Sample records for laboratory sample analysis

  1. Comparability of river suspended-sediment sampling and laboratory analysis methods

    USGS Publications Warehouse

    Groten, Joel T.; Johnson, Gregory D.

    2018-03-06

    Accurate measurements of suspended sediment, a leading water-quality impairment in many Minnesota rivers, are important for managing and protecting water resources; however, water-quality standards for suspended sediment in Minnesota are based on grab field sampling and total suspended solids (TSS) laboratory analysis methods that have underrepresented concentrations of suspended sediment in rivers compared to U.S. Geological Survey equal-width-increment or equal-discharge-increment (EWDI) field sampling and suspended sediment concentration (SSC) laboratory analysis methods. Because of this underrepresentation, the U.S. Geological Survey, in collaboration with the Minnesota Pollution Control Agency, collected concurrent grab and EWDI samples at eight sites to compare results obtained using different combinations of field sampling and laboratory analysis methods.Study results determined that grab field sampling and TSS laboratory analysis results were biased substantially low compared to EWDI sampling and SSC laboratory analysis results, respectively. Differences in both field sampling and laboratory analysis methods caused grab and TSS methods to be biased substantially low. The difference in laboratory analysis methods was slightly greater than field sampling methods.Sand-sized particles had a strong effect on the comparability of the field sampling and laboratory analysis methods. These results indicated that grab field sampling and TSS laboratory analysis methods fail to capture most of the sand being transported by the stream. The results indicate there is less of a difference among samples collected with grab field sampling and analyzed for TSS and concentration of fines in SSC. Even though differences are present, the presence of strong correlations between SSC and TSS concentrations provides the opportunity to develop site specific relations to address transport processes not captured by grab field sampling and TSS laboratory analysis methods.

  2. Quality-assurance plan for the analysis of fluvial sediment by the U.S. Geological Survey Kentucky Water Science Center Sediment Laboratory

    USGS Publications Warehouse

    Shreve, Elizabeth A.; Downs, Aimee C.

    2005-01-01

    This report describes laboratory procedures used by the U.S. Geological Survey Kentucky Water Science Center Sediment Laboratory for the processing and analysis of fluvial-sediment samples for concentration of sand and finer material. The report details the processing of a sediment sample through the laboratory from receiving the sediment sample, through the analytical process, to compiling results of the requested analysis. Procedures for preserving sample integrity, calibrating and maintaining of laboratory and field instruments and equipment, analyzing samples, internal quality assurance and quality control, and validity of the sediment-analysis results also are described. The report includes a list of references cited and a glossary of sediment and quality-assurance terms.

  3. Institutional practices and policies in acid-base testing: a self reported Croatian survey study on behalf of the Croatian society of medical biochemistry and laboratory medicine Working Group for acid-base balance.

    PubMed

    Dukić, Lora; Simundić, Ana-Maria

    2014-01-01

    The aim of this survey study was to assess the current practices and policies in use related to the various steps in the blood gas testing process, across hospital laboratories in Croatia. First questionnaire was sent by email to all medical biochemistry laboratories (N = 104) within general, specialized and clinical hospitals and university hospital centres to identify laboratories which perform blood gas analysis. Second questionnaire with detailed questions about sample collection, analysis and quality control procedures, was sent only to 47 laboratories identified by the first survey. Questionnaire was designed as combination of questions and statements with Likert scale. Third questionnaire was sent to all participating laboratories (N=47) for additional clarification for either indeterminate or unclear answers. Blood gas analysis is performed in 47/104 hospital laboratories in Croatia. In 25/41 (0.61) of the laboratories capillary blood gas sampling is the preferred sample type for adult patient population, whereas arterial blood sample is preferentially used in only 5/44 laboratories (0.11). Blood sampling and sample processing for capillary samples is done almost always by laboratory technicians (36/41 and 37/44, respectively), whereas arterial blood sampling is almost always done by the physician (24/29) and only rarely by a nurse (5/28). Sample acceptance criteria and sample analysis are in accordance with international recommendations for majority of laboratories. 43/44 laboratories participate in the national EQA program. POCT analyzers are installed outside of the laboratory in 20/47 (0.43) institutions. Laboratory staff is responsible for education and training of ward personnel, quality control and instrument maintenance in only 12/22, 11/20 and 9/20 institutions, respectively. Practices related to collection and analysis for blood gases in Croatia are not standardised and vary substantially between laboratories. POCT analyzers are not under the direct supervision by laboratory personnel in a large proportion of surveyed institutions. Collective efforts should be made to harmonize and improve policies and procedures related to blood gas testing in Croatian laboratories.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plemons, R.E.; Hopwood, W.H. Jr.; Hamilton, J.H.

    For a number of years the Oak Ridge Y-12 Plant Laboratory has been analyzing coal predominately for the utilities department of the Y-12 Plant. All laboratory procedures, except a Leco sulfur method which used the Leco Instruction Manual as a reference, were written based on the ASTM coal analyses. Sulfur is analyzed at the present time by two methods, gravimetric and Leco. The laboratory has two major endeavors for monitoring the quality of its coal analyses. (1) A control program by the Plant Statistical Quality Control Department. Quality Control submits one sample for every nine samples submitted by the utilitiesmore » departments and the laboratory analyzes a control sample along with the utilities samples. (2) An exchange program with the DOE Coal Analysis Laboratory in Bruceton, Pennsylvania. The Y-12 Laboratory submits to the DOE Coal Laboratory, on even numbered months, a sample that Y-12 has analyzed. The DOE Coal Laboratory submits, on odd numbered months, one of their analyzed samples to the Y-12 Plant Laboratory to be analyzed. The results of these control and exchange programs are monitored not only by laboratory personnel, but also by Statistical Quality Control personnel who provide statistical evaluations. After analysis and reporting of results, all utilities samples are retained by the laboratory until the coal contracts have been settled. The utilities departments have responsibility for the initiation and preparation of the coal samples. The samples normally received by the laboratory have been ground to 4-mesh, reduced to 0.5-gallon quantities, and sealed in air-tight containers. Sample identification numbers and a Request for Analysis are generated by the utilities departments.« less

  5. Interlaboratory comparability, bias, and precision for four laboratories measuring constituents in precipitation, November 1982-August 1983

    USGS Publications Warehouse

    Brooks, M.H.; Schroder, L.J.; Malo, B.A.

    1985-01-01

    Four laboratories were evaluated in their analysis of identical natural and simulated precipitation water samples. Interlaboratory comparability was evaluated using analysis of variance coupled with Duncan 's multiple range test, and linear-regression models describing the relations between individual laboratory analytical results for natural precipitation samples. Results of the statistical analyses indicate that certain pairs of laboratories produce different results when analyzing identical samples. Analyte bias for each laboratory was examined using analysis of variance coupled with Duncan 's multiple range test on data produced by the laboratories from the analysis of identical simulated precipitation samples. Bias for a given analyte produced by a single laboratory has been indicated when the laboratory mean for that analyte is shown to be significantly different from the mean for the most-probable analyte concentrations in the simulated precipitation samples. Ion-chromatographic methods for the determination of chloride, nitrate, and sulfate have been compared with the colorimetric methods that were also in use during the study period. Comparisons were made using analysis of variance coupled with Duncan 's multiple range test for means produced by the two methods. Analyte precision for each laboratory has been estimated by calculating a pooled variance for each analyte. Analyte estimated precisions have been compared using F-tests and differences in analyte precisions for laboratory pairs have been reported. (USGS)

  6. Interlaboratory comparability, bias, and precision for four laboratories measuring analytes in wet deposition, October 1983-December 1984

    USGS Publications Warehouse

    Brooks, Myron H.; Schroder, LeRoy J.; Willoughby, Timothy C.

    1987-01-01

    Four laboratories involved in the routine analysis of wet-deposition samples participated in an interlaboratory comparison program managed by the U.S. Geological Survey. The four participants were: Illinois State Water Survey central analytical laboratory in Champaign, Illinois; U.S. Geological Survey national water-quality laboratories in Atlanta, Georgia, and Denver, Colorado; and Inland Waters Directorate national water-quality laboratory in Burlington, Ontario, Canada. Analyses of interlaboratory samples performed by the four laboratories from October 1983 through December 1984 were compared.Participating laboratories analyzed three types of interlaboratory samples--natural wet deposition, simulated wet deposition, and deionized water--for pH and specific conductance, and for dissolved calcium, magnesium, sodium, sodium, potassium, chloride, sulfate, nitrate, ammonium, and orthophosphate. Natural wet-deposition samples were aliquots of actual wet-deposition samples. Analyses of these samples by the four laboratories were compared using analysis of variance. Test results indicated that pH, calcium, nitrate, and ammonium results were not directly comparable among the four laboratories. Statistically significant differences between laboratory results probably only were meaningful for analyses of dissolved calcium. Simulated wet-deposition samples with known analyte concentrations were used to test each laboratory for analyte bias. Laboratory analyses of calcium, magnesium, sodium, potassium, chloride, sulfate, and nitrate were not significantly different from the known concentrations of these analytes when tested using analysis of variance. Deionized-water samples were used to test each laboratory for reporting of false positive values. The Illinois State Water Survey Laboratory reported the smallest percentage of false positive values for most analytes. Analyte precision was estimated for each laboratory from results of replicate measurements. In general, the Illinois State Water Survey laboratory achieved the greatest precision, whereas the U.S. Geological Survey laboratories achieved the least precision.

  7. A round robin approach to the analysis of bisphenol a (BPA) in human blood samples

    PubMed Central

    2014-01-01

    Background Human exposure to bisphenol A (BPA) is ubiquitous, yet there are concerns about whether BPA can be measured in human blood. This Round Robin was designed to address this concern through three goals: 1) to identify collection materials, reagents and detection apparatuses that do not contribute BPA to serum; 2) to identify sensitive and precise methods to accurately measure unconjugated BPA (uBPA) and BPA-glucuronide (BPA-G), a metabolite, in serum; and 3) to evaluate whether inadvertent hydrolysis of BPA-G occurs during sample handling and processing. Methods Four laboratories participated in this Round Robin. Laboratories screened materials to identify BPA contamination in collection and analysis materials. Serum was spiked with concentrations of uBPA and/or BPA-G ranging from 0.09-19.5 (uBPA) and 0.5-32 (BPA-G) ng/mL. Additional samples were preserved unspiked as ‘environmental’ samples. Blinded samples were provided to laboratories that used LC/MSMS to simultaneously quantify uBPA and BPA-G. To determine whether inadvertent hydrolysis of BPA metabolites occurred, samples spiked with only BPA-G were analyzed for the presence of uBPA. Finally, three laboratories compared direct and indirect methods of quantifying BPA-G. Results We identified collection materials and reagents that did not introduce BPA contamination. In the blinded spiked sample analysis, all laboratories were able to distinguish low from high values of uBPA and BPA-G, for the whole spiked sample range and for those samples spiked with the three lowest concentrations (0.5-3.1 ng/ml). By completion of the Round Robin, three laboratories had verified methods for the analysis of uBPA and two verified for the analysis of BPA-G (verification determined by: 4 of 5 samples within 20% of spiked concentrations). In the analysis of BPA-G only spiked samples, all laboratories reported BPA-G was the majority of BPA detected (92.2 – 100%). Finally, laboratories were more likely to be verified using direct methods than indirect ones using enzymatic hydrolysis. Conclusions Sensitive and accurate methods for the direct quantification of uBPA and BPA-G were developed in multiple laboratories and can be used for the analysis of human serum samples. BPA contamination can be controlled during sample collection and inadvertent hydrolysis of BPA conjugates can be avoided during sample handling. PMID:24690217

  8. A soil sampling intercomparison exercise for the ALMERA network.

    PubMed

    Belli, Maria; de Zorzi, Paolo; Sansone, Umberto; Shakhashiro, Abduhlghani; Gondin da Fonseca, Adelaide; Trinkl, Alexander; Benesch, Thomas

    2009-11-01

    Soil sampling and analysis for radionuclides after an accidental or routine release is a key factor for the dose calculation to members of the public, and for the establishment of possible countermeasures. The IAEA organized for selected laboratories of the ALMERA (Analytical Laboratories for the Measurement of Environmental Radioactivity) network a Soil Sampling Intercomparison Exercise (IAEA/SIE/01) with the objective of comparing soil sampling procedures used by different laboratories. The ALMERA network is a world-wide network of analytical laboratories located in IAEA member states capable of providing reliable and timely analysis of environmental samples in the event of an accidental or intentional release of radioactivity. Ten ALMERA laboratories were selected to participate in the sampling exercise. The soil sampling intercomparison exercise took place in November 2005 in an agricultural area qualified as a "reference site", aimed at assessing the uncertainties associated with soil sampling in agricultural, semi-natural, urban and contaminated environments and suitable for performing sampling intercomparison. In this paper, the laboratories sampling performance were evaluated.

  9. Planetary Sample Analysis Laboratory at DLR

    NASA Astrophysics Data System (ADS)

    Helbert, J.; Maturilli, A.; de Vera, J. P.

    2018-04-01

    Building on the available infrastructure and the long heritage, DLR is planning to create a Planetary Sample Analysis laboratory (PSA), which can be later extended to a full sample curation facility in collaboration with the Robert-Koch Institute.

  10. Bias from two analytical laboratories involved in a long-term air monitoring program measuring organic pollutants in the Arctic: a quality assurance/quality control assessment.

    PubMed

    Su, Yushan; Hung, Hayley; Stern, Gary; Sverko, Ed; Lao, Randy; Barresi, Enzo; Rosenberg, Bruno; Fellin, Phil; Li, Henrik; Xiao, Hang

    2011-11-01

    Initiated in 1992, air monitoring of organic pollutants in the Canadian Arctic provided spatial and temporal trends in support of Canada's participation in the Stockholm Convention of Persistent Organic Pollutants. The specific analytical laboratory charged with this task was changed in 2002 while field sampling protocols remained unchanged. Three rounds of intensive comparison studies were conducted in 2004, 2005, and 2008 to assess data comparability between the two laboratories. Analysis was compared for organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in standards, blind samples of mixed standards and extracts of real air samples. Good measurement accuracy was achieved for both laboratories when standards were analyzed. Variation of measurement accuracy over time was found for some OCPs and PCBs in standards on a random and non-systematic manner. Relatively low accuracy in analyzing blind samples was likely related to the process of sample purification. Inter-laboratory measurement differences for standards (<30%) and samples (<70%) were generally less than or comparable to those reported in a previous inter-laboratory study with 21 participating laboratories. Regression analysis showed inconsistent data comparability between the two laboratories during the initial stages of the study. These inter-laboratory differences can complicate abilities to discern long-term trends of pollutants in a given sampling site. It is advisable to maintain long-term measurements with minimal changes in sample analysis.

  11. 7 CFR 160.17 - Laboratory analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Laboratory analysis. 160.17 Section 160.17 Agriculture... STANDARDS FOR NAVAL STORES Methods of Analysis, Inspection, Sampling and Grading § 160.17 Laboratory analysis. The analysis and laboratory testing of naval stores shall be conducted, so far as is practicable...

  12. 7 CFR 160.17 - Laboratory analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Laboratory analysis. 160.17 Section 160.17 Agriculture... STANDARDS FOR NAVAL STORES Methods of Analysis, Inspection, Sampling and Grading § 160.17 Laboratory analysis. The analysis and laboratory testing of naval stores shall be conducted, so far as is practicable...

  13. Analysis of ground water by different laboratories: a comparison of chloride and nitrate data, Nassau and Suffolk counties, New York

    USGS Publications Warehouse

    Katz, Brian G.; Krulikas, Richard K.

    1979-01-01

    Water samples from wells in Nassau and Suffolk Counties were analyzed for chloride and nitrate. Two samples were collected at each well; one was analyzed by the U.S. Geological Survey, the other by a laboratory in the county from which the sample was taken. Results were compared statistically by paired-sample t-test to indicate the degree of uniformity among laboratory results. Chloride analyses from one of the three county laboratories differed significantly (0.95 confidence level) from that of a Geological Survey laboratory. For nitrate analyses, a significant difference (0.95 confidence level) was noted between results from two of the three county laboratories and the Geological Survey laboratory. The lack of uniformity among results reported by the participating laboratories indicates a need for continuing participation in a quality-assurance program and exercise of strong quality control from time of sample collection through analysis so that differences can be evaluated. (Kosco-USGS)

  14. Quality-assurance plan for the analysis of suspended sediment by the U.S. Geological Survey in Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Lambing, John H.

    2006-01-01

    A quality-assurance plan has been developed for use by the sediment laboratory of the U.S. Geological Survey Montana Water Science Center in conducting activities related to the analysis of suspended sediment. The plan documents quality-assurance policies for sediment-laboratory certification, personnel responsibilities and training, documentation requirements, and laboratory safety. The plan also documents quality-assurance procedures related to laboratory equipment and supplies, sample management, sample analysis, analytical quality control, and data management.

  15. Interlaboratory comparison for the determination of the soluble fraction of metals in welding fume samples.

    PubMed

    Berlinger, Balazs; Harper, Martin

    2018-02-01

    There is interest in the bioaccessible metal components of aerosols, but this has been minimally studied because standardized sampling and analytical methods have not yet been developed. An interlaboratory study (ILS) has been carried out to evaluate a method for determining the water-soluble component of realistic welding fume (WF) air samples. Replicate samples were generated in the laboratory and distributed to participating laboratories to be analyzed according to a standardized procedure. Within-laboratory precision of replicate sample analysis (repeatability) was very good. Reproducibility between laboratories was not as good, but within limits of acceptability for the analysis of typical aerosol samples. These results can be used to support the development of a standardized test method.

  16. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britt, Phillip F

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions basedmore » on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.« less

  17. Microbial ecology laboratory procedures manual NASA/MSFC

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.

    1990-01-01

    An essential part of the efficient operation of any microbiology laboratory involved in sample analysis is a standard procedures manual. The purpose of this manual is to provide concise and well defined instructions on routine technical procedures involving sample analysis and methods for monitoring and maintaining quality control within the laboratory. Of equal importance is the safe operation of the laboratory. This manual outlines detailed procedures to be followed in the microbial ecology laboratory to assure safety, analytical control, and validity of results.

  18. Hydrogeochemical and stream sediment reconnaissance basic data for Cheyenne Quadrangle, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-07-31

    Field and laboratory data are presented for 884 water samples and 598 sediment samples from the Cheyenne Quadrangle, Wyoming. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-106(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  19. ASBESTOS CONTAINING MATERIALS IN SCHOOL BUILDINGS: BULK SAMPLE ANALYSIS QUALITY ASSURANCE PROGRAM. BULK SAMPLE ROUNDS 12, 13 AND BLIND ROUND III

    EPA Science Inventory

    The report presents the results of laboratories participating in the twelveth, thirteenth and third (III) blind round of the bulk sample analysis quality assurance program sponsored by the U.S. Environmental Protection Agency. Three hundred twenty-three, 386 and 51 laboratories w...

  20. Laboratory theory and methods for sediment analysis

    USGS Publications Warehouse

    Guy, Harold P.

    1969-01-01

    The diverse character of fluvial sediments makes the choice of laboratory analysis somewhat arbitrary and the pressing of sediment samples difficult. This report presents some theories and methods used by the Water Resources Division for analysis of fluvial sediments to determine the concentration of suspended-sediment samples and the particle-size distribution of both suspended-sediment and bed-material samples. Other analyses related to these determinations may include particle shape, mineral content, and specific gravity, the organic matter and dissolved solids of samples, and the specific weight of soils. The merits and techniques of both the evaporation and filtration methods for concentration analysis are discussed. Methods used for particle-size analysis of suspended-sediment samples may include the sieve pipet, the VA tube-pipet, or the BW tube-VA tube depending on the equipment available, the concentration and approximate size of sediment in the sample, and the settling medium used. The choice of method for most bed-material samples is usually limited to procedures suitable for sand or to some type of visual analysis for large sizes. Several tested forms are presented to help insure a well-ordered system in the laboratory to handle the samples, to help determine the kind of analysis required for each, to conduct the required processes, and to assist in the required computations. Use of the manual should further 'standardize' methods of fluvial sediment analysis among the many laboratories and thereby help to achieve uniformity and precision of the data.

  1. Hydrogeochemical and stream sediment reconnaissance basic data for Roswell quadrangle, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Field and laboratory data are presented for 842 water samples and 1270 sediment samples from the Roswell Quadrangle, New Mexico. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  2. [Errors in laboratory daily practice].

    PubMed

    Larrose, C; Le Carrer, D

    2007-01-01

    Legislation set by GBEA (Guide de bonne exécution des analyses) requires that, before performing analysis, the laboratory directors have to check both the nature of the samples and the patients identity. The data processing of requisition forms, which identifies key errors, was established in 2000 and in 2002 by the specialized biochemistry laboratory, also with the contribution of the reception centre for biological samples. The laboratories follow a strict criteria of defining acceptability as a starting point for the reception to then check requisition forms and biological samples. All errors are logged into the laboratory database and analysis report are sent to the care unit specifying the problems and the consequences they have on the analysis. The data is then assessed by the laboratory directors to produce monthly or annual statistical reports. This indicates the number of errors, which are then indexed to patient files to reveal the specific problem areas, therefore allowing the laboratory directors to teach the nurses and enable corrective action.

  3. Hydrogeochemical and stream sediment reconnaissance basic data for Aztec Quadrangle, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-07-31

    Field and laboratory data are presented for 331 water samples and 1693 sediment samples from the Aztec Quadrangle, New Mexico. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-129(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  4. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR THE RECEIPT OF SAMPLES OR REFERENCE COMPOUNDS FOR LABORATORY ANALYSIS AT BATTELLE (BCO-G-2.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the steps to be taken when field samples are received at Battelle Laboratory for further analysis. The procedure provides for the log-in, initial processing (if required), and distribution of the sample. Procedures concerning the sample Ch...

  5. Results of a collaborative study on DNA identification of aged bone samples

    PubMed Central

    Vanek, Daniel; Budowle, Bruce; Dubska-Votrubova, Jitka; Ambers, Angie; Frolik, Jan; Pospisek, Martin; Al Afeefi, Ahmed Anwar; Al Hosani, Khalid Ismaeil; Allen, Marie; Al Naimi, Khudooma Saeed; Al Salafi, Dina; Al Tayyari, Wafa Ali Rashid; Arguetaa, Wendy; Bottinelli, Michel; Bus, Magdalena M.; Cemper-Kiesslich, Jan; Cepil, Olivier; De Cock, Greet; Desmyter, Stijn; El Amri, Hamid; El Ossmani, Hicham; Galdies, Ruth; Grün, Sebastian; Guidet, Francois; Hoefges, Anna; Iancu, Cristian Bogdan; Lotz, Petra; Maresca, Alessandro; Nagy, Marion; Novotny, Jindrich; Rachid, Hajar; Rothe, Jessica; Stenersen, Marguerethe; Stephenson, Mishel; Stevanovitch, Alain; Strien, Juliane; Sumita, Denilce R.; Vella, Joanna; Zander, Judith

    2017-01-01

    Aim A collaborative exercise with several institutes was organized by the Forensic DNA Service (FDNAS) and the Institute of the Legal Medicine, 2nd Faculty of Medicine, Charles University in Prague, Czech Republic, with the aim to test performance of different laboratories carrying out DNA analysis of relatively old bone samples. Methods Eighteen laboratories participating in the collaborative exercise were asked to perform DNA typing of two samples of bone powder. Two bone samples provided by the National Museum and the Institute of Archaelogy in Prague, Czech Republic, came from archeological excavations and were estimated to be approximately 150 and 400 years old. The methods of genetic characterization including autosomal, gonosomal, and mitochondrial markers was selected solely at the discretion of the participating laboratory. Results Although the participating laboratories used different extraction and amplification strategies, concordant results were obtained from the relatively intact 150 years old bone sample. Typing was more problematic with the analysis of the 400 years old bone sample due to poorer quality. Conclusion The laboratories performing identification DNA analysis of bone and teeth samples should regularly test their ability to correctly perform DNA-based identification on bone samples containing degraded DNA and potential inhibitors and demonstrate that risk of contamination is minimized. PMID:28613037

  6. Preparation and Certification of Two New Bulk Welding Fume Reference Materials for Use in Laboratories Undertaking Analysis of Occupational Hygiene Samples

    PubMed Central

    Butler, Owen; Musgrove, Darren; Stacey, Peter

    2014-01-01

    Workers can be exposed to fume, arising from welding activities, which contain toxic metals and metalloids. Occupational hygienists need to assess and ultimately minimize such exposure risks. The monitoring of the concentration of particles in workplace air is one assessment approach whereby fume, from representative welding activities, is sampled onto a filter and returned to a laboratory for analysis. Inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry are generally employed as instrumental techniques of choice for the analysis of such filter samples. An inherent difficulty, however, with inductively coupled plasma-based analytical techniques is that they typically require a sample to be presented for analysis in the form of a solution. The efficiency of the required dissolution step relies heavily upon the skill and experience of the analyst involved. A useful tool in assessing the efficacy of this dissolution step would be the availability and subsequent analysis of welding fume reference materials with stated elemental concentrations and matrices that match as closely as possible the matrix composition of welding fume samples submitted to laboratories for analysis. This article describes work undertaken at the Health and Safety Laboratory to prepare and certify two new bulk welding fume reference materials that can be routinely used by analysts to assess the performance of the digestion procedures they employ in their laboratories. PMID:24499055

  7. Preparation and certification of two new bulk welding fume reference materials for use in laboratories undertaking analysis of occupational hygiene samples.

    PubMed

    Butler, Owen; Musgrove, Darren; Stacey, Peter

    2014-01-01

    Workers can be exposed to fume, arising from welding activities, which contain toxic metals and metalloids. Occupational hygienists need to assess and ultimately minimize such exposure risks. The monitoring of the concentration of particles in workplace air is one assessment approach whereby fume, from representative welding activities, is sampled onto a filter and returned to a laboratory for analysis. Inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry are generally employed as instrumental techniques of choice for the analysis of such filter samples. An inherent difficulty, however, with inductively coupled plasma-based analytical techniques is that they typically require a sample to be presented for analysis in the form of a solution. The efficiency of the required dissolution step relies heavily upon the skill and experience of the analyst involved. A useful tool in assessing the efficacy of this dissolution step would be the availability and subsequent analysis of welding fume reference materials with stated elemental concentrations and matrices that match as closely as possible the matrix composition of welding fume samples submitted to laboratories for analysis. This article describes work undertaken at the Health and Safety Laboratory to prepare and certify two new bulk welding fume reference materials that can be routinely used by analysts to assess the performance of the digestion procedures they employ in their laboratories.

  8. ASBESTOS-CONTAINING MATERIALS IN SCHOOL BUILDINGS: BULK SAMPLE ANALYSIS QUALITY ASSURANCE PROGRAM-BULK SAMPLE ROUNDS 9, 10, 11 AND BLIND ROUND 2

    EPA Science Inventory

    The report presents the results of laboratories participating in the nineth, tenth, eleventh and second blind round(s) of the bulk sample analysis quality assurance program sponsored by the U.S. Environmental Protection Agency. Two hundred fifty-four, 320, 318, and 50 laboratorie...

  9. Hydrogeochemical and stream sediment reconnaissance basic data for Las Cruces quadrangle, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-08-31

    Field and laboratory data are presented for 501 water samples and 1817 sediment samples from the Las Cruces Quadrangle, New Mexico. The samples were collected and uranium analysis performed by Los Alamos National Laboratory; multielement analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  10. A comparison of two laboratories for the measurement of wood dust using button sampler and diffuse reflection infrared Fourier-transform spectroscopy (DRIFTS).

    PubMed

    Chirila, Madalina M; Sarkisian, Khachatur; Andrew, Michael E; Kwon, Cheol-Woong; Rando, Roy J; Harper, Martin

    2015-04-01

    The current measurement method for occupational exposure to wood dust is by gravimetric analysis and is thus non-specific. In this work, diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) for the analysis of only the wood component of dust was further evaluated by analysis of the same samples between two laboratories. Field samples were collected from six wood product factories using 25-mm glass fiber filters with the Button aerosol sampler. Gravimetric mass was determined in one laboratory by weighing the filters before and after aerosol collection. Diffuse reflection mid-infrared spectra were obtained from the wood dust on the filter which is placed on a motorized stage inside the spectrometer. The metric used for the DRIFTS analysis was the intensity of the carbonyl band in cellulose and hemicellulose at ~1735 cm(-1). Calibration curves were constructed separately in both laboratories using the same sets of prepared filters from the inhalable sampling fraction of red oak, southern yellow pine, and western red cedar in the range of 0.125-4 mg of wood dust. Using the same procedure in both laboratories to build the calibration curve and analyze the field samples, 62.3% of the samples measured within 25% of the average result with a mean difference between the laboratories of 18.5%. Some observations are included as to how the calibration and analysis can be improved. In particular, determining the wood type on each sample to allow matching to the most appropriate calibration increases the apparent proportion of wood dust in the sample and this likely provides more realistic DRIFTS results. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.

  11. Hydrogen Safety Project: Chemical analysis support task. Window ``E`` analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, T E; Campbell, J A; Hoppe, E W

    1992-09-01

    Core samples taken from tank 101-SY at Hanford during ``window E`` were analyzed for organic and radiochemical constituents by staff of the Analytical Chemistry Laboratory at Pacific Northwest Laboratory. Westinghouse Hanford company submitted these samples to the laboratory.

  12. Guidelines for the identification of unknown samples for laboratories performing forensic analyses for chemical terrorism.

    PubMed

    Magnuson, Matthew L; Satzger, R Duane; Alcaraz, Armando; Brewer, Jason; Fetterolf, Dean; Harper, Martin; Hrynchuk, Ronald; McNally, Mary F; Montgomery, Madeline; Nottingham, Eric; Peterson, James; Rickenbach, Michael; Seidel, Jimmy L; Wolnik, Karen

    2012-05-01

    Since the early 1990s, the FBI Laboratory has sponsored Scientific Working Groups to improve discipline practices and build consensus among the forensic community. The Scientific Working Group on the Forensic Analysis of Chemical, Biological, Radiological and Nuclear Terrorism developed guidance, contained in this document, on issues forensic laboratories encounter when accepting and analyzing unknown samples associated with chemical terrorism, including laboratory capabilities and analytical testing plans. In the context of forensic analysis of chemical terrorism, this guidance defines an unknown sample and addresses what constitutes definitive and tentative identification. Laboratory safety, reporting issues, and postreporting considerations are also discussed. Utilization of these guidelines, as part of planning for forensic analysis related to a chemical terrorism incident, may help avoid unfortunate consequences not only to the public but also to the laboratory personnel. 2011 American Academy of Forensic Sciences. Published 2011. This article is a U.S. Government work and is in the public domain in the U.S.A.

  13. INACCURATE REPORTING OF MINERAL COMPOSITION BY COMMERCIAL STONE ANALYSIS LABORATORIES: IMPLICATIONS FOR INFECTION AND METABOLIC STONES

    PubMed Central

    Krambeck, Amy E.; Khan, Naseem F.; Jackson, Molly E.; Lingeman, James E.; McAteer, James A; Williams, James C.

    2011-01-01

    INTRODUCTION The goal of this study was to determine the accuracy of stone composition analysis by commercial laboratories. METHODS 25 human renal stones with infrared spectroscopy (IR) determined compositions were fragmented into aliquots and studied with micro-computed tomography (CT) to ensure fragment similarity. Representative fragments of each stone were submitted to 5 commercial stone laboratories for blinded analysis. RESULTS All laboratories agreed on composition for 6 pure stones. Of 4 stones known to contain struvite, only 2(50%) were identified as struvite by all laboratories. Struvite was reported as a component by some laboratories for 4 stones previously determined not to contain struvite. Overall, there was disagreement regarding struvite in 6(24%) stones. For 9 calcium oxalate (CaOx) stones, all laboratories reported some mixture of CaOx, but the quantities of subtypes differed significantly among laboratories. In 6 apatite containing stones, apatite was missed by the laboratories in 20% of the samples. None of the laboratories identified atazanavir in a stone containing that antiviral drug. One laboratory reported protein in every sample, while all others reported it in only 1 sample. Nomenclature for apatite differed among laboratories, with one reporting apatite as carbonate apatite (CA) and never hydroxyapatite (HA), another never reporting CA and always reporting HA, and a third reporting CA as apatite with calcium carbonate. CONCLUSIONS Commercial laboratories reliably recognize pure calculi; however, variability in reporting of mixed calculi suggests a problem with accuracy of stone analysis results. Furthermore, there is a lack of standard nomenclature used by laboratories. PMID:20728108

  14. Preanalytical Errors in Hematology Laboratory- an Avoidable Incompetence.

    PubMed

    HarsimranKaur, Vikram Narang; Selhi, Pavneet Kaur; Sood, Neena; Singh, Aminder

    2016-01-01

    Quality assurance in the hematology laboratory is a must to ensure laboratory users of reliable test results with high degree of precision and accuracy. Even after so many advances in hematology laboratory practice, pre-analytical errors remain a challenge for practicing pathologists. This study was undertaken with an objective to evaluate the types and frequency of preanalytical errors in hematology laboratory of our center. All the samples received in the Hematology Laboratory of Dayanand Medical College and Hospital, Ludhiana, India over a period of one year (July 2013-July 2014) were included in the study and preanalytical variables like clotted samples, quantity not sufficient, wrong sample, without label, wrong label were studied. Of 471,006 samples received in the laboratory, preanalytical errors, as per the above mentioned categories was found in 1802 samples. The most common error was clotted samples (1332 samples, 0.28% of the total samples) followed by quantity not sufficient (328 sample, 0.06%), wrong sample (96 samples, 0.02%), without label (24 samples, 0.005%) and wrong label (22 samples, 0.005%). Preanalytical errors are frequent in laboratories and can be corrected by regular analysis of the variables involved. Rectification can be done by regular education of the staff.

  15. Tank 30 and 37 Supernatant Sample Cross-Check and Evaporator Feed Qualification Analysis-2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L. N.

    2013-03-07

    This report summarizes the analytical data reported by the F/H and Savannah River National Laboratories for the 2012 cross-check analysis for high level waste supernatant liquid samples from SRS Tanks 30 and 37. The intent of this Tank 30 and 37 sample analyses was to perform cross-checks against routine F/H Laboratory analyses (corrosion and evaporator feed qualification programs) using samples collected at the same time from both tanks as well as split samples from the tanks.

  16. The Use of ATR-FTIR in Conjunction with Thermal Analysis Methods for Efficient Identification of Polymer Samples: A Qualitative Multiinstrument Instrumental Analysis Laboratory Experiment

    ERIC Educational Resources Information Center

    Dickson-Karn, Nicole M.

    2017-01-01

    A multi-instrument approach has been applied to the efficient identification of polymers in an upper-division undergraduate instrumental analysis laboratory course. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) is used in conjunction with differential scanning calorimetry (DSC) to identify 18 polymer samples and…

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, Christopher A.; Martinez, Alonzo; McNamara, Bruce K.

    International Atom Energy Agency (IAEA) safeguard verification measures in gaseous centrifuge enrichment plants (GCEPs) rely on environmental sampling, non-destructive assay (NDA), and destructive assay (DA) sampling and analysis to determine uranium enrichment. UF6 bias defect measurements are made by DA sampling and analysis to assure that enrichment is consistent with declarations. DA samples are collected from a limited number of cylinders for high precision, offsite mass spectrometer analysis. Samples are typically drawn from a sampling tap into a UF6 sample bottle, then packaged, sealed, and shipped under IAEA chain of custody to an offsite analytical laboratory. Future DA safeguard measuresmore » may require improvements in efficiency and effectiveness as GCEP capacities increase and UF6 shipping regulations become increasingly more restrictive. The Pacific Northwest National Laboratory (PNNL) DA sampler concept and Laser Ablation Absorption Ratio Spectrometry (LAARS) assay method are under development to potentially provide DA safeguard tools that increase inspection effectiveness and reduce sample shipping constraints. The PNNL DA sampler concept uses a handheld sampler to collect DA samples for either onsite LAARS assay or offsite laboratory analysis. The DA sampler design will use a small sampling planchet that is coated with an adsorptive film to collect controlled quantities of UF6 gas directly from a cylinder or process sampling tap. Development efforts are currently underway at PNNL to enhance LAARS assay performance to allow high-precision onsite bias defect measurements. In this paper, we report on the experimental investigation to develop adsorptive films for the PNNL DA sampler concept. These films are intended to efficiently capture UF6 and then stabilize the collected DA sample prior to onsite LAARS or offsite laboratory analysis. Several porous material composite films were investigated, including a film designed to maximize the chemical adsorption and binding of gaseous UF6 onto the sampling planchet.« less

  18. Chapter A5. Section 6.1.F. Wastewater, Pharmaceutical, and Antibiotic Compounds

    USGS Publications Warehouse

    Lewis, Michael Edward; Zaugg, Steven D.

    2003-01-01

    The USGS differentiates between samples collected for analysis of wastewater compounds and those collected for analysis of pharmaceutical and antibiotic compounds, based on the analytical schedule for the laboratory method. Currently, only the wastewater laboratory method for field-filtered samples (SH1433) is an approved, routine (production) method. (The unfiltered wastewater method LC 8033 also is available but requires a proposal for custom analysis.) At this time, analysis of samples for pharmaceutical and antibiotic compounds is confined to research studies and is available only on a custom basis.

  19. Inter-laboratory comparison study on measuring semi-volatile organic chemicals in standards and air samples.

    PubMed

    Su, Yushan; Hung, Hayley

    2010-11-01

    Measurements of semi-volatile organic chemicals (SVOCs) were compared among 21 laboratories from 7 countries through the analysis of standards, a blind sample, an air extract, and an atmospheric dust sample. Measurement accuracy strongly depended on analytes, laboratories, and types of standards and samples. Intra-laboratory precision was generally good with relative standard deviations (RSDs) of triplicate injections <10% and with median differences of duplicate samples between 2.1 and 22%. Inter-laboratory variability, measured by RSDs of all measurements, was in the range of 2.8-58% in analyzing standards, and 6.9-190% in analyzing blind sample and air extract. Inter-laboratory precision was poorer when samples were subject to cleanup processes, or when SVOCs were quantified at low concentrations. In general, inter-laboratory differences up to a factor of 2 can be expected to analyze atmospheric SVOCs. When comparing air measurements from different laboratories, caution should be exercised if the data variability is less than the inter-laboratory differences. 2010. Published by Elsevier Ltd. All rights reserved.

  20. Hydrogeochemical and stream sediment reconnaissance basic data for Philip Smith Mountains Quadrangle, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-05-29

    Field and laboratory data are presented for 1128 water samples from the Philip Smith Mountains Quadrangle, Alaska. The samples were collected by Los Alamos Scientific Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  1. Environmental Technology (Laboratory Analysis and Environmental Sampling) Curriculum Development Project. Final Report.

    ERIC Educational Resources Information Center

    Hinojosa, Oscar V.; Guillen, Alfonso

    A project assessed the need and developed a curriculum for environmental technology (laboratory analysis and environmental sampling) in the emerging high technology centered around environmental safety and health in Texas. Initial data were collected through interviews by telephone and in person and through onsite visits. Additional data was…

  2. Cooperative investigation of precision and accuracy: In chemical analysis of silicate rocks

    USGS Publications Warehouse

    Schlecht, W.G.

    1951-01-01

    This is the preliminary report of the first extensive program ever organized to study the analysis of igneous rocks, a study sponsored by the United States Geological Survey, the Massachusetts Institute of Technology, and the Geophysical Laboratory of the Carnegie Institution of Washington. Large samples of two typical igneous rocks, a granite and a diabase, were carefully prepared and divided. Small samples (about 70 grams) of each were sent to 25 rock-analysis laboratories throughout the world; analyses of one or both samples were reported by 34 analysts in these laboratories. The results, which showed rather large discrepancies, are presented in histograms. The great discordance in results reflects the present unsatisfactory state of rock analysis. It is hoped that the ultimate establishment of standard samples and procedures will contribute to the improvement of quality of analyses. The two rock samples have also been thoroughly studied spectrographically and petrographically. Detailed reports of all the studies will be published.

  3. Tank 241-AP-105, cores 208, 209 and 210, analytical results for the final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuzum, J.L.

    1997-10-24

    This document is the final laboratory report for Tank 241-AP-105. Push mode core segments were removed from Risers 24 and 28 between July 2, 1997, and July 14, 1997. Segments were received and extruded at 222-S Laboratory. Analyses were performed in accordance with Tank 241-AP-105 Push Mode Core Sampling and Analysis Plan (TSAP) (Hu, 1997) and Tank Safety Screening Data Quality Objective (DQO) (Dukelow, et al., 1995). None of the subsamples submitted for total alpha activity (AT), differential scanning calorimetry (DSC) analysis, or total organic carbon (TOC) analysis exceeded the notification limits as stated in TSAP and DQO. The statisticalmore » results of the 95% confidence interval on the mean calculations are provided by the Tank Waste Remediation Systems Technical Basis Group, and are not considered in this report. Appearance and Sample Handling Two cores, each consisting of four segments, were expected from Tank 241-AP-105. Three cores were sampled, and complete cores were not obtained. TSAP states core samples should be transported to the laboratory within three calendar days from the time each segment is removed from the tank. This requirement was not met for all cores. Attachment 1 illustrates subsamples generated in the laboratory for analysis and identifies their sources. This reference also relates tank farm identification numbers to their corresponding 222-S Laboratory sample numbers.« less

  4. National survey on the pre-analytical variability in a representative cohort of Italian laboratories.

    PubMed

    Lippi, Giuseppe; Montagnana, Martina; Giavarina, Davide

    2006-01-01

    Owing to remarkable advances in automation, laboratory technology and informatics, the pre-analytical phase has become the major source of variability in laboratory testing. The present survey investigated the development of several pre-analytical processes within a representative cohort of Italian clinical laboratories. A seven-point questionnaire was designed to investigate the following issues: 1a) the mean outpatient waiting time before check-in and 1b) the mean time from check-in to sample collection; 2) the mean time from sample collection to analysis; 3) the type of specimen collected for clinical chemistry testing; 4) the degree of pre-analytical automation; 5a) the number of samples shipped to other laboratories and 5b) the availability of standardised protocols for transportation; 6) the conditions for specimen storage; and 7) the availability and type of guidelines for management of unsuitable specimens. The questionnaire was administered to 150 laboratory specialists attending the SIMEL (Italian Society of Laboratory Medicine) National Meeting in June 2006. 107 questionnaires (71.3%) were returned. Data analysis revealed a high degree of variability among laboratories for the time required for check-in, outpatient sampling, sample transportation to the referral laboratory and analysis upon the arrival. Only 31% of laboratories have automated some pre-analytical steps. Of the 87% of laboratories that ship specimens to other facilities without sample preparation, 19% have no standardised protocol for transportation. For conventional clinical chemistry testing, 74% of the laboratories use serum evacuated tubes (59% with and 15% without serum separator), whereas the remaining 26% use lithium-heparin evacuated tubes (11% with and 15% without plasma separator). The storage period and conditions for rerun/retest vary widely. Only 63% of laboratories have a codified procedure for the management of unsuitable specimens, which are recognised by visual inspection (69%) or automatic detection (29%). Only 56% of the laboratories have standardised procedures for the management of unsuitable specimens, which vary widely on a local basis. The survey highlights broad heterogeneity in several pre-analytical processes among Italian laboratories. The lack of reliable guidelines encompassing evidence-based practice is a major problem for the standardisation of this crucial part of the testing process and represents a major challenge for laboratory medicine in the 2000s.

  5. First European interlaboratory comparison of tetracycline and age determination with red fox teeth following oral rabies vaccination programs.

    PubMed

    Robardet, Emmanuelle; Demerson, Jean-Michel; Andrieu, Sabrina; Cliquet, Florence

    2012-10-01

    The first European interlaboratory comparison of tetracycline and age determination with red fox (Vulpes vulpes) tooth samples was organized by the European Union Reference Laboratory for rabies. Performance and procedures implemented by member states were compared. These techniques are widely used to monitor bait uptake in European oral rabies vaccination campaigns. A panel of five red fox half-mandibles comprising one weak positive juvenile sample, two positive adult samples, one negative juvenile sample, and one negative adult sample were sent, along with a technical questionnaire, to 12 laboratories participating on a voluntary basis. The results of only three laboratories (25%) were 100% correct. False-negative results were more frequently seen in weak positive juvenile samples (58%) but were infrequent in positive adult samples (4%), probably due to differences in the ease of reading the two groups of teeth. Four laboratories (44%) had correct results for age determination on all samples. Ages were incorrectly identified in both adult and juvenile samples, with 11 and 17% of discordant results, respectively. Analysis of the technical questionnaires in parallel with test results suggested that all laboratories cutting mandible sections between the canine and first premolar obtained false results. All the laboratories using longitudinal rather than transverse sections and those not using a mounting medium also produced false results. Section thickness appeared to affect the results; no mistakes were found in laboratories using sections <150 μm thick. Factors having a potential impact on the success of laboratories were discussed, and recommendations proposed. Such interlaboratory trials underline the importance of using standardized procedures for biomarker detection in oral rabies vaccination campaigns. Several changes can be made to improve analysis quality and increase the comparability of bait uptake frequencies among member states.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1990. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis. The Chemical Analysis Group uses wet-chemical and instrumental methods for elemental, compositional, and isotopic analyses of solid, liquid, and gaseous samples and provides specialized analytical services. The Instrumental Analysis Group uses nuclear counting techniques in radiochemical analyses over a wide range of sample types from low-level environmental samples to samples of high radioactivity. The Organic Analysis Group uses amore » number of complementary techniques to separate and to quantitatively and qualitatively analyze complex organic mixtures and compounds at the trace level, including synthetic fuels, toxic substances, fossil-fuel residues and emissions, pollutants, biologically active compounds, pesticides, and drugs. The Environmental Analysis Group performs analyses of inorganic environmental and hazardous waste and coal samples.« less

  7. PDS Archive Release of Apollo 11, Apollo 12, and Apollo 17 Lunar Rock Sample Images

    NASA Technical Reports Server (NTRS)

    Garcia, P. A.; Stefanov, W. L.; Lofgren, G. E.; Todd, N. S.; Gaddis, L. R.

    2013-01-01

    Scientists at the Johnson Space Center (JSC) Lunar Sample Laboratory, Information Resources Directorate, and Image Science & Analysis Laboratory have been working to digitize (scan) the original film negatives of Apollo Lunar Rock Sample photographs [1, 2]. The rock samples, and associated regolith and lunar core samples, were obtained during the Apollo 11, 12, 14, 15, 16 and 17 missions. The images allow scientists to view the individual rock samples in their original or subdivided state prior to requesting physical samples for their research. In cases where access to the actual physical samples is not practical, the images provide an alternate mechanism for study of the subject samples. As the negatives are being scanned, they have been formatted and documented for permanent archive in the NASA Planetary Data System (PDS). The Astromaterials Research and Exploration Science Directorate (which includes the Lunar Sample Laboratory and Image Science & Analysis Laboratory) at JSC is working collaboratively with the Imaging Node of the PDS on the archiving of these valuable data. The PDS Imaging Node is now pleased to announce the release of the image archives for Apollo missions 11, 12, and 17.

  8. Detection and Quantification of Nitrogen Compounds in the First Drilled Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite on the Mars Science Laboratory (MSL)

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Navarro-Gonzalez, Rafael; Freissinet, Caroline; McKay, Christopher P.; Archer, P. Douglas, Jr.; Buch, Arnaud; Coll, Patrice; Eigenbrode, Jennifer L.; Franz, Heather B.; Glavin, Daniel P.; hide

    2014-01-01

    The Sampl;e Analysis at Mars (sam) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen bearing compounds during the pyrolysis of surface materials from the three sites at Gale Crater. Preliminary detections of nitrogen species include No, HCN, ClCN, and TFMA ((trifluoro-N-methyl-acetamide), Confirmation of indigenous Martian nitrogen-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate a compound that has also been identified by SAM in Mars solid samples.

  9. USGS Blind Sample Project: monitoring and evaluating laboratory analytical quality

    USGS Publications Warehouse

    Ludtke, Amy S.; Woodworth, Mark T.

    1997-01-01

    The U.S. Geological Survey (USGS) collects and disseminates information about the Nation's water resources. Surface- and ground-water samples are collected and sent to USGS laboratories for chemical analyses. The laboratories identify and quantify the constituents in the water samples. Random and systematic errors occur during sample handling, chemical analysis, and data processing. Although all errors cannot be eliminated from measurements, the magnitude of their uncertainty can be estimated and tracked over time. Since 1981, the USGS has operated an independent, external, quality-assurance project called the Blind Sample Project (BSP). The purpose of the BSP is to monitor and evaluate the quality of laboratory analytical results through the use of double-blind quality-control (QC) samples. The information provided by the BSP assists the laboratories in detecting and correcting problems in the analytical procedures. The information also can aid laboratory users in estimating the extent that laboratory errors contribute to the overall errors in their environmental data.

  10. EPA Environmental Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Environmental Protection Agency's (EPA) Chemistry Laboratory (ECL) is a national program laboratory specializing in residue chemistry analysis under the jurisdiction of the EPA's Office of Pesticide Programs in Washington, D.C. At Stennis Space Center, the laboratory's work supports many federal anti-pollution laws. The laboratory analyzes environmental and human samples to determine the presence and amount of agricultural chemicals and related substances. Pictured, ECL chemists analyze environmental and human samples for the presence of pesticides and other pollutants.

  11. [Assessment of biological sampling's quality in a medical laboratory: case of Côte d' Ivoire Institute Pasteur].

    PubMed

    Kouassi-M'Bengue, Alphonsine; Koffi, Stephane; Manizan, Pascale; Ouattara, Abdoulaye; N'Douba, Adele Kacou; Dosso, Mireille

    2008-01-01

    Assurance quality is important in medical laboratory, but in Africa, few laboratories are involved in this process. The aim of this study was to assess biological sampling's quality in a bacteriological laboratory. A cross sectional study was undertaken in medical bacteriological laboratory of Côte d' Ivoire Institute Pasteur during 6 months. All urines, saddles, and bronchial expectorations collected from ambulatory patients during this period were included in the study. The quality of urine's, saddles and bronchial expectorations' sampling for a bacteriological analysis was evaluated. An interview based on Guidelines of good laboratories practices and referential ISO 15189 was used. A total of 300 samples were indexed. On a total of 300 recorded biological samples, 224 (74.7%) were not in conformity. In 87.5% of the cases of nonconformities, an antibiotic's treatment were preliminary instituted before the sampling. Corrective actions were carried in the laboratory on 30 samples with 56.6% for the urines, 26.7% for the saddles and 16.7% for the bronchial expectorations. At the end of this study, it arises that the quality of the biological sampling received at the medical bacteriology laboratory need to be improved.

  12. THE QUANTIFICATION OF AQUEOUS TRACERS IN LABORATORY AQUIFER MODELS USING LIGHT TRANSMISSION VISUALIZATION METHOD

    EPA Science Inventory

    The quantification of solute concentrations in laboratory aquifer models has been largely limited to the use of sampling ports, from which samples are collected for external analysis. One of the drawbacks to this method is that the act of sampling may disturb plume dynamics and ...

  13. Air sampling to assess potential generation of aerosolized viable bacteria during flow cytometric analysis of unfixed bacterial suspensions

    PubMed Central

    Carson, Christine F; Inglis, Timothy JJ

    2018-01-01

    This study investigated aerosolized viable bacteria in a university research laboratory during operation of an acoustic-assisted flow cytometer for antimicrobial susceptibility testing by sampling room air before, during and after flow cytometer use. The aim was to assess the risk associated with use of an acoustic-assisted flow cytometer analyzing unfixed bacterial suspensions. Air sampling in a nearby clinical laboratory was conducted during the same period to provide context for the existing background of microorganisms that would be detected in the air. The three species of bacteria undergoing analysis by flow cytometer in the research laboratory were Klebsiella pneumoniae, Burkholderia thailandensis and Streptococcus pneumoniae. None of these was detected from multiple 1000 L air samples acquired in the research laboratory environment. The main cultured bacteria in both locations were skin commensal and environmental bacteria, presumed to have been disturbed or dispersed in laboratory air by personnel movements during routine laboratory activities. The concentrations of bacteria detected in research laboratory air samples were reduced after interventional cleaning measures were introduced and were lower than those in the diagnostic clinical microbiology laboratory. We conclude that our flow cytometric analyses of unfixed suspensions of K. pneumoniae, B. thailandensis and S. pneumoniae do not pose a risk to cytometer operators or other personnel in the laboratory but caution against extrapolation of our results to other bacteria and/or different flow cytometric experimental procedures. PMID:29608197

  14. Quality-assurance results for field pH and specific-conductance measurements, and for laboratory analysis, National Atmospheric Deposition Program and National Trends Network; January 1980-September 1984

    USGS Publications Warehouse

    Schroder, L.J.; Brooks, M.H.; Malo, B.A.; Willoughby, T.C.

    1986-01-01

    Five intersite comparison studies for the field determination of pH and specific conductance, using simulated-precipitation samples, were conducted by the U.S.G.S. for the National Atmospheric Deposition Program and National Trends Network. These comparisons were performed to estimate the precision of pH and specific conductance determinations made by sampling-site operators. Simulated-precipitation samples were prepared from nitric acid and deionized water. The estimated standard deviation for site-operator determination of pH was 0.25 for pH values ranging from 3.79 to 4.64; the estimated standard deviation for specific conductance was 4.6 microsiemens/cm at 25 C for specific-conductance values ranging from 10.4 to 59.0 microsiemens/cm at 25 C. Performance-audit samples with known analyte concentrations were prepared by the U.S.G.S.and distributed to the National Atmospheric Deposition Program 's Central Analytical Laboratory. The differences between the National Atmospheric Deposition Program and national Trends Network-reported analyte concentrations and known analyte concentrations were calculated, and the bias and precision were determined. For 1983, concentrations of calcium, magnesium, sodium, and chloride were biased at the 99% confidence limit; concentrations of potassium and sulfate were unbiased at the 99% confidence limit. Four analytical laboratories routinely analyzing precipitation were evaluated in their analysis of identical natural- and simulated precipitation samples. Analyte bias for each laboratory was examined using analysis of variance coupled with Duncan 's multiple-range test on data produced by these laboratories, from the analysis of identical simulated-precipitation samples. Analyte precision for each laboratory has been estimated by calculating a pooled variance for each analyte. Interlaboratory comparability results may be used to normalize natural-precipitation chemistry data obtained from two or more of these laboratories. (Author 's abstract)

  15. 7 CFR 58.812 - Methods of sample analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Methods of sample analysis. 58.812 Section 58.812... Procedures § 58.812 Methods of sample analysis. Samples shall be tested according to the applicable methods of laboratory analysis contained in either DA Instruction 918-RL, as issued by the USDA, Agricultural...

