-I Course

    ERIC Educational Resources Information Center

    Aydin, Abdullah; Biyikli, Filiz

    2017-01-01

    This research aims to compare the effects of Jigsaw technique from the cooperative learning methods and traditional learning method on laboratory material recognition and usage skills of students in General Physics Lab-I Course. This study was conducted with 63 students who took general physics laboratory-I course in the department of science…

  6. Digital lock-in amplifier based on soundcard interface for physics laboratory

    NASA Astrophysics Data System (ADS)

    Sinlapanuntakul, J.; Kijamnajsuk, P.; Jetjamnong, C.; Chotikaprakhan, S.

    2017-09-01

    The purpose of this paper is to develop a digital lock-in amplifier based on soundcard interface for undergraduate physics laboratory. Both series and parallel RLC circuit laboratory are tested because of its well-known, easy to understand and simple confirm. The sinusoidal signal at the frequency of 10 Hz - 15 kHz is generated to the circuits. The amplitude and phase of the voltage drop across the resistor, R are measured in 10 step decade. The signals from soundcard interface and lock-in amplifier are compared. The results give a good correlation. It indicates that the design digital lock-in amplifier is promising for undergraduate physic laboratory.

  7. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark

    2011-06-01

    Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

  8. ARCHITECTURAL, 777M, PHYSICS ASSEMBLY LABORATORY BUILDING, PLAN OF +13’1” AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARCHITECTURAL, 777-M, PHYSICS ASSEMBLY LABORATORY BUILDING, PLAN OF +13’-1” AND +27’-0” FLOOR LEVELS (W157114) - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  9. Strategies for combining physics videos and virtual laboratories in the training of physics teachers

    NASA Astrophysics Data System (ADS)

    Dickman, Adriana; Vertchenko, Lev; Martins, Maria Inés

    2007-03-01

    Among the multimedia resources used in physics education, the most prominent are virtual laboratories and videos. On one hand, computer simulations and applets have very attractive graphic interfaces, showing an incredible amount of detail and movement. On the other hand, videos, offer the possibility of displaying high quality images, and are becoming more feasible with the increasing availability of digital resources. We believe it is important to discuss, throughout the teacher training program, both the functionality of information and communication technology (ICT) in physics education and, the varied applications of these resources. In our work we suggest the introduction of ICT resources in a sequence integrating these important tools in the teacher training program, as opposed to the traditional approach, in which virtual laboratories and videos are introduced separately. In this perspective, when we introduce and utilize virtual laboratory techniques we also provide for its use in videos, taking advantage of graphic interfaces. Thus the students in our program learn to use instructional software in the production of videos for classroom use.

  10. Physics thematic paths: laboratorial activities and historical scientific instruments

    NASA Astrophysics Data System (ADS)

    Pantano, O.; Talas, S.

    2010-03-01

    The Physics Department of Padua University keeps an important collection of historical physics instruments which alludes to the fruitful scientific activity of Padua through the centuries. This heritage led to the suggestion of setting up laboratory activities connected to the Museum collection for secondary school students. This article shows how different thematic paths have been developed, reflecting on the importance of historical perspectives in science teaching. We also show how a scientific historical museum can play a central role in improving the learning of physics concepts.

  11. Conceptual design of new metrology laboratories for the National Physical Laboratory, United Kingdom

    NASA Astrophysics Data System (ADS)

    Manning, Christopher J.

    1994-10-01

    The National Physical Laboratory is planning to house the Division of Mechanical and Optical Metrology and the Division of Material Metrology in a new purpose built laboratory building on its site at Teddington, London, England. The scientific staff were involved in identifying and agreeing the vibration performance requirements of the conceptual design. This was complemented by an extensive surgery of vibration levels within the existing facilities and ambient vibration studies at the proposed site. At one end of the site there is significant vibration input from road traffic. Some of the test equipment is also in itself a source of vibration input. These factors, together with normal occupancy inputs, footfalls and door slams, and a highly serviced building led to vibration being dominant in influencing the structural form. The resulting structural concept comprises three separate structural elements for vibration and geotechnical reasons. The laboratories most sensitive to disturbance by vibration are located at the end of the site farthest from local roads on a massive ground bearing slab. Less sensitive laboratories and those containing vibration sources are located on a massive slab in deep, piled foundations. A common central plant area is located alongside on its own massive slab. Medium sensitivity laboratories and offices are located at first floor level on a reinforced concrete suspended floor of maximum stiffness per unit mass. The whole design has been such as to permit upgrading of areas, eg office to laboratory; laboratory to `high sensitivity' laboratory, to cater for changes in future use of the building.

  12. Life Science-Related Physics Laboratory on Geometrical Optics

    ERIC Educational Resources Information Center

    Edwards, T. H.; And Others

    1975-01-01

    Describes a laboratory experiment on geometrical optics designed for life science majors in a noncalculus introductory physics course. The thin lens equation is used by the students to calculate the focal length of the lens necessary to correct a myopic condition in an optical bench simulation of a human eye. (Author/MLH)

  13. Accelerator-based techniques for the support of senior-level undergraduate physics laboratories

    NASA Astrophysics Data System (ADS)

    Williams, J. R.; Clark, J. C.; Isaacs-Smith, T.

    2001-07-01

    Approximately three years ago, Auburn University replaced its aging Dynamitron accelerator with a new 2MV tandem machine (Pelletron) manufactured by the National Electrostatics Corporation (NEC). This new machine is maintained and operated for the University by Physics Department personnel, and the accelerator supports a wide variety of materials modification/analysis studies. Computer software is available that allows the NEC Pelletron to be operated from a remote location, and an Internet link has been established between the Accelerator Laboratory and the Upper-Level Undergraduate Teaching Laboratory in the Physics Department. Additional software supplied by Canberra Industries has also been used to create a second Internet link that allows live-time data acquisition in the Teaching Laboratory. Our senior-level undergraduates and first-year graduate students perform a number of experiments related to radiation detection and measurement as well as several standard accelerator-based experiments that have been added recently. These laboratory exercises will be described, and the procedures used to establish the Internet links between our Teaching Laboratory and the Accelerator Laboratory will be discussed.

  14. Atmospheric cloud physics laboratory project study

    NASA Technical Reports Server (NTRS)

    Schultz, W. E.; Stephen, L. A.; Usher, L. H.

    1976-01-01

    Engineering studies were performed for the Zero-G Cloud Physics Experiment liquid cooling and air pressure control systems. A total of four concepts for the liquid cooling system was evaluated, two of which were found to closely approach the systems requirements. Thermal insulation requirements, system hardware, and control sensor locations were established. The reservoir sizes and initial temperatures were defined as well as system power requirements. In the study of the pressure control system, fluid analyses by the Atmospheric Cloud Physics Laboratory were performed to determine flow characteristics of various orifice sizes, vacuum pump adequacy, and control systems performance. System parameters predicted in these analyses as a function of time include the following for various orifice sizes: (1) chamber and vacuum pump mass flow rates, (2) the number of valve openings or closures, (3) the maximum cloud chamber pressure deviation from the allowable, and (4) cloud chamber and accumulator pressure.

  15. Assessing the Use of Smartphone in the University General Physics Laboratory

    ERIC Educational Resources Information Center

    Shi, Wei-Zhao; Sun, Jiajun; Xu, Chong; Huan, Weiliang

    2016-01-01

    In this study, smartphone was used to alter the traditional procedure by involving students in active learning experiences prior to the laboratory meeting. The researcher surveyed students' view on the effect of using smartphone to enhance learning in the general physics laboratory. The use of smartphone was evaluated by having 120 students who…

  16. The performance assessment of undergraduate students in physics laboratory by using guided inquiry

    NASA Astrophysics Data System (ADS)

    Mubarok, H.; Lutfiyah, A.; Kholiq, A.; Suprapto, N.; Putri, N. P.

    2018-03-01

    The performance assessment of basic physics experiment among undergraduate physics students which includes three stages: pre-laboratory, conducting experiment and final report was explored in this study. The research used a descriptive quantitative approach by utilizing guidebook of basic physics experiment. The findings showed that (1) the performance of pre-laboratory rate among undergraduate physics students in good category (average score = 77.55), which includes the ability of undergraduate physics students’ theory before they were doing the experiment. (2) The performance of conducting experiment was in good category (average score = 78.33). (3) While the performance of final report was in moderate category (average score = 73.73), with the biggest weakness at how to analyse and to discuss the data and writing the abstract.

  17. Laboratory studies in ultraviolet solar physics

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Kohl, J. L.; Gardner, L. D.; Raymond, J. C.; Smith, P. L.

    1991-01-01

    The research activity comprised the measurement of basic atomic processes and parameters which relate directly to the interpretation of solar ultraviolet observations and to the development of comprehensive models of the component structures of the solar atmosphere. The research was specifically directed towards providing the relevant atomic data needed to perform and to improve solar diagnostic techniques which probe active and quiet portions of the solar chromosphere, the transition zone, the inner corona, and the solar wind acceleration regions of the extended corona. The accuracy with which the physical conditions in these structures can be determined depends directly on the accuracy and completeness of the atomic and molecular data. These laboratory data are used to support the analysis programs of past and current solar observations (e.g., the Orbiting solar Observatories, the Solar Maximum Mission, the Skylab Apollo Telescope Mount, and the Naval Research Laboratory's rocket-borne High Resolution Telescope and Spectrograph). In addition, we attempted to anticipate the needs of future space-borne solar studies such as from the joint ESA/NASA Solar and Heliospheric Observatory (SOHO) spacecraft. Our laboratory activities stressed two categories of study: (1) the measurement of absolute rate coefficients for dielectronic recombination and electron impact excitation; and (2) the measurement of atomic transition probabilities for solar density diagnostics. A brief summary of the research activity is provided.

  18. Practitioners' Ideas on Laboratory Skills Competencies Needed for Physical Science Teachers

    ERIC Educational Resources Information Center

    James, Robert K.; Schaaf, Joel

    1975-01-01

    In order to determine the competencies needed for teaching secondary physical science a survey of a sample of physical science teachers in Kansas secondary schools was conducted. The major competencies reported could be classified under the following general headings: equipment purchase and operation, maintenance of laboratory safety, and…

  19. Feasibility study of a zero-gravity (orbital) atmospheric cloud physics experiments laboratory

    NASA Technical Reports Server (NTRS)

    Hollinden, A. B.; Eaton, L. R.

    1972-01-01

    A feasibility and concepts study for a zero-gravity (orbital) atmospheric cloud physics experiment laboratory is discussed. The primary objective was to define a set of cloud physics experiments which will benefit from the near zero-gravity environment of an orbiting spacecraft, identify merits of this environment relative to those of groundbased laboratory facilities, and identify conceptual approaches for the accomplishment of the experiments in an orbiting spacecraft. Solicitation, classification and review of cloud physics experiments for which the advantages of a near zero-gravity environment are evident are described. Identification of experiments for potential early flight opportunities is provided. Several significant accomplishments achieved during the course of this study are presented.

  20. Laboratory for Nuclear Science. High Energy Physics Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milner, Richard

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group aremore » given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.« less

  1. SOP: physical examination and laboratory testing for men with erectile dysfunction.

    PubMed

    Ghanem, Hussein M; Salonia, Andrea; Martin-Morales, Antonio

    2013-01-01

    Physical examination and laboratory evaluation of men with erectile dysfunction (ED) are opportunities to identify potentially life-threatening etiologies and comorbid conditions. To review genital anatomy, identify any physical abnormalities, assess for comorbid conditions, and reveal significant risk factors for ED. Expert opinion was based on evidence-based medical literature and consensus discussions between members of this International Society for Sexual Medicine (ISSM) standards committee. For men with ED, a general examination including blood pressure and pulse measurements and a focused genital exam are advised. Fasting blood sugar, serum total testosterone, prolactin levels, and a lipid profile may reveal significant comorbid conditions. Though physical examination and laboratory evaluation of most men with ED may not reveal the exact diagnosis, these opportunities to identify critical comorbid conditions should not be missed. © 2012 International Society for Sexual Medicine.

  2. An Overview of the Computational Physics and Methods Group at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Randal Scott

    CCS Division was formed to strengthen the visibility and impact of computer science and computational physics research on strategic directions for the Laboratory. Both computer science and computational science are now central to scientific discovery and innovation. They have become indispensable tools for all other scientific missions at the Laboratory. CCS Division forms a bridge between external partners and Laboratory programs, bringing new ideas and technologies to bear on today’s important problems and attracting high-quality technical staff members to the Laboratory. The Computational Physics and Methods Group CCS-2 conducts methods research and develops scientific software aimed at the latest andmore » emerging HPC systems.« less

  3. Biological and Physical Space Research Laboratory 2002 Science Review

    NASA Technical Reports Server (NTRS)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  4. Students' Assessment of Interactive Distance Experimentation in Nuclear Reactor Physics Laboratory Education

    ERIC Educational Resources Information Center

    Malkawi, Salaheddin; Al-Araidah, Omar

    2013-01-01

    Laboratory experiments develop students' skills in dealing with laboratory instruments and physical processes with the objective of reinforcing the understanding of the investigated subject. In nuclear engineering, where research reactors play a vital role in the practical education of students, the high cost and long construction time of research…

  5. Terrella for Advanced Undergraduate Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Reardon, Jim; Endrizzi, Douglass; Forest, Cary; Oliva, Steven

    2017-10-01

    A terrella has been in use in the Advanced Laboratory for undergraduates in the Physics Department at the University of Wisconsin-Madison since spring 2016. Our terrella is a permanent magnet on a pedestal which may be biased in various ways. In the vacuum region B <= 200 gauss; for typical operation p10-4 Torr. Plasma may be created by thermionic emission from a filament or by an S-band magnetron. Students are guided through diagnosis of the terrella plasma using spectroscopy and swept Langmuir probes. A suite of supporting experiments has been developed to introduce basic plasma phenomena, such as the Child-Langmuir law. University of Wisconsin-Madison.

  6. Developing Technical Writing Skills in the Physical Chemistry Laboratory: A Progressive Approach Employing Peer Review

    ERIC Educational Resources Information Center

    Gragson, Derek E.; Hagen, John P.

    2010-01-01

    Writing formal "journal-style" lab reports is often one of the requirements chemistry and biochemistry students encounter in the physical chemistry laboratory. Helping students improve their technical writing skills is the primary reason this type of writing is a requirement in the physical chemistry laboratory. Developing these skills is an…

  7. Physical and Chemical Properties of the Copper-Alanine System: An Advanced Laboratory Project

    ERIC Educational Resources Information Center

    Farrell, John J.

    1977-01-01

    An integrated physical-analytical-inorganic chemistry laboratory procedure for use with undergraduate biology majors is described. The procedure requires five to six laboratory periods and includes acid-base standardizations, potentiometric determinations, computer usage, spectrophotometric determinations of crystal-field splitting…

  8. Asking the next generation: the implementation of pre-university students’ ideas about physics laboratory preparation exercises

    NASA Astrophysics Data System (ADS)

    Dunnett, K.; Bartlett, P. A.

    2018-01-01

    It was planned to introduce online pre-laboratory session activities to a first-year undergraduate physics laboratory course to encourage a minimum level of student preparation for experiments outside the laboratory environment. A group of 16 and 17 year old laboratory work-experience students were tasked to define and design a pre-laboratory activity based on experiments that they had been undertaking. This informed the structure, content and aims of the activities introduced to a first year physics undergraduate laboratory course, with the particular focus on practising the data handling. An implementation study showed how students could try to optimise high grades, rather than gain efficiency-enhancing experience if careful controls were not put in place by assessors. However, the work demonstrated that pre-university and first-year physics students can take an active role in developing scaffolding activities that can help to improve the performance of those that follow their footsteps.

  9. Neutron stars: A cosmic hadron physics laboratory

    NASA Technical Reports Server (NTRS)

    Pines, David

    1989-01-01

    A progress report is given on neutron stars as a cosmic hadron physics laboratory. Particular attention is paid to the crustal neutron superfluid, and to the information concerning its properties which may be deduced from observations of pulsar glitches and postglitch behavior. Current observational evidence concerning the softness or stiffness of the high density neutron matter equation of state is reviewed briefly, and the (revolutionary) implications of a confirmation of the existence of a 0.5 ms pulsar at the core of (Supernova) SN1987A are discussed.

  10. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate

    USGS Publications Warehouse

    Winters, W.J.; Pecher, I.A.; Waite, W.F.; Mason, D.H.

    2004-01-01

    This paper presents results of shear strength and acoustic velocity (p-wave) measurements performed on: (1) samples containing natural gas hydrate from the Mallik 2L-38 well, Mackenzie Delta, Northwest Territories; (2) reconstituted Ottawa sand samples containing methane gas hydrate formed in the laboratory; and (3) ice-bearing sands. These measurements show that hydrate increases shear strength and p-wave velocity in natural and reconstituted samples. The proportion of this increase depends on (1) the amount and distribution of hydrate present, (2) differences, in sediment properties, and (3) differences in test conditions. Stress-strain curves from the Mallik samples suggest that natural gas hydrate does not cement sediment grains. However, stress-strain curves from the Ottawa sand (containing laboratory-formed gas hydrate) do imply cementation is present. Acoustically, rock physics modeling shows that gas hydrate does not cement grains of natural Mackenzie Delta sediment. Natural gas hydrates are best modeled as part of the sediment frame. This finding is in contrast with direct observations and results of Ottawa sand containing laboratory-formed hydrate, which was found to cement grains (Waite et al. 2004). It therefore appears that the microscopic distribution of gas hydrates in sediment, and hence the effect of gas hydrate on sediment physical properties, differs between natural deposits and laboratory-formed samples. This difference may possibly be caused by the location of water molecules that are available to form hydrate. Models that use laboratory-derived properties to predict behavior of natural gas hydrate must account for these differences.

  11. Exploration of task performance tests in a physics laboratory

    NASA Astrophysics Data System (ADS)

    Liu, Dan; El Turkey, Houssein

    2017-11-01

    In this article, we investigate the implementation of task performance tests in an undergraduate physics laboratory. Two performance tests were carried out over two semesters using the task of building a DC circuit. The first implementation in Spring 2014 had certain concerns such as the privacy of students’ testing and their ‘trial and error’ attempts. These concerns were addressed in Fall 2015 through implementing a second performance test. The second implementation was administered differently but the content of the two tests was the same. We discuss the validity of both implementations and present the correlation (or lack of) between the time that students needed to complete the tests and their grades from a paper-based laboratory assessment method.

  12. Open-ended Laboratory Investigations in a High School Physics Course: The difficulties and rewards of implementing inquiry-based learning in a physics lab

    NASA Astrophysics Data System (ADS)

    Szott, Aaron

    2014-01-01

    often closed-ended. The outcomes are known in advance and students replicate procedures recommended by the teacher. Over the years, I have come to appreciate the great opportunities created by allowing students investigative freedom in physics laboratories. I have realized that a laboratory environment in which students are free to conduct investigations using procedures of their own design can provide them with varied and rich opportunities for discovery. This paper describes what open-ended laboratory investigations have added to my high school physics classes. I will provide several examples of open-ended laboratories and discuss the benefits they conferred on students and teacher alike.

  13. Zero-Gravity Atmospheric Cloud Physics Experiment Laboratory engineering concepts/design tradeoffs. Volume 1: Study results

    NASA Technical Reports Server (NTRS)

    Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.

    1974-01-01

    The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.

  14. [Reversed clinicopathological conference (R-CPC)--interpreting laboratory data in the same way as physical findings].

    PubMed

    Sugano, Mitsutoshi; Shimada, Masashi; Moriyoshi, Miho; Kitagawa, Kiyoki; Nakashima, Hiromi; Wada, Hideo; Yanagihara, Katsunori; Fujisawa, Shinya; Yonekawa, Osamu; Honda, Takayuki

    2012-05-01

    Routine laboratory data are discussed by time series analysis in reversed clinicopathological conferences (R-CPC) at Shinshu University School of Medicine. We can identify fine changes in the laboratory data and the importance of negative data (without any changes) using time series analysis. Routine laboratory tests can be performed repeatedly and relatively cheaply, and time series analysis can be performed. The examination process of routine laboratory data in the R-CPC is almost the same as the process of taking physical findings. Firstly, general findings are checked and then the state of each organ is examined. Although routine laboratory data are cheap, we can obtain much more information about a patient's state than from physical examinations. In this R-CPC, several specialists in the various fields of laboratory medicine discussed the routine laboratory data of a patient, and we tried to understand the detailed state of the patient. R-CPC is an educational method to examine laboratory data and we, reconfirmed the usefulness of R-CPC to elucidate the clinical state of the patient.

  15. 2D and 3D virtual interactive laboratories of physics on Unity platform

    NASA Astrophysics Data System (ADS)

    González, J. D.; Escobar, J. H.; Sánchez, H.; De la Hoz, J.; Beltrán, J. R.

    2017-12-01

    Using the cross-platform game engine Unity, we develop virtual laboratories for PC, consoles, mobile devices and website as an innovative tool to study physics. There is extensive uptake of ICT in the teaching of science and its impact on the learning, and considering the limited availability of laboratories for physics teaching and the difficulties this causes in the learning of school students, we design the virtual laboratories to enhance studentâĂŹs knowledge of concepts in physics. To achieve this goal, we use Unity due to provide support bump mapping, reflection mapping, parallax mapping, dynamics shadows using shadows maps, full-screen post-processing effects and render-to-texture. Unity can use the best variant for the current video hardware and, if none are compatible, to use an alternative shader that may sacrifice features for performance. The control over delivery to mobile devices, web browsers, consoles and desktops is the main reason Unity is the best option among the same kind cross-platform. Supported platforms include Android, Apple TV, Linux, iOS, Nintendo 3DS line, macOS, PlayStation 4, Windows Phone 8, Wii but also an asset server and Nvidia’s PhysX physics engine which is the most relevant tool on Unity for our PhysLab.

  16. Virtual Physics Laboratory Application Based on the Android Smartphone to Improve Learning Independence and Conceptual Understanding

    ERIC Educational Resources Information Center

    Arista, Fitra Suci; Kuswanto, Heru

    2018-01-01

    The research study concerned here was to: (1) produce a virtual physics laboratory application to be called ViPhyLab by using the Android smartphone as basis; (2) determine the appropriateness and quality of the virtual physics laboratory application that had been developed; and (3) describe the improvement in learning independence and conceptual…

  17. Using Laboratory Homework to Facilitate Skill Integration and Assess Understanding in Intermediate Physics Courses

    NASA Astrophysics Data System (ADS)

    Johnston, Marty; Jalkio, Jeffrey

    2013-04-01

    By the time students have reached the intermediate level physics courses they have been exposed to a broad set of analytical, experimental, and computational skills. However, their ability to independently integrate these skills into the study of a physical system is often weak. To address this weakness and assess their understanding of the underlying physical concepts we have introduced laboratory homework into lecture based, junior level theoretical mechanics and electromagnetics courses. A laboratory homework set replaces a traditional one and emphasizes the analysis of a single system. In an exercise, students use analytical and computational tools to predict the behavior of a system and design a simple measurement to test their model. The laboratory portion of the exercises is straight forward and the emphasis is on concept integration and application. The short student reports we collect have revealed misconceptions that were not apparent in reviewing the traditional homework and test problems. Work continues on refining the current problems and expanding the problem sets.

  18. A comparison of traditional physical laboratory and computer-simulated laboratory experiences in relation to engineering undergraduate students' conceptual understandings of a communication systems topic

    NASA Astrophysics Data System (ADS)

    Javidi, Giti

    2005-07-01

    This study was designed to investigate an alternative to the use of traditional physical laboratory activities in a communication systems course. Specifically, this study examined whether as an alternative, computer simulation is as effective as physical laboratory activities in teaching college-level electronics engineering education students about the concepts of signal transmission, modulation and demodulation. Eighty undergraduate engineering students participated in the study, which was conducted at a southeastern four-year university. The students were randomly assigned to two groups. The groups were compared on understanding the concepts, remembering the concepts, completion time of the lab experiments and perception toward the laboratory experiments. The physical group's (n = 40) treatment was to conduct laboratory experiments in a physical laboratory. The students in this group used equipment in a controlled electronics laboratory. The Simulation group's (n = 40) treatment was to conduct similar experiments in a PC laboratory. The students in this group used a simulation program in a controlled PC lab. At the completion of the treatment, scores on a validated conceptual test were collected once after the treatment and again three weeks after the treatment. Attitude surveys and qualitative study were administered at the completion of the treatment. The findings revealed significant differences, in favor of the simulation group, between the two groups on both the conceptual post-test and the follow-up test. The findings also revealed significant correlation between simulation groups' attitude toward the simulation program and their post-test scores. Moreover, there was a significant difference between the two groups on their attitude toward their laboratory experience in favor of the simulation group. In addition, there was significant difference between the two groups on their lab completion time in favor of the simulation group. At the same time, the

  19. Zero-gravity cloud physics laboratory: Candidate experiments definition and preliminary concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, R. V.; Hollinden, A. B.

    1973-01-01

    The candidate definition studies on the zero-g cloud physics laboratory are covered. This laboratory will be an independent self-contained shuttle sortie payload. Several critical technology areas have been identified and studied to assure proper consideration in terms of engineering requirements for the final design. Areas include chambers, gas and particle generators, environmental controls, motion controls, change controls, observational techniques, and composition controls. This unique laboratory will allow studies to be performed without mechanical, aerodynamics, electrical, or other type techniques to support the object under study. This report also covers the candidate experiment definitions, chambers and experiment classes, laboratory concepts and plans, special supporting studies, early flight opportunities and payload planning data for overall shuttle payload requirements assessments.

  20. Plasma physics and environmental perturbation laboratory. [magnetospheric experiments from space shuttle

    NASA Technical Reports Server (NTRS)

    Vogl, J. L.

    1973-01-01

    Current work aimed at identifying the active magnetospheric experiments that can be performed from the Space Shuttle, and designing a laboratory to carry out these experiments is described. The laboratory, known as the PPEPL (Plasma Physics and Environmental Perturbation Laboratory) consists of 35-ft pallet of instruments connected to a 25-ft pressurized control module. The systems deployed from the pallet are two 50-m booms, two subsatellites, a high-power transmitter, a multipurpose accelerator, a set of deployable canisters, and a gimbaled instrument platform. Missions are planned to last seven days, during which two scientists will carry out experiments from within the pressurized module. The type of experiments to be performed are outlined.

  1. Model-based reasoning in the physics laboratory: Framework and initial results

    NASA Astrophysics Data System (ADS)

    Zwickl, Benjamin M.; Hu, Dehui; Finkelstein, Noah; Lewandowski, H. J.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] We review and extend existing frameworks on modeling to develop a new framework that describes model-based reasoning in introductory and upper-division physics laboratories. Constructing and using models are core scientific practices that have gained significant attention within K-12 and higher education. Although modeling is a broadly applicable process, within physics education, it has been preferentially applied to the iterative development of broadly applicable principles (e.g., Newton's laws of motion in introductory mechanics). A significant feature of the new framework is that measurement tools (in addition to the physical system being studied) are subjected to the process of modeling. Think-aloud interviews were used to refine the framework and demonstrate its utility by documenting examples of model-based reasoning in the laboratory. When applied to the think-aloud interviews, the framework captures and differentiates students' model-based reasoning and helps identify areas of future research. The interviews showed how students productively applied similar facets of modeling to the physical system and measurement tools: construction, prediction, interpretation of data, identification of model limitations, and revision. Finally, we document students' challenges in explicitly articulating assumptions when constructing models of experimental systems and further challenges in model construction due to students' insufficient prior conceptual understanding. A modeling perspective reframes many of the seemingly arbitrary technical details of measurement tools and apparatus as an opportunity for authentic and engaging scientific sense making.

  2. Open-ended versus guided laboratory activities:Impact on students' beliefs about experimental physics

    NASA Astrophysics Data System (ADS)

    Wilcox, Bethany R.; Lewandowski, H. J.

    2016-12-01

    Improving students' understanding of the nature of experimental physics is often an explicit or implicit goal of undergraduate laboratory physics courses. However, lab activities in traditional lab courses are typically characterized by highly structured, guided labs that often do not require or encourage students to engage authentically in the process of experimental physics. Alternatively, open-ended laboratory activities can provide a more authentic learning environment by, for example, allowing students to exercise greater autonomy in what and how physical phenomena are investigated. Engaging in authentic practices may be a critical part of improving students' beliefs around the nature of experimental physics. Here, we investigate the impact of open-ended activities in undergraduate lab courses on students' epistemologies and expectations about the nature of experimental physics, as well as their confidence and affect, as measured by the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS). Using a national data set of student responses to the E-CLASS, we find that the inclusion of some open-ended lab activities in a lab course correlates with more expertlike postinstruction responses relative to courses that include only traditional guided lab activities. This finding holds when examining postinstruction E-CLASS scores while controlling for the variance associated with preinstruction scores, course level, student major, and student gender.

  3. Open-Ended versus Guided Laboratory Activities: Impact on Students' Beliefs about Experimental Physics

    ERIC Educational Resources Information Center

    Wilcox, Bethany R.; Lewandowski, H. J.

    2016-01-01

    Improving students' understanding of the nature of experimental physics is often an explicit or implicit goal of undergraduate laboratory physics courses. However, lab activities in traditional lab courses are typically characterized by highly structured, guided labs that often do not require or encourage students to engage authentically in the…

  4. Effects of the Physical Laboratory versus the Virtual Laboratory in Teaching Simple Electric Circuits on Conceptual Achievement and Attitudes Towards the Subject

    ERIC Educational Resources Information Center

    Tekbiyik, Ahmet; Ercan, Orhan

    2015-01-01

    Current study examined the effects of virtual and physical laboratory practices on students' conceptual achievement in the subject of electricity and their attitudes towards simple electric circuits. Two groups (virtual and physical) selected through simple random sampling was taught with web-aided material called "Electricity in Our…

  5. Adding Vectors across the North: Development of Laboratory Component of Distance Education Physics Course

    NASA Astrophysics Data System (ADS)

    Spencer, V. K.; Solie, D. J.

    2010-12-01

    Bush Physics for the 21st Century (BP21) is a distance education physics course offered through the Interior Aleutians Campus of the University of Alaska Fairbanks. It provides an opportunity for rural Alaskan high school and community college students, many of whom have no other access to advanced science courses, to earn university science credit. The curriculum is mathematically rigorous and includes a laboratory component to prepare students who wish to pursue science and technology careers. The laboratory component has been developed during the past 3 years. Students learn lab safety, basic laboratory technique, experiment components and group collaboration. Experiments have place-based themes and involve skills that translate to rural Alaska when possible. Preliminary data on the general effectiveness of the labs have been analyzed and used to improve the course.

  6. Investigation of a Chaotic Double Pendulum in the Basic Level Physics Teaching Laboratory

    ERIC Educational Resources Information Center

    Vanko, Peter

    2007-01-01

    First-year physics students at the Technical University of Budapest carry out a wide range of measurements in the Basic Level Physics Teaching Laboratory. One of the most exciting experiments is the investigation of a chaotic double pendulum by a V-scope, a powerful three-dimensional motion tracking system. After a brief introduction to the…

  7. Evaluation of Virtual Laboratory Package on Nigerian Secondary School Physics Concepts

    ERIC Educational Resources Information Center

    Falode, Oluwole Caleb; Gambari, Amosa Isiaka

    2017-01-01

    The study evaluated accessibility, flexibility, cost and learning effectiveness of researchers-developed virtual laboratory package for Nigerian secondary school physics. Based on these issues, four research questions were raised and answered. The study was a quantitative-based evaluation research. Sample for the study included 24 physics…

  8. Using Performance Assessment Model in Physics Laboratory to Increase Students’ Critical Thinking Disposition

    NASA Astrophysics Data System (ADS)

    Emiliannur, E.; Hamidah, I.; Zainul, A.; Wulan, A. R.

    2017-09-01

    Performance Assessment Model (PAM) has been developed to represent the physics concepts which able to be devided into five experiments: 1) acceleration due to gravity; 2) Hooke’s law; 3) simple harmonic motion; 4) work-energy concepts; and 5) the law of momentum conservation. The aim of this study was to determine the contribution of PAM in physics laboratory to increase students’ Critical Thinking Disposition (CTD) at senior high school. Subject of the study were 11th grade consist 32 students of a senior high school in Lubuk Sikaping, West Sumatera. The research used one group pretest-postest design. Data was collected through essay test and questionnaire about CTD. Data was analyzed using quantitative way with N-gain value. This study concluded that performance assessmet model effectively increases the N-gain at medium category. It means students’ critical thinking disposition significant increase after implementation of performance assessment model in physics laboratory.

  9. Lipid membranes and single ion channel recording for the advanced physics laboratory

    NASA Astrophysics Data System (ADS)

    Klapper, Yvonne; Nienhaus, Karin; Röcker, Carlheinz; Ulrich Nienhaus, G.

    2014-05-01

    We present an easy-to-handle, low-cost, and reliable setup to study various physical phenomena on a nanometer-thin lipid bilayer using the so-called black lipid membrane technique. The apparatus allows us to precisely measure optical and electrical properties of free-standing lipid membranes, to study the formation of single ion channels, and to gain detailed information on the ion conduction properties of these channels using statistical physics and autocorrelation analysis. The experiments are well suited as part of an advanced physics or biophysics laboratory course; they interconnect physics, chemistry, and biology and will be appealing to students of the natural sciences who are interested in quantitative experimentation.

  10. Teachers' Institutes in Late Nineteenth-Century Ontario

    ERIC Educational Resources Information Center

    Milewski, Patrice

    2008-01-01

    Teachers' institutes for public elementary school teachers in Ontario began to be implemented in the middle of the nineteenth century as a result of the efforts of Egerton Ryerson Superintendent of Schools for Canada West as Ontario was then known. They were based on similar practices that Ryerson had observed on an educational tour in 1845 during…

  11. Issues in Space Physics in Need of Reconnection with Laboratory Physics

    NASA Astrophysics Data System (ADS)

    Coppi, B.

    2017-10-01

    Predicted space observations, such as the ``foot'' in front of collisionless shocks or the occurrence of magnetic reconnection in the Earth`s magnetotail leading to auroral substorms, have highlighted the fruitful connection of laboratory and space plasma physics. The emergence of high energy astrophysics has then benefitted by the contribution of experiments devised for fusion research to the understanding of issues such as that of angular momentum transport processes that have a key role in allowing accretion of matter on a central object (e.g. black hole). The theory proposed for the occurrence of spontaneous rotation in toroidal plasmas was suggested by that developed for accretion. The particle density values, =1015 cm-3 that are estimated to be those of plasmas surrounding known galactic black holes have in fact been produced by the Alcator and other machines. Collective modes excited in the presence of high energy particle populations in laboratory plasmas (e.g. when the ``slide away'' regime has been produced) have found successful applications in space. Magnetic reconnection theory developments and the mode particle resonances associated with them have led to envision new processes for novel high energy particle acceleration. Sponsored in part by the U.S. DoE.

  12. Experimenting with Impacts in a Conceptual Physics or Descriptive Astronomy Laboratory

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2016-01-01

    What follows is a description of the procedure for and results of a simple experiment on the formation of impact craters designed for the laboratory portions of lower mathematical-level general education science courses such as conceptual physics or descriptive astronomy. The experiment provides necessary experience with data collection and…

  13. Model-Based Reasoning in the Physics Laboratory: Framework and Initial Results

    ERIC Educational Resources Information Center

    Zwickl, Benjamin M.; Hu, Dehui; Finkelstein, Noah; Lewandowski, H. J.

    2015-01-01

    We review and extend existing frameworks on modeling to develop a new framework that describes model-based reasoning in introductory and upper-division physics laboratories. Constructing and using models are core scientific practices that have gained significant attention within K-12 and higher education. Although modeling is a broadly applicable…

  14. Conditions for building a community of practice in an advanced physics laboratory

    NASA Astrophysics Data System (ADS)

    Irving, Paul W.; Sayre, Eleanor C.

    2014-06-01

    We use the theory of communities of practice and the concept of accountable disciplinary knowledge to describe how a learning community develops in the context of an upper-division physics laboratory course. The change in accountable disciplinary knowledge motivates students' enculturation into a community of practice. The enculturation process is facilitated by four specific structural features of the course and supported by a primary instructional choice. The four structural features are "paucity of instructor time," "all in a room together," "long and difficult experiments," and "same experiments at different times." The instructional choice is the encouragement of the sharing and development of knowledge and understanding by the instructor. The combination of the instructional choice and structural features promotes the development of the learning community in which students engage in authentic practices of a physicist. This results in a classroom community that can provide students with the opportunity to have an accelerated trajectory towards being a more central participant of the community of a practice of physicists. We support our claims with video-based observations of laboratory classroom interactions and individual, semistructured interviews with students about their laboratory experiences and physics identity.

  15. Asking the Next Generation: The Implementation of Pre-University Students' Ideas about Physics Laboratory Preparation Exercises

    ERIC Educational Resources Information Center

    Dunnett, K.; Bartlett, P. A.

    2018-01-01

    It was planned to introduce online pre-laboratory session activities to a first-year undergraduate physics laboratory course to encourage a minimum level of student preparation for experiments outside the laboratory environment. A group of 16 and 17 year old laboratory work-experience students were tasked to define and design a pre-laboratory…

  16. (?) The Air Force Geophysics Laboratory: Aeronomy, aerospace instrumentation, space physics, meteorology, terrestrial sciences and optical physics

    NASA Astrophysics Data System (ADS)

    McGinty, A. B.

    1982-04-01

    Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.

  17. Justin Johnson | NREL

    Science.gov Websites

    Organic Framework," J. Phys. Chem. Lett. 7, 3660 (2016). Arias, D.; Ryerson, J.; Cook, J.; Damrauer , N.; Johnson, J., "Polymorphism Influences Singlet Fission Rates in Tetracene Thin Films," ; Chem. Sci. 7, 1185 (2016). Schrauben, J.N.; Zhao Y.; Mercado, C.; Ryerson, J.; Dron, P.; Michl, J.; Zhu

  18. The PASCO Wireless Smart Cart: A Game Changer in the Undergraduate Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Shakur, Asif; Connor, Rainor

    2018-03-01

    With the introduction of the Wireless Smart Cart by PASCO scientific in April 2016, we expect a paradigm shift in undergraduate physics laboratory instruction. We have evaluated the feasibility of using the smart cart by carrying out experiments that are usually performed using traditional PASCO equipment. The simplicity, convenience, and cost-saving achieved by replacing a plethora of traditional laboratory sensors, wires, and equipment clutter with the smart cart are reported here.

  19. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  20. University Physics Students' Ideas of Thermal Radiation Expressed in Open Laboratory Activities Using Infrared Cameras

    ERIC Educational Resources Information Center

    Haglund, Jesper; Melander, Emil; Weiszflog, Matthias; Andersson, Staffan

    2017-01-01

    Background: University physics students were engaged in open-ended thermodynamics laboratory activities with a focus on understanding a chosen phenomenon or the principle of laboratory apparatus, such as thermal radiation and a heat pump. Students had access to handheld infrared (IR) cameras for their investigations. Purpose: The purpose of the…

  1. An Investigation into the Effectiveness of Problem-Based Learning in a Physical Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Gurses, Ahmet; Acikyildiz, Metin; Dogar, Cetin; Sozbilir, Mustafa

    2007-01-01

    The aim of this study was to investigate the effectiveness of a problem-based learning (PBL) approach in a physical chemistry laboratory course. The parameters investigated were students' attitudes towards a chemistry laboratory course, scientific process skills of students and their academic achievement. The design of the study was one group…

  2. A Transition from a Traditional to a Project-Like Physical Chemistry Laboratory via a Heterogeneous Catalysis Study.

    ERIC Educational Resources Information Center

    Goldwasser, M. R.; Leal, O.

    1979-01-01

    Outlines an approach for instruction in a physical chemistry laboratory which combines traditional and project-like experiments. An outline of laboratory experiments and examples of project-like experiments are included. (BT)

  3. Assessing students' learning outcomes, self-efficacy and attitudes toward the integration of virtual science laboratory in general physics

    NASA Astrophysics Data System (ADS)

    Ghatty, Sundara L.

    Over the past decade, there has been a dramatic rise in online delivery of higher education in the United States. Recent developments in web technology and access to the internet have led to a vast increase in online courses. For people who work during the day and whose complicated lives prevent them from taking courses on campus, online courses are the only alternatives by which they may achieve their goals in education. The laboratory courses are the major requirements for college and university students who want to pursue degree and certification programs in science. It is noted that there is a lack of laboratory courses in online physics courses. The present study addressed the effectiveness of a virtual science laboratory in physics instruction in terms of learning outcomes, attitudes, and self-efficacy of students in a Historically Black University College. The study included fifty-eight students (36 male and 22 female) of different science majors who were enrolled in a general physics laboratory course. They were divided into virtual and traditional groups. Three experiments were selected from the syllabus. The traditional group performed one experiment in a traditional laboratory, while the virtual group performed the same experiment in a virtual laboratory. For the second experiment, the use of laboratories by both groups was exchanged. Learner's Assessment Test (LAT), Attitudes Toward Physics Laboratories (ATPL), and Self-Efficacy Survey (SES) instruments were used. Additionally, quantitative methods such as an independent t-test, a paired t-test, and correlation statistics were used to analyze the data. The results of the first experiment indicated the learning outcomes were higher in the Virtual Laboratory than in the traditional laboratory, whereas there was no significant difference in learning outcomes with either type of lab instruction. However, significant self-efficacy gains were observed. Students expressed positive attitudes in terms of liking

  4. Training to Use the Scientific Method in a First-Year Physics Laboratory: A Case Study

    ERIC Educational Resources Information Center

    Sarasola, Ane; Rojas, Jose Félix; Okariz, Ana

    2015-01-01

    In this work, a specific implementation of a so-called experimental or open-ended laboratory is proposed and evaluated. Keeping in mind the scheduling limitations imposed by the context, first-year engineering physics laboratory practices have been revised in order to facilitate acquisition of the skills that are required in the experimental work.…

  5. An investigation into the effectiveness of problem-based learning in a physical chemistry laboratory course

    NASA Astrophysics Data System (ADS)

    Gürses, Ahmet; Açıkyıldız, Metin; Doğar, Çetin; Sözbilir, Mustafa

    2007-04-01

    The aim of this study was to investigate the effectiveness of a problem-based learning (PBL) approach in a physical chemistry laboratory course. The parameters investigated were students’ attitudes towards a chemistry laboratory course, scientific process skills of students and their academic achievement. The design of the study was one group pre-test post-test. Four experiments, covering the topics adsorption, viscosity, surface tension and conductivity were performed using a PBL approach in the fall semester of the 2003/04 academic year at Kazim Karabekir Education Faculty of Atatürk University. Each experiment was done over a three week period. A total of 40 students, 18 male and 22 female, participated in the study. Students took the Physical Chemistry Laboratory Concept Test (PCLCT), Attitudes towards Chemistry Laboratory (ATCL) questionnaire and Science Process Skills Test (SPST) as pre and post-tests. In addition, the effectiveness of the PBL approach was also determined through four different scales; Scales Specific to Students’ Views of PBL. A statistically significant difference between the students’ academic achievement and scientific process skills at p

  6. The Impact of Internet Virtual Physics Laboratory Instruction on the Achievement in Physics, Science Process Skills and Computer Attitudes of 10th-Grade Students

    NASA Astrophysics Data System (ADS)

    Yang, Kun-Yuan; Heh, Jia-Sheng

    2007-10-01

    The purpose of this study was to investigate and compare the impact of Internet Virtual Physics Laboratory (IVPL) instruction with traditional laboratory instruction in physics academic achievement, performance of science process skills, and computer attitudes of tenth grade students. One-hundred and fifty students from four classes at one private senior high school in Taoyuan Country, Taiwan, R.O.C. were sampled. All four classes contained 75 students who were equally divided into an experimental group and a control group. The pre-test results indicated that the students' entry-level physics academic achievement, science process skills, and computer attitudes were equal for both groups. On the post-test, the experimental group achieved significantly higher mean scores in physics academic achievement and science process skills. There was no significant difference in computer attitudes between the groups. We concluded that the IVPL had potential to help tenth graders improve their physics academic achievement and science process skills.

  7. Laboratory-based teaching and the Physics Innovations Centre for Excellence in Teaching and Learning

    NASA Astrophysics Data System (ADS)

    Lambourne, Robert

    2007-05-01

    Developments in the laboratory-based teaching of physics and astronomy are resulting from the collaboration between conventional and distance teaching universities. The collaboration, piCETL, is one of the Centres for Excellence in Teaching and Learning established as a result of a broad initiative by the Higher Education Funding Council for England. The initiative, the piCETL collaboration and some of its work on laboratory-based teaching are all described.

  8. A Laboratory Exercise Using a Physical Model for Demonstrating Countercurrent Heat Exchange

    ERIC Educational Resources Information Center

    Loudon, Catherine; Davis-Berg, Elizabeth C.; Botz, Jason T.

    2012-01-01

    A physical model was used in a laboratory exercise to teach students about countercurrent exchange mechanisms. Countercurrent exchange is the transport of heat or chemicals between fluids moving in opposite directions separated by a permeable barrier (such as blood within adjacent blood vessels flowing in opposite directions). Greater exchange of…

  9. Measurement of the Compressibility Factor of Gases: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Bendelsmith, Andrew J.; Kuwata, Keith T.