  16. 7 CFR 58.245 - Method of sample analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Method of sample analysis. 58.245 Section 58.245... Procedures § 58.245 Method of sample analysis. Samples shall be tested according to the applicable methods of laboratory analysis contained in either DA Instruction 918-RL as issued by the USDA, Agricultural Marketing...

  17. Sonication standard laboratory module

    DOEpatents

    Beugelsdijk, Tony; Hollen, Robert M.; Erkkila, Tracy H.; Bronisz, Lawrence E.; Roybal, Jeffrey E.; Clark, Michael Leon

    1999-01-01

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  18. Data analysis considerations for pesticides determined by National Water Quality Laboratory schedule 2437

    USGS Publications Warehouse

    Shoda, Megan E.; Nowell, Lisa H.; Stone, Wesley W.; Sandstrom, Mark W.; Bexfield, Laura M.

    2018-04-02

    In 2013, the U.S. Geological Survey National Water Quality Laboratory (NWQL) made a new method available for the analysis of pesticides in filtered water samples: laboratory schedule 2437. Schedule 2437 is an improvement on previous analytical methods because it determines the concentrations of 225 fungicides, herbicides, insecticides, and associated degradates in one method at similar or lower concentrations than previously available methods. Additionally, the pesticides included in schedule 2437 were strategically identified in a prioritization analysis that assessed likelihood of occurrence, prevalence of use, and potential toxicity. When the NWQL reports pesticide concentrations for analytes in schedule 2437, the laboratory also provides supplemental information useful to data users for assessing method performance and understanding data quality. That supplemental information is discussed in this report, along with an initial analysis of analytical recovery of pesticides in water-quality samples analyzed by schedule 2437 during 2013–2015. A total of 523 field matrix spike samples and their paired environmental samples and 277 laboratory reagent spike samples were analyzed for this report (1,323 samples total). These samples were collected in the field as part of the U.S. Geological Survey National Water-Quality Assessment groundwater and surface-water studies and as part of the NWQL quality-control program. This report reviews how pesticide samples are processed by the NWQL, addresses how to obtain all the data necessary to interpret pesticide concentrations, explains the circumstances that result in a reporting level change or the occurrence of a raised reporting level, and describes the calculation and assessment of recovery. This report also discusses reasons why a data user might choose to exclude data in an interpretive analysis and outlines the approach used to identify the potential for decreased data quality in the assessment of method recovery. The information provided in this report is essential to understanding pesticide data determined by schedule 2437 and should be reviewed before interpretation of these data.

  19. Analysis of munitions constituents in groundwater using a field-portable GC-MS.

    PubMed

    Bednar, A J; Russell, A L; Hayes, C A; Jones, W T; Tackett, P; Splichal, D E; Georgian, T; Parker, L V; Kirgan, R A; MacMillan, D K

    2012-05-01

    The use of munitions constituents (MCs) at military installations can produce soil and groundwater contamination that requires periodic monitoring even after training or manufacturing activities have ceased. Traditional groundwater monitoring methods require large volumes of aqueous samples (e.g., 2-4 L) to be shipped under chain of custody, to fixed laboratories for analysis. The samples must also be packed on ice and shielded from light to minimize degradation that may occur during transport and storage. The laboratory's turn-around time for sample analysis and reporting can be as long as 45 d. This process hinders the reporting of data to customers in a timely manner; yields data that are not necessarily representative of current site conditions owing to the lag time between sample collection and reporting; and incurs significant shipping costs for samples. The current work compares a field portable Gas Chromatograph-Mass Spectrometer (GC-MS) for analysis of MCs on-site with traditional laboratory-based analysis using High Performance Liquid Chromatography with UV absorption detection. The field method provides near real-time (within ~1 h of sampling) concentrations of MCs in groundwater samples. Mass spectrometry provides reliable confirmation of MCs and a means to identify unknown compounds that are potential false positives for methods with UV and other non-selective detectors. Published by Elsevier Ltd.

  20. An Assessment of the Issues and Concerns Associated with the Analysis of Ice-bearing Samples by the 2009 Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Beaty, D. W.; Miller, S. L.; Bada, J. L.; Bearman, G. H.; Black, P. B.; Bruno, R. J.; Carsey, F. D.; Conrad, P. G.; Daly, M.; Fisher, D.

    2003-01-01

    In early 2003, the Mars Icy Sample Team (MIST) was formed to address several questions related to the acquisition and analysis of ice-bearing samples on the surface of Mars by a robotic mission. These questions were specifically framed in the context of planning for the 2009 Mars Science Laboratory (MSL) lander, but the answers will also also have value in planning other future landed investigations.

  1. Evolved Gas Analysis and X-Ray Diffraction of Carbonate Samples from the 2009 Arctic Mars Analog Svalbard Expedition: Implications for Mineralogical Inferences from the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Mahaffy, P. R.; Blake, D. F.; Ming, D. W.; Franz, H. B.; Eigenbrode, J. L.; Steele, A.

    2010-01-01

    The 2009 Arctic Mars Analog Svalbard Expedition (AMASE) investigated several geologic settings using methodologies and techniques being developed or considered for future Mars missions, such as the Mars Science Laboratory (MSL), ExoMars, and Mars Sample Return (MSR). AMASE-related research comprises both analyses conducted during the expedition and further analyses of collected samples using laboratory facilities at a variety of institutions. The Sample Analysis at Mars (SAM) instrument suite, which will be part of the Analytical Laboratory on MSL, consists of a quadrupole mass spectrometer (QMS), a gas chromatograph (GC), and a tunable laser spectrometer (TLS). An Evolved Gas Analysis Mass Spectrometer (EGA-MS) was used during AMASE to represent part of the capabilities of SAM. The other instrument included in the MSL Analytical Laboratory is CheMin, which uses X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) to perform quantitative mineralogical characterization of samples. Field-portable versions of CheMin were used during the AMASE 2009. Here, we discuss the preliminary interpretation of EGA and XRD analyses of selected AMASE carbonate samples and implications for mineralogical interpretations from MSL. Though CheMin will be the primary mineralogical tool on MSL, SAM EGA could be used to support XRD identifications or indicate the presence of volatile-bearing minerals which may be near or below XRD detection limits. Data collected with instruments in the field and in comparable laboratory setups (e.g., the SAM breadboard) will be discussed.

  2. Application of selected methods of remote sensing for detecting carbonaceous water pollution

    NASA Technical Reports Server (NTRS)

    Davis, E. M.; Fosbury, W. J.

    1973-01-01

    A reach of the Houston Ship Channel was investigated during three separate overflights correlated with ground truth sampling on the Channel. Samples were analyzed for such conventional parameters as biochemical oxygen demand, chemical oxygen demand, total organic carbon, total inorganic carbon, turbidity, chlorophyll, pH, temperature, dissolved oxygen, and light penetration. Infrared analyses conducted on each sample included reflectance ATR analysis, carbon tetrachloride extraction of organics and subsequent scanning, and KBr evaporate analysis of CCl4 extract concentrate. Imagery which was correlated with field and laboratory data developed from ground truth sampling included that obtained from aerial KA62 hardware, RC-8 metric camera systems, and the RS-14 infrared scanner. The images were subjected to analysis by three film density gradient interpretation units. Data were then analyzed for correlations between imagery interpretation as derived from the three instruments and laboratory infrared signatures and other pertinent field and laboratory analyses.

  3. LABORATORY GUIDELINES FOR ANALYSIS OF BIOTERRORISM SAMPLES

    EPA Science Inventory

    With advent of deaths associated with Bacillus anthracis spore contaminated mail, a worldwide need was apparent for increased laboratory capacity to safely analyze bioterrorism samples. The U.S. Department of Health and Human Services has furnished guidelines for microbiological...

  4. Schematic of Sample Analysis at Mars SAM Instrument

    NASA Image and Video Library

    2011-01-18

    This schematic illustration for NASA Mars Science Laboratory Sample Analysis at Mars SAM instrument shows major components of the microwave-oven-size instrument, which will examine samples of Martian rocks, soil and atmosphere.

  5. Development of Gold Standard Ion-Selective Electrode-Based Methods for Fluoride Analysis

    PubMed Central

    Martínez-Mier, E.A.; Cury, J.A.; Heilman, J.R.; Katz, B.P.; Levy, S.M.; Li, Y.; Maguire, A.; Margineda, J.; O’Mullane, D.; Phantumvanit, P.; Soto-Rojas, A.E.; Stookey, G.K.; Villa, A.; Wefel, J.S.; Whelton, H.; Whitford, G.M.; Zero, D.T.; Zhang, W.; Zohouri, V.

    2011-01-01

    Background/Aims: Currently available techniques for fluoride analysis are not standardized. Therefore, this study was designed to develop standardized methods for analyzing fluoride in biological and nonbiological samples used for dental research. Methods A group of nine laboratories analyzed a set of standardized samples for fluoride concentration using their own methods. The group then reviewed existing analytical techniques for fluoride analysis, identified inconsistencies in the use of these techniques and conducted testing to resolve differences. Based on the results of the testing undertaken to define the best approaches for the analysis, the group developed recommendations for direct and microdiffusion methods using the fluoride ion-selective electrode. Results Initial results demonstrated that there was no consensus regarding the choice of analytical techniques for different types of samples. Although for several types of samples, the results of the fluoride analyses were similar among some laboratories, greater differences were observed for saliva, food and beverage samples. In spite of these initial differences, precise and true values of fluoride concentration, as well as smaller differences between laboratories, were obtained once the standardized methodologies were used. Intraclass correlation coefficients ranged from 0.90 to 0.93, for the analysis of a certified reference material, using the standardized methodologies. Conclusion The results of this study demonstrate that the development and use of standardized protocols for F analysis significantly decreased differences among laboratories and resulted in more precise and true values. PMID:21160184

  6. Laboratory and quality assurance protocols for the analysis of herbicides in ground water from the Management Systems Evaluation Area, Princeton, Minnesota

    USGS Publications Warehouse

    Larson, S.J.; Capel, P.D.; VanderLoop, A.G.

    1996-01-01

    Laboratory and quality assurance procedures for the analysis of ground-water samples for herbicides at the Management Systems Evaluation Area near Princeton, Minnesota are described. The target herbicides include atrazine, de-ethylatrazine, de-isopropylatrazine, metribuzin, alachlor, 2,6-diethylaniline, and metolachlor. The analytical techniques used are solid-phase extraction, and analysis by gas chromatography with mass-selective detection. Descriptions of cleaning procedures, preparation of standard solutions, isolation of analytes from water, sample transfer methods, instrumental analysis, and data analysis are included.

  7. Laboratory and Airborne BRDF Analysis of Vegetation Leaves and Soil Samples

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2008-01-01

    Laboratory-based Bidirectional Reflectance Distribution Function (BRDF) analysis of vegetation leaves, soil, and leaf litter samples is presented. The leaf litter and soil samples, numbered 1 and 2, were obtained from a site located in the savanna biome of South Africa (Skukuza: 25.0degS, 31.5degE). A third soil sample, number 3, was obtained from Etosha Pan, Namibia (19.20degS, 15.93degE, alt. 1100 m). In addition, BRDF of local fresh and dry leaves from tulip tree (Liriodendron tulipifera) and acacia tree (Acacia greggii) were studied. It is shown how the BRDF depends on the incident and scatter angles, sample size (i.e. crushed versus whole leaf,) soil samples fraction size, sample status (i.e. fresh versus dry leaves), vegetation species (poplar versus acacia), and vegetation s biochemical composition. As a demonstration of the application of the results of this study, airborne BRDF measurements acquired with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the soil and leaf litter samples were obtained are compared to the laboratory results. Good agreement between laboratory and airborne measured BRDF is reported.

  8. Screening of ground water samples for volatile organic compounds using a portable gas chromatograph

    USGS Publications Warehouse

    Buchmiller, R.C.

    1989-01-01

    A portable gas chromatograph was used to screen 32 ground water samples for volatile organic compounds. Seven screened samples were positive; four of the seven samples had volatile organic substances identified by second-column confirmation. Four of the seven positive, screened samples also tested positive in laboratory analyses of duplicate samples. No volatile organic compounds were detected in laboratory analyses of samples that headspace screening indicated to be negative. Samples that contained volatile organic compounds, as identified by laboratory analysis, and that contained a volatile organic compound present in a standard of selected compounds were correctly identified by using the portable gas chromatography. Comparisons of screened-sample data with laboratory data indicate the ability to detect selected volatile organic compounds at concentrations of about 1 microgram per liter in the headspace of water samples by use of a portable gas chromatography. -Author

  9. THE QUANTIFICATION OF AQUEOUS TRACERS IN LABORATORY AQUIFER MODELS USING A LIGHT TRANSMISSION VISUALIZATION METHOD - 3

    EPA Science Inventory

    The quantification of solute concentrations in laboratory aquifer models has been largely limited to the use of sampling ports, from which samples are collected for external analysis. One of the drawbacks to this method is that the act of sampling may disturb plume dynamics and ...

  10. THE QUANTIFICATION OF AQUEOUS TRACERS IN LABORATORY AQUIFER MODELS USING A LIGHT TRANSMISSION VISUALIZATION METHOD - 2

    EPA Science Inventory

    The quantification of solute concentrations in laboratory aquifer models has been largely limited to the use of sampling ports, from which samples are collected for external analysis. One of the drawbacks to this method is that the act of sampling may disturb plume dynamics and ...

  11. THE QUANTIFICATION OF AQUEOUS TRACERS IN LABORATORY AQUIFER MODELS USING A LIGHT TRANSMISSION VISUALIZATION METHOD - 1

    EPA Science Inventory

    The quantification of solute concentrations in laboratory aquifer models has been largely limited to the use of sampling ports, from which samples are collected for external analysis. One of the drawbacks to this method is that the act of sampling may disturb plume dynamics and ...

  12. 24-HOUR DIFFUSIVE SAMPLING OF TOXIC VOCS IN AIR ONTO CARBOPACK X SOLID ADSORBENT FOLLOWED BY THERMAL DESORPTION/GC/MS ANALYSIS - LABORATORY STUDIES

    EPA Science Inventory

    Diffusive sampling of a mixture of 42 volatile organic compounds (VOCs) in humidified, purified air onto the solid adsorbent Carbopack X was evaluated under controlled laboratory conditions. The evaluation included variations in sample air temperature, relative humidity, and ozon...

  13. Results of the first provisional technical secretariat interlaboratory comparison test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuff, J.R.; Hoffland, L.

    1995-06-01

    The principal task of this laboratory in the first Provisional Technical Secretariat (PTS) Interlaboratory Comparison Test was to verify and test the extraction and preparation procedures outlined in the Recommended Operating Procedures for Sampling and Analysis in the Verification of Chemical Disarmament in addition to our laboratory extraction methods and our laboratory analysis methods. Sample preparation began on 16 May 1994 and analysis was completed on 12 June 1994. The analytical methods used included NMR ({sup 1}H and {sup 31}P) GC/AED, GC/MS (EI and methane CI), GC/IRD, HPLC/IC, HPLC/TSP/MS, MS/MS(Electrospray), and CZE.

  14. Phosphorus Concentrations in Stream-Water and Reference Samples - An Assessment of Laboratory Comparability

    USGS Publications Warehouse

    McHale, Michael R.; McChesney, Dennis

    2007-01-01

    In 2003, a study was conducted to evaluate the accuracy and precision of 10 laboratories that analyze water-quality samples for phosphorus concentrations in the Catskill Mountain region of New York State. Many environmental studies in this region rely on data from these different laboratories for water-quality analyses, and the data may be used in watershed modeling and management decisions. Therefore, it is important to determine whether the data reported by these laboratories are of comparable accuracy and precision. Each laboratory was sent 12 samples for triplicate analysis for total phosphorus, total dissolved phosphorus, and soluble reactive phosphorus. Eight of these laboratories reported results that met comparability criteria for all samples; the remaining two laboratories met comparability criteria for only about half of the analyses. Neither the analytical method used nor the sample concentration ranges appeared to affect the comparability of results. The laboratories whose results were comparable gave consistently comparable results throughout the concentration range analyzed, and the differences among methods did not diminish comparability. All laboratories had high data precision as indicated by sample triplicate results. In addition, the laboratories consistently reported total phosphorus values greater than total dissolved phosphorus values, and total dissolved phosphorus values greater than soluble reactive phosphorus values, as would be expected. The results of this study emphasize the importance of regular laboratory participation in sample-exchange programs.

  15. LABORATORY GUIDELINES FOR ANALYSIS OF BIOTERRORISM SAMPLES

    EPA Science Inventory

    After the attack on the World Trade Center on September 11, 2002, and the subsequent deaths associated with Bacillus anthracis spore contaminated mail, a worldwide need was apparent for increased laboratory capacity to safely analyze bioterrorism samples. The U.S. Department o...

  16. Oil mist and vapour concentrations from drilling fluids: inter- and intra-laboratory comparison of chemical analyses.

    PubMed

    Galea, Karen S; Searl, Alison; Sánchez-Jiménez, Araceli; Woldbæk, Torill; Halgard, Kristin; Thorud, Syvert; Steinsvåg, Kjersti; Krüger, Kirsti; Maccalman, Laura; Cherrie, John W; van Tongeren, Martie

    2012-01-01

    There are no recognized analytical methods for measuring oil mist and vapours arising from drilling fluids used in offshore petroleum drilling industry. To inform the future development of improved methods of analysis for oil mist and vapours this study assessed the inter- and intra-laboratory variability in oil mist and vapour analysis. In addition, sample losses during transportation and storage were assessed. Replicate samples for oil mist and vapour were collected using the 37-mm Millipore closed cassette and charcoal tube assembly. Sampling was conducted in a simulated shale shaker room, similar to that found offshore for processing drilling fluids. Samples were analysed at two different laboratories, one in Norway and one in the UK. Oil mist samples were analysed using Fourier transform infrared spectroscopy (FTIR), while oil vapour samples were analysed by gas chromatography (GC). The comparison of replicate samples showed substantial within- and between-laboratory variability in reported oil mist concentrations. The variability in oil vapour results was considerably reduced compared to oil mist, provided that a common method of calibration and quantification was adopted. The study also showed that losses can occur during transportation and storage of samples. There is a need to develop a harmonized method for the quantification of oil mist on filter and oil vapour on charcoal supported by a suitable proficiency testing scheme for laboratories involved in the analysis of occupational hygiene samples for the petroleum industry. The uncertainties in oil mist and vapour measurement have substantial implications in relation to compliance with occupational exposure limits and also in the reliability of any exposure-response information reported in epidemiological studies.

  17. Method of Analysis by the U.S. Geological Survey California District Sacramento Laboratory-- Determination of Dissolved Organic Carbon in Water by High Temperature Catalytic Oxidation, Method Validation, and Quality-Control Practices

    USGS Publications Warehouse

    Bird, Susan M.; Fram, Miranda S.; Crepeau, Kathryn L.

    2003-01-01

    An analytical method has been developed for the determination of dissolved organic carbon concentration in water samples. This method includes the results of the tests used to validate the method and the quality-control practices used for dissolved organic carbon analysis. Prior to analysis, water samples are filtered to remove suspended particulate matter. A Shimadzu TOC-5000A Total Organic Carbon Analyzer in the nonpurgeable organic carbon mode is used to analyze the samples by high temperature catalytic oxidation. The analysis usually is completed within 48 hours of sample collection. The laboratory reporting level is 0.22 milligrams per liter.

  18. First external quality assurance program for bloodstream Real-Time PCR monitoring of treatment response in clinical trials of Chagas disease.

    PubMed

    Ramírez, Juan C; Parrado, Rudy; Sulleiro, Elena; de la Barra, Anabelle; Rodríguez, Marcelo; Villarroel, Sandro; Irazu, Lucía; Alonso-Vega, Cristina; Alves, Fabiana; Curto, María A; García, Lineth; Ortiz, Lourdes; Torrico, Faustino; Gascón, Joaquim; Flevaud, Laurence; Molina, Israel; Ribeiro, Isabela; Schijman, Alejandro G

    2017-01-01

    Real-Time PCR (qPCR) testing is recommended as both a diagnostic and outcome measurement of etiological treatment in clinical practice and clinical trials of Chagas disease (CD), but no external quality assurance (EQA) program provides performance assessment of the assays in use. We implemented an EQA system to evaluate the performance of molecular biology laboratories involved in qPCR based follow-up in clinical trials of CD. An EQA program was devised for three clinical trials of CD: the E1224 (NCT01489228), a pro-drug of ravuconazole; the Sampling Study (NCT01678599), that used benznidazole, both conducted in Bolivia; and the CHAGASAZOL (NCT01162967), that tested posaconazole, conducted in Spain. Four proficiency testing panels containing negative controls and seronegative blood samples spiked with 1, 10 and 100 parasite equivalents (par. eq.)/mL of four Trypanosoma cruzi stocks, were sent from the Core Lab in Argentina to the participating laboratories located in Bolivia and Spain. Panels were analyzed simultaneously, blinded to sample allocation, at 4-month intervals. In addition, 302 random blood samples from both trials carried out in Bolivia were sent to Core Lab for retesting analysis. The analysis of proficiency testing panels gave 100% of accordance (within laboratory agreement) and concordance (between laboratory agreement) for all T. cruzi stocks at 100 par. eq./mL; whereas their values ranged from 71 to 100% and from 62 to 100% at 1 and 10 par. eq./mL, respectively, depending on the T. cruzi stock. The results obtained after twelve months of preparation confirmed the stability of blood samples in guanidine-EDTA buffer. No significant differences were found between qPCR results from Bolivian laboratory and Core Lab for retested clinical samples. This EQA program for qPCR analysis of CD patient samples may significantly contribute to ensuring the quality of laboratory data generated in clinical trials and molecular diagnostics laboratories of CD.

  19. 7 CFR 94.5 - Charges for laboratory service.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS... costs for analysis of mandatory egg product samples at Science and Technology Division laboratories... program. The costs for any other mandatory laboratory analyses and testing of an egg product's identity...

  20. 7 CFR 94.5 - Charges for laboratory service.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS... costs for analysis of mandatory egg product samples at Science and Technology Division laboratories... program. The costs for any other mandatory laboratory analyses and testing of an egg product's identity...

  1. 7 CFR 94.5 - Charges for laboratory service.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS... costs for analysis of mandatory egg product samples at Science and Technology Division laboratories... program. The costs for any other mandatory laboratory analyses and testing of an egg product's identity...

  2. 7 CFR 94.5 - Charges for laboratory service.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS... costs for analysis of mandatory egg product samples at Science and Technology Division laboratories... program. The costs for any other mandatory laboratory analyses and testing of an egg product's identity...

  3. Laboratory and exterior decay of wood plastic composite boards: voids analysis and computed tomography

    Treesearch

    Grace Sun; Rebecca E. Ibach; Meghan Faillace; Marek Gnatowski; Jessie A. Glaeser; John Haight

    2016-01-01

    After exposure in the field and laboratory soil block culture testing, the void content of wood–plastic composite (WPC) decking boards was compared to unexposed samples. A void volume analysis was conducted based on calculations of sample density and from micro-computed tomography (microCT) data. It was found that reference WPC contains voids of different sizes from...

  4. Soils element activities for the period October 1973--September 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, E.B.; Essington, E.H.; White, M.G.

    Soils Element activities were conducted on behalf of the U. S. Atomic Energy Commission's Nevada Applied Ecology Group (NAEG) program to provide source term information for the other program elements and maintain continuous cognizance of program requirements for sampling, sample preparation, and analysis. Activities included presentation of papers; participation in workshops; analysis of soil, vegetation, and animal tissue samples for $sup 238$Pu, $sup 239-240$Pu, $sup 241$Am, $sup 137$Cs, $sup 60$Co, and gamma scan for routine and laboratory quality control purposes; preparation and analysis of animal tissue samples for NAEG laboratory certification; studies on a number of analytical, sample preparation, andmore » sample collection procedures; and contributions to the evaluation of procedures for calculation of specialized counting statistics. (auth)« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, G.L.

    This data package satisfies the requirement for a format IV, final report. It is a follow-up to the 45-day safety screen report for tank AP-104. Evaporator candidate feed from tank 241-AP-104 (hereafter referred to as AP-104) was characterized for physical, inorganic, organic and radiochemical parameters by the Westinghouse Hanford Company, 222-S Laboratory, and by the Battelle Pacific Northwest National Laboratory (PNNL), Analytical Chemistry Laboratory (ACL) as directed by the Tank Sample and Analysis Plan (TSAP), References 1 through 4. Preliminary data in the form of summary analytical tables were provided to the project in advance of this final report tomore » enable early estimation of evaporator operational parameters, using the Predict modeling program. Laboratory analyses at ACL Laboratory was performed according to the TSAP. Analyses were performed at the 222-S Laboratory as defined and specified in the TSAP and the Laboratory`s Quality Assurance Plan, References 5 and 6. Any deviations from the instructions documented in the TSAP are discussed in this narrative and are supported with additional documentation. SAMPLING The TSAP, section 2, provided sampling information for waste samples collected from tank AP-104. The bottle-on-a-string method was used to collect liquid grab samples from the tank. Each glass sample bottle was amber, precleaned, and contained approximately 100 milliliters. Each bottle was closed with a teflon seal cap (or teflon septum for volatile organic analysis samples). Field blank samples were prepared by placing deionized water into sampling bottles, lowering the unclosed bottles into the riser for a period of time, retrieving them from the riser, and then closing the bottles with the same types of caps used for the tank samples. None of the samples were preserved by acidification. Upon receipt, the sample bottles destined for organic analyses were placed in a refrigerator. No attempt was made during sampling to assure the complete filling of the bottles so as to exclude all headspace. These actions were consistent with safety procedures, which attempt to limit personnel exposure to hazardous ionizing radiation.« less

  6. PHILIS (PORTABLE HIGH-THROUGHPUT INTEGRATED LABORATORY IDENTIFICATION SYSTEM)

    EPA Pesticide Factsheets

    These mobile laboratory assets, for the on-site analysis of chemical warfare agent (CWA) and toxic industrial compound (TIC) contaminated environmental samples, are part of the evolving Environmental Response Laboratory Network (ERLN).

  7. Immune Blood Sample Draw

    NASA Image and Video Library

    2012-04-26

    ISS030-E-257690 (26 April 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, prepares for IMMUNE venous blood sample draws in the Columbus laboratory of the International Space Station. Following the blood draws, the samples were temporarily stowed in the Minus Eighty Laboratory Freezer for ISS 1 (MELFI-1) and later packed together with saliva samples on the Soyuz TMA-22 for return to Earth for analysis.

  8. Analysis of Pet Coke Samples

    EPA Pesticide Factsheets

    EPA required KCBX to submit samples of the petroleum coke stored at their North and South Chicago terminals to EPA's Chicago Regional Laboratory for analysis of pollutant levels. Results will be compared to coal and pet coke sampled in Detroit.

  9. Multicomponent blood lipid analysis by means of near infrared spectroscopy, in geese.

    PubMed

    Bazar, George; Eles, Viktoria; Kovacs, Zoltan; Romvari, Robert; Szabo, Andras

    2016-08-01

    This study provides accurate near infrared (NIR) spectroscopic models on some laboratory determined clinicochemical parameters (i.e. total lipid (5.57±1.95 g/l), triglyceride (2.59±1.36 mmol/l), total cholesterol (3.81±0.68 mmol/l), high density lipoprotein (HDL) cholesterol (2.45±0.58 mmol/l)) of blood serum samples of fattened geese. To increase the performance of multivariate chemometrics, samples significantly deviating from the regression models implying laboratory error were excluded from the final calibration datasets. Reference data of excluded samples having outlier spectra in principal component analysis were not marked as false. Samples deviating from the regression models but having non outlier spectra in PCA were identified as having false reference constituent values. Based on the NIR selection methods, 5% of the reference measurement data were rated as doubtful. The achieved models reached R(2) of 0.864, 0.966, 0.850, 0.793, and RMSE of 0.639 g/l, 0.232 mmol/l, 0.210 mmol/l, 0.241 mmol/l for total lipid, triglyceride, total cholesterol and HDL cholesterol, respectively, during independent validation. Classical analytical techniques focus on single constituents and often require chemicals, time-consuming measurements, and experienced technicians. NIR technique provides a quick, cost effective, non-hazardous alternative method for analysis of several constituents based on one single spectrum of each sample, and it also offers the possibility for looking at the laboratory reference data critically. Evaluation of reference data to identify and exclude falsely analyzed samples can provide warning feedback to the reference laboratory, especially in the case of analyses where laboratory methods are not perfectly suited to the subjected material and there is an increased chance of laboratory error. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Radiation and temperature effects on LDEF fiber optic samples

    NASA Technical Reports Server (NTRS)

    Johnston, A. R.; Hartmayer, R.; Bergman, L. A.

    1993-01-01

    Results obtained from the JPL Fiber Optics Long Duration Exposure Facility (LDEF) Experiment since the June 1991 Experimenters' Workshop are addressed. Radiation darkening of laboratory control samples and the subsequent annealing was measured in the laboratory for the control samples. The long-time residual loss was compared to the LDEF flight samples and found to be in agreement. The results of laboratory temperature tests on the flight samples, extending over a period of about nine years, including the pre-flight and post-flight analysis periods, are described. The temperature response of the different cable samples varies widely, and appears in two samples to be affected by polymer aging. Conclusions to date are summarized.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillespie, B.M.; Stromatt, R.W.; Ross, G.A.

    This data package contains the results obtained by Pacific Northwest Laboratory (PNL) staff in the characterization of samples for the 101-SY Hydrogen Safety Project. The samples were submitted for analysis by Westinghouse Hanford Company (WHC) under the Technical Project Plan (TPP) 17667 and the Quality Assurance Plan MCS-027. They came from a core taken during Window C'' after the May 1991 gas release event. The analytical procedures required for analysis were defined in the Test Instructions (TI) prepared by the PNL 101-SY Analytical Chemistry Laboratory (ACL) Project Management Office in accordance with the TPP and the QA Plan. The requestedmore » analysis for these samples was volatile organic analysis. The quality control (QC) requirements for each sample are defined in the Test Instructions for each sample. The QC requirements outlined in the procedures and requested in the WHC statement of work were followed.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillespie, B.M.; Stromatt, R.W.; Ross, G.A.

    This data package contains the results obtained by Pacific Northwest Laboratory (PNL) staff in the characterization of samples for the 101-SY Hydrogen Safety Project. The samples were submitted for analysis by Westinghouse Hanford Company (WHC) under the Technical Project Plan (TPP) 17667 and the Quality Assurance Plan MCS-027. They came from a core taken during Window ``C`` after the May 1991 gas release event. The analytical procedures required for analysis were defined in the Test Instructions (TI) prepared by the PNL 101-SY Analytical Chemistry Laboratory (ACL) Project Management Office in accordance with the TPP and the QA Plan. The requestedmore » analysis for these samples was volatile organic analysis. The quality control (QC) requirements for each sample are defined in the Test Instructions for each sample. The QC requirements outlined in the procedures and requested in the WHC statement of work were followed.« less

  13. [Modal failure analysis and effects in the detection of errors in the transport of samples to the clinical laboratory].

    PubMed

    Parés-Pollán, L; Gonzalez-Quintana, A; Docampo-Cordeiro, J; Vargas-Gallego, C; García-Álvarez, G; Ramos-Rodríguez, V; Diaz Rubio-García, M P

    2014-01-01

    Owing to the decrease in values of biochemical glucose parameter in some samples from external extraction centres, and the risk this implies to patient safety; it was decided to apply an adaptation of the «Health Services Failure Mode and Effects Analysis» (HFMEA) to manage risk during the pre-analytical phase of sample transportation from external centres to clinical laboratories. A retrospective study of glucose parameter was conducted during two consecutive months. The analysis was performed in its different phases: to define the HFMEA topic, assemble the team, graphically describe the process, conduct a hazard analysis, design the intervention and indicators, and identify a person to be responsible for ensuring completion of each action. The results of glucose parameter in one of the transport routes, were significantly lower (P=.006). The errors and potential causes of this problem were analysed, and criteria of criticality and detectability were applied (score≥8) in the decision tree. It was decided to: develop a document management system; reorganise extractions and transport routes in some centres; quality control of the sample container ice-packs, and the time and temperature during transportation. This work proposes quality indicators for controlling time and temperature of transported samples in the pre-analytical phase. Periodic review of certain laboratory parameters can help to detect problems in transporting samples. The HFMEA technique is useful for the clinical laboratory. Copyright © 2013 SECA. Published by Elsevier Espana. All rights reserved.

  14. Interlaboratory comparison of extraction efficiency of pesticides from surface and laboratory water using solid-phase extraction disks.

    PubMed

    Senseman, Scott A; Mueller, Thomas C; Riley, Melissa B; Wauchope, R Don; Clegg, Chris; Young, Roddy W; Southwick, Lloyd M; Moye, H Anson; Dumas, Jose A; Mersie, Wondi; Mattice, John D; Leidy, Ross B

    2003-06-18

    A continuation of an earlier interlaboratory comparison was conducted (1) to assess solid-phase extraction (SPE) using Empore disks to extract atrazine, bromacil, metolachlor, and chlorpyrifos from various water sources accompanied by different sample shipping and quantitative techniques and (2) to compare quantitative results of individual laboratories with results of one common laboratory. Three replicates of a composite surface water (SW) sample were fortified with the analytes along with three replicates of deionized water (DW). A nonfortified DW sample and a nonfortified SW sample were also extracted. All samples were extracted using Empore C(18) disks. After extraction, part of the samples were eluted and analyzed in-house. Duplicate samples were evaporated in a 2-mL vial, shipped dry to a central laboratory (SDC), redissolved, and analyzed. Overall, samples analyzed in-house had higher recoveries than SDC samples. Laboratory x analysis type and laboratory x water source interactions were significant for all four compounds. Seven laboratories participated in this interlaboratory comparison program. No differences in atrazine recoveries were observed from in-house samples analyzed by laboratories A, B, D, and G compared with the recovery of SDC samples. In-house atrazine recoveries from laboratories C and F were higher when compared with recovery from SDC samples. However, laboratory E had lower recoveries from in-house samples compared with SDC samples. For each laboratory, lower recoveries were observed for chlorpyrifos from the SDC samples compared with samples analyzed in-house. Bromacil recovery was <65% at two of the seven laboratories in the study. Bromacil recoveries for the remaining laboratories were >75%. Three laboratories showed no differences in metolachlor recovery; two laboratories had higher recoveries for samples analyzed in-house, and two other laboratories showed higher metolachlor recovery for SDC samples. Laboratory G had a higher recovery in SW for all four compounds compared with DW. Other laboratories that had significant differences in pesticide recovery between the two water sources showed higher recovery in DW than in the SW regardless of the compound. In comparison to earlier work, recovery of these compounds using SPE disks as a temporary storage matrix may be more effective than shipping dried samples in a vial. Problems with analytes such as chlorpyrifos are unavoidable, and it should not be assumed that an extraction procedure using SPE disks will be adequate for all compounds and transferrable across all chromatographic conditions.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, T.A.

    This is the final sample analysis report for tank 241-BX-104 (BX-104), cores 126 and 127. Two segments from each core yielded a total of 11 samples which were analyzed. The data quality objectives (DQOs) applicable to this sampling event were the Safety Screening DQO (Dukelow et al. 1995) and the Organic Safety DQO (Turner et al. 1995). The samples were received, extruded and analyzed at PNNL 325 Analytical Chemistry Laboratory (ACL). The analyses were performed in accordance with the Sample Analysis Plan (Gretsinger 1996) and indicated that the tank is safe with respect to the criteria in the Safety Screeningmore » and Organic DQO. Detailed analytical results were described in the analytical laboratory 45-day Report (Attachment 1, WHC-SD-WM-DP-171, REV. 0) and final report (Attachment 2, PNL-BX-104 REV.1) prepared by PNNL, 325 Laboratory. Corrections and/or exceptions to the PNNL final report are provided.« less

  16. Detection and Quantification of Nitrogen Compounds in the First Drilled Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite on the Mars Science Laboratory (MSL)

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Navarro-Gonzales, R.; Freissinet, C.; McKay, C. P.; Archer, P. D., Jr.; Buch, A.; Brunner, A. E.; Coll, P.; Eigenbrode, J. L.; Franz, H. B.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen-bearing compounds during the pyrolysis of surface materials at Yellowknife Bay in Gale Crater. Preliminary detections of nitrogen species include NO, HCN, ClCN, CH3CN, and TFMA (trifluoro-N-methyl-acetamide). Confirmation of indigenous Martian N-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents (e.g. N-methyl-N-tertbutyldimethylsilyltrifluoroacetamide, MTBSTFA and dimethylformamide, DMF) carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate, a compound that has also been identified by SAM in Mars solid samples.

  17. Inaccurate reporting of mineral composition by commercial stone analysis laboratories: implications for infection and metabolic stones.

    PubMed

    Krambeck, Amy E; Khan, Naseem F; Jackson, Molly E; Lingeman, James E; McAteer, James A; Williams, James C

    2010-10-01

    We determined the accuracy of stone composition analysis at commercial laboratories. A total of 25 human renal stones with infrared spectroscopy determined composition were fragmented into aliquots and studied with micro computerized tomography to ensure fragment similarity. Representative fragments of each stone were submitted to 5 commercial stone laboratories for blinded analysis. All laboratories agreed on the composition of 6 pure stones. Only 2 of 4 stones (50%) known to contain struvite were identified as struvite at all laboratories. Struvite was reported as a component by some laboratories for 4 stones previously determined not to contain struvite. Overall there was disagreement regarding struvite in 6 stones (24%). For 9 calcium oxalate stones all laboratories reported some mixture of calcium oxalate but the quantity of subtypes differed significantly among laboratories. In 6 apatite containing stones apatite was missed by the laboratories in 20% of samples. None of the laboratories identified atazanavir in a stone containing that antiviral drug. One laboratory reported protein in every sample while all others reported it in only 1. Nomenclature for apatite differed among laboratories with 1 reporting apatite as carbonate apatite and never hydroxyapatite, another never reporting carbonate apatite and always reporting hydroxyapatite, and a third reporting carbonate apatite as apatite with calcium carbonate. Commercial laboratories reliably recognize pure calculi. However, variability in the reporting of mixed calculi suggests a problem with the accuracy of stone analysis results. There is also a lack of standard nomenclature used by laboratories. Copyright © 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Laboratory Evaluation of Remediation Alternatives for U.S. Coast Guard Small Arms Firing Ranges

    DTIC Science & Technology

    1999-11-01

    S) is an immobilization process that involves the mixing of a contaminated soil with a binder material to enhance the physical and chemical...samples were shipped to WES for laboratory analysis. Phase III: Homogenization of the Bulk Samples. Each of the bulk samples was separately mixed to...produce uniform samples for testing. These mixed bulk soil samples were analyzed for metal content. Phase IV: Characterization of the Bulk Soils

  19. THE ESTABLISHMENT OF LABORATORY GUIDELINES FOR ANALYSIS OF BIOTERRORISM SAMPLES

    EPA Science Inventory

    After the attack on the World Trade Center on September 11, 2002, and the subsequent deaths associated with Bacillus anthracis spore contaminated mail, a worldwide need was apparent for increased laboratory capacity to safely analyze bioterrorism samples. The U.S. Department of ...

  20. Reliability on intra-laboratory and inter-laboratory data of hair mineral analysis comparing with blood analysis.

    PubMed

    Namkoong, Sun; Hong, Seung Phil; Kim, Myung Hwa; Park, Byung Cheol

    2013-02-01

    Nowadays, although its clinical value remains controversial institutions utilize hair mineral analysis. Arguments about the reliability of hair mineral analysis persist, and there have been evaluations of commercial laboratories performing hair mineral analysis. The objective of this study was to assess the reliability of intra-laboratory and inter-laboratory data at three commercial laboratories conducting hair mineral analysis, compared to serum mineral analysis. Two divided hair samples taken from near the scalp were submitted for analysis at the same time, to all laboratories, from one healthy volunteer. Each laboratory sent a report consisting of quantitative results and their interpretation of health implications. Differences among intra-laboratory and interlaboratory data were analyzed using SPSS version 12.0 (SPSS Inc., USA). All the laboratories used identical methods for quantitative analysis, and they generated consistent numerical results according to Friedman analysis of variance. However, the normal reference ranges of each laboratory varied. As such, each laboratory interpreted the patient's health differently. On intra-laboratory data, Wilcoxon analysis suggested they generated relatively coherent data, but laboratory B could not in one element, so its reliability was doubtful. In comparison with the blood test, laboratory C generated identical results, but not laboratory A and B. Hair mineral analysis has its limitations, considering the reliability of inter and intra laboratory analysis comparing with blood analysis. As such, clinicians should be cautious when applying hair mineral analysis as an ancillary tool. Each laboratory included in this study requires continuous refinement from now on for inducing standardized normal reference levels.

  1. Implementation of a National Reference Laboratory for Buruli Ulcer Disease in Togo

    PubMed Central

    Badziklou, Kossi; Halatoko, Wemboo Afiwa; Maman, Issaka; Vogel, Felix; Bidjada, Bawimodom; Awoussi, Koffi Somenou; Piten, Ebekalisai; Helfrich, Kerstin; Mengele, Carolin; Nitschke, Jörg; Amekuse, Komi; Wiedemann, Franz Xaver; Diefenhardt, Adolf; Kobara, Basile; Herbinger, Karl–Heinz; Kere, Abiba Banla; Prince-David, Mireille; Löscher, Thomas; Bretzel, Gisela

    2013-01-01

    Background In a previous study PCR analysis of clinical samples from suspected cases of Buruli ulcer disease (BUD) from Togo and external quality assurance (EQA) for local microscopy were conducted at an external reference laboratory in Germany. The relatively poor performance of local microscopy as well as effort and time associated with shipment of PCR samples necessitated the implementation of stringent EQA measures and availability of local laboratory capacity. This study describes the approach to implementation of a national BUD reference laboratory in Togo. Methodology Large scale outreach activities accompanied by regular training programs for health care professionals were conducted in the regions “Maritime” and “Central,” standard operating procedures defined all processes in participating laboratories (regional, national and external reference laboratories) as well as the interaction between laboratories and partners in the field. Microscopy was conducted at regional level and slides were subjected to EQA at national and external reference laboratories. For PCR analysis, sample pairs were collected and subjected to a dry-reagent-based IS2404-PCR (DRB-PCR) at national level and standard IS2404 PCR followed by IS2404 qPCR analysis of negative samples at the external reference laboratory. Principal Findings The inter-laboratory concordance rates for microscopy ranged from 89% to 94%; overall, microscopy confirmed 50% of all suspected BUD cases. The inter-laboratory concordance rate for PCR was 96% with an overall PCR case confirmation rate of 78%. Compared to a previous study, the rate of BUD patients with non-ulcerative lesions increased from 37% to 50%, the mean duration of disease before clinical diagnosis decreased significantly from 182.6 to 82.1 days among patients with ulcerative lesions, and the percentage of category III lesions decreased from 30.3% to 19.2%. Conclusions High inter-laboratory concordance rates as well as case confirmation rates of 50% (microscopy), 71% (PCR at national level), and 78% (including qPCR confirmation at external reference laboratory) suggest high standards of BUD diagnostics. The increase of non-ulcerative lesions, as well as the decrease in diagnostic delay and category III lesions, prove the effect of comprehensive EQA and training measures involving also procedures outside the laboratory. PMID:23359828

  2. Implementation of a national reference laboratory for Buruli ulcer disease in Togo.

    PubMed

    Beissner, Marcus; Huber, Kristina Lydia; Badziklou, Kossi; Halatoko, Wemboo Afiwa; Maman, Issaka; Vogel, Felix; Bidjada, Bawimodom; Awoussi, Koffi Somenou; Piten, Ebekalisai; Helfrich, Kerstin; Mengele, Carolin; Nitschke, Jörg; Amekuse, Komi; Wiedemann, Franz Xaver; Diefenhardt, Adolf; Kobara, Basile; Herbinger, Karl-Heinz; Kere, Abiba Banla; Prince-David, Mireille; Löscher, Thomas; Bretzel, Gisela

    2013-01-01

    In a previous study PCR analysis of clinical samples from suspected cases of Buruli ulcer disease (BUD) from Togo and external quality assurance (EQA) for local microscopy were conducted at an external reference laboratory in Germany. The relatively poor performance of local microscopy as well as effort and time associated with shipment of PCR samples necessitated the implementation of stringent EQA measures and availability of local laboratory capacity. This study describes the approach to implementation of a national BUD reference laboratory in Togo. Large scale outreach activities accompanied by regular training programs for health care professionals were conducted in the regions "Maritime" and "Central," standard operating procedures defined all processes in participating laboratories (regional, national and external reference laboratories) as well as the interaction between laboratories and partners in the field. Microscopy was conducted at regional level and slides were subjected to EQA at national and external reference laboratories. For PCR analysis, sample pairs were collected and subjected to a dry-reagent-based IS2404-PCR (DRB-PCR) at national level and standard IS2404 PCR followed by IS2404 qPCR analysis of negative samples at the external reference laboratory. The inter-laboratory concordance rates for microscopy ranged from 89% to 94%; overall, microscopy confirmed 50% of all suspected BUD cases. The inter-laboratory concordance rate for PCR was 96% with an overall PCR case confirmation rate of 78%. Compared to a previous study, the rate of BUD patients with non-ulcerative lesions increased from 37% to 50%, the mean duration of disease before clinical diagnosis decreased significantly from 182.6 to 82.1 days among patients with ulcerative lesions, and the percentage of category III lesions decreased from 30.3% to 19.2%. High inter-laboratory concordance rates as well as case confirmation rates of 50% (microscopy), 71% (PCR at national level), and 78% (including qPCR confirmation at external reference laboratory) suggest high standards of BUD diagnostics. The increase of non-ulcerative lesions, as well as the decrease in diagnostic delay and category III lesions, prove the effect of comprehensive EQA and training measures involving also procedures outside the laboratory.

  3. Comparison of PIXE and XRF analysis of airborne particulate matter samples collected on Teflon and quartz fibre filters

    NASA Astrophysics Data System (ADS)

    Chiari, M.; Yubero, E.; Calzolai, G.; Lucarelli, F.; Crespo, J.; Galindo, N.; Nicolás, J. F.; Giannoni, M.; Nava, S.

    2018-02-01

    Within the framework of research projects focusing on the sampling and analysis of airborne particulate matter, Particle Induced X-ray Emission (PIXE) and Energy Dispersive X-ray Fluorescence (ED-XRF) techniques are routinely used in many laboratories throughout the world to determine the elemental concentration of the particulate matter samples. In this work an inter-laboratory comparison of the results obtained from analysing several samples (collected on both Teflon and quartz fibre filters) using both techniques is presented. The samples were analysed by PIXE (in Florence, at the 3 MV Tandetron accelerator of INFN-LABEC laboratory) and by XRF (in Elche, using the ARL Quant'X EDXRF spectrometer with specific conditions optimized for specific groups of elements). The results from the two sets of measurements are in good agreement for all the analysed samples, thus validating the use of the ARL Quant'X EDXRF spectrometer and the selected measurement protocol for the analysis of aerosol samples. Moreover, thanks to the comparison of PIXE and XRF results on Teflon and quartz fibre filters, possible self-absorption effects due to the penetration of the aerosol particles inside the quartz fibre-filters were quantified.

  4. Precise turnaround time measurement of laboratory processes using radiofrequency identification technology.

    PubMed

    Mayer, Horst; Brümmer, Jens; Brinkmann, Thomas

    2011-01-01

    To implement Lean Six Sigma in our central laboratory we conducted a project to measure single pre-analytical steps influencing turnaround time (TAT) of emergency department (ED) serum samples. The traditional approach of extracting data from the Laboratory Information System (LIS) for a retrospective calculation of a mean TAT is not suitable. Therefore, we used radiofrequency identification (RFID) chips for real time tracking of individual samples at any pre-analytical step. 1,200 serum tubes were labelled with RFID chips and were provided to the emergency department. 3 RFID receivers were installed in the laboratory: at the outlet of the pneumatic tube system, at the centrifuge, and in the analyser area. In addition, time stamps of sample entry at the automated sample distributor and communication of results from the analyser were collected from LIS. 1,023 labelled serum tubes arrived at our laboratory. 899 RFID tags were used for TAT calculation. The following transfer times were determined (median 95th percentile in min:sec): pneumatic tube system --> centrifuge (01:25/04:48), centrifuge --> sample distributor (14:06/5:33), sample distributor --> analysis system zone (02:39/15:07), analysis system zone --> result communication (12:42/22:21). Total TAT was calculated at 33:19/57:40 min:sec. Manual processes around centrifugation were identified as a major part of TAT with 44%/60% (median/95th percentile). RFID is a robust, easy to use, and error-free technology and not susceptible to interferences in the laboratory environment. With this study design we were able to measure significant variations in a single manual sample transfer process. We showed that TAT is mainly influenced by manual steps around the centrifugation process and we concluded that centrifugation should be integrated in solutions for total laboratory automation.

  5. Puget Sound Dredged Disposal Analysis: Management Plan Assessment Report. Dredged Material Management Year 1990.

    DTIC Science & Technology

    1991-03-01

    Sulfides BT Bioaccumulation Trigger L LP Ccn tract Laboratory Methods COC Chemical of Concern Corps U.S. Army Corps of Engineers cm centimeter cy cubic... Hydrocarbon (Compound) LOD Limit of Detection LPAH Low Molecular Weight Polynuclear Aromatic Hydrocarbon (Compound) MCLP Modified Contract Laboratory Method...Aromatic Hydrocarbons (HPAHs) (8 samples); * Benzofluoranthenes (7 samples); * Anthracene (6 samples); * Benzo(a)anthracene (6 samples); * Dibenzo(a,h

  6. Materials and Methods for Streamlined Laboratory Analysis of Environmental Samples, FY 2016 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addleman, Raymond S.; Naes, Benjamin E.; McNamara, Bruce K.

    The International Atomic Energy Agency (IAEA) relies upon laboratory analysis of environmental samples (typically referred to as “swipes”) collected during on-site inspections of safeguarded facilities to support the detection and deterrence of undeclared activities. Unfortunately, chemical processing and assay of the samples is slow and expensive. A rapid, effective, and simple extraction process and analysis method is needed to provide certified results with improved timeliness at reduced costs (principally in the form of reduced labor), while maintaining or improving sensitivity and efficacy. To address these safeguard needs the Pacific Northwest National Laboratory (PNNL) explored and demonstrated improved methods for environmentalmore » sample (ES) analysis. Improvements for both bulk and particle analysis were explored. To facilitate continuity and adoption, the new sampling materials and processing methods will be compatible with existing IAEA protocols for ES analysis. PNNL collaborated with Oak Ridge National Laboratory (ORNL), which performed independent validation of the new bulk analysis methods and compared performance to traditional IAEA’s Network of Analytical Laboratories (NWAL) protocol. ORNL efforts are reported separately. This report describes PNNL’s FY 2016 progress, which was focused on analytical application supporting environmental monitoring of uranium enrichment plants and nuclear fuel processing. In the future the technology could be applied to other safeguard applications and analytes related to fuel manufacturing, reprocessing, etc. PNNL’s FY 2016 efforts were broken into two tasks and a summary of progress, accomplishments and highlights are provided below. Principal progress and accomplishments on Task 1, Optimize Materials and Methods for ICP-MS Environmental Sample Analysis, are listed below. • Completed initial procedure for rapid uranium extraction from ES swipes based upon carbonate-peroxide chemistry (delivered to ORNL for evaluation). • Explored improvements to carbonate-peroxide rapid uranium extraction chemistry. • Evaluated new sampling materials and methods (in collaboration with ORNL). • Demonstrated successful ES extractions from standard and novel swipes for a wide range uranium compounds of interest including UO 2F 2 and UO 2(NO 3) 2, U 3O 8 and uranium ore concentrate. • Completed initial discussions with commercial suppliers of PTFE swipe materials. • Submitted one manuscript for publication. Two additional drafts are being prepared. Principal progress and accomplishments on Task 2, Optimize Materials and Methods for Direct SIMS Environmental Sample Analysis, are listed below. • Designed a SIMS swipe sample holder that retrofits into existing equipment and provides simple, effective, and rapid mounting of ES samples for direct assay while enabling automation and laboratory integration. • Identified preferred conductive sampling materials with better performance characteristics. • Ran samples on the new PNNL NWAL equivalent Cameca 1280 SIMS system. • Obtained excellent agreement between isotopic ratios for certified materials and direct SIMS assay of very low levels of LEU and HEU UO 2F 2 particles on carbon fiber sampling material. Sample activities range from 1 to 500 CPM (uranium mass on sample is dependent upon specific isotope ratio but is frequently in the subnanogram range). • Found that the presence of the UF molecular ions, as measured by SIMS, provides chemical information about the particle that is separate from the uranium isotopics and strongly suggests that those particles originated from an UF6 enrichment activity. • Submitted one manuscript for publication. Another manuscript is in preparation.« less

  7. Moving your laboratories to the field – Advantages and limitations of the use of field portable instruments in environmental sample analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gałuszka, Agnieszka, E-mail: Agnieszka.Galuszka@ujk.edu.pl; Migaszewski, Zdzisław M.; Namieśnik, Jacek

    The recent rapid progress in technology of field portable instruments has increased their applications in environmental sample analysis. These instruments offer a possibility of cost-effective, non-destructive, real-time, direct, on-site measurements of a wide range of both inorganic and organic analytes in gaseous, liquid and solid samples. Some of them do not require the use of reagents and do not produce any analytical waste. All these features contribute to the greenness of field portable techniques. Several stationary analytical instruments have their portable versions. The most popular ones include: gas chromatographs with different detectors (mass spectrometer (MS), flame ionization detector, photoionization detector),more » ultraviolet–visible and near-infrared spectrophotometers, X-ray fluorescence spectrometers, ion mobility spectrometers, electronic noses and electronic tongues. The use of portable instruments in environmental sample analysis gives a possibility of on-site screening and a subsequent selection of samples for routine laboratory analyses. They are also very useful in situations that require an emergency response and for process monitoring applications. However, quantification of results is still problematic in many cases. The other disadvantages include: higher detection limits and lower sensitivity than these obtained in laboratory conditions, a strong influence of environmental factors on the instrument performance and a high possibility of sample contamination in the field. This paper reviews recent applications of field portable instruments in environmental sample analysis and discusses their analytical capabilities. - Highlights: • Field portable instruments are widely used in environmental sample analysis. • Field portable instruments are indispensable for analysis in emergency response. • Miniaturization of field portable instruments reduces resource consumption. • In situ analysis is in agreement with green analytical chemistry principles. • Performance requirements in field analysis stimulate technological progress.« less

  8. Field and laboratory data describing physical and chemical characteristics of metal-contaminated flood-plain deposits downstream from Lead, west-central South Dakota

    USGS Publications Warehouse

    Marron, D.C.

    1988-01-01

    Samples from metal-contaminated flood-plain sediments at 9 sites downstream from Lead, in west-central South Dakota, were collected during the summers of 1985-87 to characterize aspects of the sedimentology, chemistry, and geometry of a deposit that resulted from the discharge of a large volume of mining wastes into a river system. Field and laboratory data include stratigraphic descriptions, chemical contents and grain-size distributions of samples, and surveyed flood-plain positions of samples. This report describes sampling-site locations, and methods of sample collection and preservation, and subsequent laboratory analysis. Field and laboratory data are presented in 4 figures and 11 tables in the ' Supplemental Data ' section at the back of the report. (USGS)

  9. Laboratory surveillance for wild and vaccine-derived polioviruses, January 2004-June 2005.

    PubMed

    2005-09-30

    A global network of 145 virology laboratories has been established by the World Health Organization (WHO) to support surveillance activities of the Polio Eradication Initiative (PEI). The Global Polio Laboratory Network analyzes stool specimens from patients with acute flaccid paralysis (AFP) and environmental samples for the presence of polioviruses. Surveillance systems detect at least one AFP case per 100,000 persons aged <15 years, collect adequate stool samples from patients, and send the samples to network laboratories for analysis. Laboratory data are used to identify locations where wild polioviruses (WPVs) or vaccine-derived polioviruses (VDPVs) are circulating, target supplementary immunization activities (SIAs) to interrupt transmission chains, and investigate genetic relationships among viral isolates. This report updates previous publications and describes the laboratory network's performance during the period January 2004-June 2005.

  10. Blood gas testing and related measurements: National recommendations on behalf of the Croatian Society of Medical Biochemistry and Laboratory Medicine.

    PubMed

    Dukić, Lora; Kopčinović, Lara Milevoj; Dorotić, Adrijana; Baršić, Ivana

    2016-10-15

    Blood gas analysis (BGA) is exposed to risks of errors caused by improper sampling, transport and storage conditions. The Clinical and Laboratory Standards Institute (CLSI) generated documents with recommendations for avoidance of potential errors caused by sample mishandling. Two main documents related to BGA issued by the CLSI are GP43-A4 (former H11-A4) Procedures for the collection of arterial blood specimens; approved standard - fourth edition, and C46-A2 Blood gas and pH analysis and related measurements; approved guideline - second edition. Practices related to processing of blood gas samples are not standardized in the Republic of Croatia. Each institution has its own protocol for ordering, collection and analysis of blood gases. Although many laboratories use state of the art analyzers, still many preanalytical procedures remain unchanged. The objective of the Croatian Society of Medical Biochemistry and Laboratory Medicine (CSMBLM) is to standardize the procedures for BGA based on CLSI recommendations. The Working Group for Blood Gas Testing as part of the Committee for the Scientific Professional Development of the CSMBLM prepared a set of recommended protocols for sampling, transport, storage and processing of blood gas samples based on relevant CLSI documents, relevant literature search and on the results of Croatian survey study on practices and policies in acid-base testing. Recommendations are intended for laboratory professionals and all healthcare workers involved in blood gas processing.

  11. Blood gas testing and related measurements: National recommendations on behalf of the Croatian Society of Medical Biochemistry and Laboratory Medicine

    PubMed Central

    Dukić, Lora; Kopčinović, Lara Milevoj; Dorotić, Adrijana; Baršić, Ivana

    2016-01-01

    Blood gas analysis (BGA) is exposed to risks of errors caused by improper sampling, transport and storage conditions. The Clinical and Laboratory Standards Institute (CLSI) generated documents with recommendations for avoidance of potential errors caused by sample mishandling. Two main documents related to BGA issued by the CLSI are GP43-A4 (former H11-A4) Procedures for the collection of arterial blood specimens; approved standard – fourth edition, and C46-A2 Blood gas and pH analysis and related measurements; approved guideline – second edition. Practices related to processing of blood gas samples are not standardized in the Republic of Croatia. Each institution has its own protocol for ordering, collection and analysis of blood gases. Although many laboratories use state of the art analyzers, still many preanalytical procedures remain unchanged. The objective of the Croatian Society of Medical Biochemistry and Laboratory Medicine (CSMBLM) is to standardize the procedures for BGA based on CLSI recommendations. The Working Group for Blood Gas Testing as part of the Committee for the Scientific Professional Development of the CSMBLM prepared a set of recommended protocols for sampling, transport, storage and processing of blood gas samples based on relevant CLSI documents, relevant literature search and on the results of Croatian survey study on practices and policies in acid-base testing. Recommendations are intended for laboratory professionals and all healthcare workers involved in blood gas processing. PMID:27812301

  12. Investigation of differences between field and laboratory pH measurements of national atmospheric deposition program/national trends network precipitation samples

    USGS Publications Warehouse

    Latysh, N.; Gordon, J.

    2004-01-01

    A study was undertaken to investigate differences between laboratory and field pH measurements for precipitation samples collected from 135 weekly precipitation-monitoring sites in the National Trends Network from 12/30/1986 to 12/28/1999. Differences in pH between field and laboratory measurements occurred for 96% of samples collected during this time period. Differences between the two measurements were evaluated for precipitation samples collected before and after January 1994, when modifications to sample-handling protocol and elimination of the contaminating bucket o-ring used in sample shipment occurred. Median hydrogen-ion and pH differences between field and laboratory measurements declined from 3.9 ??eq L-1 or 0.10 pH units before the 1994 protocol change to 1.4 ??eq L-1 or 0.04 pH units after the 1994 protocol change. Hydrogen-ion differences between field and laboratory measurements had a high correlation with the sample pH determined in the field. The largest pH differences between the two measurements occurred for high-pH samples (>5.6), typical of precipitation collected in Western United States; however low- pH samples (<5.0) displayed the highest variability in hydrogen-ion differences between field and laboratory analyses. Properly screened field pH measurements are a useful alternative to laboratory pH values for trend analysis, particularly before 1994 when laboratory pH values were influenced by sample-collection equipment.

  13. PCB Analysis Plan for Tank Archive Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NGUYEN, D.M.

    2001-03-22

    This analysis plan specifies laboratory analysis, quality assurance/quality control (QA/QC), and data reporting requirements for analyzing polychlorinated biphenyls (PCB) concentrations in archive samples. Tank waste archive samples that are planned for PCB analysis are identified in Nguyen 2001. The tanks and samples are summarized in Table 1-1. The analytical data will be used to establish a PCB baseline inventory in Hanford tanks.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anheier, Norman C.; Cannon, Bret D.; Martinez, Alonzo

    The International Atomic Energy Agency’s (IAEA’s) long-term research and development plan calls for more cost-effective and efficient safeguard methods to detect and deter misuse of gaseous centrifuge enrichment plants (GCEPs). The IAEA’s current safeguards approaches at GCEPs are based on a combination of routine and random inspections that include environmental sampling and destructive assay (DA) sample collection from UF6 in-process material and selected cylinders. Samples are then shipped offsite for subsequent laboratory analysis. In this paper, a new DA sample collection and onsite analysis approach that could help to meet challenges in transportation and chain of custody for UF6 DAmore » samples is introduced. This approach uses a handheld sampler concept and a Laser Ablation, Laser Absorbance Spectrometry (LAARS) analysis instrument, both currently under development at the Pacific Northwest National Laboratory. A LAARS analysis instrument could be temporarily or permanently deployed in the IAEA control room of the facility, in the IAEA data acquisition cabinet, for example. The handheld PNNL DA sampler design collects and stabilizes a much smaller DA sample mass compared to current sampling methods. The significantly lower uranium mass reduces the sample radioactivity and the stabilization approach diminishes the risk of uranium and hydrogen fluoride release. These attributes enable safe sample handling needed during onsite LAARS assay and may help ease shipping challenges for samples to be processed at the IAEA’s offsite laboratory. The LAARS and DA sampler implementation concepts will be described and preliminary technical viability results presented.« less

  15. The economic impact of poor sample quality in clinical chemistry laboratories: results from a global survey.

    PubMed

    Erdal, Erik P; Mitra, Debanjali; Khangulov, Victor S; Church, Stephen; Plokhoy, Elizabeth

    2017-03-01

    Background Despite advances in clinical chemistry testing, poor blood sample quality continues to impact laboratory operations and the quality of results. While previous studies have identified the preanalytical causes of lower sample quality, few studies have examined the economic impact of poor sample quality on the laboratory. Specifically, the costs associated with workarounds related to fibrin and gel contaminants remain largely unexplored. Methods A quantitative survey of clinical chemistry laboratory stakeholders across 10 international regions, including countries in North America, Europe and Oceania, was conducted to examine current blood sample testing practices, sample quality issues and practices to remediate poor sample quality. Survey data were used to estimate costs incurred by laboratories to mitigate sample quality issues. Results Responses from 164 participants were included in the analysis, which was focused on three specific issues: fibrin strands, fibrin masses and gel globules. Fibrin strands were the most commonly reported issue, with an overall incidence rate of ∼3%. Further, 65% of respondents indicated that these issues contribute to analyzer probe clogging, and the majority of laboratories had visual inspection and manual remediation practices in place to address fibrin- and gel-related quality problems (55% and 70%, respectively). Probe maintenance/replacement, visual inspection and manual remediation were estimated to carry significant costs for the laboratories surveyed. Annual cost associated with lower sample quality and remediation related to fibrin and/or gel globules for an average US laboratory was estimated to be $100,247. Conclusions Measures to improve blood sample quality present an important step towards improved laboratory operations.

  16. Quantifying inter-laboratory variability in stable isotope analysis of ancient skeletal remains.

    PubMed

    Pestle, William J; Crowley, Brooke E; Weirauch, Matthew T

    2014-01-01

    Over the past forty years, stable isotope analysis of bone (and tooth) collagen and hydroxyapatite has become a mainstay of archaeological and paleoanthropological reconstructions of paleodiet and paleoenvironment. Despite this method's frequent use across anthropological subdisciplines (and beyond), the present work represents the first attempt at gauging the effects of inter-laboratory variability engendered by differences in a) sample preparation, and b) analysis (instrumentation, working standards, and data calibration). Replicate analyses of a 14C-dated ancient human bone by twenty-one archaeological and paleoecological stable isotope laboratories revealed significant inter-laboratory isotopic variation for both collagen and carbonate. For bone collagen, we found a sizeable range of 1.8‰ for δ13Ccol and 1.9‰ for δ15Ncol among laboratories, but an interpretatively insignificant average pairwise difference of 0.2‰ and 0.4‰ for δ13Ccol and δ15Ncol respectively. For bone hydroxyapatite the observed range increased to a troublingly large 3.5‰ for δ13Cap and 6.7‰ for δ18Oap, with average pairwise differences of 0.6‰ for δ13Cap and a disquieting 2.0‰ for δ18Oap. In order to assess the effects of preparation versus analysis on isotopic variability among laboratories, a subset of the samples prepared by the participating laboratories were analyzed a second time on the same instrument. Based on this duplicate analysis, it was determined that roughly half of the isotopic variability among laboratories could be attributed to differences in sample preparation, with the other half resulting from differences in analysis (instrumentation, working standards, and data calibration). These findings have serious implications for choices made in the preparation and extraction of target biomolecules, the comparison of results obtained from different laboratories, and the interpretation of small differences in bone collagen and hydroxyapatite isotope values. To address the issues arising from inter-laboratory comparisons, we devise a novel measure we term the Minimum Meaningful Difference (MMD), and demonstrate its application.

  17. Quantifying Inter-Laboratory Variability in Stable Isotope Analysis of Ancient Skeletal Remains

    PubMed Central

    Pestle, William J.; Crowley, Brooke E.; Weirauch, Matthew T.

    2014-01-01

    Over the past forty years, stable isotope analysis of bone (and tooth) collagen and hydroxyapatite has become a mainstay of archaeological and paleoanthropological reconstructions of paleodiet and paleoenvironment. Despite this method's frequent use across anthropological subdisciplines (and beyond), the present work represents the first attempt at gauging the effects of inter-laboratory variability engendered by differences in a) sample preparation, and b) analysis (instrumentation, working standards, and data calibration). Replicate analyses of a 14C-dated ancient human bone by twenty-one archaeological and paleoecological stable isotope laboratories revealed significant inter-laboratory isotopic variation for both collagen and carbonate. For bone collagen, we found a sizeable range of 1.8‰ for δ13Ccol and 1.9‰ for δ15Ncol among laboratories, but an interpretatively insignificant average pairwise difference of 0.2‰ and 0.4‰ for δ13Ccol and δ15Ncol respectively. For bone hydroxyapatite the observed range increased to a troublingly large 3.5‰ for δ13Cap and 6.7‰ for δ18Oap, with average pairwise differences of 0.6‰ for δ13Cap and a disquieting 2.0‰ for δ18Oap. In order to assess the effects of preparation versus analysis on isotopic variability among laboratories, a subset of the samples prepared by the participating laboratories were analyzed a second time on the same instrument. Based on this duplicate analysis, it was determined that roughly half of the isotopic variability among laboratories could be attributed to differences in sample preparation, with the other half resulting from differences in analysis (instrumentation, working standards, and data calibration). These findings have serious implications for choices made in the preparation and extraction of target biomolecules, the comparison of results obtained from different laboratories, and the interpretation of small differences in bone collagen and hydroxyapatite isotope values. To address the issues arising from inter-laboratory comparisons, we devise a novel measure we term the Minimum Meaningful Difference (MMD), and demonstrate its application. PMID:25061843

  18. Short communication: Analytical method and amount of preservative added to milk samples may alter milk urea nitrogen measurements.

    PubMed

    Weeks, Holley L; Hristov, Alexander N

    2017-02-01

    Milk urea N (MUN) is used by dairy nutritionists and producers to monitor dietary protein intake and is indicative of N utilization in lactating dairy cows. Two experiments were conducted to explore discrepancies in MUN results provided by 3 milk processing laboratories using different methods. An additional experiment was conducted to evaluate the effect of 2-bromo-2-nitropropane-1, 3-diol (bronopol) on MUN analysis. In experiment 1, 10 replicates of bulk tank milk samples, collected from the Pennsylvania State University's Dairy Center over 5 consecutive days, were sent to 3 milk processing laboratories in Pennsylvania. Average MUN differed between laboratory A (14.9 ± 0.40 mg/dL; analyzed on MilkoScan 4000; Foss, Hillerød, Denmark), laboratory B (6.5 ± 0.17 mg/dL; MilkoScan FT + 6000), and laboratory C (7.4 ± 0.36 mg/dL; MilkoScan 6000). In experiment 2, milk samples were spiked with urea at 0 (7.3 to 15.0 mg/dL, depending on the laboratory analyzing the samples), 17.2, 34.2, and 51.5 mg/dL of milk. Two 35-mL samples from each urea level were sent to the 3 laboratories used in experiment 1. Average analyzed MUN was greater than predicted (calculated for each laboratory based on the control; 0 mg of added urea): for laboratory A (23.2 vs. 21.0 mg/dL), laboratory B (18.0 vs. 13.3 mg/dL), and laboratory C (20.6 vs. 15.2 mg/dL). In experiment 3, replicated milk samples were preserved with 0 to 1.35 mg of bronopol/mL of milk and submitted to one milk processing laboratory that analyzed MUN using 2 different methods. Milk samples with increasing amounts of bronopol ranged in MUN concentration from 7.7 to 11.9 mg/dL and from 9.0 to 9.3 mg/dL when analyzed on MilkoScan 4000 or CL 10 (EuroChem, Moscow, Russia), respectively. In conclusion, measured MUN concentrations varied due to analytical procedure used by milk processing laboratories and were affected by the amount of bronopol used to preserve milk sample, when milk was analyzed using a mid-infrared analyzer. Thus, it is important to maintain consistency in milk sample preservation and analysis to ensure precision of MUN results. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. QUALITY ASSURANCE PROGRAM FOR WET DEPOSITION SAMPLING AND CHEMICAL ANALYSES FOR THE NATIONAL TRENDS NETWORK.

    USGS Publications Warehouse

    Schroder, LeRoy J.; Malo, Bernard A.; ,

    1985-01-01

    The purpose of the National Trends Network is to delineate the major inorganic constituents in the wet deposition in the United States. The approach chosen to monitor the Nation's wet deposition is to install approximately 150 automatic sampling devices with at least one collector in each state. Samples are collected at one week intervals, removed from collectors, and transported to an analytical laboratory for chemical analysis. The quality assurance program has divided wet deposition monitoring into 5 parts: (1) Sampling site selection, (2) sampling device, (3) sample container, (4) sample handling, and (5) laboratory analysis. Each of these five components is being examined using existing designs or new designs. Each existing or proposed sampling site is visited and a criteria audit is performed.

  20. 77 FR 65714 - Agency Information Collection Activities: Proposed Collection; Comments Requested:

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... Drug Samples Tested by Non-Federal (State and Local Government) Crime Laboratories ACTION: 60-Day... functions of the agency, including whether the information will have practical utility; --Evaluate the... Analysis Data on Drug Samples Tested by Non-Federal (State and Local Government) Crime Laboratories. (3...

  1. Inter-laboratory exercise on antibiotic drugs analysis in aqueous samples.

    PubMed

    Roig, B; Brogat, M; Mompelat, S; Leveque, J; Cadiere, A; Thomas, O

    2012-08-30

    An inter-laboratory exercise was organized under the PHARMAS EU project, by the Advanced School of Public Health (EHESP), in order to evaluate the performances of analytical methods for the measurement of antibiotics in waters (surface and tap). This is the first time such an exercise on antibiotics has been organized in Europe, using different kinds of analytical methods and devices. In this exercise thirteen laboratories from five countries (Canada, France, Italy, the Netherlands and Portugal) participated, and a total number of 78 samples were distributed. During the exercise, 2 testing samples (3 bottles of each) prepared from tap water and river water, respectively, spiked with antibiotics, were sent to participants and analyzed over a period of one month. A final number of 77 (98.7%) testing samples were considered. Depending on substances studied by each participant, 305 values in duplicate were collected, with the results for each sample being expressed as the target concentration. A statistical study was initiated using 611 results. The mean value, standard deviation, coefficient of variation, standard uncertainty of the mean, median, the minimum and maximum values of each series as well as the 95% confidence interval were obtained from each participant laboratory. In this exercise, 36 results (6% of accounted values) were outliers according to the distribution over the median (box plot). The outlier results were excluded. In order to establish the stability of testing samples in the course of the exercise, differences between variances obtained for every type of sample at different intervals were evaluated. The results showed no representative variations and it can be considered that all samples were stable during the exercise. The goals of this inter-laboratory study were to assess results variability when analysis is conducted by different laboratories, to evaluate the influence of different matrix samples, and to determine the rate at which participating laboratories successfully completed the tests initiated. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. EPA Contract Laboratory Program Statement of Work for Inorganic Superfund Methods Multi-Media, Multi-Concentration ISM02.3

    EPA Pesticide Factsheets

    This document contains analytical methods for the analysis of metals and cyanide in environmental samples. It also contains contractual requirements for laboratories participating in Superfund's Contract Laboratory Program.

  3. EPA Contract Laboratory Program Statement of Work for Inorganic Superfund Methods Multi-Media, Multi-Concentration ISM02.4

    EPA Pesticide Factsheets

    This document contains analytical methods for the analysis of metals and cyanide in environmental samples. It also contains contractual requirements for laboratories participating in Superfund's Contract Laboratory Program.

  4. Bridging the gap between sample collection and laboratory analysis: using dried blood spots to identify human exposure to chemical agents

    NASA Astrophysics Data System (ADS)

    Hamelin, Elizabeth I.; Blake, Thomas A.; Perez, Jonas W.; Crow, Brian S.; Shaner, Rebecca L.; Coleman, Rebecca M.; Johnson, Rudolph C.

    2016-05-01

    Public health response to large scale chemical emergencies presents logistical challenges for sample collection, transport, and analysis. Diagnostic methods used to identify and determine exposure to chemical warfare agents, toxins, and poisons traditionally involve blood collection by phlebotomists, cold transport of biomedical samples, and costly sample preparation techniques. Use of dried blood spots, which consist of dried blood on an FDA-approved substrate, can increase analyte stability, decrease infection hazard for those handling samples, greatly reduce the cost of shipping/storing samples by removing the need for refrigeration and cold chain transportation, and be self-prepared by potentially exposed individuals using a simple finger prick and blood spot compatible paper. Our laboratory has developed clinical assays to detect human exposures to nerve agents through the analysis of specific protein adducts and metabolites, for which a simple extraction from a dried blood spot is sufficient for removing matrix interferents and attaining sensitivities on par with traditional sampling methods. The use of dried blood spots can bridge the gap between the laboratory and the field allowing for large scale sample collection with minimal impact on hospital resources while maintaining sensitivity, specificity, traceability, and quality requirements for both clinical and forensic applications.

  5. Evaluation of nutrient quality-assurance data for Alexanders and Mount Rock Spring basins, Cumberland County, Pennsylvania

    USGS Publications Warehouse

    Witt, E. C.; Hippe, D.J.; Giovannitti, R.M.

    1992-01-01

    A total of 304 nutrient samples were collected from May 1990 through September 1991 to determine concentrations and loads of nutrients in water discharged from two spring basins in Cumberland County, Pa. Fifty-four percent of these nutrient samples were for the evaluation of (1) laboratory consistency, (2) container and preservative cleanliness, (3) maintenance of analyte representativeness as affected by three different preservation methods, and (4) comparison of analyte results with the "Most Probable Value" for Standard Reference Water Samples. Results of 37 duplicate analyses indicate that the Pennsylvania Department of Environmental Resources, Bureau of Laboratories (principal laboratory) remained within its ±10 percent goal for all but one analyte. Results of the blank analysis show that the sampling containers did not compromise the water quality. However, mercuric-chloride-preservation blanks apparently contained measurable ammonium in four of five samples and ammonium plus organic nitrogen in two of five samples. Interlaboratory results indicate substantial differences in the determination of nitrate and ammonium plus organic nitrogen between the principal laboratory and the U.S. Geological Survey National Water-Quality Laboratory. In comparison with the U.S. Environmental Protection Agency Quality-Control Samples, the principal laboratory was sufficiently accurate in its determination of nutrient anafytes. Analysis of replicate samples indicated that sulfuric-acid preservative best maintained the representativeness of the anafytes nitrate and ammonium plus organic nitrogen, whereas, mercuric chloride best maintained the representativeness of orthophosphate. Comparison of nutrient analyte determinations with the Most Probable Value for each preservation method shows that two of five analytes with no chemical preservative compare well, three of five with mercuric-chloride preservative compare well, and three of five with sulfuricacid preservative compare well.

  6. MICROBIAL LABORATORY GUIDANCE MANUAL FOR THE ...

    EPA Pesticide Factsheets

    The Long-Term 2 Enhanced Surface Water Treatment Rule Laboratory Instruction Manual will be a compilation of all information needed by laboratories and field personnel to collect, analyze, and report the microbiological data required under the rule. The manual will provide laboratories with a single source of information that currently is available from various sources including the latest versions of Methods 1622 and 1623, including all approved, equivalent modifications; the procedures for E.coli methods approved for use under the LT2ESWTR; lists of vendor sources; data recording forms; data reporting requirements; information on the Laboratory Quality Assurance Evaluation Program for the Analysis of Cryptosporidium in Water; and sample collection procedures. Although most of this information is available elsewhere, a single, comprehensive compendium containing this information is needed to aid utilities and laboratories performing the sampling and analysis activities required under the LT2 rule. This manual will serve as an instruction manual for laboratories to use when collecting data for Crypto, E. coli and turbidity.

  7. Fallon, Nevada FORGE Fluid Geochemistry

    DOE Data Explorer

    Blankenship, Doug; Ayling, Bridget

    2018-03-13

    Fluid geochemistry analysis for wells supporting the Fallon FORGE project. Samples were collected from geothermal wells using standard geothermal water sampling techniques, including filtration and acidification of the cation sample to pH < 2 prior to geochemical analysis. Analyses after 2005 were done in reputable commercial laboratories that follow standard protocols for aqueous chemistry analysis.

  8. Quality Assessment of Urinary Stone Analysis: Results of a Multicenter Study of Laboratories in Europe

    PubMed Central

    Siener, Roswitha; Buchholz, Noor; Daudon, Michel; Hess, Bernhard; Knoll, Thomas; Osther, Palle J.; Reis-Santos, José; Sarica, Kemal; Traxer, Olivier; Trinchieri, Alberto

    2016-01-01

    After stone removal, accurate analysis of urinary stone composition is the most crucial laboratory diagnostic procedure for the treatment and recurrence prevention in the stone-forming patient. The most common techniques for routine analysis of stones are infrared spectroscopy, X-ray diffraction and chemical analysis. The aim of the present study was to assess the quality of urinary stone analysis of laboratories in Europe. Nine laboratories from eight European countries participated in six quality control surveys for urinary calculi analyses of the Reference Institute for Bioanalytics, Bonn, Germany, between 2010 and 2014. Each participant received the same blinded test samples for stone analysis. A total of 24 samples, comprising pure substances and mixtures of two or three components, were analysed. The evaluation of the quality of the laboratory in the present study was based on the attainment of 75% of the maximum total points, i.e. 99 points. The methods of stone analysis used were infrared spectroscopy (n = 7), chemical analysis (n = 1) and X-ray diffraction (n = 1). In the present study only 56% of the laboratories, four using infrared spectroscopy and one using X-ray diffraction, fulfilled the quality requirements. According to the current standard, chemical analysis is considered to be insufficient for stone analysis, whereas infrared spectroscopy or X-ray diffraction is mandatory. However, the poor results of infrared spectroscopy highlight the importance of equipment, reference spectra and qualification of the staff for an accurate analysis of stone composition. Regular quality control is essential in carrying out routine stone analysis. PMID:27248840

  9. Quality Assessment of Urinary Stone Analysis: Results of a Multicenter Study of Laboratories in Europe.

    PubMed

    Siener, Roswitha; Buchholz, Noor; Daudon, Michel; Hess, Bernhard; Knoll, Thomas; Osther, Palle J; Reis-Santos, José; Sarica, Kemal; Traxer, Olivier; Trinchieri, Alberto

    2016-01-01

    After stone removal, accurate analysis of urinary stone composition is the most crucial laboratory diagnostic procedure for the treatment and recurrence prevention in the stone-forming patient. The most common techniques for routine analysis of stones are infrared spectroscopy, X-ray diffraction and chemical analysis. The aim of the present study was to assess the quality of urinary stone analysis of laboratories in Europe. Nine laboratories from eight European countries participated in six quality control surveys for urinary calculi analyses of the Reference Institute for Bioanalytics, Bonn, Germany, between 2010 and 2014. Each participant received the same blinded test samples for stone analysis. A total of 24 samples, comprising pure substances and mixtures of two or three components, were analysed. The evaluation of the quality of the laboratory in the present study was based on the attainment of 75% of the maximum total points, i.e. 99 points. The methods of stone analysis used were infrared spectroscopy (n = 7), chemical analysis (n = 1) and X-ray diffraction (n = 1). In the present study only 56% of the laboratories, four using infrared spectroscopy and one using X-ray diffraction, fulfilled the quality requirements. According to the current standard, chemical analysis is considered to be insufficient for stone analysis, whereas infrared spectroscopy or X-ray diffraction is mandatory. However, the poor results of infrared spectroscopy highlight the importance of equipment, reference spectra and qualification of the staff for an accurate analysis of stone composition. Regular quality control is essential in carrying out routine stone analysis.

  10. Sample registration software for process automation in the Neutron Activation Analysis (NAA) Facility in Malaysia nuclear agency

    NASA Astrophysics Data System (ADS)

    Rahman, Nur Aira Abd; Yussup, Nolida; Salim, Nazaratul Ashifa Bt. Abdullah; Ibrahim, Maslina Bt. Mohd; Mokhtar, Mukhlis B.; Soh@Shaari, Syirrazie Bin Che; Azman, Azraf B.; Ismail, Nadiah Binti

    2015-04-01

    Neutron Activation Analysis (NAA) had been established in Nuclear Malaysia since 1980s. Most of the procedures established were done manually including sample registration. The samples were recorded manually in a logbook and given ID number. Then all samples, standards, SRM and blank were recorded on the irradiation vial and several forms prior to irradiation. These manual procedures carried out by the NAA laboratory personnel were time consuming and not efficient. Sample registration software is developed as part of IAEA/CRP project on `Development of Process Automation in the Neutron Activation Analysis (NAA) Facility in Malaysia Nuclear Agency (RC17399)'. The objective of the project is to create a pc-based data entry software during sample preparation stage. This is an effective method to replace redundant manual data entries that needs to be completed by laboratory personnel. The software developed will automatically generate sample code for each sample in one batch, create printable registration forms for administration purpose, and store selected parameters that will be passed to sample analysis program. The software is developed by using National Instruments Labview 8.6.

  11. Differences in results of analyses of concurrent and split stream-water samples collected and analyzed by the US Geological Survey and the Illinois Environmental Protection Agency, 1985-91

    USGS Publications Warehouse

    Melching, C.S.; Coupe, R.H.

    1995-01-01

    During water years 1985-91, the U.S. Geological Survey (USGS) and the Illinois Environmental Protection Agency (IEPA) cooperated in the collection and analysis of concurrent and split stream-water samples from selected sites in Illinois. Concurrent samples were collected independently by field personnel from each agency at the same time and sent to the IEPA laboratory, whereas the split samples were collected by USGS field personnel and divided into aliquots that were sent to each agency's laboratory for analysis. The water-quality data from these programs were examined by means of the Wilcoxon signed ranks test to identify statistically significant differences between results of the USGS and IEPA analyses. The data sets for constituents and properties identified by the Wilcoxon test as having significant differences were further examined by use of the paired t-test, mean relative percentage difference, and scattergrams to determine if the differences were important. Of the 63 constituents and properties in the concurrent-sample analysis, differences in only 2 (pH and ammonia) were statistically significant and large enough to concern water-quality engineers and planners. Of the 27 constituents and properties in the split-sample analysis, differences in 9 (turbidity, dissolved potassium, ammonia, total phosphorus, dissolved aluminum, dissolved barium, dissolved iron, dissolved manganese, and dissolved nickel) were statistically significant and large enough to con- cern water-quality engineers and planners. The differences in concentration between pairs of the concurrent samples were compared to the precision of the laboratory or field method used. The differences in concentration between pairs of the concurrent samples were compared to the precision of the laboratory or field method used. The differences in concentration between paris of split samples were compared to the precision of the laboratory method used and the interlaboratory precision of measuring a given concentration or property. Consideration of method precision indicated that differences between concurrent samples were insignificant for all concentrations and properties except pH, and that differences between split samples were significant for all concentrations and properties. Consideration of interlaboratory precision indicated that the differences between the split samples were not unusually large. The results for the split samples illustrate the difficulty in obtaining comparable and accurate water-quality data.

  12. Inter-laboratory comparison of radiometric culture for Mycobacterium avium subsp. paratuberculosis using raw milk from known infected herds and individual dairy cattle in Victoria.

    PubMed

    Ridge, S E; Andreata, S; Jones, K; Cantlon, K; Francis, B; Florisson, N; Gwozdz, J

    2010-07-01

    To compare the results of radiometric culture conducted in three Australian laboratories for Mycobacterium avium subsp. paratuberculosis (Mptb) using bulk vat and individual animal milk samples. Milk samples were collected from 15 cows exhibiting clinical signs of Johne's disease, and subsequently confirmed as infected with Mptb, and from the bulk milk vats on 91 farms running herds known to be infected with Mptb. Each milk sample was divided into three equivalent samples and one of each of the replicates was forwarded to the three participating laboratories. The identity and nature of the samples was protected from the study collaborators. The laboratories processed the samples and undertook radiometric culture for Mptb using their standard method. Results of testing were provided to the principal investigator for collation and analysis. In total, 2 (2.2%) of 91 vat-milk samples and 8 (53.3%) of 15 individual cows' milk samples returned positive radiometric milk culture results. Only one sample, from a clinical case of Johne's disease, was identified as positive by more than one laboratory. There were differences in the absolute frequency with which Mptb was identified in the milk samples by the collaborating laboratories. Mptb was cultured from a very small percentage of Australian raw bulk milk samples sourced from known infected herds. By contrast, Mptb was successfully cultured from half of the milk samples collected from clinically affected cows. There was no statistical difference between laboratories in the proportion of vat samples or individual animal milk samples in which Mptb was detected.

  13. MASTR-MS: a web-based collaborative laboratory information management system (LIMS) for metabolomics.

    PubMed

    Hunter, Adam; Dayalan, Saravanan; De Souza, David; Power, Brad; Lorrimar, Rodney; Szabo, Tamas; Nguyen, Thu; O'Callaghan, Sean; Hack, Jeremy; Pyke, James; Nahid, Amsha; Barrero, Roberto; Roessner, Ute; Likic, Vladimir; Tull, Dedreia; Bacic, Antony; McConville, Malcolm; Bellgard, Matthew

    2017-01-01

    An increasing number of research laboratories and core analytical facilities around the world are developing high throughput metabolomic analytical and data processing pipelines that are capable of handling hundreds to thousands of individual samples per year, often over multiple projects, collaborations and sample types. At present, there are no Laboratory Information Management Systems (LIMS) that are specifically tailored for metabolomics laboratories that are capable of tracking samples and associated metadata from the beginning to the end of an experiment, including data processing and archiving, and which are also suitable for use in large institutional core facilities or multi-laboratory consortia as well as single laboratory environments. Here we present MASTR-MS, a downloadable and installable LIMS solution that can be deployed either within a single laboratory or used to link workflows across a multisite network. It comprises a Node Management System that can be used to link and manage projects across one or multiple collaborating laboratories; a User Management System which defines different user groups and privileges of users; a Quote Management System where client quotes are managed; a Project Management System in which metadata is stored and all aspects of project management, including experimental setup, sample tracking and instrument analysis, are defined, and a Data Management System that allows the automatic capture and storage of raw and processed data from the analytical instruments to the LIMS. MASTR-MS is a comprehensive LIMS solution specifically designed for metabolomics. It captures the entire lifecycle of a sample starting from project and experiment design to sample analysis, data capture and storage. It acts as an electronic notebook, facilitating project management within a single laboratory or a multi-node collaborative environment. This software is being developed in close consultation with members of the metabolomics research community. It is freely available under the GNU GPL v3 licence and can be accessed from, https://muccg.github.io/mastr-ms/.

  14. Fluorocarbon Contamination from the Drill on the Mars Science Laboratory: Potential Science Impact on Detecting Martian Organics by Sample Analysis at Mars (SAM)

    NASA Technical Reports Server (NTRS)

    Eigenbrode, J. L.; McAdam, A.; Franz, H.; Freissinet, C.; Bower, H.; Floyd, M.; Conrad, P.; Mahaffy, P.; Feldman, J.; Hurowitz, J.; hide

    2013-01-01

    Polytetrafluoroethylene (PTFE or trade name: Teflon by Dupont Co.) has been detected in rocks drilled during terrestrial testing of the Mars Science Laboratory (MSL) drilling hardware. The PTFE in sediments is a wear product of the seals used in the Drill Bit Assemblies (DBAs). It is expected that the drill assembly on the MSL flight model will also shed Teflon particles into drilled samples. One of the primary goals of the Sample Analysis at Mars (SAM) instrument suite on MSL is to test for the presence of martian organics in samples. Complications introduced by the potential presence of PTFE in drilled samples to the SAM evolved gas analysis (EGA or pyrolysisquadrupole mass spectrometry, pyr-QMS) and pyrolysis- gas chromatography mass spectrometry (Pyr- GCMS) experiments was investigated.

  15. Food adulteration analysis without laboratory prepared or determined reference food adulterant values.

    PubMed

    Kalivas, John H; Georgiou, Constantinos A; Moira, Marianna; Tsafaras, Ilias; Petrakis, Eleftherios A; Mousdis, George A

    2014-04-01

    Quantitative analysis of food adulterants is an important health and economic issue that needs to be fast and simple. Spectroscopy has significantly reduced analysis time. However, still needed are preparations of analyte calibration samples matrix matched to prediction samples which can be laborious and costly. Reported in this paper is the application of a newly developed pure component Tikhonov regularization (PCTR) process that does not require laboratory prepared or reference analysis methods, and hence, is a greener calibration method. The PCTR method requires an analyte pure component spectrum and non-analyte spectra. As a food analysis example, synchronous fluorescence spectra of extra virgin olive oil samples adulterated with sunflower oil is used. Results are shown to be better than those obtained using ridge regression with reference calibration samples. The flexibility of PCTR allows including reference samples and is generic for use with other instrumental methods and food products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Analysis of Whiskey by Dispersive Liquid-Liquid Microextraction Coupled with Gas Chromatography/Mass Spectrometry: An Upper Division Analytical Chemistry Experiment Guided by Green Chemistry

    ERIC Educational Resources Information Center

    Owens, Janel E.; Zimmerman, Laura B.; Gardner, Michael A.; Lowe, Luis E.

    2016-01-01

    Analysis of whiskey samples prepared by a green microextraction technique, dispersive liquid-liquid microextraction (DLLME), before analysis by a qualitative gas chromatography-mass spectrometry (GC/MS) method, is described as a laboratory experiment for an upper division instrumental methods of analysis laboratory course. Here, aroma compounds in…

  17. Summary Report for the Environmental Protection Agency MERL/FRMAC Mission Alignment Exercise held at the Environmental Protection Agency Facility on June 24-26 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Mark B.; Shanks, Sonoya Toyoko; Fournier, Sean Donovan

    From June 24th thru June 26th 2014, members of the Federal Radiological Monitoring and Assessment Center (FRMAC), FRMAC Fly Away Laboratory, and the Environmental Protection Agency (EPA) participated in a joint nuclear incident emergency response/round robin exercise at the EPA facility in Las Vegas, Nevada. The purpose of this exercise was to strengthen the interoperability relationship between the FRMAC Fly Away Laboratory (FAL) and the EPA Mobile Environmental Radiation Laboratory (MERL) stationed in Las Vegas, Nevada. The exercise was designed to allow for immediate delivery of pre-staged, spiked samples to the EPA MERL and the FAL for sample preparation andmore » radiological analysis. Upon completion of laboratory analysis, data was reviewed and submitted back to the FRMAC via an electronic data deliverable (EDD). In order to conduct a laboratory inter-comparison study, samples were then traded between the two laboratories and re-counted. As part of the exercise, an evaluation was conducted to identify gaps and potential areas for improvements for FRMAC, FAL and EPA operations. Additionally, noteworthy practices and potential future areas of interoperability opportunities between the FRMAC, FAL and EPA were acknowledged. The exercise also provided a unique opportunity for FRMAC personnel to observe EPA sample receipt and sample preparation processes and to gain familiarity with the MERL laboratory instrumentation and radiation detection capabilities. The areas for potential improvements and interoperability from this exercise will be critical for developing a more efficient, integrated response for future interactions between the FRMAC and EPA MERL assets.« less

  18. Cost Analysis of Various Low Pathogenic Avian Influenza Surveillance Systems in the Dutch Egg Layer Sector

    PubMed Central

    Rutten, Niels; Gonzales, José L.; Elbers, Armin R. W.; Velthuis, Annet G. J.

    2012-01-01

    Background As low pathogenic avian influenza viruses can mutate into high pathogenic viruses the Dutch poultry sector implemented a surveillance system for low pathogenic avian influenza (LPAI) based on blood samples. It has been suggested that egg yolk samples could be sampled instead of blood samples to survey egg layer farms. To support future decision making about AI surveillance economic criteria are important. Therefore a cost analysis is performed on systems that use either blood or eggs as sampled material. Methodology/Principal Findings The effectiveness of surveillance using egg or blood samples was evaluated using scenario tree models. Then an economic model was developed that calculates the total costs for eight surveillance systems that have equal effectiveness. The model considers costs for sampling, sample preparation, sample transport, testing, communication of test results and for the confirmation test on false positive results. The surveillance systems varied in sampled material (eggs or blood), sampling location (farm or packing station) and location of sample preparation (laboratory or packing station). It is shown that a hypothetical system in which eggs are sampled at the packing station and samples prepared in a laboratory had the lowest total costs (i.e. € 273,393) a year. Compared to this a hypothetical system in which eggs are sampled at the farm and samples prepared at a laboratory, and the currently implemented system in which blood is sampled at the farm and samples prepared at a laboratory have 6% and 39% higher costs respectively. Conclusions/Significance This study shows that surveillance for avian influenza on egg yolk samples can be done at lower costs than surveillance based on blood samples. The model can be used in future comparison of surveillance systems for different pathogens and hazards. PMID:22523543

  19. Performance audits and laboratory comparisons for SCOS97-NARSTO measurements of speciated volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Fujita, Eric M.; Harshfield, Gregory; Sheetz, Laurence

    Performance audits and laboratory comparisons were conducted as part of the quality assurance program for the 1997 Southern California Ozone Study (SCOS97-NARSTO) to document potential measurement biases among laboratories measuring speciated nonmethane hydrocarbons (NMHC), carbonyl compounds, halogenated compounds, and biogenic hydrocarbons. The results show that measurements of volatile organic compounds (VOC) made during SCOS97-NARSTO are generally consistent with specified data quality objectives. The hydrocarbon comparison involved nine laboratories and consisted of two sets of collocated ambient samples. The coefficients of variation among laboratories for the sum of the 55 PAM target compounds and total NMHC ranged from ±5 to 15 percent for ambient samples from Los Angeles and Azusa. Abundant hydrocarbons are consistently identified by all laboratories, but discrepancies occur for olefins greater than C 4 and for hydrocarbons greater than C 8. Laboratory comparisons for halogenated compounds and biogenic hydrocarbons consisted of both concurrent ambient sampling by different laboratories and round-robin analysis of ambient samples. The coefficients of variation among participating laboratories were about 10-20 percent. Performance audits were conducted for measurement of carbonyl compounds involving sampling from a standard mixture of carbonyl compounds. The values reported by most of the laboratories were within 10-20 percent of those of the reference laboratory. Results of field measurement comparisons showed larger variations among the laboratories ranging from 20 to 40 percent for C 1-C 3 carbonyl compounds. The greater variations observed in the field measurement comparison may reflect potential sampling artifacts, which the performance audits did not address.

  20. Determination of the anionic surfactant di(ethylhexyl) sodium sulfosuccinate in water samples collected from Gulf of Mexico coastal waters before and after landfall of oil from the Deepwater Horizon oil spill, May to October, 2010

    USGS Publications Warehouse

    Gray, James L.; Kanagy, Leslie K.; Furlong, Edward T.; McCoy, Jeff W.; Kanagy, Chris J.

    2011-01-01

    On April 22, 2010, the explosion on and subsequent sinking of the Deepwater Horizon oil drilling platform resulted in the release of crude oil into the Gulf of Mexico. At least 4.4 million barrels had been released into the Gulf of Mexico through July 15, 2010, 10 to 29 percent of which was chemically dispersed, primarily using two dispersant formulations. Initially, the dispersant Corexit 9527 was used, and when existing stocks of that formulation were exhausted, Corexit 9500 was used. Over 1.8 million gallons of the two dispersants were applied in the first 3 months after the spill. This report presents the development of an analytical method to analyze one of the primary surfactant components of both Corexit formulations, di(ethylhexyl) sodium sulfosuccinate (DOSS), the preliminary results, and the associated quality assurance/quality control (QA/QC) from samples collected from various points on the Gulf Coast between Texas and Florida. Seventy water samples and 8 field QC samples were collected before the predicted landfall of oil (pre-landfall) on the Gulf Coast, and 51 water samples and 10 field QC samples after the oil made landfall (post-landfall). Samples were collected in Teflon(Registered) bottles and stored at -20(degrees)C until analysis. Extraction of whole-water samples used sorption onto a polytetrafluoroethylene (PTFE) filter to isolate DOSS, with subsequent 50 percent methanol/water elution of the combined dissolved and particulate DOSS fractions. High-performance liquid chromatography/tandem mass spectrometry (LC/MS/MS) was used to identify and quantify DOSS by the isotope dilution method, using a custom-synthesized 13C4-DOSS labeled standard. Because of the ubiquitous presence of DOSS in laboratory reagent water, a chromatographic column was installed in the LC/MS/MS between the system pumps and the sample injector that separated this ambient background DOSS contamination from the sample DOSS, minimizing one source of blank contamination. Laboratory and field QA/QC for pre-landfall samples included laboratory reagent spike and blank samples, a total of 34 replicate analyses for the 78 environmental and field blank samples, and 11 randomly chosen laboratory matrix spike samples. Laboratory and field QA/QC for post-landfall samples included laboratory reagent spike and blank samples, a laboratory 'in-bottle' duplicate for each sample, and analysis of 24 randomly chosen laboratory matrix spike samples. Average DOSS recovery of 89(+/-)9.5 percent in all native (non-13C4-DOSS ) spikes was observed, with a mean relative percent difference between sample duplicates of 36 percent. The reporting limit for this analysis was 0.25 micrograms per liter due to blank limitations; DOSS was not detected in any samples collected in October (after oil landfall at certain study sites) above that concentration. It was detected prior to oil landfall above 0.25 micrograms per liter in 3 samples, but none exceeded the Environmental Protection Agency aquatic life criteria of 40 micrograms per liter.

  1. Mobile laboratories: An innovative and efficient solution for radiological characterization of sites under or after decommissioning.

    PubMed

    Goudeau, V; Daniel, B; Dubot, D

    2017-04-21

    During the operation and the decommissioning of a nuclear site the operator must assure the protection of the workers and the environment. It must furthermore identify and classify the various wastes, while optimizing the associated costs. At all stages of the decommissioning radiological measurements are performed to determine the initial situation, to monitor the demolition and clean-up, and to verify the final situation. Radiochemical analysis is crucial for the radiological evaluation process to optimize the clean-up operations and to the respect limits defined with the authorities. Even though these types of analysis are omnipresent in activities such as the exploitation, the monitoring, and the cleaning up of nuclear plants, some nuclear sites do not have their own radiochemical analysis laboratory. Mobile facilities can overcome this lack when nuclear facilities are dismantled, when contaminated sites are cleaned-up, or in a post-accident situation. The current operations for the characterization of radiological soils of CEA nuclear facilities, lead to a large increase of radiochemical analysis. To manage this high throughput of samples in a timely manner, the CEA has developed a new mobile laboratory for the clean-up of its soils, called SMaRT (Shelter for Monitoring and nucleAR chemisTry). This laboratory is dedicated to the preparation and the radiochemical analysis (alpha, beta, and gamma) of potentially contaminated samples. In this framework, CEA and Eichrom laboratories has signed a partnership agreement to extend the analytical capacities and bring on site optimized and validated methods for different problematic. Gamma-emitting radionuclides can usually be measured in situ as little or no sample preparation is required. Alpha and beta-emitting radionuclides are a different matter. Analytical chemistry laboratory facilities are required. Mobile and transportable laboratories equipped with the necessary tools can provide all that is needed. The main advantage of a mobile laboratory is its portability; the shelter can be placed in the vicinity of nuclear facilities under decommissioning, or of contaminated sites with infrastructures unsuitable for the reception and treatment of radioactive samples. Radiological analysis can then be performed without the disadvantages of radioactive material transport. This paper describes how this solution allows a fast response and control of costs, with a high analytical capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A proficiency testing program of hemoglobin analysis in prevention and control of severe hemoglobinopathies in Thailand.

    PubMed

    Karnpean, Rossarin; Fucharoen, Goonnapa; Pansuwan, Anupong; Changtrakul, Duangrudee; Fucharoen, Supan

    2013-06-01

    No external quality assessment program for hemoglobin (Hb) analysis in the prevention and control of thalassemia has been established in Thailand. To improve the first line provisional diagnostics, the first proficiency testing (PT) program has been established. External Hb controls prepared at our center were sent to Hb analysis laboratories all over the country. Three cycles per year were performed in 2010 and 2011. In each cycle, two control samples with corresponding hematological parameters, designated as husband and his pregnant wife were supplied for Hb analysis. Each member analyzed the control samples in their routine practices. The results of Hb analysis, laboratory interpretation and risk assessment of the expected fetus for severe thalassemia diseases targeted for prevention and control were entered into the report form and sent back to our center. Participants reports were analyzed and classified into four different quality groups; Excellent (when all the three parameters are correct), Good (correct Hb analysis and interpretation but incorrect risk assessment), Fair (correct Hb analysis but incorrect interpretation and risk assessment) and Needs improvement (incorrect Hb analysis). It was found that most participants could report correct Hb types and quantifications but some misinterpretations and risk assessments were noted. These were clearly seen when control samples with more complexity were supplied. These results indicate a further improvement is required in the laboratory interpretation and knowledge of the laboratory diagnosis of thalassemia. The established system should facilitate the prevention and control program of thalassemia in the region.

  3. Measuring Nitrification: A Laboratory Approach to Nutrient Cycling.

    ERIC Educational Resources Information Center

    Hicks, David J.

    1990-01-01

    Presented is an approach to the study of nutrient cycling in the school laboratory. Discussed are obtaining, processing, and incubating samples; extraction of ions from soil; procedures for nitrate and ammonium analysis; data analysis; an example of results; and other aspects of the nitrogen cycle. (CW)

  4. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; in-bottle acid digestion of whole-water samples

    USGS Publications Warehouse

    Hoffman, G.L.; Fishman, M. J.; Garbarino, J.R.

    1996-01-01

    Water samples for trace-metal determinations routinely have been prepared in open laboratories. For example, the U.S. Geological Survey method I-3485-85 (Extraction Procedure, for Water- Suspended Sediment) is performed in a laboratory hood on a laboratory bench without any special precautions to control airborne contamination. This method tends to be contamination prone for several trace metals primarily because the samples are transferred, acidified, digested, and filtered in an open laboratory environment. To reduce trace-metal contamination of digested water samples, procedures were established that rely on minimizing sample-transfer steps and using a class-100 clean bench during sample filtration. This new procedure involves the following steps: 1. The sample is acidified with HCl directly in the original water-sample bottle. 2. The water-sample bottle with the cap secured is heated in a laboratory oven. 3. The digestate is filtered in a class-100 laminar-flow clean bench. The exact conditions used (that is, oven temperature, time of heating, and filtration methods) for this digestion procedure are described. Comparisons between the previous U.S Geological Survey open-beaker method I-3485-85 and the new in-bottle procedure for synthetic and field-collected water samples are given. When the new procedure is used, blank concentrations for most trace metals determined are reduced significantly.

  5. Integration of next-generation sequencing in clinical diagnostic molecular pathology laboratories for analysis of solid tumours; an expert opinion on behalf of IQN Path ASBL.

    PubMed

    Deans, Zandra C; Costa, Jose Luis; Cree, Ian; Dequeker, Els; Edsjö, Anders; Henderson, Shirley; Hummel, Michael; Ligtenberg, Marjolijn Jl; Loddo, Marco; Machado, Jose Carlos; Marchetti, Antonio; Marquis, Katherine; Mason, Joanne; Normanno, Nicola; Rouleau, Etienne; Schuuring, Ed; Snelson, Keeda-Marie; Thunnissen, Erik; Tops, Bastiaan; Williams, Gareth; van Krieken, Han; Hall, Jacqueline A

    2017-01-01

    The clinical demand for mutation detection within multiple genes from a single tumour sample requires molecular diagnostic laboratories to develop rapid, high-throughput, highly sensitive, accurate and parallel testing within tight budget constraints. To meet this demand, many laboratories employ next-generation sequencing (NGS) based on small amplicons. Building on existing publications and general guidance for the clinical use of NGS and learnings from germline testing, the following guidelines establish consensus standards for somatic diagnostic testing, specifically for identifying and reporting mutations in solid tumours. These guidelines cover the testing strategy, implementation of testing within clinical service, sample requirements, data analysis and reporting of results. In conjunction with appropriate staff training and international standards for laboratory testing, these consensus standards for the use of NGS in molecular pathology of solid tumours will assist laboratories in implementing NGS in clinical services.

  6. Estimation of the Rate of Unrecognized Cross-Contamination with Mycobacterium tuberculosis in London Microbiology Laboratories

    PubMed Central

    Ruddy, M.; McHugh, T. D.; Dale, J. W.; Banerjee, D.; Maguire, H.; Wilson, P.; Drobniewski, F.; Butcher, P.; Gillespie, S. H.

    2002-01-01

    Isolates from patients with confirmed tuberculosis from London were collected over 2.5 years between 1995 and 1997. Restriction fragment length polymorphism (RFLP) analysis was performed by the international standard technique as part of a multicenter epidemiological study. A total of 2,779 samples representing 2,500 individual patients from 56 laboratories were examined. Analysis of these samples revealed a laboratory cross-contamination rate of between 0.54%, when only presumed cases of cross-contamination were considered, and 0.93%, when presumed and possible cases were counted. Previous studies suggest an extremely wide range of laboratory cross-contamination rates of between 0.1 and 65%. These data indicate that laboratory cross-contamination has not been a common problem in routine practice in the London area, but in several incidents patients did receive full courses of therapy that were probably unnecessary. PMID:12409381

  7. Automated Classification and Analysis of Non-metallic Inclusion Data Sets

    NASA Astrophysics Data System (ADS)

    Abdulsalam, Mohammad; Zhang, Tongsheng; Tan, Jia; Webler, Bryan A.