    2011-01-01

    In this article, we describe an experiment for the undergraduate physical chemistry laboratory in which students measure the compressibility factor of two gases, helium and carbon dioxide, as a function of pressure at constant temperature. The experimental apparatus is relatively inexpensive to construct and is described and diagrammed in detail.…

  10. Evaluating a Contextual-Based Course on Data Analysis for the Physics Laboratory

    ERIC Educational Resources Information Center

    Kukliansky, Ida; Eshach, Haim

    2014-01-01

    The interpretation of data and construction and understanding of graphs are central practices in science; therefore, an important skill needed in the undergraduate physics laboratory is the ability to analyze data obtained from experiments. Often students are not able to reach logical deductions based on data, acquired from the experiments that…

  11. Development of Matlab GUI educational software to assist a laboratory of physical optics

    NASA Astrophysics Data System (ADS)

    Fernández, Elena; Fuentes, Rosa; García, Celia; Pascual, Inmaculada

    2014-07-01

    Physical optics is one of the subjects in the Grade of Optics and Optometry in Spanish universities. The students who come to this degree often have difficulties to understand subjects that are related to physics. For this reason, the aim of this work is to develop optics simulation software that provides a virtual laboratory for studying the effects of different aspects of physical optics phenomena. This software can let optical undergraduates simulate many optical systems for a better understanding of the practical competences associated with the theoretical concepts studied in class. This interactive environment unifies the information that brings the manual of the practices, provides the visualization of the physical phenomena and allows users to vary the values of the parameters that come into play to check its effect. So, this virtual tool is the perfect complement to learning more about the practices developed in the laboratory. This software will be developed through the choices which have the Matlab to generate Graphical User Interfaces or GUIs. A set of knobs, buttons and handles will be included in the GUI's in order to control the parameters of the different physics phenomena. Graphics can also be inserted in the GUIs to show the behavior of such phenomena. Specifically, by using this software, the student is able to analyze the behaviour of the transmittance and reflectance of the TE and TM modes, the polarized light through of the Malus'Law or degree of polarization.

  12. Physical Interpretation of Laboratory Friction Laws in the Context of Damage Physics

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Tiampo, K. F.; Martins, J. S.; Klein, W.

    2002-12-01

    Frictional on sliding surfaces is ultimately related to processes of surface damage, and can be understood in the context of the physics of dynamical threshold systems. Threshold systems are known to be some of the most important nonlinear, self-organizing systems in nature, including networks of earthquake faults, neural networks, superconductors and semiconductors, and the World Wide Web, as well as political, social, and ecological systems. All of these systems have dynamics that are strongly correlated in space and time, and all typically display a multiplicity of spatial and temporal scales. Here we discuss the physics of self-organization and damage in earthquake threshold systems at the "microscopic" laboratory scale, in which consideration of results from simulations leads to dynamical equations that can be used to derive results obtained from sliding friction experiments, specifically, the empirical "rate-and-state" friction equations of Ruina. Paradoxically, in all of these dissipative systems, long-range interactions induce the existence of locally ergodic dynamics, even though the dissipation of energy is involved. The existence of dissipative effects leads to the appearance of a "leaky threshold" dynamics, equivalent to a new scaling field that controls the size of nucleation events relative to the size of the background fluctuations. The corresponding appearance of a mean field spinodal leads to a general coarse-grained equation, which expresses the balance between rate of stress supplied, and rate of stress dissipated in the processes leading to surface damage. We can use ideas from thermodynamics and kinetics of phase transitions to develop the exact form of the rate-and-state equations, giving clear physical meaning to all terms and variables. Ultimately, the self-organizing dynamics arise from the appearance of an energy landscape in these systems, which in turn arises from the strong correlations and mean field nature of the physics.

  13. Learning in Physics by Doing Laboratory Work: Towards a New Conceptual Framework

    ERIC Educational Resources Information Center

    Danielsson, Anna Teresia; Linder, Cedric

    2009-01-01

    Drawing on a study that explores university students' experiences of doing laboratory work in physics, this article outlines a proposed conceptual framework for extending the exploration of the gendered experience of learning. In this framework situated cognition and post-structural gender theory are merged together. By drawing on data that aim at…

  14. Usage of "Powergraph" software at laboratory lessons of "general physics" department of MEPhI

    NASA Astrophysics Data System (ADS)

    Klyachin, N. A.; Matronchik, A. Yu.; Khangulyan, E. V.

    2017-01-01

    One considers usage of "PowerGraph" software in laboratory exercise "Study of sodium spectrum" of physical experiment lessons. Togethe with the design of experiment setup, one discusses the sodium spectra digitized with computer audio chip. Usage of "PowerGraph" software in laboratory experiment "Study of sodium spectrum" allows an efficient visualization of the sodium spectrum and analysis of its fine structure. In particular, it allows quantitative measurements of the wavelengths and line relative intensities.

  15. Teaching Optics Topics in College Physics Laboratory*

    NASA Astrophysics Data System (ADS)

    Kezerashvili, Roman Y.

    2006-12-01

    We propose a list of designed experiments that could be presented at the laboratory class in the second semester of College and University Physics courses to study properties of light. The study of light can be organized into three domains: geometric optics, wave optics and quantum optics. These domains are not strictly disjoint. In the sets of experiments for the first domain students study the laws of reflection and refraction of light by measuring the dependence of the angles of reflection and refraction on the angle of incident, spherical mirrors and lenses, geometric optics of human eye. In the sets of experiments for the second domain students study the wave properties of light: dispersion, interference, diffraction and polarization. Experiments designed to verify the Malus's law and measure the Brewster's angle, determine the wavelength of laser light and study the interference on a transmission and reflection diffraction grating, diffraction on the different size slits and wires. The purposes of experiments for the third domain are to study the spectral lines of different gases, determine the Rydberg's constant from the spectrum of hydrogen atom, and verify the laws of the photoelectric effect and Einstein's quantum idea. The objectives of all experiments are to show the real action of physics laws, help students better understand and visualize the subject of the lecture. *Supported by US Department of Education grant P120A060052

  16. Laboratory plasma physics experiments using merging supersonic plasma jets

    DOE PAGES

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; ...

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: n e ≈ n i ~ 10¹⁶ cm⁻³, T e ≈ T i ≈ 1.4 eV, V jet ≈ 30–100 km/s, mean chargemore » $$\\bar{Z}$$ ≈ 1, sonic Mach number M s ≡ V jet/C s > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.« less

  17. Laboratory plasma physics experiments using merging supersonic plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: n e ≈ n i ~ 10¹⁶ cm⁻³, T e ≈ T i ≈ 1.4 eV, V jet ≈ 30–100 km/s, mean chargemore » $$\\bar{Z}$$ ≈ 1, sonic Mach number M s ≡ V jet/C s > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.« less

  18. Writing Material in Chemical Physics Research: The Laboratory Notebook as Locus of Technical and Textual Integration

    ERIC Educational Resources Information Center

    Wickman, Chad

    2010-01-01

    This article, drawing on ethnographic study in a chemical physics research facility, explores how notebooks are used and produced in the conduct of laboratory science. Data include written field notes of laboratory activity; visual documentation of "in situ" writing processes; analysis of inscriptions, texts, and material artifacts produced in the…

  19. Full-participation of students with physical disabilities in science and engineering laboratories.

    PubMed

    Jeannis, Hervens; Joseph, James; Goldberg, Mary; Seelman, Katherine; Schmeler, Mark; Cooper, Rory A

    2018-02-01

    To conduct a literature review identifying barriers and facilitators students with physical disabilities (SwD-P) may encounter in science and engineering (S&E) laboratories. Publications were identified from 1991 to 2015 in ERIC, web of science via web of knowledge, CINAHL, SCOPUS, IEEEXplore, engineering village, business source complete and PubMed databases using search terms and synonyms for accommodations, advanced manufacturing, additive manufacturing, assistive technology (AT), barriers, engineering, facilitators, instructor, laboratory, STEM education, science, students with disabilities and technology. Twenty-two of the 233 publications that met the review's inclusion criteria were examined. Barriers and facilitators were grouped based on the international classification of functioning, disability and health framework (ICF). None of the studies directly found barriers or facilitators to SwD-P in science or engineering laboratories within postsecondary environments. The literature is not clear on the issues specifically related to SwD-P. Given these findings, further research (e.g., surveys or interviews) should be conducted to identify more details to obtain more substantial information on the barriers that may prevent SwD-P from fully participating in S&E instructional laboratories. Implications for Rehabilitation Students with disabilities remain underrepresented going into STEM careers. A need exist to help uncover barriers students with disabilities encounter in STEM laboratory. Environments. Accommodations and strategies that facilitate participation in STEM laboratory environments are promising for students with disabilities.

  20. UV Radiation: a new first year physics/life sciences laboratory experiment

    NASA Astrophysics Data System (ADS)

    Petelina, S. V.; Siddaway, J. M.

    2010-12-01

    Unfortunately, Australia leads the world in the number of skin cancer cases per capita. Three major factors that contribute to this are: 1) the level of damaging ultraviolet (UV) radiation in Australia is higher than in many other countries. This is caused, among other factors, by the stratospheric ozone depletion and Antarctic ozone hole; 2) many people in Australia are of Irish-Scottish origin and their skin can not repair the damage caused by the UV radiation as effectively as the skin of people of other origins; 3) Australia is one of the world’s leaders in the outdoor activities where people tend to spend more time outside. As our experience has shown, most Australian University students, high school students, and even high school teachers were largely unaware of the UV damage details and effective safety measures. Therefore, a need for new ways to educate people became apparent. The general aim of this new 1st year laboratory experiment, developed and first offered at La Trobe University (Melbourne, Australia) in 2009, is to investigate how UV-B radiation levels change under various solar illumination conditions and how effective different types of protection are. After pre-lab readings on physical concepts and biological effects of UV radiation, and after solving all pre-lab problems, the students go outside and measure the actual change in UV-B and UV-A radiation levels under various conditions. Some of these conditions are: direct sun, shade from a building, shade under the roof, reflection from various surfaces, direct sun through cheap and expensive sunglasses and eyeglasses, direct sun through various types of cloth and hair. The equipment used is the UV-Probe manufactured by sglux SolGel Technologies GmbH. The students’ feedback on this new laboratory experiment was very positive. It was ranked top among all physics experiments offered as part of that subject (Physics for Life Sciences) in 2009 and top among all physics experiments presented for

  1. Open-Ended Laboratory Investigations in a High School Physics Course: The Difficulties and Rewards of Implementing Inquiry-Based Learning in a Physics Lab

    ERIC Educational Resources Information Center

    Szott, Aaron

    2014-01-01

    Traditional physics labs at the high school level are often closed-ended. The outcomes are known in advance and students replicate procedures recommended by the teacher. Over the years, I have come to appreciate the great opportunities created by allowing students investigative freedom in physics laboratories. I have realized that a laboratory…

  2. The effect of introducing computers into an introductory physics problem-solving laboratory

    NASA Astrophysics Data System (ADS)

    McCullough, Laura Ellen

    2000-10-01

    Computers are appearing in every type of classroom across the country. Yet they often appear without benefit of studying their effects. The research that is available on computer use in classrooms has found mixed results, and often ignores the theoretical and instructional contexts of the computer in the classroom. The University of Minnesota's physics department employs a cooperative-group problem solving pedagogy, based on a cognitive apprenticeship instructional model, in its calculus-based introductory physics course. This study was designed to determine possible negative effects of introducing a computerized data-acquisition and analysis tool into this pedagogy as a problem-solving tool for students to use in laboratory. To determine the effects of the computer tool, two quasi-experimental treatment groups were selected. The computer-tool group (N = 170) used a tool, designed for this study (VideoTool), to collect and analyze motion data in the laboratory. The control group (N = 170) used traditional non-computer equipment (spark tapes and Polaroid(TM) film). The curriculum was kept as similar as possible for the two groups. During the ten week academic quarter, groups were examined for effects on performance on conceptual tests and grades, attitudes towards the laboratory and the laboratory tools, and behaviors within cooperative groups. Possible interactions with gender were also examined. Few differences were found between the control and computer-tool groups. The control group received slightly higher scores on one conceptual test, but this difference was not educationally significant. The computer-tool group had slightly more positive attitudes towards using the computer tool than their counterparts had towards the traditional tools. The computer-tool group also perceived that they spoke more frequently about physics misunderstandings, while the control group felt that they discussed equipment difficulties more often. This perceptual difference interacted

  3. The Development of Virtual Laboratory Using ICT for Physics in Senior High School

    NASA Astrophysics Data System (ADS)

    Masril, M.; Hidayati, H.; Darvina, Y.

    2018-04-01

    One of the problems found in the implementation of the curriculum in 2013 is not all competency skills can be performed well. Therefore, to overcome these problems, virtual laboratory designed to improve the mastery of concepts of physics. One of the design objectives virtual laboratories is to improve the quality of education and learning in physics in high school. The method used in this study is a research method development four D model with the definition phase, design phase, development phase, and dissemination phase. Research has reached the stage of development and has been tested valid specialist. The instrument used in the research is a questionnaire consisting of: 1) the material substance; 2) The display of visual communication; 3) instructional design; 4) the use of software; and 5) Linguistic. The research results is validity in general has been a very good category (85.6), so that the design of virtual labs designed can already be used in high school.

  4. Kinetics and Photochemistry of Ruthenium Bisbipyridine Diacetonitrile Complexes: An Interdisciplinary Inorganic and Physical Chemistry Laboratory Exercise.

    PubMed

    Rapp, Teresa L; Phillips, Susan R; Dmochowski, Ivan J

    2016-12-13

    The study of ruthenium polypyridyl complexes can be widely applied across disciplines in the undergraduate curriculum. Ruthenium photochemistry has advanced many fields including dye-sensitized solar cells, photoredox catalysis, light-driven water oxidation, and biological electron transfer. Equally promising are ruthenium polypyridyl complexes that provide a sterically bulky, photolabile moiety for transiently "caging" biologically active molecules. Photouncaging involves the use of visible (1-photon) or near-IR (2-photon) light to break one or more bonds between ruthenium and coordinated ligand(s), which can occur on short time scales and in high quantum yields. In this work we demonstrate the use of a model "caged" acetonitrile complex, Ru(2,2'-bipyridine) 2 (acetonitrile) 2 , or RuMeCN in an advanced synthesis and physical chemistry laboratory. Students made RuMeCN in an advanced synthesis laboratory course and performed UV-vis spectroscopy and electrochemistry. The following semester students investigated RuMeCN photolysis kinetics in a physical chemistry laboratory. These two exercises may also be combined to create a 2-week module in an advanced undergraduate laboratory course.

  5. Kinetics and Photochemistry of Ruthenium Bisbipyridine Diacetonitrile Complexes: An Interdisciplinary Inorganic and Physical Chemistry Laboratory Exercise

    PubMed Central

    2016-01-01

    The study of ruthenium polypyridyl complexes can be widely applied across disciplines in the undergraduate curriculum. Ruthenium photochemistry has advanced many fields including dye-sensitized solar cells, photoredox catalysis, light-driven water oxidation, and biological electron transfer. Equally promising are ruthenium polypyridyl complexes that provide a sterically bulky, photolabile moiety for transiently “caging” biologically active molecules. Photouncaging involves the use of visible (1-photon) or near-IR (2-photon) light to break one or more bonds between ruthenium and coordinated ligand(s), which can occur on short time scales and in high quantum yields. In this work we demonstrate the use of a model “caged” acetonitrile complex, Ru(2,2′-bipyridine)2(acetonitrile)2, or RuMeCN in an advanced synthesis and physical chemistry laboratory. Students made RuMeCN in an advanced synthesis laboratory course and performed UV–vis spectroscopy and electrochemistry. The following semester students investigated RuMeCN photolysis kinetics in a physical chemistry laboratory. These two exercises may also be combined to create a 2-week module in an advanced undergraduate laboratory course. PMID:28649139

  6. In the physics class: university physics students' enactment of class and gender in the context of laboratory work

    NASA Astrophysics Data System (ADS)

    Danielsson, Anna T.

    2014-06-01

    This article explores how the doing of social class and gender can intersect with the learning of science, through case studies of two male, working-class university students' constitutions of identities as physics students. In doing so, I challenge the taken-for-granted notion that male physics students have an unproblematic relation to their chosen discipline, and nuance the picture of how working-class students relate to higher education by the explicit focus on one disciplinary culture. Working from the perspective of situated learning theory, the interviews with the two male students were analysed for how they negotiated the practice of the physics student laboratory and their own classed and gendered participation in this practice. By drawing on the heterogeneity of the practice of physics the two students were able to use the practical and technological aspects of physics as a gateway into the discipline. However, this is not to say that their participation in physics was completely frictionless. The students were both engaged in a continuous negotiation of how skills they had learned to value in the background may or may not be compatible with the ones they perceived to be valued in the university physicist community.

  7. A Stopped-Flow Kinetics Experiment for the Physical Chemistry Laboratory Using Noncorrosive Reagents

    ERIC Educational Resources Information Center

    Prigodich, Richard V.

    2014-01-01

    Stopped-flow kinetics techniques are important to the study of rapid chemical and biochemical reactions. Incorporation of a stopped-flow kinetics experiment into the physical chemistry laboratory curriculum would therefore be an instructive addition. However, the usual reactions studied in such exercises employ a corrosive reagent that can over…

  8. Gambling as a teaching aid in the introductory physics laboratory

    NASA Astrophysics Data System (ADS)

    Horodynski-Matsushigue, L. B.; Pascholati, P. R.; Vanin, V. R.; Dias, J. F.; Yoneama, M.-L.; Siqueira, P. T. D.; Amaku, M.; Duarte, J. L. M.

    1998-07-01

    Dice throwing is used to illustrate relevant concepts of the statistical theory of uncertainties, in particular the meaning of a limiting distribution, the standard deviation, and the standard deviation of the mean. It is an important part in a sequence of especially programmed laboratory activities, developed for freshmen, at the Institute of Physics of the University of São Paulo. It is shown how this activity is employed within a constructive teaching approach, which aims at a growing understanding of the measuring processes and of the fundamentals of correct statistical handling of experimental data.

  9. Laboratory Experiments to Simulate and Investigate the Physics Underlying the Dynamics of Merging Solar Corona Structures

    DTIC Science & Technology

    2016-06-05

    have attended and made presen- tations at the annual APS Division of Plasma Physics Meeting, the bi-annual High Energy Laboratory Astrophysics meeting...the AFOSR Space Science Pro- gram Review, the SHINE solar physics meeting, the International Astrophysics Conference, and the workshop “Complex plasma...tor k and Resolving Space-time Ambiguity. GR-Space Physics . submitted. Bellan, P. M., Zhai, X., Chai, K. B., & Ha, B. N. 2015. Complex astrophysical

  10. Laboratory and Physical Modelling of Building Ventilation Flows

    NASA Astrophysics Data System (ADS)

    Hunt, Gary

    2001-11-01

    Heating and ventilating buildings accounts for a significant fraction of the total energy budget of cities and an immediate challenge in building physics is for the design of sustainable, low-energy buildings. Natural ventilation provides a low-energy solution as it harness the buoyancy force associated with temperature differences between the internal and external environment, and the wind to drive a ventilating flow. Modern naturally-ventilated buildings use innovative design solutions, e.g. glazed atria and solar chimneys, to enhance the ventilation and demand for these and other designs has far outstripped our understanding of the fluid mechanics within these buildings. Developing an understanding of the thermal stratification and movement of air provides a considerable challenge as the flows involve interactions between stratification and turbulence and often in complex geometries. An approach that has provided significant new insight into these flows and which has led to the development of design guidelines for architects and ventilation engineers is laboratory modelling at small-scale in water tanks combined with physical modelling. Density differences to drive the flow in simplified plexiglass models of rooms or buildings are provided by fresh and salt water solutions, and wind flow is represented by a mean flow in a flume tank. In tandom with the experiments, theoretical models that capture the essential physics of these flows have been developed in order to generalise the experimental results to a wide range of typical building geometries and operating conditions. This paper describes the application and outcomes of these modelling techniques to the study of a variety of natural ventilation flows in buildings.

  11. The PASCO Wireless Smart Cart: A Game Changer in the Undergraduate Physics Laboratory

    ERIC Educational Resources Information Center

    Shakur, Asif; Connor, Rainor

    2018-01-01

    With the introduction of the Wireless Smart Cart by PASCO scientific in April 2016, we expect a paradigm shift in undergraduate physics laboratory instruction. We have evaluated the feasibility of using the smart cart by carrying out experiments that are usually performed using traditional PASCO equipment. The simplicity, convenience, and…

  12. Revisions of Physical Geology Laboratory Courses to Increase the Level of Inquiry: Implications for Teaching and Learning

    ERIC Educational Resources Information Center

    Grissom, April N.; Czajka, C. Douglas; McConnell, David A.

    2015-01-01

    The introductory physical geology laboratory courses taught at North Carolina State University aims to promote scientific thinking and learning through the use of scientific inquiry-based activities. A rubric describing five possible levels of inquiry was applied to characterize the laboratory activities in the course. Two rock and mineral…

  13. Uncertainty Calculations in the First Introductory Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Rahman, Shafiqur

    2005-03-01

    Uncertainty in a measured quantity is an integral part of reporting any experimental data. Consequently, Introductory Physics laboratories at many institutions require that students report the values of the quantities being measured as well as their uncertainties. Unfortunately, given that there are three main ways of calculating uncertainty, each suitable for particular situations (which is usually not explained in the lab manual), this is also an area that students feel highly confused about. It frequently generates large number of complaints in the end-of-the semester course evaluations. Students at some institutions are not asked to calculate uncertainty at all, which gives them a fall sense of the nature of experimental data. Taking advantage of the increased sophistication in the use of computers and spreadsheets that students are coming to college with, we have completely restructured our first Introductory Physics Lab to address this problem. Always in the context of a typical lab, we now systematically and sequentially introduce the various ways of calculating uncertainty including a theoretical understanding as opposed to a cookbook approach, all within the context of six three-hour labs. Complaints about the lab in student evaluations have dropped by 80%. * supported by a grant from A. V. Davis Foundation

  14. Data Analysis and Graphing in an Introductory Physics Laboratory: Spreadsheet versus Statistics Suite

    ERIC Educational Resources Information Center

    Peterlin, Primoz

    2010-01-01

    Two methods of data analysis are compared: spreadsheet software and a statistics software suite. Their use is compared analysing data collected in three selected experiments taken from an introductory physics laboratory, which include a linear dependence, a nonlinear dependence and a histogram. The merits of each method are compared. (Contains 7…

  15. Thermodynamic Exploration of Eosin-Lysozyme Binding: A Physical Chemistry and Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Huisman, Andrew J.; Hartsell, Lydia R.; Krueger, Brent P.; Pikaart, Michael J.

    2010-01-01

    We developed a modular pair of experiments for use in the undergraduate physical chemistry and biochemistry laboratories. Both experiments examine the thermodynamics of the binding of a small molecule, eosin Y, to the protein lysozyme. The assay for binding is the quenching of lysozyme fluorescence by eosin through resonant energy transfer. In…

  16. Investigating Intermolecular Interactions via Scanning Tunneling Microscopy: An Experiment for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Pullman, David; Peterson, Karen I.

    2004-01-01

    A scanning tunneling microscope (STM) project designed as a module for the undergraduate physical chemistry laboratory is described. The effects of van der Waals interactions on the condensed-phase structure are examined by the analysis of the pattern of the monolayer structures.

  17. Space plasma physics at the Applied Physics Laboratory over the past half-century

    NASA Technical Reports Server (NTRS)

    Potemra, Thomas A.

    1992-01-01

    An overview is given of space-plasma experiments conducted at the Applied Physics Laboratory (APL) at Johns Hopkins University including observational campaigns and the instrumentation developed. Specific space-plasma experiments discussed include the study of the radiation environment in the Van Allen radiation belt with solid-state proton detectors. Also described are the 5E-1 satellites which acquired particle and magnetic-field data from earth orbit. The Triad satellite and its magnetometer system were developed for high-resolution studies of the earth's magnetic field, and APL contributions to NASA's Interplanetary Monitoring Platforms are listed. The review mentions the International Ultraviolet Explorer, the Atmosphere Explorer mission, and the Active Magnetic Particle Tracer Explorers mission. Other recent programs reviewed include a high-latitude satellite, contributions to the Voyager mission, and radar studies of space plasmas.

  18. The Frozen Lake: A Physical Model Using Calculator-Based Laboratory Technology

    NASA Astrophysics Data System (ADS)

    Soletta, Isabella; Branca, Mario

    2005-04-01

    We have created laboratory conditions similar to those present in a lake when the external temperature falls below 0°C. Glaciation in lakes is described in school textbooks and classroom demonstrations.1,2 It is pointed out how the anomalous behavior of water, which reaches maximum density at about 4°C,3 makes life possible on Earth. The proposed model thus describes a physical system that, apart from being of interest in itself, is relevant to the study of biological mechanisms.

  19. To What Extent Does A-Level Physics Prepare Students for Undergraduate Laboratory Work?

    ERIC Educational Resources Information Center

    Thompson, Alaric

    2012-01-01

    This paper is a summary of a small-scale research project carried out to investigate the transition from A-level to university physics, with a specific focus on practical or laboratory skills. A brief description of the methods used precedes the headline findings of the research. A non-evidential discussion of the possible reasons behind any…

  20. Pre-Service Teachers' Attitudes toward Use of Vee Diagrams in General Physics Laboratory

    ERIC Educational Resources Information Center

    Keles, Özgül; Özsoy, Sibel

    2009-01-01

    The purpose of this study is to determine pre-service teachers' attitudes toward use of Vee diagrams in general physics laboratory. The sample of the study consists of 29 (16 girls and 13 boys) freshmen students enrolling to elementary school science education program at one of the universities in Turkey. To gather the data of the study…

  1. Realizing a Framework for Enhancing the Laboratory Experiences of Non-Physics Majors: From Pilot to Large-Scale Implementation

    ERIC Educational Resources Information Center

    Kirkup, Les; Pizzica, Jenny; Waite, Katrina; Srinivasan, Lakshmi

    2010-01-01

    Physics experiments for students not majoring in physics may have little meaning for those students and appear to them unconnected in any way to their majors. This affects student engagement and influences the extent to which they regard their experiences in the physics laboratory as positive. We apply a framework for the development and…

  2. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.D. Levine; V.L. Finley

    1998-03-01

    The results of the 1996 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1996, PPPL's Tokamak Fusion Test Reactor (TFTR) continued to conduct fusion experiments. Having set a world record on November 2, 1994, by achieving approximately 10.7 million watts of controlled fusion power during the deuterium-tritium (D-T) plasmamore » experiments, researchers turned their attention to studying plasma science experiments, which included ''enhanced reverse shear techniques.'' Since November 1993, more than 700 tritium-fueled experiments were conducted, which generated more than 4 x 10(superscript 20) neutrons and 1.4 gigajoules of fusion energy. In 1996, the overall performance of Princeton Plasma Physics Laboratory was rated ''excellent'' by the US Department of Energy in the Laboratory Appraisal report issued in early 1997. The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents) and petroleum hydrocarbons (past leaks of releases of diesel fuel from underground storage tanks). Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the TFTR stack; the data are presented in this

  3. Laboratory preparation questionnaires as a tool for the implementation of the Just in Time Teaching in the Physics I laboratories: Research training

    NASA Astrophysics Data System (ADS)

    Miranda, David A.; Sanchez, Melba J.; Forero, Oscar M.

    2017-06-01

    The implementation of the JiTT (Just in Time Teaching) strategy is presented to increase the previous preparation of students enrolled in the subject Physics Laboratory I offered at the Industrial University of Santander (UIS), Colombia. In this study, a laboratory preparation questionnaire (CPL) was applied as a tool for the implementation of JiTT combined with elements of mediated learning. It was found that the CPL allows to improve the students’ experience regarding the preparation of the laboratory and the development of the experimental session. These questionnaires were implemented in an academic manager (Moodle) and a web application (lab.ciencias.uis.edu.co) was used to publish the contents essential for the preparation of the student before each practical session. The most significant result was that the students performed the experimental session with the basic knowledge to improve their learning experience.

  4. A Self-Paced Physical Geology Laboratory.

    ERIC Educational Resources Information Center

    Watson, Donald W.

    1983-01-01

    Describes a self-paced geology course utilizing a diversity of instructional techniques, including maps, models, samples, audio-visual materials, and a locally developed laboratory manual. Mechanical features are laboratory exercises, followed by unit quizzes; quizzes are repeated until the desired level of competence is attained. (Author/JN)

  5. New Outreach Initiatives at the Princeton Plasma Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Zwicker, Andrew; Dominguez, Arturo; Greco, Shannon; Ortiz, Deedee; Delooper, John

    2015-11-01

    In FY15, PPPL concentrated its efforts on a portfolio of outreach activities centered around plasma science and fusion energy that have the potential to reach a large audience and have a significant and measurable impact. The overall goal of these outreach activities is to expose the public (within New Jersey, the US and the world) to the Department of Energy's scientific endeavors and specifically to PPPL's research regarding fusion and plasma science. The projects include several new activities along with upgrades to existing ones. The new activities include the development of outreach demos for the plasma physics community and the upgrade of the Internet Plasma Physics Experience (IPPEX). Our first plasma demo is a low cost DC glow discharge, suitable for tours as well as for student laboratories (plasma breakdown, spectroscopy, probes). This has been field tested in a variety of classes and events. The upgrade to the IPPEX web site includes a new template and a new interactive virtual tokamak. Future work on IPPEX will provide users limited access to data from NSTX-U. Finally, our Young Women's Conference was expanded and improved. These and other new outreach activities will be presented.

  6. New Assessment Process in an Introductory Undergraduate Physics Laboratory: An Exploration on Collaborative Learning

    ERIC Educational Resources Information Center

    Leung, Anthony C. K.; Hashemi Pour, Banafsheh; Reynolds, Dan; Jerzak, Stanislaw

    2017-01-01

    A new team learning assessment process was designed and tested in a first-year university physics laboratory class. The assessment process was designed to provide a strong incentive for students to cooperate and feel responsible for each other's learning and fostering a sense of collaboration rather than competition. Specifically, the new…

  7. Search for the Footprints of New Physics with Laboratory and Cosmic Neutrinos

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2017-01-01

    Observations of high energy neutrinos, both in the laboratory and from cosmic sources, can be a useful probe in searching for new physics. Such observations can provide sensitive tests of Lorentz invariance violation (LIV), which may be a the result of quantum gravity physics (QG). We review some observationally testable consequences of LIV using effective field theory (EFT) formalism. To do this, one can postulate the existence of additional small LIV terms in free particle Lagrangians, suppressed by powers of the Planck mass. The observational consequences of such terms are then examined. In particular, one can place limits on a class of non-renormalizable, mass dimension five and six Lorentz invariance violating operators that may be the result of QG.

  8. Design evaluations for a flight cloud physics holocamera. [holographic/photographic camera for low-g Atmospheric Cloud Physics Laboratory

    NASA Technical Reports Server (NTRS)

    Moore, W. W., Jr.; Kurtz, R. L.; Lemons, J. F.

    1976-01-01

    The paper describes a holographic/photographic camera to be used with the zero-g or low-g Atmospheric Cloud Physics Laboratory. The flight prototype holocamera is intended to record particles from 0.01 to 5 microns for an optimum two-dimensional plane only in the microscopic photography mode, particles on a volume basis in the in-line holography mode from 5 microns up, and all particle sizes possible on a volume basis in the acute sideband holography mode.

  9. Physical Sciences Laboratory 1 Rooftop Stack Mixing Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flaherty, Julia E.; Antonio, Ernest J.

    To address concerns about worker exposures on the Physical Science Laboratory (PSL) rooftop, a tracer study was conducted to measure gaseous tracer concentrations downwind of six stacks on the southern half of the PSL building (PSL-1). These concerns were raised, in part, due to the non-standard configuration of the stacks on this building. Five of the six stacks were only about 8 feet tall, with one shorter stack that was essentially level with the roof deck. These stacks were reconfigured in August 2016, and these exhaust points on PSL-1 are now 18 feet tall. This report describes the objectives ofmore » the tracer tests performed on PSL-1, provides an overview of how the tests were executed, and presents results of the tests. The tests on the PSL rooftop were a follow-on project from a similar study performed on the LSL-II ventilation exhaust (Flaherty and Antonio, 2016).« less

  10. Computer Based Learning in an Undergraduate Physics Laboratory: Interfacing and Instrument Control Using Matlab

    ERIC Educational Resources Information Center

    Sharp, J. S.; Glover, P. M.; Moseley, W.

    2007-01-01

    In this paper we describe the recent changes to the curriculum of the second year practical laboratory course in the School of Physics and Astronomy at the University of Nottingham. In particular, we describe how Matlab has been implemented as a teaching tool and discuss both its pedagogical advantages and disadvantages in teaching undergraduate…

  11. Instructional designing the STEM education model for fostering creative thinking abilities in physics laboratory environment classes

    NASA Astrophysics Data System (ADS)

    Chanthala, Chumpon; Santiboon, Toansakul; Ponkham, Kamon

    2018-01-01

    To investigate the effects of students' activity-based on learning approaching management through the STEM Education Instructional Model for fostering their creative thinking abilities of their learning achievements in physics laboratory classroom environments with the sample size consisted of 48 students at the 10th grade level in two classes in Mahasarakham University Demonstration School(Secondary Division) in Thailand. Students' creative thinking abilities were assessed with the with the 24-item GuilfordCreative Thinking Questionnaire (GCTQ). Students' perceptions of their physics classroom learning environments were obtained using the 35-item Physics Laboratory Environment Inventory (PLEI). Associations between students' learning achievements of their post-test assessment indicated that 26% of the coefficient predictive value (R2) of the variance in students' creative thinking abilities was attributable to their perceptions for the GCTQ. Students' learning outcomes of their post-test assessment, the R2value indicated that 35% of the variances for the PLEI, the R2value indicated that 63% of the variances for their creative thinking abilities were attributable to theiraffecting the activity-based on learning for fostering their creative thinking are provided.

  12. Audiovisual physics reports: students' video production as a strategy for the didactic laboratory

    NASA Astrophysics Data System (ADS)

    Vinicius Pereira, Marcus; de Souza Barros, Susana; de Rezende Filho, Luiz Augusto C.; Fauth, Leduc Hermeto de A.

    2012-01-01

    Constant technological advancement has facilitated access to digital cameras and cell phones. Involving students in a video production project can work as a motivating aspect to make them active and reflective in their learning, intellectually engaged in a recursive process. This project was implemented in high school level physics laboratory classes resulting in 22 videos which are considered as audiovisual reports and analysed under two components: theoretical and experimental. This kind of project allows the students to spontaneously use features such as music, pictures, dramatization, animations, etc, even when the didactic laboratory may not be the place where aesthetic and cultural dimensions are generally developed. This could be due to the fact that digital media are more legitimately used as cultural tools than as teaching strategies.

  13. Computer-simulated laboratory explorations for middle school life, earth, and physical Science

    NASA Astrophysics Data System (ADS)

    von Blum, Ruth

    1992-06-01

    Explorations in Middle School Science is a set of 72 computer-simulated laboratory lessons in life, earth, and physical Science for grades 6 9 developed by Jostens Learning Corporation with grants from the California State Department of Education and the National Science Foundation.3 At the heart of each lesson is a computer-simulated laboratory that actively involves students in doing science improving their: (1) understanding of science concepts by applying critical thinking to solve real problems; (2) skills in scientific processes and communications; and (3) attitudes about science. Students use on-line tools (notebook, calculator, word processor) to undertake in-depth investigations of phenomena (like motion in outer space, disease transmission, volcanic eruptions, or the structure of the atom) that would be too difficult, dangerous, or outright impossible to do in a “live” laboratory. Suggested extension activities lead students to hands-on investigations, away from the computer. This article presents the underlying rationale, instructional model, and process by which Explorations was designed and developed. It also describes the general courseware structure and three lesson's in detail, as well as presenting preliminary data from the evaluation. Finally, it suggests a model for incorporating technology into the science classroom.

  14. Merging physical parameters and laboratory subjective ratings for the soundscape assessment of urban squares.

    PubMed

    Brambilla, Giovanni; Maffei, Luigi; Di Gabriele, Maria; Gallo, Veronica

    2013-07-01

    An experimental study was carried out in 20 squares in the center of Rome, covering a wide range of different uses, sonic environments, geometry, and architectural styles. Soundwalks along the perimeter of each square were performed during daylight and weekdays taking binaural and video recordings, as well as spot measurements of illuminance. The cluster analysis performed on the physical parameters, not only acoustic, provided two clusters that are in satisfactory agreement with the "a priori" classification. Applying the principal component analysis (PCA) to five physical parameters, two main components were obtained which might be associated to two environmental features, namely, "chaotic/calm" and "open/enclosed." On the basis of these two features, six squares were selected for the laboratory audio-video tests where 32 subjects took part filling in a questionnaire. The PCA performed on the subjective ratings on the sonic environment showed two main components which might be associated to two emotional meanings, namely, "calmness" and "vibrancy." The linear regression modeling between five objective parameters and the mean value of subjective ratings on chaotic/calm and enclosed/open attributes showed a good correlation. Notwithstanding these interesting results being limited to the specific data set, it is worth pointing out that the complexity of the soundscape quality assessment can be more comprehensively examined merging the field measurements of physical parameters with the subjective ratings provided by field and/or laboratory tests.

  15. Low Energy Neutrino Physics at the Kuo-Sheng Reactor Laboratory in Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, S.-T.

    2006-11-17

    A laboratory has been constructed by the TEXONO Collaboration at the Kuo-Sheng Reactor Power Plant in Taiwan to study low energy neutrino physics. A limit on the neutrino magnetic moment of {mu}{nu}({nu}-bare) < 7.2 x 10-11 {mu}B at 90% confidence level has been achieved from measurements with a high-purity germanium detector, as well as the electron neutrinos ({nu}{sub e}) produced from nuclear power reactors has been studied. Other research program at Kuo-Sheng are surveyed.

  16. Oak Ridge National Laboratory`s (ORNL) ecological and physical science study center: A hands-on science program for K-12 students

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, S.P.

    1994-12-31

    In our tenth year of educational service and outreach, Oak Ridge National Laboratory`s Ecological and Physical Science Study Center (EPSSC) provides hands-on, inquiry-based science activities for area students and teachers. Established in 1984, the EPSSC now hosts over 20,000 student visits. Designed to foster a positive attitude towards science, each unit includes activities which reinforce the science concept being explored. Outdoor science units provide field experience at the Department of Energy`s Oak Ridge National Environmental Research Park and outreach programs are offered on-site in area schools. Other programs are offered as extensions of the EPSSC core programs, including on-site studentmore » science camps, all-girl programs, outreach science camps, student competitions, teacher in-service presentations and teacher workshops.« less

  17. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    NASA Astrophysics Data System (ADS)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  18. Twenty years of space radiation physics at the BNL AGS and NASA Space Radiation Laboratory.

    PubMed

    Miller, J; Zeitlin, C

    2016-06-01

    Highly ionizing atomic nuclei HZE in the GCR will be a significant source of radiation exposure for humans on extended missions outside low Earth orbit. Accelerators such as the LBNL Bevalac and the BNL AGS, designed decades ago for fundamental nuclear and particle physics research, subsequently found use as sources of GCR-like particles for ground-based physics and biology research relevant to space flight. The NASA Space Radiation Laboratory at BNL was constructed specifically for space radiation research. Here we review some of the space-related physics results obtained over the first 20 years of NASA-sponsored research at Brookhaven. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  19. Lysozyme Thermal Denaturation and Self-Interaction: Four Integrated Thermodynamic Experiments for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Schwinefus, Jeffrey J.; Schaefle, Nathaniel J.; Muth, Gregory W.; Miessler, Gary L.; Clark, Christopher A.

    2008-01-01

    As part of an effort to infuse our physical chemistry laboratory with biologically relevant, investigative experiments, we detail four integrated thermodynamic experiments that characterize the denaturation (or unfolding) and self-interaction of hen egg white lysozyme as a function of pH and ionic strength. Students first use Protein Explorer to…

  20. The Rhetoric of Physics: AN Ethnography of the Research and Writing Processes in a Physics Laboratory.

    NASA Astrophysics Data System (ADS)

    Graves, Heather Ann Brodie

    1992-01-01

    This dissertation explores the extent to which rhetoric plays a role in the research and writing processes of physicists. It seeks to join the on-going conversation in the rhetoric of inquiry about the ways in which rhetorical forces shape all knowledge systems. Based on data collected during a six-month ethnography in a thin films laboratory, this study argues that these physicists use rhetoric in all stages of the knowledge creation process. After following the experimental process through all its stages from the inception of an experiment through to publication, this study maps out the types of heuristic devices employed by the physicists as they analyzed, interpreted, and presented their research data in a persuasive scientific article. In light of the insights gained from studying the dynamic interactions between physicists, this dissertation also comments on the theoretical and philosophical debates under discussion in the rhetoric of inquiry and the rhetoric of science. It examines current theories of language (as expressed by rhetoricians, critical theorists, and the physicists in this laboratory) to explore the relationship between reality and language, the role that rhetoric plays in knowledge creation in physics, and the ways in which reality and knowledge may be socially constructed. It concludes that these physicists use rhetorical invention strategies to interpret and present their data. It also argues that scientific knowledge is subject to rhetorical forces because it deals with contingent affairs--phenomena about which scientists advance propositions which appear to be true but about which there is no way to gain absolute certainty or truth. Finally, it concludes that rhetoric both is and is not epistemic in the physics research studied here, and it argues that instead of asking "Is rhetoric epistemic?" perhaps we might shift our attention to inquiring "When is rhetoric epistemic?".

  1. Through Microgravity and Towards the Stars: Microgravity and Strategic Research at Marshall's Biological and Physical Space Research Laboratory

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    2003-01-01

    The Microgravity and Strategic research at Marshall s Biological and Physical Space Research Laboratory will be reviewed. The environment in orbit provides a unique opportunity to study Materials Science and Biotechnology in the absence of sedimentation and convection. There are a number of peer-selected investigations that have been selected to fly on the Space Station that have been conceived and are led by Marshall s Biological and Physical Research Laboratory s scientists. In addition to Microgravity research the Station will enable research in "Strategic" Research Areas that focus on enabling humans to live, work, and explore the solar system safely. New research in Radiation Protection, Strategic Molecular Biology, and In-Space Fabrication will be introduced.

  2. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V. Finley

    2000-03-06

    The results of the 1998 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1998. One significant initiative is the Integrated Safety Management (ISM) program that embraces environment, safety, and health principles as one.

  3. Establishment of Traceability of Reference Grade Hydrometers at National Physical Laboratory, India (npli)

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Kumar, Harish; Mandal, Goutam; Das, M. B.; Sharma, D. C.

    The present paper discusses the establishment of traceability of reference grade hydrometers at National Physical Laboratory, India (NPLI). The reference grade hydrometers are calibrated and traceable to the primary solid density standard. The calibration has been done according to standard procedure based on Cuckow's Method and the reference grade hydrometers calibrated covers a wide range. The uncertainty of the reference grade hydrometers has been computed and corrections are also calculated for the scale readings, at which observations are taken.

  4. Interpreting Assessments of Student Learning in the Introductory Physics Classroom and Laboratory

    NASA Astrophysics Data System (ADS)

    Dowd, Jason Edward

    Assessment is the primary means of feedback between students and instructors. However, to effectively use assessment, the ability to interpret collected information is essential. We present insights into three unique, important avenues of assessment in the physics classroom and laboratory. First, we examine students' performance on conceptual surveys. The goal of this research project is to better utilize the information collected by instructors when they administer the Force Concept Inventory (FCI) to students as a pre-test and post-test of their conceptual understanding of Newtonian mechanics. We find that ambiguities in the use of the normalized gain, g, may influence comparisons among individual classes. Therefore, we propose using stratagrams, graphical summaries of the fraction of students who exhibit "Newtonian thinking," as a clearer, more informative method of both assessing a single class and comparing performance among classes. Next, we examine students' expressions of confusion when they initially encounter new material. The goal of this research project is to better understand what such confusion actually conveys to instructors about students' performance and engagement. We investigate the relationship between students' self-assessment of their confusion over material and their performance, confidence in reasoning, pre-course self-efficacy and several other measurable characteristics of engagement. We find that students' expressions of confusion are negatively related to initial performance, confidence and self-efficacy, but positively related to final performance when all factors are considered together. Finally, we examine students' exhibition of scientific reasoning abilities in the instructional laboratory. The goal of this research project is to explore two inquiry-based curricula, each of which proposes a different degree of scaffolding. Students engage in sequences of these laboratory activities during one semester of an introductory physics

  5. Experimenting in a constructivist high school physics laboratory

    NASA Astrophysics Data System (ADS)

    Roth, Wolff-Michael

    Although laboratory activities have long been recognized for their potential to facilitate the learning of science concepts and skills, this potential has yet to be realized. To remediate this problem, researchers have called for constructivist learning environments in which students can pursue open inquiry and frame their own research problems. The present study was designed to describe and understand students' experimenting and problem solving in such an environment. An interpretive research methodology was adopted for the construction of meaning from the data. The data sources included videotapes, their transcripts, student laboratory reports and reflections, interviews with the students, and the teacher's course outline and reflective notes. Forty-six students from three sections of an introductory physics course taught at a private school for boys participated in the study. This article shows the students' remarkable ability and willingness to generate research questions and to design and develop apparatus for data collection. In their effort to frame research questions, students often used narrative explanations to explore and think about the phenomena to be studied. In some cases, blind alleys, students framed research questions and planned experiments that did not lead to the expected results. We observed a remarkable flexibility to deal with problems that arose during the implementation of their plans in the context of the inquiry. These problems, as well as their solutions and the necessary decision-making processes, were characterized by their situated nature. Finally, students pursued meaningful learning during the interpretation of data and graphs to arrive at reasonable answers of their research questions. We concluded that students should be provided with problem-rich learning environments in which they learn to investigate phenomena of their own interest and in which they can develop complex problem-solving skills.