    2018-05-01

    The aim of this study is to utilize principal component analysis (PCA), clustering methods, and correlation analysis to condense and examine large, multivariate data sets produced from automated analysis of non-metallic inclusions. Non-metallic inclusions play a major role in defining the properties of steel and their examination has been greatly aided by automated analysis in scanning electron microscopes equipped with energy dispersive X-ray spectroscopy. The methods were applied to analyze inclusions on two sets of samples: two laboratory-scale samples and four industrial samples from a near-finished 4140 alloy steel components with varying machinability. The laboratory samples had well-defined inclusions chemistries, composed of MgO-Al2O3-CaO, spinel (MgO-Al2O3), and calcium aluminate inclusions. The industrial samples contained MnS inclusions as well as (Ca,Mn)S + calcium aluminate oxide inclusions. PCA could be used to reduce inclusion chemistry variables to a 2D plot, which revealed inclusion chemistry groupings in the samples. Clustering methods were used to automatically classify inclusion chemistry measurements into groups, i.e., no user-defined rules were required.

  8. Auditing of chromatographic data.

    PubMed

    Mabie, J T

    1998-01-01

    During a data audit, it is important to ensure that there is clear documentation and an audit trail. The Quality Assurance Unit should review all areas, including the laboratory, during the conduct of the sample analyses. The analytical methodology that is developed should be documented prior to sample analyses. This is an important document for the auditor, as it is the instrumental piece used by the laboratory personnel to maintain integrity throughout the process. It is expected that this document will give insight into the sample analysis, run controls, run sequencing, instrument parameters, and acceptance criteria for the samples. The sample analysis and all supporting documentation should be audited in conjunction with this written analytical method and any supporting Standard Operating Procedures to ensure the quality and integrity of the data.

  9. Turbidimetric Analysis of Water and Wastewater Samples Using a Spectrofluorimeter

    NASA Astrophysics Data System (ADS)

    Evans, Jason J.

    2000-12-01

    As student interest in environmental science grows, many colleges and universities are developing new courses in environmental chemistry. Environmental analysis in the "real world" has become increasingly instrumental, and it is important to introduce students to the instruments and procedures that are commonly used in environmental laboratories. Turbidimetric analysis of water and wastewater is ordinarily performed in environmental laboratories using a nephelometer. This experiment illustrates that a spectrofluorimeter can be successfully employed for these types of analysis. Samples from various stages of the water and wastewater treatment processes were collected from the Carlisle Water and Wastewater Treatment Plants. The students in our Environmental Chemistry laboratory used the spectrofluorimeter to measure the scattering intensity from the samples and from a series of formazine standards. The standard curve produced from their data gave a correlation coefficient of .999, and the detection limit was 0.03 Standard Turbidity Units, which is sufficient to obtain meaningful data on most water samples. This experiment was an excellent supplement to lecture material covering water and wastewater treatment because the students were able to monitor the level of suspended particulates in the water as it makes its way through the treatment plants.

  10. Nitrate Waste Treatment Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil-Holterman, Luciana R.; Martinez, Patrick Thomas; Garcia, Terrence Kerwin

    2017-07-05

    This plan is designed to outline the collection and analysis of nitrate salt-bearing waste samples required by the New Mexico Environment Department- Hazardous Waste Bureau in the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit (Permit).

  11. Performance of laboratories analysing welding fume on filter samples: results from the WASP proficiency testing scheme.

    PubMed

    Stacey, Peter; Butler, Owen

    2008-06-01

    This paper emphasizes the need for occupational hygiene professionals to require evidence of the quality of welding fume data from analytical laboratories. The measurement of metals in welding fume using atomic spectrometric techniques is a complex analysis often requiring specialist digestion procedures. The results from a trial programme testing the proficiency of laboratories in the Workplace Analysis Scheme for Proficiency (WASP) to measure potentially harmful metals in several different types of welding fume showed that most laboratories underestimated the mass of analyte on the filters. The average recovery was 70-80% of the target value and >20% of reported recoveries for some of the more difficult welding fume matrices were <50%. This level of under-reporting has significant implications for any health or hygiene studies of the exposure of welders to toxic metals for the types of fumes included in this study. Good laboratories' performance measuring spiked WASP filter samples containing soluble metal salts did not guarantee good performance when measuring the more complex welding fume trial filter samples. Consistent rather than erratic error predominated, suggesting that the main analytical factor contributing to the differences between the target values and results was the effectiveness of the sample preparation procedures used by participating laboratories. It is concluded that, with practice and regular participation in WASP, performance can improve over time.

  12. Uncertainties in stormwater runoff data collection from a small urban catchment, Southeast China.

    PubMed

    Huang, Jinliang; Tu, Zhenshun; Du, Pengfei; Lin, Jie; Li, Qingsheng

    2010-01-01

    Monitoring data are often used to identify stormwater runoff characteristics and in stormwater runoff modelling without consideration of their inherent uncertainties. Integrated with discrete sample analysis and error propagation analysis, this study attempted to quantify the uncertainties of discrete chemical oxygen demand (COD), total suspended solids (TSS) concentration, stormwater flowrate, stormwater event volumes, COD event mean concentration (EMC), and COD event loads in terms of flow measurement, sample collection, storage and laboratory analysis. The results showed that the uncertainties due to sample collection, storage and laboratory analysis of COD from stormwater runoff are 13.99%, 19.48% and 12.28%. Meanwhile, flow measurement uncertainty was 12.82%, and the sample collection uncertainty of TSS from stormwater runoff was 31.63%. Based on the law of propagation of uncertainties, the uncertainties regarding event flow volume, COD EMC and COD event loads were quantified as 7.03%, 10.26% and 18.47%.

  13. Analysis of 85Kr: a comparison at the 10-14 level using micro-liter samples

    PubMed Central

    Yang, G. -M.; Cheng, C. -F.; Jiang, W.; Lu, Z. -T.; Purtschert, R.; Sun, Y. -R.; Tu, L. -Y.; Hu, S. -M.

    2013-01-01

    The isotopic abundance of 85Kr in the atmosphere, currently at the level of 10−11, has increased by orders of magnitude since the dawn of nuclear age. With a half-life of 10.76 years, 85Kr is of great interest as tracers for environmental samples such as air, groundwater and ice. Atom Trap Trace Analysis (ATTA) is an emerging method for the analysis of rare krypton isotopes at isotopic abundance levels as low as 10−14 using krypton gas samples of a few micro-liters. Both the reliability and reproducibility of the method are examined in the present study by an inter-comparison among different instruments. The 85Kr/Kr ratios of 12 samples, in the range of 10−13 to 10−10, are measured independently in three laboratories: a low-level counting laboratory in Bern, Switzerland, and two ATTA laboratories, one in Hefei, China, and another in Argonne, USA. The results are in agreement at the precision level of 5%. PMID:23549244

  14. 9 CFR 439.51 - Probation of accreditation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ACCREDITATION OF NON-FEDERAL CHEMISTRY LABORATORIES § 439.51 Probation of accreditation. Upon a determination by the Administrator, a laboratory will be placed on probation for the following reasons: (a) If the laboratory fails to complete more than one interlaboratory accreditation maintenance check sample analysis as...

  15. About Rubella (German Measles, Three-Day Measles)

    MedlinePlus

    ... Professionals Pregnancy and Rubella Rubella Vaccination Travelers’ Health Information on Rubella Laboratory Testing CDC Laboratory Testing & Procedures Serology RNA Detection Genetic Analysis Specimen Collection, Storage, & Shipment Sample Submission Q&A ...

  16. Rubella (German Measles, Three-Day Measles) Photos

    MedlinePlus

    ... Professionals Pregnancy and Rubella Rubella Vaccination Travelers’ Health Information on Rubella Laboratory Testing CDC Laboratory Testing & Procedures Serology RNA Detection Genetic Analysis Specimen Collection, Storage, & Shipment Sample Submission Q&A ...

  17. Sputum color: potential implications for clinical practice.

    PubMed

    Johnson, Allen L; Hampson, David F; Hampson, Neil B

    2008-04-01

    Respiratory infections with sputum production are a major reason for physician visits, diagnostic testing, and antibiotic prescription in the United States. We sought to determine whether the simple characteristic of sputum color provides information that impacts resource utilization such as laboratory testing and prescription of antibiotics. Out-patient sputum samples submitted to the microbiology laboratory for routine analysis were assigned to one of 8 color categories (green, yellow-green, rust, yellow, red, cream, white, and clear), based on a key made from paint chip color samples. Subsequent Gram stain and culture results were compared to sputum color. Of 289 consecutive samples, 144 (50%) met standard Gram-stain criteria for being acceptable lower-respiratory-tract specimens. In the acceptable Gram-stain group, 60 samples had a predominant organism on Gram stain, and the culture yielded a consistent result in 42 samples (15% of the 289 total specimens). Yield at each level of analysis differed greatly by color. The yield from sputum colors green, yellow-green, yellow, and rust was much higher than the yield from cream, white, or clear. If out-patient sputum is cream, white, or clear, the yield from bacteriologic analysis is extremely low. This information can reduce laboratory processing costs and help minimize unnecessary antibiotic prescription.

  18. QADATA user's manual; an interactive computer program for the retrieval and analysis of the results from the external blind sample quality- assurance project of the U.S. Geological Survey

    USGS Publications Warehouse

    Lucey, K.J.

    1990-01-01

    The U.S. Geological Survey conducts an external blind sample quality assurance project for its National Water Quality Laboratory in Denver, Colorado, based on the analysis of reference water samples. Reference samples containing selected inorganic and nutrient constituents are disguised as environmental samples at the Survey 's office in Ocala, Florida, and are sent periodically through other Survey offices to the laboratory. The results of this blind sample project indicate the quality of analytical data produced by the laboratory. This report provides instructions on the use of QADATA, an interactive, menu-driven program that allows users to retrieve the results of the blind sample quality- assurance project. The QADATA program, which is available on the U.S. Geological Survey 's national computer network, accesses a blind sample data base that contains more than 50,000 determinations from the last five water years for approximately 40 constituents at various concentrations. The data can be retrieved from the database for any user- defined time period and for any or all available constituents. After the user defines the retrieval, the program prepares statistical tables, control charts, and precision plots and generates a report which can be transferred to the user 's office through the computer network. A discussion of the interpretation of the program output is also included. This quality assurance information will permit users to document the quality of the analytical results received from the laboratory. The blind sample data is entered into the database within weeks after being produced by the laboratory and can be retrieved to meet the needs of specific projects or programs. (USGS)

  19. Measuring molecular biomarkers in epidemiologic studies: laboratory techniques and biospecimen considerations.

    PubMed

    Erickson, Heidi S

    2012-09-28

    The future of personalized medicine depends on the ability to efficiently and rapidly elucidate a reliable set of disease-specific molecular biomarkers. High-throughput molecular biomarker analysis methods have been developed to identify disease risk, diagnostic, prognostic, and therapeutic targets in human clinical samples. Currently, high throughput screening allows us to analyze thousands of markers from one sample or one marker from thousands of samples and will eventually allow us to analyze thousands of markers from thousands of samples. Unfortunately, the inherent nature of current high throughput methodologies, clinical specimens, and cost of analysis is often prohibitive for extensive high throughput biomarker analysis. This review summarizes the current state of high throughput biomarker screening of clinical specimens applicable to genetic epidemiology and longitudinal population-based studies with a focus on considerations related to biospecimens, laboratory techniques, and sample pooling. Copyright © 2012 John Wiley & Sons, Ltd.

  20. A guide for the laboratory information management system (LIMS) for light stable isotopes--Versions 7 and 8

    USGS Publications Warehouse

    Coplen, Tyler B.

    2000-01-01

    The reliability and accuracy of isotopic data can be improved by utilizing database software to (i) store information about samples, (ii) store the results of mass spectrometric isotope-ratio analyses of samples, (iii) calculate analytical results using standardized algorithms stored in a database, (iv) normalize stable isotopic data to international scales using isotopic reference materials, and (v) generate multi-sheet paper templates for convenient sample loading of automated mass-spectrometer sample preparation manifolds. Such a database program, the Laboratory Information Management System (LIMS) for Light Stable Isotopes, is presented herein. Major benefits of this system include (i) a dramatic improvement in quality assurance, (ii) an increase in laboratory efficiency, (iii) a reduction in workload due to the elimination or reduction of retyping of data by laboratory personnel, and (iv) a decrease in errors in data reported to sample submitters. Such a database provides a complete record of when and how often laboratory reference materials have been analyzed and provides a record of what correction factors have been used through time. It provides an audit trail for laboratories. LIMS for Light Stable Isotopes is available for both Microsoft Office 97 Professional and Microsoft Office 2000 Professional as versions 7 and 8, respectively. Both source code (mdb file) and precompiled executable files (mde) are available. Numerous improvements have been made for continuous flow isotopic analysis in this version (specifically 7.13 for Microsoft Access 97 and 8.13 for Microsoft Access 2000). It is much easier to import isotopic results from Finnigan ISODAT worksheets, even worksheets on which corrections for amount of sample (linearity corrections) have been added. The capability to determine blank corrections using isotope mass balance from analyses of elemental analyzer samples has been added. It is now possible to calculate and apply drift corrections to isotopic data based on the time of day of analysis. Whereas Finnigan ISODAT software is confined to using only a single peak for calculating delta values, LIMS now enables one to use the mean of two or more reference injections during a continuous flow analysis to calculate delta values. This is useful with Finnigan?s GasBench II online sample preparation system. Concentrations of carbon, nitrogen, and sulfur can be calculated based one or more isotopic reference materials analyzed with a group of samples. Both sample data and isotopic analysis data can now be exported to Excel files. A calculator for determining the amount of sample needed for isotopic analysis based on a previous amount of sample and continuous flow area is now an integral part of LIMS for Light Stable Isotopes. LIMS for Light Stable Isotopes can now assign an error code to Finnigan elemental analyzer analyses in which one of the electrometers has saturated due to analysis of too much sample material, giving rise to incorrect isotopic abundances. Information on downloading this report and downloading code and databases is provided at the Internet addresses: http://water.usgs.gov/software/geochemical.html or http://www.geogr.uni-jena.de/software/geochemical.html in the Eastern Hemisphere.

  1. Determination of twenty-nine elements in eight argonne premium coal samples by instrumental neutron activation analysis

    USGS Publications Warehouse

    Palmer, C.A.

    1990-01-01

    Twenty-nine elements have been determined in triplicate splits of the eight Argonne National Laboratory Premium Coal Samples by instrumental neutron activtaion analysis. Data for control samples NBS 1633 (fly ash) and NBS 1632b are also reported. The factors that could lead to errors in analysis for these samples, such as spectral overlaps, low sensitivity, and interfering nuclear reactions, are discussed.

  2. Underwater Sediment Sampling Research

    DTIC Science & Technology

    2017-01-01

    resolved through further experimentation . Underwater Sediment Sampling Research vi UNCLAS//Public | CG-926 RDC | A. Hanson, et al. Public...Chemical Oceanographer, and In situ Chemical Analysis Subject Matter Expert (SME). 2 LABORATORY TEST SET UP The experimental research and laboratory... methodology involved using a fluorescence oil sensor (Turner Designs Cyclops-7) to measure the TPH contained in the interstitial waters (i.e., pore

  3. The procedures manual of the Environmental Measurements Laboratory. Volume 2, 28. edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chieco, N.A.

    1997-02-01

    This report contains environmental sampling and analytical chemistry procedures that are performed by the Environmental Measurements Laboratory. The purpose of environmental sampling and analysis is to obtain data that describe a particular site at a specific point in time from which an evaluation can be made as a basis for possible action.

  4. Application of rapid onsite PCR (TaqMan) for Phytophthora ramorum under U.S. conditions

    Treesearch

    Kelvin Hughes; Jenny Tomlinson; Neil Boonham; Kelly Ivors; Matteo Garbelotto; Ian Barker

    2006-01-01

    Currently, diagnosis of Phytophthora ramorum involves sending samples to a laboratory for traditional isolation and morphological characterisation, and/or PCR analysis. This can take as long as 2 weeks from sampling to final diagnosis. However, the Plant Health Group, Central Science Laboratory, has produced on-site DNA extraction and real-time PCR (...

  5. Moving your laboratories to the field--Advantages and limitations of the use of field portable instruments in environmental sample analysis.

    PubMed

    Gałuszka, Agnieszka; Migaszewski, Zdzisław M; Namieśnik, Jacek

    2015-07-01

    The recent rapid progress in technology of field portable instruments has increased their applications in environmental sample analysis. These instruments offer a possibility of cost-effective, non-destructive, real-time, direct, on-site measurements of a wide range of both inorganic and organic analytes in gaseous, liquid and solid samples. Some of them do not require the use of reagents and do not produce any analytical waste. All these features contribute to the greenness of field portable techniques. Several stationary analytical instruments have their portable versions. The most popular ones include: gas chromatographs with different detectors (mass spectrometer (MS), flame ionization detector, photoionization detector), ultraviolet-visible and near-infrared spectrophotometers, X-ray fluorescence spectrometers, ion mobility spectrometers, electronic noses and electronic tongues. The use of portable instruments in environmental sample analysis gives a possibility of on-site screening and a subsequent selection of samples for routine laboratory analyses. They are also very useful in situations that require an emergency response and for process monitoring applications. However, quantification of results is still problematic in many cases. The other disadvantages include: higher detection limits and lower sensitivity than these obtained in laboratory conditions, a strong influence of environmental factors on the instrument performance and a high possibility of sample contamination in the field. This paper reviews recent applications of field portable instruments in environmental sample analysis and discusses their analytical capabilities. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. ALVEOLAR BREATH SAMPLING AND ANALYSIS IN HUMAN EXPOSURE ASSESSMENT STUDIES

    EPA Science Inventory

    Alveolar breath sampling and analysis can be extremely useful in exposure assessment studies involving volatile organic compounds (VOCs). Over recent years scientists from the EPA's National Exposure Research Laboratory have developed and refined an alveolar breath collection ...

  7. Sample registration software for process automation in the Neutron Activation Analysis (NAA) Facility in Malaysia nuclear agency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Nur Aira Abd, E-mail: nur-aira@nuclearmalaysia.gov.my; Yussup, Nolida; Ibrahim, Maslina Bt. Mohd

    Neutron Activation Analysis (NAA) had been established in Nuclear Malaysia since 1980s. Most of the procedures established were done manually including sample registration. The samples were recorded manually in a logbook and given ID number. Then all samples, standards, SRM and blank were recorded on the irradiation vial and several forms prior to irradiation. These manual procedures carried out by the NAA laboratory personnel were time consuming and not efficient. Sample registration software is developed as part of IAEA/CRP project on ‘Development of Process Automation in the Neutron Activation Analysis (NAA) Facility in Malaysia Nuclear Agency (RC17399)’. The objective ofmore » the project is to create a pc-based data entry software during sample preparation stage. This is an effective method to replace redundant manual data entries that needs to be completed by laboratory personnel. The software developed will automatically generate sample code for each sample in one batch, create printable registration forms for administration purpose, and store selected parameters that will be passed to sample analysis program. The software is developed by using National Instruments Labview 8.6.« less

  8. Using Phylogenetic Analysis to Detect Market Substitution of Atlantic Salmon for Pacific Salmon: An Introductory Biology Laboratory Experiment

    ERIC Educational Resources Information Center

    Cline, Erica; Gogarten, Jennifer

    2012-01-01

    We describe a laboratory exercise developed for the cell and molecular biology quarter of a year-long majors' undergraduate introductory biology sequence. In an analysis of salmon samples collected by students in their local stores and restaurants, DNA sequencing and phylogenetic analysis were used to detect market substitution of Atlantic salmon…

  9. About Region 8’s Central Regional Laboratory

    EPA Pesticide Factsheets

    The Region 8 laboratory plays a critical role in protecting people's health and the environment through the analysis of air, water, soil, and biota samples (plant, fish, and occasionally, mammalian tissue).

  10. Field and Laboratory Application of a Gas Chromatograph Low Thermal Mass Resistively Heated Column System in Detecting Traditional and Non-Traditional Chemical Warfare Agents Using Solid Phase Micro-Extraction

    DTIC Science & Technology

    2005-02-01

    followed by extensive sample preparation procedures that are performed in a laboratory. Analysis is typically conducted by injecting a liquid or gas sample...Alfentanil, Remifentanil , Sufentanil, and Carfentanil) in a laboratory. (5) Quantitatively determine a maximum temperature ramping rate at which the LTM...RHT Column combined with a GC-MS can separate and analyze a mixture of non- traditional CWAs (i.e. Fentanyl, Alfentanil, Remifentanil , Sufentanil

  11. Combining US and Brazilian microsatellite data for a meta-analysis of sheep (Ovis aries) breed diversity: facilitating the FAO Global Plan of Action for Conserving Animal Genetic Resources.

    PubMed

    Paiva, Samuel Rezende; Mariante, Arthur da Silva; Blackburn, Harvey D

    2011-01-01

    Microsatellites are commonly used to understand genetic diversity among livestock populations. Nevertheless, most studies have involved the processing of samples in one laboratory or with common standards across laboratories. Our objective was to identify an approach to facilitate the merger of microsatellite data for cross-country comparison of genetic resources when samples were not evaluated in a single laboratory. Eleven microsatellites were included in the analysis of 13 US and 9 Brazilian sheep breeds (N = 706). A Bayesian approach was selected and evaluated with and without a shared set of samples analyzed by each country. All markers had a posterior probability of greater than 0.5, which was higher than predicted as reasonable by the software used. Sensitivity analysis indicated no difference between results with or without shared samples. Cluster analysis showed breeds to be partitioned by functional groups of hair, meat, or wool types (K = 7 and 12 of STRUCTURE). Cross-country comparison of hair breeds indicated substantial genetic distances and within breed variability. The selected approach can facilitate the merger and analysis of microsatellite data for cross-country comparison and extend the utility of previously collected molecular markers. In addition, the result of this type of analysis can be used in new and existing conservation programs.

  12. Laboratory Spectrometer for Wear Metal Analysis of Engine Lubricants.

    DTIC Science & Technology

    1986-04-01

    analysis, the acid digestion technique for sample pretreatment is the best approach available to date because of its relatively large sample size (1000...microliters or more). However, this technique has two major shortcomings limiting its application: (1) it requires the use of hydrofluoric acid (a...accuracy. Sample preparation including filtration or acid digestion may increase analysis times by 20 minutes or more. b. Repeatability In the analysis

  13. Quality-Assurance Data for Routine Water Analyses by the U.S. Geological Survey Laboratory in Troy, New York - July 2005 through June 2007

    USGS Publications Warehouse

    Lincoln, Tricia A.; Horan-Ross, Debra A.; McHale, Michael R.; Lawrence, Gregory B.

    2009-01-01

    The laboratory for analysis of low-ionic-strength water at the U.S. Geological Survey (USGS) Water Science Center in Troy, N.Y., analyzes samples collected by USGS projects throughout the Northeast. The laboratory's quality-assurance program is based on internal and interlaboratory quality-assurance samples and quality-control procedures that were developed to ensure proper sample collection, processing, and analysis. The quality-assurance and quality-control data were stored in the laboratory's Lab Master data-management system, which provides efficient review, compilation, and plotting of data. This report presents and discusses results of quality-assurance and quality control samples analyzed from July 2005 through June 2007. Results for the quality-control samples for 19 analytical procedures were evaluated for bias and precision. Control charts indicate that data for eight of the analytical procedures were occasionally biased for either high-concentration or low-concentration samples but were within control limits; these procedures were: total aluminum, calcium, magnesium, nitrate (colorimetric method), potassium, silicon, sodium, and sulfate. Eight of the analytical procedures were biased throughout the analysis period for the high-concentration sample, but were within control limits; these procedures were: total aluminum, calcium, dissolved organic carbon, chloride, nitrate (ion chromatograph), potassium, silicon, and sulfate. The magnesium and pH procedures were biased throughout the analysis period for the low-concentration sample, but were within control limits. The acid-neutralizing capacity, total monomeric aluminum, nitrite, and specific conductance procedures were biased for the high-concentration and low-concentration samples, but were within control limits. Results from the filter-blank and analytical-blank analyses indicated that the procedures for 16 of 17 analytes were within control limits, although the concentrations for blanks were occasionally outside the control limits. The data-quality objective was not met for dissolved organic carbon. Sampling and analysis precision are evaluated herein in terms of the coefficient of variation obtained for triplicate samples in the procedures for 18 of the 21 analytes. At least 93 percent of the samples met data-quality objectives for all analytes except acid-neutralizing capacity (85 percent of samples met objectives), total monomeric aluminum (83 percent of samples met objectives), total aluminum (85 percent of samples met objectives), and chloride (85 percent of samples met objectives). The ammonium and total dissolved nitrogen did not meet the data-quality objectives. Results of the USGS interlaboratory Standard Reference Sample (SRS) Project met the Troy Laboratory data-quality objectives for 87 percent of the samples analyzed. The P-sample (low-ionic-strength constituents) analysis had two outliers each in two studies. The T-sample (trace constituents) analysis and the N-sample (nutrient constituents) analysis had one outlier each in two studies. Results of Environment Canada's National Water Research Institute (NWRI) program indicated that at least 85 percent of the samples met data-quality objectives for 11 of the 14 analytes; the exceptions were acid-neutralizing capacity, total aluminum and ammonium. Data-quality objectives were not met in 41 percent of samples analyzed for acid-neutralizing capacity, 50 percent of samples analyzed for total aluminum, and 44 percent of samples analyzed for ammonium. Results from blind reference-sample analyses indicated that data-quality objectives were met by at least 86 percent of the samples analyzed for calcium, magnesium, pH, potassium, and sodium. Data-quality objectives were met by 76 percent of the samples analyzed for chloride, 80 percent of the samples analyzed for specific conductance, and 77 percent of the samples analyzed for sulfate.

  14. Capillary Electrophoresis Analysis of Cations in Water Samples: An Experiment for the Introductory Laboratory

    ERIC Educational Resources Information Center

    Pursell, Christopher J.; Chandler, Bert; Bushey, Michelle M.

    2004-01-01

    Capillary electrophoresis is gradually working its way into the undergraduate laboratory curriculum. Typically, experiments utilizing this newer technology have been introduced into analytical or instrumental courses. The authors of this article have introduced an experiment into the introductory laboratory that utilizes capillary electrophoresis…

  15. Application of automation and information systems to forensic genetic specimen processing.

    PubMed

    Leclair, Benoît; Scholl, Tom

    2005-03-01

    During the last 10 years, the introduction of PCR-based DNA typing technologies in forensic applications has been highly successful. This technology has become pervasive throughout forensic laboratories and it continues to grow in prevalence. For many criminal cases, it provides the most probative evidence. Criminal genotype data banking and victim identification initiatives that follow mass-fatality incidents have benefited the most from the introduction of automation for sample processing and data analysis. Attributes of offender specimens including large numbers, high quality and identical collection and processing are ideal for the application of laboratory automation. The magnitude of kinship analysis required by mass-fatality incidents necessitates the application of computing solutions to automate the task. More recently, the development activities of many forensic laboratories are focused on leveraging experience from these two applications to casework sample processing. The trend toward increased prevalence of forensic genetic analysis will continue to drive additional innovations in high-throughput laboratory automation and information systems.

  16. Biomass Compositional Analysis Laboratory Procedures | Bioenergy | NREL

    Science.gov Websites

    Compositional Analysis This procedure describes methods for sample drying and size reduction, obtaining samples methods used to determine the amount of solids or moisture present in a solid or slurry biomass sample as values? We have found that neutral detergent fiber (NDF) and acid detergent fiber (ADF) methods report

  17. Forensic Analysis of Canine DNA Samples in the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Carson, Tobin M.; Bradley, Sharonda Q.; Fekete, Brenda L.; Millard, Julie T.; LaRiviere, Frederick J.

    2009-01-01

    Recent advances in canine genomics have allowed the development of highly distinguishing methods of analysis for both nuclear and mitochondrial DNA. We describe a laboratory exercise suitable for an undergraduate biochemistry course in which the polymerase chain reaction is used to amplify hypervariable regions of DNA from dog hair and saliva…

  18. Microfluidic Gel Electrophoresis in the Undergraduate Laboratory Applied to Food Analysis

    ERIC Educational Resources Information Center

    Chao, Tzu-Chiao; Bhattacharya, Sanchari; Ros, Alexandra

    2012-01-01

    A microfluidics-based laboratory experiment for the analysis of DNA fragments in an analytical undergraduate course is presented. The experiment is set within the context of food species identification via amplified DNA fragments. The students are provided with berry samples from which they extract DNA and perform polymerase chain reaction (PCR)…

  19. 7 CFR 91.38 - Additional fees for appeal of analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... LABORATORY TESTING PROGRAMS SERVICES AND GENERAL INFORMATION Fees and Charges § 91.38 Additional fees for appeal of analysis. (a) The applicant for appeal sample testing will be charged a fee at the hourly rate for laboratory service that appears in this paragraph. The new fiscal year for Science and Technology...

  20. 7 CFR 91.38 - Additional fees for appeal of analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... LABORATORY TESTING PROGRAMS SERVICES AND GENERAL INFORMATION Fees and Charges § 91.38 Additional fees for appeal of analysis. (a) The applicant for appeal sample testing will be charged a fee at the hourly rate for laboratory service that appears in this paragraph. The new fiscal year for Science and Technology...

  1. 7 CFR 91.38 - Additional fees for appeal of analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... LABORATORY TESTING PROGRAMS SERVICES AND GENERAL INFORMATION Fees and Charges § 91.38 Additional fees for appeal of analysis. (a) The applicant for appeal sample testing will be charged a fee at the hourly rate for laboratory service that appears in this paragraph. The new fiscal year for Science and Technology...

  2. Formation and retention of methane in coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seamsmore » and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.« less

  3. Formation and retention of methane in coal. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seamsmore » and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.« less

  4. Results and analysis of saltstone cores taken from saltstone disposal unit cell 2A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigel, M. M.; Hill, K. A.

    2016-03-01

    As part of an ongoing Performance Assessment (PA) Maintenance Plan, Savannah River Remediation (SRR) has developed a sampling and analyses strategy to facilitate the comparison of field-emplaced samples (i.e., saltstone placed and cured in a Saltstone Disposal Unit (SDU)) with samples prepared and cured in the laboratory. The primary objectives of the Sampling and Analyses Plan (SAP) are; (1) to demonstrate a correlation between the measured properties of laboratory-prepared, simulant samples (termed Sample Set 3), and the field-emplaced saltstone samples (termed Sample Set 9), and (2) to validate property values assumed for the Saltstone Disposal Facility (SDF) PA modeling. Themore » analysis and property data for Sample Set 9 (i.e. six core samples extracted from SDU Cell 2A (SDU2A)) are documented in this report, and where applicable, the results are compared to the results for Sample Set 3. Relevant properties to demonstrate the aforementioned objectives include bulk density, porosity, saturated hydraulic conductivity (SHC), and radionuclide leaching behavior.« less

  5. Procedures, Requirements and Challenges Associated with Analysis of Environmental Samples for Chemical Warfare Material (CWM)

    DTIC Science & Technology

    2012-03-29

    DOD Environmental Monitoring Data Quality (EMDQ) Workshop John Schwarz, Laboratory Manager; Environmental Monitoring Laboratory ( EML ) March 29, 2012...Center (ECBC),Environmental Monitoring Laboratory ( EML ),5183 Blackhawk RD,Aberdeen Proving Ground,MD,21010-5424 8. PERFORMING ORGANIZATION REPORT...Biological Applications and Risk Reduction (CBARR) Environmental Monitoring Laboratory ( EML ) Approved for Public Release Environmental Monitoring

  6. Avian toxicologic diagnosis

    USGS Publications Warehouse

    Sigurdson, C.J.; Franson, J.C.; Fudge, A.M.

    2000-01-01

    This chapter describes the sources and pathophysiology of some potential poisons that affect birds and summarizes useful laboratory tests. The diagnosis of poisoning in birds, as in mammals, requires a complete and accurate history, careful observation of clinical signs, and a thorough necropsy evaluation. Appropriate sample handling and analysis, based on consultation with the diagnostic toxicologist, are critical (Table 19--1). Veterinary toxicology laboratories are becoming increasingly specialized, with only certain laboratories capable of analyzing for drug residues or anticoagulants, for example. Although a local laboratory may not be able to fulfill a specific test request, they may recommend an alternative laboratory or may be willing to forward the sample. As a general rule in suspect poisoning cases, large tissue samples of liver, kidney, brain, and subcutaneous fat and of crop, proventriculus, and ventriculus contents should be collected at necropsy and frozen. Appropriate samples should be submitted frozen, with the remainder held in the freezer for possible later testing. A second set of tissues should be placed in 10% formalin for histopathologic examination.

  7. Interpretation of standard leaching test BS EN 12457-2: is your sample hazardous or inert?

    PubMed

    Zandi, Mohammad; Russell, Nigel V; Edyvean, Robert G J; Hand, Russell J; Ward, Philip

    2007-12-01

    A slag sample from a lead refiner has been obtained and given to two analytical laboratories to determine the release of trace elements from the sample according to BS EN 12457-2. Samples analysed by one laboratory passed waste acceptance criteria, leading it to be classified as an inert material; samples of the same material analysed by the other laboratory failed waste acceptance criteria and were classified as hazardous. It was found that the sample preparation procedure is the critical step in the leaching analysis and that the effects of particle size on leachability should be taken into account when using this standard. The purpose of this paper is to open a debate on designing a better defined standard leaching test and making current waste acceptance criteria more flexible.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, J.A.; Clauss, S.A.; Grant, K.E.

    The objectives of this task are to develop and document extraction and analysis methods for organics in waste tanks, and to extend these methods to the analysis of actual core samples to support the Waste Tank organic Safety Program. This report documents progress at Pacific Northwest Laboratory (a) during FY 1994 on methods development, the analysis of waste from Tank 241-C-103 (Tank C-103) and T-111, and the transfer of documented, developed analytical methods to personnel in the Analytical Chemistry Laboratory (ACL) and 222-S laboratory. This report is intended as an annual report, not a completed work.

  9. Intraoral laser welding: ultrastructural and mechanical analysis to compare laboratory laser and dental laser.

    PubMed

    Fornaini, Carlo; Passaretti, Francesca; Villa, Elena; Rocca, Jean-Paul; Merigo, Elisabetta; Vescovi, Paolo; Meleti, Marco; Manfredi, Maddalena; Nammour, Samir

    2011-07-01

    The Nd:YAG laser has been used since 1970 in dental laboratories to weld metals on dental prostheses. Recently in several clinical cases, we have suggested that the Nd:YAG laser device commonly utilized in the dental office could be used to repair broken fixed, removable and orthodontic prostheses and to weld metals directly in the mouth. The aim of this work was to evaluate, using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and dynamic mechanical analysis (DMA), the quality of the weld and its mechanical strength, comparing a device normally used in dental laboratory and a device normally used in the dental office for oral surgery, the same as that described for intraoral welding. Metal plates of a Co-Cr-Mo dental alloy and steel orthodontic wires were subjected to four welding procedures: welding without filler metal using the laboratory laser, welding with filler metal using the laboratory laser, welding without filler metal using the office laser, and welding with filler metal using the office laser. The welded materials were then analysed by SEM, EDS and DMA. SEM analysis did not show significant differences between the samples although the plates welded using the office laser without filler metal showed a greater number of fissures than the other samples. EDS microanalysis of the welding zone showed a homogeneous composition of the metals. Mechanical tests showed similar elastic behaviours of the samples, with minimal differences between the samples welded with the two devices. No wire broke even under the maximum force applied by the analyser. This study seems to demonstrate that the welds produced using the office Nd:YAG laser device and the laboratory Nd:YAG laser device, as analysed by SEM, EDS and DMA, showed minimal and nonsignificant differences, although these findings need to be confirmed using a greater number of samples.

  10. Laboratory-based clinical audit as a tool for continual improvement: an example from CSF chemistry turnaround time audit in a South-African teaching hospital.

    PubMed

    Imoh, Lucius C; Mutale, Mubanga; Parker, Christopher T; Erasmus, Rajiv T; Zemlin, Annalise E

    2016-01-01

    Timeliness of laboratory results is crucial to patient care and outcome. Monitoring turnaround times (TAT), especially for emergency tests, is important to measure the effectiveness and efficiency of laboratory services. Laboratory-based clinical audits reveal opportunities for improving quality. Our aim was to identify the most critical steps causing a high TAT for cerebrospinal fluid (CSF) chemistry analysis in our laboratory. A 6-month retrospective audit was performed. The duration of each operational phase across the laboratory work flow was examined. A process-mapping audit trail of 60 randomly selected requests with a high TAT was conducted and reasons for high TAT were tested for significance. A total of 1505 CSF chemistry requests were analysed. Transport of samples to the laboratory was primarily responsible for the high average TAT (median TAT = 170 minutes). Labelling accounted for most delays within the laboratory (median TAT = 71 minutes) with most delays occurring after regular work hours (P < 0.05). CSF chemistry requests without the appropriate number of CSF sample tubes were significantly associated with delays in movement of samples from the labelling area to the technologist's work station (caused by a preference for microbiological testing prior to CSF chemistry). A laboratory-based clinical audit identified sample transportation, work shift periods and use of inappropriate CSF sample tubes as drivers of high TAT for CSF chemistry in our laboratory. The results of this audit will be used to change pre-analytical practices in our laboratory with the aim of improving TAT and customer satisfaction.

  11. Soil Sampling Operating Procedure

    EPA Pesticide Factsheets

    EPA Region 4 Science and Ecosystem Support Division (SESD) document that describes general and specific procedures, methods, and considerations when collecting soil samples for field screening or laboratory analysis.

  12. Sediment Sampling Operating Procedure

    EPA Pesticide Factsheets

    EPA Region 4 Science and Ecosystem Support Division (SESD) document that describes general and specific procedures, methods, and considerations when collecting sediment samples for field screening or laboratory analysis.

  13. Empirical insights and considerations for the OBT inter-laboratory comparison of environmental samples.

    PubMed

    Kim, Sang-Bog; Roche, Jennifer

    2013-08-01

    Organically bound tritium (OBT) is an important tritium species that can be measured in most environmental samples, but has only recently been recognized as a species of tritium in these samples. Currently, OBT is not routinely measured by environmental monitoring laboratories around the world. There are no certified reference materials (CRMs) for environmental samples. Thus, quality assurance (QA), or verification of the accuracy of the OBT measurement, is not possible. Alternatively, quality control (QC), or verification of the precision of the OBT measurement, can be achieved. In the past, there have been differences in OBT analysis results between environmental laboratories. A possible reason for the discrepancies may be differences in analytical methods. Therefore, inter-laboratory OBT comparisons among the environmental laboratories are important and would provide a good opportunity for adopting a reference OBT analytical procedure. Due to the analytical issues, only limited information is available on OBT measurement. Previously conducted OBT inter-laboratory practices are reviewed and the findings are described. Based on our experiences, a few considerations were suggested for the international OBT inter-laboratory comparison exercise to be completed in the near future. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  14. Preparation, certification and interlaboratory analysis of workplace air filters spiked with high-fired beryllium oxide.

    PubMed

    Oatts, Thomas J; Hicks, Cheryl E; Adams, Amy R; Brisson, Michael J; Youmans-McDonald, Linda D; Hoover, Mark D; Ashley, Kevin

    2012-02-01

    Occupational sampling and analysis for multiple elements is generally approached using various approved methods from authoritative government sources such as the National Institute for Occupational Safety and Health (NIOSH), the Occupational Safety and Health Administration (OSHA) and the Environmental Protection Agency (EPA), as well as consensus standards bodies such as ASTM International. The constituents of a sample can exist as unidentified compounds requiring sample preparation to be chosen appropriately, as in the case of beryllium in the form of beryllium oxide (BeO). An interlaboratory study was performed to collect analytical data from volunteer laboratories to examine the effectiveness of methods currently in use for preparation and analysis of samples containing calcined BeO powder. NIST SRM(®) 1877 high-fired BeO powder (1100 to 1200 °C calcining temperature; count median primary particle diameter 0.12 μm) was used to spike air filter media as a representative form of beryllium particulate matter present in workplace sampling that is known to be resistant to dissolution. The BeO powder standard reference material was gravimetrically prepared in a suspension and deposited onto 37 mm mixed cellulose ester air filters at five different levels between 0.5 μg and 25 μg of Be (as BeO). Sample sets consisting of five BeO-spiked filters (in duplicate) and two blank filters, for a total of twelve unique air filter samples per set, were submitted as blind samples to each of 27 participating laboratories. Participants were instructed to follow their current process for sample preparation and utilize their normal analytical methods for processing samples containing substances of this nature. Laboratories using more than one sample preparation and analysis method were provided with more than one sample set. Results from 34 data sets ultimately received from the 27 volunteer laboratories were subjected to applicable statistical analyses. The observed performance data show that sample preparations using nitric acid alone, or combinations of nitric and hydrochloric acids, are not effective for complete extraction of Be from the SRM 1877 refractory BeO particulate matter spiked on air filters; but that effective recovery can be achieved by using sample preparation procedures utilizing either sulfuric or hydrofluoric acid, or by using methodologies involving ammonium bifluoride with heating. Laboratories responsible for quantitative determination of Be in workplace samples that may contain high-fired BeO should use quality assurance schemes that include BeO-spiked sampling media, rather than solely media spiked with soluble Be compounds, and should ensure that methods capable of quantitative digestion of Be from the actual material present are used.

  15. Measurement of chromium VI and chromium III in stainless steel welding fumes with electrom spectroscopy for chemical analysis and neutron activation analysis.

    PubMed

    Lautner, G M; Carver, J C; Konzen, R B

    1978-08-01

    Electron Spectroscopy for Chemical Analysis (ESCA) was explored as a means of studying the oxidation state of chromium in SMAC (coated electrode) stainless steel welding fume collected on Nucleopore filters in the laboratory. Chromuim VI and III (as a percent of the total chromium) obtained from ESCA analysis was applied to results from Neutron Activation Analysis (NAA) to yield an average of 69 microgram chromium VI per sample. Diphenylcarbazide/atomic absorption (DPC/AA) results are reported for samples submitted to an industrial laboratory. Possible chemical species and solubility of chromium VI in stainless steel fumes is discussed in light of analogy between the SMAC process and the manufacturing process for chromates.

  16. Inter-laboratory comparison of the in vivo comet assay including three image analysis systems.

    PubMed

    Plappert-Helbig, Ulla; Guérard, Melanie

    2015-12-01

    To compare the extent of potential inter-laboratory variability and the influence of different comet image analysis systems, in vivo comet experiments were conducted using the genotoxicants ethyl methanesulfonate and methyl methanesulfonate. Tissue samples from the same animals were processed and analyzed-including independent slide evaluation by image analysis-in two laboratories with extensive experience in performing the comet assay. The analysis revealed low inter-laboratory experimental variability. Neither the use of different image analysis systems, nor the staining procedure of DNA (propidium iodide vs. SYBR® Gold), considerably impacted the results or sensitivity of the assay. In addition, relatively high stability of the staining intensity of propidium iodide-stained slides was found in slides that were refrigerated for over 3 months. In conclusion, following a thoroughly defined protocol and standardized routine procedures ensures that the comet assay is robust and generates comparable results between different laboratories. © 2015 Wiley Periodicals, Inc.

  17. Synchronous in-field application of life-detection techniques in planetary analog missions

    NASA Astrophysics Data System (ADS)

    Amador, Elena S.; Cable, Morgan L.; Chaudry, Nosheen; Cullen, Thomas; Gentry, Diana; Jacobsen, Malene B.; Murukesan, Gayathri; Schwieterman, Edward W.; Stevens, Adam H.; Stockton, Amanda; Yin, Chang; Cullen, David C.; Geppert, Wolf

    2015-02-01

    Field expeditions that simulate the operations of robotic planetary exploration missions at analog sites on Earth can help establish best practices and are therefore a positive contribution to the planetary exploration community. There are many sites in Iceland that possess heritage as planetary exploration analog locations and whose environmental extremes make them suitable for simulating scientific sampling and robotic operations. We conducted a planetary exploration analog mission at two recent lava fields in Iceland, Fimmvörðuháls (2010) and Eldfell (1973), using a specially developed field laboratory. We tested the utility of in-field site sampling down selection and tiered analysis operational capabilities with three life detection and characterization techniques: fluorescence microscopy (FM), adenine-triphosphate (ATP) bioluminescence assay, and quantitative polymerase chain reaction (qPCR) assay. The study made use of multiple cycles of sample collection at multiple distance scales and field laboratory analysis using the synchronous life-detection techniques to heuristically develop the continuing sampling and analysis strategy during the expedition. Here we report the operational lessons learned and provide brief summaries of scientific data. The full scientific data report will follow separately. We found that rapid in-field analysis to determine subsequent sampling decisions is operationally feasible, and that the chosen life detection and characterization techniques are suitable for a terrestrial life-detection field mission. In-field analysis enables the rapid obtainment of scientific data and thus facilitates the collection of the most scientifically relevant samples within a single field expedition, without the need for sample relocation to external laboratories. The operational lessons learned in this study could be applied to future terrestrial field expeditions employing other analytical techniques and to future robotic planetary exploration missions.

  18. Representativeness of laboratory sampling procedures for the analysis of trace metals in soil.

    PubMed

    Dubé, Jean-Sébastien; Boudreault, Jean-Philippe; Bost, Régis; Sona, Mirela; Duhaime, François; Éthier, Yannic

    2015-08-01

    This study was conducted to assess the representativeness of laboratory sampling protocols for purposes of trace metal analysis in soil. Five laboratory protocols were compared, including conventional grab sampling, to assess the influence of sectorial splitting, sieving, and grinding on measured trace metal concentrations and their variability. It was concluded that grinding was the most important factor in controlling the variability of trace metal concentrations. Grinding increased the reproducibility of sample mass reduction by rotary sectorial splitting by up to two orders of magnitude. Combined with rotary sectorial splitting, grinding increased the reproducibility of trace metal concentrations by almost three orders of magnitude compared to grab sampling. Moreover, results showed that if grinding is used as part of a mass reduction protocol by sectorial splitting, the effect of sieving on reproducibility became insignificant. Gy's sampling theory and practice was also used to analyze the aforementioned sampling protocols. While the theoretical relative variances calculated for each sampling protocol qualitatively agreed with the experimental variances, their quantitative agreement was very poor. It was assumed that the parameters used in the calculation of theoretical sampling variances may not correctly estimate the constitutional heterogeneity of soils or soil-like materials. Finally, the results have highlighted the pitfalls of grab sampling, namely, the fact that it does not exert control over incorrect sampling errors and that it is strongly affected by distribution heterogeneity.

  19. Sensor-triggered sampling to determine instantaneous airborne vapor exposure concentrations.

    PubMed

    Smith, Philip A; Simmons, Michael K; Toone, Phillip

    2018-06-01

    It is difficult to measure transient airborne exposure peaks by means of integrated sampling for organic chemical vapors, even with very short-duration sampling. Selection of an appropriate time to measure an exposure peak through integrated sampling is problematic, and short-duration time-weighted average (TWA) values obtained with integrated sampling are not likely to accurately determine actual peak concentrations attained when concentrations fluctuate rapidly. Laboratory analysis for integrated exposure samples is preferred from a certainty standpoint over results derived in the field from a sensor, as a sensor user typically must overcome specificity issues and a number of potential interfering factors to obtain similarly reliable data. However, sensors are currently needed to measure intra-exposure period concentration variations (i.e., exposure peaks). In this article, the digitized signal from a photoionization detector (PID) sensor triggered collection of whole-air samples when toluene or trichloroethylene vapors attained pre-determined levels in a laboratory atmosphere generation system. Analysis by gas chromatography-mass spectrometry of whole-air samples (with both 37 and 80% relative humidity) collected using the triggering mechanism with rapidly increasing vapor concentrations showed good agreement with the triggering set point values. Whole-air samples (80% relative humidity) in canisters demonstrated acceptable 17-day storage recoveries, and acceptable precision and bias were obtained. The ability to determine exceedance of a ceiling or peak exposure standard by laboratory analysis of an instantaneously collected sample, and to simultaneously provide a calibration point to verify the correct operation of a sensor was demonstrated. This latter detail may increase the confidence in reliability of sensor data obtained across an entire exposure period.

  20. Quality-control materials in the USDA National Food and Nutrient Analysis Program (NFNAP).

    PubMed

    Phillips, Katherine M; Patterson, Kristine Y; Rasor, Amy S; Exler, Jacob; Haytowitz, David B; Holden, Joanne M; Pehrsson, Pamela R

    2006-03-01

    The US Department of Agriculture (USDA) Nutrient Data Laboratory (NDL) develops and maintains the USDA National Nutrient Databank System (NDBS). Data are released from the NDBS for scientific and public use through the USDA National Nutrient Database for Standard Reference (SR) ( http://www.ars.usda.gov/ba/bhnrc/ndl ). In 1997 the NDL initiated the National Food and Nutrient Analysis Program (NFNAP) to update and expand its food-composition data. The program included: 1) nationwide probability-based sampling of foods; 2) central processing and archiving of food samples; 3) analysis of food components at commercial, government, and university laboratories; 4) incorporation of new analytical data into the NDBS; and 5) dissemination of these data to the scientific community. A key feature and strength of the NFNAP was a rigorous quality-control program that enabled independent verification of the accuracy and precision of analytical results. Custom-made food-control composites and/or commercially available certified reference materials were sent to the laboratories, blinded, with the samples. Data for these materials were essential to ongoing monitoring of analytical work, to identify and resolve suspected analytical problems, to ensure the accuracy and precision of results for the NFNAP food samples.

  1. SaDA: From Sampling to Data Analysis-An Extensible Open Source Infrastructure for Rapid, Robust and Automated Management and Analysis of Modern Ecological High-Throughput Microarray Data.

    PubMed

    Singh, Kumar Saurabh; Thual, Dominique; Spurio, Roberto; Cannata, Nicola

    2015-06-03

    One of the most crucial characteristics of day-to-day laboratory information management is the collection, storage and retrieval of information about research subjects and environmental or biomedical samples. An efficient link between sample data and experimental results is absolutely important for the successful outcome of a collaborative project. Currently available software solutions are largely limited to large scale, expensive commercial Laboratory Information Management Systems (LIMS). Acquiring such LIMS indeed can bring laboratory information management to a higher level, but most of the times this requires a sufficient investment of money, time and technical efforts. There is a clear need for a light weighted open source system which can easily be managed on local servers and handled by individual researchers. Here we present a software named SaDA for storing, retrieving and analyzing data originated from microorganism monitoring experiments. SaDA is fully integrated in the management of environmental samples, oligonucleotide sequences, microarray data and the subsequent downstream analysis procedures. It is simple and generic software, and can be extended and customized for various environmental and biomedical studies.

  2. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    NASA Technical Reports Server (NTRS)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  3. Performance testing of NIOSH Method 5524/ASTM Method D-7049-04, for determination of metalworking fluids.

    PubMed

    Glaser, Robert; Kurimo, Robert; Shulman, Stanley

    2007-08-01

    A performance test of NIOSH Method 5524/ASTM Method D-7049-04 for analysis of metalworking fluids (MWF) was conducted. These methods involve determination of the total and extractable weights of MWF samples; extractions are performed using a ternary blend of toluene:dichloromethane:methanol and a binary blend of methanol:water. Six laboratories participated in this study. A preliminary analysis of 20 blank samples was made to familiarize the laboratories with the procedure(s) and to estimate the methods' limits of detection/quantitation (LODs/LOQs). Synthetically generated samples of a semisynthetic MWF aerosol were then collected on tared polytetrafluoroethylene (PTFE) filters and analyzed according to the methods by all participants. Sample masses deposited (approximately 400-500 micro g) corresponded to amounts expected in an 8-hr shift at the NIOSH recommended exposure levels (REL) of 0.4 mg/m(3) (thoracic) and 0.5 mg/m(3) (total particulate). The generator output was monitored with a calibrated laser particle counter. One laboratory significantly underreported the sampled masses relative to the other five labs. A follow-up study compared only gravimetric results of this laboratory with those of two other labs. In the preliminary analysis of blanks; the average LOQs were 0.094 mg for the total weight analysis and 0.136 mg for the extracted weight analyses. For the six-lab study, the average LOQs were 0.064 mg for the total weight analyses and 0.067 mg for the extracted weight analyses. Using ASTM conventions, h and k statistics were computed to determine the degree of consistency of each laboratory with the others. One laboratory experienced problems with precision but not bias. The precision estimates for the remaining five labs were not different statistically (alpha = 0.005) for either the total or extractable weights. For all six labs, the average fraction extracted was > or =0.94 (CV = 0.025). Pooled estimates of the total coefficients of variation of analysis were 0.13 for the total weight samples and 0.13 for the extracted weight samples. An overall method bias of -5% was determined by comparing the overall mean concentration reported by the participants to that determined by the particle counter. In the three-lab follow-up study, the nonconsistent lab reported results that were unbiased but statistically less precise than the others; the average LOQ was 0.133 mg for the total weight analyses. It is concluded that aerosolized MWF sampled at concentrations corresponding to either of the NIOSH RELs can generally be shipped unrefrigerated, stored refrigerated up to 7 days, and then analyzed quantitatively and precisely for MWF using the NIOSH/ASTM procedures.

  4. Surface water sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-06-01

    This Sampling and Analysis Plan addresses surface water monitoring, sampling, and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Surface water monitoring will be conducted at nine sites within WAG 6. Activities to be conducted will include the installation, inspection, and maintenance of automatic flow-monitoring and sampling equipment and manual collection of variousmore » water and sediment samples. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the surface water monitoring, sampling, and analysis will aid in evaluating risk associated with contaminants migrating off-WAG, and will be used in calculations to establish relationships between contaminant concentration (C) and flow (Q). The C-Q relationship will be used in calculating the cumulative risk associated with the off-WAG migration of contaminants.« less

  5. UV-Vis Spectrophotometric Analysis and Quantification of Glyphosate for an Interdisciplinary Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Felton, Daniel E.; Ederer, Martina; Steffens, Timothy; Hartzell, Patricia L.; Waynant, Kristopher V.

    2018-01-01

    Glyphosate (N-(phosphonomethyl)glycine) is the most widely used herbicide on earth. A simple assay to quantify glyphosate concentrations in environmental samples was developed as part of an interdisciplinary effort linking introductory laboratory courses in chemistry, biology, and microbiology. In this 3 h laboratory experiment, students used…

  6. Tank 241-AY-101 Privatization Push Mode Core Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEMPLETON, A.M.

    2000-05-19

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for samples obtained from tank 241-AY-101. The purpose of this sampling event is to obtain information about the characteristics of the contents of 241-AY-101 required to satisfy ''Data Quality Objectives For RPP Privatization Phase I: Confirm Tank T Is An Appropriate Feed Source For High-Level Waste Feed Batch X(HLW DQO)' (Nguyen 1999a), ''Data Quality Objectives For TWRS Privatization Phase I: Confirm Tank T Is An Appropriate Feed Source For Low-Activity Waste Feed Butch X (LAW DQO) (Nguyen 1999b)'', ''Low Activity Wastemore » and High-Level Waste Feed Data Quality Objectives (L&H DQO)'' (Patello et al. 1999), and ''Characterization Data Needs for Development, Design, and Operation of Retrieval Equipment Developed through the Data Quality Objective Process (Equipment DQO)'' (Bloom 1996). Special instructions regarding support to the LAW and HLW DQOs are provided by Baldwin (1999). Push mode core samples will be obtained from risers 15G and 150 to provide sufficient material for the chemical analyses and tests required to satisfy these data quality objectives. The 222-S Laboratory will extrude core samples; composite the liquids and solids; perform chemical analyses on composite and segment samples; archive half-segment samples; and provide sub-samples to the Process Chemistry Laboratory. The Process Chemistry Laboratory will prepare test plans and perform process tests to evaluate the behavior of the 241-AY-101 waste undergoing the retrieval and treatment scenarios defined in the applicable DQOs. Requirements for analyses of samples originating in the process tests will be documented in the corresponding test plans and are not within the scope of this SAP.« less

  7. 7 CFR 91.40 - Fees for courier service and facsimile of the analysis report.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS SERVICES AND GENERAL INFORMATION Fees and Charges § 91.40... the shortest round trip route from laboratory to sample retrieval site. Pursuant to the requirements...

  8. 7 CFR 91.40 - Fees for courier service and facsimile of the analysis report.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS SERVICES AND GENERAL INFORMATION Fees and Charges § 91.40... the shortest round trip route from laboratory to sample retrieval site. Pursuant to the requirements...

  9. 7 CFR 91.40 - Fees for courier service and facsimile of the analysis report.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS SERVICES AND GENERAL INFORMATION Fees and Charges § 91.40... the shortest round trip route from laboratory to sample retrieval site. Pursuant to the requirements...

  10. 7 CFR 91.40 - Fees for courier service and facsimile of the analysis report.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS SERVICES AND GENERAL INFORMATION Fees and Charges § 91.40... the shortest round trip route from laboratory to sample retrieval site. Pursuant to the requirements...

  11. 7 CFR 91.40 - Fees for courier service and facsimile of the analysis report.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS SERVICES AND GENERAL INFORMATION Fees and Charges § 91.40... the shortest round trip route from laboratory to sample retrieval site. Pursuant to the requirements...

  12. Chemical Analysis of Soils: An Environmental Chemistry Laboratory for Undergraduate Science Majors.

    ERIC Educational Resources Information Center

    Willey, Joan D.; Avery, G. Brooks, Jr.; Manock, John J.; Skrabal, Stephen A.; Stehman, Charles F.

    1999-01-01

    Describes a laboratory exercise for undergraduate science students in which they evaluate soil samples for various parameters related to suitability for crop production and capability for retention of contaminants. (Contains 18 references.) (WRM)

  13. NHEXAS PHASE I MARYLAND STUDY--LIST OF AVAILABLE DOCUMENTS: PROTOCOLS AND SOPS

    EPA Science Inventory

    This document lists available protocols and SOPs for the NHEXAS Phase I Maryland study. It identifies protocols and SOPs for the following study components: (1) Sample collection and field operations, (2) Sample analysis and general laboratory procedures, (3) Data Analysis Proced...

  14. Microscopic Analysis of Activated Sludge. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual presents material on the use of a compound microscope to analyze microscope communities, present in wastewater treatment processes, for operational control. Course topics include: sampling techniques, sample handling, laboratory analysis, identification of organisms, data interpretation, and use of the compound microscope.…

  15. Clinicians' interpretations of point of care urine culture versus laboratory culture results: analysis from the four-country POETIC trial of diagnosis of uncomplicated urinary tract infection in primary care.

    PubMed

    Hullegie, Saskia; Wootton, Mandy; Verheij, Theo J M; Thomas-Jones, Emma; Bates, Janine; Hood, Kerenza; Gal, Micaela; Francis, Nick A; Little, Paul; Moore, Michael; Llor, Carl; Pickles, Timothy; Gillespie, David; Kirby, Nigel; Brugman, Curt; Butler, Christopher C

    2017-08-01

    Urine culture at the point of care minimises delay between obtaining the sample and agar inoculation in a microbiology laboratory, and quantification and sensitivity results can be available more rapidly in primary care. To identify the degree to which clinicians' interpretations of a point-of-care-test (POCT) urine culture (Flexicult™ SSI-Urinary Kit) agrees with laboratory culture in women presenting to primary care with symptoms of uncomplicated urinary tract infections (UTI). Primary care clinicians used the Flexicult™-POCT, recorded their findings and took a photograph of the result, which was interpreted by microbiology laboratory technicians. Urine samples were additionally processed in routine care laboratories. Cross tabulations were used to identify important differences in organism identification, quantification and antibiotic susceptibility between these three sources of data. The influence of various laboratory definitions for UTI on culture were assessed. Primary care clinicians identified 202/289 urine samples (69.9%) as positive for UTI using the Flexicult™-POCT, whereas laboratory culture identified 94-190 (32.5-65.7%) as positive, depending on definition thresholds. 82.9% of samples identified positive for E. coli on laboratory culture were also considered positive for E. coli using the Flexicult™ -POCT, and susceptibilities were reasonably concordant. There were major discrepancies between laboratory staff interpretation of Flexicult™ photographs, clinicians' interpretation of the Flexicult™ test, and laboratory culture results. Flexicult™-POCT overestimated the positivity rate of urine samples for UTI when laboratory culture was used as the reference standard. However, it is unclear whether point-of-care or laboratory based urine culture provides the most valid diagnostic information. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Quantitative Digital Autoradiography for Environmental Swipe Sample Prioritization: System design, Characterization, and Initial Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Benjamin S.; Zalavadia, Mital A.; Miller, Brian W.

    Environmental sampling and sample analyses by the International Atomic Energy Agency’s (IAEA) Network of Analytical Laboratories (NWAL) is a critical technical tool used to detect facility misuse under a Comprehensive Safeguards Agreement and to verify the absence of undeclared nuclear material activities under an Additional Protocol. Currently all environmental swipe samples (ESS) are screened using gamma spectrometry and x-ray fluorescence to estimate the amount of U and/or Pu in the ESS, to guide further analysis, and to assist in the shipment of ESS to the NWAL. Quantitative Digital Autoradiography for Environmental Samples (QDARES) is being developed to complement existing techniquesmore » through the use of a portable, real-time, high-spatial-resolution camera called the Ionizing-radiation Quantum Imaging Detector (iQID). The iQID constructs a spatial map of radionuclides within a sample or surface in real-time as charged particles (betas) and photons (gamma/x-rays) are detected and localized on an event-by-event basis. Knowledge of the location and nature of radioactive hot spots on the ESS could provide information for subsequent laboratory analysis. As a nondestructive technique, QDARES does not compromise the ESS chain of custody or subsequent laboratory analysis. In this paper we will present the system design and construction, characterization measurements with calibration sources, and initial measurements of ESS.« less

  17. Quality assurance and quality control for thermal/optical analysis of aerosol samples for organic and elemental carbon.

    PubMed

    Chow, Judith C; Watson, John G; Robles, Jerome; Wang, Xiaoliang; Chen, L-W Antony; Trimble, Dana L; Kohl, Steven D; Tropp, Richard J; Fung, Kochy K

    2011-12-01

    Accurate, precise, and valid organic and elemental carbon (OC and EC, respectively) measurements require more effort than the routine analysis of ambient aerosol and source samples. This paper documents the quality assurance (QA) and quality control (QC) procedures that should be implemented to ensure consistency of OC and EC measurements. Prior to field sampling, the appropriate filter substrate must be selected and tested for sampling effectiveness. Unexposed filters are pre-fired to remove contaminants and acceptance tested. After sampling, filters must be stored in the laboratory in clean, labeled containers under refrigeration (<4 °C) to minimize loss of semi-volatile OC. QA activities include participation in laboratory accreditation programs, external system audits, and interlaboratory comparisons. For thermal/optical carbon analyses, periodic QC tests include calibration of the flame ionization detector with different types of carbon standards, thermogram inspection, replicate analyses, quantification of trace oxygen concentrations (<100 ppmv) in the helium atmosphere, and calibration of the sample temperature sensor. These established QA/QC procedures are applicable to aerosol sampling and analysis for carbon and other chemical components.

  18. The Antaeus Project - An orbital quarantine facility for analysis of planetary return samples

    NASA Technical Reports Server (NTRS)

    Sweet, H. C.; Bagby, J. R.; Devincenzi, D. L.

    1983-01-01

    A design is presented for an earth-orbiting facility for the analysis of planetary return samples under conditions of maximum protection against contamination but minimal damage to the sample. The design is keyed to a Mars sample return mission profile, returning 1 kg of documented subsamples, to be analyzed in low earth orbit by a small crew aided by automated procedures, tissue culture and microassay. The facility itself would consist of Spacelab shells, formed into five modules of different sizes with purposes of power supply, habitation, supplies and waste storage, the linking of the facility, and both quarantine and investigation of the samples. Three barriers are envisioned to protect the biosphere from any putative extraterrestrial organisms: sealed biological containment cabinets within the Laboratory Module, the Laboratory Module itself, and the conditions of space surrounding the facility.

  19. DNA banking and DNA databanking by academic and commercial laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEwen, J.E.; Reilly, P.R.

    The advent of DNA-based testing is giving rise to DNA banking (the long-term storage of cells, transformed cell lines, or extracted DNA for subsequent retrieval and analysis) and DNA data banking (the indefinite storage of information derived from DNA analysis). Large scale acquisition and storage of DNA and DNA data has important implications for the privacy rights of individuals. A survey of 148 academically based and commercial DNA diagnostic laboratories was conducted to determine: (1) the extent of their DNA banking activities; (2) their policies and experiences regarding access to DNA samples and data; (3) the quality assurance measures theymore » employ; and (4) whether they have written policies and/or depositor`s agreements addressing specific issues. These issues include: (1) who may have access to DNA samples and data; (2) whether scientists may have access to anonymous samples or data for research use; (3) whether they have plans to contact depositors or retest samples if improved tests for a disorder become available; (4) disposition of samples at the end of the contract period if the laboratory ceases operations, if storage fees are unpaid, or after a death or divorce; (5) the consequence of unauthorized release, loss, or accidental destruction of samples; and (6) whether depositors may share in profits from the commercialization of tests or treatments developed in part from studies of stored DNA. The results suggest that many laboratories are banking DNA, that many have already amassed a large number of samples, and that a significant number plan to further develop DNA banking as a laboratory service over the next two years. Few laboratories have developed written policies governing DNA banking, and fewer still have drafted documents that define the rights and obligations of the parties. There may be a need for increased regulation of DNA banking and DNA data banking and for better defined policies with respect to protecting individual privacy.« less

  20. EML Gamma Spectrometry Data Evaluation Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, Karin M.

    2001-01-01

    This report presents the results of the analyses for the third EML Gamma Spectrometry Data Evaluation Program (October 1999). This program assists laboratories in providing more accurate gamma spectra analysis results and provides a means for users of gamma data to assess how a laboratory performed on various types of gamma spectrometry analyses. This is accomplished through the use of synthetic gamma spectra. A calibration spectrum, a background spectrum, and three sample spectra are sent to each participant in the spectral file format requested by the laboratory. The calibration spectrum contains nuclides covering the energy range from 59.5 keV tomore » 1836 keV. The participants are told fallout and fission product nuclides could be present. The sample spectra are designed to test the ability of the software and user to properly resolve multiplets and to identify and quantify nuclides in a complicated fission product spectrum. The participants were asked to report values and uncertainties as Becquerel per sample with no decay correction. Thirty-one sets of results were reported from a total of 60 laboratories who received the spectra. Six foreign laboratories participated. The percentage of the results within 1 of the expected value was 68, 33, and 46 for samples 1, 2, and 3, respectively. From all three samples, 18% of the results were more than 3 from the expected value. Eighty-three (12%) values out of a total of 682 expected results were not reported for the three samples. Approximately 30% of these false negatives were due the laboratories not reporting 144Pr in sample 2 which was present at the minimum detectable activity level. There were 53 false positives reported with 25% of these responses due to problems with background subtraction. The results show improvement in the ability of the software or user to resolve peaks separated by 1 keV. Improvement is still needed either in the analysis report produced by the software or in the review of these results by the users.« less

  1. Developmental validation of the DNAscan™ Rapid DNA Analysis™ instrument and expert system for reference sample processing.

    PubMed

    Della Manna, Angelo; Nye, Jeffrey V; Carney, Christopher; Hammons, Jennifer S; Mann, Michael; Al Shamali, Farida; Vallone, Peter M; Romsos, Erica L; Marne, Beth Ann; Tan, Eugene; Turingan, Rosemary S; Hogan, Catherine; Selden, Richard F; French, Julie L

    2016-11-01

    Since the implementation of forensic DNA typing in labs more than 20 years ago, the analysis procedures and data interpretation have always been conducted in a laboratory by highly trained and qualified scientific personnel. Rapid DNA technology has the potential to expand testing capabilities within forensic laboratories and to allow forensic STR analysis to be performed outside the physical boundaries of the traditional laboratory. The developmental validation of the DNAscan/ANDE Rapid DNA Analysis System was completed using a BioChipSet™ Cassette consumable designed for high DNA content samples, such as single source buccal swabs. A total of eight laboratories participated in the testing which totaled over 2300 swabs, and included nearly 1400 unique individuals. The goal of this extensive study was to obtain, document, analyze, and assess DNAscan and its internal Expert System to reliably genotype reference samples in a manner compliant with the FBI's Quality Assurance Standards (QAS) and the NDIS Operational Procedures. The DNAscan System provided high quality, concordant results for reference buccal swabs, including automated data analysis with an integrated Expert System. Seven external laboratories and NetBio, the developer of the technology, participated in the validation testing demonstrating the reproducibility and reliability of the system and its successful use in a variety of settings by numerous operators. The DNAscan System demonstrated limited cross reactivity with other species, was resilient in the presence of numerous inhibitors, and provided reproducible results for both buccal and purified DNA samples with sensitivity at a level appropriate for buccal swabs. The precision and resolution of the system met industry standards for detection of micro-variants and displayed single base resolution. PCR-based studies provided confidence that the system was robust and that the amplification reaction had been optimized to provide high quality results. The DNAscan integrated Expert System was examined as part of the Developmental Validation and successfully interpreted the over 2000 samples tested with over 99.998% concordant alleles. The system appropriately flagged samples for human review and failed both mixed samples and samples with insufficient genetic information. These results demonstrated the integrated Expert System makes correct allele calls without human intervention. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Integrated Data Collection Analysis (IDCA) Program - RDX Type II Class 5 Standard, Data Set 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandstrom, Mary M.; Brown, Geoffrey W.; Preston, Daniel N.

    This document describes the results of the first reference sample material—RDX Type II Class 5—examined in the proficiency study for small-scale safety and thermal (SSST) testing of explosive materials for the Integrated Data Collection Analysis (IDCA) Program. The IDCA program is conducting proficiency testing on homemade explosives (HMEs). The reference sample materials are being studied to establish the accuracy of traditional explosives safety testing for each performing laboratory. These results will be used for comparison to results from testing HMEs. This effort, funded by the Department of Homeland Security (DHS), ultimately will put the issues of safe handling of thesemore » materials in perspective with standard military explosives. The results of the study will add SSST testing results for a broad suite of different HMEs to the literature, potentially suggest new guidelines and methods for HME testing, and possibly establish what are the needed accuracies in SSST testing to develop safe handling practices. Described here are the results for impact, friction, electrostatic discharge, and scanning calorimetry analysis of a reference sample of RDX Type II Class 5. The results from each participating testing laboratory are compared using identical test material and preparation methods wherever possible. Note, however, the test procedures differ among the laboratories. These results are then compared to historical data from various sources. The performers involved are Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Air Force Research Laboratory/ RXQL (AFRL), Indian Head Division, Naval Surface Warfare Center, (IHD-NSWC), and Sandia National Laboratories (SNL). These tests are conducted as a proficiency study in order to establish some consistency in test protocols, procedures, and experiments and to understand how to compare results when test protocols are not identical.« less

  3. Soil Gas Sampling Operating Procedure

    EPA Pesticide Factsheets

    EPA Region 4 Science and Ecosystem Support Division (SESD) document that describes general and specific procedures, methods, and considerations when collecting soil gas samples for field screening or laboratory analysis.

  4. The Earth Microbiome Project: Meeting report of the "1 EMP meeting on sample selection and acquisition" at Argonne National Laboratory October 6 2010.

    PubMed

    Gilbert, Jack A; Meyer, Folker; Jansson, Janet; Gordon, Jeff; Pace, Norman; Tiedje, James; Ley, Ruth; Fierer, Noah; Field, Dawn; Kyrpides, Nikos; Glöckner, Frank-Oliver; Klenk, Hans-Peter; Wommack, K Eric; Glass, Elizabeth; Docherty, Kathryn; Gallery, Rachel; Stevens, Rick; Knight, Rob

    2010-12-25

    This report details the outcome the first meeting of the Earth Microbiome Project to discuss sample selection and acquisition. The meeting, held at the Argonne National Laboratory on Wednesday October 6(th) 2010, focused on discussion of how to prioritize environmental samples for sequencing and metagenomic analysis as part of the global effort of the EMP to systematically determine the functional and phylogenetic diversity of microbial communities across the world.

  5. Hemolysis associated with pneumatic tube system transport for blood samples

    PubMed Central

    Kara, Hasan; Bayir, Aysegul; Ak, Ahmet; Degirmenci, Selim; Akinci, Murat; Agacayak, Ahmet; Marcil, Emine; Azap, Melih

    2014-01-01

    Objective: The frequency of hemolysis of blood samples may be increased by transport in a pneumatic tube system. The purpose of this study was to evaluate the effect of pneumatic tube system transport on hemolysis of blood samples. Methods: Blood samples were transported from the emergency department to the hospital laboratory manually by hospital staff (49 patients) or with a pneumatic tube system (53 patients). The hemolysis index and serum chemistry studies were performed on the blood samples and compared between the different methods of transport. Results: The blood samples that were transported by the pneumatic tube system had a greater frequency of hemolysis and greater mean serum potassium and median creatinine, aspartate aminotransferase, and lactate dehydrogenase levels than samples transported manually. Conclusion: Blood samples transported from the emergency department to the hospital laboratory by a pneumatic tube system may have a greater frequency of hemolysis than samples transported manually. This may necessitate repeat phlebotomy and cause a delay in completing the laboratory analysis. PMID:24639830

  6. [Study on the reproducibility of ACTH concentrations in plasma of horses with and without equine Cushing syndrome].

    PubMed

    Gehlen, Heidrun; Bradaric, Zrinkja

    2013-01-01

    The evaluation of plasma ACTH and the dexamethasone suppression test are considered the methods of choice to evaluate the course of therapy of pituitary pars intermedia dysfunction (PPID). Sampling protocols as well as vacutainers for analysis differ between the laboratories. To evaluate the reproducability of plasma ACTH measurement between four different laboratories (A, B, C, D) in Germany as well as within the laboratories themselves, ten horses with previously diagnosed PPID and four healthy horses were sampled and analyzed. Each laboratory received two differently labeled samples of each horse which had been drawn at the same time (blinded samples). Sampling was performed in the morning at the same time. The sampling vacutainers (with and without addition of coagulation and proteinase inhibitors) and postage of the samples was performed according to laboratory standards. In one laboratory the influence of the time of centrifugation (immediately after taking blood versus after one hour) was determined. The samples were processed and analyzed according to laboratory protocols. Determination of ACTH levels was performed using chemiluminescence immunoassay. In total 132 blood samples were analyzed. The results of doubled blood samples of the same horse showed a standard deviation ranging from +/- 6 to +/- 27 pg/ml within the laboratories (Ø 19,29 pg/ml). The standard deviation of the repeatability of the variation coefficient was 13,48%. Blood samples of the same horse resulted in ACTH levels of 121 pg/ml in the first probe and in < 5 pg/ml in the second probe. Standard deviation of measured ACTH values between the laboratories was +/- 26,4 pg/ml (Ø 27,44 pg/ml). The standard deviation of the reproducibility of the variation coefficient was 18,36%. In a 20 year old gelding the lowest ACTH value was 60.9 pg/ml whereas the highest measured value was 108 pg/ml. Immediate centrifugation of blood samples resulted in significantly higher ACTH values at an average of 11.6 pg/ml. The additional use of proteinase inhibitors (aprotinine) showed no influence on ACTH levels in this study.

  7. Sampling and sample processing in pesticide residue analysis.

    PubMed

    Lehotay, Steven J; Cook, Jo Marie

    2015-05-13

    Proper sampling and sample processing in pesticide residue analysis of food and soil have always been essential to obtain accurate results, but the subject is becoming a greater concern as approximately 100 mg test portions are being analyzed with automated high-throughput analytical methods by agrochemical industry and contract laboratories. As global food trade and the importance of monitoring increase, the food industry and regulatory laboratories are also considering miniaturized high-throughput methods. In conjunction with a summary of the symposium "Residues in Food and Feed - Going from Macro to Micro: The Future of Sample Processing in Residue Analytical Methods" held at the 13th IUPAC International Congress of Pesticide Chemistry, this is an opportune time to review sampling theory and sample processing for pesticide residue analysis. If collected samples and test portions do not adequately represent the actual lot from which they came and provide meaningful results, then all costs, time, and efforts involved in implementing programs using sophisticated analytical instruments and techniques are wasted and can actually yield misleading results. This paper is designed to briefly review the often-neglected but crucial topic of sample collection and processing and put the issue into perspective for the future of pesticide residue analysis. It also emphasizes that analysts should demonstrate the validity of their sample processing approaches for the analytes/matrices of interest and encourages further studies on sampling and sample mass reduction to produce a test portion.

  8. Compliance program data management system for The Idaho National Engineering Laboratory/Environmental Protection Agency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertzler, C.L.; Poloski, J.P.; Bates, R.A.

    1988-01-01

    The Compliance Program Data Management System (DMS) developed at the Idaho National Engineering Laboratory (INEL) validates and maintains the integrity of data collected to support the Consent Order and Compliance Agreement (COCA) between the INEL and the Environmental Protection Agency (EPA). The system uses dBase III Plus programs and dBase III Plus in an interactive mode to enter, store, validate, manage, and retrieve analytical information provided on EPA Contract Laboratory Program (CLP) forms and CLP forms modified to accommodate 40 CFR 264 Appendix IX constituent analyses. Data analysis and presentation is performed utilizing SAS, a statistical analysis software program. Archivingmore » of data and results is performed at appropriate stages of data management. The DMS is useful for sampling and analysis programs where adherence to EPA CLP protocol, along with maintenance and retrieval of waste site investigation sampling results is desired or requested. 3 refs.« less

  9. Application of failure mode and effect analysis in an assisted reproduction technology laboratory.

    PubMed

    Intra, Giulia; Alteri, Alessandra; Corti, Laura; Rabellotti, Elisa; Papaleo, Enrico; Restelli, Liliana; Biondo, Stefania; Garancini, Maria Paola; Candiani, Massimo; Viganò, Paola

    2016-08-01

    Assisted reproduction technology laboratories have a very high degree of complexity. Mismatches of gametes or embryos can occur, with catastrophic consequences for patients. To minimize the risk of error, a multi-institutional working group applied failure mode and effects analysis (FMEA) to each critical activity/step as a method of risk assessment. This analysis led to the identification of the potential failure modes, together with their causes and effects, using the risk priority number (RPN) scoring system. In total, 11 individual steps and 68 different potential failure modes were identified. The highest ranked failure modes, with an RPN score of 25, encompassed 17 failures and pertained to "patient mismatch" and "biological sample mismatch". The maximum reduction in risk, with RPN reduced from 25 to 5, was mostly related to the introduction of witnessing. The critical failure modes in sample processing were improved by 50% in the RPN by focusing on staff training. Three indicators of FMEA success, based on technical skill, competence and traceability, have been evaluated after FMEA implementation. Witnessing by a second human operator should be introduced in the laboratory to avoid sample mix-ups. These findings confirm that FMEA can effectively reduce errors in assisted reproduction technology laboratories. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  10. Soil Gas Sampling

    EPA Pesticide Factsheets

    Field Branches Quality System and Technical Procedures: This document describes general and specific procedures, methods and considerations to be used and observed when collecting soil gas samples for field screening or laboratory analysis.

  11. Tank 241-AY-101 Privatization Push Mode Core Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEMPLETON, A.M.

    2000-01-12

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for samples obtained from tank 241-AY-101. The purpose of this sampling event is to obtain information about the characteristics of the contents of 241-AY-101 required to satisfy Data Quality Objectives For RPP Privatization Phase I: Confirm Tank T Is An Appropriate Feed Source For High-Level Waste Feed Batch X(HLW DQO) (Nguyen 1999a), Data Quality Objectives For TWRS Privatization Phase I : Confirm Tank T Is An Appropriate Feed Source For Low-Activity Waste Feed Batch X (LAW DQO) (Nguyen 1999b), Low Activitymore » Waste and High-Level Waste Feed Data Quality Objectives (L and H DQO) (Patello et al. 1999), and Characterization Data Needs for Development, Design, and Operation of Retrieval Equipment Developed through the Data Quality Objective Process (Equipment DQO) (Bloom 1996). Special instructions regarding support to the LAW and HLW DQOs are provided by Baldwin (1999). Push mode core samples will be obtained from risers 15G and 150 to provide sufficient material for the chemical analyses and tests required to satisfy these data quality objectives. The 222-S Laboratory will extrude core samples; composite the liquids and solids; perform chemical analyses on composite and segment samples; archive half-segment samples; and provide subsamples to the Process Chemistry Laboratory. The Process Chemistry Laboratory will prepare test plans and perform process tests to evaluate the behavior of the 241-AY-101 waste undergoing the retrieval and treatment scenarios defined in the applicable DQOs. Requirements for analyses of samples originating in the process tests will be documented in the corresponding test plans and are not within the scope of this SAP.« less

  12. Measurement of Air Pollutants in the Troposphere

    ERIC Educational Resources Information Center

    Clemitshaw, Kevin C.

    2011-01-01

    This article describes the principles, applications and performances of methods to measure gas-phase air pollutants that either utilise passive or active sampling with subsequent laboratory analysis or involve automated "in situ" sampling and analysis. It focuses on air pollutants that have adverse impacts on human health (nitrogen…

  13. Direct PCR amplification of forensic touch and other challenging DNA samples: A review.

    PubMed

    Cavanaugh, Sarah E; Bathrick, Abigail S

    2018-01-01

    DNA evidence sample processing typically involves DNA extraction, quantification, and STR amplification; however, DNA loss can occur at both the DNA extraction and quantification steps, which is not ideal for forensic evidence containing low levels of DNA. Direct PCR amplification of forensic unknown samples has been suggested as a means to circumvent extraction and quantification, thereby retaining the DNA typically lost during those procedures. Direct PCR amplification is a method in which a sample is added directly to an amplification reaction without being subjected to prior DNA extraction, purification, or quantification. It allows for maximum quantities of DNA to be targeted, minimizes opportunities for error and contamination, and reduces the time and monetary resources required to process samples, although data analysis may take longer as the increased DNA detection sensitivity of direct PCR may lead to more instances of complex mixtures. ISO 17025 accredited laboratories have successfully implemented direct PCR for limited purposes (e.g., high-throughput databanking analysis), and recent studies indicate that direct PCR can be an effective method for processing low-yield evidence samples. Despite its benefits, direct PCR has yet to be widely implemented across laboratories for the processing of evidentiary items. While forensic DNA laboratories are always interested in new methods that will maximize the quantity and quality of genetic information obtained from evidentiary items, there is often a lag between the advent of useful methodologies and their integration into laboratories. Delayed implementation of direct PCR of evidentiary items can be attributed to a variety of factors, including regulatory guidelines that prevent laboratories from omitting the quantification step when processing forensic unknown samples, as is the case in the United States, and, more broadly, a reluctance to validate a technique that is not widely used for evidence samples. The advantages of direct PCR of forensic evidentiary samples justify a re-examination of the factors that have delayed widespread implementation of this method and of the evidence supporting its use. In this review, the current and potential future uses of direct PCR in forensic DNA laboratories are summarized. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Preparation and validation of gross alpha/beta samples used in EML`s quality assessment program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarpitta, S.C.

    1997-10-01

    A set of water and filter samples have been incorporated into the existing Environmental Measurements Laboratory`s (EML) Quality Assessment Program (QAP) for gross alpha/beta determinations by participating DOE laboratories. The participating laboratories are evaluated by comparing their results with the EML value. The preferred EML method for measuring water and filter samples, described in this report, uses gas flow proportional counters with 2 in. detectors. Procedures for sample preparation, quality control and instrument calibration are presented. Liquid scintillation (LS) counting is an alternative technique that is suitable for quantifying both the alpha ({sup 241}Am, {sup 230}Th and {sup 238}Pu) andmore » beta ({sup 90}Sr/{sup 90}Y) activity concentrations in the solutions used to prepare the QAP water and air filter samples. Three LS counting techniques (Cerenkov, dual dpm and full spectrum analysis) are compared. These techniques may be used to validate the activity concentrations of each component in the alpha/beta solution before the QAP samples are actually prepared.« less

  15. 60-day safety screen results and final report for tank 241-C-111, auger samples 95-Aug-002, 95-Aug-003, 95-Aug-016, and 95-Aug-017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, A.D.

    1995-05-30

    This report presents the details of the auger sampling events for underground waste tank C-111. The samples were shipped to the 222-S laboratories were they underwent safety screening analysis and primary ferricyanide analysis. The samples were analyzed for alpha total, total organic carbon, cyanide, Ni, moisture, and temperature differentials. The results of this analysis are presented in this document.

  16. Analysis of Volatile Fragrance and Flavor Compounds by Headspace Solid Phase Microextraction and GC-MS: An Undergraduate Instrumental Analysis Experiment

    NASA Astrophysics Data System (ADS)

    Galipo, Randolph C.; Canhoto, Alfredo J.; Walla, Michael D.; Morgan, Stephen L.

    1999-02-01

    A senior-level undergraduate laboratory experiment that demonstrates the use of solid-phase microextraction (SPME) and capillary gas chromatography-mass spectrometry (GC-MS) was developed for the identification of volatile compounds in consumer products. SPME minimizes sample preparation and concentrates volatile analytes in a solvent-free manner. Volatile flavor and fragrance compounds were extracted by SPME from the headspace of vials containing shampoos, chewing gums, and perfumes and analyzed by GC-MS. Headspace SPME was shown to be more sensitive than conventional headspace analysis of similar samples performed with an airtight syringe. Analysis times were less than 30 min, allowing multiple analyses to be performed in a typical laboratory class period.

  17. Laboratory-based clinical audit as a tool for continual improvement: an example from CSF chemistry turnaround time audit in a South-African teaching hospital

    PubMed Central

    Imoh, Lucius C; Mutale, Mubanga; Parker, Christopher T; Erasmus, Rajiv T; Zemlin, Annalise E

    2016-01-01

    Introduction Timeliness of laboratory results is crucial to patient care and outcome. Monitoring turnaround times (TAT), especially for emergency tests, is important to measure the effectiveness and efficiency of laboratory services. Laboratory-based clinical audits reveal opportunities for improving quality. Our aim was to identify the most critical steps causing a high TAT for cerebrospinal fluid (CSF) chemistry analysis in our laboratory. Materials and methods A 6-month retrospective audit was performed. The duration of each operational phase across the laboratory work flow was examined. A process-mapping audit trail of 60 randomly selected requests with a high TAT was conducted and reasons for high TAT were tested for significance. Results A total of 1505 CSF chemistry requests were analysed. Transport of samples to the laboratory was primarily responsible for the high average TAT (median TAT = 170 minutes). Labelling accounted for most delays within the laboratory (median TAT = 71 minutes) with most delays occurring after regular work hours (P < 0.05). CSF chemistry requests without the appropriate number of CSF sample tubes were significantly associated with delays in movement of samples from the labelling area to the technologist’s work station (caused by a preference for microbiological testing prior to CSF chemistry). Conclusion A laboratory-based clinical audit identified sample transportation, work shift periods and use of inappropriate CSF sample tubes as drivers of high TAT for CSF chemistry in our laboratory. The results of this audit will be used to change pre-analytical practices in our laboratory with the aim of improving TAT and customer satisfaction. PMID:27346964

  18. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR LABORATORY ANALYSIS OF HAIR SAMPLES FOR MERCURY (RTI-L-1.0)

    EPA Science Inventory

    The purpose of this protocol is to provide guidelines for the analysis of hair samples for total mercury by cold vapor atomic fluorescence (CVAFS) spectrometry. This protocol describes the methodology and all other analytical aspects involved in the analysis. Keywords: hair; s...

  19. Request Pattern, Pre-Analytical and Analytical Conditions of Urinalysis in Primary Care: Lessons from a One-Year Large-Scale Multicenter Study.

    PubMed

    Salinas, Maria; Lopez-Garrigos, Maite; Flores, Emilio; Leiva-Salinas, Carlos

    2018-06-01

    To study the urinalysis request, pre-analytical sample conditions, and analytical procedures. Laboratories were asked to provide the number of primary care urinalyses requested, and to fill out a questionnaire regarding pre-analytical conditions and analytical procedures. 110 laboratories participated in the study. 232.5 urinalyses/1,000 inhabitants were reported. 75.4% used the first morning urine. The sample reached the laboratory in less than 2 hours in 18.8%, between 2 - 4 hours in 78.3%, and between 4 - 6 hours in the remaining 2.9%. 92.5% combined the use of test strip and particle analysis, and only 7.5% used the strip exclusively. All participants except one performed automated particle analysis depending on strip results; in 16.2% the procedure was only manual. Urinalysis was highly requested. There was a lack of compliance with guidelines regarding time between micturition and analysis that usually involved the combination of strip followed by particle analysis.

  20. Combined target factor analysis and Bayesian soft-classification of interference-contaminated samples: forensic fire debris analysis.

    PubMed

    Williams, Mary R; Sigman, Michael E; Lewis, Jennifer; Pitan, Kelly McHugh

    2012-10-10

    A bayesian soft classification method combined with target factor analysis (TFA) is described and tested for the analysis of fire debris data. The method relies on analysis of the average mass spectrum across the chromatographic profile (i.e., the total ion spectrum, TIS) from multiple samples taken from a single fire scene. A library of TIS from reference ignitable liquids with assigned ASTM classification is used as the target factors in TFA. The class-conditional distributions of correlations between the target and predicted factors for each ASTM class are represented by kernel functions and analyzed by bayesian decision theory. The soft classification approach assists in assessing the probability that ignitable liquid residue from a specific ASTM E1618 class, is present in a set of samples from a single fire scene, even in the presence of unspecified background contributions from pyrolysis products. The method is demonstrated with sample data sets and then tested on laboratory-scale burn data and large-scale field test burns. The overall performance achieved in laboratory and field test of the method is approximately 80% correct classification of fire debris samples. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Development of a Water-Quality Lab That Enhances Learning & Connects Students to the Land

    ERIC Educational Resources Information Center

    Enos-Berlage, Jodi

    2012-01-01

    A 3-week laboratory module was developed for an undergraduate microbiology course that would connect student learning to a real-life challenge, specifically a local water-quality project. The laboratory series included multiple field trips, sampling of soil and water, and subsequent analysis for bacteria and nitrate. Laboratory results confirmed…

  2. Development and Score Validation of a Chemistry Laboratory Anxiety Instrument (CLAI) for College Chemistry Students.

    ERIC Educational Resources Information Center

    Bowen, Craig W.

    1999-01-01

    Reports the development and score validation of an instrument for measuring anxieties students experience in college chemistry laboratories. Factor analysis of scores from 361 college students shows that the developed Chemistry Laboratory Anxiety Instrument measures five constructs. Results from a second sample of 598 students show that scores on…

  3. Analysis of Copper-Bearing Rocks and Minerals for Their Metal Content Using Visible Spectroscopy: A First Year Chemistry Laboratory Exploration

    ERIC Educational Resources Information Center

    Bopegedera, A. M. R. P.

    2016-01-01

    General chemistry and introductory chemistry students were presented with a laboratory exploration for the determination of the mass percent of copper in rock and mineral samples. They worked independently in the laboratory, which involved multiple lab (pipetting, preparing standard solutions by quantitative dilution, recording visible spectra…

  4. Estimation of blood haemoglobin concentration using the HemoCue during caesarean section: the effect of sampling site.

    PubMed

    Richards, N A; Boyce, H; Yentis, S M

    2010-01-01

    Haemoglobin concentration measured using the HemoCue is accurate for capillary and venous/arterial blood, provided the recommended sampling method is strictly observed. Analysis of blood, particularly of capillary samples, using the HemoCue is useful during caesarean section. The toe might be preferred to the thumb since it is numb during neuraxial anaesthesia, but whether sampling at either site is accurate in this situation, given the cardiovascular effects of anaesthesia and pregnancy, is not known. We aimed to compare haemoglobin values measured in venous and capillary samples (toe and thumb) during caesarean section under neuraxial anaesthesia. Fifty healthy women having caesarean section under spinal or combined spinal-epidural anaesthesia were included. At the end of surgery, the great toe and thumb (non-i.v. fluid side) were lanced as recommended for a HemoCue reading. A venous blood sample (non-i.v. fluid side) was also taken and sent for formal laboratory measurement and tested with the HemoCue. Bland-Altman analysis was applied to the haemoglobin values. Bias (mean difference) and precision +/- 2 SD were respectively 0.2 +/-1.6 for laboratory vs. toe, 0.1 +/-1.8 for laboratory vs. thumb, and 0.2 +/-1.6 laboratory vs. venous. Our results suggest that in terms of accuracy, the two sites are equally suitable for use during caesarean section under neuraxial anaesthesia. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. 1990 National Water Quality Laboratory Services Catalog

    USGS Publications Warehouse

    Pritt, Jeffrey; Jones, Berwyn E.

    1989-01-01

    PREFACE This catalog provides information about analytical services available from the National Water Quality Laboratory (NWQL) to support programs of the Water Resources Division of the U.S. Geological Survey. To assist personnel in the selection of analytical services, the catalog lists cost, sample volume, applicable concentration range, detection level, precision of analysis, and preservation techniques for samples to be submitted for analysis. Prices for services reflect operationa1 costs, the complexity of each analytical procedure, and the costs to ensure analytical quality control. The catalog consists of five parts. Part 1 is a glossary of terminology; Part 2 lists the bottles, containers, solutions, and other materials that are available through the NWQL; Part 3 describes the field processing of samples to be submitted for analysis; Part 4 describes analytical services that are available; and Part 5 contains indices of analytical methodology and Chemical Abstract Services (CAS) numbers. Nomenclature used in the catalog is consistent with WATSTORE and STORET. The user is provided with laboratory codes and schedules that consist of groupings of parameters which are measured together in the NWQL. In cases where more than one analytical range is offered for a single element or compound, different laboratory codes are given. Book 5 of the series 'Techniques of Water Resources Investigations of the U.S. Geological Survey' should be consulted for more information about the analytical procedures included in the tabulations. This catalog supersedes U.S. Geological Survey Open-File Report 86-232 '1986-87-88 National Water Quality Laboratory Services Catalog', October 1985.

  6. Acid-Soluble Internal Capsules for Closed-Face Cassette Elemental Sampling and Analysis of Workplace Air

    PubMed Central

    Harper, Martin; Ashley, Kevin

    2013-01-01

    Airborne particles that are collected using closed-face filter cassettes (CFCs), which are used widely in the sampling of workplace aerosols, can deposit in places other than on the filter and thereby may not be included in the ensuing analysis. A technique for ensuring that internal non-filter deposits are included in the analysis is to collect airborne particles within an acid-soluble internal capsule that, following sampling, can be dissolved along with the filter for subsequent elemental analysis. An interlaboratory study (ILS) was carried out to evaluate the use of cellulosic CFC capsule inserts for their suitability in the determination of trace elements in airborne samples. The ILS was performed in accordance with an applicable ASTM International standard practice, ASTM E691, which describes statistical procedures for investigating interlaboratory precision. Performance evaluation materials consisted of prototype cellulose acetate capsules attached to mixed-cellulose ester filters. Batches of capsules were dosed with Pb-containing materials (standard aqueous solutions, and certified reference material soil and paint). Also, aerosol samples containing nine target analyte elements (As, Cd, Co, Cr, Cu, Fe, Pb, Mn, and Ni) were generated using a multiport sampler; various concentrations and sampling times were employed to yield samples fortified at desired loading levels. Triplicates of spiked capsules at three different loadings were conveyed to each volunteer laboratory; loading levels were unknown to the participants. The laboratories were asked to prepare the samples by acid dissolution and to analyze aliquots of extracted samples by atomic spectrometry in accordance with applicable ASTM International Standards. Participants were asked to report their results in units of μg of each target element per sample. For the elements investigated, interlaboratory precision and recovery estimates from the participating laboratories demonstrated the utility of the cellulosic capsule inserts for the measurement of sampled trace elements. PMID:23548078

  7. A laboratory information management system for the analysis of tritium (3H) in environmental waters.

    PubMed

    Belachew, Dagnachew Legesse; Terzer-Wassmuth, Stefan; Wassenaar, Leonard I; Klaus, Philipp M; Copia, Lorenzo; Araguás, Luis J Araguás; Aggarwal, Pradeep

    2018-07-01

    Accurate and precise measurements of low levels of tritium ( 3 H) in environmental waters are difficult to attain due to complex steps of sample preparation, electrolytic enrichment, liquid scintillation decay counting, and extensive data processing. We present a Microsoft Access™ relational database application, TRIMS (Tritium Information Management System) to assist with sample and data processing of tritium analysis by managing the processes from sample registration and analysis to reporting and archiving. A complete uncertainty propagation algorithm ensures tritium results are reported with robust uncertainty metrics. TRIMS will help to increase laboratory productivity and improve the accuracy and precision of 3 H assays. The software supports several enrichment protocols and LSC counter types. TRIMS is available for download at no cost from the IAEA at www.iaea.org/water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Optimization of analytical laboratory work using computer networking and databasing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upp, D.L.; Metcalf, R.A.

    1996-06-01

    The Health Physics Analysis Laboratory (HPAL) performs around 600,000 analyses for radioactive nuclides each year at Los Alamos National Laboratory (LANL). Analysis matrices vary from nasal swipes, air filters, work area swipes, liquids, to the bottoms of shoes and cat litter. HPAL uses 8 liquid scintillation counters, 8 gas proportional counters, and 9 high purity germanium detectors in 5 laboratories to perform these analyses. HPAL has developed a computer network between the labs and software to produce analysis results. The software and hardware package includes barcode sample tracking, log-in, chain of custody, analysis calculations, analysis result printing, and utility programs.more » All data are written to a database, mirrored on a central server, and eventually written to CD-ROM to provide for online historical results. This system has greatly reduced the work required to provide for analysis results as well as improving the quality of the work performed.« less

  9. Quality-Assurance Data for Routine Water Analyses by the U.S. Geological Survey Laboratory in Troy, New York--July 1999 through June 2001

    USGS Publications Warehouse

    Lincoln, Tricia A.; Horan-Ross, Debra A.; McHale, Michael R.; Lawrence, Gregory B.

    2006-01-01

    The laboratory for analysis of low-ionic-strength water at the U.S. Geological Survey (USGS) Water Science Center in Troy, N.Y., analyzes samples collected by USGS projects throughout the Northeast. The laboratory's quality-assurance program is based on internal and interlaboratory quality-assurance samples and quality-control procedures that were developed to ensure proper sample collection, processing, and analysis. The quality-assurance and quality-control data were stored in the laboratory's LabMaster data-management system, which provides efficient review, compilation, and plotting of data. This report presents and discusses results of quality-assurance and quality-control samples analyzed from July 1999 through June 2001. Results for the quality-control samples for 18 analytical procedures were evaluated for bias and precision. Control charts indicate that data for eight of the analytical procedures were occasionally biased for either high-concentration or low-concentration samples but were within control limits; these procedures were: acid-neutralizing capacity, total monomeric aluminum, total aluminum, calcium, chloride and nitrate (ion chromatography and colormetric method) and sulfate. The total aluminum and dissolved organic carbon procedures were biased throughout the analysis period for the high-concentration sample, but were within control limits. The calcium and specific conductance procedures were biased throughout the analysis period for the low-concentration sample, but were within control limits. The magnesium procedure was biased for the high-concentration and low concentration samples, but was within control limits. Results from the filter-blank and analytical-blank analyses indicate that the procedures for 14 of 15 analytes were within control limits, although the concentrations for blanks were occasionally outside the control limits. The data-quality objective was not met for dissolved organic carbon. Sampling and analysis precision are evaluated herein in terms of the coefficient of variation obtained for triplicate samples in the procedures for 17 of the 18 analytes. At least 90 percent of the samples met data-quality objectives for all analytes except ammonium (81 percent of samples met objectives), chloride (75 percent of samples met objectives), and sodium (86 percent of samples met objectives). Results of the USGS interlaboratory Standard Reference Sample (SRS) Project indicated good data quality over the time period, with most ratings for each sample in the good to excellent range. The P-sample (low-ionic-strength constituents) analysis had one satisfactory rating for the specific conductance procedure in one study. The T-sample (trace constituents) analysis had one satisfactory rating for the aluminum procedure in one study and one unsatisfactory rating for the sodium procedure in another. The remainder of the samples had good or excellent ratings for each study. Results of Environment Canada's National Water Research Institute (NWRI) program indicated that at least 89 percent of the samples met data-quality objectives for 10 of the 14 analytes; the exceptions were ammonium, total aluminum, dissolved organic carbon, and sodium. Results indicate a positive bias for the ammonium procedure in all studies. Data-quality objectives were not met in 50 percent of samples analyzed for total aluminum, 38 percent of samples analyzed for dissolved organic carbon, and 27 percent of samples analyzed for sodium. Results from blind reference-sample analyses indicated that data-quality objectives were met by at least 91 percent of the samples analyzed for calcium, chloride, fluoride, magnesium, pH, potassium, and sulfate. Data-quality objectives were met by 75 percent of the samples analyzed for sodium and 58 percent of the samples analyzed for specific conductance.

  10. National Water Quality Laboratory, 1995 services catalog

    USGS Publications Warehouse

    Timme, P.J.

    1995-01-01

    This Services Catalog contains information about field supplies and analytical services available from the National Water Quality Laboratory in Denver, Colo., and field supplies available from the Quality Water Service Unit in Ocala, Fla., to members of the U.S. Geological Survey. To assist personnel in the selection of analytical services, this catalog lists sample volume, required containers, applicable concentration range, detection level, precision of analysis, and preservation requirements for samples.

  11. Determining the Population Size of Pond Phytoplankton.

    ERIC Educational Resources Information Center

    Hummer, Paul J.

    1980-01-01

    Discusses methods for determining the population size of pond phytoplankton, including water sampling techniques, laboratory analysis of samples, and additional studies worthy of investigation in class or as individual projects. (CS)

  12. Pharmaceutical identifier confirmation via DART-TOF.

    PubMed

    Easter, Jacob L; Steiner, Robert R

    2014-07-01

    Pharmaceutical analysis comprises a large amount of the casework in forensic controlled substances laboratories. In order to reduce the time of analysis for pharmaceuticals, a Direct Analysis in Real Time ion source coupled with an accurate mass time-of-flight (DART-TOF) mass spectrometer was used to confirm identity. DART-TOF spectral data for pharmaceutical samples were analyzed and evaluated by comparison to standard spectra. Identical mass pharmaceuticals were differentiated using collision induced dissociation fragmentation, present/absent ions, and abundance comparison box plots; principal component analysis (PCA) and linear discriminant analysis (LDA) were used for differentiation of identical mass mixed drug spectra. Mass assignment reproducibility and robustness tests were performed on the DART-TOF spectra. Impacts on the forensic science community include a decrease in analysis time over the traditional gas chromatograph/mass spectrometry (GC/MS) confirmations, better laboratory efficiency, and simpler sample preparation. Using physical identifiers and the DART-TOF to confirm pharmaceutical identity will eliminate the use of GC/MS and effectively reduce analysis time while still complying with accepted analysis protocols. This will prove helpful in laboratories with large backlogs and will simplify the confirmation process. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Novel Sample-handling Approach for XRD Analysis with Minimal Sample Preparation

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Chipera, S.; Bish, D.; Blake, D.; Feldman, S.; Vaniman, D.; Bryson, C.

    2004-01-01

    Sample preparation and sample handling are among the most critical operations associated with X-ray diffraction (XRD) analysis. These operations require attention in a laboratory environment, but they become a major constraint in the deployment of XRD instruments for robotic planetary exploration. We are developing a novel sample handling system that dramatically relaxes the constraints on sample preparation by allowing characterization of coarse-grained material that would normally be impossible to analyze with conventional powder-XRD techniques.

  14. Determining the optimal forensic DNA analysis procedure following investigation of sample quality.

    PubMed

    Hedell, Ronny; Hedman, Johannes; Mostad, Petter

    2018-07-01

    Crime scene traces of various types are routinely sent to forensic laboratories for analysis, generally with the aim of addressing questions about the source of the trace. The laboratory may choose to analyse the samples in different ways depending on the type and quality of the sample, the importance of the case and the cost and performance of the available analysis methods. Theoretically well-founded guidelines for the choice of analysis method are, however, lacking in most situations. In this paper, it is shown how such guidelines can be created using Bayesian decision theory. The theory is applied to forensic DNA analysis, showing how the information from the initial qPCR analysis can be utilized. It is assumed the alternatives for analysis are using a standard short tandem repeat (STR) DNA analysis assay, using the standard assay and a complementary assay, or the analysis may be cancelled following quantification. The decision is based on information about the DNA amount and level of DNA degradation of the forensic sample, as well as case circumstances and the cost for analysis. Semi-continuous electropherogram models are used for simulation of DNA profiles and for computation of likelihood ratios. It is shown how tables and graphs, prepared beforehand, can be used to quickly find the optimal decision in forensic casework.

  15. Sampling procedure for lake or stream surface water chemistry

    Treesearch

    Robert Musselman

    2012-01-01

    Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.

  16. 10 CFR 74.45 - Measurements and measurement control.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... measurements, obtaining samples, and performing laboratory analyses for element concentration and isotope... of random error behavior. On a predetermined schedule, the program shall include, as appropriate: (i) Replicate analyses of individual samples; (ii) Analysis of replicate process samples; (iii) Replicate volume...

  17. 10 CFR 74.45 - Measurements and measurement control.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... measurements, obtaining samples, and performing laboratory analyses for element concentration and isotope... of random error behavior. On a predetermined schedule, the program shall include, as appropriate: (i) Replicate analyses of individual samples; (ii) Analysis of replicate process samples; (iii) Replicate volume...

  18. 10 CFR 74.45 - Measurements and measurement control.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... measurements, obtaining samples, and performing laboratory analyses for element concentration and isotope... of random error behavior. On a predetermined schedule, the program shall include, as appropriate: (i) Replicate analyses of individual samples; (ii) Analysis of replicate process samples; (iii) Replicate volume...

  19. Specimen rejection in laboratory medicine: Necessary for patient safety?

    PubMed

    Dikmen, Zeliha Gunnur; Pinar, Asli; Akbiyik, Filiz

    2015-01-01

    The emergency laboratory in Hacettepe University Hospitals receives specimens from emergency departments (EDs), inpatient services and intensive care units (ICUs). The samples are accepted according to the rejection criteria of the laboratory. In this study, we aimed to evaluate the sample rejection ratios according to the types of pre-preanalytical errors and collection areas. The samples sent to the emergency laboratory were recorded during 12 months between January to December, 2013 in which 453,171 samples were received and 27,067 specimens were rejected. Rejection ratios was 2.5% for biochemistry tests, 3.2% for complete blood count (CBC), 9.8% for blood gases, 9.2% for urine analysis, 13.3% for coagulation tests, 12.8% for therapeutic drug monitoring, 3.5% for cardiac markers and 12% for hormone tests. The most frequent rejection reasons were fibrin clots (28%) and inadequate volume (9%) for biochemical tests. Clotted samples (35%) and inadequate volume (13%) were the major causes for coagulation tests, blood gas analyses and CBC. The ratio of rejected specimens was higher in the EDs (40%) compared to ICUs (30%) and inpatient services (28%). The highest rejection ratio was observed in neurology ICU (14%) among the ICUs and internal medicine inpatient service (10%) within inpatient clinics. We detected an overall specimen rejection rate of 6% in emergency laboratory. By documentation of rejected samples and periodic training of healthcare personnel, we expect to decrease sample rejection ratios below 2%, improve total quality management of the emergency laboratory and promote patient safety.

  20. Consideration of sample return and the exploration strategy for Mars

    NASA Technical Reports Server (NTRS)

    Bogard, D. C.; Duke, M. B.; Gibson, E. K.; Minear, J. W.; Nyquist, L. E.; Phinney, W. C.

    1979-01-01

    The scientific rationale and requirements for a Mars surface sample return were examined and the experience gained from the analysis and study of the returned lunar samples were incorporated into the science requirements and engineering design for the Mars sample return mission. The necessary data sets for characterizing Mars are presented. If further analyses of surface samples are to be made, the best available method is for the analysis to be conducted in terrestrial laboratories.

  1. Automation system for measurement of gamma-ray spectra of induced activity for multi-element high volume neutron activation analysis at the reactor IBR-2 of Frank Laboratory of Neutron Physics at the joint institute for nuclear research

    NASA Astrophysics Data System (ADS)

    Pavlov, S. S.; Dmitriev, A. Yu.; Chepurchenko, I. A.; Frontasyeva, M. V.

    2014-11-01

    The automation system for measurement of induced activity of gamma-ray spectra for multi-element high volume neutron activation analysis (NAA) was designed, developed and implemented at the reactor IBR-2 at the Frank Laboratory of Neutron Physics. The system consists of three devices of automatic sample changers for three Canberra HPGe detector-based gamma spectrometry systems. Each sample changer consists of two-axis of linear positioning module M202A by DriveSet company and disk with 45 slots for containers with samples. Control of automatic sample changer is performed by the Xemo S360U controller by Systec company. Positioning accuracy can reach 0.1 mm. Special software performs automatic changing of samples and measurement of gamma spectra at constant interaction with the NAA database.