  6. A laboratory exercise using a physical model for demonstrating countercurrent heat exchange.

    PubMed

    Loudon, Catherine; Davis-Berg, Elizabeth C; Botz, Jason T

    2012-03-01

    A physical model was used in a laboratory exercise to teach students about countercurrent exchange mechanisms. Countercurrent exchange is the transport of heat or chemicals between fluids moving in opposite directions separated by a permeable barrier (such as blood within adjacent blood vessels flowing in opposite directions). Greater exchange of heat or chemicals between the fluids occurs when the flows are in opposite directions (countercurrent) than in the same direction (concurrent). When a vessel loops back on itself, countercurrent exchange can occur between the two arms of the loop, minimizing loss or uptake at the bend of the loop. Comprehension of the physical principles underlying countercurrent exchange helps students to understand how kidneys work and how modifications of a circulatory system can influence the movement of heat or chemicals to promote or minimize exchange and reinforces the concept that heat and chemicals move down their temperature or concentration gradients, respectively. One example of a well-documented countercurrent exchanger is the close arrangement of veins and arteries inside bird legs; therefore, the setup was arranged to mimic blood vessels inside a bird leg, using water flowing inside tubing as a physical proxy for blood flow within blood vessels.

  7. Ab Initio Determinations of Photoelectron Spectra Including Vibronic Features: An Upper-Level Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Lord, Richard L.; Davis, Lisa; Millam, Evan L.; Brown, Eric; Offerman, Chad; Wray, Paul; Green, Susan M. E.

    2008-01-01

    We present a first-principles determination of the photoelectron spectra of water and hypochlorous acid as a laboratory exercise accessible to students in an undergraduate physical chemistry course. This paper demonstrates the robustness and user-friendliness of software developed for the Franck-Condon factor calculation. While the calculator is…

  8. Comparison of the Physical and Chemical Properties of Laboratory and Field-Aged Biochars.

    PubMed

    Bakshi, Santanu; Aller, Deborah M; Laird, David A; Chintala, Rajesh

    2016-09-01

    The long-term impact of biochar on soil properties and agronomic outcomes is influenced by changes in the physical and chemical properties of biochars that occur with time (aging) in soil environments. Fresh biochars, however, are often used in studies because aged biochars are generally unavailable. Therefore, a need exists to develop a method for rapid aging of biochars in the laboratory. The objectives of this study were to compare the physicochemical properties of fresh, laboratory-aged (LA), and field-aged (FA) (≥3 yr) biochars and to assess the appropriateness of a laboratory aging procedure that combines acidification, oxidation, and incubations as a mimic to field aging in neutral or acidic soil environments. Twenty-two biochars produced by fast and slow pyrolysis, and gasification techniques from five different biomass feedstocks (hardwood, corn stover, soybean stover, macadamia nut shells, and switchgrass) were studied. In general, both laboratory and field aging caused similar increases in ash-free volatile matter (% w/w), cation and anion exchange capacities, specific surface area, and modifications in oxygen-containing surface functional groups of the biochars. However, ash content increased for FA (18-195%) and decreased for LA (22-74%) biochars, and pH decreased to a greater extent for LA (2.8-6.7 units) than for FA (1.6-3.8 units) biochars. The results demonstrate that the proposed laboratory aging procedure is effective for predicting the direction of changes in biochar properties on field aging. However, in the future we recommend using a less aggressive acid treatment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Perceptions among Occupational and Physical Therapy Students of a Nontraditional Methodology for Teaching Laboratory Gross Anatomy

    ERIC Educational Resources Information Center

    Thomas, K. Jackson; Denham, Bryan E.; Dinolfo, John D.

    2011-01-01

    This pilot study was designed to assess the perceptions of physical therapy (PT) and occupational therapy (OT) students regarding the use of computer-assisted pedagogy and prosection-oriented communications in the laboratory component of a human anatomy course at a comprehensive health sciences university in the southeastern United States. The…

  10. Teaching a Chemistry MOOC with a Virtual Laboratory: Lessons Learned from an Introductory Physical Chemistry Course

    ERIC Educational Resources Information Center

    O'Malley, Patrick J.; Agger, Jonathan R.; Anderson, Michael W.

    2015-01-01

    An analysis is presented of the experience and lessons learned of running a MOOC in introductory physical chemistry. The course was unique in allowing students to conduct experimental measurements using a virtual laboratory constructed using video and simulations. A breakdown of the student background and motivation for taking the course is…

  11. A Physics Laboratory Course Designed Using Problem-Based Learning for Prospective Physics Teachers

    ERIC Educational Resources Information Center

    Ünal, Cezmi; Özdemir, Ömer Faruk

    2013-01-01

    In general, laboratories are exercises with a primary focus on the verification of established laws and principles, or on the discovery of objectively knowable facts. In laboratories, students gather data without comprehending the meaning of their actions. The cognitive demand of laboratory tasks is reduced to a minimal level. To prevent these…

  12. School physics teacher class management, laboratory practice, student engagement, critical thinking, cooperative learning and use of simulations effects on student performance

    NASA Astrophysics Data System (ADS)

    Riaz, Muhammad

    The purpose of this study was to examine how simulations in physics class, class management, laboratory practice, student engagement, critical thinking, cooperative learning, and use of simulations predicted the percentage of students achieving a grade point average of B or higher and their academic performance as reported by teachers in secondary school physics classes. The target population consisted of secondary school physics teachers who were members of Science Technology, Engineeering and,Mathematics Teachers of New York City (STEMteachersNYC) and American Modeling Teachers Association (AMTA). They used simulations in their physics classes in the 2013 and 2014 school years. Subjects for this study were volunteers. A survey was constructed based on a literature review. Eighty-two physics teachers completed the survey about instructional practice in physics. All respondents were anonymous. Classroom management was the only predictor of the percent of students achieving a grade point average of B or higher in high school physics class. Cooperative learning, use of simulations, and student engagement were predictors of teacher's views of student academic performance in high school physics class. All other variables -- class management, laboratory practice, critical thinking, and teacher self-efficacy -- were not predictors of teacher's views of student academic performance in high school physics class. The implications of these findings were discussed and recommendations for physics teachers to improve student learning were presented.

  13. Determining the Quantum Efficiency for Activation of an Organometallic Photoinitiator for Cationic Polymerization: An Experiment for the Physical or Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hayes, David M.; Mahar, Maura; Schnabel, R. Chris; Shah, Paras; Lees, Alistair J.; Jakubek, Vladimir

    2007-01-01

    We present a new laboratory experiment on the photochemistry of organometallic [eta][superscript 5],[eta][superscript 6]-mixed-sandwich compounds, which is suitable for both the physical chemistry and inorganic chemistry laboratory. Specifically, students use 1,10-phenanthroline to trap the intermediate formed when…

  14. A Good Name and Great Riches: Rebranding Solid State Physics for the National Laboratories

    NASA Astrophysics Data System (ADS)

    Martin, Joseph

    2012-03-01

    In 1943 Oliver Buckley, lamenting the inadequacy of term ``physics'' to evoke what physicists did, quoted the proverb, ``A good name is rather to be chosen than great riches.'' Some forty years later, solid state physicists confronted similar discontent with their name, precipitating the rise of the appellation ``condensed matter physics.'' Ostensibly a rebranding of a well-established field, the change signaled deeper conceptual and institutional realignment. Whereas ``solid state'' emerged in the 1940s in the service of institutional aims, ``condensed matter'' more accurately captured a distinct set of theoretical and experimental approaches. Reimagining the field around core conceptual approaches set condensed matter apart from the inchoate field of materials science, which subsumed a growing proportion of solid state funding and personnel through the 1980s. Federally funded research installations were the source of ``great riches'' for scientific research. The DOE National Laboratory System and the DARPA network of Interdisciplinary Laboratories, given their responsiveness to shifts in national funding priorities, provide a sensitive historical instrument through which to trace the transition from solid state to condensed matter. The reorganization of solid state in response to the evolution of national priorities and funding practices precipitated a sharpening of the field's intellectual mission. At the same time, it reflected the difficulties solid state faced articulating its intellectual--as opposed to technological--merit. The proverb continues, `` and loving favor rather than silver and gold.'' The adoption of a name that emphasized intellectual cohesion and associated social esteem exposed the growing tension between technology-oriented national funding goals for materials research and condensed matter physics' ascendant intellectual identity.

  15. [How to Interpret and Use Routine Laboratory Data--Our Methods to Interpret Routine Laboratory Data--Chairmen's Introductory Remarks].

    PubMed

    Honda, Takayuki; Tozuka, Minoru

    2015-09-01

    In the reversed clinicopathological conference (R-CPC), three specialists in laboratory medicine interpreted routine laboratory data independently in order to understand the detailed state of a patient. R-CPC is an educational method to use laboratory data appropriately, and it is also important to select differential diagnoses in a process of clinical reasoning in addition to the present illness and physical examination. Routine laboratory tests can be performed repeatedly at a relatively low cost, and their time-series analysis can be performed. Interpretation of routine laboratory data is almost the same as taking physical findings. General findings are initially checked and then the state of each organ is examined. Although routine laboratory tests cost little, we can gain much more information from them about the patient than physical examinations.

  16. Whole Class Laboratories: More Examples

    ERIC Educational Resources Information Center

    Kouh, Minjoon

    2016-01-01

    Typically, introductory physics courses are taught with a combination of lectures and laboratories in which students have opportunities to discover the natural laws through hands-on activities in small groups. This article reports the use of Google Drive, a free online document-sharing tool, in physics laboratories for pooling experimental data…

  17. PROPOSAL FOR AN EXPERIMENT PROGRAM IN NEUTRINO PHYSICS AND PROTON DECAY IN THE HOMESTAKE LABORATORY.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DIWAN, M.; KETTELL, S.; LITTENBERG, W.

    2006-07-24

    This report is intended to describe first, the principal physics reasons for an ambitious experimental program in neutrino physics and proton decay based on construction of a series of massive water Cherenkov detectors located deep underground (4850 ft) in the Homestake Mine of the South Dakota Science and Technology Authority (SDSTA); and second, the engineering design of the underground chambers to house the Cherenkov detector modules; and third, the conceptual design of the water Cherenkov detectors themselves for this purpose. In this proposal we show the event rates and physics sensitivity for beams from both FNAL (1300 km distant frommore » Homestake) and BNL (2540 km distant from Homestake). The program we propose will benefit with a beam from FNAL because of the high intensities currently available from the Main Injector with modest upgrades. The possibility of tuning the primary proton energy over a large range from 30 to 120 GeV also adds considerable flexibility to the program from FNAL. On the other hand the beam from BNL over the larger distance will produce very large matter effects, and consequently a hint of new physics (beyond CP violation) can be better tested with that configuration. In this proposal we focus on the CP violation physics. Included in this document are preliminary costs and time-to-completion estimates which have been exposed to acknowledged experts in their respective areas. This presentation is not, however, to be taken as a technical design report with the extensive documentation and contingency costs that a TDR usually entails. Nevertheless, some contingency factors have been included in the estimates given here. The essential ideas expressed here were first laid out in a letter of intent to the interim director of the Homestake Laboratory on July 26, 2001. Since that time, the prospect of a laboratory in the Homestake Mine has been realized, and the design of a long baseline neutrino experiment has been refined. The

  18. Phase B-final definition and preliminary design study for the initial Atmospheric Cloud Physics Laboratory (ACPL). A spacelab mission payload

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Progress in the development of the Atmospheric Cloud Physics Laboratory is outlined. The fluid subsystem, aerosol generator, expansion chamber, optical system, control systems, and software are included.

  19. Tiger Team Assessment of the Princeton Plasma Physics Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-03-01

    This report documents the Tiger Team Assessment of the Princeton Plasma Physics Laboratory (PPPL) conducted from February 11 to March 12, 1991. The PPPL is operated for the US Department of Energy (DOE) by Princeton University. The assessment was conducted under the auspices of the Headquarters, DOE, Office of Special Projects which is under the Assistant Secretary for Environment, Safety and Health. Activities of the Tiger Team Assessment resulted in identification of compliance findings or concerns and noteworthy practices and an analysis as to the root causes for noncompliance. The PPPL Tiger Team Assessment is one component of a larger,more » comprehensive DOE Tiger Team Assessment program for DOE facilities that will eventually encompass over 100 of the Department's operating facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements; root causes for noncompliances; adequacy of DOE and contractor ES H management programs; response actions to address the identified problems areas; and DOE-wide ES H compliance trends and root causes.« less

  20. Final definition and preliminary design study for the initial atmospheric cloud physics laboratory, a spacelab mission payload

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Atmospheric Cloud Physics Laboratory (ACPL) task flow is shown. Current progress is identified. The requirements generated in task 1 have been used to formulate an initial ACPL baseline design concept. ACPL design/functional features are illustrated. A timetable is presented of the routines for ACPL integration with the spacelab system.

  1. Role of Laboratory Plasma Experiments in exploring the Physics of Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Tripathi, S.

    2017-12-01

    Solar eruptive events are triggered over a broad range of spatio-temporal scales by a variety of fundamental processes (e.g., force-imbalance, magnetic-reconnection, electrical-current driven instabilities) associated with arched magnetoplasma structures in the solar atmosphere. Contemporary research on solar eruptive events is at the forefront of solar and heliospheric physics due to its relevance to space weather. Details on the formation of magnetized plasma structures on the Sun, storage of magnetic energy in such structures over a long period (several Alfven transit times), and their impulsive eruptions have been recorded in numerous observations and simulated in computer models. Inherent limitations of space observations and uncontrolled nature of solar eruptions pose significant challenges in testing theoretical models and developing the predictive capability for space-weather. The pace of scientific progress in this area can be significantly boosted by tapping the potential of appropriately scaled laboratory plasma experiments to compliment solar observations, theoretical models, and computer simulations. To give an example, recent results from a laboratory plasma experiment on arched magnetic flux ropes will be presented and future challenges will be discussed. (Work supported by National Science Foundation, USA under award number 1619551)

  2. BOOK REVIEW: Introduction to Plasma Physics: With Space and Laboratory Applications

    NASA Astrophysics Data System (ADS)

    Browning, P. K.

    2005-07-01

    A new textbook on plasma physics must be very welcome, as this will encourage the teaching of courses on the subject. This book is written by two experts in their fields, and is aimed at advanced undergraduate and postgraduate courses. There are of course many other plasma physics textbooks available. The niche which this particular book fills is really defined by its subtitle: that is, `with space and laboratory applications'. This differs from most other books which tend to emphasise either space or fusion applications (but not both) or to concentrate only on general theory. Essentially, the emphasis here is on fundamental plasma physics theory, but applications are given from time to time. For example, after developing Alfvén wave theory, observations of Alfvén waves in the solar wind and in the Jovian magnetosphere are presented; whilst ion acoustic cylcotron waves are illustrated by data from a laboratory Q machine. It is fair to say that examples from space seem to predominate. Nevertheless, the approach of including a broad range of applications is very good from an educational point of view, and this should help to train a generation of students with a grasp of fundamental plasma physics who can work in a variety of research fields. The subject coverage of the book is fairly conventional and there are no great surprises. It begins, inevitably, with a discussion of plasma parameters (Debye length etc) and of single particle motions. Both kinetic theory and magnetohydrodynamics are introduced. Waves are quite extensively discussed in several chapters, including both cold and hot plasmas, magnetised and unmagnetised. Nonlinear effects—a large subject!—are briefly discussed. A final chapter deals with collisions in fully ionised plasmas. The choice of contents of a textbook is always something of a matter of personal choice. It is easy to complain about what has been left out, and everyone has their own favourite topics. With that caveat, I would question

  3. Oral Anatomy Laboratory Examinations in a Physical Therapy Program

    ERIC Educational Resources Information Center

    Fabrizio, Philip A.

    2013-01-01

    The process of creating and administering traditional tagged anatomy laboratory examinations is time consuming for instructors and limits laboratory access for students. Depending on class size and the number of class, sections, creating, administering, and breaking down a tagged laboratory examination may involve one to two eight-hour days.…

  4. Interactions between spacecraft motions and the atmospheric cloud physics laboratory experiments

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.

    1981-01-01

    In evaluating the effects of spacecraft motions on atmospheric cloud physics laboratory (ACPL) experimentation, the motions of concern are those which will result in the movement of the fluid or cloud particles within the experiment chambers. Of the various vehicle motions and residual forces which can and will occur, three types appear most likely to damage the experimental results: non-steady rotations through a large angle, long-duration accelerations in a constant direction, and vibrations. During the ACPL ice crystal growth experiments, the crystals are suspended near the end of a long fiber (20 cm long by 200 micron diameter) of glass or similar material. Small vibrations of the supported end of the fiber could cause extensive motions of the ice crystal, if care is not taken to avoid this problem.

  5. A study of social interaction and teamwork in reformed physics laboratories

    NASA Astrophysics Data System (ADS)

    Gresser, Paul W.

    It is widely accepted that, for many students, learning can be accomplished most effectively through social interaction with peers, and there have been many successes in using the group environment to improve learning in a variety of classroom settings. What is not well understood, however, are the dynamics of student groups, specifically how the students collectively apprehend the subject matter and share the mental workload. This research examines recent developments of theoretical tools for describing the cognitive states of individual students: associational patterns such as epistemic games and cultural structures such as epistemological framing. Observing small group interaction in authentic classroom situations (labs, tutorials, problem solving) suggests that these tools could be effective in describing these interactions. Though conventional wisdom tells us that groups may succeed where individuals fail, there are many reasons why group work may also run into difficulties, such as a lack or imbalance of knowledge, an inappropriate mix of learning styles, or a destructive power arrangement. This research explores whether or not inconsistent epistemological framing among group members can also be a cause of group failure. Case studies of group interaction in the laboratory reveal evidence of successful groups employing common framing, and unsuccessful groups failing from lack of a shared frame. This study was conducted in a large introductory algebra-based physics course at the University of Maryland, College Park, in a laboratory designed specifically to foster increased student interaction and cooperation. Videotape studies of this environment reveal that productive lab groups coordinate their efforts through a number of locally coherent knowledge-building activities, which are described through the framework of epistemic games. The existence of these epistemic games makes it possible for many students to participate in cognitive activities without a

  6. Assessment of physical activity with the Computer Science and Applications, Inc., accelerometer: laboratory versus field validation.

    PubMed

    Nichols, J F; Morgan, C G; Chabot, L E; Sallis, J F; Calfas, K J

    2000-03-01

    Our purpose was to compare the validity of the Computer Science and Applications, (CSA) Inc., accelerometer in laboratory and field settings and establish CSA count ranges for light, moderate, and vigorous physical activity. Validity was determined in 60 adults during treadmill exercise, using oxygen consumption (VO2) as the criterion measure, while 30 adults walked and jogged outdoors on a 400-m track. The relationship between CSA counts and VO2 was linear (R2 = .89 SEE = 3.72 ml.kg-1.min-1), as was the relationship between velocity and counts in the field (R2 = .89, SEE = 0.89 mi.hr-1). However, significant differences were found (p < .05) between laboratory and field measures of CSA counts for light and vigorous intensity. We conclude that the CSA can be used to quantify walking and jogging outdoors on level ground; however, laboratory equations may not be appropriate for use in field settings, particularly for light and vigorous activity.

  7. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    ERIC Educational Resources Information Center

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…

  8. Computers in the General Physics Laboratory.

    ERIC Educational Resources Information Center

    Preston, Daryl W.; Good, R. H.

    1996-01-01

    Provides ideas and outcomes for nine computer laboratory experiments using a commercial eight-bit analog to digital (ADC) interface. Experiments cover statistics; rotation; harmonic motion; voltage, current, and resistance; ADC conversions; temperature measurement; single slit diffraction; and radioactive decay. Includes necessary schematics. (MVL)

  9. An industrial educational laboratory at Ducati Foundation: narrative approaches to mechanics based upon continuum physics

    NASA Astrophysics Data System (ADS)

    Corni, Federico; Fuchs, Hans U.; Savino, Giovanni

    2018-02-01

    This is a description of the conceptual foundations used for designing a novel learning environment for mechanics implemented as an Industrial Educational Laboratory - called Fisica in Moto (FiM) - at the Ducati Foundation in Bologna. In this paper, we will describe the motivation for and design of the conceptual approach to mechanics used in the lab - as such, the paper is theoretical in nature. The goal of FiM is to provide an approach to the teaching of mechanics based upon imaginative structures found in continuum physics suitable to engineering and science. We show how continuum physics creates models of mechanical phenomena by using momentum and angular momentum as primitive quantities. We analyse this approach in terms of cognitive linguistic concepts such as conceptual metaphor and narrative framing of macroscopic physical phenomena. The model discussed here has been used in the didactical design of the actual lab and raises questions for an investigation of student learning of mechanics in a narrative setting.

  10. 42 CFR 493.1405 - Standard; Laboratory director qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... degree in a chemical, physical, biological, or clinical laboratory science from an accredited institution... Chemistry, the American Board of Bioanalysis, or the American Board of Medical Laboratory Immunology; or (ii...) Have earned a master's degree in a chemical, physical, biological or clinical laboratory science or...

  11. 42 CFR 493.1405 - Standard; Laboratory director qualifications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... degree in a chemical, physical, biological, or clinical laboratory science from an accredited institution... Chemistry, the American Board of Bioanalysis, or the American Board of Medical Laboratory Immunology; or (ii...) Have earned a master's degree in a chemical, physical, biological or clinical laboratory science or...

  12. Predicting Failure Under Laboratory Conditions: Learning the Physics of Slow Frictional Slip and Dynamic Failure

    NASA Astrophysics Data System (ADS)

    Rouet-Leduc, B.; Hulbert, C.; Riviere, J.; Lubbers, N.; Barros, K.; Marone, C.; Johnson, P. A.

    2016-12-01

    Forecasting failure is a primary goal in diverse domains that include earthquake physics, materials science, nondestructive evaluation of materials and other engineering applications. Due to the highly complex physics of material failure and limitations on gathering data in the failure nucleation zone, this goal has often appeared out of reach; however, recent advances in instrumentation sensitivity, instrument density and data analysis show promise toward forecasting failure times. Here, we show that we can predict frictional failure times of both slow and fast stick slip failure events in the laboratory. This advance is made possible by applying a machine learning approach known as Random Forests1(RF) to the continuous acoustic emission (AE) time series recorded by detectors located on the fault blocks. The RF is trained using a large number of statistical features derived from the AE time series signal. The model is then applied to data not previously analyzed. Remarkably, we find that the RF method predicts upcoming failure time far in advance of a stick slip event, based only on a short time window of data. Further, the algorithm accurately predicts the time of the beginning and end of the next slip event. The predicted time improves as failure is approached, as other data features add to prediction. Our results show robust predictions of slow and dynamic failure based on acoustic emissions from the fault zone throughout the laboratory seismic cycle. The predictions are based on previously unidentified tremor-like acoustic signals that occur during stress build up and the onset of macroscopic frictional weakening. We suggest that the tremor-like signals carry information about fault zone processes and allow precise predictions of failure at any time in the slow slip or stick slip cycle2. If the laboratory experiments represent Earth frictional conditions, it could well be that signals are being missed that contain highly useful predictive information. 1Breiman

  13. A computer-managed undergraduate physics laboratory

    NASA Astrophysics Data System (ADS)

    Kalman, C. S.

    1987-01-01

    Seventeen one-semester undergraduate laboratory courses are managed by a microcomputer system at Concordia University. Students may perform experiments at any time during operating hours. The computer administers pre- and post-tests. Considerable savings in manpower costs is achieved. The system also provides many pedagogical advantages.

  14. The impact of educational intervention on physical activity, nutrition and laboratory parameters in type II diabetic patients

    PubMed Central

    Maheri, Aghbabak; Asnaashari, Maryam; Joveini, Hamid; Tol, Azar; Firouzian, Ali Asghar; Rohban, Alireza

    2017-01-01

    Background Diabetes is one of the most common chronic diseases that is now widely spread around the world, and day by day the number of patients is increasing. The purpose of this study was to determine the impact of educational intervention on physical activity, nutrition and laboratory parameters in type 2 diabetic patients. Methods This semi-experimental study was performed from March to October 2015 on 100 patients with type 2 diabetes who referred to the Niknejad health center. The type of sampling was simple random. Data were collected using a questionnaire including demographic questions, assessment of nutritional status and physical activity, history of diabetes, physical measurements and laboratory parameters of patients. Data were analyzed using SPSS 16, and descriptive and analytical tests (paired-samples t-test) and the results were significant at the level of (p<0.05). Results In present study, body measurements, the mean number of units of fruit and vegetable intake per day, type of oil consumption, the mean number of days of fish intake per week or the mean number of days with intense physical activity per week, had no significant difference before and after the intervention, while the variables of FBS level (p<0.003), rate of HbA1c (p<0.027), the mean number of days of fruit intake (p<0.001) and vegetable intake (p<0.037) per week and the mean number of days with moderate physical activity (p<0.03) of patients, had significant difference before and after the intervention. Conclusion According to the findings of this study, to improve BMI, fish intake, type of oil consumption and also increased daily fruit and vegetable intake in these patients, a variety of educational-supportive interventions are recommended. PMID:28607657

  15. Changes in Ultrasonic Velocity from Fluid Substitution, Calculated with Laboratory Methods, Digital Rock Physics, and Biot Theory

    NASA Astrophysics Data System (ADS)

    Goldfarb, E. J.; Ikeda, K.; Tisato, N.

    2017-12-01

    Seismic and ultrasonic velocities of rocks are function of several variables including fluid saturation and type. Understanding the effect of each variable on elastic waves can be valuable when using seismic methods for subsurface modeling. Fluid type and saturation are of specific interest to volcanology, water, and hydrocarbon exploration. Laboratory testing is often employed to understand the effects of fluids on elastic waves. However, laboratory testing is expensive and time consuming. It normally requires cutting rare samples into regular shapes. Fluid injection can also destroy specimens as removing the fluid after testing can prove difficult. Another option is theoretical modeling, which can be used to predict the effect of fluids on elastic properties, but it is often inaccurate. Alternatively, digital rock physics (DRP) can be used to investigate the effect of fluid substitution. DRP has the benefit of being non invasive, as it does not require regular sample shapes or fluid injection. Here, we compare the three methods for dry and saturated Berea sandstone to test the reliability of DRP. First, ultrasonic velocities were obtained from laboratory testing. Second, for comparison, we used a purely theoretical approach - i.e., Hashin-Shtrikman and Biot theory - to estimate the wave speeds at dry and wet conditions. Third, we used DRP. The dry sample was scanned with micro Computed Tomography (µCT), and a three dimensional (3D) array was recorded. We employed a segmentation-less method to convert each 3D array value to density, porosity, elastic moduli, and wave speeds. Wave propagation was simulated numerically at similar frequency as the laboratory. To simulate fluid substitution, we numerically substituted air values for water and repeated the simulation. The results from DRP yielded similar velocities to the laboratory, and accurately predicted the velocity change from fluid substitution. Theoretical modeling could not accurately predict velocity, and

  16. Content Analysis of Online Discussion on a Senior-High-School Discussion Forum of a Virtual Physics Laboratory

    ERIC Educational Resources Information Center

    Guan, Ying-Hua; Tsai, Chin-Chung; Hwang, Fu-Kwun

    2006-01-01

    In this study we content analyzed the online discussion of several senior-high-school groups on a forum of a virtual physics laboratory in Taiwan. The goal of our research was to investigate the nature of non-course-based online discussion and to find out some useful guidelines in developing such discussion forums for learning purposes. We adapted…

  17. Attitudes of Healthcare Students on Gross Anatomy Laboratory Sessions

    ERIC Educational Resources Information Center

    Kawashiro, Yukiko; Anahara, Reiko; Kohno, Toshihiko; Mori, Chisato; Matsuno, Yoshiharu

    2009-01-01

    At Chiba University, gross anatomy laboratory sessions ("laboratories") are required for physical therapy students. Though most physical therapy schools require their students to participate in laboratories so that they will better understand the structure of the human body, few data exist on the value of these laboratories specifically…

  18. Advances in engineering nanometrology at the National Physical Laboratory

    NASA Astrophysics Data System (ADS)

    Leach, Richard K.; Claverley, James; Giusca, Claudiu; Jones, Christopher W.; Nimishakavi, Lakshmi; Sun, Wenjuan; Tedaldi, Matthew; Yacoot, Andrew

    2012-07-01

    The National Physical Laboratory, UK, has been active in the field of engineering nanometrology for a number of years. A summary of progress over the last five years is presented in this paper and the following research projects discussed in detail. (1) Development of an infrastructure for the calibration of instruments for measuring areal surface topography, along with the development of areal software measurement standards. This work comprises the use of the optical transfer function and a technique for the simultaneous measurement of topography and the phase change on reflection, allowing composite materials to be measured. (2) Development of a vibrating micro-CMM probe with isotropic probing reaction and the ability to operate in a non-contact mode. (3) A review of x-ray computed tomography and its use in dimensional metrology. (4) The further development of a metrology infrastructure for atomic force microscopy and the development of an instrument for the measurement of the effect of the probe-surface interaction. (5) Traceable measurement of displacement using optical and x-ray interferometry to picometre accuracy. (6) Development of an infrastructure for low-force metrology, including the development of appropriate transfer artefacts.

  19. Engineering Laboratory Instruction in Virtual Environment--"eLIVE"

    ERIC Educational Resources Information Center

    Chaturvedi, Sushil; Prabhakaran, Ramamurthy; Yoon, Jaewan; Abdel-Salam, Tarek

    2011-01-01

    A novel application of web-based virtual laboratories to prepare students for physical experiments is explored in some detail. The pedagogy of supplementing physical laboratory with web-based virtual laboratories is implemented by developing a web-based tool, designated in this work as "eLIVE", an acronym for Engineering Laboratory…

  20. Determining the Transference Number of H[superscript +](aq) by a Modified Moving Boundary Method: A Directed Study for the Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Dabke, Rajeev B.; Gebeyehu, Zewdu; Padelford, Jonathan

    2012-01-01

    A directed study for the undergraduate physical chemistry laboratory for determining the transference number of H[superscript +](aq) using a modified moving boundary method is presented. The laboratory study combines Faraday's laws of electrolysis with mole ratios and the perfect gas equation. The volume of hydrogen gas produced at the cathode is…

  1. Practical Laboratory Planning.

    ERIC Educational Resources Information Center

    Ferguson, W. R.

    This book is intended as a guide for people who are planning chemistry and physics research laboratories. It deals with the importance of effective communication between client and architect, the value of preliminary planning, and the role of the project officer. It also discusses the size and layout of individual laboratories, the design of…

  2. The Exercise Physiology Laboratory--A Source of Health Promotion.

    ERIC Educational Resources Information Center

    Norris, William; Norred, Robert

    1988-01-01

    A visit to the Exercise Physiology Laboratory at the University of Tennessee is part of a physical education class required of all undergraduate students. The laboratory demonstration stimulates student interest and enrollment in physical education. Benefits to students, the laboratory, and the school are described. (MT)

  3. Laboratory Activities for Life Span Motor Development.

    ERIC Educational Resources Information Center

    Haywood, Kathleen M.

    This manual describes motor development laboratory activities to help future physical education teachers observe, assess, measure, and test students' motor skills. A total of 20 laboratory activities are described under five sections geared toward: (1) physical growth and maturation; (2) assessing early motor development; (3) assessing basic motor…

  4. The AAPT Advanced Laboratory Task Force Report

    NASA Astrophysics Data System (ADS)

    Dunham, Jeffrey

    2008-04-01

    In late 2005, the American Association of Physics Teachers (AAPT) assembled a seven-member Advanced Laboratory Task Force^ to recommend ways that AAPT could increase the degree and effectiveness of its interactions with physics teachers of upper-division physics laboratories, with the ultimate goal of improving the teaching of advanced laboratories. The task force completed its work during the first half of 2006 and its recommendations were presented to the AAPT Executive Committee in July 2006. This talk will present the recommendations of the task force and actions taken by AAPT in response to them. The curricular goals of the advanced laboratory course at various institutions will also be discussed. The talk will conclude with an appeal to the APS membership to support ongoing efforts to revitalize advanced laboratory course instruction. ^Members of the Advanced Laboratory Task Force: Van Bistrow, University of Chicago; Bob DeSerio, University of Florida; Jeff Dunham, Middlebury College (Chair); Elizabeth George, Wittenburg University; Daryl Preston, California State University, East Bay; Patricia Sparks, Harvey Mudd College; Gerald Taylor, James Madison University; and David Van Baak, Calvin College.

  5. Scientific Assistant Virtual Laboratory (SAVL)

    NASA Astrophysics Data System (ADS)

    Alaghband, Gita; Fardi, Hamid; Gnabasik, David

    2007-03-01

    The Scientific Assistant Virtual Laboratory (SAVL) is a scientific discovery environment, an interactive simulated virtual laboratory, for learning physics and mathematics. The purpose of this computer-assisted intervention is to improve middle and high school student interest, insight and scores in physics and mathematics. SAVL develops scientific and mathematical imagination in a visual, symbolic, and experimental simulation environment. It directly addresses the issues of scientific and technological competency by providing critical thinking training through integrated modules. This on-going research provides a virtual laboratory environment in which the student directs the building of the experiment rather than observing a packaged simulation. SAVL: * Engages the persistent interest of young minds in physics and math by visually linking simulation objects and events with mathematical relations. * Teaches integrated concepts by the hands-on exploration and focused visualization of classic physics experiments within software. * Systematically and uniformly assesses and scores students by their ability to answer their own questions within the context of a Master Question Network. We will demonstrate how the Master Question Network uses polymorphic interfaces and C# lambda expressions to manage simulation objects.

  6. Effects of physical randomness training on virtual and laboratory golf putting performance in novices.

    PubMed

    Pataky, T C; Lamb, P F

    2018-06-01

    External randomness exists in all sports but is perhaps most obvious in golf putting where robotic putters sink only 80% of 5 m putts due to unpredictable ball-green dynamics. The purpose of this study was to test whether physical randomness training can improve putting performance in novices. A virtual random-physics golf-putting game was developed based on controlled ball-roll data. Thirty-two subjects were assigned a unique randomness gain (RG) ranging from 0.1 to 2.0-times real-world randomness. Putter face kinematics were measured in 5 m laboratory putts before and after five days of virtual training. Performance was quantified using putt success rate and "miss-adjustment correlation" (MAC), the correlation between left-right miss magnitude and subsequent right-left kinematic adjustments. Results showed no RG-success correlation (r = -0.066, p = 0.719) but mildly stronger correlations with MAC for face angle (r = -0.168, p = 0.358) and clubhead path (r = -0.302, p = 0.093). The strongest RG-MAC correlation was observed during virtual training (r = -0.692, p < 0.001). These results suggest that subjects quickly adapt to physical randomness in virtual training, and also that this learning may weakly transfer to real golf putting kinematics. Adaptation to external physical randomness during virtual training may therefore help golfers adapt to external randomness in real-world environments.

  7. Physics Laboratory Investigation of Vocational High School Field Stone and Concrete Construction Techniques in the Central Java Province (Indonesia)

    ERIC Educational Resources Information Center

    Purwandari, Ristiana Dyah

    2015-01-01

    The investigation aims in this study were to uncover the observations of infrastructures and physics laboratory in vocational high school for Stone and Concrete Construction Techniques Expertise Field or Teknik Konstruksi Batu dan Beton (TKBB)'s in Purwokerto Central Java Province, mapping the Vocational High School or Sekolah Menengah Kejuruan…

  8. The Effect of High School Physics Laboratories on Performance in Introductory College Physics

    NASA Astrophysics Data System (ADS)

    Maltese, Adam V.; Tai, Robert H.; Sadler, Philip M.

    2010-05-01

    Laboratory experiences play a substantial role in most high school science courses, and many teachers believe the number of labs they offer is a measure of the quality of their curriculum. While some teachers believe labs are meant to confirm concepts taught during lectures, others feel labs should address students' everyday beliefs about the world. Still other teachers emphasize learning of the scientific method and laboratory techniques. Accordingly, many articles offer advice on "effective" pedagogical practices.2-5

  9. History, Physical Examination, Laboratory Testing, and Emergency Department Ultrasonography for the Diagnosis of Acute Cholecystitis.

    PubMed

    Jain, Ashika; Mehta, Ninfa; Secko, Michael; Schechter, Joshua; Papanagnou, Dimitri; Pandya, Shreya; Sinert, Richard

    2017-03-01

    Acute cholecystitis (AC) is a common differential for patients presenting to the emergency department (ED) with abdominal pain. The diagnostic accuracy of history, physical examination, and bedside laboratory tests for AC have not been quantitatively described. We performed a systematic review to determine the utility of history and physical examination (H&P), laboratory studies, and ultrasonography (US) in diagnosing AC in the ED. We searched medical literature from January 1965 to March 2016 in PubMed, Embase, and SCOPUS using a strategy derived from the following formulation of our clinical question: patients-ED patients suspected of AC; interventions-H&P, laboratory studies, and US findings commonly used to diagnose AC; comparator-surgical pathology or definitive diagnostic radiologic study confirming AC; and outcome-the operating characteristics of the investigations in diagnosing AC were calculated. Sensitivity, specificity, and likelihood ratios (LRs) were calculated using Meta-DiSc with a random-effects model (95% CI). Study quality and risks for bias were assessed using the Quality Assessment Tool for Diagnostic Accuracy Studies. Separate PubMed, Embase, and SCOPUS searches retrieved studies for H&P (n = 734), laboratory findings (n = 74), and US (n = 492). Three H&P studies met inclusion/exclusion criteria with AC prevalence of 7%-64%. Fever had sensitivity ranging from 31% to 62% and specificity from 37% to 74%; positive LR [LR+] was 0.71-1.24, and negative LR [LR-] was 0.76-1.49. Jaundice sensitivity ranged from 11% to 14%, and specificity from 86% to 99%; LR+ was 0.80-13.81, and LR- was 0.87-1.03. Murphy's sign sensitivity was 62% (range = 53%-71%), and specificity was 96% (range = 95%-97%); LR+ was 15.64 (range = 11.48-21.31), and LR- was 0.40 (range = 0.32-0.50). Right upper quadrant pain had sensitivity ranging from 56% to 93% and specificity of 0% to 96%; LR+ ranged from 0.92 to 14.02, and LR- from 0.46 to 7.86. One laboratory study met

  10. Interactive virtual optical laboratories

    NASA Astrophysics Data System (ADS)

    Liu, Xuan; Yang, Yi

    2017-08-01

    Laboratory experiences are essential for optics education. However, college students have limited access to advanced optical equipment that is generally expensive and complicated. Hence there is a need for innovative solutions to expose students to advanced optics laboratories. Here we describe a novel approach, interactive virtual optical laboratory (IVOL) that allows unlimited number of students to participate the lab session remotely through internet, to improve laboratory education in photonics. Although students are not physically conducting the experiment, IVOL is designed to engage students, by actively involving students in the decision making process throughout the experiment.

  11. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors.

    PubMed

    Chowdhury, Enhad A; Western, Max J; Nightingale, Thomas E; Peacock, Oliver J; Thompson, Dylan

    2017-01-01

    Wearable physical activity monitors are growing in popularity and provide the opportunity for large numbers of the public to self-monitor physical activity behaviours. The latest generation of these devices feature multiple sensors, ostensibly similar or even superior to advanced research instruments. However, little is known about the accuracy of their energy expenditure estimates. Here, we assessed their performance against criterion measurements in both controlled laboratory conditions (simulated activities of daily living and structured exercise) and over a 24 hour period in free-living conditions. Thirty men (n = 15) and women (n = 15) wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch and Fitbit Charge HR), an accelerometry-only device as a comparison (Jawbone UP24) and validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated Actiheart™). During discrete laboratory activities when compared against indirect calorimetry, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was less consistent at measurement of discrete activities, but produced similar free-living estimates to the Apple Watch. Both these devices underestimated free-living energy expenditure (-394 kcal/d and -405 kcal/d, respectively; P<0.01). The multi-sensor Microsoft Band and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d, respectively; P<0.01). None of the consumer devices were deemed equivalent to the reference method for daily energy expenditure. For all devices, there was a tendency for negative bias with greater daily energy expenditure. No consumer monitors performed as well as the research-grade devices although in some (but not all) cases, estimates were close to criterion measurements. Thus, whilst industry-led innovation has improved the accuracy of consumer monitors, these devices

  12. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors

    PubMed Central

    Chowdhury, Enhad A.; Western, Max J.; Nightingale, Thomas E.; Peacock, Oliver J.; Thompson, Dylan

    2017-01-01

    Wearable physical activity monitors are growing in popularity and provide the opportunity for large numbers of the public to self-monitor physical activity behaviours. The latest generation of these devices feature multiple sensors, ostensibly similar or even superior to advanced research instruments. However, little is known about the accuracy of their energy expenditure estimates. Here, we assessed their performance against criterion measurements in both controlled laboratory conditions (simulated activities of daily living and structured exercise) and over a 24 hour period in free-living conditions. Thirty men (n = 15) and women (n = 15) wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch and Fitbit Charge HR), an accelerometry-only device as a comparison (Jawbone UP24) and validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated Actiheart™). During discrete laboratory activities when compared against indirect calorimetry, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was less consistent at measurement of discrete activities, but produced similar free-living estimates to the Apple Watch. Both these devices underestimated free-living energy expenditure (-394 kcal/d and -405 kcal/d, respectively; P<0.01). The multi-sensor Microsoft Band and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d, respectively; P<0.01). None of the consumer devices were deemed equivalent to the reference method for daily energy expenditure. For all devices, there was a tendency for negative bias with greater daily energy expenditure. No consumer monitors performed as well as the research-grade devices although in some (but not all) cases, estimates were close to criterion measurements. Thus, whilst industry-led innovation has improved the accuracy of consumer monitors, these devices

  13. Computer soundcard as an AC signal generator and oscilloscope for the physics laboratory

    NASA Astrophysics Data System (ADS)

    Sinlapanuntakul, Jinda; Kijamnajsuk, Puchong; Jetjamnong, Chanthawut; Chotikaprakhan, Sutharat

    2018-01-01

    The purpose of this paper is to develop both an AC signal generator and a dual-channel oscilloscope based on standard personal computer equipped with sound card as parts of the laboratory of the fundamental physics and the introduction to electronics classes. The setup turns the computer into the two channel measured device which can provides sample rate, simultaneous sampling, frequency range, filters and others essential capabilities required to perform amplitude, phase and frequency measurements of AC signal. The AC signal also generate from the same computer sound card output simultaneously in any waveform such as sine, square, triangle, saw-toothed pulsed, swept sine and white noise etc. These can convert an inexpensive PC sound card into powerful device, which allows the students to measure physical phenomena with their own PCs either at home or at university attendance. A graphic user interface software was developed for control and analysis, including facilities for data recording, signal processing and real time measurement display. The result is expanded utility of self-learning for the students in the field of electronics both AC and DC circuits, including the sound and vibration experiments.

  14. How can laboratory plasma experiments contribute to space and &astrophysics?

    NASA Astrophysics Data System (ADS)

    Yamada, M.

    Plasma physics plays key role in a wide range of phenomena in the universe, from laboratory plasmas to the magnetosphere, the solar corona, and to the tenuous interstellar and intergalactic gas. Despite the huge difference in physical scales, there are striking similarities in plasma behavior of laboratory and space plasmas. Similar plasma physics problems have been investigated independently by both laboratory plasma physicists and astrophysicists. Since 1991, cross fertilization has been increased among laboratory plasma physicists and space physicists through meeting such as IPELS [Interrelationship between Plasma Experiments in the Laboratory and Space] meeting. The advances in laboratory plasma physics, along with the recent surge of astronomical data from satellites, make this moment ripe for research collaboration to further advance plasma physics and to obtain new understanding of key space and astrophysical phenomena. The recent NRC review of astronomy and astrophysics notes the benefit that can accrue from stronger connection to plasma physics. The present talk discusses how laboratory plasma studies can contribute to the fundamental understandings of the space and astrophysical phenomena by covering common key physics topics such as magnetic reconnection, dynamos, angular momentum transport, ion heating, and magnetic self-organization. In particular, it has recently been recognized that "physics -issue- dedicated" laboratory experiments can contribute significantly to the understanding of the fundamental physics for space-astrophysical phenomena since they can create fundamental physics processes in controlled manner and provide well-correlated plasma parameters at multiple plasma locations simultaneously. Such dedicated experiments not only can bring about better understanding of the fundamental physics processes but also can lead to findings of new physics principles as well as new ideas for fusion plasma confinement. Several dedicated experiments have

  15. An investigation of the use of microcomputer-based laboratory simulations in promoting conceptual understanding in secondary physics instruction

    NASA Astrophysics Data System (ADS)

    Tomshaw, Stephen G.

    Physics education research has shown that students bring alternate conceptions to the classroom which can be quite resistant to traditional instruction methods (Clement, 1982; Halloun & Hestenes, 1985; McDermott, 1991). Microcomputer-based laboratory (MBL) experiments that employ an active-engagement strategy have been shown to improve student conceptual understanding in high school and introductory university physics courses (Thornton & Sokoloff, 1998). These (MBL) experiments require a specialized computer interface, type-specific sensors (e.g. motion detectors, force probes, accelerometers), and specialized software in addition to the standard physics experimental apparatus. Tao and Gunstone (1997) have shown that computer simulations used in an active engagement environment can also lead to conceptual change. This study investigated 69 secondary physics students' use of computer simulations of MBL activities in place of the hands-on MBL laboratory activities. The average normalized gain in students' conceptual understanding was measured using the Force and Motion Conceptual Evaluation (FMCE). Student attitudes towards physics and computers were probed using the Views About Science Survey (VASS) and the Computer Attitude Scale (CAS). While it may be possible to obtain an equivalent level of conceptual understanding using computer simulations in combination with an active-engagement environment, this study found no significant gains in students' conceptual understanding ( = -0.02) after they completed a series of nine simulated experiments from the Tools for Scientific Thinking curriculum (Thornton & Sokoloff, 1990). The absence of gains in conceptual understanding may indicate that either the simulations were ineffective in promoting conceptual change or problems with the implementation of the treatment inhibited its effectiveness. There was a positive shift in students' attitudes towards physics in the VASS dimensions of structure and reflective thinking

  16. Solar Cells in the School Physics Laboratory.

    ERIC Educational Resources Information Center

    Mikulski, Kazimeirz

    1996-01-01

    Discusses the goals of experiments which show examples of the use of solar energy on a scale suitable for a school laboratory. Highlights the history of discoveries and developments in photoelectricity. Presents investigations and experiments, that can be performed by students. (JRH)

  17. Recent Science Education Initiatives at the Princeton Plasma Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Zwicker, Andrew; Dominguez, Arturo; Gershman, Sophia; Guilbert, Nick; Merali, Aliya; Ortiz, Deedee

    2013-10-01

    An integrated approach to program development and implementation has significantly enhanced a variety of Science Education initiatives for students and teachers. This approach involves combining the efforts of PPPL scientists, educators, research and education fellows, and collaborating non-profit organizations to provide meaningful educational experiences for students and teachers. Our undergraduate internship program continues to have outstanding success, with 72% of our participants going to graduate school and 45% concentrating in plasma physics. New partnerships have allowed us to increase the number of underrepresented students participating in mentored research opportunities. The number of participants in our Young Women's Conference increases significantly each year. Our Plasma Camp workshop, now in its 15th year, recruits outstanding teachers from around the country to create new plasma-centered curricula. Student research in the Science Education Laboratory concentrates on the development of a high-fidelity plasma speaker, a particle dropper for a dusty plasma experiment, microplasmas along liquid surfaces for a variety of applications, an Internet-controlled DC glow discharge source for students, and a Planeterrella for demonstrating the aurora and other space weather phenomenon for the general public.