  2. The Mars Science Laboratory Organic Check Material

    NASA Technical Reports Server (NTRS)

    Conrad, Pamela G.; Eigenbrode, J. E.; Mogensen, C. T.; VonderHeydt, M. O.; Glavin, D. P.; Mahaffy, P. M.; Johnson, J. A.

    2011-01-01

    The Organic Check Material (OCM) has been developed for use on the Mars Science Laboratory mission to serve as a sample standard for verification of organic cleanliness and characterization of potential sample alteration as a function of the sample acquisition and portioning process on the Curiosity rover. OCM samples will be acquired using the same procedures for drilling, portioning and delivery as are used to study martian samples with The Sample Analysis at Mars (SAM) instrument suite during MSL surface operations. Because the SAM suite is highly sensitive to organic molecules, the mission can better verify the cleanliness of Curiosity's sample acquisition hardware if a known material can be processed through SAM and compared with the results obtained from martian samples.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F.; Taylor-Pashow, K.

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-556, MCU-15-557, and MCU-15-558), pulled on 03/16/2015 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-556-557-558 indicated a low concentration (~ 78 % of nominal) of the suppressor (TiDG) and concentrations of the extractant (MaxCalix), and of the modifier (CS-7SB) in the solvent that were slightly lower than nominal. This analysis confirms the addition of TiDG, MaxCalix, and modifier to the solvent in February 2015. Based on the current monthly sample, the levels of TiDG, MaxCalix, and modifier aremore » sufficient for continuing operation without adding a trim at this time. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). However, the p-nut vials that delivered the samples contained small (1 mm) droplets of oxidized modifier and amides (as detected by the FTIR analysis). In addition, up to 21 microgram of mercury per gram of solvent (or 17.4 µg/mL) was detected in this sample. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.« less

  4. Tank Vapor Sampling and Analysis Data Package for Tank 241-Z-361 Sampled 09/22/1999 and 09/271999 During Sludge Core Removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VISWANATH, R.S.

    This data package presents sampling data and analytical results from the September 22 and 27, 1999, headspace vapor sampling of Hanford Site Tank 241-2-361 during sludge core removal. The Lockheed Martin Hanford Corporation (LMHC) sampling team collected the samples and Waste Management Laboratory (WML) analyzed the samples in accordance with the requirements specified in the 241-2361 Sludge Characterization Sampling and Analysis Plan, (SAP), HNF-4371, Rev. 1, (Babcock and Wilcox Hanford Corporation, 1999). Six SUMMA{trademark} canister samples were collected on each day (1 ambient field blank and 5 tank vapor samples collected when each core segment was removed). The samples weremore » radiologically released on September 28 and October 4, 1999, and received at the laboratory on September 29 and October 6, 1999. Target analytes were not detected at concentrations greater than their notification limits as specified in the SAP. Analytical results for the target analytes and tentatively identified compounds (TICs) are presented in Section 2.2.2 starting on page 2B-7. Three compounds identified for analysis in the SAP were analyzed as TICs. The discussion of this modification is presented in Section 2.2.1.2.« less

  5. Powder X-ray diffraction laboratory, Reston, Virginia

    USGS Publications Warehouse

    Piatak, Nadine M.; Dulong, Frank T.; Jackson, John C.; Folger, Helen W.

    2014-01-01

    The powder x-ray diffraction (XRD) laboratory is managed jointly by the Eastern Mineral and Environmental Resources and Eastern Energy Resources Science Centers. Laboratory scientists collaborate on a wide variety of research problems involving other U.S. Geological Survey (USGS) science centers and government agencies, universities, and industry. Capabilities include identification and quantification of crystalline and amorphous phases, and crystallographic and atomic structure analysis for a wide variety of sample media. Customized laboratory procedures and analyses commonly are used to characterize non-routine samples including, but not limited to, organic and inorganic components in petroleum source rocks, ore and mine waste, clay minerals, and glassy phases. Procedures can be adapted to meet a variety of research objectives.

  6. Collection methods and quality assessment for Esche-richia coli, water quality, and microbial source tracking data within Tumacácori National Historical Park and the upper Santa Cruz River, Arizona, 2015-16

    USGS Publications Warehouse

    Paretti, Nicholas; Coes, Alissa L.; Kephart, Christopher M.; Mayo, Justine

    2018-03-05

    Tumacácori National Historical Park protects the culturally important Mission, San José de Tumacácori, while also managing a portion of the ecologically diverse riparian corridor of the Santa Cruz River. This report describes the methods and quality assurance procedures used in the collection of water samples for the analysis of Escherichia coli (E. coli), microbial source tracking markers, suspended sediment, water-quality parameters, turbidity, and the data collection for discharge and stage; the process for data review and approval is also described. Finally, this report provides a quantitative assessment of the quality of the E. coli, microbial source tracking, and suspended sediment data.The data-quality assessment revealed that bias attributed to field and laboratory contamination was minimal, with E. coli detections in only 3 out of 33 field blank samples analyzed. Concentrations in the field blanks were several orders of magnitude lower than environmental concentrations. The microbial source tracking (MST) field blank was below the detection limit for all MST markers analyzed. Laboratory blanks for E. coli at the USGS Arizona Water Science Center and laboratory blanks for MST markers at the USGS Ohio Water Microbiology Laboratory were all below the detection limit. Irreplicate data for E. coli and suspended sediment indicated that bias was not introduced to the data by combining samples collected using discrete sampling methods with samples collected using automatic sampling methods.The split and sequential E. coli replicate data showed consistent analytical variability and a single equation was developed to explain the variability of E. coli concentrations. An additional analysis of analytical variability for E. coli indicated analytical variability around 18 percent relative standard deviation and no trend was observed in the concentration during the processing and analysis of multiple split-replicates. Two replicate samples were collected for MST and individual markers were compared for a base flow and flood sample. For the markers found in common between the two types of samples, the relative standard deviation for the base flow sample was more than 3 times greater than the markers in the flood sample. Sequential suspended sediment replicates had a relative standard deviation of about 1.3 percent, indicating that environmental and analytical variability was minimal.A holding time review and laboratory study analysis supported the extended holding times required for this investigation. Most concentrations for flood and base-flow samples were within the theoretical variability specified in the most probable number approach suggesting that extended hold times did not overly influence the final concentrations reported.

  7. Sampling and analysis plan for sludge located on the floor and in the pits of the 105-K basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAKER, R.B.

    1998-11-20

    This Sampling and Analysis Plan (SAP) provides direction for the sampling of the sludge found on the floor and in the remote pits of the 105-K Basins to provide: (1) basic data for the sludges that have not been characterized to-date and (2) representative Sludge material for process tests to be made by the SNF Project/K Basins sludge treatment process subproject. The sampling equipment developed will remove representative samples of the radioactive sludge from underwater at the K Basins, depositing them in shielded containers for transport to the Hanford Site laboratories. Included in the present document is the basic backgroundmore » logic for selection of the samples to meet the requirements established in the Data Quality Objectives (DQO), HNF-2033, for this sampling activity. The present document also includes the laboratory analyses, methods, procedures, and reporting that will be required to meet the DQO.« less

  8. New developments of X-ray fluorescence imaging techniques in laboratory

    NASA Astrophysics Data System (ADS)

    Tsuji, Kouichi; Matsuno, Tsuyoshi; Takimoto, Yuki; Yamanashi, Masaki; Kometani, Noritsugu; Sasaki, Yuji C.; Hasegawa, Takeshi; Kato, Shuichi; Yamada, Takashi; Shoji, Takashi; Kawahara, Naoki

    2015-11-01

    X-ray fluorescence (XRF) analysis is a well-established analytical technique with a long research history. Many applications have been reported in various fields, such as in the environmental, archeological, biological, and forensic sciences as well as in industry. This is because XRF has a unique advantage of being a nondestructive analytical tool with good precision for quantitative analysis. Recent advances in XRF analysis have been realized by the development of new x-ray optics and x-ray detectors. Advanced x-ray focusing optics enables the making of a micro x-ray beam, leading to micro-XRF analysis and XRF imaging. A confocal micro-XRF technique has been applied for the visualization of elemental distributions inside the samples. This technique was applied for liquid samples and for monitoring chemical reactions such as the metal corrosion of steel samples in the NaCl solutions. In addition, a principal component analysis was applied for reducing the background intensity in XRF spectra obtained during XRF mapping, leading to improved spatial resolution of confocal micro-XRF images. In parallel, the authors have proposed a wavelength dispersive XRF (WD-XRF) imaging spectrometer for a fast elemental imaging. A new two dimensional x-ray detector, the Pilatus detector was applied for WD-XRF imaging. Fast XRF imaging in 1 s or even less was demonstrated for Euro coins and industrial samples. In this review paper, these recent advances in laboratory-based XRF imaging, especially in a laboratory setting, will be introduced.

  9. Quality-assurance results for routine water analysis in US Geological Survey laboratories, water year 1991

    USGS Publications Warehouse

    Maloney, T.J.; Ludtke, A.S.; Krizman, T.L.

    1994-01-01

    The US. Geological Survey operates a quality- assurance program based on the analyses of reference samples for the National Water Quality Laboratory in Arvada, Colorado, and the Quality of Water Service Unit in Ocala, Florida. Reference samples containing selected inorganic, nutrient, and low ionic-strength constituents are prepared and disguised as routine samples. The program goal is to determine precision and bias for as many analytical methods offered by the participating laboratories as possible. The samples typically are submitted at a rate of approximately 5 percent of the annual environmental sample load for each constituent. The samples are distributed to the laboratories throughout the year. Analytical data for these reference samples reflect the quality of environmental sample data produced by the laboratories because the samples are processed in the same manner for all steps from sample login through data release. The results are stored permanently in the National Water Data Storage and Retrieval System. During water year 1991, 86 analytical procedures were evaluated at the National Water Quality Laboratory and 37 analytical procedures were evaluated at the Quality of Water Service Unit. An overall evaluation of the inorganic (major ion and trace metal) constituent data for water year 1991 indicated analytical imprecision in the National Water Quality Laboratory for 5 of 67 analytical procedures: aluminum (whole-water recoverable, atomic emission spectrometric, direct-current plasma); calcium (atomic emission spectrometric, direct); fluoride (ion-exchange chromatographic); iron (whole-water recoverable, atomic absorption spectrometric, direct); and sulfate (ion-exchange chromatographic). The results for 11 of 67 analytical procedures had positive or negative bias during water year 1991. Analytical imprecision was indicated in the determination of two of the five National Water Quality Laboratory nutrient constituents: orthophosphate as phosphorus and phosphorus. A negative or positive bias condition was indicated in three of five nutrient constituents. There was acceptable precision and no indication of bias for the 14 low ionic-strength analytical procedures tested in the National Water Quality Laboratory program and for the 32 inorganic and 5 nutrient analytical procedures tested in the Quality of Water Service Unit during water year 1991.

  10. Hair analysis for cocaine: factors in laboratory contamination studies and their relevance to proficiency sample preparation and hair testing practices.

    PubMed

    Hill, Virginia; Cairns, Thomas; Schaffer, Michael

    2008-03-21

    Hair samples were contaminated by rubbing with cocaine (COC) followed by sweat application, multiple shampoo treatments and storage. The samples were then washed with isopropanol for 15min, followed by sequential aqueous washes totaling 3.5h. The amount of drug in the last wash was used to calculate a wash criterion to determine whether samples were positive due to use or contamination. Analyses of cocaine and metabolites were done by LC/MS/MS. These procedures were applied to samples produced by a U.S. government-sponsored cooperative study, in which this laboratory participated, and to samples in a parallel in-house study. All contaminated samples in both studies were correctly identified as contaminated by cutoff, benzoylecgonine (BE) presence, BE ratio, and/or the wash criterion. A method for determining hair porosity was applied to samples in both studies, and porosity characteristics of hair are discussed as they relate to experimental and real-world contamination of hair, preparation of proficiency survey samples, and analysis of unknown hair samples.

  11. The Viking X ray fluorescence experiment - Sampling strategies and laboratory simulations. [Mars soil sampling

    NASA Technical Reports Server (NTRS)

    Baird, A. K.; Castro, A. J.; Clark, B. C.; Toulmin, P., III; Rose, H., Jr.; Keil, K.; Gooding, J. L.

    1977-01-01

    Ten samples of Mars regolith material (six on Viking Lander 1 and four on Viking Lander 2) have been delivered to the X ray fluorescence spectrometers as of March 31, 1977. An additional six samples at least are planned for acquisition in the remaining Extended Mission (to January 1979) for each lander. All samples acquired are Martian fines from the near surface (less than 6-cm depth) of the landing sites except the latest on Viking Lander 1, which is fine material from the bottom of a trench dug to a depth of 25 cm. Several attempts on each lander to acquire fresh rock material (in pebble sizes) for analysis have yielded only cemented surface crustal material (duricrust). Laboratory simulation and experimentation are required both for mission planning of sampling and for interpretation of data returned from Mars. This paper is concerned with the rationale for sample site selections, surface sampler operations, and the supportive laboratory studies needed to interpret X ray results from Mars.

  12. Methods for collection and analysis of water samples

    USGS Publications Warehouse

    Rainwater, Frank Hays; Thatcher, Leland Lincoln

    1960-01-01

    This manual contains methods used by the U.S. Geological Survey to collect, preserve, and analyze water samples. Throughout, the emphasis is on obtaining analytical results that accurately describe the chemical composition of the water in situ. Among the topics discussed are selection of sampling sites, frequency of sampling, field equipment, preservatives and fixatives, analytical techniques of water analysis, and instruments. Seventy-seven laboratory and field procedures are given for determining fifty-three water properties.

  13. NEW SAMPLING THEORY FOR MEASURING ECOSYSTEM STRUCTURE

    EPA Science Inventory

    This research considered the application of systems analysis to the study of laboratory ecosystems. The work concerned the development of a methodology which was shown to be useful in the design of laboratory experiments, the processing and interpretation of the results of these ...

  14. Multiplex cytokine profiling with highly pathogenic material: use of formalin solution in luminex analysis.

    PubMed

    Dowall, Stuart D; Graham, Victoria A; Tipton, Thomas R W; Hewson, Roger

    2009-08-31

    Work with highly pathogenic material mandates the use of biological containment facilities, involving microbiological safety cabinets and specialist laboratory engineering structures typified by containment level 3 (CL3) and CL4 laboratories. Consequences of working in high containment are the practical difficulties associated with containing specialist assays and equipment often essential for experimental analyses. In an era of increased interest in biodefence pathogens and emerging diseases, immunological analysis has developed rapidly alongside traditional techniques in virology and molecular biology. For example, in order to maximise the use of small sample volumes, multiplexing has become a more popular and widespread approach to quantify multiple analytes simultaneously, such as cytokines and chemokines. The luminex microsphere system allows for the detection of many cytokines and chemokines in a single sample, but the detection method of using aligned lasers and fluidics means that samples often have to be analysed in low containment facilities. In order to perform cytokine analysis in materials from high containment (CL3 and CL4 laboratories), we have developed an appropriate inactivation methodology after staining steps, which although results in a reduction of median fluorescent intensity, produces statistically comparable outcomes when judged against non-inactivated samples. This methodology thus extends the use of luminex technology for material that contains highly pathogenic biological agents.

  15. Determination of total carbohydrates in wine and wine-like beverages by HPLC with a refractive index detector: First Action 2013.12.

    PubMed

    Kupina, Steve; Roman, Mark

    2014-01-01

    An international collaborative study was conducted of an HPLC-refractive index (RI) detector method for the determination of the combined amounts of sugars, glycerol, organic acids, and phenolic compounds in wines and wine-like beverages. Nine collaborating laboratories representing major winery, contract laboratories, and government laboratories tested eight different materials as blind duplicates using the proposed method. Sample materials included red and white wines, port, wine cooler, and nonalcoholic wine. One material was a negative control, and one material was a reference material. Samples were either treated with an ion-exchange resin to remove interfering organic acids prior to analysis or left untreated to include organic acids and phenolics. Red wine samples were treated with polyvinylpolypyrrolidone to remove potential interferences from phenolics prior to analysis. The HPLC analyses were performed on a Bio-Rad Fast Acid Analysis Column using RI detection. Reproducibility (RSD(R)) for untreated samples (sugars + phenolics + organic acids) ranged from 6.6% for Titrivin AA4 reference material to 11.0% for dry red wine. RSD(R) for treated samples (sugars only) ranged from 6.8% for white zinfandel to 18.9% for dry white wine. RSD(R) for treated samples (sugars only) + glycerol ranged from 6.4% for white zinfandel to 19.8% for dry red wine. Based on these results, the method was adopted as Official First Action status for determination of total carbohydrates in wine and wine-like beverages.

  16. A simple method for plasma total vitamin C analysis suitable for routine clinical laboratory use.

    PubMed

    Robitaille, Line; Hoffer, L John

    2016-04-21

    In-hospital hypovitaminosis C is highly prevalent but almost completely unrecognized. Medical awareness of this potentially important disorder is hindered by the inability of most hospital laboratories to determine plasma vitamin C concentrations. The availability of a simple, reliable method for analyzing plasma vitamin C could increase opportunities for routine plasma vitamin C analysis in clinical medicine. Plasma vitamin C can be analyzed by high performance liquid chromatography (HPLC) with electrochemical (EC) or ultraviolet (UV) light detection. We modified existing UV-HPLC methods for plasma total vitamin C analysis (the sum of ascorbic and dehydroascorbic acid) to develop a simple, constant-low-pH sample reduction procedure followed by isocratic reverse-phase HPLC separation using a purely aqueous low-pH non-buffered mobile phase. Although EC-HPLC is widely recommended over UV-HPLC for plasma total vitamin C analysis, the two methods have never been directly compared. We formally compared the simplified UV-HPLC method with EC-HPLC in 80 consecutive clinical samples. The simplified UV-HPLC method was less expensive, easier to set up, required fewer reagents and no pH adjustments, and demonstrated greater sample stability than many existing methods for plasma vitamin C analysis. When compared with the gold-standard EC-HPLC method in 80 consecutive clinical samples exhibiting a wide range of plasma vitamin C concentrations, it performed equivalently. The easy set up, simplicity and sensitivity of the plasma vitamin C analysis method described here could make it practical in a normally equipped hospital laboratory. Unlike any prior UV-HPLC method for plasma total vitamin C analysis, it was rigorously compared with the gold-standard EC-HPLC method and performed equivalently. Adoption of this method could increase the availability of plasma vitamin C analysis in clinical medicine.

  17. Inter-laboratory variation in the chemical analysis of acidic forest soil reference samples from eastern North America

    Treesearch

    D.S. Ross; S.W. Bailey; R.D. Briggs; J. Curry; I.J. Fernandez; G. Fredriksen; C.L. Goodale; P.W. Hazlett; P.R. Heine; C.E. Johnson; J.T. Larson; G.B. Lawrence; R.K. Kolka; R. Ouimet; D. Pare; D. deB Richter; C.D. Schirmer; R.A. Warby

    2015-01-01

    Long-term forest soil monitoring and research often requires a comparison of laboratory data generated at different times and in different laboratories. Quantifying the uncertainty associated with these analyses is necessary to assess temporal changes in soil properties. Forest soil chemical properties, and methods to measure these properties, often differ from...

  18. Bed-Sediment Sampling and Analysis for Physical and Chemical Properties of the Lower Mississippi River near Memphis, Tennessee

    USGS Publications Warehouse

    Blanchard, Robert A.; Wagner, Daniel M.; Evans, Dennis A.

    2010-01-01

    In February 2010, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Memphis District, investigated the presence of inorganic elements and organic compounds in bed sediments of the lower Mississippi River. Selected sites were located in the navigation channel near river miles 737, 773, and 790 near Memphis, Tennessee. Bed-sediment samples were collected using a Shipek grab sampler mounted to a boom crane with a motorized winch. Samples then were processed and shipped to the U.S. Geological Survey Sediment Laboratory in Rolla, Missouri, the USGS National Water Quality Laboratory in Denver, Colorado, and to TestAmerica Laboratory, Inc. in West Sacramento, California. Samples were analyzed for grain size, inorganic elements (including mercury), and organic compounds. Chemical results were tabulated and listed with sediment-quality guidelines and presented with the physical property results. All of the bed material samples collected during this investigation yielded concentrations that were less than the Consensus-Based Probable Effect Concentration guidelines. The physical properties were tabulated and listed using a standard U.S. Geological Survey scale of sizes by class for sediment analysis. All of the samples collected during this investigation indicated a percent composition mostly comprised of sand, ranging from less than 0.125 millimeters to less than 2 millimeters.

  19. Herbicide Orange Site Characterization Study Naval Construction Battalion Center

    DTIC Science & Technology

    1987-01-01

    U.S. Testing Laboratories for analysis. Over 200 additional analyses were performed for a variety of quality assurance criteria. The resultant data...TABLE 9. NCBC PERFORMANCE AUDIT SAMPLE ANALYSIS SUNMARYa (SERIES 1) TCDD Sppb ) Reported Detection Relative b Sample Number Concentration Limit...limit rather than estimating the variance of the results. The sample results were transformed using the natural logarithm. The Shapiro-Wilk W test

  20. Defining the challenges of the Modern Analytical Laboratory (CPSA USA 2014): the risks and reality of personalized healthcare.

    PubMed

    Weng, Naidong; Needham, Shane; Lee, Mike

    2015-01-01

    The 17th Annual Symposium on Clinical and Pharmaceutical Solutions through Analysis (CPSA) 29 September-2 October 2014, was held at the Sheraton Bucks County Hotel, Langhorne, PA, USA. The CPSA USA 2014 brought the various analytical fields defining the challenges of the modern analytical laboratory. Ongoing discussions focused on the future application of bioanalysis and other disciplines to support investigational new drugs (INDs) and new drug application (NDA) submissions, clinical diagnostics and pathology laboratory personnel that support patient sample analysis, and the clinical researchers that provide insights into new biomarkers within the context of the modern laboratory and personalized medicine.

  1. Using Mole Ratios of Electrolytic Products of Water for Analysis of Household Vinegar: An Experiment for the Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Dabke, Rajeev B.; Gebeyehu, Zewdu

    2012-01-01

    A simple 3-h physical chemistry undergraduate experiment for the quantitative analysis of acetic acid in household vinegar is presented. The laboratory experiment combines titration concept with electrolysis and an application of the gas laws. A vinegar sample was placed in the cathode compartment of the electrolysis cell. Electrolysis of water…

  2. Determination of Fe Content of Some Food Items by Flame Atomic Absorption Spectroscopy (FAAS): A Guided-Inquiry Learning Experience in Instrumental Analysis Laboratory

    ERIC Educational Resources Information Center

    Fakayode, Sayo O.; King, Angela G.; Yakubu, Mamudu; Mohammed, Abdul K.; Pollard, David A.

    2012-01-01

    This article presents a guided-inquiry (GI) hands-on determination of Fe in food samples including plantains, spinach, lima beans, oatmeal, Frosted Flakes cereal (generic), tilapia fish, and chicken using flame atomic absorption spectroscopy (FAAS). The utility of the GI experiment, which is part of an instrumental analysis laboratory course,…

  3. Addendum to Sampling and Analysis Plan (SAP) for Assessment of LANL-Derived Residual Radionuclides in Soils within Tract A-16-d for Land Conveyance and Transfer for Sewage Treatment Facility Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whicker, Jeffrey Jay; Gillis, Jessica Mcdonnel; Ruedig, Elizabeth

    This report summarizes the sampling design used, associated statistical assumptions, as well as general guidelines for conducting post-sampling data analysis. Sampling plan components presented here include how many sampling locations to choose and where within the sampling area to collect those samples. The type of medium to sample (i.e., soil, groundwater, etc.) and how to analyze the samples (in-situ, fixed laboratory, etc.) are addressed in other sections of the sampling plan.

  4. QA/QC requirements for physical properties sampling and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Innis, B.E.

    1993-07-21

    This report presents results of an assessment of the available information concerning US Environmental Protection Agency (EPA) quality assurance/quality control (QA/QC) requirements and guidance applicable to sampling, handling, and analyzing physical parameter samples at Comprehensive Environmental Restoration, Compensation, and Liability Act (CERCLA) investigation sites. Geotechnical testing laboratories measure the following physical properties of soil and sediment samples collected during CERCLA remedial investigations (RI) at the Hanford Site: moisture content, grain size by sieve, grain size by hydrometer, specific gravity, bulk density/porosity, saturated hydraulic conductivity, moisture retention, unsaturated hydraulic conductivity, and permeability of rocks by flowing air. Geotechnical testing laboratories alsomore » measure the following chemical parameters of soil and sediment samples collected during Hanford Site CERCLA RI: calcium carbonate and saturated column leach testing. Physical parameter data are used for (1) characterization of vadose and saturated zone geology and hydrogeology, (2) selection of monitoring well screen sizes, (3) to support modeling and analysis of the vadose and saturated zones, and (4) for engineering design. The objectives of this report are to determine the QA/QC levels accepted in the EPA Region 10 for the sampling, handling, and analysis of soil samples for physical parameters during CERCLA RI.« less

  5. Quality-Assurance/Quality-Control Manual for Collection and Analysis of Water-Quality Data in the Ohio District, US Geological Survey

    USGS Publications Warehouse

    Francy, D.S.; Jones, A.L.; Myers, Donna N.; Rowe, G.L.; Eberle, Michael; Sarver, K.M.

    1998-01-01

    The U.S. Geological Survey (USGS), Water Resources Division (WRD), requires that quality-assurance/quality-control (QA/QC) activities be included in any sampling and analysis program. Operational QA/QC procedures address local needs while incorporating national policies. Therefore, specific technical policies were established for all activities associated with water-quality project being done by the Ohio District. The policies described in this report provide Ohio District personnel, cooperating agencies, and others with a reference manual on QA/QC procedures that are followed in collecitng and analyzing water-quality samples and reporting water-quality information in the Ohio District. The project chief, project support staff, District Water-Quality Specialist, and District Laboratory Coordinator are all involved in planning and implementing QA/QC activities at the district level. The District Chief and other district-level managers provide oversight, and the Regional Water-Quality Specialist, Office of Water Quality (USGS headquarters), and the Branch of Quality Systems within the Office of Water Quality create national QA/QC polices and provide assistance to District personnel. In the literature, the quality of all measurement data is expressed in terms of precision, variability, bias, accuracy, completeness, representativeness, and comparability. In the Ohio District, bias and variability will be used to describe quality-control data generated from samples in the field and laboratory. Each project chief must plan for implementation and financing of QA/QC activities necessary to achieve data-quality objectives. At least 15 percent of the total project effort must be directed toward QA/QC activities. Of this total, 5-10 percent will be used for collection and analysis of quality-control samples. This is an absolute minimum, and more may be required based on project objectives. Proper techniques must be followed in the collection and processing of surface-water, ground-water, biological, precipitation, bed-sediment, bedload, suspended-sediment, and solid-phase samples. These techniques are briefly described in this report and are extensively documented. The reference documents listed in this report will be kept by the District librarian and District Water-Quality Specialist and updated regularly so that they are available to all District staff. Proper handling and documentation before, during, and after field activities are essential to ensure the integrity of the sample and to correct erroneous reporting of data results. Field sites are to be properly identified and entered into the data base before field data-collection activities begin. During field activities, field notes are to be completed and sample bottles appropriately labeled a nd stored. After field activities, all paperwork is to be completed promptly and samples transferred to the laboratory within allowable holding times. All equipment used by District personnel for the collection and processing of water-quality samples is to be properly operated, maintained, and calibrated by project personnel. This includes equipment for onsite measurement of water-quality characteristics (temperature, specific conductance, pH, dissolved oxygen, alkalinity, acidity, and turbidity) and equipment and instruments used for biological sampling. The District Water-Quality Specialist and District Laboratory Coordinator are responsible for preventive maintenance and calibration of equipment in the Ohio District laboratory. The USGS National Water Quality Laboratory in Arvada, Colo., is the primary source of analytical services for most project work done by the Ohio District. Analyses done at the Ohio District laboratory are usually those that must be completed within a few hours of sample collection. Contract laboratories or other USGS laboratories are sometimes used instead of the NWQL or the Ohio District laboratory. When a contract laboratory is used, the projec

  6. SOIL AND FILL LABORATORY SUPPORT - 1991

    EPA Science Inventory

    The report gives results of soil analysis laboratory work by the University of Florida in Support of the Florida Radon Research Program (FRRP). Analyses were performed on soil and fill samples collected during 1991 by the FRRP Research House program and the New House Evaluation P...

  7. Assessment of statistical uncertainty in the quantitative analysis of solid samples in motion using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Cabalín, L. M.; González, A.; Ruiz, J.; Laserna, J. J.

    2010-08-01

    Statistical uncertainty in the quantitative analysis of solid samples in motion by laser-induced breakdown spectroscopy (LIBS) has been assessed. For this purpose, a LIBS demonstrator was designed and constructed in our laboratory. The LIBS system consisted of a laboratory-scale conveyor belt, a compact optical module and a Nd:YAG laser operating at 532 nm. The speed of the conveyor belt was variable and could be adjusted up to a maximum speed of 2 m s - 1 . Statistical uncertainty in the analytical measurements was estimated in terms of precision (reproducibility and repeatability) and accuracy. The results obtained by LIBS on shredded scrap samples under real conditions have demonstrated that the analytical precision and accuracy of LIBS is dependent on the sample geometry, position on the conveyor belt and surface cleanliness. Flat, relatively clean scrap samples exhibited acceptable reproducibility and repeatability; by contrast, samples with an irregular shape or a dirty surface exhibited a poor relative standard deviation.

  8. Workshop on Analysis of Returned Comet Nucleus Samples

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This volume contains abstracts that were accepted by the Program Committee for presentation at the workshop on the analysis of returned comet nucleus samples held in Milpitas, California, January 16 to 18, 1989. The abstracts deal with the nature of cometary ices, cryogenic handling and sampling equipment, origin and composition of samples, and spectroscopic, thermal and chemical processing methods of cometary nuclei. Laboratory simulation experimental results on dust samples are reported. Some results obtained from Halley's comet are also included. Microanalytic techniques for examining trace elements of cometary particles, synchrotron x ray fluorescence and instrument neutron activation analysis (INAA), are presented.

  9. Current developments in forensic interpretation of mixed DNA samples (Review).

    PubMed

    Hu, Na; Cong, Bin; Li, Shujin; Ma, Chunling; Fu, Lihong; Zhang, Xiaojing

    2014-05-01

    A number of recent improvements have provided contemporary forensic investigations with a variety of tools to improve the analysis of mixed DNA samples in criminal investigations, producing notable improvements in the analysis of complex trace samples in cases of sexual assult and homicide. Mixed DNA contains DNA from two or more contributors, compounding DNA analysis by combining DNA from one or more major contributors with small amounts of DNA from potentially numerous minor contributors. These samples are characterized by a high probability of drop-out or drop-in combined with elevated stutter, significantly increasing analysis complexity. At some loci, minor contributor alleles may be completely obscured due to amplification bias or over-amplification, creating the illusion of additional contributors. Thus, estimating the number of contributors and separating contributor genotypes at a given locus is significantly more difficult in mixed DNA samples, requiring the application of specialized protocols that have only recently been widely commercialized and standardized. Over the last decade, the accuracy and repeatability of mixed DNA analyses available to conventional forensic laboratories has greatly advanced in terms of laboratory technology, mathematical models and biostatistical software, generating more accurate, rapid and readily available data for legal proceedings and criminal cases.

  10. Current developments in forensic interpretation of mixed DNA samples (Review)

    PubMed Central

    HU, NA; CONG, BIN; LI, SHUJIN; MA, CHUNLING; FU, LIHONG; ZHANG, XIAOJING

    2014-01-01

    A number of recent improvements have provided contemporary forensic investigations with a variety of tools to improve the analysis of mixed DNA samples in criminal investigations, producing notable improvements in the analysis of complex trace samples in cases of sexual assult and homicide. Mixed DNA contains DNA from two or more contributors, compounding DNA analysis by combining DNA from one or more major contributors with small amounts of DNA from potentially numerous minor contributors. These samples are characterized by a high probability of drop-out or drop-in combined with elevated stutter, significantly increasing analysis complexity. At some loci, minor contributor alleles may be completely obscured due to amplification bias or over-amplification, creating the illusion of additional contributors. Thus, estimating the number of contributors and separating contributor genotypes at a given locus is significantly more difficult in mixed DNA samples, requiring the application of specialized protocols that have only recently been widely commercialized and standardized. Over the last decade, the accuracy and repeatability of mixed DNA analyses available to conventional forensic laboratories has greatly advanced in terms of laboratory technology, mathematical models and biostatistical software, generating more accurate, rapid and readily available data for legal proceedings and criminal cases. PMID:24748965

  11. Characterization of nutrients and fecal indicator bacteria at a concentrated swine feeding operation in Wake County, North Carolina, 2009-2011

    USGS Publications Warehouse

    Harden, Stephen L.; Rogers, Shane W.; Jahne, Michael A.; Shaffer, Carrie E.; Smith, Douglas G.

    2012-01-01

    Study sites were sampled for laboratory analysis of nutrients, total suspended solids (TSS), and (or) fecal indicator bacteria (FIB). Nutrient analyses included measurement of dissolved ammonia, total and dissolved ammonia + organic nitrogen, dissolved nitrate + nitrite, dissolved orthophosphate, and total phosphorus. The FIB analyses included measurement of Escherichia coli and enterococci. Samples of wastewater at the swine facility were collected from a pipe outfall from the swine housing units, two storage lagoons, and the spray fields for analysis of nutrients, TSS, and FIB. Soil samples collected from a spray field were analyzed for FIB. Monitoring locations were established for collecting discharge and water-quality data during storm events at three in-field runoff sites and two sites on the headwater stream (one upstream and one downstream) next to the swine facility. Stormflow samples at the five monitoring locations were collected for four storm events during 2009 to 2010 and analyzed for nutrients, TSS, and FIB. Monthly water samples also were collected during base-flow conditions at all four stream sites for laboratory analysis of nutrients, TSS, and (or) FIB.

  12. United Nations Environment Programme Capacity Building Pilot Project--training and interlaboratory study on persistent organic pollutant analysis under the Stockholm Convention.

    PubMed

    de Boer, J; Leslie, H; van Leeuwen, S P J; Wegener, J-W; van Bavel, B; Lindström, G; Lahoutifard, N; Fiedler, H

    2008-06-09

    Within the framework of a United Nations Environment Programme (UNEP) Capacity Building Project for training of laboratory staff in developing countries on persistent organic pollutant (POP) analysis, an interlaboratory study was organised following an initial evaluation of the performance of laboratories (reality check) and a series of training sessions. The target compounds were polychlorinated biphenyls (PCB) and organochlorine pesticides (OCP). Seven laboratories from five countries (Ecuador, Uruguay, Kenya, Moldova, and Fiji) participated. Most of the laboratories had no experience in determining PCBs. Although chromatograms improved considerably after the training and installation of new gas chromatographic (GC) columns at participating laboratories, the level of performance in the interlaboratory study was essentially on par with the moderate performance level achieved by European POP laboratories in the 1980s. Only some individual results were within +/-20% of the target values. The relative standard deviations (R.S.D.s) in POP concentrations determined by laboratories in a sediment sample were >200% in a number of cases. The results for a certified herring sample were better with at least some R.S.D. values below 50% and most below 100%. Clean up was as one of the main sources of error. After inspection it was ascertained that training of laboratory staff and investments in simple consumables such as glassware and GC columns would help to improve the quality of the analysis more than major investments in expensive instrumentation. Creating an effective network of POP laboratories at different continents together with a series of interlaboratory studies and workshops is suggested to improve the measurements of POPs in these countries.

  13. A blinded international study on the reliability of genetic testing for GGGGCC-repeat expansions in C9orf72 reveals marked differences in results among 14 laboratories

    PubMed Central

    Akimoto, Chizuru; Volk, Alexander E; van Blitterswijk, Marka; Van den Broeck, Marleen; Leblond, Claire S; Lumbroso, Serge; Camu, William; Neitzel, Birgit; Onodera, Osamu; van Rheenen, Wouter; Pinto, Susana; Weber, Markus; Smith, Bradley; Proven, Melanie; Talbot, Kevin; Keagle, Pamela; Chesi, Alessandra; Ratti, Antonia; van der Zee, Julie; Alstermark, Helena; Birve, Anna; Calini, Daniela; Nordin, Angelica; Tradowsky, Daniela C; Just, Walter; Daoud, Hussein; Angerbauer, Sabrina; DeJesus-Hernandez, Mariely; Konno, Takuya; Lloyd-Jani, Anjali; de Carvalho, Mamede; Mouzat, Kevin; Landers, John E; Veldink, Jan H; Silani, Vincenzo; Gitler, Aaron D; Shaw, Christopher E; Rouleau, Guy A; van den Berg, Leonard H; Van Broeckhoven, Christine; Rademakers, Rosa; Andersen, Peter M; Kubisch, Christian

    2014-01-01

    Background The GGGGCC-repeat expansion in C9orf72 is the most frequent mutation found in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Most of the studies on C9orf72 have relied on repeat-primed PCR (RP-PCR) methods for detection of the expansions. To investigate the inherent limitations of this technique, we compared methods and results of 14 laboratories. Methods The 14 laboratories genotyped DNA from 78 individuals (diagnosed with ALS or FTD) in a blinded fashion. Eleven laboratories used a combination of amplicon-length analysis and RP-PCR, whereas three laboratories used RP-PCR alone; Southern blotting techniques were used as a reference. Results Using PCR-based techniques, 5 of the 14 laboratories got results in full accordance with the Southern blotting results. Only 50 of the 78 DNA samples got the same genotype result in all 14 laboratories. There was a high degree of false positive and false negative results, and at least one sample could not be genotyped at all in 9 of the 14 laboratories. The mean sensitivity of a combination of amplicon-length analysis and RP-PCR was 95.0% (73.9–100%), and the mean specificity was 98.0% (87.5–100%). Overall, a sensitivity and specificity of more than 95% was observed in only seven laboratories. Conclusions Because of the wide range seen in genotyping results, we recommend using a combination of amplicon-length analysis and RP-PCR as a minimum in a research setting. We propose that Southern blotting techniques should be the gold standard, and be made obligatory in a clinical diagnostic setting. PMID:24706941

  14. Fetal Tissue Procurement for Karyotype Analysis: Clinician or Pathologist - Which is Better?

    PubMed

    Conant, Joanna L; Tang, Mary E; Waters, Brenda L

    2016-01-01

    Chromosomal abnormalities are detected in up to 13% of stillbirths and over 20% of those with developmental anomalies. These estimates may be low since up to 50% of samples fail to achieve a result due to microbial overgrowth or nonviability. Tissue for cytogenetics can be procured at bedside by the clinician or by the pathologist in the laboratory. With clinical collection, tissue is placed into culture media immediately, increasing chances of growth. However, collection competes for attention with other activities, which may result in microbial overgrowth or selection of maternal rather than fetal tissue. Laboratory procurement occurs in a controlled environment using sterile technique, but delay in collection may decrease viability. Our goal was to determine which collection method yields better results. We reviewed cases from 2007-2013 that had two samples submitted for cytogenetics, one from the clinician and one from the pathologist. Specimen source, delivery, collection, and culture setup times, harvest date, cell growth, microbial overgrowth, maternal contamination and final result were obtained from medical records and cytogenetic culture sheets. There was no difference in growth rate, maternal cell contamination, or reporting time between clinician- and pathologist-procured samples despite delay in collection time for laboratory samples. Clinical samples had more microbial overgrowth. Compared to samples collected at bedside, samples collected in the laboratory had a lower rate of microbial contamination with similar growth and maternal cell contamination rates, despite prolonged time to collection. Collecting samples both at bedside and in the laboratory is unnecessary.

  15. Role of Sample Processing Strategies at the European Union National Reference Laboratories (NRLs) Concerning the Analysis of Pesticide Residues.

    PubMed

    Hajeb, Parvaneh; Herrmann, Susan S; Poulsen, Mette E

    2017-07-19

    The guidance document SANTE 11945/2015 recommends that cereal samples be milled to a particle size preferably smaller than 1.0 mm and that extensive heating of the samples should be avoided. The aim of the present study was therefore to investigate the differences in milling procedures, obtained particle size distributions, and the resulting pesticide residue recovery when cereal samples were milled at the European Union National Reference Laboratories (NRLs) with their routine milling procedures. A total of 23 NRLs participated in the study. The oat and rye samples milled by each NRL were sent to the European Union Reference Laboratory on Cereals and Feedingstuff (EURL) for the determination of the particle size distribution and pesticide residue recovery. The results showed that the NRLs used several different brands and types of mills. Large variations in the particle size distributions and pesticide extraction efficiencies were observed even between samples milled by the same type of mill.

  16. Detection of Reduced Nitrogen Compounds at Rocknest Using the Sample Analysis At Mars (SAM) Instrument on the Mars Science Laboratory (MSL)

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Steele, A.; Brunner, A.; Coll, P.; Eigenbrode, J.; Franz, H. B.; Freissinet, C.; Glavin, D.; Jones, J. H.; Navarro-Gonzalez, R.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected nitrogen-bearing compounds during the pyrolysis of Rocknest material at Gale Crater. Hydrogen cyanide and acetonitrile were identified by the quadrupole mass spectrometer (QMS) both in direct evolved gas analysis (EGA). SAM carried out four separate analyses from Rocknest Scoop 5. A significant low temperature release was present in Rocknest runs 1-4, while a smaller high temperature release was also seen in Rocknest runs 1-3. Here we evaluate whether these compounds are indigenous to Mars or a pyrolysis product resulting from known terrestrial materials that are part of the SAM derivatization.

  17. Quantitative analysis of unconjugated and total bisphenol A in human urine using solid-phase extraction and UPLC-MS/MS: method implementation, method qualification and troubleshooting.

    PubMed

    Buscher, Brigitte; van de Lagemaat, Dick; Gries, Wolfgang; Beyer, Dieter; Markham, Dan A; Budinsky, Robert A; Dimond, Stephen S; Nath, Rajesh V; Snyder, Stephanie A; Hentges, Steven G

    2015-11-15

    The aim of the presented investigation was to document challenges encountered during implementation and qualification of a method for bisphenol A (BPA) analysis and to develop and discuss precautions taken to avoid and to monitor contamination with BPA during sample handling and analysis. Previously developed and published HPLC-MS/MS methods for the determination of unconjugated BPA (Markham et al. Journal of Analytical Toxicology, 34 (2010) 293-303) [17] and total BPA (Markham et al. Journal of Analytical Toxicology, 38 (2014) 194-203) [20] in human urine were combined and transferred into another laboratory. The initial method for unconjugated BPA was developed and evaluated in two independent laboratories simultaneously. The second method for total BPA was developed and evaluated in one of these laboratories to conserve resources. Accurate analysis of BPA at sub-ppb levels is a challenging task as BPA is a widely used material and is ubiquitous in the environment at trace concentrations. Propensity for contamination of biological samples with BPA is reported in the literature during sample collection, storage, and/or analysis. Contamination by trace levels of BPA is so pervasive that even with extraordinary care, it is difficult to completely exclude the introduction of BPA into biological samples and, consequently, contamination might have an impact on BPA biomonitoring data. The applied UPLC-MS/MS method was calibrated from 0.05 to 25ng/ml. The limit of quantification was 0.1ng/ml for unconjugated BPA and 0.2ng/ml for total BPA, respectively, in human urine. Finally, the method was applied to urine samples derived from 20 volunteers. Overall, BPA can be analyzed in human urine with acceptable recovery and repeatability if sufficient measures are taken to avoid contamination throughout the procedure from sample collection until UPLC-MS/MS analysis. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Methodological considerations for implementation of lymphocyte subset analysis in a clinical reference laboratory.

    PubMed

    Muirhead, K A; Wallace, P K; Schmitt, T C; Frescatore, R L; Franco, J A; Horan, P K

    1986-01-01

    As the diagnostic utility of lymphocyte subset analysis has been recognized in the clinical research laboratory, a wide variety of reagents and cell preparation, staining and analysis methods have also been described. Methods that are perfectly suitable for analysis of smaller sample numbers in the biological or clinical research setting are not always appropriate and/or applicable in the setting of a high volume clinical reference laboratory. We describe here some of the specific considerations involved in choosing a method for flow cytometric analysis which minimizes sample preparation and data analysis time while maximizing sample stability, viability, and reproducibility. Monoclonal T- and B-cell reagents from three manufacturers were found to give equivalent results for a reference population of healthy individuals. This was true whether direct or indirect immunofluorescence staining was used and whether cells were prepared by Ficoll-Hypaque fractionation (FH) or by lysis of whole blood. When B cells were enumerated using a polyclonal anti-immunoglobulin reagent, less cytophilic immunoglobulin staining was present after lysis than after FH preparation. However, both preparation methods required additional incubation at 37 degrees C to obtain results concordant with monoclonal B-cell reagents. Standard reagents were chosen on the basis of maximum positive/negative separation and the availability of appropriate negative controls. The effects of collection medium and storage conditions on sample stability and reproducibility of subset analysis were also assessed. Specimens collected in heparin and stored at room temperature in buffered medium gave reproducible results for 3 days after specimen collection, using either FH or lysis as the preparation method. General strategies for instrument optimization, quality control, and biohazard containment are also discussed.

  19. Intraoral Laser Welding (ILW): ultrastructural and mechanical analysis

    NASA Astrophysics Data System (ADS)

    Fornaini, Carlo; Passaretti, Francesca; Villa, Elena; Nammour, Samir

    2010-05-01

    Nd:YAG, currently used since 1970 in dental laboratories to weld metals on dental prostheses has some limits such great dimensions, high costs and fixed delivery system. Recently it was proposed the possibility to use the Nd:YAG laser device commonly utilised in dental office, to repair broken fixed, removable and orthodontic prostheses and to weld metals directly into the mouth. The aim of this work is to value, through SEM (Scanning Electron Microscope), EDS (Energy Dispersive X-Ray Spectroscopy) and DMA (Dynamic Mechanical Analysis), quality and mechanical strength of the welding process comparing a device normally used in dental lab and a device normally used in dental office for oral surgery. Sixteen CoCrMo metal plates and twenty steel orthodontic wires were divided in four groups: one was welded without metal apposition by laboratory laser, one was welded with metal apposition by laboratory laser, one was welded without metal apposition by office laser and one was welded with metal apposition by office laser. The welding process was analysed by SEM, EDS and DMA to compare the differences between the different samples. By SEM analysis it was seen that the plates welded by office laser without apposition metal showed a greater number of fissurations compared with the other samples. By EDS analysis it was seen a homogeneous composition of the metals in all the samples. The mechanical tests showed a similar elastic behaviour of the samples, with minimal differences between the two devices. No wire broke even under the maximum strength by the Analyser. This study seems to demonstrate that the welding process by office Nd:YAG laser device and the welding process by laboratory Nd:YAG laser device, analysed by SEM, EDS and DMA, showed minimal and not significant differences even if these data will be confirmed by a greater number of samples.

  20. Specimen rejection in laboratory medicine: Necessary for patient safety?

    PubMed Central

    Dikmen, Zeliha Gunnur; Pinar, Asli; Akbiyik, Filiz

    2015-01-01

    Introduction The emergency laboratory in Hacettepe University Hospitals receives specimens from emergency departments (EDs), inpatient services and intensive care units (ICUs). The samples are accepted according to the rejection criteria of the laboratory. In this study, we aimed to evaluate the sample rejection ratios according to the types of pre-preanalytical errors and collection areas. Materials and methods The samples sent to the emergency laboratory were recorded during 12 months between January to December, 2013 in which 453,171 samples were received and 27,067 specimens were rejected. Results Rejection ratios was 2.5% for biochemistry tests, 3.2% for complete blood count (CBC), 9.8% for blood gases, 9.2% for urine analysis, 13.3% for coagulation tests, 12.8% for therapeutic drug monitoring, 3.5% for cardiac markers and 12% for hormone tests. The most frequent rejection reasons were fibrin clots (28%) and inadequate volume (9%) for biochemical tests. Clotted samples (35%) and inadequate volume (13%) were the major causes for coagulation tests, blood gas analyses and CBC. The ratio of rejected specimens was higher in the EDs (40%) compared to ICUs (30%) and inpatient services (28%). The highest rejection ratio was observed in neurology ICU (14%) among the ICUs and internal medicine inpatient service (10%) within inpatient clinics. Conclusions We detected an overall specimen rejection rate of 6% in emergency laboratory. By documentation of rejected samples and periodic training of healthcare personnel, we expect to decrease sample rejection ratios below 2%, improve total quality management of the emergency laboratory and promote patient safety. PMID:26527231

  1. Implementation of Cloud based next generation sequencing data analysis in a clinical laboratory.

    PubMed

    Onsongo, Getiria; Erdmann, Jesse; Spears, Michael D; Chilton, John; Beckman, Kenneth B; Hauge, Adam; Yohe, Sophia; Schomaker, Matthew; Bower, Matthew; Silverstein, Kevin A T; Thyagarajan, Bharat

    2014-05-23

    The introduction of next generation sequencing (NGS) has revolutionized molecular diagnostics, though several challenges remain limiting the widespread adoption of NGS testing into clinical practice. One such difficulty includes the development of a robust bioinformatics pipeline that can handle the volume of data generated by high-throughput sequencing in a cost-effective manner. Analysis of sequencing data typically requires a substantial level of computing power that is often cost-prohibitive to most clinical diagnostics laboratories. To address this challenge, our institution has developed a Galaxy-based data analysis pipeline which relies on a web-based, cloud-computing infrastructure to process NGS data and identify genetic variants. It provides additional flexibility, needed to control storage costs, resulting in a pipeline that is cost-effective on a per-sample basis. It does not require the usage of EBS disk to run a sample. We demonstrate the validation and feasibility of implementing this bioinformatics pipeline in a molecular diagnostics laboratory. Four samples were analyzed in duplicate pairs and showed 100% concordance in mutations identified. This pipeline is currently being used in the clinic and all identified pathogenic variants confirmed using Sanger sequencing further validating the software.

  2. Detection of martian amino acids by chemical derivatization coupled to gas chromatography: in situ and laboratory analysis.

    PubMed

    Rodier, C; Vandenabeele-Trambouze, O; Sternberg, R; Coscia, D; Coll, P; Szopa, C; Raulin, F; Vidal-Madjar, C; Cabane, M; Israel, G; Grenier-Loustalot, M F; Dobrijevic, M; Despois, D

    2001-01-01

    If there is, or ever was, life in our solar system beyond the Earth, Mars is the most likely place to search for. Future space missions will have then to take into account the detection of prebiotic molecules or molecules of biological significance such as amino acids. Techniques of analysis used for returned samples have to be very sensitive and avoid any chemical or biological contamination whereas in situ techniques have to be automated, fast and low energy consuming. Several possible methods could be used for in situ amino acid analyses on Mars, but gas chromatography would likely be the most suitable. Returned samples could be analyzed by any method in routine laboratory use such as gas chromatography, already successfully performed for analyses of organic matter including amino acids from martian meteorites. The derivatization step, which volatilizes amino acids to perform both in situ and laboratory analysis by gas chromatography, is discussed here. c2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  3. Importance of Temperature Calibration for Sunset Laboratory Carbon Analyzer: NIOSH and IMPROVE Temperature Protocols

    EPA Science Inventory

    The Sunset Laboratory Dual-Optical Carbonaceous Analyzer that simultaneously measures transmission and reflectance signals is widely used in thermal-optical analysis of particulate matter samples. Most often it is used to measure total carbon (TC), organic carbon (OC), and eleme...

  4. Chain of custody; recommendations for acceptance and analysis of evidentiary geochemical samples

    USGS Publications Warehouse

    Murphy, Christine M.; Briggs, Paul H.; Adrian, Betty M.; Wilson, Steve A.; Hageman, Phil L.; Theodorakos, Pete M.

    1997-01-01

    Personnel from the Analytical Chemistry Services Group (ACSG), Mineral Resource Survey Program, formed a team to determine the policies for acceptance and analysis of geochemical samples. This team contacted law enforcement agencies that handle litigious samples, laboratories that work with samples of special nature, and the Solicitor General, Department of the Interior. Using the knowledge from these agencies as well as the expertise of ACSG personnel, sample control routine procedures, sample control evidentiary procedures, personnel policy governing chain-of-custody samples, and the general polices governing physical security of chain-of custody samples have been enacted.

  5. Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry.

    PubMed

    Wassenaar, L I; Terzer-Wassmuth, S; Douence, C; Araguas-Araguas, L; Aggarwal, P K; Coplen, T B

    2018-03-15

    Water stable isotope ratios (δ 2 H and δ 18 O values) are widely used tracers in environmental studies; hence, accurate and precise assays are required for providing sound scientific information. We tested the analytical performance of 235 international laboratories conducting water isotope analyses using dual-inlet and continuous-flow isotope ratio mass spectrometers and laser spectrometers through a water isotope inter-comparison test. Eight test water samples were distributed by the IAEA to international stable isotope laboratories. These consisted of a core set of five samples spanning the common δ-range of natural waters, and three optional samples (highly depleted, enriched, and saline). The fifth core sample contained unrevealed trace methanol to assess analyst vigilance to the impact of organic contamination on water isotopic measurements made by all instrument technologies. For the core and optional samples ~73 % of laboratories gave acceptable results within 0.2 ‰ and 1.5 ‰ of the reference values for δ 18 O and δ 2 H, respectively; ~27 % produced unacceptable results. Top performance for δ 18 O values was dominated by dual-inlet IRMS laboratories; top performance for δ 2 H values was led by laser spectrometer laboratories. Continuous-flow instruments yielded comparatively intermediate results. Trace methanol contamination of water resulted in extreme outlier δ-values for laser instruments, but also affected reactor-based continuous-flow IRMS systems; however, dual-inlet IRMS δ-values were unaffected. Analysis of the laboratory results and their metadata suggested inaccurate or imprecise performance stemmed mainly from skill- and knowledge-based errors including: calculation mistakes, inappropriate or compromised laboratory calibration standards, poorly performing instrumentation, lack of vigilance to contamination, or inattention to unreasonable isotopic outcomes. To counteract common errors, we recommend that laboratories include 1-2 'known' control standards in all autoruns; laser laboratories should screen each autorun for spectral contamination; and all laboratories should evaluate whether derived d-excess values are realistic when both isotope ratios are measured. Combined, these data evaluation strategies should immediately inform the laboratory about fundamental mistakes or compromised samples. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry

    USGS Publications Warehouse

    Wassenaar, L. I.; Terzer-Wassmuth, S.; Douence, C.; Araguas-Araguas, L.; Aggarwal, P. K.; Coplen, Tyler B.