  18. Inquiring Scaffolds in Laboratory Tasks: An Instance of a "Worked Laboratory Guide Effect"?

    ERIC Educational Resources Information Center

    Schmidt-Borcherding, Florian; Hänze, Martin; Wodzinski, Rita; Rincke, Karsten

    2013-01-01

    The study explores if established support devices for paper-pencil problem solving, namely worked examples and incremental scaffolds, are applicable to laboratory tasks. N?=?173 grade eight students solved in dyads a physics laboratory task in one of three conditions. In condition A (unguided problem solving), students were asked to determine the…

  19. A gender analysis of secondary school physics textbooks and laboratory manuals

    NASA Astrophysics Data System (ADS)

    Kostas, Nancy Ann

    Secondary school physics textbooks and laboratory manuals were evaluated for gender balance. The textbooks and manuals evaluated were all current editions available at the time of the study with copyrights of 1988 to 1992. Illustrations, drawings and photographs were judged gender balanced based on the number of men and women, boys and girls shown in both active and passive roles. Illustrations, drawings and photographs were also evaluated by the number of male and female scientists identified by name. The curricular content of the textbooks was analyzed for gender balance by three criteria: the number of named male and female scientists whose accomplishments were described in the text; the number of careers assigned to men and women; and the number of verbal analogies assigned to girls interests, boys interests or neutral interests. The laboratory activities in the manuals were categorized as demonstrations, experiments and observations. Three of each of these types of activities from each manual were analyzed for skills and motivating factors important to girls as identified by Potter and Rosser (1992). Data were analyzed by use of descriptive statistics of frequencies, means and chi-square goodness of fit. The.05 level of significance was applied to all analyses based upon an expected frequency of 50 - 50 percentage of men and women and a 4.5 percent for women scientists to 95.5 percent for men scientists. The findings were as follows. None of the textbooks had a balance of men/women, boys/girls in the illustrations, drawings and photographs. The Hewitt (Scott-Foresman, 1989) textbook was the only textbook with no significant difference. Using the expected frequency for male and female scientists, two textbooks were gender balanced for illustrations, drawings and photographs while all textbooks were gender balanced for described accomplishments of scientists. The Hewitt (Scott Foresman, 1989) textbook had the only gender balanced representation of careers

  20. Korean Physical Society's Physics Camp for High School Girls

    NASA Astrophysics Data System (ADS)

    Park, Youngah; Yoon, Jin-Hee

    2005-10-01

    The Women's Committee of the Korean Physical Society organized physics camps during the summers of 2002, 2003, and 2004 for high school girls. The camps give the girls an opportunity to meet and interact with working physicists and enhance smart-girl networking. About 40 students in 10 teams visited excellent laboratories in universities and research institutes located in diverse areas of the country. The girls explored the work going on in each laboratory for a few days and participated in some basic experiments when possible. Afterward they gathered at the on-site camp for oral and poster presentations about what they learned and what they did in the laboratories they visited. Their presentations were evaluated and prizes awarded for outstanding teams. These camps were successful in terms of attracting many enthusiastic girl students and enhancing their interest in physics. The camps also showed the Korean physics community the importance of this kind of activity. To attract many girl students from various regions of the country, the Korean Physical Society co-organized the physics camp with the WISE (Women in Science and Engineering) Center, which has a network system for girl students interested in science and mathematics. The 2004 KPS-ASML-WISE Physics camp was supported by the ASML Foundation in the Netherlands.

  1. Stueckelberg and Molecular Physics

    NASA Astrophysics Data System (ADS)

    Lacki, Jan

    The first period of E. C. G. Stueckelberg's scientific career was marked by important contributions he made to molecular physics.1 After publishing his thesis in 1927 in Basel [1] Stueckelberg joined the prestigious Palmer Physical Laboratory in Princeton where he worked under the guidance of Karl Taylor Compton, brother of Arthur Holly Compton. Stueckelberg owed this position devoted several papers to problems of molecular physics. Stueckelberg had the benefit at Princeton of exchanges with other gifted members of the Palmer Physical Laboratory, Philip M. Morse and E. U. Condon among others.3 to a recommendation by A. Sommerfeld.2 In this stimulating environment, he devoted several papers to problems of molecular physics. Stueckelberg had the benefit at Princeton of exchanges with other gifted members of the Palmer Physical Laboratory, Philip M. Morse and E. U. Condon among others.3

  2. Neurocognitive performance and physical function do not change with physical-cognitive-mindfulness training in female laboratory technicians with chronic musculoskeletal pain

    PubMed Central

    Jay, Kenneth; Brandt, Mikkel; Schraefel, mc; Jakobsen, Markus Due; Sundstrup, Emil; Sjøgaard, Gisela; Vinstrup, Jonas; Andersen, Lars L.

    2016-01-01

    Abstract Background: Cognitive and physical performance can be negatively affected by chronic pain. This study evaluates the effect of combined physical-, cognitive-, and mindfulness training (PCMT) on cognitive and physical performance. Methods: From a large pharmaceutical company in Denmark we randomly allocated 112 female laboratory technicians with chronic upper limb pain to group-based PCMT at the worksite or a reference group for 10 weeks. Neurocognitive performance was measured by the computerized central nervous system vital signs neurocognitive assessment battery. Physical function was assessed in terms of shoulder external rotation strength and rate of force development in a custom-made dynamometer setup. Results: No between-group differences (least square means [95% confidence interval]) from baseline to follow-up could be detected in any of the neurocognitive domains as measured by the central nervous system vital signs neurocognitive assessment battery, for example, Psychomotoer Speed 1.9 (−1.0 to 4.7), Reaction Time −4.0 (−19.5 to 11.6), Complex Attention −0.3 (−1.9 to 1.4), and Executive Function −0.2 (−3.5 to 3.0). Similarly, we found no change in maximal voluntary isometric strength −0.63 (−4.8 to 3.6), or rate of force development 14.8 (−12.6 to 42.2) of the shoulder external rotators. Finally, test–retest reliability of maximal voluntary contraction and rate of force development shoulder external rotation showed high reliability at 0 to 30 ms, 0 to 50 ms, 0 to 100 ms, and 0 to 200 ms with ICCs at 0.95, 0.92, 0.93, 0.92, and 0.91, respectively. Conclusion: Ten weeks of PCMT did not improve neurocognitive or physical performance. PMID:27977585

  3. Assessing Inquiry in Physical Geology Laboratory Manuals

    ERIC Educational Resources Information Center

    Ryker, Katherine D.; McConnell, David A.

    2017-01-01

    Many agencies, organizations, and researchers have called for the incorporation of inquiry-based learning in college classrooms. Providing inquiry-based activities in laboratory courses is one way to promote reformed, student-centered teaching in introductory geoscience courses. However, the literature on inquiry has relatively few geoscience…

  4. The Gran Sasso Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Coccia, Eugenio

    2012-12-01

    Thirty years have passed since, thanks to Antonino Zichichi, the project for the largest underground laboratory in the world was conceived and brought to the attention of Italian authorities. The Gran Sasso National Laboratories of INFN have become a scientific reality of worldwide pre-eminence, in an expanding area of research where elementary particle physics, astrophysics and cosmology overlap. I briefly present here the main scientific challenges of underground laboratories and the activity and future perspectives of the INFN Gran Sasso Laboratory.

  5. Laboratory performance in the Sediment Laboratory Quality-Assurance Project, 1996-98

    USGS Publications Warehouse

    Gordon, John D.; Newland, Carla A.; Gagliardi, Shane T.

    2000-01-01

    Analytical results from all sediment quality-control samples are compiled and statistically summarized by the USGS, Branch of Quality Systems, both on an intra- and interlaboratory basis. When evaluating these data, the reader needs to keep in mind that every measurement has an error component associated with it. It is premature to use the data from the first five SLQA studies to judge any of the laboratories as performing in an unacceptable manner. There were, however, some notable differences in the results for the 12 laboratories that participated in the five SLQA studies. For example, the overall median percent difference for suspended-sediment concentration on an individual laboratory basis ranged from –18.04 to –0.33 percent. Five of the 12 laboratories had an overall median percent difference for suspended-sediment concentration of –2.02 to –0.33 percent. There was less variability in the median difference for the measured fine-size material mass. The overall median percent difference for fine-size material mass ranged from –10.11 to –4.27 percent. Except for one laboratory, the median difference for fine-size material mass was within a fairly narrow range of –6.76 to –4.27 percent. The median percent difference for sand-size material mass differed among laboratories more than any other physical sediment property measured in the study. The overall median percent difference for the sand-size material mass ranged from –1.49 percent to 26.39 percent. Five of the nine laboratories that do sand/fine separations had overall median percent differences that ranged from –1.49 to 2.98 percent for sand-size material mass. Careful review of the data reveals that certain laboratories consistently produced data within statistical control limits for some or all of the physical sediment properties measured in this study, whereas other laboratories occasionally produced data that exceeded the control limits.

  6. Correction factors in determining speed of sound among freshmen in undergraduate physics laboratory

    NASA Astrophysics Data System (ADS)

    Lutfiyah, A.; Adam, A. S.; Suprapto, N.; Kholiq, A.; Putri, N. P.

    2018-03-01

    This paper deals to identify the correction factor in determining speed of sound that have been done by freshmen in undergraduate physics laboratory. Then, the result will be compared with speed of sound that determining by senior student. Both of them used the similar instrument, namely resonance tube with apparatus. The speed of sound indicated by senior was 333.38 ms-1 with deviation to the theory about 3.98%. Meanwhile, for freshmen, the speed of sound experiment was categorised into three parts: accurate value (52.63%), middle value (31.58%) and lower value (15.79%). Based on analysis, some correction factors were suggested: human error in determining first and second harmonic, end correction of tube diameter, and another factors from environment, such as temperature, humidity, density, and pressure.

  7. Intelligent software for laboratory automation.

    PubMed

    Whelan, Ken E; King, Ross D

    2004-09-01

    The automation of laboratory techniques has greatly increased the number of experiments that can be carried out in the chemical and biological sciences. Until recently, this automation has focused primarily on improving hardware. Here we argue that future advances will concentrate on intelligent software to integrate physical experimentation and results analysis with hypothesis formulation and experiment planning. To illustrate our thesis, we describe the 'Robot Scientist' - the first physically implemented example of such a closed loop system. In the Robot Scientist, experimentation is performed by a laboratory robot, hypotheses concerning the results are generated by machine learning and experiments are allocated and selected by a combination of techniques derived from artificial intelligence research. The performance of the Robot Scientist has been evaluated by a rediscovery task based on yeast functional genomics. The Robot Scientist is proof that the integration of programmable laboratory hardware and intelligent software can be used to develop increasingly automated laboratories.

  8. LECTURES ON PHYSICS, BIOPHYSICS, AND CHEMISTRY FOR HIGH SCHOOL SCIENCE TEACHERS GIVEN AT THE ERNEST O. LAWRENCE RADIATION LABORATORY, BERKELEY, CALIFORNIA, JUNE-AUGUST 1959

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calhoon, E.C.; Starring, P.W. eds.

    1959-08-01

    Lectures given at the Ernest 0. Lawrence Radiation Laboratory on physics, biophysics, and chemistry for high school science teachers are presented. Topics covered include a mathematics review, atomic physics, nuclear physics, solid-state physics, elementary particles, antiparticies, design of experiments, high-energy particle accelerators, survey of particle detectors, emulsion as a particle detector, counters used in high-energy physics, bubble chambers, computer programming, chromatography, the transuranium elements, health physics, photosynthesis, the chemistry and physics of virus, the biology of virus, lipoproteins and heart disease, origin and evolution of the solar system, the role of space satellites in gathering astronomical data, and radiation andmore » life in space. (M.C.G.)« less

  9. Tour of Research Laboratories at the Ford Company

    NASA Astrophysics Data System (ADS)

    Reitz, J. R.

    1981-01-01

    A brief description of the physics programs encountered on the tour of the Ford Motor Company Research Laboratories is provided. A visit to the Research Laboratories of the Ford Motor Company is part of the Conference on Physics in the Automotive Industry. The visit will show a cross-section of the programs in Research Staff which are clearly identified as physics research as well as other areas where physicists have established themselves as dominant or team members in what might traditionally be regarded as the province of engineering R&D. After a brief orientation, the Conference visitors will be divided into tour groups and will visit laboratories involved in combustion research, arc-discharge physics, various spectroscopic applications, metal gauging, energy management, optical display systems and solar energy research. Synopses of the specific tour visits follow.

  10. Moving Liquids with Sound: The Physics of Acoustic Droplet Ejection for Robust Laboratory Automation in Life Sciences.

    PubMed

    Hadimioglu, Babur; Stearns, Richard; Ellson, Richard

    2016-02-01

    Liquid handling instruments for life science applications based on droplet formation with focused acoustic energy or acoustic droplet ejection (ADE) were introduced commercially more than a decade ago. While the idea of "moving liquids with sound" was known in the 20th century, the development of precise methods for acoustic dispensing to aliquot life science materials in the laboratory began in earnest in the 21st century with the adaptation of the controlled "drop on demand" acoustic transfer of droplets from high-density microplates for high-throughput screening (HTS) applications. Robust ADE implementations for life science applications achieve excellent accuracy and precision by using acoustics first to sense the liquid characteristics relevant for its transfer, and then to actuate transfer of the liquid with customized application of sound energy to the given well and well fluid in the microplate. This article provides an overview of the physics behind ADE and its central role in both acoustical and rheological aspects of robust implementation of ADE in the life science laboratory and its broad range of ejectable materials. © 2015 Society for Laboratory Automation and Screening.

  11. Materials Characterization Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    | NREL Materials Characterization Laboratory Materials Characterization Laboratory The Energy Systems Integration Facility's Materials Characterization Laboratory supports the physical and photo -electrochemical characterization of novel materials. Photo of an NREL researcher preparing samples for a gas

  12. Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment

    ERIC Educational Resources Information Center

    Pavel, Ioana E.; Alnajjar, Khadijeh S.; Monahan, Jennifer L.; Stahler, Adam; Hunter, Nora E.; Weaver, Kent M.; Baker, Joshua D.; Meyerhoefer, Allie J.; Dolson, David A.

    2012-01-01

    A novel laboratory experiment was successfully implemented for undergraduate and graduate students in physical chemistry and nanotechnology. The main goal of the experiment was to rigorously determine the surface-enhanced Raman scattering (SERS)-based sensing capabilities of colloidal silver nanoparticles (AgNPs). These were quantified by…

  13. The Dresden Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics - Status and first physics program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilgner, Ch.

    Favored by the low background in underground laboratories, low-background accelerator-based experiments are an important tool to study nuclear reactions involving stable charged particles. This technique has been used for many years with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy, protected from cosmic rays by 1400 m of rock. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies than those available at LUNA. Also the study of solar fusion reactions necessitates new data at higher energies. As a result, inmore » the present NuPECC long range plan for nuclear physics in Europe, the installation of one or more higher-energy underground accelerators is strongly recommended. An intercomparison exercise using the same High-Purity Ge detector at several sites has shown that, with a combination of 45 m rock overburden, as can be found in the Felsenkeller underground site in Dresden, and an active veto against the remaining muon flux, in a typical nuclear astrophysics setup a background level can be achieved that is similar to the deep underground scenario as in the Gran- Sasso underground laboratory, for instance. Recently, a muon background study and geodetic measurements were carried out by the REGARD group. It was estimated that the rock overburden at the place of the future ion accelerator is equivalent to 130 m of water. The maximum muon flux measured was 2.5 m{sup -2} sr{sup -1} s{sup -1}, in the direction of the tunnel entrance. Based on this finding, a used 5 MV pelletron tandem accelerator with 250 μA up-charge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is in progress and far advanced. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and

  14. The Role of Laboratory-Based Studies of the Physical and Biological Properties of Sea Ice in Supporting the Observation and Modeling of Ice Covered Seas

    NASA Astrophysics Data System (ADS)

    Light, B.; Krembs, C.

    2003-12-01

    Laboratory-based studies of the physical and biological properties of sea ice are an essential link between high latitude field observations and existing numerical models. Such studies promote improved understanding of climatic variability and its impact on sea ice and the structure of ice-dependent marine ecosystems. Controlled laboratory experiments can help identify feedback mechanisms between physical and biological processes and their response to climate fluctuations. Climatically sensitive processes occurring between sea ice and the atmosphere and sea ice and the ocean determine surface radiative energy fluxes and the transfer of nutrients and mass across these boundaries. High temporally and spatially resolved analyses of sea ice under controlled environmental conditions lend insight to the physics that drive these transfer processes. Techniques such as optical probing, thin section photography, and microscopy can be used to conduct experiments on natural sea ice core samples and laboratory-grown ice. Such experiments yield insight on small scale processes from the microscopic to the meter scale and can be powerful interdisciplinary tools for education and model parameterization development. Examples of laboratory investigations by the authors include observation of the response of sea ice microstructure to changes in temperature, assessment of the relationships between ice structure and the partitioning of solar radiation by first-year sea ice covers, observation of pore evolution and interfacial structure, and quantification of the production and impact of microbial metabolic products on the mechanical, optical, and textural characteristics of sea ice.

  15. The Science on Saturday Program at Princeton Plasma Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Bretz, N.; Lamarche, P.; Lagin, L.; Ritter, C.; Carroll, D. L.

    1996-11-01

    The Science on Saturday Program at Princeton Plasma Physics Laboratory consists of a series of Saturday morning lectures on various topics in science by scientists, engineers, educators, and others with an interesting story. This program has been in existence for over twelve years and has been advertised to and primarily aimed at the high school level. Topics ranging from superconductivity to computer animation and gorilla conservation to pharmaceutical design have been covered. Lecturers from the staff of Princeton, Rutgers, AT and T, Bristol Meyers Squibb, and many others have participated. Speakers have ranged from Nobel prize winners, astronauts, industrialists, educators, engineers, and science writers. Typically, there are eight to ten lectures starting in January. A mailing list has been compiled for schools, science teachers, libraries, and museums in the Princeton area. For the past two years AT and T has sponsored buses for Trenton area students to come to these lectures and an effort has been made to publicize the program to these students. The series has been very popular, frequently overfilling the 300 seat PPPL auditorium. As a result, the lectures are videotaped and broadcast to a large screen TV for remote viewing. Lecturers are encouraged to interact with the audience and ample time is provided for questions.

  16. Physics Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Twelve ideas are presented for physics teachers to implement in the laboratory or classroom. Topics covered include electromagnetic induction, microbalance, capacitors, determination of light velocity, and the compound pendulum. Information regarding laboratory equipment is also provided. (PS)

  17. Automatic identification of physical activity types and sedentary behaviors from triaxial accelerometer: laboratory-based calibrations are not enough.

    PubMed

    Bastian, Thomas; Maire, Aurélia; Dugas, Julien; Ataya, Abbas; Villars, Clément; Gris, Florence; Perrin, Emilie; Caritu, Yanis; Doron, Maeva; Blanc, Stéphane; Jallon, Pierre; Simon, Chantal

    2015-03-15

    "Objective" methods to monitor physical activity and sedentary patterns in free-living conditions are necessary to further our understanding of their impacts on health. In recent years, many software solutions capable of automatically identifying activity types from portable accelerometry data have been developed, with promising results in controlled conditions, but virtually no reports on field tests. An automatic classification algorithm initially developed using laboratory-acquired data (59 subjects engaging in a set of 24 standardized activities) to discriminate between 8 activity classes (lying, slouching, sitting, standing, walking, running, and cycling) was applied to data collected in the field. Twenty volunteers equipped with a hip-worn triaxial accelerometer performed at their own pace an activity set that included, among others, activities such as walking the streets, running, cycling, and taking the bus. Performances of the laboratory-calibrated classification algorithm were compared with those of an alternative version of the same model including field-collected data in the learning set. Despite good results in laboratory conditions, the performances of the laboratory-calibrated algorithm (assessed by confusion matrices) decreased for several activities when applied to free-living data. Recalibrating the algorithm with data closer to real-life conditions and from an independent group of subjects proved useful, especially for the detection of sedentary behaviors while in transports, thereby improving the detection of overall sitting (sensitivity: laboratory model = 24.9%; recalibrated model = 95.7%). Automatic identification methods should be developed using data acquired in free-living conditions rather than data from standardized laboratory activity sets only, and their limits carefully tested before they are used in field studies. Copyright © 2015 the American Physiological Society.

  18. Measuring the Earth’s magnetic field dip angle using a smartphone-aided setup: a simple experiment for introductory physics laboratories

    NASA Astrophysics Data System (ADS)

    Arabasi, Sameer; Al-Taani, Hussein

    2017-03-01

    Measurement of the Earth’s magnetic field dip angle is a widely used experiment in most introductory physics laboratories. In this paper we propose a smartphone-aided setup that takes advantage of the smartphone’s magnetometer sensor to measure the Earth’s magnetic field dip angle. This set-up will help students visualize the vector nature of the Earth’s magnetic field, especially high school and first year college students who are not quite experienced with vectors. This set-up is affordable and easy to use and could be easily produced by any high school or college physics instructor.

  19. The stem cell laboratory: design, equipment, and oversight.

    PubMed

    Wesselschmidt, Robin L; Schwartz, Philip H

    2011-01-01

    This chapter describes some of the major issues to be considered when setting up a laboratory for the culture of human pluripotent stem cells (hPSCs). The process of establishing a hPSC laboratory can be divided into two equally important parts. One is completely administrative and includes developing protocols, seeking approval, and establishing reporting processes and documentation. The other part of establishing a hPSC laboratory involves the physical plant and includes design, equipment and personnel. Proper planning of laboratory operations and proper design of the physical layout of the stem cell laboratory so that meets the scope of planned operations is a major undertaking, but the time spent upfront will pay long-term returns in operational efficiency and effectiveness. A well-planned, organized, and properly equipped laboratory supports research activities by increasing efficiency and reducing lost time and wasted resources.

  20. Laboratory-Tutorial Activities for Teaching Probability

    ERIC Educational Resources Information Center

    Wittmann, Michael C.; Morgan, Jeffrey T.; Feeley, Roger E.

    2006-01-01

    We report on the development of students' ideas of probability and probability density in a University of Maine laboratory-based general education physics course called "Intuitive Quantum Physics". Students in the course are generally math phobic with unfavorable expectations about the nature of physics and their ability to do it. We…

  1. Physical examination and laboratory tests in the management of patients with rheumatoid arthritis: development of recommendations for clinical practice based on published evidence and expert opinion.

    PubMed

    Pham, Thao; Gossec, Laure; Fautrel, Bruno; Combe, Bernard; Flipo, René-Marc; Goupille, Philippe; Le Loët, Xavier; Mariette, Xavier; Puéchal, Xavier; Wendling, Daniel; Schaeverbeke, Thierry; Sibilia, Jean; Sany, Jacques; Dougados, Maxime

    2005-05-01

    To develop recommendations for the physical and laboratory-test follow-up of patients with rheumatoid arthritis (RA) seen in everyday practice, using evidence from the literature, supplemented with expert opinion when needed. A scientific committee selected 7-10 questions using the Delphi consensus procedure. Evidence-based responses to each question were sought in the literature and were then used by a panel to develop recommendations. To fill in gaps in knowledge from the literature, the panelists relied on their personal opinion. The seven questions dealt with the physical and laboratory-test follow-up of RA and the factors predicting disease severity. The literature review identified 799 articles whose title and abstract suggested relevance to the study. Elimination of articles that provided no data on the study topic left 128 original articles. The panel developed seven recommendations, one for each question, which were accepted by consensus. Recommendations about the physical and laboratory-test follow-up of patients with RA seen in everyday practice were developed. Because they constitute an objective foundation built by consensus among experts, should improve the uniformity and quality of care provided to RA patients in everyday practice.

  2. Using Mole Ratios of Electrolytic Products of Water for Analysis of Household Vinegar: An Experiment for the Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Dabke, Rajeev B.; Gebeyehu, Zewdu

    2012-01-01

    A simple 3-h physical chemistry undergraduate experiment for the quantitative analysis of acetic acid in household vinegar is presented. The laboratory experiment combines titration concept with electrolysis and an application of the gas laws. A vinegar sample was placed in the cathode compartment of the electrolysis cell. Electrolysis of water…

  3. School Physics Teacher Class Management, Laboratory Practice, Student Engagement, Critical Thinking, Cooperative Learning and Use of Simulations Effects on Student Performance

    ERIC Educational Resources Information Center

    Riaz, Muhammad

    2015-01-01

    The purpose of this study was to examine how simulations in physics class, class management, laboratory practice, student engagement, critical thinking, cooperative learning, and use of simulations predicted the percentage of students achieving a grade point average of B or higher and their academic performance as reported by teachers in secondary…

  4. Global Geospace Science/Polar Plasma Laboratory: POLAR

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Global Geospace Science (GGS) Project is discussed as part of the International Solar-Terrestrial Physics (ISTP) Science Initiative. The objectives of Polar Plasma Laboratory (POLAR), one of the two spacecraft to be used by the Project to fill critical gaps in the scientific understanding of solar and plasma physics, are outlined. POLAR Laboratory is described, along with POLAR instrumentation, support subsystems, and orbits. Launch vehicle and injection into orbit are also addressed.

  5. TOPICAL REVIEW: Advances in traceable nanometrology at the National Physical Laboratory†Advances in traceable nanometrology at the National Physical Laboratory

    NASA Astrophysics Data System (ADS)

    Leach, Richard; Haycocks, Jane; Jackson, Keith; Lewis, Andrew; Oldfield, Simon; Yacoot, Andrew

    2001-03-01

    The only difference between nanotechnology and many other fields of science or engineering is that of size. Control in manufacturing at the nanometre scale still requires accurate and traceable measurements whether one is attempting to machine optical quality glass or write one's company name in single atoms. A number of instruments have been developed at the National Physical Laboratory that address the measurement requirements of the nanotechnology community and provide traceability to the definition of the metre. The instruments discussed in this paper are an atomic force microscope and a surface texture measuring instrument with traceable metrology in all their operational axes, a combined optical and x-ray interferometer system that can be used to calibrate displacement transducers to subnanometre accuracy and a co-ordinate measuring machine with a working volume of (50 mm)3 and 50 nm volumetric accuracy.

  6. Institute of Geophysics and Planetary Physics (IGPP), Lawrence Livermore National Laboratory (LLNL): Quinquennial report, November 14-15, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tweed, J.

    1996-10-01

    This Quinquennial Review Report of the Lawrence Livermore National Laboratory (LLNL) branch of the Institute for Geophysics and Planetary Physics (IGPP) provides an overview of IGPP-LLNL, its mission, and research highlights of current scientific activities. This report also presents an overview of the University Collaborative Research Program (UCRP), a summary of the UCRP Fiscal Year 1997 proposal process and the project selection list, a funding summary for 1993-1996, seminars presented, and scientific publications. 2 figs., 3 tabs.

  7. Nuclear Physics Laboratory 1979 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adelberger, E.G.

    1979-07-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure, radiative capture, medium energy physics, heavy ion reactions, research by users and visitors, accelerator and ion source development, instrumentation and experimental techniques, and computers and computing. Publications are listed. (WHK)

  8. Elementary and Advanced Computer Projects for the Physics Classroom and Laboratory

    DTIC Science & Technology

    1992-12-01

    are SPF/PC, MS Word, n3, Symphony, Mathematics, and FORTRAN. The authors’ programs assist data analysis in particular laboratory experiments and make...assist data analysis in particular laboratory experiments and make use of the Monte Carlo and other numerical techniques in computer simulation and...the language of science and engineering in industry and government laboratories (alth..4h C is becoming a powerful competitor ). RM/FORTRAN (cost $400

  9. The Stem Cell Laboratory: Design, Equipment, and Oversight

    PubMed Central

    Wesselschmidt, Robin L.; Schwartz, Philip H.

    2013-01-01

    This chapter describes some of the major issues to be considered when setting up a laboratory for the culture of human pluripotent stem cells (hPSCs). The process of establishing a hPSC laboratory can be divided into two equally important parts. One is completely administrative and includes developing protocols, seeking approval, and establishing reporting processes and documentation. The other part of establishing a hPSC laboratory involves the physical plant and includes design, equipment and personnel. Proper planning of laboratory operations and proper design of the physical layout of the stem cell laboratory so that meets the scope of planned operations is a major undertaking, but the time spent upfront will pay long-term returns in operational efficiency and effectiveness. A well-planned, organized, and properly equipped laboratory supports research activities by increasing efficiency and reducing lost time and wasted resources. PMID:21822863

  10. Theory and laboratory astrophysics

    NASA Technical Reports Server (NTRS)

    Schramm, David N.; Mckee, Christopher F.; Alcock, Charles; Allamandola, Lou; Chevalier, Roger A.; Cline, David B.; Dalgarno, Alexander; Elmegreen, Bruce G.; Fall, S. Michael; Ferland, Gary J.

    1991-01-01

    Science opportunities in the 1990's are discussed. Topics covered include the large scale structure of the universe, galaxies, stars, star formation and the interstellar medium, high energy astrophysics, and the solar system. Laboratory astrophysics in the 1990's is briefly surveyed, covering such topics as molecular, atomic, optical, nuclear and optical physics. Funding recommendations are given for the National Science Foundation, NASA, and the Department of Energy. Recommendations for laboratory astrophysics research are given.

  11. Measurement of the magnetic field of small magnets with a smartphone: a very economical laboratory practice for introductory physics courses

    NASA Astrophysics Data System (ADS)

    Arribas, Enrique; Escobar, Isabel; Suarez, Carmen P.; Najera, Alberto; Beléndez, Augusto

    2015-11-01

    In this work, we propose an inexpensive laboratory practice for an introductory physics course laboratory for any grade of science and engineering study. This practice was very well received by our students, where a smartphone (iOS, Android, or Windows) is used together with mini magnets (similar to those used on refrigerator doors), a 20 cm long school rule, a paper, and a free application (app) that needs to be downloaded and installed that measures magnetic fields using the smartphone’s magnetic field sensor or magnetometer. The apps we have used are: Magnetometer (iOS), Magnetometer Metal Detector, and Physics Toolbox Magnetometer (Android). Nothing else is needed. Cost of this practice: free. The main purpose of the practice is that students determine the dependence of the component x of the magnetic field produced by different magnets (including ring magnets and sphere magnets). We obtained that the dependency of the magnetic field with the distance is of the form x-3, in total agreement with the theoretical analysis. The secondary objective is to apply the technique of least squares fit to obtain this exponent and the magnetic moment of the magnets, with the corresponding absolute error.

  12. Crime Laboratory Proficiency Testing Research Program.

    ERIC Educational Resources Information Center

    Peterson, Joseph L.; And Others

    A three-year research effort was conducted to design a crime laboratory proficiency testing program encompassing the United States. The objectives were to: (1) determine the feasibility of preparation and distribution of different classes of physical evidence; (2) assess the accuracy of criminalistics laboratories in the processing of selected…

  13. Developing an online chemistry laboratory for non-chemistry majors

    NASA Astrophysics Data System (ADS)

    Poole, Jacqueline H.

    Distance education, also known as online learning, is student-centered/self-directed educational opportunities. This style of learning is expanding in scope and is increasingly being accepted throughout the academic curriculum as a result of its flexibility for the student as well as the cost-effectiveness for the institution. Nevertheless, the introduction of online science courses including chemistry and physics have lagged behind due to the challenge of re-creation of the hands-on laboratory learning experience. This dissertation looks at the effectiveness of the design of a series of chemistry laboratory experiments for possible online delivery that provide students with simulated hands-on experiences. One class of college Chemistry 101 students conducted chemistry experiments inside and outside of the physical laboratory using instructions on Blackboard and Late Nite Labs(TM). Learning outcomes measured by (a) pretests, (b) written laboratory reports, (c) posttest assessments, (d) student reactions as determined by a questionnaire, and (e) a focus group interview were utilized to compare both types of laboratory experiences. The research findings indicated learning outcomes achieved by students outside of the traditional physical laboratory were statistically greater than the equivalent face-to-face instruction in the traditional laboratory. Evidence from student reactions comparing both types of laboratory formats (online and traditional face-to-face) indicated student preference for the online laboratory format. The results are an initial contribution to the design of a complete sequence of experiments that can be performed independently by online students outside of the traditional face-to-face laboratory that will satisfy the laboratory requirement for the two-semester college Chemistry 101 laboratory course.

  14. The efficacy of World Wide Web-mediated microcomputer-based laboratory activities in the high school physics classroom

    NASA Astrophysics Data System (ADS)

    Slykhuis, David A.

    This research project examined the efficacy of an online microcomputer-based laboratory based (MBL) physics unit. One hundred and fifty physics students from five high schools in North Carolina were divided into online and classroom groups. The classroom group completed the MBL unit in small groups with assistance from their teachers. The online groups completed the MBL unit in small groups using a website designed for this project for guidance. Pre- and post-unit content specific tests and surveys were given. Statistical analysis of the content tests showed significant development of conceptual understanding by the online group over the course of the unit. There was not a significant difference between the classroom and online group with relation to the amount of conceptual understanding developed. Correlations with post-test achievement showed that pre-test scores and math background were the most significant correlates with success. Computer related variables, such as computer comfort and online access, were only mildly correlated with the online group. Students' views about the nature of physics were not well developed prior to the unit and did not significantly change over the course of the unit. Examination of the students' physics conceptions after instruction revealed common alternative conceptions such as confusing position and velocity variables and incorrect interpretations of graphical features such as slope.

  15. Physiology Laboratories Quantifying Gas Exchange in Health and Disease.

    ERIC Educational Resources Information Center

    Olson, L. E.

    1985-01-01

    Describes two quantitatively-oriented physiology laboratories for veterinary students. The laboratory exercises incorporate the procedures of radiology and physical examination with measurement of pulmonary function. Specific laboratory objectives, procedures and equipment needed for diagnoses of the pathologies are listed. (ML)

  16. Physical properties of ambient and laboratory-generated secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    O'Brien, Rachel E.; Neu, Alexander; Epstein, Scott A.; MacMillan, Amanda C.; Wang, Bingbing; Kelly, Stephen T.; Nizkorodov, Sergey A.; Laskin, Alexander; Moffet, Ryan C.; Gilles, Mary K.

    2014-06-01

    The size and thickness of organic aerosol particles collected by impaction in five field campaigns were compared to those of laboratory-generated secondary organic aerosols (SOA). Scanning transmission X-ray microscopy was used to measure the total carbon absorbance (TCA) by individual particles as a function of their projection areas on the substrate. Particles with higher viscosity/surface tension can be identified by a steeper slope on a plot of TCA versus size because they flatten less upon impaction. The slopes of the ambient data are statistically similar indicating a small range of average viscosities/surface tensions across five field campaigns. Steeper slopes were observed for the plots corresponding to ambient particles, while smaller slopes were indicative of the laboratory-generated SOA. This comparison indicates that ambient organic particles have higher viscosities/surface tensions than those typically generated in laboratory SOA studies.

  17. Analysis of Radiation Impact on White Mice through Radiation Dose Mapping in Medical Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Sutikno, Madnasri; Susilo; Arya Wijayanti, Riza

    2016-08-01

    A study about X-ray radiation impact on the white mice through radiation dose mapping in Medical Physic Laboratory is already done. The purpose of this research is to determine the minimum distance of radiologist to X-ray instrument through treatment on the white mice. The radiation exposure doses are measured on the some points in the distance from radiation source between 30 cm up to 80 with interval of 30 cm. The impact of radiation exposure on the white mice and the effects of radiation measurement in different directions are investigated. It is founded that minimum distance of radiation worker to radiation source is 180 cm and X-ray has decreased leukocyte number and haemoglobin and has increased thrombocyte number in the blood of white mice.

  18. Developing a lean culture in the laboratory.

    PubMed

    Napoles, Leyda; Quintana, Maria

    2006-07-25

    The Director of Pathology at Jackson Memorial Hospital was interested in improving the operational efficiencies of the department in order to enhance the department's level of service in conjunction with the expansion of the overall health system. The decision was made to implement proven Lean practices in the laboratory under the direction of a major consulting firm. This article details the scope of the initial project as well as the operating principles of Lean manufacturing practices as applied to the clinical laboratory. The goals of the project were to improve turnaround times of laboratory results, reduce inventory and supply costs, improve staff productivity, maximize workflow, and eliminate waste. Extensive data gathering and analysis guided the work process by highlighting the areas of highest opportunity. This systematic approach resulted in recommendations for the workflow and physical layout of the laboratory. It also included the introduction of "standard workflow" and "visual controls" as critical items that streamlined operational efficiencies. The authors provide actual photographs and schematics of the reorganization and improvements to the physical layout of the laboratory. In conclusion, this project resulted in decreased turnaround times and increased productivity, as well as significant savings in the overall laboratory operations.

  19. Final definition and preliminary design study for the initial atmospheric cloud physics laboratory, a Spacelab mission payload

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The following areas related to the final definition and preliminary design study of the initial atmospheric cloud physics laboratory (ACPL) were covered: (1) proposal organization, personnel, schedule, and project management, (2) proposed configurations, (3) study objectives, (4) ACPL experiment program listing and description, (5) mission/flight flexibility and modularity/commonality, (6) study plan, and (7) description of following tasks: requirement analysis and definition task flow, systems analysis and trade studies, subsystem analysis and trade studies, specifications and interface control documents, preliminary design task flow, work breakdown structure, programmatic analysis and planning, and project costs. Finally, an overview of the scientific requirements was presented.

  20. Reference earth orbital research and applications investigations (blue book). Volume 3: Physics

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The definition of physics experiments to be conducted aboard the space station is presented. The four functional program elements are: (1) space physics research laboratory, (2) plasma physics and environmental perturbation laboratory, (3) cosmic ray physics laboratory, and (4) physics and chemistry laboratory. The experiments to be conducted by each facility are defined and the crew member requirements to accomplish the experiments are presented.

  1. Sandia National Laboratories: Physical, Chemical, and Nano Sciences

    Science.gov Websites

    Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Honey I shrunk the circuit CINT Virtual Tour Center for Integrated Nanotechnologies Honey I shrunk the circuit Ion Beam Lab Virtual Tour: Coming Soon! Honey I shrunk the circuit CINT 10 Year Anniversary Video

  2. 1999 LDRD Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rita Spencer; Kyle Wheeler

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  3. A Multi-User Remote Academic Laboratory System

    ERIC Educational Resources Information Center

    Barrios, Arquimedes; Panche, Stifen; Duque, Mauricio; Grisales, Victor H.; Prieto, Flavio; Villa, Jose L.; Chevrel, Philippe; Canu, Michael

    2013-01-01

    This article describes the development, implementation and preliminary operation assessment of Multiuser Network Architecture to integrate a number of Remote Academic Laboratories for educational purposes on automatic control. Through the Internet, real processes or physical experiments conducted at the control engineering laboratories of four…

  4. 78 FR 78402 - Exelon Generation Company, LLC; Establishment of Atomic Safety and Licensing Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ...] Exelon Generation Company, LLC; Establishment of Atomic Safety and Licensing Board Pursuant to delegation... Atomic Safety and Licensing Board (Board) is being established to preside over the following proceeding... Board is comprised of the following administrative judges: Paul S. Ryerson, Chairman, Atomic Safety and...

  5. Informal Physics Education: Outreach from a National Laboratory

    NASA Astrophysics Data System (ADS)

    Sanchez, Jose; Dixon, Patricia; Hughes, Roxanne

    2012-02-01

    This presentation highlights strategies for K-20 teaching and learning about materials research in informal settings. The National High Magnetic Field Laboratory's Center for Integrating Research & Learning is in a unique position to conduct programs that reach K-20 students and teachers. As part of a national laboratory the Center provides the infrastructure around which informal education programs are implemented, including the nationally-recognized programming as well as facilitating scientists' educational outreach in the community. Research Experiences for Undergraduates, focuses on encouraging women and other underrepresented groups to pursue STEM careers reaching approximately 200 students many of whom have pursued careers in research as well as academia. The Research Experiences for Teachers program has provided internships for over 150 teachers; the Center also reaches over 10,000 students each year through school and community outreach. Success of informal education programs relies heavily on establishing strong mentoring relationships between scientists and K-20 students and teachers. The Center's success at maintaining diverse programming that transforms how materials education is presented beyond the traditional classroom is the focus for this presentation.

  6. A Radiation Laboratory Curriculum Development at Western Kentucky University

    NASA Astrophysics Data System (ADS)

    Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C.

    2009-03-01

    We present the latest developments for the radiation laboratory curriculum at the Department of Physics and Astronomy of Western Kentucky University. During the last decade, the Applied Physics Institute (API) at WKU accumulated various equipment for radiation experimentation. This includes various neutron sources (computer controlled d-t and d-d neutron generators, and isotopic 252 Cf and PuBe sources), the set of gamma sources with various intensities, gamma detectors with various energy resolutions (NaI, BGO, GSO, LaBr and HPGe) and the 2.5-MeV Van de Graaff particle accelerator. XRF and XRD apparatuses are also available for students and members at the API. This equipment is currently used in numerous scientific and teaching activities. Members of the API also developed a set of laboratory activities for undergraduate students taking classes from the physics curriculum (Nuclear Physics, Atomic Physics, and Radiation Biophysics). Our goal is to develop a set of radiation laboratories, which will strengthen the curriculum of physics, chemistry, geology, biology, and environmental science at WKU. The teaching and research activities are integrated into real-world projects and hands-on activities to engage students. The proposed experiments and their relevance to the modern status of physical science are discussed.

  7. Virtual earthquake engineering laboratory with physics-based degrading materials on parallel computers

    NASA Astrophysics Data System (ADS)

    Cho, In Ho

    For the last few decades, we have obtained tremendous insight into underlying microscopic mechanisms of degrading quasi-brittle materials from persistent and near-saintly efforts in laboratories, and at the same time we have seen unprecedented evolution in computational technology such as massively parallel computers. Thus, time is ripe to embark on a novel approach to settle unanswered questions, especially for the earthquake engineering community, by harmoniously combining the microphysics mechanisms with advanced parallel computing technology. To begin with, it should be stressed that we placed a great deal of emphasis on preserving clear meaning and physical counterparts of all the microscopic material models proposed herein, since it is directly tied to the belief that by doing so, the more physical mechanisms we incorporate, the better prediction we can obtain. We departed from reviewing representative microscopic analysis methodologies, selecting out "fixed-type" multidirectional smeared crack model as the base framework for nonlinear quasi-brittle materials, since it is widely believed to best retain the physical nature of actual cracks. Microscopic stress functions are proposed by integrating well-received existing models to update normal stresses on the crack surfaces (three orthogonal surfaces are allowed to initiate herein) under cyclic loading. Unlike the normal stress update, special attention had to be paid to the shear stress update on the crack surfaces, due primarily to the well-known pathological nature of the fixed-type smeared crack model---spurious large stress transfer over the open crack under nonproportional loading. In hopes of exploiting physical mechanism to resolve this deleterious nature of the fixed crack model, a tribology-inspired three-dimensional (3d) interlocking mechanism has been proposed. Following the main trend of tribology (i.e., the science and engineering of interacting surfaces), we introduced the base fabric of solid

  8. Differences in gender participation in college physical science laboratory as perceived by students and instructors

    NASA Astrophysics Data System (ADS)

    Gifford, Fay Evan

    The purpose of this study was to determine the difference in gender participation in the college physical science laboratory as perceived by students. The sample n this study consisted of 168 college sophomore architecture students (56 males and 33 females) and engineering students (61 males and 18 females). Depending on the type of information desired, a number of analyses were used including independent samples t-test, two-way Anova, general linear model analysis, Univariate analysis of variance, and descriptive statistics. In the analysis of data for the first fourteen questions of the questionnaire, which are called descriptive data, both gender and academic discipline differences were examined. It was found both genders picked personal choice as the role they played in the lab, and they were recorder, computer operator, and set up. There was no major difference here for the two disciplines except for engineers (by four to one over the architectures), who thought one member took the lead and assigned the role. There was no statistically significant difference in attitude toward group laboratory work between the two genders, but there was a significant difference by academic discipline here. There was a significant difference between genders for the way that students were assigned to small groups (i.e., the females would prefer the professor assign the role). For the open-ended student question dealing with suggestions for improving student participation in the labs, about one-third responded. One major difference between the disciplines was the architectural students by a twenty to one ratio over the engineers thought they didn't need a physics lab. For Hypothesis 4, there was a general agreement between the students' and the instructors' that there was not a difference in the students' gender responses and the instructors'. For Hypothesis 5, the responses from the four special gender questions for the students and instructors show that the males don't agree

  9. Developing a Virtual Rock Deformation Laboratory

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  10. Toward better physics labs for future biologists

    NASA Astrophysics Data System (ADS)

    Moore, K.; Giannini, J.; Losert, W.

    2014-05-01

    We have developed a set of laboratories and hands on activities to accompany a new two-semester interdisciplinary physics course that has been developed and tested in two small test classes at the University of Maryland, College Park (UMD) in 2012-2013. We have designed the laboratories to be taken accompanying a reformed course in the student's second year, with calculus, biology, and chemistry as prerequisites. These prerequisites permit the laboratories to include significant content on physics relevant to cellular scales, from chemical interactions to random motion and charge screening in fluids. We also introduce students to research-grade equipment and modern physics analysis tools in contexts relevant to biology while maintaining the pedagogically valuable open-ended laboratory structure of reformed laboratories. Preliminary student response results from these two classes are discussed.

  11. 75 FR 67145 - Nextera Energy Seabrook, LLC; Establishment of Atomic Safety and Licensing Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-01

    ... Seabrook, LLC; Establishment of Atomic Safety and Licensing Board Pursuant to delegation by the Commission... that an Atomic Safety and Licensing Board (Board) is being established to preside over the following... Board is comprised of the following administrative judges: Paul S. Ryerson, Chair, Atomic Safety and...

  12. 78 FR 64255 - Exelon Generation Company, LLC; Establishment of Atomic Safety and Licensing Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    .... 13- 929-02-LR-BD01] Exelon Generation Company, LLC; Establishment of Atomic Safety and Licensing... hereby given that an Atomic Safety and Licensing Board (Board) is being established to preside over the... is comprised of the following administrative judges: Paul S. Ryerson, Chairman, Atomic Safety and...

  13. 76 FR 41312 - Honeywell International Inc.; Establishment of Atomic Safety And Licensing Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ...] Honeywell International Inc.; Establishment of Atomic Safety And Licensing Board Pursuant to delegation by..., notice is hereby given that an Atomic Safety and Licensing Board (Board) is being established to preside... comprised of the following administrative judges: Paul S. Ryerson, Chair, Atomic Safety and Licensing Board...

  14. 75 FR 21680 - GE-Hitachi Global Laser Enrichment LLC;

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ... Global Laser Enrichment LLC; Establishment of Atomic Safety and Licensing Board Pursuant to delegation by... is hereby given that an Atomic Safety and Licensing Board (Board) is being established to preside... comprised of the following administrative judges: Paul S. Ryerson, Chair, Atomic Safety and Licensing Board...

  15. Minimal Marking: A Success Story

    ERIC Educational Resources Information Center

    McNeilly, Anne

    2014-01-01

    The minimal-marking project conducted in Ryerson's School of Journalism throughout 2012 and early 2013 resulted in significantly higher grammar scores in two first-year classes of minimally marked university students when compared to two traditionally marked classes. The "minimal-marking" concept (Haswell, 1983), which requires…

  16. International Multidisciplinary Learning: An Account of a Collaborative Effort among Three Higher Education Institutions

    ERIC Educational Resources Information Center

    Poh, Paul S. H.; Soetanto, Robby; Austin, Stephen; Adamu, Zulkifar A.

    2014-01-01

    Requiring students to complete their course assignments in partnership and in collaboration with students from other institutions is not commonplace teaching pedagogy. Even less so when they transcend disciplines and international borders. This paper presents a brief account of an ongoing collaborative effort between Ryerson University, Coventry…

  17. Phase B: Final definition and preliminary design study for the initial Atmospheric Cloud Physics Laboratory (ACPL): A spacelab mission payload. Final review (DR-MA-03)

    NASA Technical Reports Server (NTRS)

    Clausen, O. W.

    1976-01-01

    Systems design for an initial atmospheric cloud physics laboratory to study microphysical processes in zero gravity is presented. Included are descriptions of the fluid, thermal, mechanical, control and data, and electrical distribution interfaces with Spacelab. Schedule and cost analysis are discussed.

  18. Toward Better Physics Labs for Future Biologists

    NASA Astrophysics Data System (ADS)

    Giannini, John; Moore, Kim; Losert, Wolfgang

    2014-03-01

    We have developed a set of laboratories and hands on activities to accompany a new two-semester interdisciplinary physics course that has been successfully developed and tested in two small test classes of students at the University of Maryland, College Park (UMD) in 2012-2013, and is currently being used on a wider scale. We have designed the laboratories to be taken accompanying a reformed course in the student's second year, with calculus, biology, and chemistry as prerequisites. This permits the laboratories to include significant content on physics relevant to cellular scales, from chemical interactions to random motion and charge screening in fluids. One major focus of the laboratories is to introduce the students to research-grade equipment and modern physics analysis tools in contexts relevant to biology, while maintaining the pedagogically valuable open-ended laboratory structure of reformed laboratories. Lab development procedures along with some preliminary student results from these two small test classes are discussed.

  19. Analysis of pre-service physics teacher skills designing simple physics experiments based technology

    NASA Astrophysics Data System (ADS)

    Susilawati; Huda, C.; Kurniawan, W.; Masturi; Khoiri, N.

    2018-03-01

    Pre-service physics teacher skill in designing simple experiment set is very important in adding understanding of student concept and practicing scientific skill in laboratory. This study describes the skills of physics students in designing simple experiments based technologicall. The experimental design stages include simple tool design and sensor modification. The research method used is descriptive method with the number of research samples 25 students and 5 variations of simple physics experimental design. Based on the results of interviews and observations obtained the results of pre-service physics teacher skill analysis in designing simple experimental physics charged technology is good. Based on observation result, pre-service physics teacher skill in designing simple experiment is good while modification and sensor application are still not good. This suggests that pre-service physics teacher still need a lot of practice and do experiments in designing physics experiments using sensor modifications. Based on the interview result, it is found that students have high enough motivation to perform laboratory activities actively and students have high curiosity to be skilled at making simple practicum tool for physics experiment.

  20. Underground laboratories in Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Shin Ted, E-mail: linst@mails.phys.sinica.edu.tw; Yue, Qian, E-mail: yueq@mail.tsinghua.edu.cn

    2015-08-17

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  1. Underground laboratories in Asia

    NASA Astrophysics Data System (ADS)

    Lin, Shin Ted; Yue, Qian

    2015-08-01

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  2. Low-Cost Virtual Laboratory Workbench for Electronic Engineering

    ERIC Educational Resources Information Center

    Achumba, Ifeyinwa E.; Azzi, Djamel; Stocker, James

    2010-01-01

    The laboratory component of undergraduate engineering education poses challenges in resource constrained engineering faculties. The cost, time, space and physical presence requirements of the traditional (real) laboratory approach are the contributory factors. These resource constraints may mitigate the acquisition of meaningful laboratory…

  3. Perceptions among occupational and physical therapy students of a nontraditional methodology for teaching laboratory gross anatomy.

    PubMed

    Thomas, K Jackson; Denham, Bryan E; Dinolfo, John D

    2011-01-01

    This pilot study was designed to assess the perceptions of physical therapy (PT) and occupational therapy (OT) students regarding the use of computer-assisted pedagogy and prosection-oriented communications in the laboratory component of a human anatomy course at a comprehensive health sciences university in the southeastern United States. The goal was to determine whether student perceptions changed over the course of a summer session regarding verbal, visual, tactile, and web-based teaching methodologies. Pretest and post-test surveys were distributed online to students who volunteered to participate in the pilot study. Despite the relatively small sample size, statistically significant results indicated that PT and OT students who participated in this study perceived an improved ability to name major anatomical structures from memory, to draw major anatomical structures from memory, and to explain major anatomical relationships from memory. Students differed in their preferred learning styles. This study demonstrates that the combination of small group learning and digital web-based learning seems to increase PT and OT students' confidence in their anatomical knowledge. Further research is needed to determine which forms of integrated instruction lead to improved student performance in the human gross anatomy laboratory. Copyright © 2011 American Association of Anatomists.

  4. The relation between students' communicative moves during laboratory work in physics and outcomes of their actions

    NASA Astrophysics Data System (ADS)

    Andersson, J.; Enghag, M.

    2017-01-01

    In this case study, we explore students' communication during practical work in physics at an upper secondary school in Sweden from a sociocultural perspective. We investigate the relation between the interaction and content of students' communication and outcomes of their actions, with the purpose of finding new knowledge for informing teachers in their choice of instruction. We make discourse analysis of how students interact but also of what students are discussing in terms of underlying content at a linguistic and cognitive level. Twenty students divided into five groups were video recorded while performing four practical tasks at different stations during laboratory work about motion. An analytical framework was developed and applied for one group to three parts of the transcripts in which three different talk-types occurred. Discursive, content, action and purposive moves in the process were identified for each talk-type at both linguistic and cognitive levels. These moves represent information concerning what the teacher actually assigns students to do, and how students make meaning of the activities. Through these different communicative moves, students experience how laboratory work can enhance their competence to collaborate in a scientific environment with complex practical and theoretical questions to solve quickly. Implications of the findings are discussed.

  5. Segmentation-less Digital Rock Physics

    NASA Astrophysics Data System (ADS)

    Tisato, N.; Ikeda, K.; Goldfarb, E. J.; Spikes, K. T.

    2017-12-01

    In the last decade, Digital Rock Physics (DRP) has become an avenue to investigate physical and mechanical properties of geomaterials. DRP offers the advantage of simulating laboratory experiments on numerical samples that are obtained from analytical methods. Potentially, DRP could allow sparing part of the time and resources that are allocated to perform complicated laboratory tests. Like classic laboratory tests, the goal of DRP is to estimate accurately physical properties of rocks like hydraulic permeability or elastic moduli. Nevertheless, the physical properties of samples imaged using micro-computed tomography (μCT) are estimated through segmentation of the μCT dataset. Segmentation proves to be a challenging and arbitrary procedure that typically leads to inaccurate estimates of physical properties. Here we present a novel technique to extract physical properties from a μCT dataset without the use of segmentation. We show examples in which we use segmentation-less method to simulate elastic wave propagation and pressure wave diffusion to estimate elastic properties and permeability, respectively. The proposed method takes advantage of effective medium theories and uses the density and the porosity that are measured in the laboratory to constrain the results. We discuss the results and highlight that segmentation-less DRP is more accurate than segmentation based DRP approaches and theoretical modeling for the studied rock. In conclusion, the segmentation-less approach here presented seems to be a promising method to improve accuracy and to ease the overall workflow of DRP.

  6. Aerosol and nucleation research in support of NASA cloud physics experiments in space. [ice nuclei generator for the atmospheric cloud physics laboratory on Spacelab

    NASA Technical Reports Server (NTRS)

    Vali, G.; Rogers, D.; Gordon, G.; Saunders, C. P. R.; Reischel, M.; Black, R.

    1978-01-01

    Tasks performed in the development of an ice nucleus generator which, within the facility concept of the ACPL, would provide a test aerosol suitable for a large number and variety of potential experiments are described. The impact of Atmospheric Cloud Physics Laboratory scientific functional requirements on ice nuclei generation and characterization subsystems was established. Potential aerosol generating systems were evaluated with special emphasis on reliability, repeatability and general suitability for application in Spacelab. Possible contamination problems associated with aerosol generation techniques were examined. The ice nucleating abilities of candidate test aerosols were examined and the possible impact of impurities on the nucleating abilities of those aerosols were assessed as well as the relative merits of various methods of aerosol size and number density measurements.

  7. Internships in the Applied Geography Curriculum.

    ERIC Educational Resources Information Center

    Foster, Les; And Others

    1979-01-01

    Explains why an internship is a necessary part of an applied geography curriculum. Presents a case study of an internship program at Ryerson Polytechnical Institute, Toronto, which emphasizes placement in an agency with the same specialization as the student and integration of course material and field experience. (Author/DB)

  8. 75 FR 11958 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Order Granting Approval of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... the application, entry and annual fees currently charged to issuers listed on the Nasdaq Global and Nasdaq Global Select Markets, as well as the fee for written interpretations of Nasdaq listing rules. The.... Markham, Jr., Roger Myers, and Stephen Ryerson, Holme Roberts & Owen LLP (writing on behalf of Business...

  9. Job Rotation in an Academic Library: Damned if You Do and Damned if You Don't!

    ERIC Educational Resources Information Center

    Malinski, Richard M.

    2002-01-01

    Considers job rotation, the systematic movement of employees from one job to another, as one of the tools for organizational development. Reviews relevant print and Internet literature, discusses the pros and cons of job rotation, and describes experiences at the Ryerson University library to illustrate process. (Author/LRW)

  10. A Dynamic Community of Discovery: Planning, Learning, and Change

    ERIC Educational Resources Information Center

    Gordon, Michelle; Ireland, Martha; Wong, Mina

    2011-01-01

    Ryerson University's Prior Learning and Competency Evaluation and Documentation (PLACED) program is funded by the Government of Ontario to engage internationally educated professionals (IEPs), employers, and regulatory/occupational bodies in the use of competency-based practices. In 2008, the authors created a self-assessment tool for IEPs that…

  11. ATLAS with CARIBU: A laboratory portrait

    DOE PAGES

    Pardo, Richard C.; Savard, Guy; Janssens, Robert V. F.

    2016-03-21

    The Argonne Tandem Linac Accelerator System (ATLAS) is the world's first superconducting accelerator for projectiles heavier than the electron. This unique system is a U.S. Department of Energy (DOE) national user research facility open to scientists from all over the world. Here, it is located within the Physics Division at Argonne National Laboratory and is one of five large scientific user facilities located at the laboratory.

  12. Complementarity of Laboratory and Space Experiments on Reconnexion

    NASA Astrophysics Data System (ADS)

    Moore, T. E.; Chen, L. J.

    2017-12-01

    Reconnection research has for some time been focused upon understanding the electron scale physics in the electron diffusion region (EDR), both in space and in the laboratory. Ren et al. [2008 PRL] reported identification and resolution of the EDR in the MRX laboratory experiment. More recently, Burch et al. [2016] reported identification of the EDR in reconnection at the magnetopause. Space observations from MMS have also provided the first capability to resolve and measure the full electron VDF within and around the EDR, making it possible to observe electron acceleration by the reconnection electric field and revealing new features of the EDR. Laboratory and space explorations of EDR physics may complement and inspire each other in other ways to be discussed by the panel.

  13. CODATA Fundamental Physical Constants

    National Institute of Standards and Technology Data Gateway

    SRD 121 NIST CODATA Fundamental Physical Constants (Web, free access)   This site, developed in the Physics Laboratory at NIST, addresses three topics: fundamental physical constants, the International System of Units (SI), which is the modern metric system, and expressing the uncertainty of measurement results.

  14. Laboratory Astrophysics White Paper

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy; Federman, Steve; Kwong, Victor; Salama, Farid; Savin, Daniel; Stancil, Phillip; Weingartner, Joe; Ziurys, Lucy

    2006-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomical and planetary research and will remain so for many generations to come. From the level of scientific conception to that of the scientific return, it is our understanding of the underlying processes that allows us to address fundamental questions regarding the origins and evolution of galaxies, stars, planetary systems, and life in the cosmos. In this regard, laboratory astrophysics is much like detector and instrument development at NASA and NSF; these efforts are necessary for the astronomical research being funded by the agencies. The NASA Laboratory Astrophysics Workshop met at the University of Nevada, Las Vegas (UNLV) from 14-16 February, 2006 to identify the current laboratory data needed to support existing and future NASA missions and programs in the Astrophysics Division of the Science Mission Directorate (SMD). Here we refer to both laboratory and theoretical work as laboratory astrophysics unless a distinction is necessary. The format for the Workshop involved invited talks by users of laboratory data, shorter contributed talks and poster presentations by both users and providers that highlighted exciting developments in laboratory astrophysics, and breakout sessions where users and providers discussed each others' needs and limitations. We also note that the members of the Scientific Organizing Committee are users as well as providers of laboratory data. As in previous workshops, the focus was on atomic, molecular, and solid state physics.

  15. Assessment Results Following Inquiry and Traditional Physics Laboratory Activities

    ERIC Educational Resources Information Center

    Bryan, Joel Arthur

    2006-01-01

    Preservice elementary teachers in a conceptual physics course were given multiple resources to use during several inquiry activities in order to investigate how materials were chosen, used, and valued. These students performed significantly better on assessment items related to the inquiry physics activities than on items related to traditional…

  16. Particle Size Measurements From the First Fundamentals of Ice Crystal Icing Physics Test in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    King, Michael C.; Bachalo, William; Kurek, Andrzej

    2017-01-01

    This paper presents particle measurements by the Artium Technologies, Inc. Phase Doppler Interferometer and High Speed Imaging instruments from the first Fundamental Ice Crystal Icing Physics test conducted in the NASA Propulsion Systems Laboratory. The work focuses on humidity sweeps at a larger and a smaller median volumetric diameter. The particle size distribution, number density, and water content measured by the Phase Doppler Interferometer and High Speed Imaging instruments from the sweeps are presented and compared. The current capability for these two instruments to measure and discriminate ICI conditions is examined.

  17. Particle Size Measurements from the first Fundamentals of Ice Crystal Icing Physics Test in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    King, Michael C.; Bachalo, William; Kurek, Andrzej

    2017-01-01

    This presentation shows particle measurements by the Artium Technologies, Inc. Phase Doppler Interferometer and High Speed Imaging instruments from the first Fundamental Ice Crystal Icing Physics test conducted in the NASA Propulsion Systems Laboratory. The work focuses on humidity sweeps at a larger and a smaller median volumetric diameter. The particle size distribution, number density, and water content measured by the Phase Doppler Interferometer and High Speed Imaging instruments from the sweeps are presented and compared. The current capability for these two instruments to measure and discriminate ICI conditions is examined.

  18. Cross-Course Collaboration in the Undergraduate Chemistry Curriculum: Primary Kinetic Isotope Effect in the Hypochlorite Oxidation of 1-Phenylethanol in the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Noll, Robert J.; Fitch, Richard W.; Kjonaas, Richard A.; Wyatt, Richard A.

    2017-01-01

    A kinetic isotope effect (KIE) experiment is described for the physical chemistry laboratory. Students conduct a hypochlorite (household bleach) oxidation of an equimolar mixture of 1-phenylethanol and 1-deuterio-1-phenylethanol to acetophenone. The reaction occurs in a biphasic reaction mixture and follows first-order kinetics with respect to…

  19. Solid-State NMR Spectroscopy for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Kinnun, Jacob J.; Leftin, Avigdor; Brown, Michael F.

    2013-01-01

    Solid-state nuclear magnetic resonance (NMR) spectroscopy finds growing application to inorganic and organic materials, biological samples, polymers, proteins, and cellular membranes. However, this technique is often neither included in laboratory curricula nor typically covered in undergraduate courses. On the other hand, spectroscopy and…

  20. Cloud physics laboratory project science and applications working group

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1977-01-01

    The conditions of the expansion chamber under zero gravity environment were simulated. The following three branches of fluid mechanics simulation under low gravity environment were accomplished: (1) oscillation of the water droplet which characterizes the nuclear oscillation in nuclear physics, bubble oscillation of two phase flow in chemical engineering, and water drop oscillation in meteorology; (2) rotation of the droplet which characterizes nuclear fission in nuclear physics, formation of binary stars and rotating stars in astrophysics, and breakup of the water droplet in meteorology; and (3) collision and coalescence of the water droplets which characterizes nuclear fusion in nuclear physics and processes of rain formation in meteorology.

  1. Implementation of Scientific Community Laboratories and Their Effect on Student Conceptual Learning, Attitudes, and Understanding of Uncertainty

    NASA Astrophysics Data System (ADS)

    Lark, Adam

    Scientific Community Laboratories, developed by The University of Maryland, have shown initial promise as laboratories meant to emulate the practice of doing physics. These laboratories have been re-created by incorporating their design elements with the University of Toledo course structure and resources. The laboratories have been titled the Scientific Learning Community (SLC) Laboratories. A comparative study between these SLC laboratories and the University of Toledo physics department's traditional laboratories was executed during the fall 2012 semester on first semester calculus-based physics students. Three tests were executed as pre-test and post-tests to capture the change in students' concept knowledge, attitudes, and understanding of uncertainty. The Force Concept Inventory (FCI) was used to evaluate students' conceptual changes through the semester and average normalized gains were compared between both traditional and SLC laboratories. The Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS) was conducted to elucidate students' change in attitudes through the course of each laboratory. Finally, interviews regarding data analysis and uncertainty were transcribed and coded to track changes in the way students understand uncertainty and data analysis in experimental physics after their participation in both laboratory type. Students in the SLC laboratories showed a notable an increase conceptual knowledge and attitudes when compared to traditional laboratories. SLC students' understanding of uncertainty showed most improvement, diverging completely from students in the traditional laboratories, who declined throughout the semester.

  2. Implementing Computer Based Laboratories

    NASA Astrophysics Data System (ADS)

    Peterson, David

    2001-11-01

    Physics students at Francis Marion University will complete several required laboratory exercises utilizing computer-based Vernier probes. The simple pendulum, the acceleration due to gravity, simple harmonic motion, radioactive half lives, and radiation inverse square law experiments will be incorporated into calculus-based and algebra-based physics courses. Assessment of student learning and faculty satisfaction will be carried out by surveys and test results. Cost effectiveness and time effectiveness assessments will be presented. Majors in Computational Physics, Health Physics, Engineering, Chemistry, Mathematics and Biology take these courses, and assessments will be categorized by major. To enhance the computer skills of students enrolled in the courses, MAPLE will be used for further analysis of the data acquired during the experiments. Assessment of these enhancement exercises will also be presented.

  3. FLARE: A New User Facility for Laboratory Studies of Multiple-Scale Physics of Magnetic Reconnection and Related Phenomena in Heliophysics and Astrophysics

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Goodman, A.; Prager, S.; Daughton, W.; Cutler, R.; Fox, W.; Hoffmann, F.; Kalish, M.; Kozub, T.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Sloboda, P.; Yamada, M.; Yoo, J.; Bale, S. D.; Carter, T.; Dorfman, S.; Drake, J.; Egedal, J.; Sarff, J.; Wallace, J.

    2017-10-01

    The FLARE device (Facility for Laboratory Reconnection Experiments; flare.pppl.gov) is a new laboratory experiment under construction at Princeton with first plasmas expected in the fall of 2017, based on the design of Magnetic Reconnection Experiment (MRX; mrx.pppl.gov) with much extended parameter ranges. Its main objective is to provide an experimental platform for the studies of magnetic reconnection and related phenomena in the multiple X-line regimes directly relevant to space, solar, astrophysical and fusion plasmas. The main diagnostics is an extensive set of magnetic probe arrays, simultaneously covering multiple scales from local electron scales ( 2 mm), to intermediate ion scales ( 10 cm), and global MHD scales ( 1 m). Specific example space physics topics which can be studied on FLARE will be discussed.

  4. The space laboratory of University College London

    NASA Astrophysics Data System (ADS)

    Johnstone, Alan

    1994-10-01

    University College London was one of the first universities in the world to become involved in making scientific observations in space. Since its laboratory, the Mullard Space Science Laboratory was established, it has participated in 40 satellite missions and more than 200 sounding rocket experiments. Its scientific research in five fields, space plasma physics, high energy astronomy, solar astronomy, Earth remote sensing, and detector physics is internationally renowned. The scientific and technological expertise development through the construction and use of space instrumentation has been fed back into an educational program which leads to degrees at the three levels of B.Sc., M.Sc., and Ph.D.

  5. Pacific Northwest National Laboratory institutional plan: FY 1996--2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-01-01

    This report contains the operation and direction plan for the Pacific Northwest National Laboratory of the US Department of Energy. The topics of the plan include the laboratory mission and core competencies, the laboratory strategic plan; the laboratory initiatives in molecular sciences, microbial biotechnology, global environmental change, complex modeling of physical systems, advanced processing technology, energy technology development, and medical technologies and systems; core business areas, critical success factors, and resource projections.

  6. Diving into Lake Devo: Modes of Representation and Means of Interaction and Reflection in Online Role-Play

    ERIC Educational Resources Information Center

    Koechli, Linda; Glynn, Maureen

    2014-01-01

    This paper outlines an action research project involving the development of an educational online role-playing website, known as Lake Devo. Designed in keeping with constructivist principles, the website is used in select post-secondary courses at Ryerson University and allows learners to work synchronously, using visual, audio, and text elements…

  7. Laboratory Modelling of Volcano Plumbing Systems: a review

    NASA Astrophysics Data System (ADS)

    Galland, Olivier; Holohan, Eoghan P.; van Wyk de Vries, Benjamin; Burchardt, Steffi

    2015-04-01

    Earth scientists have, since the XIX century, tried to replicate or model geological processes in controlled laboratory experiments. In particular, laboratory modelling has been used study the development of volcanic plumbing systems, which sets the stage for volcanic eruptions. Volcanic plumbing systems involve complex processes that act at length scales of microns to thousands of kilometres and at time scales from milliseconds to billions of years, and laboratory models appear very suitable to address them. This contribution reviews laboratory models dedicated to study the dynamics of volcano plumbing systems (Galland et al., Accepted). The foundation of laboratory models is the choice of relevant model materials, both for rock and magma. We outline a broad range of suitable model materials used in the literature. These materials exhibit very diverse rheological behaviours, so their careful choice is a crucial first step for the proper experiment design. The second step is model scaling, which successively calls upon: (1) the principle of dimensional analysis, and (2) the principle of similarity. The dimensional analysis aims to identify the dimensionless physical parameters that govern the underlying processes. The principle of similarity states that "a laboratory model is equivalent to his geological analogue if the dimensionless parameters identified in the dimensional analysis are identical, even if the values of the governing dimensional parameters differ greatly" (Barenblatt, 2003). The application of these two steps ensures a solid understanding and geological relevance of the laboratory models. In addition, this procedure shows that laboratory models are not designed to exactly mimic a given geological system, but to understand underlying generic processes, either individually or in combination, and to identify or demonstrate physical laws that govern these processes. From this perspective, we review the numerous applications of laboratory models to

  8. Open Innovation Labs for Physics Undergraduate Independent Research

    NASA Astrophysics Data System (ADS)

    Carlsmith, Duncan

    2014-03-01

    The open undergraduate laboratory Garage Physics at the University of Wisconsin-Madison is home to a variety of independent physics and multidisciplinary research projects. Its maker-style environment encourages innovation and entrepreneurship. Experience establishing and staffing the laboratory will be described.

  9. HEP Division Argonne National Laboratory

    Science.gov Websites

    Argonne National Laboratory Environmental Safety & Health DOE Logo Home Division ES&H ... Search Argonne Home >High Energy Physics> Environmental Safety & Health Environmental Safety & Health New Employee Training */ ?> Office Safety: Checklist (Submitted Checklists) Submitted

  10. Report of the Physics Gender Equity Workshop (May 2007) at APS

    NASA Astrophysics Data System (ADS)

    Berrah, Nora

    2008-04-01

    The Committee of the Status of Women in Physics (CSWP) of the American Physical Society (APS) organized and held a national workshop entitled ``Gender Equity: Strengthening the Physics Enterprise in Universities and National Laboratories'' to focus on addressing the gender gap in the field of physics. The major aim of the workshop was to facilitate a doubling of the number of women in physics, in both academia and national laboratories, over the next 15 years. The active participation of physics department chairs, national laboratory managers, and federal agencies allowed exciting collective work that enabled new ideas to emerge, both to make the field of physics more attractive to women and men, and to find effective ways to retain women in physics. The group also generated a set of recommendations that can be applied at any physics department or national laboratory unit [1]. A report from this workshop will be presented. [1] http://www.aps.org/programs/women/workshops/gender-equity/index.cfm

  11. Advanced Propulsion Physics Lab: Eagleworks Investigations

    NASA Technical Reports Server (NTRS)

    Scogin, Tyler

    2014-01-01

    Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.

  12. Survey of safety practices among hospital laboratories in Oromia Regional State, Ethiopia.

    PubMed

    Sewunet, Tsegaye; Kebede, Wakjira; Wondafrash, Beyene; Workalemau, Bereket; Abebe, Gemeda

    2014-10-01

    Unsafe working practices, working environments, disposable waste products, and chemicals in clinical laboratories contribute to infectious and non-infectious hazards. Staffs, the community, and patients are less safe. Furthermore, such practices compromise the quality of laboratory services. We conducted a study to describe safety practices in public hospital laboratories of Oromia Regional State, Ethiopia. Randomly selected ten public hospital laboratories in Oromia Regional State were studied from Oct 2011- Feb 2012. Self-administered structured questionnaire and observation checklists were used for data collection. The respondents were heads of the laboratories, senior technicians, and safety officers. The questionnaire addressed biosafety label, microbial hazards, chemical hazards, physical/mechanical hazards, personal protective equipment, first aid kits and waste disposal system. The data was analyzed using descriptive analysis with SPSS version16 statistical software. All of the respondents reported none of the hospital laboratories were labeled with the appropriate safety label and safety symbols. These respondents also reported they may contain organisms grouped under risk group IV in the absence of microbiological safety cabinets. Overall, the respondents reported that there were poor safety regulations or standards in their laboratories. There were higher risks of microbial, chemical and physical/mechanical hazards. Laboratory safety in public hospitals of Oromia Regional State is below the standard. The laboratory workers are at high risk of combined physical, chemical and microbial hazards. Prompt recognition of the problem and immediate action is mandatory to ensure safe working environment in health laboratories.

  13. Mapping cognitive structures of community college students engaged in basic electrostatics laboratories

    NASA Astrophysics Data System (ADS)

    Haggerty, Dennis Charles

    Community college students need to be abstract thinkers in order to be successful in the introductory Physics curriculum. The purpose of this dissertation is to map the abstract thinking of community college Physics students. The laboratory environment was used as a vehicle for the mapping. Three laboratory experiments were encountered. One laboratory was based on the classic Piagetian task, the centripetal motion (CM) problem. The other two laboratories were introductory electrostatic Physics experiments, Resistance (RES) and Capacitance (CAP). The students performed all laboratories using the thinking-aloud technique. The researcher collected their verbal protocols using audiotapes. The audiotaped data was quantified by comparing it to a scoring matrix based on the Piagetian logical operators (Inhelder & Piaget, 1958) for abstract thinking. The students received scores for each laboratory experiment. These scores were compared to a reliable test of intellectual functioning, the Shipley Institute of Living Scale (SILS). Spearman rank correlation coefficients (SRCC) were obtained for SILS versus CM; SILS versus RES; and SILS versus CAP. Statistically significant results were obtained for SILS versus CM and SILS versus RES at the p < 0.05 level. When an outlier to the data was considered and suppressed, the SILS versus CAP was also statistically significant at the p < 0.05 level. The scoring matrix permits a bridge from the qualitative Piagetian level of cognitive development to a quantified, mapped level of cognitive development. The ability to quantify student abstract thinking in Physics education provides a means to adjust an instructional approach. This approach could lead to a proper state of Physics education.

  14. Forming of science teacher thinking through integrated laboratory exercises

    NASA Astrophysics Data System (ADS)

    Horváthová, Daniela; Rakovská, Mária; Zelenický, Ľubomír

    2017-01-01

    Within the three-semester optional course Science we have also included into curricula the subject entitled Science Practicum consisting of laboratory exercises of complementary natural scientific disciplines whose content exceeds the boundaries of relevant a scientific discipline (physics, biology, …). The paper presents the structure and selected samples of laboratory exercises of physical part of Science Practicum in which we have processed in an integrated way the knowledge of physics and biology at secondary grammar school. When planning the exercises we have proceeded from those areas of mentioned disciplines in which we can appropriately apply integration of knowledge and where the measurement methods are used. We have focused on the integration of knowledge in the field of human sensory organs (eye, ear), dolphins, bats (spatial orientation) and bees (ommatidium of faceted eye) and their modelling. Laboratory exercises are designed in such a way that they would motivate future teachers of natural scientific subjects to work independently with specialized literature of the mentioned natural sciences and ICT.

  15. Eight year experience in open ended instrumentation laboratory

    NASA Astrophysics Data System (ADS)

    Marques, Manuel B.; Rosa, Carla C.; Marques, Paulo V. S.

    2015-10-01

    When designing laboratory courses in a Physics Major we consider a range of objectives: teaching Physics; developing lab competencies; instrument control and data acquisition; learning about measurement errors and error propagation; an introduction to project management; team work skills and scientific writing. But nowadays we face pressure to decrease laboratory hours due to the cost involved. Many universities are replacing lab classes for simulation activities, hiring PhD. and master students to give first year lab classes, and reducing lab hours. This leads to formatted lab scripts and poor autonomy of the students, and failure to enhance creativity and autonomy. In this paper we present our eight year experience with a laboratory course that is mandatory in the third year of Physics and Physical Engineering degrees. Since the students had previously two standard laboratory courses, we focused on teaching instrumentation and giving students autonomy. The course is divided in two parts: one third is dedicated to learn computer controlled instrumentation and data acquisition (based in LabView); the final 2/3 is dedicated to a group project. In this project, the team (2 or 3 students) must develop a project and present it in a typical conference format at the end of the semester. The project assignments are usually not very detailed (about two or three lines long), giving only general guidelines pointing to a successful project (students often recycle objectives putting forward a very personal project); all of them require assembling some hardware. Due to our background, about one third of the projects are related to Optics.

  16. Effective Laboratory Experiences for Students with Disabilities: The Role of a Student Laboratory Assistant

    NASA Astrophysics Data System (ADS)

    Pence, Laura E.; Workman, Harry J.; Riecke, Pauline

    2003-03-01

    Two separate experiences with students whose disabilities significantly limited the number of laboratory activities they could accomplish independently has given us a general experience base for determining successful strategies for accommodating students facing these situatiuons. For a student who had substantially limited physical mobility and for a student who had no visual ability, employing a student laboratory assistant allowed the students with disabilities to have a productive and positive laboratory experience. One of the priorities in these situations should be to avoid depersonalizing the student with a disability. Interactions with the instructor and with other students should focus on the disabled student rather than the student laboratory assistant who may be carrying out specific tasks. One of the most crucial aspects of a successful project is the selection of a laboratory assistant who has excellent interpersonal skills and who will add his or her creativity to that of the student with a disability to meet unforeseen challenges. Other considerations are discussed, such as the importance of advance notification that a disabled student has enrolled in a course as well as factors that should contribute to choosing an optimum laboratory station for each situation.

  17. Common Covert Chemical and Physical Hazards in School Science Laboratories. Part 2.

    ERIC Educational Resources Information Center

    Roy, Ken

    2000-01-01

    Explains that mercury is a dangerous substance to use in school science laboratories and gives several examples of mercury poisoning. Lists some precautions that should be taken in case of mercury spillage in the lab. Advocates using non-mercury laboratory equipment and limiting student access to mercury to prevent dangerous situations. (YDS)

  18. Physical examination instead of laboratory tests for most infants born to mothers colonized with group B Streptococcus: support for the Centers for Disease Control and Prevention's 2010 recommendations.

    PubMed

    Cantoni, Luigi; Ronfani, Luca; Da Riol, Rosalia; Demarini, Sergio

    2013-08-01

    To compare 2 approaches in the management of neonates at risk for group B Streptococcus early-onset sepsis: laboratory tests plus standardized physical examination and standardized physical examination alone. Prospective, sequential study over 2 consecutive 12-month periods, carried out in the maternity hospitals of the region Friuli-Venezia Giulia (north-eastern Italy). All term infants were included (7628 in the first period, 7611 in the second). In the first period, complete blood count and blood culture were required for all infants at risk, followed by a 48-hour period of observation with a standardized physical examination. In the second period, only standardized physical examination was performed. Study outcomes were: (1) number of neonates treated with antibiotics; and (2) time between onset of signs of possible sepsis and beginning of treatment. There was no difference between the 2 periods in the rate of maternal colonization (19.7% vs 19.8%, P = .8), or in other risk factors. The interval between onset of signs of sepsis and starting of antibiotics was not different in the 2 periods. Significantly fewer infants were treated with antibiotics in the second period (0.5% vs 1.2%, P < .001). Laboratory tests together with standardized physical examination seem to offer no advantage over standardized physical examination alone; the latter was associated with fewer antibiotic treatments. Our results are in agreement with the Center for Disease Control and Prevention's 2010 recommendations. Copyright © 2013 Mosby, Inc. All rights reserved.

  19. Laboratory security and emergency response guidance for laboratories working with select agents. Centers for Disease Control and Prevention.

    PubMed

    Richmond, Jonathan Y; Nesby-O'Dell, Shanna L

    2002-12-06

    In recent years, concern has increased regarding use of biologic materials as agents of terrorism, but these same agents are often necessary tools in clinical and research microbiology laboratories. Traditional biosafety guidelines for laboratories have emphasized use of optimal work practices, appropriate containment equipment, well-designed facilities, and administrative controls to minimize risk of worker injury and to ensure safeguards against laboratory contamination. The guidelines discussed in this report were first published in 1999 (U.S. Department of Health and Human Services/CDC and National Institutes of Health. Biosafety in microbiological and biomedical laboratories [BMBL]. Richmond JY, McKinney RW, eds. 4th ed. Washington, DC: US Department of Health and Human Services, 1999 [Appendix F]). In that report, physical security concerns were addressed, and efforts were focused on preventing unauthorized entry to laboratory areas and preventing unauthorized removal of dangerous biologic agents from the laboratory. Appendix F of BMBL is now being revised to include additional information regarding personnel risk assessments, and inventory controls. The guidelines contained in this report are intended for laboratories working with select agents under biosafety-level 2, 3, or 4 conditions as described in Sections II and III of BMBL. These recommendations include conducting facility risk assessments and developing comprehensive security plans to minimize the probability of misuse of select agents. Risk assessments should include systematic, site-specific reviews of 1) physical security; 2) security of data and electronic technology systems; 3) employee security; 4) access controls to laboratory and animal areas; 5) procedures for agent inventory and accountability; 6) shipping/transfer and receiving of select agents; 7) unintentional incident and injury policies; 8) emergency response plans; and 9) policies that address breaches in security. The security plan

  20. 78 FR 33449 - FirstEnergy Nuclear Operating Company; Establishment of Atomic Safety and Licensing Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... Nuclear Operating Company; Establishment of Atomic Safety and Licensing Board Pursuant to delegation by... 2.104, 2.105, 2.300, 2.309, 2.313, 2.318, and 2.321, notice is hereby given that an Atomic Safety... administrative judges: Paul S. Ryerson, Chairman, Atomic Safety and Licensing Board Panel, U.S. Nuclear...

  1. Emerging Technologies in Physics Education

    ERIC Educational Resources Information Center

    Krusberg, Zosia A. C.

    2007-01-01

    Three emerging technologies in physics education are evaluated from the interdisciplinary perspective of cognitive science and physics education research. The technologies--Physlet Physics, the Andes Intelligent Tutoring System (ITS), and Microcomputer-Based Laboratory (MBL) Tools--are assessed particularly in terms of their potential at promoting…

  2. Laboratory Directed Research and Development FY 1998 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Vigil; Kyle Wheeler

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  3. Laboratory directed research and development: FY 1997 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  4. Environmental Engineering Unit Operations and Unit Processes Laboratory Manual.

    ERIC Educational Resources Information Center

    O'Connor, John T., Ed.

    This manual was prepared for the purpose of stimulating the development of effective unit operations and unit processes laboratory courses in environmental engineering. Laboratory activities emphasizing physical operations, biological, and chemical processes are designed for various educational and equipment levels. An introductory section reviews…

  5. Some Experiments with Biological Applications for the Elementary Laboratory

    ERIC Educational Resources Information Center

    Kammer, D. W.; Williams, J. A.

    1975-01-01

    Summarizes physics laboratory experiments with applications in the biological sciences. Includes the following topics: mechanics of the human arm, fluid flow in tubes, physics of learning, the electrocardiograph, nerve impulse conduction, and corrective lenses for eye defects. (Author/MLH)

  6. Laboratory Measurements of Optical and Physical Properties of Individual Lunar Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Hoover, R. B.

    2006-01-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, and transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The experimental results were obtained on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield

  7. Validation of Physical Activity Tracking via Android Smartphones Compared to ActiGraph Accelerometer: Laboratory-Based and Free-Living Validation Studies.

    PubMed

    Hekler, Eric B; Buman, Matthew P; Grieco, Lauren; Rosenberger, Mary; Winter, Sandra J; Haskell, William; King, Abby C

    2015-04-15

    There is increasing interest in using smartphones as stand-alone physical activity monitors via their built-in accelerometers, but there is presently limited data on the validity of this approach. The purpose of this work was to determine the validity and reliability of 3 Android smartphones for measuring physical activity among midlife and older adults. A laboratory (study 1) and a free-living (study 2) protocol were conducted. In study 1, individuals engaged in prescribed activities including sedentary (eg, sitting), light (sweeping), moderate (eg, walking 3 mph on a treadmill), and vigorous (eg, jogging 5 mph on a treadmill) activity over a 2-hour period wearing both an ActiGraph and 3 Android smartphones (ie, HTC MyTouch, Google Nexus One, and Motorola Cliq). In the free-living study, individuals engaged in usual daily activities over 7 days while wearing an Android smartphone (Google Nexus One) and an ActiGraph. Study 1 included 15 participants (age: mean 55.5, SD 6.6 years; women: 56%, 8/15). Correlations between the ActiGraph and the 3 phones were strong to very strong (ρ=.77-.82). Further, after excluding bicycling and standing, cut-point derived classifications of activities yielded a high percentage of activities classified correctly according to intensity level (eg, 78%-91% by phone) that were similar to the ActiGraph's percent correctly classified (ie, 91%). Study 2 included 23 participants (age: mean 57.0, SD 6.4 years; women: 74%, 17/23). Within the free-living context, results suggested a moderate correlation (ie, ρ=.59, P<.001) between the raw ActiGraph counts/minute and the phone's raw counts/minute and a strong correlation on minutes of moderate-to-vigorous physical activity (MVPA; ie, ρ=.67, P<.001). Results from Bland-Altman plots suggested close mean absolute estimates of sedentary (mean difference=-26 min/day of sedentary behavior) and MVPA (mean difference=-1.3 min/day of MVPA) although there was large variation. Overall, results suggest

  8. Stress responses to repeated exposure to a combined physical and social evaluative laboratory stressor in young healthy males.

    PubMed

    Boyle, N B; Lawton, C; Arkbåge, K; West, S G; Thorell, L; Hofman, D; Weeks, A; Myrissa, K; Croden, F; Dye, L

    2016-01-01

    Repeated exposure to homotypic laboratory psychosocial stressors typically instigates rapid habituation in hypothalamic-pituitary-adrenal (HPA) axis-mediated stress responses in humans. However, emerging evidence suggests the combination of physical stress and social evaluative threat may be sufficient to attenuate this response habituation. Neuroendocrine, cardiovascular and subjective stress responses following repeated exposure to a combined physical and social evaluative stress protocol were assessed to examine the habituation response dynamic in this context. The speech task of the Trier social stress test (TSST; Kirschbaum et al., 1993) and the socially evaluated cold pressor task (SECPT; Schwabe et al., 2008) were administered in a combined stressor protocol. Salivary cortisol, cardiovascular and subjective stress responses to a non-stress control and repeat stressor exposure separated by six weeks were examined in males (N=24) in a crossover manner. Stressor exposure resulted in significant elevations in all stress parameters. In contrast to the commonly reported habituation in cortisol response, a comparable post-stress response was demonstrated. Cortisol, heart rate and subjective stress responses were also characterised by a heightened response in anticipation to repeated stress exposure. Blood pressure responses were comparatively uniform across repeated exposures. Findings suggest a combined physical and social evaluative stressor is a potentially useful method for study designs that require repeated presentation of a homotypic stressor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Observations and Modeling of Long Negative Laboratory Discharges: Identifying the Physics Important to an Electrical Spark in Air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biagi, C J; Uman, M A

    2011-12-13

    There are relatively few reports in the literature focusing on negative laboratory leaders. Most of the reports focus exclusively on the simpler positive laboratory leader that is more commonly encountered in high voltage engineering [Gorin et al., 1976; Les Renardieres Group, 1977; Gallimberti, 1979; Domens et al., 1994; Bazelyan and Raizer 1998]. The physics of the long, negative leader and its positive counterpart are similar; the two differ primarily in their extension mechanisms [Bazelyan and Raizer, 1998]. Long negative sparks extend primarily by an intermittent process termed a 'step' that requires the development of secondary leader channels separated in spacemore » from the primary leader channel. Long positive sparks typically extend continuously, although, under proper conditions, their extension can be temporarily halted and begun again, and this is sometimes viewed as a stepping process. However, it is emphasized that the nature of positive leader stepping is not like that of negative leader stepping. There are several key observational studies of the propagation of long, negative-polarity laboratory sparks in air that have aided in the understanding of the stepping mechanisms exhibited by such sparks [e.g., Gorin et al., 1976; Les Renardieres Group, 1981; Ortega et al., 1994; Reess et al., 1995; Bazelyan and Raizer, 1998; Gallimberti et al., 2002]. These reports are reviewed below in Section 2, with emphasis placed on the stepping mechanism (the space stem, pilot, and space leader). Then, in Section 3, reports pertaining to modeling of long negative leaders are summarized.« less

  10. Analytical study of the Atmospheric Cloud Physics Laboratory (ACPL) experiments

    NASA Technical Reports Server (NTRS)

    Davis, M. H.

    1977-01-01

    The design specifications of the research laboratory as a Spacelab facility are discussed along with the types of planned experiments. These include cloud formation, freezing and scavenging, and electrical phenomena. A summary of the program conferences is included.

  11. Laboratory and Space Plasma Studies

    NASA Astrophysics Data System (ADS)

    Hyman, Ellis

    1996-08-01

    The work performed by Science Applications International Corporation (SAIC), encompasses a wide range of topics in experimental, computational, and analytical laboratory and space plasma physics. The accomplishments described in this report have been in support of the programs of the Laser Plasma Branch (Code 6730) and other segments of the Plasma Physics Division at the Naval Research Laboratory (NRL) and cover the period 27 September 1993 to August 1, 1996. SAIC's efforts have been supported by sub-contracts or consulting agreements with Pulse Sciences, Inc., Clark Richardson, and Biskup Consulting Engineers, Pharos Technical Enterprises, Plex Corporation, Cornell University, Stevens Institute of Technology, the University of Connecticut, Plasma Materials and Technologies, Inc., and GaSonics International, Inc. In the following discussions section we will describe each of the topics investigated and the results obtained. Much of the research work has resulted in journal publications and NRL Memorandum Reports in which the investigation is described in detail. These reports are included as Appendices to this Final Report.