    2018-01-01

    RationaleWater stable isotope ratios (δ2H and δ18O values) are widely used tracers in environmental studies; hence, accurate and precise assays are required for providing sound scientific information. We tested the analytical performance of 235 international laboratories conducting water isotope analyses using dual-inlet and continuous-flow isotope ratio mass spectrometers and laser spectrometers through a water isotope inter-comparison test.MethodsEight test water samples were distributed by the IAEA to international stable isotope laboratories. These consisted of a core set of five samples spanning the common δ-range of natural waters, and three optional samples (highly depleted, enriched, and saline). The fifth core sample contained unrevealed trace methanol to assess analyst vigilance to the impact of organic contamination on water isotopic measurements made by all instrument technologies.ResultsFor the core and optional samples ~73 % of laboratories gave acceptable results within 0.2 ‰ and 1.5 ‰ of the reference values for δ18O and δ2H, respectively; ~27 % produced unacceptable results. Top performance for δ18O values was dominated by dual-inlet IRMS laboratories; top performance for δ2H values was led by laser spectrometer laboratories. Continuous-flow instruments yielded comparatively intermediate results. Trace methanol contamination of water resulted in extreme outlier δ-values for laser instruments, but also affected reactor-based continuous-flow IRMS systems; however, dual-inlet IRMS δ-values were unaffected.ConclusionsAnalysis of the laboratory results and their metadata suggested inaccurate or imprecise performance stemmed mainly from skill- and knowledge-based errors including: calculation mistakes, inappropriate or compromised laboratory calibration standards, poorly performing instrumentation, lack of vigilance to contamination, or inattention to unreasonable isotopic outcomes. To counteract common errors, we recommend that laboratories include 1–2 'known' control standards in all autoruns; laser laboratories should screen each autorun for spectral contamination; and all laboratories should evaluate whether derived d-excess values are realistic when both isotope ratios are measured. Combined, these data evaluation strategies should immediately inform the laboratory about fundamental mistakes or compromised samples.

  7. 7 CFR 91.19 - General requirements of suitable samples.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the analyses requested. (b) Each sample must be identified with the following information: (1) Product... other information which is required by the specific program under which analysis or test is performed. ... LABORATORY TESTING PROGRAMS SERVICES AND GENERAL INFORMATION Samples § 91.19 General requirements of suitable...

  8. 7 CFR 91.19 - General requirements of suitable samples.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the analyses requested. (b) Each sample must be identified with the following information: (1) Product... other information which is required by the specific program under which analysis or test is performed. ... LABORATORY TESTING PROGRAMS SERVICES AND GENERAL INFORMATION Samples § 91.19 General requirements of suitable...

  9. 7 CFR 91.19 - General requirements of suitable samples.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the analyses requested. (b) Each sample must be identified with the following information: (1) Product... other information which is required by the specific program under which analysis or test is performed. ... LABORATORY TESTING PROGRAMS SERVICES AND GENERAL INFORMATION Samples § 91.19 General requirements of suitable...

  10. 7 CFR 91.19 - General requirements of suitable samples.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the analyses requested. (b) Each sample must be identified with the following information: (1) Product... other information which is required by the specific program under which analysis or test is performed. ... LABORATORY TESTING PROGRAMS SERVICES AND GENERAL INFORMATION Samples § 91.19 General requirements of suitable...

  11. 7 CFR 91.19 - General requirements of suitable samples.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the analyses requested. (b) Each sample must be identified with the following information: (1) Product... other information which is required by the specific program under which analysis or test is performed. ... LABORATORY TESTING PROGRAMS SERVICES AND GENERAL INFORMATION Samples § 91.19 General requirements of suitable...

  12. Clinical pharmacology quality assurance program: models for longitudinal analysis of antiretroviral proficiency testing for international laboratories.

    PubMed

    DiFrancesco, Robin; Rosenkranz, Susan L; Taylor, Charlene R; Pande, Poonam G; Siminski, Suzanne M; Jenny, Richard W; Morse, Gene D

    2013-10-01

    Among National Institutes of Health HIV Research Networks conducting multicenter trials, samples from protocols that span several years are analyzed at multiple clinical pharmacology laboratories (CPLs) for multiple antiretrovirals. Drug assay data are, in turn, entered into study-specific data sets that are used for pharmacokinetic analyses, merged to conduct cross-protocol pharmacokinetic analysis, and integrated with pharmacogenomics research to investigate pharmacokinetic-pharmacogenetic associations. The CPLs participate in a semiannual proficiency testing (PT) program implemented by the Clinical Pharmacology Quality Assurance program. Using results from multiple PT rounds, longitudinal analyses of recovery are reflective of accuracy and precision within/across laboratories. The objectives of this longitudinal analysis of PT across multiple CPLs were to develop and test statistical models that longitudinally: (1) assess the precision and accuracy of concentrations reported by individual CPLs and (2) determine factors associated with round-specific and long-term assay accuracy, precision, and bias using a new regression model. A measure of absolute recovery is explored as a simultaneous measure of accuracy and precision. Overall, the analysis outcomes assured 97% accuracy (±20% of the final target concentration of all (21) drug concentration results reported for clinical trial samples by multiple CPLs). Using the Clinical Laboratory Improvement Act acceptance of meeting criteria for ≥2/3 consecutive rounds, all 10 laboratories that participated in 3 or more rounds per analyte maintained Clinical Laboratory Improvement Act proficiency. Significant associations were present between magnitude of error and CPL (Kruskal-Wallis P < 0.001) and antiretroviral (Kruskal-Wallis P < 0.001).

  13. Perchlorate in Fertilizers

    DTIC Science & Technology

    1999-09-01

    Harrington , showed that with respect to mixed water analysis containing TDS at greater 1,000 ppm, the performance of the AS-5 column is not as robust...to note, these raw test materials were heterogeneous. Regardless of mixing time and mesh quality, dividing the raw test materials for laboratory...raw test material was prepared and shipped to seven laboratories for blind analysis. The suspension was prepared by 4 mixing the solid sample with

  14. Lifting SAM Instrument for Installation into Mars Rover

    NASA Image and Video Library

    2011-01-18

    NASA Sample Analysis at Mars SAM instrument, largest of the 10 science instruments for NASA Mars Science Laboratory mission, will examine samples of Martian rocks, soil and atmosphere for information about chemicals that are important to life.

  15. Sealed Organic Check Material on Curiosity

    NASA Image and Video Library

    2012-09-10

    NASA Mars rover Curiosity carries five cylindrical blocks of organic check material for use in a control experiment if the rover Sample Analysis at Mars SAM laboratory detects any organic compounds in samples of Martian soil or powdered rock.

  16. Proinsulin is stable at room temperature for 24 hours in EDTA: A clinical laboratory analysis (adAPT 3).

    PubMed

    Davidson, Jane; McDonald, Timothy; Sutherland, Calum; Mostazir, Mohammod; VanAalten, Lidy; Wilkin, Terence

    2017-01-01

    Reference laboratories advise immediate separation and freezing of samples for the assay of proinsulin, which limit its practicability for smaller centres. Following the demonstration that insulin and C-peptide are stable in EDTA at room temperature for at least 24hours, we undertook simple stability studies to establish whether the same might apply to proinsulin. Venous blood samples were drawn from six adult women, some fasting, some not, aliquoted and assayed immediately and after storage at either 4°C or ambient temperature for periods from 2h to 24h. There was no significant variation or difference with storage time or storage condition in either individual or group analysis. Proinsulin appears to be stable at room temperature in EDTA for at least 24h. Immediate separation and storage on ice of samples for proinsulin assay is not necessary, which will simplify sample transport, particularly for multicentre trials.

  17. In-Situ Operations and Planning for the Mars Science Laboratory Robotic Arm: The First 200 Sols

    NASA Technical Reports Server (NTRS)

    Robinson, M.; Collins, C.; Leger, P.; Carsten, J.; Tompkins, V.; Hartman, F.; Yen, J.

    2013-01-01

    The Robotic Arm (RA) has operated for more than 200 Martian solar days (or sols) since the Mars Science Laboratory rover touched down in Gale Crater on August 5, 2012. During the first seven months on Mars the robotic arm has performed multiple contact science sols including the positioning of the Alpha Particle X-Ray Spectrometer (APXS) and/or Mars Hand Lens Imager (MAHLI) with respect to rocks or loose regolith targets. The RA has supported sample acquisition using both the scoop and drill, sample processing with CHIMRA (Collection and Handling for In- Situ Martian Rock Analysis), and delivery of sample portions to the observation tray, and the SAM (Sample Analysis at Mars) and CHEMIN (Chemistry and Mineralogy) science instruments. This paper describes the planning and execution of robotic arm activities during surface operations, and reviews robotic arm performance results from Mars to date.

  18. Mass Spectrometry Contamination from Tinuvin 770, a Common Additive in Laboratory Plastics

    PubMed Central

    Schauer, Kevin L.; Broccardo, Carolyn J.; Webb, Kimberly M.; Covey, Paul A.; Prenni, Jessica E.

    2013-01-01

    The superior sensitivity of current mass spectrometers makes them prone to contamination issues, which can have deleterious effects on sample analysis. Here, bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate (marketed under the name Tinuvin 770) is identified as a major contaminant in applications using liquid chromatography coupled with mass spectrometry (LC-MS). Tinuvin 770 is often added to laboratory and medical plastics as a UV stabilizer. One particular lot of microcentrifuge tubes was found to have an excess of this compound that would leach into samples and drastically interfere with LC-MS data acquisition. Further analysis found that Tinuvin 770 readily leached into polar and nonpolar solvents from the contaminated tube lot. Efforts to remove Tinuvin 770 from contaminated samples were unsuccessful. A prescreening method using MALDI-TOF MS is presented to prevent system contamination and sample loss. PMID:23814497

  19. Quality-assurance data for routine water analyses by the U.S. Geological Survey laboratory in Troy, New York - July 2003 through June 2005

    USGS Publications Warehouse

    Lincoln, Tricia A.; Horan-Ross, Debra A.; McHale, Michael R.; Lawrence, Gregory B.

    2009-01-01

    The laboratory for analysis of low-ionic-strength water at the U.S. Geological Survey (USGS) Water Science Center in Troy, N.Y., analyzes samples collected by USGS projects throughout the Northeast. The laboratory's quality-assurance program is based on internal and interlaboratory quality-assurance samples and quality-control procedures that were developed to ensure proper sample collection, processing, and analysis. The quality-assurance and quality-control data were stored in the laboratory's Lab Master data-management system, which provides efficient review, compilation, and plotting of data. This report presents and discusses results of quality-assurance and quality control samples analyzed from July 2003 through June 2005. Results for the quality-control samples for 20 analytical procedures were evaluated for bias and precision. Control charts indicate that data for five of the analytical procedures were occasionally biased for either high-concentration or low-concentration samples but were within control limits; these procedures were: acid-neutralizing capacity, total monomeric aluminum, pH, silicon, and sodium. Seven of the analytical procedures were biased throughout the analysis period for the high-concentration sample, but were within control limits; these procedures were: dissolved organic carbon, chloride, nitrate (ion chromatograph), nitrite, silicon, sodium, and sulfate. The calcium and magnesium procedures were biased throughout the analysis period for the low-concentration sample, but were within control limits. The total aluminum and specific conductance procedures were biased for the high-concentration and low-concentration samples, but were within control limits. Results from the filter-blank and analytical-blank analyses indicate that the procedures for 17 of 18 analytes were within control limits, although the concentrations for blanks were occasionally outside the control limits. The data-quality objective was not met for dissolved organic carbon. Sampling and analysis precision are evaluated herein in terms of the coefficient of variation obtained for triplicate samples in the procedures for 18 of the 22 analytes. At least 85 percent of the samples met data-quality objectives for all analytes except total monomeric aluminum (82 percent of samples met objectives), total aluminum (77 percent of samples met objectives), chloride (80 percent of samples met objectives), fluoride (76 percent of samples met objectives), and nitrate (ion chromatograph) (79 percent of samples met objectives). The ammonium and total dissolved nitrogen did not meet the data-quality objectives. Results of the USGS interlaboratory Standard Reference Sample (SRS) Project indicated good data quality over the time period, with ratings for each sample in the satisfactory, good, and excellent ranges or less than 10 percent error. The P-sample (low-ionic-strength constituents) analysis had one marginal and two unsatisfactory ratings for the chloride procedure. The T-sample (trace constituents)analysis had two unsatisfactory ratings and one high range percent error for the aluminum procedure. The N-sample (nutrient constituents) analysis had one marginal rating for the nitrate procedure. Results of Environment Canada's National Water Research Institute (NWRI) program indicated that at least 84 percent of the samples met data-quality objectives for 11 of the 14 analytes; the exceptions were ammonium, total aluminum, and acid-neutralizing capacity. The ammonium procedure did not meet data quality objectives in all studies. Data-quality objectives were not met in 23 percent of samples analyzed for total aluminum and 45 percent of samples analyzed acid-neutralizing capacity. Results from blind reference-sample analyses indicated that data-quality objectives were met by at least 86 percent of the samples analyzed for calcium, chloride, fluoride, magnesium, pH, potassium, sodium, and sulfate. Data-quality objectives were not met by samples analyzed for fluoride. 

  20. Research and development of a field-ready protocol for sampling of phosgene from stationary source emissions: Diethylamine reagent studies. Research report, 11 July 1995--30 September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steger, J.L.; Bursey, J.T.; Merrill, R.G.

    1999-03-01

    This report presents the results of laboratory studies to develop and evaluate a method for the sampling and analysis of phosgene from stationary sources of air emissions using diethylamine (DEA) in toluene as the collection media. The method extracts stack gas from emission sources and stabilizes the reactive gas for subsequent analysis. DEA was evaluated both in a benchtop study and in a laboratory train spiking study. This report includes results for both the benchtop study and the train spiking study. Benchtop studies to evaluate the suitability of DEA for collecting and analyzing phosgene investigated five variables: storage time, DEAmore » concentration, moisture/pH, phosgene concentration, and sample storage temperature. Prototype sampling train studies were performed to determine if the benchtop chemical studies were transferable to a Modified Method 5 sampling train collecting phosgene in the presence of clean air mixed with typical stack gas components. Four conditions, which varied the moisture and phosgene spike were evaluated in triplicate. In addition to research results, the report includes a detailed draft method for sampling and analysis of phosgene from stationary source emissions.« less

  1. An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Schnelle-Kreiss, J.; Maenhaut, W.; Alves, C.; Bossi, R.; Bjerke, A.; Claeys, M.; Dye, C.; Evtyugina, M.; García-Gacio, D.; Gülcin, A.; Hillamo, R.; Hoffer, A.; Hyder, M.; Iinuma, Y.; Jaffrezo, J.-L.; Kasper-Giebl, A.; Kiss, G.; López-Mahia, P. L.; Pio, C.; Piot, C.; Ramirez-Santa-Cruz, C.; Sciare, J.; Teinilä, K.; Vermeylen, R.; Vicente, A.; Zimmermann, R.

    2014-07-01

    The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wild fire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for biomass burning particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied High-Performance Anion-Exchange Chromatography (HPAEC), four used High-Performance Liquid Chromatography (HPLC) or Ultra-Performance Liquid Chromatography (UPLC), and six resorted to Gas Chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from -63 to 23%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was -60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e., for 33% of the laboratories the mean PE was within ±10%. For galactosan, the mean PE for the participating laboratories ranged from -84 to 593%, and as for mannosan 33% of the laboratories reported a mean PE within ±10%. The variability of the various analytical methods, as defined by their minimum and maximum PE value, was typically better for levoglucosan than for mannosan and galactosan, ranging from 3.2 to 41% for levoglucosan, from 10 to 67% for mannosan, and from 6 to 364% for galactosan. For the levoglucosan to mannosan ratio, which may be used to assess the relative importance of softwood vs. hardwood burning, the variability only ranged from 3.5 to 24%. To our knowledge, this is the first major intercomparison on analytical methods used to quantify monosaccharide anhydrides in ambient aerosol filter samples conducted and reported in the scientific literature. The results show that for levoglucosan the accuracy is only slightly lower than that reported for analysis of SO42- on filter samples, a constituent that has been analyzed by numerous laboratories for several decades, typically by ion chromatography, and which is considered a fairly easy constituent to measure. Hence, the results obtained for levoglucosan with respect to accuracy are encouraging and suggest that levels of levoglucosan, and to a lesser extent mannosan and galactosan, obtained by most of the analytical methods currently used to quantify monosaccharide anhydrides in ambient aerosol filter samples, are comparable. Finally, the various analytical methods used in the current study should be tested for other aerosol matrices and concentrations as well, the most obvious being summertime aerosol samples affected by wild fires and/or agricultural fires.

  2. An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Schnelle-Kreis, J.; Maenhaut, W.; Abbaszade, G.; Alves, C.; Bjerke, A.; Bonnier, N.; Bossi, R.; Claeys, M.; Dye, C.; Evtyugina, M.; García-Gacio, D.; Hillamo, R.; Hoffer, A.; Hyder, M.; Iinuma, Y.; Jaffrezo, J.-L.; Kasper-Giebl, A.; Kiss, G.; López-Mahia, P. L.; Pio, C.; Piot, C.; Ramirez-Santa-Cruz, C.; Sciare, J.; Teinilä, K.; Vermeylen, R.; Vicente, A.; Zimmermann, R.

    2015-01-01

    The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning (BB) aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wildfire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for BB particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied high-performance anion-exchange chromatography (HPAEC), four used high-performance liquid chromatography (HPLC) or ultra-performance liquid chromatography (UPLC) and six resorted to gas chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from -63 to 20%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was -60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e. for 33% of the laboratories the mean PE was within ±10%. For galactosan, the mean PE for the participating laboratories ranged from -84 to 593%, and as for mannosan 33% of the laboratories reported a mean PE within ±10%. The variability of the various analytical methods, as defined by their minimum and maximum PE value, was typically better for levoglucosan than for mannosan and galactosan, ranging from 3.2 to 41% for levoglucosan, from 10 to 67% for mannosan and from 6 to 364% for galactosan. For the levoglucosan to mannosan ratio, which may be used to assess the relative importance of softwood versus hardwood burning, the variability only ranged from 3.5 to 24 . To our knowledge, this is the first major intercomparison on analytical methods used to quantify monosaccharide anhydrides in ambient aerosol filter samples conducted and reported in the scientific literature. The results show that for levoglucosan the accuracy is only slightly lower than that reported for analysis of SO42- (sulfate) on filter samples, a constituent that has been analysed by numerous laboratories for several decades, typically by ion chromatography and which is considered a fairly easy constituent to measure. Hence, the results obtained for levoglucosan with respect to accuracy are encouraging and suggest that levels of levoglucosan, and to a lesser extent mannosan and galactosan, obtained by most of the analytical methods currently used to quantify monosaccharide anhydrides in ambient aerosol filter samples, are comparable. Finally, the various analytical methods used in the current study should be tested for other aerosol matrices and concentrations as well, the most obvious being summertime aerosol samples affected by wildfires and/or agricultural fires.

  3. 7 CFR 160.202 - Fees generally for laboratory analysis and testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... turpentine. (See Note 3). (1) Comprehensive analysis to determine purity, specification compliance, or other... related to quality of utility. (i) Single Sample: (A) Rosin—$14.00. (B) Turpentine—$10.00. (ii) Two or more samples tested at same time: (A) Rosin—per sample—$10.00. (B) Turpentine—per sample—$8.00. Note 3...

  4. 7 CFR 160.202 - Fees generally for laboratory analysis and testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... turpentine. (See Note 3). (1) Comprehensive analysis to determine purity, specification compliance, or other... related to quality of utility. (i) Single Sample: (A) Rosin—$14.00. (B) Turpentine—$10.00. (ii) Two or more samples tested at same time: (A) Rosin—per sample—$10.00. (B) Turpentine—per sample—$8.00. Note 3...

  5. 7 CFR 160.202 - Fees generally for laboratory analysis and testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... turpentine. (See Note 3). (1) Comprehensive analysis to determine purity, specification compliance, or other... related to quality of utility. (i) Single Sample: (A) Rosin—$14.00. (B) Turpentine—$10.00. (ii) Two or more samples tested at same time: (A) Rosin—per sample—$10.00. (B) Turpentine—per sample—$8.00. Note 3...

  6. 7 CFR 160.202 - Fees generally for laboratory analysis and testing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... turpentine. (See Note 3). (1) Comprehensive analysis to determine purity, specification compliance, or other... related to quality of utility. (i) Single Sample: (A) Rosin—$14.00. (B) Turpentine—$10.00. (ii) Two or more samples tested at same time: (A) Rosin—per sample—$10.00. (B) Turpentine—per sample—$8.00. Note 3...

  7. 7 CFR 160.202 - Fees generally for laboratory analysis and testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... turpentine. (See Note 3). (1) Comprehensive analysis to determine purity, specification compliance, or other... related to quality of utility. (i) Single Sample: (A) Rosin—$14.00. (B) Turpentine—$10.00. (ii) Two or more samples tested at same time: (A) Rosin—per sample—$10.00. (B) Turpentine—per sample—$8.00. Note 3...

  8. Using Single Drop Microextraction for Headspace Analysis with Gas Chromatography

    ERIC Educational Resources Information Center

    Riccio, Daniel; Wood, Derrick C.; Miller, James M.

    2008-01-01

    Headspace (HS) gas chromatography (GC) is commonly used to analyze samples that contain non-volatiles. In 1996, a new sampling technique called single drop microextraction, SDME, was introduced, and in 2001 it was applied to HS analysis. It is a simple technique that uses equipment normally found in the undergraduate laboratory, making it ideal…

  9. Laboratory heterogeneity of the lupus anticoagulant: a multicentre study using different clotting assays on a panel of 78 samples. Hemostasis Committee of the "Société Française de Biologie Clinique".

    PubMed

    1992-05-15

    The laboratory heterogeneity of the lupus anticoagulant (LA) was investigated in a multicentre study using a panel of 78 plasma samples diagnosed as containing a LA. Consecutive samples were collected by 12 participants using various screening tests, and sent to 7 laboratories which performed one or more clotting assays among the following: activated partial thromboplastin time (APTT), dilute Russell viper venom time, kaolin clotting time (KCT), dilute tissue thromboplastin time (dTTI) and a platelet neutralization test. For APTT and dTTI, 10 versions of these tests including standard and mixing procedures were carried out. They varied by reagents, phospholipid concentration or methodology. Cut-off times were determined for each test by comparing the results of the panel to those of a control population. When the data of all clotting assays were pooled, 70 of the 78 selected plasmas were considered to contain LA, 15 of them having a low-titer inhibitor. Sensitivity, defined as the proportion of positive results among LA-containing plasmas, varied from 62 to 100% and was positively related to responsiveness (defined as the mean ratio of clotting time to cut-off time). Laboratory heterogeneity of LA-containing plasma was illustrated by a star symbol plot analysis. Different populations of samples, with LA preferentially recognized by one assay (or group of assays) irrespective of the overall sensitivity of this assay, were identified. Multiple component analysis demonstrated the heterogeneity of low-titer inhibitors, which complicates their recognition in routine laboratory investigation.

  10. External quality assessment for KRAS testing is needed: setup of a European program and report of the first joined regional quality assessment rounds.

    PubMed

    Bellon, Ellen; Ligtenberg, Marjolijn J L; Tejpar, Sabine; Cox, Karen; de Hertogh, Gert; de Stricker, Karin; Edsjö, Anders; Gorgoulis, Vassilis; Höfler, Gerald; Jung, Andreas; Kotsinas, Athanassios; Laurent-Puig, Pierre; López-Ríos, Fernando; Hansen, Tine Plato; Rouleau, Etienne; Vandenberghe, Peter; van Krieken, Johan J M; Dequeker, Elisabeth

    2011-01-01

    The use of epidermal growth factor receptor-targeting antibodies in metastatic colorectal cancer has been restricted to patients with wild-type KRAS tumors by the European Medicines Agency since 2008, based on data showing a lack of efficacy and potential harm in patients with mutant KRAS tumors. In an effort to ensure optimal, uniform, and reliable community-based KRAS testing throughout Europe, a KRAS external quality assessment (EQA) scheme was set up. The first large assessment round included 59 laboratories from eight different European countries. For each country, one regional scheme organizer prepared and distributed the samples for the participants of their own country. The samples included unstained sections of 10 invasive colorectal carcinomas with known KRAS mutation status. The samples were centrally validated by one of two reference laboratories. The laboratories were allowed to use their own preferred method for histological evaluation, DNA isolation, and mutation analysis. In this study, we analyze the setup of the KRAS scheme. We analyzed the advantages and disadvantages of the regional scheme organization by analyzing the outcome of genotyping results, analysis of tumor percentage, and written reports. We conclude that only 70% of laboratories correctly identified the KRAS mutational status in all samples. Both the false-positive and false-negative results observed negatively affect patient care. Reports of the KRAS test results often lacked essential information. We aim to further expand this program to more laboratories to provide a robust estimate of the quality of KRAS testing in Europe, and provide the basis for remedial measures and harmonization.

  11. SaDA: From Sampling to Data Analysis—An Extensible Open Source Infrastructure for Rapid, Robust and Automated Management and Analysis of Modern Ecological High-Throughput Microarray Data

    PubMed Central

    Singh, Kumar Saurabh; Thual, Dominique; Spurio, Roberto; Cannata, Nicola

    2015-01-01

    One of the most crucial characteristics of day-to-day laboratory information management is the collection, storage and retrieval of information about research subjects and environmental or biomedical samples. An efficient link between sample data and experimental results is absolutely important for the successful outcome of a collaborative project. Currently available software solutions are largely limited to large scale, expensive commercial Laboratory Information Management Systems (LIMS). Acquiring such LIMS indeed can bring laboratory information management to a higher level, but most of the times this requires a sufficient investment of money, time and technical efforts. There is a clear need for a light weighted open source system which can easily be managed on local servers and handled by individual researchers. Here we present a software named SaDA for storing, retrieving and analyzing data originated from microorganism monitoring experiments. SaDA is fully integrated in the management of environmental samples, oligonucleotide sequences, microarray data and the subsequent downstream analysis procedures. It is simple and generic software, and can be extended and customized for various environmental and biomedical studies. PMID:26047146

  12. Laboratory analyses of micron-sized solid grains: Experimental techniques and recent results

    NASA Technical Reports Server (NTRS)

    Colangeli, L.; Bussoletti, E.; Blanco, A.; Borghesi, A.; Fonti, S.; Orofino, V.; Schwehm, G.

    1989-01-01

    Morphological and spectrophotometric investigations have been extensively applied in the past years to various kinds of micron and/or submicron-sized grains formed by materials which are candidate to be present in space. The samples are produced in the laboratory and then characterized in their physio-chemical properties. Some of the most recent results obtained on various kinds of carbonaceous materials are reported. Main attention is devoted to spectroscopic results in the VUV and IR wavelength ranges, where many of the analyzed samples show typical fingerprints which can be identified also in astrophysical and cometary materials. The laboratory methodologies used so far are also critically discussed in order to point out capabilities and present limitations, in the view of possible application to returned comet samples. Suggestions are given to develop new techniques which should overcome some of the problems faced in the manipulation and analysis of micron solid samples.

  13. Radiological Laboratory Sample Analysis Guide for Incidents of National Significance – Radionuclides in Air

    EPA Science Inventory

    [The document describes the likely analytical decision paths that would be made by personnel at a radioanalytical laboratory following a radiological or nuclear incident, such as that caused by a terrorist attack. EPA’s responsibilities, as outlined in the National Response Frame...

  14. A Simultaneous Analysis Problem for Advanced General Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Leary, J. J.; Gallaher, T. N.

    1983-01-01

    Oxidation of magnesium metal in air has been used as an introductory experiment for determining the formula of a compound. The experiment described employs essentially the same laboratory procedure but is significantly more advanced in terms of information sought. Procedures and sample calculations/results are provided. (JN)

  15. SOIL AND FILL LABORATORY SUPPORT - 1992 RADIOLOGICAL ANALYSES - FLORIDA RADON RESEARCH PROGRAM

    EPA Science Inventory

    The report gives results of soil analysis laboratory work by the University of Florida in support of the Florida Radon Research Program (FRRP). Analyses were performed on soil and fill samples collected during 1992 by the FRRP Research House Program and the New House Evaluation P...

  16. Analysis of field permeability and laboratory shear stress for Western Kentucky Parkway, milepost 18.240 to milepost 25.565, Caldwell-Hopkins counties

    DOT National Transportation Integrated Search

    2003-02-01

    This report lists and discusses results of field permeability tests and laboratory shear tests on samples from a construction project on the Western Kentucky Parkway in Caldwell-Hopkins Counties. Approximately 6,500 tons of asphaltic concrete overlay...

  17. CRTP-13: ABC-GCB Expression Signatures in Human B-cell Lymphoma on the NanoString Platform | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The CLIA Molecular Diagnostics Laboratory within the Cancer Research Technology Program will perform messenger RNA isolation and expression analysis specific to a 20-gene panel on formalin-fixed paraffin-embedded (FFPE) patient samples using the Nano

  18. Soil Studies: Applying Acid-Base Chemistry to Environmental Analysis.

    ERIC Educational Resources Information Center

    West, Donna M.; Sterling, Donna R.

    2001-01-01

    Laboratory activities for chemistry students focus attention on the use of acid-base chemistry to examine environmental conditions. After using standard laboratory procedures to analyze soil and rainwater samples, students use web-based resources to interpret their findings. Uses CBL probes and graphing calculators to gather and analyze data and…

  19. Evaluation of a solid-phase extraction method for benzoylecgonine urine analysis in a high-throughput forensic urine drug-testing laboratory.

    PubMed

    Stout, Peter R; Gehlhausen, Jay M; Horn, Carl K; Klette, Kevin L

    2002-10-01

    A novel extraction and derivatization procedure for the cocaine metabolite benzoylecgonine (BZE) was developed and evaluated for use in a high-volume forensic urine analysis laboratory. Extractions utilized a Speedisk 48 positive pressure extraction manifold and polymer-based cation-exchange extraction columns. Samples were derivatized by the addition of pentafluoropropionic anhydride and pentafluoropropanol. All analyses were performed in selected ion monitoring mode; ions included m/z 421, 300, 272, 429, and 303 with m/z 421 to 429 ratio used for quantitation. The average extraction efficiency was 80%. Seventy-five common over-the-counter products, including prescription drugs, drug metabolites, and other drugs of abuse, demonstrated no significant interference with respect to chromatography or quantitation. The limit of detection and limit of quantitation were calculated at 12.5 ng/mL, and the assay was linear from 12.5 to 20,000 ng/mL with an r2 of 0.99932. A series of 20 precision samples (100 ng/mL) produced an average response of 97.8 ng/mL and a percent coefficient of variation of 4.1%. A set of 79 archived human urine samples that had previously been found to contain BZE were analyzed by 3 separate laboratories. The results did not differ significantly from prior quantitation or between laboratories. The Speedisk has proven viable for a high-volume production facility reducing overall cost of analysis by decreasing analysis time and minimizing waste production while meeting strict forensic requirements.

  20. Quality-Assurance Data for Routine Water Analyses by the U.S. Geological Survey Laboratory in Troy, New York-July 1997 through June 1999

    USGS Publications Warehouse

    Lincoln, Tricia A.; Horan-Ross, Debra A.; McHale, Michael R.; Lawrence, Gregory B.

    2006-01-01

    The laboratory for analysis of low-ionic-strength water at the U.S. Geological Survey (USGS) Water Science Center in Troy, N.Y., analyzes samples collected by USGS projects throughout the Northeast. The laboratory's quality-assurance program is based on internal and interlaboratory quality-assurance samples and quality-control procedures that were developed to ensure proper sample collection, processing, and analysis. The quality-assurance/quality-control data for the time period addressed in this report were stored in the laboratory's SAS data-management system, which provides efficient review, compilation, and plotting of data. This report presents and discusses results of quality-assurance and quality- control samples analyzed from July 1997 through June 1999. Results for the quality-control samples for 18 analytical procedures were evaluated for bias and precision. Control charts indicate that data for eight of the analytical procedures were occasionally biased for either high-concentration and (or) low-concentration samples but were within control limits; these procedures were: acid-neutralizing capacity, total monomeric aluminum, total aluminum, ammonium, calcium, chloride, specific conductance, and sulfate. The data from the potassium and sodium analytical procedures are insufficient for evaluation. Results from the filter-blank and analytical-blank analyses indicate that the procedures for 11 of 13 analytes were within control limits, although the concentrations for blanks were occasionally outside the control limits. Blank analysis results for chloride showed that 22 percent of blanks did not meet data-quality objectives and results for dissolved organic carbon showed that 31 percent of the blanks did not meet data-quality objectives. Sampling and analysis precision are evaluated herein in terms of the coefficient of variation obtained for triplicate samples in the procedures for 14 of the 18 analytes. At least 90 percent of the samples met data-quality objectives for all analytes except total aluminum (70 percent of samples met objectives) and potassium (83 percent of samples met objectives). Results of the USGS interlaboratory Standard Reference Sample (SRS) Project indicated good data quality for most constituents over the time period. The P-sample (low-ionic-strength constituents) analysis had good ratings in two of these studies and a satisfactory rating in the third. The results of the T-sample (trace constituents) analysis indicated high data quality with good ratings in all three studies. The N-sample (nutrient constituents) studies had one each of excellent, good, and satisfactory ratings. Results of Environment Canada's National Water Research Institute (NWRI) program indicated that at least 80 percent of the samples met data-quality objectives for 9 of the 13 analytes; the exceptions were dissolved organic carbon, ammonium, chloride, and specific conductance. Data-quality objectives were not met for dissolved organic carbon in two NWRI studies, but all of the samples were within control limits for the last study. Data-quality objectives were not met in 41 percent of samples analyzed for ammonium, 25 percent of samples analyzed for chloride, and 30 percent of samples analyzed for specific conductance. Results from blind reference-sample analyses indicated that data-quality objectives were met by at least 84 percent of the samples analyzed for calcium, chloride, magnesium, pH, and potassium. Data-quality objectives were met by 73 percent of those analyzed for sulfate. The data-quality objective was not met for sodium. The data are insufficient for evaluation of the specific conductance results.

  1. Uncertainty in monitoring E. coli concentrations in streams and stormwater runoff

    NASA Astrophysics Data System (ADS)

    Harmel, R. D.; Hathaway, J. M.; Wagner, K. L.; Wolfe, J. E.; Karthikeyan, R.; Francesconi, W.; McCarthy, D. T.

    2016-03-01

    Microbial contamination of surface waters, a substantial public health concern throughout the world, is typically identified by fecal indicator bacteria such as Escherichia coli. Thus, monitoring E. coli concentrations is critical to evaluate current conditions, determine restoration effectiveness, and inform model development and calibration. An often overlooked component of these monitoring and modeling activities is understanding the inherent random and systematic uncertainty present in measured data. In this research, a review and subsequent analysis was performed to identify, document, and analyze measurement uncertainty of E. coli data collected in stream flow and stormwater runoff as individual discrete samples or throughout a single runoff event. Data on the uncertainty contributed by sample collection, sample preservation/storage, and laboratory analysis in measured E. coli concentrations were compiled and analyzed, and differences in sampling method and data quality scenarios were compared. The analysis showed that: (1) manual integrated sampling produced the lowest random and systematic uncertainty in individual samples, but automated sampling typically produced the lowest uncertainty when sampling throughout runoff events; (2) sample collection procedures often contributed the highest amount of uncertainty, although laboratory analysis introduced substantial random uncertainty and preservation/storage introduced substantial systematic uncertainty under some scenarios; and (3) the uncertainty in measured E. coli concentrations was greater than that of sediment and nutrients, but the difference was not as great as may be assumed. This comprehensive analysis of uncertainty in E. coli concentrations measured in streamflow and runoff should provide valuable insight for designing E. coli monitoring projects, reducing uncertainty in quality assurance efforts, regulatory and policy decision making, and fate and transport modeling.

  2. Development and Commissioning of an External Beam Facility in the Union College Ion Beam Analysis Laboratory

    NASA Astrophysics Data System (ADS)

    Yoskowitz, Joshua; Clark, Morgan; Labrake, Scott; Vineyard, Michael

    2015-10-01

    We have developed an external beam facility for the 1.1-MV tandem Pelletron accelerator in the Union College Ion Beam Analysis Laboratory. The beam is extracted from an aluminum pipe through a 1 / 4 ' ' diameter window with a 7.5- μm thick Kapton foil. This external beam facility allows us to perform ion beam analysis on samples that cannot be put under vacuum, including wet samples and samples too large to fit into the scattering chamber. We have commissioned the new facility by performing proton induced X-ray emission (PIXE) analysis of several samples of environmental interest. These include samples of artificial turf, running tracks, and a human tooth with an amalgam filling. A 1.7-MeV external proton beam was incident on the samples positioned 2 cm from the window. The resulting X-rays were measured using a silicon drift detector and were analyzed using GUPIX software to determine the concentrations of elements in the samples. The results on the human tooth indicate that while significant concentrations of Hg, Ag, and Sn are present in the amalgam filling, only trace amounts of Hg appear to have leached into the tooth. The artificial turf and running tracks show rather large concentrations of a broad range of elements and trace amounts of Pb in the turf infill.

  3. Solvent Hold Tank Sample Results For MCU-15-750-751-752-: June Monthly Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F.; Taylor-Pashow, K.

    2015-10-07

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-750, MCU-15-751, and MCU-15-752), pulled on 06/22/2015 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-750-751-752 indicated a low concentration (~ 49 % of nominal) of the suppressor (TiDG) and slightly lower than nominal concentrations of the extractant (MaxCalix), and of the modifier (Cs-7SB) in the solvent. This analysis confirms the addition of TiDG, MaxCalix, and modifier to the solvent in February 2015. Based on the current monthly sample, the levels of TiDG, MaxCalix, and modifier are sufficient formore » continuing operation without adding a trim at this time but it is recommended that an addition of TiDG, modifier and Isopar™L should be made in the near future. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). In addition, up to 13.9 micrograms of mercury per gram of solvent (or 11.5 µg/mL) was detected in this sample. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.« less

  4. A portable x-ray fluorescence instrument for analyzing dust wipe samples for lead: evaluation with field samples.

    PubMed

    Sterling, D A; Lewis, R D; Luke, D A; Shadel, B N

    2000-06-01

    Dust wipe samples collected in the field were tested by nondestructive X-ray fluorescence (XRF) followed by laboratory analysis with flame atomic absorption spectrophotometry (FAAS). Data were analyzed for precision and accuracy of measurement. Replicate samples with the XRF show high precision with an intraclass correlation coefficient (ICC) of 0.97 (P<0.0001) and an overall coefficient of variation of 11.6%. Paired comparison indicates no statistical difference (P=0.272) between XRF and FAAS analysis. Paired samples are highly correlated with an R(2) ranging between 0.89 for samples that contain paint chips and 0.93 for samples that do not contain paint chips. The ICC for absolute agreement between XRF and laboratory results was 0.95 (P<0.0001). The relative error over the concentration range of 25 to 14,200 microgram Pb is -12% (95% CI, -18 to -5). The XRF appears to be an excellent method for rapid on-site evaluation of dust wipes for clearance and risk assessment purposes, although there are indications of some confounding when paint chips are present. Copyright 2000 Academic Press.

  5. 40 CFR 763.87 - Analysis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools § 763.87 Analysis. (a) Local education agencies shall have bulk samples, collected under § 763.86 and submitted for analysis, analyzed for asbestos using laboratories...

  6. 40 CFR 763.87 - Analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools § 763.87 Analysis. (a) Local education agencies shall have bulk samples, collected under § 763.86 and submitted for analysis, analyzed for asbestos using laboratories...

  7. 40 CFR 763.87 - Analysis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools § 763.87 Analysis. (a) Local education agencies shall have bulk samples, collected under § 763.86 and submitted for analysis, analyzed for asbestos using laboratories...

  8. 40 CFR 763.87 - Analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools § 763.87 Analysis. (a) Local education agencies shall have bulk samples, collected under § 763.86 and submitted for analysis, analyzed for asbestos using laboratories...

  9. 40 CFR 763.87 - Analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools § 763.87 Analysis. (a) Local education agencies shall have bulk samples, collected under § 763.86 and submitted for analysis, analyzed for asbestos using laboratories...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains appendices for the following: Rocky Flats Plant and Idaho National Engineering Laboratory waste process information; TRUPACT-II content codes (TRUCON); TRUPACT-II chemical list; chemical compatibility analysis for Rocky Flats Plant waste forms; chemical compatibility analysis for waste forms across all sites; TRU mixed waste characterization database; hazardous constituents of Rocky Flats Transuranic waste; summary of waste components in TRU waste sampling program at INEL; TRU waste sampling program; and waste analysis data.

  11. Materials and Nondestructive Evaluation Laboratoriers: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Schaschl, Leslie

    2011-01-01

    The Materials and Nondestructive Evaluation Laboratory process, milestones and inputs are unknowns to first-time users. The Materials and Nondestructive Evaluation Laboratory Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware developers. It is intended to assist their project engineering personnel in materials analysis planning and execution. Material covered includes a roadmap of the analysis process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define scope of analysis, cost, and schedule are included as an appendix to the guide.

  12. Relationship of spermatoscopy, prostatic acid phosphatase activity and prostate-specific antigen (p30) assays with further DNA typing in forensic samples from rape cases.

    PubMed

    Romero-Montoya, Lydia; Martínez-Rodríguez, Hugo; Pérez, Miguel Antonio; Argüello-García, Raúl

    2011-03-20

    In the forensic laboratory the biological analyses for rape investigation commonly include vaginal swabs as sample material combined to biochemical tests including sperm cytology (SC) and detection of acid phosphatase activity (AP) and prostate-specific antigen (PSA, p30) for the conclusive identification of semen components. Most reports comparing these tests relied on analysis of semen samples or donor swabs taken under controlled conditions; however their individual or combined efficacy under real live sampling conditions in different laboratories is largely unknown. We carried out SC, APA and PSA analyses in vaginal swabs collected from casework rapes submitted to Mexican Forensic Laboratories at Texcoco and Toluca. On the basis of positive and negative results from each assay and sample, data were classified into eight categories (I-VIII) and compared with those obtained in the two only similar studies reported in Toronto, Canada and Hong Kong, China. SC and APA assays had the higher overall positivity in Toluca and Texcoco samples respectively and otherwise PSA had a lower but very similar positivity between these two laboratories. When compared to the previous studies some similarities were found, namely similar frequencies (at a ratio of approximately 1 out of 3) of samples being positive or negative by all techniques (Categories I and VI respectively) and a comparable overall positivity of APA and SC but higher than that of PSA. Indeed the combined results of using SC, APA and PSA tests was considered as conclusive for semen detection from approximately 1 out of 3 cases (Category I) to approximately 1 out of 2 cases in a scenario where at least SC is positive, strongly presumptive in 2 out of 3 cases (with at least one test positive) and the remainder 1 out of 3 cases (Category VI) suggested absence of semen. By determining Y-STR polymorphisms (12-loci) in additional samples obtained at Toluca laboratory, complete DNA profiles were determined from all Category I samples, none marker was detected from all Category VI samples and mostly partial profiles were obtained from samples of other categories. These observations give an overview on the variability in efficacy of each test performed at different laboratories and provide a general notion about the in praxis contribution of SC, APA and PSA tests for further DNA typing in the forensic analysis of rape. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Analysis of Returned Comet Nucleus Samples

    NASA Astrophysics Data System (ADS)

    Chang, Sherwood

    1997-12-01

    This volume contains abstracts that have been accepted by the Program Committee for presentation at the Workshop on Analysis of Returned Comet Nucleus Samples, held in Milpitas, California, January 16-18, 1989. Conveners are Sherwood Chang (NASA Ames Research Center) and Larry Nyquist (NASA Johnson Space Center). Program Committee members are Thomas Ahrens (ex-officio; California Institute of Technology), Lou Allamandola (NASA Ames Research Center), David Blake (NASA Ames Research Center), Donald Brownlee (University of Washington, Seattle), Theodore E. Bunch (NASA Ames Research Center), Humberto Campins (Planetary Science Institute), Jeff Cuzzi (NASA Ames Research Center), Eberhard Griin (Max-Plank-Institut fiir Kemphysik), Martha Hanner (Jet Propulsion Laboratory), Alan Harris (Jet Propulsion Laboratory), John Kerrid-e (University of Califomia, Los Angeles), Yves Langevin (University of Paris), Gerhard Schwehm (ESTEC), and Paul Weissman (Jet Propulsion Laboratory). Logistics and administrative support for the workshop were provided by the Lunar and Planetary Institute Projects Office.

  14. Analysis of Returned Comet Nucleus Samples

    NASA Technical Reports Server (NTRS)

    Chang, Sherwood (Compiler)

    1997-01-01

    This volume contains abstracts that have been accepted by the Program Committee for presentation at the Workshop on Analysis of Returned Comet Nucleus Samples, held in Milpitas, California, January 16-18, 1989. Conveners are Sherwood Chang (NASA Ames Research Center) and Larry Nyquist (NASA Johnson Space Center). Program Committee members are Thomas Ahrens (ex-officio; California Institute of Technology), Lou Allamandola (NASA Ames Research Center), David Blake (NASA Ames Research Center), Donald Brownlee (University of Washington, Seattle), Theodore E. Bunch (NASA Ames Research Center), Humberto Campins (Planetary Science Institute), Jeff Cuzzi (NASA Ames Research Center), Eberhard Griin (Max-Plank-Institut fiir Kemphysik), Martha Hanner (Jet Propulsion Laboratory), Alan Harris (Jet Propulsion Laboratory), John Kerrid-e (University of Califomia, Los Angeles), Yves Langevin (University of Paris), Gerhard Schwehm (ESTEC), and Paul Weissman (Jet Propulsion Laboratory). Logistics and administrative support for the workshop were provided by the Lunar and Planetary Institute Projects Office.

  15. Method development for the analysis of 1,4-dioxane in drinking water using solid-phase extraction and gas chromatography-mass spectrometry.

    PubMed

    Grimmett, Paul E; Munch, Jean W

    2009-01-01

    1,4-Dioxane has been identified as a probable human carcinogen and an emerging contaminant in drinking water. The United States Environmental Protection Agency's (U.S. EPA) National Exposure Research Laboratory (NERL) has developed a method for the analysis of 1,4-dioxane in drinking water at ng/L concentrations. The method consists of an activated carbon solid-phase extraction of 500-mL or 100-mL water samples using dichloromethane as the elution solvent. The extracts are analyzed by gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) mode. In the NERL laboratory, recovery of 1,4-dioxane ranged from 94-110% in fortified laboratory reagent water and recoveries of 96-102% were demonstrated for fortified drinking water samples. The relative standard deviations for replicate analyses were less than 6% at concentrations exceeding the minimum reporting level.

  16. Coagulation dynamics of a blood sample by multiple scattering analysis

    NASA Astrophysics Data System (ADS)

    Faivre, Magalie; Peltié, Philippe; Planat-Chrétien, Anne; Cosnier, Marie-Line; Cubizolles, Myriam; Nougier, Christophe; Négrier, Claude; Pouteau, Patrick

    2011-05-01

    We report a new technique to measure coagulation dynamics on whole-blood samples. The method relies on the analysis of the speckle figure resulting from a whole-blood sample mixed with coagulation reagent and introduced in a thin chamber illuminated with a coherent light. A dynamic study of the speckle reveals a typical behavior due to coagulation. We compare our measured coagulation times to a reference method obtained in a medical laboratory.

  17. Sequim Marine Research Laboratory routine environmental measurements during CY-1978. [Monitoring for laboratory-related radioactivity and pollutants in environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houston, J.R.; Blumer, P.J.

    1979-03-01

    Environmental data collected during 1978 in the vicinity of the Marine Research Laboratory show continued compliance with all applicable state and federal regulations and furthermore show no detectable change from conditions that existed in previous years. Samples collected for radiological analysis included soil, drinking water, bay water, clams, and seaweed. Radiation dose rates at 1 meter aboveground were also measured.

  18. Sample Manipulation System for Sample Analysis at Mars

    NASA Technical Reports Server (NTRS)

    Mumm, Erik; Kennedy, Tom; Carlson, Lee; Roberts, Dustyn

    2008-01-01

    The Sample Analysis at Mars (SAM) instrument will analyze Martian samples collected by the Mars Science Laboratory Rover with a suite of spectrometers. This paper discusses the driving requirements, design, and lessons learned in the development of the Sample Manipulation System (SMS) within SAM. The SMS stores and manipulates 74 sample cups to be used for solid sample pyrolysis experiments. Focus is given to the unique mechanism architecture developed to deliver a high packing density of sample cups in a reliable, fault tolerant manner while minimizing system mass and control complexity. Lessons learned are presented on contamination control, launch restraint mechanisms for fragile sample cups, and mechanism test data.

  19. EURADOS intercomparison on emergency radiobioassay.

    PubMed

    Li, Chunsheng; Battisti, Paolo; Berard, Philippe; Cazoulat, Alain; Cuellar, Antonio; Cruz-Suarez, Rodolfo; Dai, Xiongxin; Giardina, Isabella; Hammond, Derek; Hernandez, Carolina; Kiser, Stephen; Ko, Raymond; Kramer-Tremblay, Sheila; Lecompte, Yannick; Navarro, Eva; Navas, Cristina; Sadi, Baki; Sierra, Inmaculada; Verrezen, Freddy; Lopez, Maria A

    2015-12-01

    Nine laboratories participated in an intercomparison exercise organised by the European Radiation Dosimetry Group (EURADOS) for emergency radiobioassay involving four high-risk radionuclides ((239)Pu, (241)Am, (90)Sr and (226)Ra). Diverse methods of analysis were used by the participating laboratories for the in vitro determination of each of the four radionuclides in urine samples. Almost all the methods used are sensitive enough to meet the requirements for emergency radiobioassay derived for this project in reference to the Clinical Decision Guide introduced by the NCRP. Results from most of the methods meet the requirements of ISO 28218 on accuracy in terms of relative bias and relative precision. However, some technical gaps have been identified. For example, some laboratories do not have the ability to assay samples containing (226)Ra, and sample turnaround time would be expected to be much shorter than that reported by many laboratories, as timely results for internal contamination and early decisions on medical intervention are highly desired. Participating laboratories are expected to learn from each other on the methods used to improve the interoperability among these laboratories. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Downtime procedures for the 21st century: using a fully integrated health record for uninterrupted electronic reporting of laboratory results during laboratory information system downtimes.

    PubMed

    Oral, Bulent; Cullen, Regina M; Diaz, Danny L; Hod, Eldad A; Kratz, Alexander

    2015-01-01

    Downtimes of the laboratory information system (LIS) or its interface to the electronic medical record (EMR) disrupt the reporting of laboratory results. Traditionally, laboratories have relied on paper-based or phone-based reporting methods during these events. We developed a novel downtime procedure that combines advance placement of orders by clinicians for planned downtimes, the printing of laboratory results from instruments, and scanning of the instrument printouts into our EMR. The new procedure allows the analysis of samples from planned phlebotomies with no delays, even during LIS downtimes. It also enables the electronic reporting of all clinically urgent results during downtimes, including intensive care and emergency department samples, thereby largely avoiding paper- and phone-based communication of laboratory results. With the capabilities of EMRs and LISs rapidly evolving, information technology (IT) teams, laboratories, and clinicians need to collaborate closely, review their systems' capabilities, and design innovative ways to apply all available IT functions to optimize patient care during downtimes. Copyright© by the American Society for Clinical Pathology.

  1. Practical aspects of genetic identification of hallucinogenic and other poisonous mushrooms for clinical and forensic purposes

    PubMed Central

    Kowalczyk, Marek; Sekuła, Andrzej; Mleczko, Piotr; Olszowy, Zofia; Kujawa, Anna; Zubek, Szymon; Kupiec, Tomasz

    2015-01-01

    Aim To assess the usefulness of a DNA-based method for identifying mushroom species for application in forensic laboratory practice. Methods Two hundred twenty-one samples of clinical forensic material (dried mushrooms, food remains, stomach contents, feces, etc) were analyzed. ITS2 region of nuclear ribosomal DNA (nrDNA) was sequenced and the sequences were compared with reference sequences collected from the National Center for Biotechnology Information gene bank (GenBank). Sporological identification of mushrooms was also performed for 57 samples of clinical material. Results Of 221 samples, positive sequencing results were obtained for 152 (69%). The highest percentage of positive results was obtained for samples of dried mushrooms (96%) and food remains (91%). Comparison with GenBank sequences enabled identification of all samples at least at the genus level. Most samples (90%) were identified at the level of species or a group of closely related species. Sporological and molecular identification were consistent at the level of species or genus for 30% of analyzed samples. Conclusion Molecular analysis identified a larger number of species than sporological method. It proved to be suitable for analysis of evidential material (dried hallucinogenic mushrooms) in forensic genetic laboratories as well as to complement classical methods in the analysis of clinical material. PMID:25727040

  2. Practical aspects of genetic identification of hallucinogenic and other poisonous mushrooms for clinical and forensic purposes.

    PubMed

    Kowalczyk, Marek; Sekuła, Andrzej; Mleczko, Piotr; Olszowy, Zofia; Kujawa, Anna; Zubek, Szymon; Kupiec, Tomasz

    2015-02-01

    To assess the usefulness of a DNA-based method for identifying mushroom species for application in forensic laboratory practice. Two hundred twenty-one samples of clinical forensic material (dried mushrooms, food remains, stomach contents, feces, etc) were analyzed. ITS2 region of nuclear ribosomal DNA (nrDNA) was sequenced and the sequen-ces were compared with reference sequences collected from the National Center for Biotechnology Information gene bank (GenBank). Sporological identification of mushrooms was also performed for 57 samples of clinical material. Of 221 samples, positive sequencing results were obtained for 152 (69%). The highest percentage of positive results was obtained for samples of dried mushrooms (96%) and food remains (91%). Comparison with GenBank sequences enabled identification of all samples at least at the genus level. Most samples (90%) were identified at the level of species or a group of closely related species. Sporological and molecular identification were consistent at the level of species or genus for 30% of analyzed samples. Molecular analysis identified a larger number of species than sporological method. It proved to be suitable for analysis of evidential material (dried hallucinogenic mushrooms) in forensic genetic laboratories as well as to complement classical methods in the analysis of clinical material.