  12. Determination of Absolute Zero Using a Computer-Based Laboratory

    ERIC Educational Resources Information Center

    Amrani, D.

    2007-01-01

    We present a simple computer-based laboratory experiment for evaluating absolute zero in degrees Celsius, which can be performed in college and undergraduate physical sciences laboratory courses. With a computer, absolute zero apparatus can help demonstrators or students to observe the relationship between temperature and pressure and use…

  13. The design and development of a space laboratory to conduct magnetospheric and plasma research

    NASA Technical Reports Server (NTRS)

    Rosen, A.

    1974-01-01

    A design study was conducted concerning a proposed shuttle-borne space laboratory for research on magnetospheric and plasma physics. A worldwide survey found two broad research disciplines of interest: geophysical studies of the dynamics and structure of the magnetosphere (including wave characteristics, wave-particle interactions, magnetospheric modifications, beam-plasma interactions, and energetic particles and tracers) and plasma physics studies (plasma physics in space, wake and sheath studies, and propulsion and devices). The Plasma Physics and Environmental Perturbation Laboratory (PPEPL) designed to perform experiments in these areas will include two 50-m booms and two maneuverable subsatellites, a photometer array, standardized proton, electron, and plasma accelerators, a high-powered transmitter for frequencies above 100 kHz, a low-power transmitter for VLF and below, and complete diagnostic packages. Problem areas in the design of a space plasma physics laboratory are indicated.

  14. Developing skills versus reinforcing concepts in physics labs: Insight from a survey of students' beliefs about experimental physics

    NASA Astrophysics Data System (ADS)

    Wilcox, Bethany R.; Lewandowski, H. J.

    2017-06-01

    Physics laboratory courses have been generally acknowledged as an important component of the undergraduate curriculum, particularly with respect to developing students' interest in, and understanding of, experimental physics. There are a number of possible learning goals for these courses including reinforcing physics concepts, developing laboratory skills, and promoting expertlike beliefs about the nature of experimental physics. However, there is little consensus among instructors and researchers interested in the laboratory learning environment as to the relative importance of these various learning goals. Here, we contribute data to this debate through the analysis of students' responses to the laboratory-focused assessment known as the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS). Using a large, national data set of students' responses, we compare students' E-CLASS performance in classes in which the instructor self-reported focusing on developing skills, reinforcing concepts, or both. As the classification of courses was based on instructor self-report, we also provide additional description of these courses with respect to how often students engage in particular activities in the lab. We find that courses that focus specifically on developing lab skills have more expertlike postinstruction E-CLASS responses than courses that focus either on reinforcing physics concepts or on both goals. Within first-year courses, this effect is larger for women. Moreover, these findings hold when controlling for the variance in postinstruction scores that is associated with preinstruction E-CLASS scores, student major, and student gender.

  15. Overview of theory and simulations in the Heavy Ion Fusion Science Virtual National Laboratory

    NASA Astrophysics Data System (ADS)

    Friedman, Alex

    2007-07-01

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is a collaboration of Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. These laboratories, in cooperation with researchers at other institutions, are carrying out a coordinated effort to apply intense ion beams as drivers for studies of the physics of matter at extreme conditions, and ultimately for inertial fusion energy. Progress on this endeavor depends upon coordinated application of experiments, theory, and simulations. This paper describes the state of the art, with an emphasis on the coordination of modeling and experiment; developments in the simulation tools, and in the methods that underly them, are also treated.

  16. Toddler physical activity study: laboratory and community studies to evaluate accelerometer validity and correlates.

    PubMed

    Hager, Erin R; Gormley, Candice E; Latta, Laura W; Treuth, Margarita S; Caulfield, Laura E; Black, Maureen M

    2016-09-06

    Toddlerhood is an important age for physical activity (PA) promotion to prevent obesity and support a physically active lifestyle throughout childhood. Accurate assessment of PA is needed to determine trends/correlates of PA, time spent in sedentary, light, or moderate-vigorous PA (MVPA), and the effectiveness of PA promotion programs. Due to the limited availability of objective measures that have been validated and evaluated for feasibility in community studies, it is unclear which subgroups of toddlers are at the highest risk for inactivity. Using Actical ankle accelerometry, the objectives of this study are to develop valid thresholds, examine feasibility, and examine demographic/ anthropometric PA correlates of MVPA among toddlers from low-income families. Two studies were conducted with toddlers (12-36 months). Laboratory Study (n = 24)- Two Actical accelerometers were placed on the ankle. PA was observed using the Child Activity Rating Scale (CARS, prescribed activities). Analyses included device equivalence reliability (correlation: activity counts of two Acticals), criterion-related validity (correlation: activity counts and CARS ratings), and sensitivity/specificity for thresholds. Community Study (n = 277, low-income mother-toddler dyads recruited)- An Actical was worn on the ankle for > 7 days (goal >5, 24-h days). Height/weight was measured. Mothers reported demographics. Analyses included frequencies (feasibility) and stepwise multiple linear regression (sMLR). Laboratory Study- Acticals demonstrated reliability (r = 0.980) and validity (r = 0.75). Thresholds demonstrated sensitivity (86 %) and specificity (88 %). Community Study- 86 % wore accelerometer, 69 % had valid data (mean = 5.2 days). Primary reasons for missing/invalid data: refusal (14 %) and wear-time ≤2 days (11 %). The MVPA threshold (>2200 cpm) yielded 54 min/day. In sMLR, MVPA was associated with age (older > younger, β = 32.8, p < 0

  17. Gran Sasso National Laboratory: Outreach and communication activities

    NASA Astrophysics Data System (ADS)

    Antolini, R.; Di Giovanni, A.; Galeota, M.; Sebastiani, S.

    2010-01-01

    Due to its fascinating structures, the Gran Sasso National Laboratory (LNGS) offers huge opportunities for communication and outreach activities conceived for students and general public. A great effort is devoted to the organisation of the "OPEN DAY", in which the scientific staff of Gran Sasso introduces non expert people to the main relevant research topics of the laboratory through interactive demonstrations and particle detectors. In particular, a portable cosmic rays telescope has been realized: the detector is used by LNGS team in pubblic events as well as to promote the scientific activities of the Laboratory. In order to point out the importance of the scientific culture for young people, LNGS is involved in the organisation of several training courses for students and teachers focused on the improvement of the knowledge on modern physics topics. Since May 2008 is operating in Teramo the "Galileium", an interactive museum for physics and astrophysics.

  18. 7 CFR 94.3 - Analyses performed and locations of laboratories.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... by AMS Science and Technology (S&T) personnel for microbiological, chemical, and physical attributes..., microorganism, dextrin, or other substance. (e) The AMS Science and Technology's Eastern Laboratory shall... samples are performed at the following USDA location: USDA, AMS, Science & Technology, Eastern Laboratory...

  19. 7 CFR 94.3 - Analyses performed and locations of laboratories.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... by AMS Science and Technology (S&T) personnel for microbiological, chemical, and physical attributes..., microorganism, dextrin, or other substance. (e) The AMS Science and Technology's Eastern Laboratory shall... samples are performed at the following USDA location: USDA, AMS, Science & Technology, Eastern Laboratory...

  20. 7 CFR 94.3 - Analyses performed and locations of laboratories.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... by AMS Science and Technology (S&T) personnel for microbiological, chemical, and physical attributes..., microorganism, dextrin, or other substance. (e) The AMS Science and Technology's Eastern Laboratory shall... samples are performed at the following USDA location: USDA, AMS, Science & Technology, Eastern Laboratory...

  1. VIEW OF BUILDING NO. 77710A, LOOKING WEST. LABORATORY WING AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF BUILDING NO. 777-10A, LOOKING WEST. LABORATORY WING AND MAIN ENTRANCE ON RIGHT; MULTISTORY REACTOR WING IN LEFT BACKGROUND - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  2. Microcomputer Data Management in an Introductory Physics Laboratory.

    ERIC Educational Resources Information Center

    Chonacky, Norman

    1982-01-01

    Discusses the use of a microcomputer/mini-floppy disk system by physics students to store and analyze experimental data and exchange messages with the lab instructor. Also discusses other uses, in particular those fostering critical thinking and hypothetico-deductive reasoning. (Author/SK)

  3. EDITORIAL: Interrelationship between plasma phenomena in the laboratory and in space

    NASA Astrophysics Data System (ADS)

    Koepke, Mark

    2008-07-01

    special issue serve to synthesise our current understanding of processes related to the coupling and feedback at disparate scales. Categories of topics included here are (1) ionospheric physics and (2) Alfvén-wave physics, both of which are related to the particle acceleration responsible for auroral displays, (3) whistler-mode triggering mechanism, which is relevant to radiation-belt dynamics, (4) plasmoid encountering a barrier, which has applications throughout the realm of space and astrophysical plasmas, and (5) laboratory investigations of the entire magnetosphere or the plasma surrounding the magnetosphere. The papers are ordered from processes that take place nearest the Earth to processes that take place at increasing distances from Earth. Many advances in understanding space plasma phenomena have been linked to insight derived from theoretical modeling and/or laboratory experiments. Observations from space-borne instruments are typically interpreted using theoretical models developed to predict the properties and dynamics of space and astrophysical plasmas. The usefulness of customized laboratory experiments for providing confirmation of theory by identifying, isolating, and studying physical phenomena efficiently, quickly, and economically has been demonstrated in the past. The benefits of laboratory experiments to investigating space-plasma physics are their reproducibility, controllability, diagnosability, reconfigurability, and affordability compared to a satellite mission or rocket campaign. Certainly, the plasma being investigated in a laboratory device is quite different from that being measured by a spaceborne instrument; nevertheless, laboratory experiments discover unexpected phenomena, benchmark theoretical models, develop physical insight, establish observational signatures, and pioneer diagnostic techniques. Explicit reference to such beneficial laboratory contributions is occasionally left out of the citations in the space-physics literature in

  4. eComLab: remote laboratory platform

    NASA Astrophysics Data System (ADS)

    Pontual, Murillo; Melkonyan, Arsen; Gampe, Andreas; Huang, Grant; Akopian, David

    2011-06-01

    Hands-on experiments with electronic devices have been recognized as an important element in the field of engineering to help students get familiar with theoretical concepts and practical tasks. The continuing increase the student number, costly laboratory equipment, and laboratory maintenance slow down the physical lab efficiency. As information technology continues to evolve, the Internet has become a common media in modern education. Internetbased remote laboratory can solve a lot of restrictions, providing hands-on training as they can be flexible in time and the same equipment can be shared between different students. This article describes an on-going remote hands-on experimental radio modulation, network and mobile applications lab project "eComLab". Its main component is a remote laboratory infrastructure and server management system featuring various online media familiar with modern students, such as chat rooms and video streaming.

  5. Epistemology and Expectations Survey about Experimental Physics: Development and Initial Results

    ERIC Educational Resources Information Center

    Zwickl, Benjamin M.; Hirokawa, Takako; Finkelstein, Noah; Lewandowski, H. J.

    2014-01-01

    In response to national calls to better align physics laboratory courses with the way physicists engage in research, we have developed an epistemology and expectations survey to assess how students perceive the nature of physics experiments in the contexts of laboratory courses and the professional research laboratory. The Colorado Learning…

  6. A laboratory evaluation of rubber-asphalt paving mixtures : final report.

    DOT National Transportation Integrated Search

    1974-06-01

    The primary objective of this study was to evaluate rubber additive asphalt and its aggregate mixtures in the laboratory with respect to their physical characteristics. : Results obtained on the physical properties of the rubberized asphalt binder we...

  7. Employing the Disadvantaged: Inland Steel's Experience.

    ERIC Educational Resources Information Center

    Campbell, Ralph

    1969-01-01

    Among the various approaches used by the Inland Steel Company in training ghetto youth for jobs, greatest promise has been shown by the Work Experience and Training Program initiated in 1965 at the Joseph T. Ryerson and Son plant, an Inland subsidiary located in the Lawndale (West Side) area of Chicago near the scene of the 1966 riots. Results…

  8. Reframing Public Education as a Public Good

    ERIC Educational Resources Information Center

    Froese-Germain, Bernie

    2013-01-01

    In his 1847 "Report on a System of Public Elementary Instruction for Upper Canada", Egerton Ryerson stated that public education was created in Canada to ensure that youth were prepared for their "appropriate duties and employments of life … as persons of business, and also as members of the civil community in which they live."…

  9. From a Knowledge Container to a Mobile Learning Platform: What RULA Learned from the Laptop Lending Program

    ERIC Educational Resources Information Center

    Wang, Weina; Dermody, Kelly; Burgess, Colleen; Wang, Fangmin

    2014-01-01

    Technology lending has proven to be one of the most popular services that the Ryerson University Library and Archives (RULA) has offered in the past few years. Given the number of commuting digital natives comprising our student body, the library wanted to know how these students were using our current laptop loan program and how this service…

  10. Laboratory-associated infections and biosafety.

    PubMed Central

    Sewell, D L

    1995-01-01

    An estimated 500,000 laboratory workers in the United States are at risk of exposure to infectious agents that cause disease ranging from inapparent to life-threatening infections, but the precise risk to a given worker unknown. The emergence of human immunodeficiency virus and hantavirus, the continuing problem of hepatitis B virus, and the reemergence of Mycobacterium tuberculosis have renewed interest in biosafety for the employees of laboratories and health care facilities. This review examines the history, the causes, and the methods for prevention of laboratory-associated infections. The initial step in a biosafety program is the assessment of risk to the employee. Risk assessment guidelines include the pathogenicity of the infectious agent, the method of transmission, worker-related risk factors, the source and route of infection, and the design of the laboratory facility. Strategies for the prevention and management of laboratory-associated infections are based on the containment of the infectious agent by physical separation from the laboratory worker and the environment, employee education about the occupational risks, and availability of an employee health program. Adherence to the biosafety guidelines mandated or proposed by various governmental and accrediting agencies reduces the risk of an occupational exposure to infectious agents handled in the workplace. PMID:7553572

  11. Plans and Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Tsao, Jen-Ching; Bartkus, Tadas

    2016-01-01

    This presentation accompanies the paper titled Plans and Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory. NASA is evaluating whether PSL, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. This presentation (and accompanying paper) presents data from some preliminary testing performed in May 2015 which examined how a mixed-phase cloud could be generated at PSL using evaporative cooling in a warmer-than-freezing environment.

  12. Microcomputers in an Undergraduate Optics Laboratory.

    ERIC Educational Resources Information Center

    Tomaselli, V. P.; And Others

    1990-01-01

    Describes a junior-level, one-year optics laboratory course for physics and engineering students. The course offers a range of experiments from conventional geometric optics to contemporary spatial filtering and fiber optics. Presents an example of an experiment with pictures. (Author/YP)

  13. On cosmology in the laboratory.

    PubMed

    Leonhardt, Ulf

    2015-08-28

    In transformation optics, ideas from general relativity have been put to practical use for engineering problems. This article asks the question how this debt can be repaid. In discussing a series of recent laboratory experiments, it shows how insights from wave phenomena shed light on the quantum physics of the event horizon.

  14. North Pacific Acoustic Laboratory and Deep Water Acoustics

    DTIC Science & Technology

    2015-09-30

    range acoustic systems, whether for acoustic surveillance, communication, or remote sensing of the ocean interior . The data from the NPAL network, and...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. North Pacific Acoustic Laboratory and Deep Water... Acoustics PI James A. Mercer Applied Physics Laboratory, University of Washington 1013 NE 40th Street Seattle, WA 98105 phone: (206) 543-1361 fax

  15. Baseball Physics: A New Mechanics Lab

    ERIC Educational Resources Information Center

    Wagoner, Kasey; Flanagan, Daniel

    2018-01-01

    The game of baseball provides an interesting laboratory for experimenting with mechanical phenomena (there are many good examples in "The Physics Teacher," available on Professor Alan Nathan's website, and discussed in "Physics of Baseball & Softball"). We have developed a lab, for an introductory-level physics course, that…

  16. Biomedical research, development, and engineering at the Johns Hopkins University Applied Physics Laboratory. Annual report 1 October 1978-30 September 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Medical Institutions of The Johns Hopkins University and The Johns Hopkins University Applied Physics Laboratory have developed a vigorous collaborative program of biomedical research, development, and systems engineering. An important objective of the program is to apply the expertise in engineering, the physical sciences, and systems analysis acquired by APL in defense and space research and development to problems of medical research and health care delivery. This program has grown to include collaboration with many of the clinical and basic science departments of the medical divisions. Active collaborative projects exist in ophthalmology, neurosensory research and instrumentation development, cardiovascular systems,more » patient monitoring, therapeutic and rehabilitation systems, clinical information systems, and clinical engineering. This application of state-of-the-art technology has contributed to advances in many areas of basic medical research and in clinical diagnosis and therapy through improvement of instrumentation, techniques, and basic understanding.« less

  17. Integrating Condensed Matter Physics into a Liberal Arts Physics Curriculum

    NASA Astrophysics Data System (ADS)

    Collett, Jeffrey

    2008-03-01

    The emergence of nanoscale science into the popular consciousness presents an opportunity to attract and retain future condensed matter scientists. We inject nanoscale physics into recruiting activities and into the introductory and the core portions of the curriculum. Laboratory involvement and research opportunity play important roles in maintaining student engagement. We use inexpensive scanning tunneling (STM) and atomic force (AFM) microscopes to introduce students to nanoscale structure early in their college careers. Although the physics of tip-surface interactions is sophisticated, the resulting images can be interpreted intuitively. We use the STM in introductory modern physics to explore quantum tunneling and the properties of electrons at surfaces. An interdisciplinary course in nanoscience and nanotechnology course team-taught with chemists looks at nanoscale phenomena in physics, chemistry, and biology. Core quantum and statistical physics courses look at effects of quantum mechanics and quantum statistics in degenerate systems. An upper level solid-state physics course takes up traditional condensed matter topics from a structural perspective by beginning with a study of both elastic and inelastic scattering of x-rays from crystalline solids and liquid crystals. Students encounter reciprocal space concepts through the analysis of laboratory scattering data and by the development of the scattering theory. The course then examines the importance of scattering processes in band structure and in electrical and thermal conduction. A segment of the course is devoted to surface physics and nanostructures where we explore the effects of restricting particles to two-dimensional surfaces, one-dimensional wires, and zero-dimensional quantum dots.

  18. Hanford Laboratories monthly activities report, August 1963

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1963-09-16

    This is the monthly report for the Hanford Laboratories Operation, August 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  19. Physical property studies in the USGS GHASTLI Laboratory

    USGS Publications Warehouse

    Winters, William J.; Waite, William F.; Hutchinson, Deborah R.; Mason, David H.

    2008-01-01

    One of the many challenges in studying methane hydrate is that it is unstable at typical surface pressure and temperature conditions. To enable methane hydrates and hydrate-bearing sediments to be formed, analyzed, and experimented with, the National Energy Technology Laboratory (NETL), and the U.S. Geological Survey (USGS) in Woods Hole, MA collaborated in the development of the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI). Over the past decade, the USGS has been operating GHASTLI and collaborating in the development of new sample handling tools and procedures, in an effort to improve our ability to analyze methane hydrate in the lab. These tools will enable hydrate researchers to more confidently link field studies (for example geophysics or drilling) with theoretical and predictive studies, leading to a better understanding of the geological conditions and processes that control the growth and concentration of natural gas hydrates, how hydrates affect the properties of the host sediments, and how the hydrate-sediment system changes when hydrate dissociates and releases the previously bound gas. To date, GHASTLI has been used to measure natural samples from ODP Leg 164 (Blake Ridge off the U.S. southeast Atlantic margin), Leg 204 (Hydrate Ridge off the Pacific Northwest margin) and the Mallik well (Mackenzie Delta in northwestern Canada). Additional samples in the queue for analysis are from the Chevron Joint Industry Project Experiment in the Gulf of Mexico and most recently, from IODP Leg 311 off Vancouver Island. Several foreign nations have asked whether GHASTLI will be available to analyze samples that might be recovered during national drilling programs. The ability to perform lab testing of hydrates within sediments is one of the unique capabilities of GHASTLI that separates it from other simulators at NETL and elsewhere.

  20. Nuclear and particle physics, astrophysics and cosmology (NPAC) capability review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redondo, Antonio

    2010-01-01

    The present document represents a summary self-assessment of the status of the Nuclear and Particle Physics, Astrophysics and Cosmology (NPAC) capability across Los Alamos National Laboratory (LANL). For the purpose of this review, we have divided the capability into four theme areas: Nuclear Physics, Particle Physics, Astrophysics and Cosmology, and Applied Physics. For each theme area we have given a general but brief description of the activities under the area, a list of the Laboratory divisions involved in the work, connections to the goals and mission of the Laboratory, a brief description of progress over the last three years, ourmore » opinion of the overall status of the theme area, and challenges and issues.« less

  1. A Physics Course for Non-Physical Science Teachers

    NASA Astrophysics Data System (ADS)

    Cottle, Paul D.

    1997-11-01

    A two semester introductory physics sequence exclusively for undergraduates and graduate students in science education who were not seeking certification in physics was taught at Florida State for the first time in 1996-97. The course emphasized building understanding in both qualitative and quantitative aspects of physics through group learning approaches to laboratories and written problem assignments, assessments which required detailed written explanations, and frequent interactions between the instructor and individual students. This talk will briefly outline the structure of the course and some of the more interesting observations made by the group of science education graduate students and faculty who evaluated aspects of the course.

  2. Agreed Discoveries: Students' Negotiations in a Virtual Laboratory Experiment

    ERIC Educational Resources Information Center

    Karlsson, Goran; Ivarsson, Jonas; Lindstrom, Berner

    2013-01-01

    This paper presents an analysis of the scientific reasoning of a dyad of secondary school students about the phenomenon of dissolution of gases in water as they work on this in a simulated laboratory experiment. A web-based virtual laboratory was developed to provide learners with the opportunity to examine the influence of physical factors on gas…

  3. Background and applications of astrodynamics for space missions of the johns hopkins applied physics laboratory.

    PubMed

    Dunham, David W; Farquhar, Robert W

    2004-05-01

    This paper describes astrodynamic techniques applied to develop special orbital designs for past and future space missions of the Applied Physics Laboratory (APL) of Johns Hopkins University, and background about those techniques. The paper does not describe the long history of low Earth-orbiting missions at APL, but rather concentrates on the astrodynamically more interesting high-altitude and interplanetary missions that APL has undertaken in recent years. The authors developed many of their techniques in preparation for, and during, the Third International Sun-Earth Explorer (ISEE-3) halo orbit mission while they worked for the Goddard Space Flight Center (GSFC) of NASA during the 1970s and 1980s. Later missions owed much to the ground breaking work of the trajectory designs for ISEE-3 (later known as the International Cometary Explorer, or ICE). This experience, and other new ideas, were applied to the APL near Earth asteroid rendezvous (NEAR) and comet nucleus tour (CONTOUR) discovery missions, as well as to APL's future MESSENGER, STEREO, and New Horizons missions. These will be described in the paper.

  4. Decommissioning the physics laboratory, building 777-10A, at the Savannah River Site (SRS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musall, John C.; Cope, Jeff L.

    2008-01-15

    SRS recently completed a four year mission to decommission {approx}250 excess facilities. As part of that effort, SRS decommissioned a 48,000 ft{sup 2} laboratory that housed four low-power test reactors, formerly used by SRS to determine reactor physics. This paper describes and reviews the decommissioning, with a focus on component segmentation and handling (i.e. hazardous material removal, demolition, and waste handling). The paper is intended to be a resource for engineers, planners, and project managers, who face similar decommissioning challenges. Building 777-10A, located at the south end of SRS's A/M-Area, was built in 1953 and had a gross area of {approx}48,000 ft{sup 2}. Building 777-10A had two main areas: a west wing, which housed four experimental reactors and associated equipment; and an east wing, which housed laboratories, and shops, offices. The reactors were located in two separate areas: one area housed the Process Development Pile (PDP) reactor and the Lattice Test Reactor (LTR), while the second area housed the Standard Pile (SP) and the Sub-critical Experiment (SE) reactors. The west wing had five levels: three below and three above grade (floor elevations of -37', -28', -15', 0', +13'/+16' and +27' (roof elevation of +62')), while the east wing had two levels: one below and one above grade (floor elevations of -15' and 0' (roof elevation of +16')). Below-grade exterior walls were constructed of reinforced concrete, {approx}1' thick. In general, above-grade exterior walls were steel frames covered by insulation and corrugated, asbestos-cement board. The two interior walls around the PDP/LTR were reinforced concrete {approx}5' thick and {approx}30' high, while the SP/SE reactors resided in a reinforced, concrete cell with 3.5'-6' thick walls/roof. All other interior walls were constructed of metal studs covered with either asbestos-cement or gypsum board. In general, the floors were constructed of reinforced concrete on cast-in-place concrete

  5. Hanford Laboratories monthly activities report, March 1964

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1964-04-15

    The monthly report for the Hanford Laboratories Operation, March 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics operation, and programming operations are discussed.

  6. The NASA Lewis Research Center High Temperature Fatigue and Structures Laboratory

    NASA Technical Reports Server (NTRS)

    Mcgaw, M. A.; Bartolotta, P. A.

    1987-01-01

    The physical organization of the NASA Lewis Research Center High Temperature Fatigue and Structures Laboratory is described. Particular attention is given to uniaxial test systems, high cycle/low cycle testing systems, axial torsional test systems, computer system capabilities, and a laboratory addition. The proposed addition will double the floor area of the present laboratory and will be equipped with its own control room.

  7. On cosmology in the laboratory

    PubMed Central

    Leonhardt, Ulf

    2015-01-01

    In transformation optics, ideas from general relativity have been put to practical use for engineering problems. This article asks the question how this debt can be repaid. In discussing a series of recent laboratory experiments, it shows how insights from wave phenomena shed light on the quantum physics of the event horizon. PMID:26217062

  8. Laboratory exercises on oscillation modes of pipes

    NASA Astrophysics Data System (ADS)

    Haeberli, Willy

    2009-03-01

    This paper describes an improved lab setup to study the vibrations of air columns in pipes. Features of the setup include transparent pipes which reveal the position of a movable microphone inside the pipe; excitation of pipe modes with a miniature microphone placed to allow access to the microphone stem for open, closed, or conical pipes; and sound insulation to avoid interference between different setups in a student lab. The suggested experiments on the modes of open, closed, and conical pipes, the transient response of a pipe, and the effect of pipe diameter are suitable for introductory physics laboratories, including laboratories for nonscience majors and music students, and for more advanced undergraduate laboratories. For honors students or for advanced laboratory exercises, the quantitative relation between the resonance width and damping time constant is of interest.

  9. Medical Physics Panel Discussion

    NASA Astrophysics Data System (ADS)

    Guèye, Paul; Avery, Steven; Baird, Richard; Soares, Christopher; Amols, Howard; Tripuraneni, Prabhakar; Majewski, Stan; Weisenberger, Drew

    2006-03-01

    The panel discussion will explore opportunities and vistas in medical physics research and practice, medical imaging, teaching medical physics to undergraduates, and medical physics curricula as a recruiting tool for physics departments. Panel members consist of representatives from NSBP (Paul Guèye and Steven Avery), NIH/NIBIB (Richard Baird), NIST (Christopher Soares), AAPM (Howard Amols), ASTRO (Prabhakar Tripuraneni), and Jefferson Lab (Stan Majewski and Drew Weisenberger). Medical Physicists are part of Departments of Radiation Oncology at hospitals and medical centers. The field of medical physics includes radiation therapy physics, medical diagnostic and imaging physics, nuclear medicine physics, and medical radiation safety. It also ranges from basic researcher (at college institutions, industries, and laboratories) to applications in clinical environments.

  10. Inter-disciplinary Interactions in Underground Laboratories

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Bettini, A.

    2010-12-01

    Many of underground facilities, ranging from simple cavities to fully equipped laboratories, have been established worldwide (1) to evaluate the impacts of emplacing nuclear wastes in underground research laboratories (URLs) and (2) to measure rare physics events in deep underground laboratories (DULs). In this presentation, we compare similarities and differences between URLs and DULs in focus of site characterization, in quantification of quietness, and in improvement of signal to noise ratios. The nuclear waste URLs are located primarily in geological medium with potentials for slow flow/transport and long isolation. The URL medium include plastic salt, hard rock, soft clay, volcanic tuff, basalt and shale, at over ~500 m where waste repositories are envisioned to be excavated. The majority of URLs are dedicated facilities excavated after extensive site characterization. The focuses are on fracture distributions, heterogeneity, scaling, coupled processes, and other fundamental issues of earth sciences. For the physics DULs, the depth/overburden thickness is the main parameter that determines the damping of cosmic rays, and that, consequently, should be larger than, typically, 800m. Radioactivity from rocks, neutron flux, and radon gas, depending on local rock and ventilation conditions (largely independent of depth), are also characterized at different sites to quantify the background level for physics experiments. DULs have been constructed by excavating dedicated experimental halls and service cavities near to a road tunnel (horizontal access) or in a mine (vertical access). Cavities at shallower depths are suitable for experiments on neutrinos from artificial source, power reactors or accelerators. Rocks stability (depth dependent), safe access, and utility supply are among factors of main concerns for DULs. While the focuses and missions of URLs and DULs are very different, common experience and lessons learned may be useful for ongoing development of new

  11. Experiences and prospects of nuclear astrophysics in underground laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junker, M.

    Impressive progress has been made in the course the last decades in understanding astrophysical objects. Increasing precision of nuclear physics data has contributed significantly to this success, but now a better understanding of several important findings is frequently limited by uncertainties related to the available nuclear physics data. Consequently it is desirable to improve significantly the quality of these data. An important step towards higher precision is an excellent signal to background ratio of the data. Placing an accelerator facility inside an underground laboratory reducing the cosmic ray induced background by six orders of magnitude is a powerful method tomore » reach this goal, even though careful reduction of environmental and beam induced background must still be considered. Experience in the field of underground nuclear astrophysics has been gained since 20 years due to the pioneering work of the LUNA Collaboration (Laboratory for Underground Nuclear Astrophysics) operating inside the underground laboratories of the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. Based on the success of this work presently also several other projects for underground laboratories dedicated to nuclear astrophysics are being pursued worldwide. This contribution will give a survey of the past experience in underground nuclear astrophysics as well as an outlook on future developments.« less

  12. Developing Skills versus Reinforcing Concepts in Physics Labs: Insight from a Survey of Students' Beliefs about Experimental Physics

    ERIC Educational Resources Information Center

    Wilcox, Bethany R.; Lewandowski, H. J.

    2017-01-01

    Physics laboratory courses have been generally acknowledged as an important component of the undergraduate curriculum, particularly with respect to developing students' interest in, and understanding of, experimental physics. There are a number of possible learning goals for these courses including reinforcing physics concepts, developing…

  13. Laboratory Education in New Zealand

    ERIC Educational Resources Information Center

    Borrmann, Thomas

    2008-01-01

    Laboratory work is one of the main forms of teaching used in chemistry, physics, biology and medicine. For many years researchers and teachers have argued in favor of or against this form of education. Student opinion could be a valuable tool for teachers to demonstrate the validity of such expensive and work intensive forms of education as…

  14. Laboratory challenges in the scaling up of HIV, TB, and malaria programs: The interaction of health and laboratory systems, clinical research, and service delivery.

    PubMed

    Birx, Deborah; de Souza, Mark; Nkengasong, John N

    2009-06-01

    Strengthening national health laboratory systems in resource-poor countries is critical to meeting the United Nations Millennium Development Goals. Despite strong commitment from the international community to fight major infectious diseases, weak laboratory infrastructure remains a huge rate-limiting step. Some major challenges facing laboratory systems in resource-poor settings include dilapidated infrastructure; lack of human capacity, laboratory policies, and strategic plans; and limited synergies between clinical and research laboratories. Together, these factors compromise the quality of test results and impact patient management. With increased funding, the target of laboratory strengthening efforts in resource-poor countries should be the integrating of laboratory services across major diseases to leverage resources with respect to physical infrastructure; types of assays; supply chain management of reagents and equipment; and maintenance of equipment.

  15. Interactive Screen Experiments--Innovative Virtual Laboratories for Distance Learners

    ERIC Educational Resources Information Center

    Hatherly, P. A.; Jordan, S. E.; Cayless, A.

    2009-01-01

    The desirability and value of laboratory work for physics students is a well-established principle and issues arise where students are inherently remote from their host institution, as is the case for the UK's Open University. In this paper, we present developments from the Physics Innovations Centre for Excellence in Teaching and Learning…

  16. Hanford Laboratories monthly activities report, February 1964

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1964-03-16

    This is the monthly report for the Hanford Laboratories Operation, February, 1964. Reactor fuels, chemistry, dosimetry, separation process, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, applied mathematics, programming, and radiation protection are discussed.

  17. The Outpatient Physical Examination.

    PubMed

    Artandi, Maja K; Stewart, Rosalyn W

    2018-05-01

    The physical examination in the outpatient setting is a valuable tool. Even in settings where there is lack of evidence, such as the annual physical examination of an asymptomatic adult, the physical examination is beneficial for the physician-patient relationship. When a patient has specific symptoms, the physical examination-in addition to a thorough history-can help narrow down, or in many cases establish, a diagnosis. In a time where imaging and laboratory tests are easily available, but are expensive and can be invasive, a skilled physical examination remains an important component of patient evaluation. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Physics Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presented are physics experiments, laboratory procedures, demonstrations, and classroom materials/activities. Experiments include: speed of sound in carbon dioxide; inverse square law; superluminal velocities; and others. Equipment includes: current switch; electronic switch; and pinhole camera. Discussion of mechanics of walking is also included.…

  19. Assessing and Analyzing Behavior Strategies of Instructors in College Science Laboratories.

    ERIC Educational Resources Information Center

    Kyle, William C., Jr.; And Others

    1980-01-01

    Analyzed are university instructor behaviors in introductory and advanced level laboratories of botany, chemistry, geology, physics and zoology. Science Laboratory Interaction Categories--Teacher (SLIC) was used to assess 15 individual categories of teacher behaviors in the areas of questioning, giving directions, transmitting information,…

  20. Solar Physics - Plasma Physics Workshop

    NASA Technical Reports Server (NTRS)

    Baum, P. J.; Beckers, J. M.; Newman, C. E.; Priest, E. R.; Rosenberg, H.; Smith, D. F.; Sturrock, P. A.; Wentzel, D. G.

    1974-01-01

    A summary of the proceedings of a conference whose purpose was to explore plasma physics problems which arise in the study of solar physics is provided. Sessions were concerned with specific questions including the following: (1) whether the solar plasma is thermal or non-themal; (2) what spectroscopic data is required; (3) what types of magnetic field structures exist; (4) whether magnetohydrodynamic instabilities occur; (5) whether resistive or non-magnetohydrodynamic instabilities occur; (6) what mechanisms of particle acceleration have been proposed; and (7) what information is available concerning shock waves. Very few questions were answered categorically but, for each question, there was discussion concerning the observational evidence, theoretical analyses, and existing or potential laboratory and numerical experiments.

  1. Investigating the Effect of Argument-Driven Inquiry in Laboratory Instruction

    ERIC Educational Resources Information Center

    Demircioglu, Tuba; Ucar, Sedat

    2015-01-01

    The aim of this study is to investigate the effect of argument-driven inquiry (ADI) based laboratory instruction on the academic achievement, argumentativeness, science process skills, and argumentation levels of pre-service science teachers in the General Physics Laboratory III class. The study was conducted with 79 pre-service science teachers.…

  2. Conquering the Physics GRE

    NASA Astrophysics Data System (ADS)

    Kahn, Yoni; Anderson, Adam

    2018-03-01

    Preface; How to use this book; Resources; 1. Classical mechanics; 2. Electricity and magnetism; 3. Optics and waves; 4. Thermodynamics and statistical mechanics; 5. Quantum mechanics and atomic physics; 6. Special relativity; 7. Laboratory methods; 8. Specialized topics; 9. Special tips and tricks for the Physics GRE; Sample exams and solutions; References; Equation index; Subject index; Problems index.

  3. Apparatus for Teaching Physics

    ERIC Educational Resources Information Center

    Gottlieb, Herbert H., Ed.

    1977-01-01

    Describes physics laboratory equipment including: circuit improvements for an electronic counter-timer, a commercial counter-timer-frequency meter, and a device for demonstrating resonating air columns. (SL)

  4. A Physics Show Performed by Students for Kids: "From Mechanics to Elementary Particle Physics"

    ERIC Educational Resources Information Center

    Dreiner, Herbi K.

    2008-01-01

    Physics students spend the early part of their training attending physics and mathematics lectures, solving problem sets, and experimenting in laboratory courses. The program is typically intensive and fairly rigid. They have little opportunity to follow their own curiosity or apply their knowledge. There have been many attempts to address this…

  5. Experimental Nuclear Physics Activity in Italy

    NASA Astrophysics Data System (ADS)

    Chiavassa, E.; de Marco, N.

    2003-04-01

    The experimental Nuclear Physics activity of the Italian researchers is briefly reviewed. The experiments, that are financially supported by the INFN, are done in strict collaboration by more than 500 INFN and University researchers. The experiments cover all the most important field of the modern Nuclear Physics with probes extremely different in energy and interactions. Researches are done in all the four National Laboratories of the INFN even if there is a deeper involvement of the two national laboratories expressly dedicated to Nuclear Physics: the LNL (Laboratorio Nazionale di Legnaro) and LNS (Laboratorio Nazionale del Sud) where nuclear spectroscopy and reaction dynamics are investigated. All the activities with electromagnetic probes develops in abroad laboratories as TJNAF, DESY, MAMI, ESFR and are dedicated to the studies of the spin physics and of the nucleon resonance; hypernuclear and kaon physics is investigated at LNF. A strong community of researchers work in the relativistic and ultra-relativistic heavy ions field in particular at CERN with the SPS Pb beam and in the construction of the ALICE detector for heavy-ion physics at the LHC collider. Experiments of astrophysical interest are done with ions of very low energy; in particular the LUNA accelerator facility at LNGS (Laboratorio Nazionale del Gran Sasso) succeeded measuring cross section at solar energies, below or near the solar Gamow peak. Interdisciplinary researches on anti-hydrogen atom spectroscopy and on measurements of neutron cross sections of interest for ADS development are also supported.

  6. Laboratory Spectroscopy of CH(+) and Isotopic CH

    NASA Technical Reports Server (NTRS)

    Pearson, John C.; Drouin, Brian J.

    2006-01-01

    The A1II - X1(Epsilon) electronic band of the CH(+) ion has been used as a probe of the physical and dynamical conditions of the ISM for 65 years. In spite of being one of the first molecular species observed in the ISM and the very large number of subsequent observations with large derived column densities, the pure rotational spectra of CH+ has remained elusive in both the laboratory and in the ISM as well. We report the first laboratory measurement of the pure rotation of the CH(+) ion and discuss the detection of CH-13(+) in the ISM. Also reported are the somewhat unexpected chemical conditions that resulted in laboratory production.

  7. Physics Flash December 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth

    This is the December 2016 issue of Physics Flash, the newsletter of the Physics Division of Los Alamos National Laboratory (LANL). In this issue, the following topics are covered: Novel liquid helium technique to aid highly sensitive search for a neutron electrical dipole moment; Silverleaf: Prototype Red Sage experiments performed at Q-site; John L. Kline named 2016 APS Fellow; Physics students in the news; First Entropy Engine quantum random number generator hits the market; and celebrating service.

  8. Computational Physics.

    ERIC Educational Resources Information Center

    Borcherds, P. H.

    1986-01-01

    Describes an optional course in "computational physics" offered at the University of Birmingham. Includes an introduction to numerical methods and presents exercises involving fast-Fourier transforms, non-linear least-squares, Monte Carlo methods, and the three-body problem. Recommends adding laboratory work into the course in the…

  9. Career Education Resource Guide for Physics. (Tentative.)

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge.

    The career education resource guide integrates learning activities in basic physics with an exploration of careers in physics or related fields. The guide is keyed to the physics textbooks and laboratory manuals adopted by the Louisiana State Department of Education in 1973. The field of physics is divided into six subject areas: (1) the…

  10. Robotic laboratory for distance education

    NASA Astrophysics Data System (ADS)

    Luciano, Sarah C.; Kost, Alan R.

    2016-09-01

    This project involves the construction of a remote-controlled laboratory experiment that can be accessed by online students. The project addresses a need to provide a laboratory experience for students who are taking online courses to be able to provide an in-class experience. The chosen task for the remote user is an optical engineering experiment, specifically aligning a spatial filter. We instrument the physical laboratory set up in Tucson, AZ at the University of Arizona. The hardware in the spatial filter experiment is augmented by motors and cameras to allow the user to remotely control the hardware. The user interacts with a software on their computer, which communicates with a server via Internet connection to the host computer in the Optics Laboratory at the University of Arizona. Our final overall system is comprised of several subsystems. These are the optical experiment set-up, which is a spatial filter experiment; the mechanical subsystem, which interfaces the motors with the micrometers to move the optical hardware; the electrical subsystem, which allows for the electrical communications from the remote computer to the host computer to the hardware; and finally the software subsystem, which is the means by which messages are communicated throughout the system. The goal of the project is to convey as much of an in-lab experience as possible by allowing the user to directly manipulate hardware and receive visual feedback in real-time. Thus, the remote user is able to learn important concepts from this particular experiment and is able to connect theory to the physical world by actually seeing the outcome of a procedure. The latter is a learning experience that is often lost with distance learning and is one that this project hopes to provide.

  11. The changing face of clinical laboratories.

    PubMed

    Plebani, M

    1999-07-01

    Laboratory medicine has undergone a sea change, and medical laboratories must now adapt to, and meet new, customer-supplier needs springing from shifts in the patterns of disease prevalence, medical practice, and demographics. Managed care and other cost-containment processes have forced those involved in health care to cooperate to develop a full picture of patient care, and this has affected clinical laboratory objectives, the main focus now being on improvement in medical outcomes. More recently, the resource shortages in health care and results of cost/effectiveness analysis have demonstrated that the value of a laboratory test must be ascertained not only on the basis of its chemical or clinical performance characteristics, but also by its impact on patient management, the only true assessment of the quality of testing being quality of patient outcomes. The time is ripe for changing the vision of laboratory medicine, and some of the reasons for this are the availability of results in real-time, the introduction of more specific tests, and the trend to prevent diseases rather than cure them. The information from laboratory tests designed to evaluate biochemical or genetic risk and/or prognostic factors cannot be replaced either by physical examination and/or the assessment of symptoms. Today, the importance of laboratory scientists must be proven in three broad areas: a) guaranteeing the quality of tests, irrespective of where they are performed; b) improving the quality of the service; c) maximizing the impact of laboratory information on patient management.

  12. Leading Antibacterial Laboratory Research by Integrating Conventional and Innovative Approaches: The Laboratory Center of the Antibacterial Resistance Leadership Group.

    PubMed

    Manca, Claudia; Hill, Carol; Hujer, Andrea M; Patel, Robin; Evans, Scott R; Bonomo, Robert A; Kreiswirth, Barry N

    2017-03-15

    The Antibacterial Resistance Leadership Group (ARLG) Laboratory Center (LC) leads the evaluation, development, and implementation of laboratory-based research by providing scientific leadership and supporting standard/specialized laboratory services. The LC has developed a physical biorepository and a virtual biorepository. The physical biorepository contains bacterial isolates from ARLG-funded studies located in a centralized laboratory and they are available to ARLG investigators. The Web-based virtual biorepository strain catalogue includes well-characterized gram-positive and gram-negative bacterial strains published by ARLG investigators. The LC, in collaboration with the ARLG Leadership and Operations Center, developed procedures for review and approval of strain requests, guidance during the selection process, and for shipping strains from the distributing laboratories to the requesting investigators. ARLG strains and scientific and/or technical guidance have been provided to basic research laboratories and diagnostic companies for research and development, facilitating collaboration between diagnostic companies and the ARLG Master Protocol for Evaluating Multiple Infection Diagnostics (MASTERMIND) initiative for evaluation of multiple diagnostic devices from a single patient sampling event. In addition, the LC has completed several laboratory-based studies designed to help evaluate new rapid molecular diagnostics by developing, testing, and applying a MASTERMIND approach using purified bacterial strains. In collaboration with the ARLG's Statistical and Data Management Center (SDMC), the LC has developed novel analytical strategies that integrate microbiologic and genetic data for improved and accurate identification of antimicrobial resistance. These novel approaches will aid in the design of future ARLG studies and help correlate pathogenic markers with clinical outcomes. The LC's accomplishments are the result of a successful collaboration with the ARLG

  13. Laboratory or Field Tests for Evaluating Firefighters' Work Capacity?

    PubMed Central

    Lindberg, Ann-Sofie; Oksa, Juha; Malm, Christer

    2014-01-01

    Muscle strength is important for firefighters work capacity. Laboratory tests used for measurements of muscle strength, however, are complicated, expensive and time consuming. The aims of the present study were to investigate correlations between physical capacity within commonly occurring and physically demanding firefighting work tasks and both laboratory and field tests in full time (N = 8) and part-time (N = 10) male firefighters and civilian men (N = 8) and women (N = 12), and also to give recommendations as to which field tests might be useful for evaluating firefighters' physical work capacity. Laboratory tests of isokinetic maximal (IM) and endurance (IE) muscle power and dynamic balance, field tests including maximal and endurance muscle performance, and simulated firefighting work tasks were performed. Correlations with work capacity were analyzed with Spearman's rank correlation coefficient (rs). The highest significant (p<0.01) correlations with laboratory and field tests were for Cutting: IE trunk extension (rs = 0.72) and maximal hand grip strength (rs = 0.67), for Stairs: IE shoulder flexion (rs = −0.81) and barbell shoulder press (rs = −0.77), for Pulling: IE shoulder extension (rs = −0.82) and bench press (rs = −0.85), for Demolition: IE knee extension (rs = 0.75) and bench press (rs = 0.83), for Rescue: IE shoulder flexion (rs = −0.83) and bench press (rs = −0.82), and for the Terrain work task: IE trunk flexion (rs = −0.58) and upright barbell row (rs = −0.70). In conclusion, field tests may be used instead of laboratory tests. Maximal hand grip strength, bench press, chin ups, dips, upright barbell row, standing broad jump, and barbell shoulder press were strongly correlated (rs≥0.7) with work capacity and are therefore recommended for evaluating firefighters work capacity. PMID:24614596

  14. Laboratory or field tests for evaluating firefighters' work capacity?

    PubMed

    Lindberg, Ann-Sofie; Oksa, Juha; Malm, Christer

    2014-01-01

    Muscle strength is important for firefighters work capacity. Laboratory tests used for measurements of muscle strength, however, are complicated, expensive and time consuming. The aims of the present study were to investigate correlations between physical capacity within commonly occurring and physically demanding firefighting work tasks and both laboratory and field tests in full time (N = 8) and part-time (N = 10) male firefighters and civilian men (N = 8) and women (N = 12), and also to give recommendations as to which field tests might be useful for evaluating firefighters' physical work capacity. Laboratory tests of isokinetic maximal (IM) and endurance (IE) muscle power and dynamic balance, field tests including maximal and endurance muscle performance, and simulated firefighting work tasks were performed. Correlations with work capacity were analyzed with Spearman's rank correlation coefficient (rs). The highest significant (p<0.01) correlations with laboratory and field tests were for Cutting: IE trunk extension (rs = 0.72) and maximal hand grip strength (rs = 0.67), for Stairs: IE shoulder flexion (rs = -0.81) and barbell shoulder press (rs = -0.77), for Pulling: IE shoulder extension (rs = -0.82) and bench press (rs = -0.85), for Demolition: IE knee extension (rs = 0.75) and bench press (rs = 0.83), for Rescue: IE shoulder flexion (rs = -0.83) and bench press (rs = -0.82), and for the Terrain work task: IE trunk flexion (rs = -0.58) and upright barbell row (rs = -0.70). In conclusion, field tests may be used instead of laboratory tests. Maximal hand grip strength, bench press, chin ups, dips, upright barbell row, standing broad jump, and barbell shoulder press were strongly correlated (rs≥0.7) with work capacity and are therefore recommended for evaluating firefighters work capacity.

  15. Diagnostic Accuracy of History, Physical Examination, Laboratory Tests, and Point-of-care Ultrasound for Pediatric Acute Appendicitis in the Emergency Department: A Systematic Review and Meta-analysis.

    PubMed

    Benabbas, Roshanak; Hanna, Mark; Shah, Jay; Sinert, Richard

    2017-05-01

    Acute appendicitis (AA) is the most common surgical emergency in children. Accurate and timely diagnosis is crucial but challenging due to atypical presentations and the inherent difficulty of obtaining a reliable history and physical examination in younger children. The aim of this study was to determine the utility of history, physical examination, laboratory tests, Pediatric Appendicitis Score (PAS) and Emergency Department Point-of-Care Ultrasound (ED-POCUS) in the diagnosis of AA in ED pediatric patients. We performed a systematic review and meta-analysis and used a test-treatment threshold model to identify diagnostic findings that could rule in/out AA and obviate the need for further imaging studies, specifically computed tomography (CT) scan, magnetic resonance imaging (MRI), and radiology department ultrasound (RUS). We searched PubMed, EMBASE, and SCOPUS up to October 2016 for studies on ED pediatric patients with abdominal pain. Quality Assessment Tool for Diagnostic Accuracy Studies (QUADAS-2) was used to evaluate the quality and applicability of included studies. Positive and negative likelihood ratios (LR+ and LR-) for diagnostic modalities were calculated and when appropriate data was pooled using Meta-DiSc. Based on the available literature on the test characteristics of different imaging modalities and applying the Pauker-Kassirer method we developed a test-treatment threshold model. Twenty-one studies were included encompassing 8,605 patients with weighted AA prevalence of 39.2%. Studies had variable quality using the QUADAS-2 tool with most studies at high risk of partial verification bias. We divided studies based on their inclusion criteria into two groups of "undifferentiated abdominal pain" and abdominal pain "suspected of AA." In patients with undifferentiated abdominal pain, history of "pain migration to right lower quadrant (RLQ)" (LR+ = 4.81, 95% confidence interval [CI] = 3.59-6.44) and presence of "cough/hop pain" in the physical

  16. Integrating a Smartphone and Molecular Modeling for Determining the Binding Constant and Stoichiometry Ratio of the Iron(II)-Phenanthroline Complex: An Activity for Analytical and Physical Chemistry Laboratories

    ERIC Educational Resources Information Center

    de Morais, Camilo de L. M.; Silva, Se´rgio R. B.; Vieira, Davi S.; Lima, Ka´ssio M. G.

    2016-01-01

    The binding constant and stoichiometry ratio for the formation of iron(II)-(1,10-phenanthroline) or iron(II)-o-phenanthroline complexes has been determined by a combination of a low-cost analytical method using a smartphone and a molecular modeling method as a laboratory experiment designed for analytical and physical chemistry courses. Intensity…

  17. A useful demonstration of calculus in a physics high school laboratory

    NASA Astrophysics Data System (ADS)

    Alvarez, Gustavo; Schulte, Jurgen; Stockton, Geoffrey; Wheeler, David

    2018-01-01

    The real power of calculus is revealed when it is applied to actual physical problems. In this paper, we present a calculus inspired physics experiment suitable for high school and undergraduate programs. A model for the theory of the terminal velocity of a falling body subject to a resistive force is developed and its validity tested in an experiment of a falling magnet in a column of self-induced eddy currents. The presented method combines multiple physics concepts such as 1D kinematics, classical mechanics, electromagnetism and non-trivial mathematics. It offers the opportunity for lateral as well as project-based learning.

  18. A refuge for inorganic chemistry: Bunsen's Heidelberg laboratory.

    PubMed

    Nawa, Christine

    2014-05-01

    Immediately after its opening in 1855, Bunsen's Heidelberg laboratory became iconic as the most modern and best equipped laboratory in Europe. Although comparatively modest in size, the laboratory's progressive equipment made it a role model for new construction projects in Germany and beyond. In retrospect, it represents an intermediate stage of development between early teaching facilities, such as Liebig's laboratory in Giessen, and the new 'chemistry palaces' that came into existence with Wöhler's Göttingen laboratory of 1860. As a 'transition laboratory,' Bunsen's Heidelberg edifice is of particular historical interest. This paper explores the allocation of spaces to specific procedures and audiences within the laboratory, and the hierarchies and professional rites of passage embedded within it. On this basis, it argues that the laboratory in Heidelberg was tailored to Bunsen's needs in inorganic and physical chemistry and never aimed at a broad-scale representation of chemistry as a whole. On the contrary, it is an example of early specialisation within a chemical laboratory preceding the process of differentiation into chemical sub-disciplines. Finally, it is shown that the relatively small size of this laboratory, and the fact that after ca. 1860 no significant changes were made within the building, are inseparably connected to Bunsen's views on chemistry teaching.

  19. [Experimental nuclear physics]. Annual report 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1988-05-01

    This is the May 1988 annual report of the Nuclear Physics Laboratory of the University of Washington. It contains chapters on astrophysics, giant resonances, heavy ion induced reactions, fundamental symmetries, polarization in nuclear reactions, medium energy reactions, accelerator mass spectrometry (AMS), research by outside users, Van de Graaff and ion sources, the Laboratory`s booster linac project work, instrumentation, and computer systems. An appendix lists Laboratory personnel, Ph.D. degrees granted in the 1987-88 academic year, and publications. Refs., 27 figs., 4 tabs.

  20. To other worlds via the laboratory (Invited)

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2009-12-01

    Planetary science is fun, largely by virtue of the wide range of disciplines and techniques it embraces. Progress relies not only on spacecraft observation and models, but also on laboratory work to provide reference data with which to interpret observations and to provide quantitative constraints on model parameters. An important distinction should be drawn between two classes of investigation. The most familiar, pursued by those who make laboratory studies the focus of their careers, is the construction of well-controlled experiments, typically to determine the functional dependence of some desired physical property upon one or two controlled parameters such as temperature, pressure or concentration. Another class of experiment is more exploratory - to 'see what happens'. This exercise often reveals that models may be based on entirely false assumptions. In some cases laboratory results also have value as persuasive tools in providing graphic support for unfamiliar properties or processes - the iconic image of 'flaming ice' makes the exotic notion of methane clathrate immediately accessible. This talk will review the role of laboratory work in planetary science and especially the outer solar system. A few of the author's personal forays into laboratory measurements will be discussed in the talk; These include the physical properties of dessicated icy loess in the US Army Permafrost tunnel in Alaska (as a Mars analog), the use of a domestic microwave oven to measure radar absorptivity (in particular of ammonia-rich water ice) and the generation of waves - and ice - on the surface of a liquid by wind with fluid and air parameters appropriate to Mars and Titan rather than Earth using the MARSWIT wind tunnel at NASA Ames.

  1. Two web-based laboratories of the FisL@bs network: Hooke's and Snell's laws

    NASA Astrophysics Data System (ADS)

    de la Torre, L.; Sánchez, J.; Dormido, S.; Sánchez, J. P.; Yuste, M.; Carreras, C.

    2011-03-01

    FisL@bs is a network of remote and virtual laboratories for physics university education via the Internet that offers students the possibility of performing hands-on experiments in different fields of physics in two ways: simulation and real remote operation. This paper gives a detailed account of a novel way in physics in which distance learning students can gain practical experience autonomously. FisL@bs uses the same structure as AutomatL@bs, a network of virtual and remote laboratories for learning/teaching of control engineering, which has been in operation for four years. Students can experiment with the laboratories offered using an Internet connection and a Java-compatible web browser. This paper, specially intended for university educators but easily comprehensible even for undergraduate students, explains how the portal works and the hardware and software tools used to create it. In addition, it also describes two physics experiments already available: spring elasticity and the laws of reflection and refraction.

  2. Sandia National Laboratories analysis code data base

    NASA Astrophysics Data System (ADS)

    Peterson, C. W.

    1994-11-01

    Sandia National Laboratories' mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The laboratories' strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia's technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems, and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code 'ownership' and release status, and references describing the physical models and numerical implementation.

  3. Physical Therapist Assistant Fitness Lab.

    ERIC Educational Resources Information Center

    Backstrom, Kurt; And Others

    Colby Community College's (CCC) Fitness Lab was established to provide the Physical Therapist Assistant (PTA) Program with a learning laboratory in which students can practice classroom-acquired skills, while at the same time promoting the physical, emotional, social, and intellectual well-being of CCC students and staff, and community members. A…

  4. Kinetics of Carboxylesterase: An Experiment for Biochemistry and Physical Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Nichols, C. S.; Cromartie, T. H.

    1979-01-01

    Describes a convenient, inexpensive experiment in enzyme kinetics developed for the undergraduate biochemistry laboratory at the University of Virginia. Required are a single beam visible spectrophotometer with output to a recorder, a constant temperature, a commercially available enzyme, substrates, and buffers. (BT)

  5. Space physics educational outreach

    NASA Technical Reports Server (NTRS)

    Copeland, Richard A.

    1995-01-01

    The goal of this Space Physics Educational Outreach project was to develop a laboratory experiment and classroom lecture on Earth's aurora for use in lower division college physics courses, with the particular aim of implementing the experiment and lecture at Saint Mary's College of California. The strategy is to teach physics in the context of an interesting natural phenomenon by investigating the physical principles that are important in Earth's aurora, including motion of charged particles in electric and magnetic fields, particle collisions and chemical reactions, and atomic and molecular spectroscopy. As a by-product, the undergraduate students would develop an appreciation for naturally occurring space physics phenomena.

  6. Hanford Laboratories Operation monthly activities report, September 1960

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1960-10-15

    This is the monthly report for the Hanford Laboratories Operation, October, 1960. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  7. Hanford Laboratories Operation monthly activities report, November 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1962-12-14

    This is the monthly report for the Hanford Laboratories Operation, November 1962. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  8. Cookbook Procedures in MBL Physics Exercises.

    ERIC Educational Resources Information Center

    Royuk, Brent; Brooks, David W.

    2003-01-01

    Presents results of a controlled experiment comparing the conceptual mechanics learning gains as measured by the Force Concept Inventory (FCI) between two laboratory groups. One group completed cookbook labs while the other completed Interactive-Engagement (IE) labs in RealTime Physics. Suggests that laboratory activities should engage students in…

  9. The Master level optics laboratory at the Institute of Optics

    NASA Astrophysics Data System (ADS)

    Adamson, Per

    2017-08-01

    The master level optics laboratory is a biannual, intensive laboratory course in the fields of geometrical, physical and modern optics. This course is intended for the master level student though Ph.D. advisors which often recommend it to their advisees. The students are required to complete five standard laboratory experiments and an independent project during a semester. The goals of the laboratory experiments are for the students to get hands-on experience setting up optical laboratory equipment, collecting and analyzing data, as well as to communicate key results. The experimental methods, analysis, and results of the standard experiments are submitted in a journal style report, while an oral presentation is given for the independent project.

  10. Using Live Tissue Laboratories to Promote Clinical Reasoning in Doctor of Physical Therapy Students

    ERIC Educational Resources Information Center

    Moore, W. Allen; Noonan, Ann Cassidy

    2010-01-01

    Recently, the use of animal laboratories has decreased in medical and basic science programs due to lack of trained faculty members, student concerns about animal welfare, and the increased availability of inexpensive alternatives such as computer simulations and videos. Animal laboratories, however, have several advantages over alternative forms…

  11. Laboratory Needs for Interstellar Ice Studies

    NASA Astrophysics Data System (ADS)

    Boogert, Abraham C. A.

    2012-05-01

    A large fraction of the molecules in dense interstellar and circumstellar environments is stored in icy grain mantles. The mantles are formed by a complex interplay between chemical and physical processes. Key questions on the accretion and desorption processes and the chemistry on the grain surfaces and within the icy mantles can only be answered by laboratory experiments. Recent infrared (2-30 micron) spectroscopic surveys of large samples of Young Stellar Objects (YSOs) and background stars tracing quiescent cloud material have shown that the ice band profiles and depths vary considerably as a function of environment. Using laboratory spectra in the identification process, it is clear that a rather complex mixture of simple species (CH3OH, CO2, H2O, CO) exists even in the quiescent cloud phase. Variations of the local physical conditions (CO freeze out) and time scales (CH3OH formation) appear to be key factors in the observed variations. Sublimation and thermal processing dominate as YSOs heat their environments. The identification of several ice absorption features is still disputed. I will outline laboratory work (e.g., on salts, PAHs, and aliphatic hydrocarbons) needed to further constrain the ice band identification as well as the thermal and chemical history of the carriers. Such experiments will also be essential to interpret future high spectral resolution SOFIA and JWST observations.

  12. Zero-gravity atmospheric Cloud Physics Experiment Laboratory; Programmatics report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The programmatics effort included comprehensive analyses in four major areas: (1) work breakdown structure, (2) schedules, (3) costs, and (4) supporting research and technology. These analyses are discussed in detail in the following sections which identify and define the laboratory project development schedule, cost estimates, funding distributions and supporting research and technology requirements. All programmatics analyses are correlated among themselves and with the technical analyses by means of the work breakdown structure which serves as a common framework for program definition. In addition, the programmatic analyses reflect the results of analyses and plans for reliability, safety, test, and maintenance and refurbishment.

  13. Project Laboratory for First-Year Students

    ERIC Educational Resources Information Center

    Planinsic, Gorazd

    2007-01-01

    This paper reports the modification of an existing experimental subject into a project laboratory for first-year physics students studying in the first cycle of university level and at a higher professional level. The subject is aimed at developing important science-related competences and skills through concrete steps under circumstances that are…

  14. Laboratory Procedures in Thermal Expansion and Viscosity of Liquids

    ERIC Educational Resources Information Center

    Dawson, Paul Dow

    1974-01-01

    Describes the laboratory procedures for the measurement of thermal expansion and viscosity of liquids. These experiments require inexpensive equipment and are suitable for secondary school physical science classes. (JR)

  15. Enhanced verification test suite for physics simulation codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamm, James R.; Brock, Jerry S.; Brandon, Scott T.

    2008-09-01

    This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations.

  16. Laboratory Simulations of Planetary Surfaces: Understanding Regolith Physical Properties from Remote Photopolarimetric Observations

    NASA Astrophysics Data System (ADS)

    Nelson, Robert M.; Boryta, Mark; Hapke, Bruce W.; Manatt, Kenneth S.; Shkuratov, Yuriy; Psarev, Vladimir; Vandervoort, Kurt; Kroner, Desire; Nebedum, Adaze; Vides, Christina; Quinones, John

    2017-10-01

    We present reflectance and polarization phase curve measurements for a suite of highly reflective planetary regolith analogues with physical characteristics that might be expected on the surface of an atmosphereless solar system body (ASSB). We studied thirteen well-sorted particle size fractions of aluminum oxide (Al2O3) in the laboratory with a goniometric photopolarimeter (GPP) of novel design.These results are highly relevant to understanding the unusual negative polarization behavior observed near small phase angles that has been reported over several decades on highly reflective ASSBs such as the asteroids 44 Nysa, 64 Angelina (Harris et al., 1989) and the Galilean satellites Io, Europa and Ganymede (Rosenbush et al., 1997; Mishchenko et al., 2006). Our measurements are consistent with the hypothesis that the surfaces of these ASSBs effectively scatter electromagnetic radiation as if they were extremely fine grained with void space >~95%, and grain sizes of the order <= λ. This portends consequences for efforts to deploy surface landers on high ASSB’s such as Europa. These results also have relevance to the field of terrestrial geo-engineering particularly to proposals for modifying Earth’s radiation balance by injecting Al2O3 particulates into the stratosphere for the purpose of offsetting the effect of anthropogenic greenhouse gas emissions (Teller et al., 1997).Harris et al., 1989 . Icarus 81, 365-374.Mishchenko et al., 2006 Applied Optics, 45, 4459-4463.Rosenbush et al, 1997, Astrophys. J. 487, 402-414.Teller et al., 1997. UCRL-JC-128715.

  17. Chemistry as the defining science: discipline and training in nineteenth-century chemical laboratories.

    PubMed

    Jackson, Catherine M

    2011-06-01

    The institutional revolution has become a major landmark of late-nineteenth century science, marking the rapid construction of large, institutional laboratories which transformed scientific training and practice. Although it has served historians of physics well, the institutional revolution has proved much more contentious in the case of chemistry. I use published sources, mainly written by chemists and largely focused on laboratories built in German-speaking lands between about 1865 and 1900, to show that chemical laboratory design was inextricably linked to productive practice, large-scale pedagogy and disciplinary management. I argue that effective management of the novel risks inherent in teaching and doing organic synthesis was significant in driving and shaping the construction of late-nineteenth century institutional chemical laboratories, and that these laboratories were essential to the disciplinary development of chemistry. Seen in this way, the laboratory necessarily becomes part of the material culture of late-nineteenth century chemistry, and I show how this view leads not only to a revision of what is usually known as the laboratory revolution in chemistry but also to a new interpretation of the institutional revolution in physics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. The Physical Tourist

    NASA Astrophysics Data System (ADS)

    Sánchez-Ron, José M.

    2006-09-01

    I provide a tour of Madrid, focusing especially on physical institutions that were created during the 19th and 20th centuries.These include the Astronomical Observatory close to the Prado Museum, which itself was conceived as a home for the Royal Academy of Sciences but became instead a world-famous art museum in 1819, leaving the Royal Academy of Sciences without a permanent home until 1866.The Laboratory of Physical Researches was created in 1910, and under the direction of Blas Cabrera (1878 1945), who also held a professorship at the Universidad Central, it fostered most of the Spanish research in physics at the time, in particular the famous spectroscopic researches of Miguel A. Catalán (1894 1957). Nearby were the so-called Transatlantico building and the Students’ Residence where Albert Einstein (1879 1955), for example, lectured in 1923, and which together continue to serve as a major cultural center in Madrid. Later, the physical laboratory was replaced by the National Institute of Physics and Chemistry, which was constructed with funds from the Rockefeller Foundation and inaugurated in 1932. A new University City with its Faculty of Sciences also was constructed on the northwestern outskirts of Madrid, but almost all of its buildings were totally destroyed during the devastating Spanish Civil War of 1936 1939. It was reconstructed after the war and became home, for example, to Spain’s first nuclear reactor, which achieved criticality in 1958.

  19. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, K.D.; Honeygan, S.; Moroz, T.H.

    2008-12-01

    The U.S. Department of Energy's National Energy Technology Laboratory (NETL) established the Extreme Drilling Laboratory to engineer effective and efficient drilling technologies viable at depths greater than 20,000 ft. This paper details the challenges of ultradeep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL's research and development activities. NETL is invested in laboratory-scale physical simulation. Its physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480°F around a single drill cutter. This simulator is not yet operational; therefore, the results will be limited to themore » identification of leading hypotheses of drilling phenomena and NETL's test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Laboratory's studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.« less

  20. Laboratory directed research and development. FY 1995 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  1. Integration of a Communicating Science Module into an Advanced Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Renaud, Jessica; Squier, Christopher; Larsen, Sarah C.

    2006-01-01

    A communicating science module was introduced into an advanced undergraduate physical chemistry laboratory course. The module was integrated into the course such that students received formal instruction in communicating science interwoven with the chemistry laboratory curriculum. The content of the communicating science module included three…

  2. Two decades of Mexican particle physics at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy Rubinstein

    2002-12-03

    This report is a view from Fermilab of Mexican particle physics at the Laboratory since about 1980; it is not intended to be a history of Mexican particle physics: that topic is outside the expertise of the writer. The period 1980 to the present coincides with the growth of Mexican experimental particle physics from essentially no activity to its current state where Mexican groups take part in experiments at several of the world's major laboratories. Soon after becoming Fermilab director in 1979, Leon Lederman initiated a program to encourage experimental physics, especially experimental particle physics, in Latin America. At themore » time, Mexico had significant theoretical particle physics activity, but none in experiment. Following a visit by Lederman to UNAM in 1981, a conference ''Panamerican Symposium on Particle Physics and Technology'' was held in January 1982 at Cocoyoc, Mexico, with about 50 attendees from Europe, North America, and Latin America; these included Lederman, M. Moshinsky, J. Flores, S. Glashow, J. Bjorken, and G. Charpak. Among the conference outcomes were four subsequent similar symposia over the next decade, and a formal Fermilab program to aid Latin American physics (particularly particle physics); it also influenced a decision by Mexican physicist Clicerio Avilez to switch from theoretical to experimental particle physics. The first physics collaboration between Fermilab and Mexico was in particle theory. Post-docs Rodrigo Huerta and Jose Luis Lucio spent 1-2 years at Fermilab starting in 1981, and other theorists (including Augusto Garcia, Arnulfo Zepeda, Matias Moreno and Miguel Angel Perez) also spent time at the Laboratory in the 1980s.« less

  3. ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory: Part II--A Physical Chemistry Laboratory Experiment on Surface Adsorption

    ERIC Educational Resources Information Center

    Schuttlefield, Jennifer D.; Larsen, Sarah C.; Grassian, Vicki H.

    2008-01-01

    Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. The use of FTIR-ATR spectroscopy in organic and inorganic chemistry laboratory courses as well as in undergraduate research was presented…

  4. 1. VIEW IN ROOM 125, BIOASSAY LABORATORY, SHOWN IS THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW IN ROOM 125, BIOASSAY LABORATORY, SHOWN IS THE FIRST STEP IN A SIX-STEP PROCESS TO ANALYZE URINE SAMPLES FOR PLUTONIUM AND URANIUM CONTAMINATION. IN THIS STEP, NITRIC ACID IS ADDED TO SAMPLE, AND THE SAMPLE IS BOILED DOWN TO A WHITE POWDER. - Rocky Flats Plant, Health Physics Laboratory, On Central Avenue between Third & Fourth Streets, Golden, Jefferson County, CO

  5. 2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. AIR FILTERS AND SWIPES ARE DISSOLVED WITH ACIDS AND THE REMAINING RESIDUES ARE SUSPENDED IN NITRIC ACID SOLUTION. THE SOLUTION IS PROCESSED THROUGH THE ATOMIC ABSORPTION SPECTROPHOTOMETER TO DETECT THE PRESENCE AND LEVELS OF BERYLLIUM. - Rocky Flats Plant, Health Physics Laboratory, On Central Avenue between Third & Fourth Streets, Golden, Jefferson County, CO

  6. 75 FR 15675 - Professional Research Experience Program in Chemical Science and Technology Laboratory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... in physics, chemistry, mathematics, computer science, or engineering. Institutions should have a 4..., mathematics, computer science, or engineering with work experiences in laboratories or other settings...-0141-01] Professional Research Experience Program in Chemical Science and Technology Laboratory...

  7. NASA's Laboratory Astrophysics Workshop: Opening Remarks

    NASA Technical Reports Server (NTRS)

    Hasan, Hashima

    2002-01-01

    The Astronomy and Physics Division at NASA Headquarters has an active and vibrant program in Laboratory Astrophysics. The objective of the program is to provide the spectroscopic data required by observers to analyze data from NASA space astronomy missions. The program also supports theoretical investigations to provide those spectroscopic parameters that cannot be obtained in the laboratory; simulate space environment to understand formation of certain molecules, dust grains and ices; and production of critically compiled databases of spectroscopic parameters. NASA annually solicits proposals, and utilizes the peer review process to select meritorious investigations for funding. As the mission of NASA evolves, new missions are launched, and old ones are terminated, the Laboratory Astrophysics program needs to evolve accordingly. Consequently, it is advantageous for NASA and the astronomical community to periodically conduct a dialog to assess the status of the program. This Workshop provides a forum for producers and users of laboratory data to get together and understand each others needs and limitations. A multi-wavelength approach enables a cross fertilization of ideas across wavelength bands.

  8. Whistler wave propagation in the antenna near and far fields in the Naval Research Laboratory Space Physics Simulation Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackwell, David D.; Walker, David N.; Amatucci, William E.

    2010-01-15

    In previous papers, early whistler propagation measurements were presented [W. E. Amatucci et al., IEEE Trans. Plasma Sci. 33, 637 (2005)] as well as antenna impedance measurements [D. D. Blackwell et al., Phys. Plasmas 14, 092106 (2007)] performed in the Naval Research Laboratory Space Physics Simulation Chamber (SPSC). Since that time there have been major upgrades in the experimental capabilities of the laboratory in the form of improvement of both the plasma source and antennas. This has allowed access to plasma parameter space that was previously unattainable, and has resulted in measurements that provide a significantly clearer picture of whistlermore » propagation in the laboratory environment. This paper presents some of the first whistler experimental results from the upgraded SPSC. Whereas previously measurements were limited to measuring the cyclotron resonance cutoff and elliptical polarization indicative of the whistler mode, now it is possible to experimentally plot the dispersion relation itself. The waves are driven and detected using balanced dipole and loop antennas connected to a network analyzer, which measures the amplitude and phase of the wave in two dimensions (r and z). In addition the frequency of the signals is also swept over a range of several hundreds of megahertz, providing a comprehensive picture of the near and far field antenna radiation patterns over a variety of plasma conditions. The magnetic field is varied from a few gauss to 200 G, with the density variable over at least 3 decades from 10{sup 7} to 10{sup 10} cm{sup -3}. The waves are shown to lie on the dispersion surface for whistler waves, with observation of resonance cones in agreement with theoretical predictions. The waves are also observed to propagate without loss of amplitude at higher power, a result in agreement with previous experiments and the notion of ducted whistlers.« less

  9. A Useful Demonstration of Calculus in a Physics High School Laboratory

    ERIC Educational Resources Information Center

    Alvarez, Gustavo; Schulte, Jurgen; Stockton, Geoffrey; Wheeler, David

    2018-01-01

    The real power of calculus is revealed when it is applied to actual physical problems. In this paper, we present a calculus inspired physics experiment suitable for high school and undergraduate programs. A model for the theory of the terminal velocity of a falling body subject to a resistive force is developed and its validity tested in an…

  10. Radiation and Health Technology Laboratory Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bihl, Donald E.; Lynch, Timothy P.; Murphy, Mark K.

    2005-07-09

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrumentmore » calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.« less

  11. Radon measurements in the Gran Sasso Underground Laboratory.

    PubMed

    Arpesella, C; Bam, B B; Bassignani, A; Cecchini, S; Colombo, G; Dekhissi, H; Fresca Fantoni, R; Giacomelli, G; Lembo, L; Maltoni, G; Mandrioli, G; Patrizii, L; Sartorio, C; Serra, P; Togo, V; Vilela, E

    1997-04-01

    Systematic radon monitoring in the Gran Sasso Underground Laboratory was performed in order to determine the background radon contribution to the sophisticated experimental apparatus and to check health physics standards for the personnel. As expected, the radon concentrations were found to depend strongly on the ventilation in the three experimental halls. Considerable reductions in the radon concentrations were obtained in 1993, when fresh air was drawn into the laboratory through a pipe and exhaust air was routed into the highway tunnel.

  12. Laboratory simulations of planetary surfaces: Understanding regolith physical properties from remote photopolarimetric observations

    NASA Astrophysics Data System (ADS)

    Nelson, Robert M.; Boryta, Mark D.; Hapke, Bruce W.; Manatt, Kenneth S.; Shkuratov, Yuriy; Psarev, V.; Vandervoort, Kurt; Kroner, Desire; Nebedum, Adaze; Vides, Christina L.; Quiñones, John

    2018-03-01

    We present reflectance and polarization phase curve measurements of highly reflective planetary regolith analogues having physical characteristics expected on atmosphereless solar system bodies (ASSBs) such as a eucritic asteroids or icy satellites. We used a goniometric photopolarimeter (GPP) of novel design to study thirteen well-sorted particle size fractions of aluminum oxide (Al2O3). The sample suite included particle sizes larger than, approximately equal to, and smaller than the wavelength of the incident monochromatic radiation (λ = 635 nm). The observed phase angle, α, was 0.056 o < α < 15°. These Al2O3 particulate samples have very high normal reflectance (> ∼95%). The incident radiation has a very high probability of being multiply scattered before being backscattered toward the incident direction or ultimately absorbed. The five smallest particle sizes exhibited extremely high void space (> ∼95%). The reflectance phase curves for all particle size fractions show a pronounced non-linear reflectance increase with decreasing phase angle at α∼ < 3°. Our earlier studies suggest that the cause of this non-linear reflectance increase is constructive interference of counter-propagating waves in the medium by coherent backscattering (CB), a photonic analog of Anderson localization of electrons in solid state media. The polarization phase curves for particle size fractions with size parameter (particle radius/wavelength) r/λ < ∼1, show that the linear polarization rapidly decreases as α increases from 0°; it reaches a minimum near α = ∼2°. Longward of ∼2°, the negative polarization decreases as phase angle increases, becoming positive between 12° and at least 15°, (probably ∼20°) depending on particle size. For size parameters r/λ > ∼1 we detect no polarization. This polarization behavior is distinct from that observed in low albedo solar system objects such as the Moon and asteroids and for absorbing materials in the laboratory

  13. Laboratory medicine and sports: between Scylla and Charybdis.

    PubMed

    Lippi, Giuseppe; Banfi, Giuseppe; Botrè, Francesco; de la Torre, Xavier; De Vita, Francesco; Gomez-Cabrera, Mari Carmen; Maffulli, Nicola; Marchioro, Lucio; Pacifici, Roberta; Sanchis-Gomar, Fabian; Schena, Federico; Plebani, Mario

    2012-02-28

    Laboratory medicine is complex and contributes to the diagnosis, therapeutic monitoring and follow-up of acquired and inherited human disorders. The regular practice of physical exercise provides important benefits in heath and disease and sports medicine is thereby receiving growing focus from almost each and every clinical discipline, including laboratory medicine. Sport-laboratory medicine is a relatively innovative branch of laboratory science, which can provide valuable contributions to the diagnosis and follow-up of athletic injuries, and which is acquiring a growing clinical significance to support biomechanics and identify novel genomics and "exercisenomics" patterns that can help identify specific athlete's tendency towards certain types of sport traumas and injuries. Laboratory medicine can also provide sport physicians and coaches with valuable clues about personal inclination towards a certain sport, health status, fitness and nutritional deficiencies of professional, elite and recreational athletes in order to enable a better and earlier prediction of sport injuries, overreaching and overtraining. Finally, the wide armamentarium of laboratory tests represents the milestone for identifying cheating athletes in the strenuous fight against doping in sports.

  14. Tools for Scientific Thinking: Microcomputer-Based Laboratories for the Naive Science Learner.

    ERIC Educational Resources Information Center

    Thornton, Ronald K.

    A promising new development in science education is the use of microcomputer-based laboratory tools that allow for student-directed data acquisition, display, and analysis. Microcomputer-based laboratories (MBL) make use of inexpensive microcomputer-connected probes to measure such physical quantities as temperature, position, and various…

  15. Strengths of the Northwell Health Laboratory Service Line

    PubMed Central

    Balfour, Erika; Stallone, Robert; Castagnaro, Joseph; Poczter, Hannah; Schron, Deborah; Martone, James; Breining, Dwayne; Simpkins, Henry; Neglia, Tom; Kalish, Paul

    2016-01-01

    From 2009 to 2015, the laboratories of the 19-hospital North Shore-LIJ Health System experienced 5 threatened interruptions in service and supported 2 regional health-care providers with threatened interruptions in their laboratory service. We report our strategies to maintain laboratory performance during these events, drawing upon the strengths of our integrated laboratory service line. Established in 2009, the laboratory service line has unified medical and administrative leadership and system-wide divisional structure, quality management, and standardization of operations and procedures. Among many benefits, this governance structure enabled the laboratories to respond to a series of unexpected events. Specifically, at our various service sites, the laboratories dealt with pandemic (2009), 2 floods (2010, 2012), 2 fires (2010, 2015), and laboratory floor subsidence (2013). We were also asked to provide support for a regional physician network facing abrupt loss of testing services from closure of another regional clinical laboratory (2010) and to intervene for a non-health system hospital threatened with closure owing to noncompliance of laboratory operations (2012). In all but a single instance, patient care was served without interruption in service. In the last instance, fire interrupted laboratory services for 30 minutes. We conclude that in a large integrated health system, threats to continuous laboratory operations are not infrequent when measured on an annual basis. While most threats are from external physical circumstances, some emanate from unexpected administrative events. A strong laboratory governance mechanism that includes unified medical and administrative leadership across the entirety of the laboratory service line enables successful responses to these threats. PMID:28725768

  16. Enhanced Verification Test Suite for Physics Simulation Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamm, J R; Brock, J S; Brandon, S T

    2008-10-10

    This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations. The key points of this document are: (1) Verification deals with mathematical correctness of the numerical algorithms in a code, while validation deals with physical correctness of a simulation in a regime of interest.more » This document is about verification. (2) The current seven-problem Tri-Laboratory Verification Test Suite, which has been used for approximately five years at the DOE WP laboratories, is limited. (3) Both the methodology for and technology used in verification analysis have evolved and been improved since the original test suite was proposed. (4) The proposed test problems are in three basic areas: (a) Hydrodynamics; (b) Transport processes; and (c) Dynamic strength-of-materials. (5) For several of the proposed problems we provide a 'strong sense verification benchmark', consisting of (i) a clear mathematical statement of the problem with sufficient information to run a computer simulation, (ii) an explanation of how the code result and benchmark solution are to be evaluated, and (iii) a description of the acceptance criterion for simulation code results. (6) It is proposed that the set of verification test problems with which any particular code be evaluated include some of the problems described in this document. Analysis of the proposed verification test problems constitutes part of a necessary--but not sufficient--step that builds confidence in physics and engineering simulation codes. More complicated test cases, including physics models of

  17. Hanford Laboratories Operation monthly activities report, August 1959

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1959-09-15

    This is the monthly report for the Hanford Laboratories Operation, August, 1959. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, visits, biology operation, physics and instrumentation research, employee relations, and operations research and synthesis operation are discussed.

  18. Hanford Laboratories Operation monthly activities report, September 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1961-10-16

    This is the monthly report for the Hanford Laboratories Operation September 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  19. Ranking protective coatings: Laboratory vs. field experience

    NASA Astrophysics Data System (ADS)

    Conner, Jeffrey A.; Connor, William B.

    1994-12-01

    Environmentally protective coatings are used on a wide range of gas turbine components for survival in the harsh operating conditions of engines. A host of coatings are commercially available to protect hot-section components, ranging from simple aluminides to designer metallic overlays and ceramic thermal barrier coatings. A variety of coating-application processes are available, and they range from simple pack cementation processing to complex physical vapor deposition, which requires multimillion dollar facilities. Detailed databases are available for most coatings and coating/process combinations for a range of laboratory tests. Still, the analysis of components actually used in engines often yields surprises when compared against predicted coating behavior from laboratory testing. This paper highlights recent work to develop new laboratory tests that better simulate engine environments. Comparison of in-flight coating performance as well as industrial and factory engine testing on a range of hardware is presented along with laboratory predictions from standard testing and from recently developed cyclic burner-rig testing.

  20. Early Attempts to Detect the Neutrino at the Cavendish Laboratory

    NASA Astrophysics Data System (ADS)

    Navarro, Jaume

    2006-03-01

    In the 1920s and early 1930s the Cavendish Laboratory in Cambridge was preeminent in experimental research on radioactivity and nuclear physics, with theoretical physics playing a subsidiary role in guiding, but not determining the course of experimental research. Soon after Wolfgang Pauli (1900 1958) proposed his neutrino hypothesis in 1930 to preserve conservation of energy and momentum in beta decay, experiments the first of their kind were carried out in the Cavendish Laboratory to detect Pauli’s elusive particle, but they were abandoned in 1936. I trace these early attempts and suggest reasons for their abandonment, which may contribute to an understanding of the complex way in which theoretical entities are accepted by physicists.

  1. Planetary atmospheric physics and solar physics research

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An overview is presented on current and planned research activities in the major areas of solar physics, planetary atmospheres, and space astronomy. The approach to these unsolved problems involves experimental techniques, theoretical analysis, and the use of computers to analyze the data from space experiments. The point is made that the research program is characterized by each activity interacting with the other activities in the laboratory.

  2. District, state or regional veterinary diagnostic laboratories.

    PubMed

    Gosser, H S; Morehouse, L G

    1998-08-01

    The district, regional or state laboratory is the local laboratory to which veterinarian practitioners usually submit samples, and consequently these laboratories are usually the first to observe a suspected disease problem. In most countries, these laboratories are under the jurisdiction of the State or region in which they are located. In the United States of America (USA), most veterinary diagnostic laboratories are State-associated and operate under the aegis of either the State Department of Agriculture or a university. The national laboratory provides reference assistance to the State laboratories. In the USA, the national Laboratory (the National Veterinary Services Laboratories) acts as a consultant to confirm difficult diagnoses and administer performance tests for State-associated laboratories. District, state or regional laboratories need to share information regarding technological advances in diagnostic procedures. This need was met in the USA by the formation of the American Association of Veterinary Laboratory Diagnosticians (AAVLD) in the late 1950s. Another requirement of district, state or regional diagnostic laboratories is a method to confirm quality assurance, which was fulfilled in the USA by an accreditation programme established through the AAVLD. The Accreditation Committee evaluates laboratories (on request) in terms of organisation, personnel, physical facilities and equipment, records, finance and budget. Those laboratories which meet the standards as established in the 'Essential Requirements for Accreditation' are given accreditation status, which indicates that they have the expertise and facilities to perform tests on food-producing animals for shipment in national or international commerce and on companion, laboratory or zoo animals. While confidentiality of test records is most important, it is becoming necessary to release certain types of animal disease test information if a country is to participate in the exportation of animals

  3. Laboratory Spectroscopy of Large Carbon Molecules and Ions in Support of Space Missions. A New Generation of Laboratory & Space Studies

    NASA Technical Reports Server (NTRS)

    Salama, Farid; Tan, Xiaofeng; Cami, Jan; Biennier, Ludovic; Remy, Jerome

    2006-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. A long-standing and major challenge for laboratory astrophysics has been to measure the spectra of large carbon molecules in laboratory environments that mimic (in a realistic way) the physical conditions that are associated with the interstellar emission and absorption regions [1]. This objective has been identified as one of the critical Laboratory Astrophysics objectives to optimize the data return from space missions [2]. An extensive laboratory program has been developed to assess the properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space. We present and discuss the gas-phase electronic absorption spectra of neutral and ionized PAHs measured in the UV-Visible-NIR range in astrophysically relevant environments and discuss the implications for astrophysics [1]. The harsh physical conditions of the interstellar medium characterized by a low temperature, an absence of collisions and strong VUV radiation fields - have been simulated in the laboratory by associating a pulsed cavity ringdown spectrometer (CRDS) with a supersonic slit jet seeded with PAHs and an ionizing, penning-type, electronic discharge. We have measured for the {\\it first time} the spectra of a series of neutral [3,4] and ionized [5,6] interstellar PAHs analogs in the laboratory. An effort has also been attempted to quantify the mechanisms of ion and carbon nanoparticles production in the free jet expansion and to model our simulation of the diffuse interstellar medium in the laboratory [7]. These experiments provide {\\it unique} information on the spectra of free, large carbon-containing molecules and ions in the gas phase. We are now, for the first time, in the position to directly compare laboratory spectral data on free, cold, PAH ions and carbon nano-sized carbon particles with astronomical observations in the

  4. Meta-analysis of the effectiveness of computer-based laboratory versus traditional hands-on laboratory in college and pre-college science instructions

    NASA Astrophysics Data System (ADS)

    Onuoha, Cajetan O.

    The purpose of this research study was to determine the overall effectiveness of computer-based laboratory compared with the traditional hands-on laboratory for improving students' science academic achievement and attitudes towards science subjects at the college and pre-college levels of education in the United States. Meta-analysis was used to synthesis the findings from 38 primary research studies conducted and/or reported in the United States between 1996 and 2006 that compared the effectiveness of computer-based laboratory with the traditional hands-on laboratory on measures related to science academic achievements and attitudes towards science subjects. The 38 primary research studies, with total subjects of 3,824 generated a total of 67 weighted individual effect sizes that were used in this meta-analysis. The study found that computer-based laboratory had small positive effect sizes over the traditional hands-on laboratory (ES = +0.26) on measures related to students' science academic achievements and attitudes towards science subjects (ES = +0.22). It was also found that computer-based laboratory produced more significant effects on physical science subjects compared to biological sciences (ES = +0.34, +0.17).

  5. Practical Physics Labs: A Resource Manual.

    ERIC Educational Resources Information Center

    Goodwin, Peter

    This resource manual focuses on physics labs that relate to the world around us and utilize simple equipment and situations. Forty-five laboratories are included that relate to thermodynamics, electricity, magnetism, dynamics, optics, wave transmission, centripetal force, and atomic physics. Each lab has three sections. The first section…

  6. The Progress of Physics

    NASA Astrophysics Data System (ADS)

    Schuster, Arthur

    2015-10-01

    Introduction; 1. Scope of lectures. State of physics in 1875. Science of energy. Theory of gases. Elastic solid theory of light. Maxwell's theory of electricity. Training of students. Maxwell's view. Accurate measurement and discovery of Argon. German methods. Kirchhoff's laboratory. Wilhelm Weber's laboratory. The two laboratories of Berlin. Laboratory instruction at Manchester. Position of physics in mathematical tripos at Cambridge. Todhunter's views. The Cavendish laboratory. Spectrum analysis. The radiometer. Theory of vortex atom; 2. Action at a distance. Elastic solid of theory of light. Maxwell's theory of electrical action. Electro-magnetic theory. Verification of electromagnetic theory by Hertz. Electro-magnetic waves. Wireless telegraphy. First suggestion of molecular structure of electricity. Early experiments in the electric discharge through gases. Kathode rays. Works of Goldstein and Crookes. Hittorf's investigations. Own work on the discharge through gases. Ionization of gases. Magnetic deflexion of kathode rays. J. J. Thomson's experiments. Measurement of atomic charge; 3. Roentgen's discovery. Theories of Roentgen rays. Ionizing power of Roentgen rays. Conduction of electricity through ionized gases. Discovery of radio-activity. Discovery of radium. Magnetic deflexion of rays emitted by radio-active bodies. Discovery of emanations. Theory of radio-active change. Decay of the atom. Connexion between helium and the a ray. Helium produced by radium. Strutt's researches on helium accumulated in rocks. Electric inertia. Constitution of atom. J. J. Thomson's theory of Roentgen radiation. The Michelson-Morley experiment. Principle of relativity. The Zeeman effect. Other consequences of electron theory. Contrast between old and modern school of physics; 4. Observational sciences. Judgment affected by scale. Terrestrial magnetism. Existence of potential. Separation of internal and external causes. Diurnal variation. Magnetic storms. Their causes. Solar

  7. Physics Flash August 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth

    Physics Flash is the newsletter for the Physics Division at Los Alamos National Laboratory. This newsletter is for August 2016. The following topics are covered: "Accomplishments in the Trident Laser Facility", "David Meyerhofer elected as chair-elect APS Nominating Committee", "HAWC searches for gamma rays from dark matter", "Proton Radiography Facility commissions electromagnetic magnifier", and "Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks."

  8. The Status of African American Physicists within the DOE Laboratories

    NASA Astrophysics Data System (ADS)

    Jackson, Keith

    2005-03-01

    In May 2002 there was a backpage article published in American Physical Society Newsletter by the President of the National Society of Black Physicists (NSBP). This article showed that of the 3372 professional physicists employed at the DOE national labs, only 11 are African American, which on a percentage basis is 4 times less than the total availability of Ph.D. African American physicists in the labor force. NSBP want to provide an update of the interaction between National Society of Black Physicists (NSBP) and the department of Energy in particular the Office of Science on the issue of employment of African American Physicists in scientific and technical. You might ask the following question: Why should the current generation of African American Physicists be concerned about their underepresentation on the scientific staffs of the DOE National Laboratories? The answer to this question may vary from person to person, but I would like to propose the following: The National Laboratories are the largest providers of career opportunities in Physics in the United States. There is a general view in the community; African Americans are not getting a return on their national investment in the DOE National Labs. Failure to engage with HBCU’s through their user facilities causes a training or skills deficit when it comes to preparing students to participate at the forefront of physics research. By rebuffing interactions with HBCU¹s, as many the laboratories have done, the national laboratories are in effect refusing to transfer scientific knowledge to the stakeholders in the African American community. The update will contain some additional information about NSBP proposals to solve the problem of underepresentation of African American and Hispanic physicists within the National Laboratories and how the Office of Science has response these proposals.

  9. Rapid Conversion of Traditional Introductory Physics Sequences to an Activity-Based Format

    ERIC Educational Resources Information Center

    Yoder, Garett; Cook, Jerry

    2014-01-01

    The Department of Physics at EKU [Eastern Kentucky University] with support from the National Science Foundations Course Curriculum and Laboratory Improvement Program has successfully converted our entire introductory physics sequence, both algebra-based and calculus-based courses, to an activity-based format where laboratory activities,…

  10. Overview of the NASA space radiation laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Tessa, Chiara; Sivertz, Michael; Chiang, I-Hung

    The NASA Space Radiation Laboratory (NSRL) is a multidisciplinary center for space radiation research funded by NASA and located at the Brookhaven National Laboratory (BNL), Upton NY. Operational since 2003, the scope of NSRL is to provide ion beams in support of the NASA Humans in Space program in radiobiology, physics and engineering to measure the risk and ameliorate the effect of radiation in space. Recently, it has also been recognized as the only facility in the U.S. currently capable of contributing to heavy ion radiotherapy research. Finally, this work contains a general overview of NSRL structure, capabilities and operation.

  11. Overview of the NASA space radiation laboratory

    DOE PAGES

    La Tessa, Chiara; Sivertz, Michael; Chiang, I-Hung; ...

    2016-11-11

    The NASA Space Radiation Laboratory (NSRL) is a multidisciplinary center for space radiation research funded by NASA and located at the Brookhaven National Laboratory (BNL), Upton NY. Operational since 2003, the scope of NSRL is to provide ion beams in support of the NASA Humans in Space program in radiobiology, physics and engineering to measure the risk and ameliorate the effect of radiation in space. Recently, it has also been recognized as the only facility in the U.S. currently capable of contributing to heavy ion radiotherapy research. Finally, this work contains a general overview of NSRL structure, capabilities and operation.

  12. More Bits and Pieces: A Second Physics Miscellany

    ERIC Educational Resources Information Center

    Siddons, J. C.

    1976-01-01

    Described are five physics experiments utilizing inexpensive, readily available materials or materials normally found in a physics laboratory. Included are investigations of electrical charge, sound detection, thermal expansion, doppler effects, and the cycloid. (SL)

  13. [Experimental nuclear physics]. Annual report 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1989-04-01

    This is the April 1989 annual report of the Nuclear Physics Labortaory of the University of Washington. It contains chapters on astrophysics, giant resonances, heavy ion induced reactions, fundamental symmetries, polarization in nuclear reactions, medium energy reactions, accelerator mass spectrometry (AMS), research by outside users, Van de Graaff and ion sources, computer systems, instrumentation, and the Laboratory`s booster linac work. An appendix lists Laboratory personnel, Ph.D. degrees granted in the 1988-1989 academic year, and publications. Refs., 23 figs., 3 tabs.

  14. Laboratory Measurements of Celestial Solids

    NASA Technical Reports Server (NTRS)

    Sievers, A. J.; Beckwith, S. V. W.

    1997-01-01

    Our experimental study has focused on laboratory measurements of the low temperature optical properties of a variety of astronomically significant materials in the infrared and mm-wave region of the spectrum. Our far infrared measurements of silicate grains with an open structure have produced a variety of unusual results: (1) the low temperature mass opacity coefficient of small amorphous 2MgO(central dot)SiO2 and MgO(central dot)2SiO2 grains are many times larger than the values previously used for interstellar grain material; (2) all of the amorphous silicate grains studied possess the characteristic temperature dependent signature associated with two level systems in bulk glass; and (3) a smaller but nonzero two level temperature dependence signature is also observed for crystalline particles, its physical origin is unclear. These laboratory measurements yield surprisingly large and variable values for the mm-wave absorption coefficients of small silicate particles similar to interstellar grains, and suggest that the bulk absorptivity of interstellar dust at these long wavelengths will not be well known without such studies. Furthermore, our studies have been useful to better understand the physics of the two level absorption process in amorphous and crystalline grains to gain confidence in the wide applicability of these results.

  15. Epistemology and expectations survey about experimental physics: Development and initial results

    NASA Astrophysics Data System (ADS)

    Zwickl, Benjamin M.; Hirokawa, Takako; Finkelstein, Noah; Lewandowski, H. J.

    2014-06-01

    In response to national calls to better align physics laboratory courses with the way physicists engage in research, we have developed an epistemology and expectations survey to assess how students perceive the nature of physics experiments in the contexts of laboratory courses and the professional research laboratory. The Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS) evaluates students' epistemology at the beginning and end of a semester. Students respond to paired questions about how they personally perceive doing experiments in laboratory courses and how they perceive an experimental physicist might respond regarding their research. Also, at the end of the semester, the E-CLASS assesses a third dimension of laboratory instruction, students' reflections on their course's expectations for earning a good grade. By basing survey statements on widely embraced learning goals and common critiques of teaching labs, the E-CLASS serves as an assessment tool for lab courses across the undergraduate curriculum and as a tool for physics education research. We present the development, evidence of validation, and initial formative assessment results from a sample that includes 45 classes at 20 institutions. We also discuss feedback from instructors and reflect on the challenges of large-scale online administration and distribution of results.

  16. Technical developments at the NASA Space Radiation Laboratory.

    PubMed

    Lowenstein, D I; Rusek, A

    2007-06-01

    The NASA Space Radiation Laboratory (NSRL) located at Brookhaven National Laboratory (BNL) is a center for space radiation research in both the life and physical sciences. BNL is a multidisciplinary research facility operated for the Office of Science of the US Department of Energy (DOE). The BNL scientific research portfolio supports a large and diverse science and technology program including research in nuclear and high-energy physics, material science, chemistry, biology, medial science, and nuclear safeguards and security. NSRL, in operation since July 2003, is an accelerator-based facility which provides particle beams for radiobiology and physics studies (Lowenstein in Phys Med 17(supplement 1):26-29 2001). The program focus is to measure the risks and to ameliorate the effects of radiation encountered in space, both in low earth orbit and extended missions beyond the earth. The particle beams are produced by the Booster synchrotron, an accelerator that makes up part of the injector sequence of the DOE nuclear physics program's Relativistic Heavy Ion Collider. Ion species from protons to gold are presently available, at energies ranging from <100 to >1,000 MeV/n. The NSRL facility has recently brought into operation the ability to rapidly switch species and beam energy to supply a varied spectrum onto a given specimen. A summary of past operation performance, plans for future operations and recent and planned hardware upgrades will be described.

  17. Achieving across-laboratory replicability in psychophysical scaling

    PubMed Central

    Ward, Lawrence M.; Baumann, Michael; Moffat, Graeme; Roberts, Larry E.; Mori, Shuji; Rutledge-Taylor, Matthew; West, Robert L.

    2015-01-01

    It is well known that, although psychophysical scaling produces good qualitative agreement between experiments, precise quantitative agreement between experimental results, such as that routinely achieved in physics or biology, is rarely or never attained. A particularly galling example of this is the fact that power function exponents for the same psychological continuum, measured in different laboratories but ostensibly using the same scaling method, magnitude estimation, can vary by a factor of three. Constrained scaling (CS), in which observers first learn a standardized meaning for a set of numerical responses relative to a standard sensory continuum and then make magnitude judgments of other sensations using the learned response scale, has produced excellent quantitative agreement between individual observers’ psychophysical functions. Theoretically it could do the same for across-laboratory comparisons, although this needs to be tested directly. We compared nine different experiments from four different laboratories as an example of the level of across experiment and across-laboratory agreement achievable using CS. In general, we found across experiment and across-laboratory agreement using CS to be significantly superior to that typically obtained with conventional magnitude estimation techniques, although some of its potential remains to be realized. PMID:26191019

  18. CONTRIBUTIONS OF 20TH CENTURY WOMEN TO PHYSICS

    Science.gov Websites

    Annotated Photo Gallery In Her Own Words Some Physics History 500+ Books and Articles Field Editors Physical Society, the University of California, UCLA Physics and Astronomy Department, the Laboratories of Astrophysics Burbidge, E. M. Burnell, Jocelyn Faber, Sandra Leavitt, Henrietta Payne-Gaposchkin,Cecilia Rubin

  19. Physics teaching in developing countries

    NASA Astrophysics Data System (ADS)

    Talisayon, V. M.

    1984-05-01

    The need for endogeneous learning materials that will relate physics to the student's culture and environment spurred countries like India, Thailand, The Philippines and Indonesia to develop their own physics curriculum materials and laboratory equipment. Meagre resources and widespread poverty necessitated the development of laboratory materials from everyday items, recycled materials and other low-cost or no-cost local materials. The process of developing learning materials for one's teaching-learning needs in physics and the search from within for solutions to one's problems contribute in no small measure to the development of self-reliance in physics teaching of a developing country. Major concerns of developing countries are food supply, livelihood, health, nutrition and growth of economy. At the level of the student and his family, food, health, and livelihood are also primary concerns. Many physics teaching problems can be overcome on a large scale, given political support and national will. In countries where national leadership recognises that science and technology developed is essential to national development and that science education in turn is crucial to science and technology development, scarce resources can be allocated to science education. In developing countries where science education receives little or no political support, the most important resource in the physics classroom is the physics teacher. A highly motivated and adequately trained teacher can rise above the constraining circumstances of paucity of material resources and government apathy. In developing countries the need is great for self-reliance in physics teaching at the country level, and more importantly at the teacher level.

  20. Laboratory simulation of space plasma phenomena*

    NASA Astrophysics Data System (ADS)

    Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.

    2017-12-01

    Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.

  1. [Postgraduates' training as laboratory physicians/clinical pathologists in Japan--board certification of JSLM as a mandatory requirement for chairpersons of laboratory medicine].

    PubMed

    Kumasaka, Kazunari

    2002-04-01

    The educational committee of the Japanese Society of Laboratory Medicine(JSLM) proposed a revised laboratory medicine residency curriculum in 1999 and again in 2001. The committee believes that present undergraduate clinical training is insufficient and that Japanese medical graduates need clinical training for two years after graduation. This two years training should be a precondition for further postgraduate training in laboratory medicine and should include fundamental clinical skills(communication skills, physical examination and common laboratory procedures such as Gram's stain, Wright-Giemsa stain and urinalysis). After the two years training, the minimal training period of laboratory medicine should be three years, and should include: 1) Principles, instrumentation and techniques of each discipline including clinical chemistry, clinical hematology, clinical microbiology, clinical immunology, blood banking and other specific areas. 2) The use of laboratory information in a medical setting. 3) Interaction of the laboratory physician with laboratory staff, physicians and patients. With good on-the-job training and 24 hours on-call duties, laboratory physicians are expected to perform their tasks, including laboratory management, effectively. They should have appropriate educational background and should be well motivated. The background and duties of the laboratory physicians often reflect the institutional needs and personal philosophy of the chairperson of their department. At the moment, few senior physicians in Japan have qualifications in laboratory medicine and are unable, therefore, to provide the necessary guidance to help the laboratory physicians in their work. I therefore believe that the board certification of JSLM should be regarded as mandatory for chairpersons of laboratory medicine. Our on-call service system can enhance the training in laboratory medicine, and improve not only laboratory quality assurance but patients' care as well.

  2. Making ideas at scientific fabrication laboratories

    NASA Astrophysics Data System (ADS)

    Fonda, Carlo; Canessa, Enrique

    2016-11-01

    Creativity, together with the making of ideas into fruition, is essential for progress. Today the evolution from an idea to its application can be facilitated by the implementation of Fabrication Laboratories, or FabLabs, having affordable digital tools for prototyping. FabLabs aiming at scientific research and invention are now starting to be established inside Universities, Research Centers and Schools. We review the setting up of the ICTP Scientific FabLab in Trieste, Italy, give concrete examples on the use in physics, and propose to replicate world-wide this class of multi-purpose workplaces within academia as a support for physics and math education and for community development.

  3. Technologies and Methods Used at the Laboratory for Atmospheric and Space Physics (LASP) to Serve Solar Irradiance Data

    NASA Technical Reports Server (NTRS)

    Pankratz, Chris; Beland, Stephane; Craft, James; Baltzer, Thomas; Wilson, Anne; Lindholm, Doug; Snow, Martin; Woods, Thomas; Woodraska, Don

    2018-01-01

    The Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado in Boulder, USA operates the Solar Radiation and Climate Experiment (SORCE) NASA mission, as well as several other NASA spacecraft and instruments. Dozens of Solar Irradiance data sets are produced, managed, and disseminated to the science community. Data are made freely available to the scientific immediately after they are produced using a variety of data access interfaces, including the LASP Interactive Solar Irradiance Datacenter (LISIRD), which provides centralized access to a variety of solar irradiance data sets using both interactive and scriptable/programmatic methods. This poster highlights the key technological elements used for the NASA SORCE mission ground system to produce, manage, and disseminate data to the scientific community and facilitate long-term data stewardship. The poster presentation will convey designs, technological elements, practices and procedures, and software management processes used for SORCE and their relationship to data quality and data management standards, interoperability, NASA data policy, and community expectations.

  4. Discovery & Interaction in Astro 101 Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Maloney, Frank Patrick; Maurone, Philip; DeWarf, Laurence E.

    2016-01-01

    The availability of low-cost, high-performance computing hardware and software has transformed the manner by which astronomical concepts can be re-discovered and explored in a laboratory that accompanies an astronomy course for arts students. We report on a strategy, begun in 1992, for allowing each student to understand fundamental scientific principles by interactively confronting astronomical and physical phenomena, through direct observation and by computer simulation. These experiments have evolved as :a) the quality and speed of the hardware has greatly increasedb) the corresponding hardware costs have decreasedc) the students have become computer and Internet literated) the importance of computationally and scientifically literate arts graduates in the workplace has increased.We present the current suite of laboratory experiments, and describe the nature, procedures, and goals in this two-semester laboratory for liberal arts majors at the Astro 101 university level.

  5. Physics division progress report for period ending September 30 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingston, A.B.

    1992-03-01

    This report discusses research being conducted at Oak Ridge National Laboratory in physics. The areas covered are: Holifield Heavy Ion Research Facility; low/medium energy nuclear physics; high energy experimental physics; the Unisor program; experimental atomic physics; laser and electro-optics lab; theoretical physics; compilations and evaluations; and radioactive ion beam development. (LSP)

  6. Entrance to the NACA's Flight Propulsion Research Laboratory

    NASA Image and Video Library

    1948-08-21

    The sign near the entrance of the National Advisory Committee for Aeronautics (NACA) Flight Propulsion Research Laboratory. The name was changed several weeks later to the Lewis Flight Propulsion Laboratory in honor of the NACA’s former Director of Aeronautical Research, George W. Lewis. The research laboratory has had five different names since its inception in 1941. The Cleveland laboratory was originally known as the NACA Aircraft Engine Research Laboratory. In 1947 it was renamed the NACA Flight Propulsion Research Laboratory to reflect the expansion of the research activities beyond just engines. Following the death of George Lewis, the name was changed to the NACA Lewis Flight Propulsion Laboratory in September 1948. On October 1, 1958, the lab was incorporated into the new NASA space agency, and it was renamed the NASA Lewis Research Center. Following John Glenn’s flight on the space shuttle, the name was changed again to the NASA Glenn Research Center on March 1, 1999. From his office in Washington DC, George Lewis managed the aeronautical research conducted at the NACA for over 20 years. His most important accomplishment, however, may have been an investigative tour of German research facilities in the fall of 1936. The visit resulted in the broadening of the scope of the NACA’s research and the physical expansion that included the new engine laboratory in Cleveland.

  7. The Role of a Physical Analysis Laboratory in a 300 mm IC Development and Manufacturing Centre

    NASA Astrophysics Data System (ADS)

    Kwakman, L. F. Tz.; Bicais-Lepinay, N.; Courtas, S.; Delille, D.; Juhel, M.; Trouiller, C.; Wyon, C.; de la Bardonnie, M.; Lorut, F.; Ross, R.

    2005-09-01

    To remain competitive IC manufacturers have to accelerate the development of most advanced (CMOS) technology and to deliver high yielding products with best cycle times and at a competitive pricing. With the increase of technology complexity, also the need for physical characterization support increases, however many of the existing techniques are no longer adequate to effectively support the 65-45 nm technology node developments. New and improved techniques are definitely needed to better characterize the often marginal processes, but these should not significantly impact fabrication costs or cycle time. Hence, characterization and metrology challenges in state-of-the-art IC manufacturing are both of technical and economical nature. TEM microscopy is needed for high quality, high volume analytical support but several physical and practical hurdles have to be taken. The success rate of FIB-SEM based failure analysis drops as defects often are too small to be detected and fault isolation becomes more difficult in the nano-scale device structures. To remain effective and efficient, SEM and OBIRCH techniques have to be improved or complemented with other more effective methods. Chemical analysis of novel materials and critical interfaces requires improvements in the field of e.g. SIMS, ToF-SIMS. Techniques that previously were only used sporadically, like EBSD and XRD, have become a `must' to properly support backend process development. At the bright side, thanks to major technical advances, techniques that previously were practiced at laboratory level only now can be used effectively for at-line fab metrology: Voltage Contrast based defectivity control, XPS based gate dielectric metrology and XRD based control of copper metallization processes are practical examples. In this paper capabilities and shortcomings of several techniques and corresponding equipment are presented with practical illustrations of use in our Crolles facilities.

  8. Occupational safety and health status of medical laboratories in Kajiado County, Kenya.

    PubMed

    Tait, Fridah Ntinyari; Mburu, Charles; Gikunju, Joseph

    2018-01-01

    Despite the increasing interest in Occupational Safety and Health (OSH), seldom studies are available on OSH in medical laboratories from developing countries in general although a high number of injuries occur without proper documentation. It is estimated that every day 6,300 people die as a result of occupational accidents or work-related diseases resulting in over 2.3 million deaths per year. Medical laboratories handle a wide range of materials, potentially dangerous pathogenic agents and exposes health workers to numerous potential hazards. This study evaluated the status of OSH in medical laboratories in Kajiado County, Kenya. The objectives included establishment of biological, chemical and physical hazards; reviewing medical laboratories control measures; and enumerating factors hindering implementation of good practices in OSH. This was a cross-sectional descriptive study research design. Observation check lists, interview schedules and structured questionnaires were used. The study was carried out in 108 medical laboratories among 204 sampled respondents. Data was analysed using statistical package for social science (SPSS) 20 software. The commonest type of hazards in medical laboratories include; bacteria (80%) for Biological hazards; handling un-labelled and un-marked chemicals (38.2%) for chemical hazards; and laboratory equipment's dangerously placed (49.5%) for Physical hazards. According to Pearson's Product Moment Correlation analysis, not-wearing personal protective equipment's was statistically associated with exposure to hazards. Individual control measures were statistically significant at 0.01 significance level. Only 65.1% of the factors influencing implementation of OSH in medical laboratories were identified. Training has the highest contribution to good OSH practices.

  9. Internet-Based Laboratory Immersion: When The Real Deal is Not Available

    NASA Astrophysics Data System (ADS)

    Meisner, Gerald; Hoffman, Harol

    2004-11-01

    Do you want all of your students to investigate equilibrium conditions in the physics lab, but don't have time for lab investigations? Do your under-prepared students need basic, careful and detailed remedial work to help them succeed? LAAPhysics provides an answer to these questions by means of robust online physics courseware based on: (1) a sound, research-based pedagogy (2) a rich laboratory environment with skills and operational knowledge transferable to the wet lab' and (3) a paradigm which is economically scalable. LAAPhysics provides both synchronous and asynchronous learning experiences for an introductory, algebra-based course for students (undergraduate, AP High School, seekers of a second degree), those seeking career changes, and pre-service and in-service teachers. We have developed a simulated physics laboratory comprised of virtual lab equipment and instruments, associated curriculum modules and virtual guidance for real time feedback, formative assessment and collaborative learning.

  10. A MOOC for Introductory Physics

    NASA Astrophysics Data System (ADS)

    Schatz, Michael

    2014-03-01

    We describe an effort to develop and to implement a college-level introductory physics (mechanics) MOOC that offers bona fide laboratory experiences. We also discuss efforts to use MOOC curricular materials to ``flip'' the classroom in a large lecture introductory physics course offered on-campus at Georgia Tech. Preliminary results of assessments and surveys from both MOOC and on-campus students will be presented.

  11. Clay Caterpillars: A Tool for Ecology & Evolution Laboratories

    ERIC Educational Resources Information Center

    Barber, Nicholas A.

    2012-01-01

    I present a framework for ecology and evolution laboratory exercises using artificial caterpillars made from modeling clay. Students generate and test hypotheses about predation rates on caterpillars that differ in appearance or "behavior" to understand how natural selection by predators shapes distribution and physical characteristics of…

  12. The Alcohol Dehydrogenase Kinetics Laboratory: Enhanced Data Analysis and Student-Designed Mini-Projects

    ERIC Educational Resources Information Center

    Silverstein, Todd P.

    2016-01-01

    A highly instructive, wide-ranging laboratory project in which students study the effects of various parameters on the enzymatic activity of alcohol dehydrogenase has been adapted for the upper-division biochemistry and physical biochemistry laboratory. Our two main goals were to provide enhanced data analysis, featuring nonlinear regression, and…

  13. The laboratory astrophysics facility at University College

    NASA Astrophysics Data System (ADS)

    Hyland, A. R.; Smith, R. G.; Robinson, G.

    A laboratory astrophysics facility for the study of the terrestrial analogues of interstellar dust grains is being developed in the Physics Department, University College, Australian Defence Force Academy. The facility consists of a gas handling system for the preparation of samples, a closed-cycle cooler and specimen chamber, and a Fourier Transform Infrared (FTIR) Spectrometer capable of high resolution (0.3/cm) and high sensitivity measurements, currently from 1-25 microns. The layout and construction of the laboratory are described, and the proposed initial experimental program aimed at determining the optical constants of ices, over a wide wavelength range for comparison with astronomical observations, is discussed.

  14. Cyberinfrastructure for high energy physics in Korea

    NASA Astrophysics Data System (ADS)

    Cho, Kihyeon; Kim, Hyunwoo; Jeung, Minho; High Energy Physics Team

    2010-04-01

    We introduce the hierarchy of cyberinfrastructure which consists of infrastructure (supercomputing and networks), Grid, e-Science, community and physics from bottom layer to top layer. KISTI is the national headquarter of supercomputer, network, Grid and e-Science in Korea. Therefore, KISTI is the best place to for high energy physicists to use cyberinfrastructure. We explain this concept on the CDF and the ALICE experiments. In the meantime, the goal of e-Science is to study high energy physics anytime and anywhere even if we are not on-site of accelerator laboratories. The components are data production, data processing and data analysis. The data production is to take both on-line and off-line shifts remotely. The data processing is to run jobs anytime, anywhere using Grid farms. The data analysis is to work together to publish papers using collaborative environment such as EVO (Enabling Virtual Organization) system. We also present the global community activities of FKPPL (France-Korea Particle Physics Laboratory) and physics as top layer.

  15. Introductory Physics Students' Physics and Mathematics Epistemologies

    NASA Astrophysics Data System (ADS)

    Scanlon, Erin M.

    The purpose of this three study dissertation is to investigate why students are enrolled in introductory physics courses experience difficulties in being successful; one possible source of their difficulties is related to their epistemology. In order to investigate students' epistemologies about mathematics and physics, students were observed solving physics problems in groups during a laboratory course (study 1) and while solving physics and mathematics problems individually during office-hour sessions (study 2). The Epistemological Resources theoretical framework was employed (Hammer & Elby, 2002). Using emergent and a priori epistemological resource operationalizations (Jones, 2015), 25 distinct epistemological resources were identified in study 1. Differences in physics epistemological resource usage between students of varying academic background (as measured by their number of previously completed mathematics and science classes were identified. By employing an external (Jones, 2015) and internal (Scanlon, 2016) a priori epistemological resource coding scheme, a total of 17 distinct epistemological resources were identified in study 2. The data were sampled to compare the mathematics and physics epistemological resource usage of participants with consistent and inconsistent sign usage in an energy conservation physics problem in order to provide a meaningful context for discussion. Participants of the same sign usage group employed epistemological resources similarly. Conversely, participants in different groups had significantly different physics epistemological resource usage patterns. Finally, student epistemological resource usage patterns from the first two studies were compared to course outcomes in order to determine implications for practice (study 3). Educators must be aware of and address the epistemological underpinnings of students' difficulties in introductory physics courses.

  16. Implementation of an accelerated physical examination course in a doctor of pharmacy program.

    PubMed

    Ho, Jackie; Bidwal, Monica K; Lopes, Ingrid C; Shah, Bijal M; Ip, Eric J

    2014-12-15

    To describe the implementation of a 1-day accelerated physical examination course for a doctor of pharmacy program and to evaluate pharmacy students' knowledge, attitudes, and confidence in performing physical examination. Using a flipped teaching approach, course coordinators collaborated with a physician faculty member to design and develop the objectives of the course. Knowledge, attitude, and confidence survey questions were administered before and after the practical laboratory. Following the practical laboratory, knowledge improved by 8.3% (p<0.0001). Students' perceived ability and confidence to perform a physical examination significantly improved (p<0.0001). A majority of students responded that reviewing the training video (81.3%) and reading material (67.4%) prior to the practical laboratory was helpful in learning the physical examination. An accelerated physical examination course using a flipped teaching approach was successful in improving students' knowledge of, attitudes about, and confidence in using physical examination skills in pharmacy practice.

  17. Implementation of an Accelerated Physical Examination Course in a Doctor of Pharmacy Program

    PubMed Central

    Ho, Jackie; Lopes, Ingrid C.; Shah, Bijal M.; Ip, Eric J.

    2014-01-01

    Objective. To describe the implementation of a 1-day accelerated physical examination course for a doctor of pharmacy program and to evaluate pharmacy students’ knowledge, attitudes, and confidence in performing physical examination. Design. Using a flipped teaching approach, course coordinators collaborated with a physician faculty member to design and develop the objectives of the course. Knowledge, attitude, and confidence survey questions were administered before and after the practical laboratory. Assessment. Following the practical laboratory, knowledge improved by 8.3% (p<0.0001). Students’ perceived ability and confidence to perform a physical examination significantly improved (p<0.0001). A majority of students responded that reviewing the training video (81.3%) and reading material (67.4%) prior to the practical laboratory was helpful in learning the physical examination. Conclusion. An accelerated physical examination course using a flipped teaching approach was successful in improving students’ knowledge of, attitudes about, and confidence in using physical examination skills in pharmacy practice. PMID:25657369

  18. From X-Rays to MRI: Physics in GE

    NASA Astrophysics Data System (ADS)

    Schmitt, Roland W.

    2004-03-01

    The GE Research Laboratory, founded in 1900, became the first laboratory of scientific research in U.S. industry. William Coolidge, a physicist, joined the laboratory in 1905 and produced two advances of immense importance. The first, ductile tungsten, is still the heart of every incandescent light bulb. The second, the "Coolidge" X-Ray tube, remains an essential tool of modern medicine. In the process, Coolidge explored two main approaches of physics in industry. One addresses a commercial problem or opportunity (better light bulbs) and finds interesting physics. The other explores interesting physics (X-rays) and creates a commercial opportunity. This paper addresses the mix of these approaches during GE's years as an "electric" (and therefore physics-based) company. Episodes include the following: the work of Irving Langmuir (1932 Nobel laureate in chemistry, but as much physicist as chemist); the post-World War II "golden age of industrial physics" when the endless frontier offered opportunities from nuclear power to diamond making to superconductivity; the Nobel-prize winning work of Ivar Giaever; and interdisciplinary efforts that enabled GE to become a world business leader in two medical diagnostic technologies it did not invent: computed tomography and magnetic resonance imaging. I will speculate on whether this mix of problem-driven and opportunity-driven effort is as relevant to the 21st century as it was to the 20th.

  19. The first dozen years of the history of ITEP Theoretical Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Ioffe, B. L.

    2013-01-01

    The theoretical investigations at ITEP in the years 1945 - 1958 are reviewed. There are exposed the most important theoretical results, obtained in the following branches of physics: (1) the theory of nuclear reactors on thermal neutrons; (2) the hydrogen bomb project ("Tube" in USSR and "Classical Super" in USA); (3) radiation theory; (4) low temperature physics; (5) quantum electrodynamics and quantum field theories; (6) parity violation in weak interactions, the theory of β-decay and other weak processes; (7) strong interaction and nuclear physics. To the review are added the English translations of a few papers, originally published in Russian, but unknown (or almost unknown) to Western readers.

  20. [Establishing biological reference intervals of alanine transaminase for clinical laboratory stored database].

    PubMed

    Guo, Wei; Song, Binbin; Shen, Junfei; Wu, Jiong; Zhang, Chunyan; Wang, Beili; Pan, Baishen

    2015-08-25

    To establish an indirect reference interval based on the test results of alanine aminotransferase stored in a laboratory information system. All alanine aminotransferase results were included for outpatients and physical examinations that were stored in the laboratory information system of Zhongshan Hospital during 2014. The original data were transformed using a Box-Cox transformation to obtain an approximate normal distribution. Outliers were identified and omitted using the Chauvenet and Tukey methods. The indirect reference intervals were obtained by simultaneously applying nonparametric and Hoffmann methods. The reference change value was selected to determine the statistical significance of the observed differences between the calculated and published reference intervals. The indirect reference intervals for alanine aminotransferase of all groups were 12 to 41 U/L (male, outpatient), 12 to 48 U/L (male, physical examination), 9 to 32 U/L (female, outpatient), and 8 to 35 U/L (female, physical examination), respectively. The absolute differences when compared with the direct results were all smaller than the reference change value of alanine aminotransferase. The Box-Cox transformation combined with the Hoffmann and Tukey methods is a simple and reliable technique that should be promoted and used by clinical laboratories.

  1. Status of women in physics in Australia

    NASA Astrophysics Data System (ADS)

    Foley, C. P.

    2013-03-01

    Up to 2006 there was some improvement for women in physics in Australia; since then there has been a decline. Women are underrepresented in all aspects of physics education and work, including school, university, and research laboratories. In addition, women physicists usually have lower seniority and earn less. This scenario is compounded by recent inactivity of the Australian Institute of Physics women's group since December 2010.

  2. An open microcomputer-based laboratory system for perceptional experimentality

    NASA Astrophysics Data System (ADS)

    Hamalainen, Ari

    A computer, equipped with hardware for acquiring data about the properties of a physical system and programs for processing that data, is a powerful tool for physics research and instruction. There is strong evidence that utilizing microcomputer-based laboratories (MBLs) in instruction can lead to significantly improved learning. The perceptional approach is a method for physics instruction, developed at the Department of Physics, University of Helsinki. Its main arguments are that the meanings of the concepts must be learnt before their formal definitions and adoption, and that learning and research are fundamentally similar concept formation processes. Applying the perceptional approach requires the ability to perform quantitative experiments, either as students' laboratory exercises or as lecture demonstrations, and to process their results. MBL tools are essential for this. In student's laboratory exercises, they reduce the routine work and leave more time for the actual learning. In lecture demonstrations, they make it possible to perform the experiments in the tight time limits. At a previous stage of the research, a set of requirements was found that the perceptional approach places on MBL systems. The primary goal of this thesis is to build a prototype of a MBL system that would fulfil these requirements. A secondary goal is to describe technical aspects of a computerized measurement system from the standpoint of educational use. The prototype was built using mostly commercial sensors and data acquisition units. The software was written with a visual programming language, designed for instrumentation applications. The prototype system was developed and tested with a set of demonstrations of various topics in the Finnish high school physics curriculum, which were implemented according to the perceptional approach. Limited usability tests were also performed. The prototype was improved, until it could perform the test demonstrations. It was found to meet the

  3. Chemical and Physical Signatures for Microbial Forensics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cliff, John B.; Kreuzer, Helen W.; Ehrhardt, Christopher J.

    Chemical and physical signatures for microbial forensics John Cliff and Helen Kreuzer-Martin, eds. Humana Press Chapter 1. Introduction: Review of history and statement of need. Randy Murch, Virginia Tech Chapter 2. The Microbe: Structure, morphology, and physiology of the microbe as they relate to potential signatures of growth conditions. Joany Jackman, Johns Hopkins University Chapter 3. Science for Forensics: Special considerations for the forensic arena - quality control, sample integrity, etc. Mark Wilson (retired FBI): Western Carolina University Chapter 4. Physical signatures: Light and electron microscopy, atomic force microscopy, gravimetry etc. Joseph Michael, Sandia National Laboratory Chapter 5. Lipids: FAME,more » PLFA, steroids, LPS, etc. James Robertson, Federal Bureau of Investigation Chapter 6. Carbohydrates: Cell wall components, cytoplasm components, methods Alvin Fox, University of South Carolina School of Medicine David Wunschel, Pacific Northwest National Laboratory Chapter 7. Peptides: Peptides, proteins, lipoproteins David Wunschel, Pacific Northwest National Laboratory Chapter 8. Elemental content: CNOHPS (treated in passing), metals, prospective cell types John Cliff, International Atomic Energy Agency Chapter 9. Isotopic signatures: Stable isotopes C,N,H,O,S, 14C dating, potential for heavy elements. Helen Kreuzer-Martin, Pacific Northwest National Laboratory Michaele Kashgarian, Lawrence Livermore National Laboratory Chapter 10. Extracellular signatures: Cellular debris, heme, agar, headspace, spent media, etc Karen Wahl, Pacific Northwest National Laboratory Chapter 11. Data Reduction and Integrated Microbial Forensics: Statistical concepts, parametric and multivariate statistics, integrating signatures Kristin Jarman, Pacific Northwest National Laboratory« less

  4. Developing the Learning Physical Science Curriculum: Adapting a Small Enrollment, Laboratory and Discussion Based Physical Science Course for Large Enrollments

    ERIC Educational Resources Information Center

    Goldberg, Fred; Price, Edward; Robinson, Stephen; Boyd-Harlow, Danielle; McKean, Michael

    2012-01-01

    We report on the adaptation of the small enrollment, lab and discussion based physical science course, "Physical Science and Everyday Thinking" (PSET), for a large-enrollment, lecture-style setting. Like PSET, the new "Learning Physical Science" (LEPS) curriculum was designed around specific principles based on research on learning to meet the…

  5. Managing Science: Management for R&D Laboratories

    NASA Astrophysics Data System (ADS)

    Gelès, Claude; Lindecker, Gilles; Month, Mel; Roche, Christian

    1999-10-01

    A unique "how-to" manual for the management of scientific laboratories This book presents a complete set of tools for the management of research and development laboratories and projects. With an emphasis on knowledge rather than profit as a measure of output and performance, the authors apply standard management principles and techniques to the needs of high-flux, open-ended, separately funded science and technology enterprises. They also propose the novel idea that failure, and incipient failure, is an important measure of an organization's potential. From the management of complex, round-the-clock, high-tech operations to strategies for long-term planning, Managing Science: Management for R&D Laboratories discusses how to build projects with the proper research and development, obtain and account for funding, and deal with rapidly changing technologies, facilities, and trends. The entire second part of the book is devoted to personnel issues and the impact of workplace behavior on the various functions of a knowledge-based organization. Drawing on four decades of involvement with the management of scientific laboratories, the authors thoroughly illustrate their philosophy with real-world examples from the physics field and provide tables and charts. Managers of scientific laboratories as well as scientists and engineers expecting to move into management will find Managing Science: Management for R&D Laboratories an invaluable practical guide.

  6. PREFACE: 31st European Physical Society Conference on Plasma Physics

    NASA Astrophysics Data System (ADS)

    Dendy, Richard

    2004-12-01

    This special issue of Plasma Physics and Controlled Fusion comprises refereed papers contributed by invited speakers at the 31st European Physical Society Conference on Plasma Physics. The conference was jointly hosted by the Rutherford Appleton Laboratory, by the EURATOM/UKAEA Fusion Association and by Imperial College London, where it took place from 28 June to 2 July 2004. The overall agenda for this conference was set by the Board of the Plasma Physics Division of the European Physical Society, chaired by Friedrich Wagner (MPIPP, Garching) and his successor Jo Lister (CRPP, Lausanne). It built on developments in recent years, by further increasing the scientific diversity of the conference programme, whilst maintaining its depth and quality. A correspondingly diverse Programme Committee was set up, whose members are listed below. The final task of the Programme Committee has been the preparation of this special issue. In carrying out this work, as in preparing the scientific programme of the conference, the Programme Committee formed specialist subcommittees representing the different fields of plasma science. The chairmen of these subcommittees, in particular, accepted a very heavy workload on behalf of their respective research communities. It is a great pleasure to take this opportunity to thank: Emilia R Solano (CIEMAT, Madrid), magnetic confinement fusion; Jürgen Meyer-ter-Vehn (MPQ, Garching), laser-plasma interaction and beam plasma physics; and Jean-Luc Dorier (CRPP, Lausanne), dusty plasmas. The relatively few papers in astrophysical and basic plasma physics were co-ordinated by a small subcommittee which I led. Together with Peter Norreys (RAL, Chilton), we five constitute the editorial team for this special issue. The extensive refereeing load, compressed into a short time interval, was borne by the Programme Committee members and by many other experts, to whom this special issue owes much. We are also grateful to the Local Organizing Committee

  7. Students' Knowledge Construction in Small Groups in the Seventh Grade Biology Laboratory: Verbal Communication and Physical Engagement.

    ERIC Educational Resources Information Center

    She, Hsiao-Ching

    1999-01-01

    Reports on a study of seventh-grade students' interactions in small groups during a biology laboratory activity. Finds that girls have the potential to perform equally as well as do boys in the science laboratory and that both individual and gender differences contribute to students' differential verbal communication and laboratory engagement.…

  8. Preservice and Inservice Teachers' Challenges in the Planning of Practical Work in Physics

    NASA Astrophysics Data System (ADS)

    Nivalainen, Ville; Asikainen, Mervi A.; Sormunen, Kari; Hirvonen, Pekka E.

    2010-06-01

    Practical work in school science plays many essential roles that have been discussed in the literature. However, less attention has been paid to how teachers learn the different roles of practical work and to the kind of challenges they face in their learning during laboratory courses designed for teachers. In the present study we applied the principles of grounded theory to frame a set of factors that seem to set major challenges concerning both successful work in the school physics laboratory and also in the preparation of lessons that exploit practical work. The subject groups of the study were preservice and inservice physics teachers who participated in a school laboratory course. Our results derived from a detailed analysis of tutoring discussions between the instructor and the participants in the course, which revealed that the challenges in practical or laboratory work consisted of the limitations of the laboratory facilities, an insufficient knowledge of physics, problems in understanding instructional approaches, and the general organization of practical work. Based on these findings, we present our recommendations on the preparation of preservice and inservice teachers for the more effective use of practical work in school science and in school physics.

  9. Campus as a Living Laboratory for Sustainability: The Physics Connection

    NASA Astrophysics Data System (ADS)

    Lindstrom, Timothy; Middlecamp, Catherine

    2018-04-01

    One of us is a physicist. The other is a chemist. For the past four years, we have been teaching a large introductory environmental science course that uses our campus as a lens through which to explore issues relating to sustainability. Our students "ask questions about the energy we use to heat and cool our buildings, the food we eat, the air we breathe, the electricity to run light bulbs and appliances, the goods we purchase, and the waste we create." This course fits in the genre of using "campus as a living laboratory," a term we will discuss later.

  10. Hans Bethe, Powering the Stars, and Nuclear Physics

    Science.gov Websites

    dropdown arrow Site Map A-Z Index Menu Synopsis Hans Bethe, Energy Production in Stars, and Nuclear Physics physics, built atomic weapons, and called for a halt to their proliferation. Bethe's dual legacy is one of Laboratory] from 1943 to 1946. Prior to joining the Manhattan Project, Bethe taught physics at Cornell

  11. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR BATCHING OF LABORATORY DATA (UA-C-7.0)

    EPA Science Inventory

    The purpose of this SOP is to describe the steps involved in batching the physical laboratory data forms generated by the Arizona Border Study and slated for data entry. It applies to all physical laboratory data forms entered for this study. This procedure was followed to ensu...

  12. 40 CFR 160.135 - Physical and chemical characterization studies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Physical and chemical characterization...) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Protocol for and Conduct of a Study § 160.135 Physical and chemical characterization studies. (a) All provisions of the GLP standards shall apply to physical...

  13. 40 CFR 160.135 - Physical and chemical characterization studies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Physical and chemical characterization...) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Protocol for and Conduct of a Study § 160.135 Physical and chemical characterization studies. (a) All provisions of the GLP standards shall apply to physical...

  14. 40 CFR 160.135 - Physical and chemical characterization studies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Physical and chemical characterization...) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Protocol for and Conduct of a Study § 160.135 Physical and chemical characterization studies. (a) All provisions of the GLP standards shall apply to physical...

  15. 40 CFR 160.135 - Physical and chemical characterization studies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Physical and chemical characterization...) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Protocol for and Conduct of a Study § 160.135 Physical and chemical characterization studies. (a) All provisions of the GLP standards shall apply to physical...

  16. Physical barriers formed from gelling liquids: 1. numerical design of laboratory and field experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finsterle, S.; Moridis, G.J.; Pruess, K.

    1994-01-01

    The emplacement of liquids under controlled viscosity conditions is investigated by means of numerical simulations. Design calculations are performed for a laboratory experiment on a decimeter scale, and a field experiment on a meter scale. The purpose of the laboratory experiment is to study the behavior of multiple gout plumes when injected in a porous medium. The calculations for the field trial aim at designing a grout injection test from a vertical well in order to create a grout plume of a significant extent in the subsurface.

  17. HIGH ENERGY PHYSICS: CERN Link Breathes Life Into Russian Physics.

    PubMed

    Stone, R

    2000-10-13

    Without fanfare, 600 Russian scientists here at CERN, the European particle physics laboratory, are playing key roles in building the Large Hadron Collider (LHC), a machine that will explore fundamental questions such as why particles have mass, as well as search for exotic new particles whose existence would confirm supersymmetry, a popular theory that aims to unify the four forces of nature. In fact, even though Russia is not one of CERN's 20 member states, most top high-energy physicists in Russia are working on the LHC. Some say their work could prove the salvation of high-energy physics back home.

  18. Assessing physical activity using wearable monitors: measures of physical activity.

    PubMed

    Butte, Nancy F; Ekelund, Ulf; Westerterp, Klaas R

    2012-01-01

    Physical activity may be defined broadly as "all bodily actions produced by the contraction of skeletal muscle that increase energy expenditure above basal level." Physical activity is a complex construct that can be classified into major categories qualitatively, quantitatively, or contextually. The quantitative assessment of physical activity using wearable monitors is grounded in the measurement of energy expenditure. Six main categories of wearable monitors are currently available to investigators: pedometers, load transducers/foot-contact monitors, accelerometers, HR monitors, combined accelerometer and HR monitors, and multiple sensor systems. Currently available monitors are capable of measuring total physical activity as well as components of physical activity that play important roles in human health. The selection of wearable monitors for measuring physical activity will depend on the physical activity component of interest, study objectives, characteristics of the target population, and study feasibility in terms of cost and logistics. Future development of sensors and analytical techniques for assessing physical activity should focus on the dynamic ranges of sensors, comparability for sensor output across manufacturers, and the application of advanced modeling techniques to predict energy expenditure and classify physical activities. New approaches for qualitatively classifying physical activity should be validated using direct observation or recording. New sensors and methods for quantitatively assessing physical activity should be validated in laboratory and free-living populations using criterion methods of calorimetry or doubly labeled water.

  19. Physics in Helsinki

    NASA Astrophysics Data System (ADS)

    Holmberg, Peter

    . I trace the origins of teaching and research in physics and astronomy during the 17th and 18th centuries at the Academy of Turku (Åbo), which was relocated to Helsinki in 1827 and renamed as the Imperial Alexander University of Finland, and which in turn in 1917 became the University of Helsinki. I discuss the growth of physics in Helsinki during the 19th century, which culminated in the opening of a large new Physical Institute in 1911, pointing out the individuals responsible for these developments and the sites associated with them. I also discuss related events, such as the founding of a new astronomical observatory and a new magnetic observatory and the development of technical education in Helsinki. I conclude by discussing the construction of an accelerator laboratory and other important developments in physics in Helsinki after 1945.

  20. Case-study experiments in the introductory physics curriculum

    NASA Astrophysics Data System (ADS)

    Arion, D. N.; Crosby, K. M.; Murphy, E. A.

    2000-09-01

    Carthage College added inquiry-based case study activities to the traditional introductory physics laboratory. Student teams designed, constructed, and executed their own experiments to study real-world phenomena, through which they gained understanding both of physic principles and methods of physics research. Assessment results and student feedback through teacher evaluations indicate that these activities improved student attitudes about physics as well as their ability to solve physics problems relative to previous course offerings that did not include case study.