  3. Capillary microextraction: A new method for sampling methamphetamine vapour.

    PubMed

    Nair, M V; Miskelly, G M

    2016-11-01

    Clandestine laboratories pose a serious health risk to first responders, investigators, decontamination companies, and the public who may be inadvertently exposed to methamphetamine and other chemicals used in its manufacture. Therefore there is an urgent need for reliable methods to detect and measure methamphetamine at such sites. The most common method for determining methamphetamine contamination at former clandestine laboratory sites is selected surface wipe sampling, followed by analysis with gas chromatography-mass spectrometry (GC-MS). We are investigating the use of sampling for methamphetamine vapour to complement such wipe sampling. In this study, we report the use of capillary microextraction (CME) devices for sampling airborne methamphetamine, and compare their sampling efficiency with a previously reported dynamic SPME method. The CME devices consisted of PDMS-coated glass filter strips inside a glass tube. The devices were used to dynamically sample methamphetamine vapour in the range of 0.42-4.2μgm -3 , generated by a custom-built vapour dosing system, for 1-15min, and methamphetamine was analysed using a GC-MS fitted with a ChromatoProbe thermal desorption unit. The devices showed good reproducibility (RSD<15%), and a curvilinear pre-equilibrium relationship between sampling times and peak area, which can be utilised for calibration. Under identical sampling conditions, the CME devices were approximately 30 times more sensitive than the dynamic SPME method. The CME devices could be stored for up to 3days after sampling prior to analysis. Consecutive sampling of methamphetamine and its isotopic substitute, d-9 methamphetamine showed no competitive displacement. This suggests that CME devices, pre-loaded with an internal standard, could be a feasible method for sampling airborne methamphetamine at former clandestine laboratories. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. [Inter-and intra-operator variability in the analysis of semen parameters: results from a quality control program].

    PubMed

    Daoud, Salima; Chakroun-Feki, Nozha; Sellami, Afifa; Ammar-Keskes, Leila; Rebai, Tarek

    2016-01-01

    Semen analysis is a key part of male infertility investigation. The necessity of quality management implementation in the andrology laboratory has been recognized in order to ensure the reliability of its results. The aim of this study was to evaluate intra- and inter-individual variability in the assessment of semen parameters in our laboratory through a quality control programme. Four participants from the laboratory with different experience levels have participated in this study. Semen samples of varying quality were assessed for sperm motility, concentration and morphology and the results were used to evaluate inter-participant variability. In addition, replicates of each semen sample were analyzed to determine intra-individual variability for semen parameters analysis. The average values of inter-participant coefficients of variation for sperm motility, concentration and morphology were 12.8%, 19.8% and 48.9% respectively. The mean intra-participant coefficients of variation were, respectively, 6.9%, 12.3% and 42.7% for sperm motility, concentration and morphology. Despite some random errors of under- or overestimation, the overall results remained within the limits of acceptability for all participants. Sperm morphology assessment was particularly influenced by the participant's level of experience. The present data emphasize the need for appropriate training of the laboratory staff and for regular participation in internal quality control programmes in order to improve the reliability of laboratory results.

  5. Human Milk Analysis Using Mid-Infrared Spectroscopy.

    PubMed

    Groh-Wargo, Sharon; Valentic, Jennifer; Khaira, Sharmeel; Super, Dennis M; Collin, Marc

    2016-04-01

    The composition of human milk is known to vary with length of gestation, stage of lactation, and other factors. Human milk contains all nutrients required for infant health but requires fortification to meet the needs of low-birth-weight infants. Without a known nutrient profile of the mother's milk or donor milk fed to a baby, the composition of the fortified product is only an estimate. Human milk analysis has the potential to improve the nutrition care of high-risk newborns by increasing the information about human milk composition. Equipment to analyze human milk is available, and the technology is rapidly evolving. This pilot study compares mid-infrared (MIR) spectroscopy to reference laboratory milk analysis. After obtaining informed consent, we collected human milk samples from mothers of infants weighing <2 kg at birth. Duplicate samples were analyzed for macronutrients by MIR and by reference laboratory analysis including Kjeldahl for protein, Mojonnier for fat, and high-pressure liquid chromatography for lactose. Intraclass correlation coefficients, Bland-Altman scatter plots, and paired t tests were used to compare the two methods. No significant differences were detected between the macronutrient content of human milk obtained by MIR vs reference laboratory analysis. MIR analysis appears to provide an accurate assessment of macronutrient content in expressed human milk from mothers of preterm infants. The small sample size of this study limits confidence in the results. Measurement of lactose is confounded by the presence of oligosaccharides. Human milk analysis is a potentially useful tool for establishing an individualized fortification plan. © 2015 American Society for Parenteral and Enteral Nutrition.

  6. Quantitative Analysis by Isotopic Dilution Using Mass Spectroscopy: The Determination of Caffeine by GC-MS.

    ERIC Educational Resources Information Center

    Hill, Devon W.; And Others

    1988-01-01

    Describes a laboratory technique for quantitative analysis of caffeine by an isotopic dilution method for coupled gas chromatography-mass spectroscopy. Discusses caffeine analysis and experimental methodology. Lists sample caffeine concentrations found in common products. (MVL)

  7. Improvement of analytical capabilities of neutron activation analysis laboratory at the Colombian Geological Survey

    NASA Astrophysics Data System (ADS)

    Parrado, G.; Cañón, Y.; Peña, M.; Sierra, O.; Porras, A.; Alonso, D.; Herrera, D. C.; Orozco, J.

    2016-07-01

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.

  8. Non-structural carbohydrates in woody plants compared among laboratories.

    PubMed

    Quentin, Audrey G; Pinkard, Elizabeth A; Ryan, Michael G; Tissue, David T; Baggett, L Scott; Adams, Henry D; Maillard, Pascale; Marchand, Jacqueline; Landhäusser, Simon M; Lacointe, André; Gibon, Yves; Anderegg, William R L; Asao, Shinichi; Atkin, Owen K; Bonhomme, Marc; Claye, Caroline; Chow, Pak S; Clément-Vidal, Anne; Davies, Noel W; Dickman, L Turin; Dumbur, Rita; Ellsworth, David S; Falk, Kristen; Galiano, Lucía; Grünzweig, José M; Hartmann, Henrik; Hoch, Günter; Hood, Sharon; Jones, Joanna E; Koike, Takayoshi; Kuhlmann, Iris; Lloret, Francisco; Maestro, Melchor; Mansfield, Shawn D; Martínez-Vilalta, Jordi; Maucourt, Mickael; McDowell, Nathan G; Moing, Annick; Muller, Bertrand; Nebauer, Sergio G; Niinemets, Ülo; Palacio, Sara; Piper, Frida; Raveh, Eran; Richter, Andreas; Rolland, Gaëlle; Rosas, Teresa; Saint Joanis, Brigitte; Sala, Anna; Smith, Renee A; Sterck, Frank; Stinziano, Joseph R; Tobias, Mari; Unda, Faride; Watanabe, Makoto; Way, Danielle A; Weerasinghe, Lasantha K; Wild, Birgit; Wiley, Erin; Woodruff, David R

    2015-11-01

    Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent literature could be quantitatively compared among studies. We also asked whether any differences among laboratories were related to the extraction and quantification methods used to determine starch and sugar concentrations. These questions were addressed by sending sub-samples collected from five woody plant tissues, which varied in NSC content and chemical composition, to 29 laboratories. Each laboratory analyzed the samples with their laboratory-specific protocols, based on recent publications, to determine concentrations of soluble sugars, starch and their sum, total NSC. Laboratory estimates differed substantially for all samples. For example, estimates for Eucalyptus globulus leaves (EGL) varied from 23 to 116 (mean = 56) mg g(-1) for soluble sugars, 6-533 (mean = 94) mg g(-1) for starch and 53-649 (mean = 153) mg g(-1) for total NSC. Mixed model analysis of variance showed that much of the variability among laboratories was unrelated to the categories we used for extraction and quantification methods (method category R(2) = 0.05-0.12 for soluble sugars, 0.10-0.33 for starch and 0.01-0.09 for total NSC). For EGL, the difference between the highest and lowest least squares means for categories in the mixed model analysis was 33 mg g(-1) for total NSC, compared with the range of laboratory estimates of 596 mg g(-1). Laboratories were reasonably consistent in their ranks of estimates among tissues for starch (r = 0.41-0.91), but less so for total NSC (r = 0.45-0.84) and soluble sugars (r = 0.11-0.83). Our results show that NSC estimates for woody plant tissues cannot be compared among laboratories. The relative changes in NSC between treatments measured within a laboratory may be comparable within and between laboratories, especially for starch. To obtain comparable NSC estimates, we suggest that users can either adopt the reference method given in this publication, or report estimates for a portion of samples using the reference method, and report estimates for a standard reference material. Researchers interested in NSC estimates should work to identify and adopt standard methods. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Some Data from Detection of Organics in a Rock on Mars

    NASA Image and Video Library

    2014-12-16

    Data graphed here are examples from the Sample Analysis at Mars SAM laboratory detection of Martian organics in a sample of powder that the drill on NASA Curiosity Mars rover collected from a rock target called Cumberland.

  10. High-throughput sample processing and sample management; the functional evolution of classical cytogenetic assay towards automation.

    PubMed

    Ramakumar, Adarsh; Subramanian, Uma; Prasanna, Pataje G S

    2015-11-01

    High-throughput individual diagnostic dose assessment is essential for medical management of radiation-exposed subjects after a mass casualty. Cytogenetic assays such as the Dicentric Chromosome Assay (DCA) are recognized as the gold standard by international regulatory authorities. DCA is a multi-step and multi-day bioassay. DCA, as described in the IAEA manual, can be used to assess dose up to 4-6 weeks post-exposure quite accurately but throughput is still a major issue and automation is very essential. The throughput is limited, both in terms of sample preparation as well as analysis of chromosome aberrations. Thus, there is a need to design and develop novel solutions that could utilize extensive laboratory automation for sample preparation, and bioinformatics approaches for chromosome-aberration analysis to overcome throughput issues. We have transitioned the bench-based cytogenetic DCA to a coherent process performing high-throughput automated biodosimetry for individual dose assessment ensuring quality control (QC) and quality assurance (QA) aspects in accordance with international harmonized protocols. A Laboratory Information Management System (LIMS) is designed, implemented and adapted to manage increased sample processing capacity, develop and maintain standard operating procedures (SOP) for robotic instruments, avoid data transcription errors during processing, and automate analysis of chromosome-aberrations using an image analysis platform. Our efforts described in this paper intend to bridge the current technological gaps and enhance the potential application of DCA for a dose-based stratification of subjects following a mass casualty. This paper describes one such potential integrated automated laboratory system and functional evolution of the classical DCA towards increasing critically needed throughput. Published by Elsevier B.V.

  11. Forensic validation of the SNPforID 52-plex assay.

    PubMed

    Musgrave-Brown, Esther; Ballard, David; Balogh, Kinga; Bender, Klaus; Berger, Burkhard; Bogus, Magdalena; Børsting, Claus; Brion, María; Fondevila, Manuel; Harrison, Cheryl; Oguzturun, Ceylan; Parson, Walther; Phillips, Chris; Proff, Carsten; Ramos-Luis, Eva; Sanchez, Juan J; Sánchez Diz, Paula; Sobrino Rey, Bea; Stradmann-Bellinghausen, Beate; Thacker, Catherine; Carracedo, Angel; Morling, Niels; Scheithauer, Richard; Schneider, Peter M; Syndercombe Court, Denise

    2007-06-01

    The advantages of single nucleotide polymorphism (SNP) typing in forensic genetics are well known and include a wider choice of high-throughput typing platforms, lower mutation rates, and improved analysis of degraded samples. However, if SNPs are to become a realistic supplement to current short tandem repeat (STR) typing methods, they must be shown to successfully and reliably analyse the challenging samples commonly encountered in casework situations. The European SNPforID consortium, supported by the EU GROWTH programme, has developed a multiplex of 52 SNPs for forensic analysis, with the amplification of all 52 loci in a single reaction followed by two single base extension (SBE) reactions which are detected with capillary electrophoresis. In order to validate this assay, a variety of DNA extracts were chosen to represent problems such as low copy number and degradation that are commonly seen in forensic casework. A total of 40 extracts were used in the study, each of which was sent to two of the five participating laboratories for typing in duplicate or triplicate. Laboratories were instructed to carry out their analyses as if they were dealing with normal casework samples. Results were reported back to the coordinating laboratory and compared with those obtained from traditional STR typing of the same extracts using Powerplex 16 (Promega). These results indicate that, although the ability to successfully type good quality, low copy number extracts is lower, the 52-plex SNP assay performed better than STR typing on degraded samples, and also on samples that were both degraded and of limited quantity, suggesting that SNP analysis can provide advantages over STR analysis in forensically relevant circumstances. However, there were also additional problems arising from contamination and primer quality issues and these are discussed.

  12. BOREAS TE-2 NSA Soil Lab Data

    NASA Technical Reports Server (NTRS)

    Veldhuis, Hugo; Hall, Forrest G. (Editor); Knapp, David E. (Editor)

    2000-01-01

    This data set contains the major soil properties of soil samples collected in 1994 at the tower flux sites in the Northern Study Area (NSA). The soil samples were collected by Hugo Veldhuis and his staff from the University of Manitoba. The mineral soil samples were largely analyzed by Barry Goetz, under the supervision of Dr. Harold Rostad at the University of Saskatchewan. The organic soil samples were largely analyzed by Peter Haluschak, under the supervision of Hugo Veldhuis at the Centre for Land and Biological Resources Research in Winnipeg, Manitoba. During the course of field investigation and mapping, selected surface and subsurface soil samples were collected for laboratory analysis. These samples were used as benchmark references for specific soil attributes in general soil characterization. Detailed soil sampling, description, and laboratory analysis were performed on selected modal soils to provide examples of common soil physical and chemical characteristics in the study area. The soil properties that were determined include soil horizon; dry soil color; pH; bulk density; total, organic, and inorganic carbon; electric conductivity; cation exchange capacity; exchangeable sodium, potassium, calcium, magnesium, and hydrogen; water content at 0.01, 0.033, and 1.5 MPascals; nitrogen; phosphorus: particle size distribution; texture; pH of the mineral soil and of the organic soil; extractable acid; and sulfur. These data are stored in ASCII text files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  13. FastID: Extremely Fast Forensic DNA Comparisons

    DTIC Science & Technology

    2017-05-19

    FastID: Extremely Fast Forensic DNA Comparisons Darrell O. Ricke, PhD Bioengineering Systems & Technologies Massachusetts Institute of...Technology Lincoln Laboratory Lexington, MA USA Darrell.Ricke@ll.mit.edu Abstract—Rapid analysis of DNA forensic samples can have a critical impact on...time sensitive investigations. Analysis of forensic DNA samples by massively parallel sequencing is creating the next gold standard for DNA

  14. Argentina-LLNL-LANL Comparative Sample Analysis on UO2 fuel pellet CRM-125A for Nuclear Forensics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kips, R.

    The recent workshop on analytical plan development provided context and background for the next step in this engagement, i.e. a comparative sample analysis on CRM 125-A. This is a commercially available certified low-enriched uranium oxide fuel pellet material from New Brunswick National Laboratory (NBL) (see certificate in Annex 1).

  15. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE--COMPENDIUM OF METHODS FOR ANALYSIS OF TRACE METALS AND PESTICIDES IN DIETARY SAMPLES USING TOTAL DIET STUDY PROCEDURES (FDA-COMPENDIUM)

    EPA Science Inventory

    This compendium contains seven SOPs developed by Food and Drug Administration (FDA) laboratories for methods of analyzing trace metals in dietary samples collected using Total Diet study procedures. The SOPs include the following: (1) Quality Control for Analysis of NHEXAS Food o...

  16. Validation of a PCR-based method for the detection of various rendered materials in feedstuffs using a forensic DNA extraction kit.

    PubMed

    Myers, Michael J; Yancy, Haile F; Araneta, Michael; Armour, Jennifer; Derr, Janice; Hoostelaere, Lawrence A D; Farmer, Doris; Jackson, Falana; Kiessling, William M; Koch, Henry; Lin, Huahua; Liu, Yan; Mowlds, Gabrielle; Pinero, David; Riter, Ken L; Sedwick, John; Shen, Yuelian; Wetherington, June; Younkins, Ronsha

    2006-01-01

    A method trial was initiated to validate the use of a commercial DNA forensic kit to extract DNA from animal feed as part of a PCR-based method. Four different PCR primer pairs (one bovine pair, one porcine pair, one ovine primer pair, and one multispecies pair) were also evaluated. Each laboratory was required to analyze a total of 120 dairy feed samples either not fortified (control, true negative) or fortified with bovine meat and bone meal, porcine meat and bone meal (PMBM), or lamb meal. Feeds were fortified with the animal meals at a concentration of 0.1% (wt/wt). Ten laboratories participated in this trial, and each laboratory was required to evaluate two different primer pairs, i.e., each PCR primer pair was evaluated by five different laboratories. The method was considered to be validated for a given animal source when three or more laboratories achieved at least 97% accuracy (29 correct of 30 samples for 96.7% accuracy, rounded up to 97%) in detecting the fortified samples for that source. Using this criterion, the method was validated for the bovine primer because three laboratories met the criterion, with an average accuracy of 98.9%. The average false-positive rate was 3.0% in these laboratories. A fourth laboratory was 80% accurate in identifying the samples fortified with bovine meat and bone meal. A fifth laboratory was not able to consistently extract the DNA from the feed samples and did not achieve the criterion for accuracy for either the bovine or multispecies PCR primers. For the porcine primers, the method was validated, with four laboratories meeting the criterion for accuracy with an average accuracy of 99.2%. The fifth laboratory had a 93.3% accuracy outcome for the porcine primer. Collectively, these five laboratories had a 1.3% false-positive rate for the porcine primer. No laboratory was able to meet the criterion for accuracy with the ovine primers, most likely because of problems with the synthesis of the primer pair; none of the positive control DNA samples could be detected with the ovine primers. The multispecies primer pair was validated in three laboratories for use with bovine meat and bone meal and lamb meal but not with PMBM. The three laboratories had an average accuracy of 98.9% for bovine meat and bone meal, 97.8% for lamb meal, and 63.3% for PMBM. When examined on an individual laboratory basis, one of these four laboratories could not identify a single feed sample containing PMBM by using the multispecies primer, whereas the other laboratory identified only one PMBM-fortified sample, suggesting that the limit of detection for PMBM with this primer pair is around 0.1% (wt/wt). The results of this study demonstrated that the DNA forensic kit can be used to extract DNA from animal feed, which can then be used for PCR analysis to detect animal-derived protein present in the feed sample.

  17. Laboratory electrical resistivity analysis of geologic samples from Fort Irwin, California: Chapter E in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    USGS Publications Warehouse

    Bloss, Benjamin R.; Bedrosian, Paul A.; Buesch, David C.

    2015-01-01

    Correlating laboratory resistivity measurements with geophysical resistivity models helps constrain these models to the geology and lithology of an area. Throughout the Fort Irwin National Training Center area, 111 samples from both cored boreholes and surface outcrops were collected and processed for laboratory measurements. These samples represent various lithologic types that include plutonic and metamorphic (basement) rocks, lava flows, consolidated sedimentary rocks, and unconsolidated sedimentary deposits that formed in a series of intermountain basins. Basement rocks, lava flows, and some lithified tuffs are generally resistive (≥100 ohm-meters [Ω·m]) when saturated. Saturated unconsolidated samples are moderately conductive to conductive, with resistivities generally less than 100 Ω·m, and many of these samples are less than 50 Ω·m. The unconsolidated samples can further be separated into two broad groups: (1) younger sediments that are moderately conductive, owing to their limited clay content, and (2) older, more conductive sediments with a higher clay content that reflects substantial amounts of originally glassy volcanic ash subsequently altered to clay. The older sediments are believed to be Tertiary. Time-domain electromagnetic (TEM) data were acquired near most of the boreholes, and, on the whole, close agreements between laboratory measurements and resistivity models were found. 

  18. Results of the International Energy Agency Round Robin on Fast Pyrolysis Bio-oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.; Meier, Dietrich; Oasmaa, Anja

    An international round robin study of the production of fast pyrolysis bio-oil was undertaken. Fifteen institutions in six countries contributed. Three biomass samples were distributed to the laboratories for processing in fast pyrolysis reactors. Samples of the bio-oil produced were transported to a central analytical laboratory for analysis. The round robin was focused on validating the pyrolysis community understanding of production of fast pyrolysis bio-oil by providing a common feedstock for bio-oil preparation. The round robin included: •distribution of 3 feedstock samples from a common source to each participating laboratory; •preparation of fast pyrolysis bio-oil in each laboratory with themore » 3 feedstocks provided; •return of the 3 bio-oil products (minimum 500 ml) with operational description to a central analytical laboratory for bio-oil property determination. The analyses of interest were: density, viscosity, dissolved water, filterable solids, CHN, S, trace element analysis, ash, total acid number, pyrolytic lignin, and accelerated aging of bio-oil. In addition, an effort was made to compare the bio-oil components to the products of analytical pyrolysis through GC/MS analysis. The results showed that clear differences can occur in fast pyrolysis bio-oil properties by applying different reactor technologies or configurations. The comparison to analytical pyrolysis method suggested that Py-GC/MS could serve as a rapid screening method for bio-oil composition when produced in fluid-bed reactors. Furthermore, hot vapor filtration generally resulted in the most favorable bio-oil product, with respect to water, solids, viscosity, and total acid number. These results can be helpful in understanding the variation in bio-oil production methods and their effects on bio-oil product composition.« less

  19. Solid-phase extraction combined with high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry analysis of pesticides in water: method performance and application in a reconnaissance survey of residues in drinking water in Greater Cairo, Egypt.

    PubMed

    Potter, Thomas L; Mohamed, Mahmoud A; Ali, Hannah

    2007-01-24

    Monitoring of water resources for pesticide residues is often needed to ensure that pesticide use does not adversely impact the quality of public water supplies or the environment. In many rural areas and throughout much of the developing world, monitoring is often constrained by lack of testing facilities; thus, collection of samples and shipment to centralized laboratories for analysis is required. The portability, ease of use, and potential to enhance analyte stability make solid-phase extraction (SPE) an attractive technique for handling water samples prior to their shipment. We describe performance of an SPE method targeting a structurally diverse mixture of 25 current-use pesticides and two common degradates in samples of raw and filtered drinking water collected in Greater Cairo, Egypt. SPE was completed in a field laboratory in Egypt, and cartridges were shipped to the United States for elution and high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry analysis. Quantitative and reproducible recovery of 23 of 27 compounds (average = 96%; percent relative standard deviation = 21%) from matrix spikes (1 microg L-1 per component) prepared in the field and from deionized water fortified similarly in the analytical laboratory was obtained. Concurrent analysis of unspiked samples identified four parent compounds and one degradate in drinking water samples. No significant differences were observed between raw and filtered samples. Residue levels in all cases were below drinking water and "harm to aquatic-life" thresholds, indicating that human and ecological risks of pesticide contamination were relatively small; however, the study was limited in scale and scope. Further monitoring is needed to define spatial and temporal variation in residue concentrations. The study has demonstrated the feasibility of performing studies of this type using SPE to extract and preserve samples in the field. The approach should be broadly applicable in many settings.

  20. [GSTP1, APC and RASSF1 gene methylation in prostate cancer samples: comparative analysis of MS-HRM method and Infinium HumanMethylation450 BeadChip beadchiparray diagnostic value].

    PubMed

    Skorodumova, L O; Babalyan, K A; Sultanov, R; Vasiliev, A O; Govorov, A V; Pushkar, D Y; Prilepskaya, E A; Danilenko, S A; Generozov, E V; Larin, A K; Kostryukova, E S; Sharova, E I

    2016-11-01

    There is a clear need in molecular markers for prostate cancer (PC) risk stratification. Alteration of DNA methylation is one of processes that occur during ÐÑ progression. Methylation-sensitive PCR with high resolution melting curve analysis (MS-HRM) can be used for gene methylation analysis in routine laboratory practice. This method requires very small amounts of DNA for analysis. Numerous results have been accumulated on DNA methylation in PC samples analyzed by the Infinium HumanMethylation450 BeadChip (HM450). However, the consistency of MS-HRM results with chip hybridization results has not been examined yet. The aim of this study was to assess the consistency of results of GSTP1, APC and RASSF1 gene methylation analysis in ÐÑ biopsy samples obtained by MS-HRM and chip hybridization. The methylation levels of each gene determined by MS-HRM were statistically different in the group of PC tissue samples and the samples without signs of tumor growth. Chip hybridization data analysis confirmed the results obtained with the MS-HRM. Differences in methylation levels between tumor tissue and histologically intact tissue of each sample determined by MS-HRM and chip hybridization, were consistent with each other. Thus, we showed that the assessment of GSTP1, APC and RASSF1 gene methylation analysis using MS-HRM is suitable for the design of laboratory assays that will differentiate the PC tissue from the tissue without signs of tumor growth.

  1. Quality-Assurance Data for Routine Water Analyses by the U.S. Geological Survey Laboratory in Troy, New York - July 2001 Through June 2003

    USGS Publications Warehouse

    Lincoln, Tricia A.; Horan-Ross, Debra A.; McHale, Michael R.; Lawrence, Gregory B.

    2009-01-01

    The laboratory for analysis of low-ionic-strength water at the U.S. Geological Survey (USGS) Water Science Center in Troy, N.Y., analyzes samples collected by USGS projects throughout the Northeast. The laboratory's quality-assurance program is based on internal and interlaboratory quality-assurance samples and quality-control procedures that were developed to ensure proper sample collection, processing, and analysis. The quality-assurance and quality-control data were stored in the laboratory's Lab Master data-management system, which provides efficient review, compilation, and plotting of data. This report presents and discusses results of quality-assurance and quality control samples analyzed from July 2001 through June 2003. Results for the quality-control samples for 19 analytical procedures were evaluated for bias and precision. Control charts indicate that data for six of the analytical procedures were occasionally biased for either high-concentration or low-concentration samples but were within control limits; these procedures were: acid-neutralizing capacity, chloride, magnesium, nitrate (ion chromatography), potassium, and sodium. The calcium procedure was biased throughout the analysis period for the high-concentration sample, but was within control limits. The total monomeric aluminum and fluoride procedures were biased throughout the analysis period for the low-concentration sample, but were within control limits. The total aluminum, pH, specific conductance, and sulfate procedures were biased for the high-concentration and low-concentration samples, but were within control limits. Results from the filter-blank and analytical-blank analyses indicate that the procedures for 16 of 18 analytes were within control limits, although the concentrations for blanks were occasionally outside the control limits. The data-quality objective was not met for the dissolved organic carbon or specific conductance procedures. Sampling and analysis precision are evaluated herein in terms of the coefficient of variation obtained for triplicate samples in the procedures for 18 of the 21 analytes. At least 90 percent of the samples met data-quality objectives for all procedures except total monomeric aluminum (83 percent of samples met objectives), total aluminum (76 percent of samples met objectives), ammonium (73 percent of samples met objectives), dissolved organic carbon (86 percent of samples met objectives), and nitrate (81 percent of samples met objectives). The data-quality objective was not met for the nitrite procedure. Results of the USGS interlaboratory Standard Reference Sample (SRS) Project indicated satisfactory or above data quality over the time period, with most performance ratings for each sample in the good-to-excellent range. The N-sample (nutrient constituents) analysis had one unsatisfactory rating for the ammonium procedure in one study. The T-sample (trace constituents) analysis had one unsatisfactory rating for the magnesium procedure and one marginal rating for the potassium procedure in one study and one unsatisfactory rating for the sodium procedure in another. Results of Environment Canada's National Water Research Institute (NWRI) program indicated that at least 90 percent of the samples met data-quality objectives for 10 of the 14 analytes; the exceptions were acid-neutralizing capacity, ammonium, dissolved organic carbon, and sodium. Data-quality objectives were not met in 37 percent of samples analyzed for acid-neutralizing capacity, 28 percent of samples analyzed for dissolved organic carbon, and 30 percent of samples analyzed for sodium. Results indicate a positive bias for the ammonium procedure in one study and a negative bias in another. Results from blind reference-sample analyses indicated that data-quality objectives were met by at least 90 percent of the samples analyzed for calcium, chloride, magnesium, pH, potassium, and sodium. Data-quality objectives were met by 78 percent of

  2. Screening for hypoglycemia at the bedside in the neonatal intensive care unit (NICU) with the Abbott PCx glucose meter.

    PubMed

    Balion, Cynthia; Grey, Vijaylaxmi; Ismaila, Afisi; Blatz, Susan; Seidlitz, Wendy

    2006-11-03

    Point of care (POC) glucose meters are routinely used as a screening tool for hypoglycemia in a neonatal setting. Glucose meters however, lack the same accuracy as laboratory instruments for glucose measurement. In this study we investigated potential reasons for this inaccuracy and established a cut off value for confirmatory testing. In this prospective study, all patients in the neonatal intensive care unit who had a plasma glucose test ordered were eligible to participate. Demographic information, sample collection information (nine variables) and a recent hematocrit value were recorded for each sample. Glucose measurements were taken at the bedside on the glucose meter (RN PCx) as well as in the laboratory on both the glucose meter (LAB PCx) and the laboratory analyzer (PG). Data were analyzed by simple and mixed-effects regression analysis and by analysis of a receiver operator characteristics (ROC) curve. There were 475 samples analyzed from 132 patients. RN PCx values were higher than PG values (mean = 4.9%), while LAB PCx results were lower (mean = -5.2%) than PG values. Only 31% of the difference between RN PCx--PG and 46% of the difference for LAB PCx--PG could be accounted for by the variables tested. The largest proportion of variance between PCx and PG measurements was explained by hematocrit (about 30%) with a greater effect seen at glucose concentrations < or =4.0 mmol/L (< or =72 mg/dL)(48% and 40% for RN PCx and LAB PCx, respectively). The ROC analysis showed that for detection of all cases of hypoglycemia (PG < 2.6 mmol/L)(PG < 47 mg/dL) the PCx screening cut off value would need to be set at 3.8 mmol/L (68 mg/dL) requiring 20% of all samples to have confirmatory analysis by the laboratory method. The large difference between glucose results obtained by PCx glucose meter compared to the laboratory analyzer can be explained in part by hematocrit and low glucose concentration. These results emphasize that the glucose meter is useful only as a screening device for neonatal hypoglycemia and that a screening cut off value must be established.

  3. Practical solution for control of the pre-analytical phase in decentralized clinical laboratories for meeting the requirements of the medical laboratory accreditation standard DIN EN ISO 15189.

    PubMed

    Vacata, Vladimir; Jahns-Streubel, Gerlinde; Baldus, Mirjana; Wood, William Graham

    2007-01-01

    This report was written in response to the article by Wood published recently in this journal. It describes a practical solution to the problems of controlling the pre-analytical phase in the clinical diagnostic laboratory. As an indicator of quality in the pre-analytical phase of sample processing, a target analyte was chosen which is sensitive to delay in centrifugation and/or analysis. The results of analyses of the samples sent by satellite medical practitioners were compared with those from an on-site hospital laboratory with a controllable optimized pre-analytical phase. The aim of the comparison was: (a) to identify those medical practices whose mean/median sample values significantly deviate from those of the control situation in the hospital laboratory due to the possible problems in the pre-analytical phase; (b) to aid these laboratories in the process of rectifying these problems. A Microsoft Excel-based Pre-Analytical Survey tool (PAS tool) has been developed which addresses the above mentioned problems. It has been tested on serum potassium which is known to be sensitive to delay and/or irregularities in sample treatment. The PAS tool has been shown to be one possibility for improving the quality of the analyses by identifying the sources of problems within the pre-analytical phase, thus allowing them to be rectified. Additionally, the PAS tool has an educational value and can also be adopted for use in other decentralized laboratories.

  4. The Fulton County Medical Examiner's experience with the Federal Bureau of Investigation National Missing Person DNA Database Program, 2004-2007.

    PubMed

    Heninger, Michael; Hanzlick, Randy

    2011-03-01

    Medical examiners and coroners occasionally encounter unidentified human bodies, which remain unidentified for extended periods. In such cases, when traditional methods of identification have failed or cannot be used, DNA profiling may be used. The Federal Bureau of Investigation has a National Missing Person DNA database (NMPDD) laboratory to which samples may be submitted on such cases and from possible relatives or environments of unidentified decedents. This article describes the experience of the Fulton County Medical Examiner (FCME) in submitting samples to the NMPDD laboratory. A database was established at the FCME to track the submission of samples from unidentified decedents to the NMPDD laboratory for DNA testing along with the results and turnaround times. In December 2004, the FCME inventoried all cases for which samples were available and began to submit them to the NMPDD laboratory for testing. DNA testing and isolation rates, sample type, and turnaround times were tabulated in October 2006 for samples submitted between December 16, 2004 and December 16, 2005. An overall summary of data was also prepared concerning the status of all samples submitted as of April 17, 2007. During the 1-year study period, samples from 77 unidentified decedents were submitted to the laboratory. As of October 2006 (22 months after submission of the first samples and 10 months after submission of the last samples), testing had been completed on 53% of the samples submitted, and 68% of those tested resulted in a mitochondrial DNA profile. Turnaround times ranged from 66 to 557 days, improved with time, and had a mean of 107 days for specimens submitted during the latter part of the study period. As of April 17, 2007, we had submitted samples involving 84 unidentified decedents. Seventy-five percent of the samples have now been tested. Data from the NMPDD laboratory have resulted in 4 identifications by comparison with putative relatives, 4 exclusions, and no cold hits through comparison NMPDD DNA profiles from missing persons. More extensive data are presented in the body of this article. The NMPDD laboratory provides useful and free services to medical examiners, coroners, and law enforcement agencies that require DNA services regarding missing and unidentified persons. Turnaround times have improved. The success of the system in getting cold hits will be heavily dependent on law enforcement filing missing persons reports and submission of reference samples from putative relatives of the decedent. We recommend collecting specimens for DNA analysis early on in the postmortem investigation, submitting samples to the NMPDD laboratory or one of its participating laboratories when traditional methods for identification cannot be used or have failed, not burying bodies until a DNA profile has been obtained, and not cremating unidentified remains.

  5. Alternatives for Laboratory Measurement of Aerosol Samples from the International Monitoring System of the CTBT

    NASA Astrophysics Data System (ADS)

    Miley, H.; Forrester, J. B.; Greenwood, L. R.; Keillor, M. E.; Eslinger, P. W.; Regmi, R.; Biegalski, S.; Erikson, L. E.

    2013-12-01

    The aerosol samples taken from the CTBT International Monitoring Systems stations are measured in the field with a minimum detectable concentration (MDC) of ~30 microBq/m3 of Ba-140. This is sufficient to detect far less than 1 kt of aerosol fission products in the atmosphere when the station is in the plume from such an event. Recent thinking about minimizing the potential source region (PSR) from a detection has led to a desire for a multi-station or multi-time period detection. These would be connected through the concept of ';event formation', analogous to event formation in seismic event study. However, to form such events, samples from the nearest neighbors of the detection would require re-analysis with a more sensitive laboratory to gain a substantially lower MDC, and potentially find radionuclide concentrations undetected by the station. The authors will present recent laboratory work with air filters showing various cost effective means for enhancing laboratory sensitivity.

  6. Introducing Human Population Biology through an Easy Laboratory Exercise on Mitochondrial DNA

    ERIC Educational Resources Information Center

    Pardinas, Antonio F.; Dopico, Eduardo; Roca, Agustin; Garcia-Vazquez, Eva; Lopez, Belen

    2010-01-01

    This article describes an easy and cheap laboratory exercise for students to discover their own mitochondrial haplogroup. Students use buccal swabs to obtain mucosa cells as noninvasive tissue samples, extract DNA, and with a simple polymerase chain reaction-restriction fragment length polymorphism analysis they can obtain DNA fragments of…

  7. HPLC of the Polypeptides in a Hydrolyzate of Egg-White Lysozyme. An Experiment for the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Richardson, W. S., III; Burns, L.

    1988-01-01

    Describes a simple high-performance liquid chromatography experiment for undergraduate biochemistry laboratories. The experiment illustrates the separation of polypeptides by a step gradient elution using a single pump instrument with no gradient attachments. Discusses instrumentation, analysis, a sample preparation, and results. (CW)

  8. 40 CFR 264.99 - Compliance monitoring program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the availability of laboratory facilities to perform the analysis of ground-water samples. (e) The... Administrator, and repeat the analysis. If the second analysis confirms the presence of new constituents, the... Administrator within seven days after the completion of the second analysis and add them to the monitoring list...

  9. Spectrochemical analysis of powdered biological samples using transversely excited atmospheric carbon dioxide laser plasma excitation

    NASA Astrophysics Data System (ADS)

    Zivkovic, Sanja; Momcilovic, Milos; Staicu, Angela; Mutic, Jelena; Trtica, Milan; Savovic, Jelena

    2017-02-01

    The aim of this study was to develop a simple laser induced breakdown spectroscopy (LIBS) method for quantitative elemental analysis of powdered biological materials based on laboratory prepared calibration samples. The analysis was done using ungated single pulse LIBS in ambient air at atmospheric pressure. Transversely-Excited Atmospheric pressure (TEA) CO2 laser was used as an energy source for plasma generation on samples. The material used for the analysis was a blue-green alga Spirulina, widely used in food and pharmaceutical industries and also in a few biotechnological applications. To demonstrate the analytical potential of this particular LIBS system the obtained spectra were compared to the spectra obtained using a commercial LIBS system based on pulsed Nd:YAG laser. A single sample of known concentration was used to estimate detection limits for Ba, Ca, Fe, Mg, Mn, Si and Sr and compare detection power of these two LIBS systems. TEA CO2 laser based LIBS was also applied for quantitative analysis of the elements in powder Spirulina samples. Analytical curves for Ba, Fe, Mg, Mn and Sr were constructed using laboratory produced matrix-matched calibration samples. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used as the reference technique for elemental quantification, and reasonably well agreement between ICP and LIBS data was obtained. Results confirm that, in respect to its sensitivity and precision, TEA CO2 laser based LIBS can be successfully applied for quantitative analysis of macro and micro-elements in algal samples. The fact that nearly all classes of materials can be prepared as powders implies that the proposed method could be easily extended to a quantitative analysis of different kinds of materials, organic, biological or inorganic.

  10. Optical Methods for Identifying Hard Clay Core Samples During Petrophysical Studies

    NASA Astrophysics Data System (ADS)

    Morev, A. V.; Solovyeva, A. V.; Morev, V. A.

    2018-01-01

    X-ray phase analysis of the general mineralogical composition of core samples from one of the West Siberian fields was performed. Electronic absorption spectra of the clay core samples with an added indicator were studied. The speed and availability of applying the two methods in petrophysical laboratories during sample preparation for standard and special studies were estimated.

  11. Root cause analysis of laboratory turnaround times for patients in the emergency department.

    PubMed

    Fernandes, Christopher M B; Worster, Andrew; Hill, Stephen; McCallum, Catherine; Eva, Kevin

    2004-03-01

    Laboratory investigations are essential to patient care and are conducted routinely in emergency departments (EDs). This study reports the turnaround times at an academic, tertiary care ED, using root cause analysis to identify potential areas of improvement. Our objectives were to compare the laboratory turnaround times with established benchmarks and identify root causes for delays. Turnaround and process event times for a consecutive sample of hemoglobin and potassium measurements were recorded during an 8-day study period using synchronized time stamps. A log transformation (ln [minutes + 1]) was performed to normalize the time data, which were then compared with established benchmarks using one-sample t tests. The turnaround time for hemoglobin was significantly less than the established benchmark (n = 140, t = -5.69, p < 0.001) and that of potassium was significantly greater (n = 121, t = 12.65, p < 0.001). The hemolysis rate was 5.8%, with 0.017% of samples needing recollection. Causes of delays included order-processing time, a high proportion (43%) of tests performed on patients who had been admitted but were still in the ED waiting for a bed, and excessive laboratory process times for potassium. The turnaround time for hemoglobin (18 min) met the established benchmark, but that for potassium (49 min) did not. Root causes for delay were order-processing time, excessive queue and instrument times for potassium and volume of tests for admitted patients. Further study of these identified causes of delays is required to see whether laboratory TATs can be reduced.

  12. Author Contribution to the Pu Handbook II: Chapter 37 LLNL Integrated Sample Preparation Glovebox (TEM) Section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Mark A.

    The development of our Integrated Actinide Sample Preparation Laboratory (IASPL) commenced in 1998 driven by the need to perform transmission electron microscopy studies on naturally aged plutonium and its alloys looking for the microstructural effects of the radiological decay process (1). Remodeling and construction of a laboratory within the Chemistry and Materials Science Directorate facilities at LLNL was required to turn a standard radiological laboratory into a Radiological Materials Area (RMA) and Radiological Buffer Area (RBA) containing type I, II and III workplaces. Two inert atmosphere dry-train glove boxes with antechambers and entry/exit fumehoods (Figure 1), having a baseline atmospheremore » of 1 ppm oxygen and 1 ppm water vapor, a utility fumehood and a portable, and a third double-walled enclosure have been installed and commissioned. These capabilities, along with highly trained technical staff, facilitate the safe operation of sample preparation processes and instrumentation, and sample handling while minimizing oxidation or corrosion of the plutonium. In addition, we are currently developing the capability to safely transfer small metallographically prepared samples to a mini-SEM for microstructural imaging and chemical analysis. The gloveboxes continue to be the most crucial element of the laboratory allowing nearly oxide-free sample preparation for a wide variety of LLNL-based characterization experiments, which includes transmission electron microscopy, electron energy loss spectroscopy, optical microscopy, electrical resistivity, ion implantation, X-ray diffraction and absorption, magnetometry, metrological surface measurements, high-pressure diamond anvil cell equation-of-state, phonon dispersion measurements, X-ray absorption and emission spectroscopy, and differential scanning calorimetry. The sample preparation and materials processing capabilities in the IASPL have also facilitated experimentation at world-class facilities such as the Advanced Photon Source at Argonne National Laboratory, the European Synchrotron Radiation Facility in Grenoble, France, the Stanford Synchrotron Radiation Facility, the National Synchrotron Light Source at Brookhaven National Laboratory, the Advanced Light Source at Lawrence Berkeley National Laboratory, and the Triumph Accelerator in Canada.« less

  13. Robotics-assisted mass spectrometry assay platform enabled by open-source electronics.

    PubMed

    Chiu, Shih-Hao; Urban, Pawel L

    2015-02-15

    Mass spectrometry (MS) is an important analytical technique with numerous applications in clinical analysis, biochemistry, environmental analysis, geology and physics. Its success builds on the ability of MS to determine molecular weights of analytes, and elucidate their structures. However, sample handling prior to MS requires a lot of attention and labor. In this work we were aiming to automate processing samples for MS so that analyses could be conducted without much supervision of experienced analysts. The goal of this study was to develop a robotics and information technology-oriented platform that could control the whole analysis process including sample delivery, reaction-based assay, data acquisition, and interaction with the analyst. The proposed platform incorporates a robotic arm for handling sample vials delivered to the laboratory, and several auxiliary devices which facilitate and secure the analysis process. They include: multi-relay board, infrared sensors, photo-interrupters, gyroscopes, force sensors, fingerprint scanner, barcode scanner, touch screen panel, and internet interface. The control of all the building blocks is achieved through implementation of open-source electronics (Arduino), and enabled by custom-written programs in C language. The advantages of the proposed system include: low cost, simplicity, small size, as well as facile automation of sample delivery and processing without the intervention of the analyst. It is envisaged that this simple robotic system may be the forerunner of automated laboratories dedicated to mass spectrometric analysis of biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Application of portable X-ray fluorescence spectrometry in environmental investigation of heavy metal-contaminated sites and comparison with laboratory analysis

    NASA Astrophysics Data System (ADS)

    Ding, Liang; Wang, Shui; Cai, Bingjie; Zhang, Mancheng; Qu, Changsheng

    2018-02-01

    In this study, portable X-ray fluorescence spectrometry (pXRF) was used to measure the heavy metal contents of As, Cu, Cr, Ni, Pb and Zn in the soils of heavy metal-contaminated sites. The precision, accuracy and system errors of pXRF were evaluated and compared with traditional laboratory methods to examine the suitability of in situ pXRF. The results show that the pXRF analysis achieved satisfactory accuracy and precision in measuring As, Cr, Cu, Ni, Pb, and Zn in soils, and meets the requirements of the relevant detection technology specifications. For the certified reference soil samples, the pXRF results of As, Cr, Cu, Ni, Pb, and Zn show good linear relationships and coefficients of determination with the values measured using the reference analysis methods; with the exception of Ni, all the measured values were within the 95% confidence level. In the soil samples, the coefficients of determination between Cu, Zn, Pb, and Ni concentrations measured laboratory pXRF and the values measured with laboratory analysis all reach 0.9, showing a good linear relationship; however, there were large deviations between methods for Cr and As. This study provides reference data and scientific support for rapid detection of heavy metals in soils using pXRF in site investigation, which can better guide the practical application of pXRF.

  15. Headspace vapor characterization of Hanford Waste Tank 241-S-102: Results from samples collected on January 26, 1996. Tank Vapor Characterization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, J.C.; Thomas, B.L.; Pool, K.H.

    1996-07-01

    This report describes the results of vapor samples obtained to compare vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling System (ISVS) with and without particulate prefiltration. Samples were collected from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) was contracted by Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for water, ammonia, permanent gases, total nonmethane hydrocarbons (TNMHCs, also known as TO-12), and organic analytes in samples collected in SUMMA{trademark} canisters and on triple sorbentmore » traps (TSTs) from the tank headspace. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sampling and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Sampling and Analysis Plan for Tank Vapor Sampling Comparison Test{close_quote}, and the sample jobs were designated S6007, S6008, and S6009. Samples were collected by WHC on January 26, 1996, using the VSS, a truck-based sampling method using a heated probe; and the ISVS with and without particulate prefiltration.« less

  16. Headspace vapor characterization of Hanford Waste Tank 241-BY-108: Results from samples collected January 23, 1996. Tank Vapor Characterization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pool, K.H.; Evans, J.C.; Thomas, B.L.

    1996-07-01

    This report describes the results of vapor samples obtained to compare vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling System (ISVS) with and without particulate prefiltration. Samples were collected from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) was contracted by Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for water, ammonia, permanent gases, total nonmethane hydrocarbons (TNMHCs, also known as TO-12), and organic analytes in samples collected in SUMMA{trademark} canisters and on triple sorbentmore » traps (TSTs) from the tank headspace. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sampling and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Sampling and Analysis Plan for Tank Vapor Sampling Comparison Test{close_quotes}, and the sample jobs were designated S6004, S6005, and S6006. Samples were collected by WHC on January 23, 1996, using the VSS, a truck-based sampling method using a heated probe; and the ISVS with and without particulate prefiltration.« less

  17. AEROBIC SOIL MICROCOSMS FOR LONG-TERM BIODEGRADATION OF HYDROCARBON VAPORS

    EPA Science Inventory

    The aims of this research project included the development of laboratory protocols for the preparation of aerobic soil microcosms using aseptic field soil samples, and for the gas chromatographic analysis of hydrocarbon vapor biodegradation based on vapor samples obtained from th...

  18. CONCEPTS AND APPROACHES FOR THE BIOASSESSMENT OF NON-WADEABLE STREAMS AND RIVERS

    EPA Science Inventory

    This document is intended to assist users in establishing or refining protocols, including the specific methods related to field sampling, laboratory sample processing, taxonomy, data entry, management and analysis, and final assessment and reporting. It also reviews and provide...

  19. NHEXAS PHASE I ARIZONA STUDY--LIST OF STANDARD OPERATING PROCEDURES

    EPA Science Inventory

    This document lists available protocols and SOPs for the NHEXAS Phase I Arizona study. It identifies protocols and SOPs for the following study components: (1) Sample collection and field operations, (2) Sample analysis, (3) General laboratory procedures, (4) Quality Assurance, (...

  20. Proficiency program for real-time PCR diagnosis of Bordetella pertussis infections in French hospital laboratories and at the French National Reference Center for Whooping Cough and other Bordetelloses.

    PubMed

    Caro, Valérie; Guiso, Nicole; Alberti, Corinne; Liguori, Sandrine; Burucoa, Christophe; Couetdic, Gérard; Doucet-Populaire, Florence; Ferroni, Agnès; Papin-Gibaud, Sophie; Grattard, Florence; Réglier-Poupet, Hélène; Raymond, Josette; Soler, Catherine; Bouchet, Sylvie; Charreau, Sandrine; Couzon, Brigitte; Leymarie, Isabelle; Tavares, Nicole; Choux, Mathilde; Bingen, Edouard; Bonacorsi, Stéphane

    2009-10-01

    With the support of a ministerial program for innovative and expensive technologies, dedicated to the economic evaluation of laboratory diagnosis of pertussis by real-time PCR, external quality assessment for real-time IS481 PCR was carried out. Coordinated by the National Centre of Reference of Pertussis and other Bordetelloses (NCR), this study aimed to harmonize and to assess the performances of eight participating microbiology hospital laboratories throughout the French territory. Between January 2006 and February 2007, 10 proficiency panels were sent by the NCR (ascending proficiency program), representing a total of 49 samples and including eight panels to analyze and evaluate the global sensitivity and specificity of real-time PCR, one to assess the limit of detection, and one to evaluate nucleic acid extraction methods. As part of the descending proficiency program, extracted DNA from clinical samples was sent by the eight participating laboratories in different panels and analyzed by the NCR. In the ascending proficiency analysis, the sensitivity and specificity of the real-time PCR methods were 92.2% and 94.3%, respectively. The limit of detection of the different methods ranged between 0.1 and 1 fg/microl (0.2 to 2 CFU/microl). The nucleic acid extraction methods showed similar performances. During the descending proficiency analysis, performed with 126 samples, the result of the NCR for 15 samples (11.9%) was discordant with the result obtained by the source laboratory. Despite several initial differences, harmonization was easy and performances were homogeneous. However, the risk of false-positive results remains quite high, and we strongly recommend establishment of uniform quality control procedures performed regularly.

  1. External Quality Assessment for KRAS Testing Is Needed: Setup of a European Program and Report of the First Joined Regional Quality Assessment Rounds

    PubMed Central

    Bellon, Ellen; Ligtenberg, Marjolijn J.L.; Tejpar, Sabine; Cox, Karen; de Hertogh, Gert; de Stricker, Karin; Edsjö, Anders; Gorgoulis, Vassilis; Höfler, Gerald; Jung, Andreas; Kotsinas, Athanassios; Laurent-Puig, Pierre; López-Ríos, Fernando; Hansen, Tine Plato; Rouleau, Etienne; Vandenberghe, Peter; van Krieken, Johan J.M.

    2011-01-01

    The use of epidermal growth factor receptor–targeting antibodies in metastatic colorectal cancer has been restricted to patients with wild-type KRAS tumors by the European Medicines Agency since 2008, based on data showing a lack of efficacy and potential harm in patients with mutant KRAS tumors. In an effort to ensure optimal, uniform, and reliable community-based KRAS testing throughout Europe, a KRAS external quality assessment (EQA) scheme was set up. The first large assessment round included 59 laboratories from eight different European countries. For each country, one regional scheme organizer prepared and distributed the samples for the participants of their own country. The samples included unstained sections of 10 invasive colorectal carcinomas with known KRAS mutation status. The samples were centrally validated by one of two reference laboratories. The laboratories were allowed to use their own preferred method for histological evaluation, DNA isolation, and mutation analysis. In this study, we analyze the setup of the KRAS scheme. We analyzed the advantages and disadvantages of the regional scheme organization by analyzing the outcome of genotyping results, analysis of tumor percentage, and written reports. We conclude that only 70% of laboratories correctly identified the KRAS mutational status in all samples. Both the false-positive and false-negative results observed negatively affect patient care. Reports of the KRAS test results often lacked essential information. We aim to further expand this program to more laboratories to provide a robust estimate of the quality of KRAS testing in Europe, and provide the basis for remedial measures and harmonization. PMID:21441573

  2. Solid-phase extraction and GC-MS analysis of THC-COOH method optimized for a high-throughput forensic drug-testing laboratory.

    PubMed

    Stout, P R; Horn, C K; Klette, K L

    2001-10-01

    In order to facilitate the confirmation analysis of large numbers of urine samples previously screened positive for delta9-tetrahydrocannabinol (THC), an extraction, derivitization, and GC-MS analysis method was developed. This method utilized a positive pressure manifold anion-exchange polymer-based solid-phase extraction followed by elution directly into the automated liquid sampling (ALS) vials. Rapid derivitization was accomplished using pentafluoropropionic anhydride/pentafluoropropanol (PFPA/PFPOH). Recoveries averaged 95% with a limit of detection of 0.875 ng/mL with a 3-mL sample volume. Performance of 11-nor-delta9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH)-d3 and THC-COOH-d9 internal standards were evaluated. The method was linear to 900 ng/mL THC-COOH using THC-COOH-d9 with negligible contribution from the internal standard to very weak samples. Excellent agreement was seen with previous quantitations of human urine samples. More than 1000 human urine samples were analyzed using the method with 300 samples analyzed using an alternate qualifier ion (m/z 622) after some interference was observed with a qualifier ion (m/z 489). The 622 ion did not exhibit any interference even in samples with interfering peaks present in the 489 ion. The method resulted in dramatic reductions in processing time, waste production, and exposure hazards to laboratory personnel.

  3. Analysis of Carbamate Pesticides: Validation of Semi-Volatile Analysis by HPLC-MS/MS by EPA Method MS666

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, J; Koester, C

    The Environmental Protection Agency's (EPA) Region 5 Chicago Regional Laboratory (CRL) developed a method for analysis of aldicarb, bromadiolone, carbofuran, oxamyl, and methomyl in water by high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS), titled Method EPA MS666. This draft standard operating procedure (SOP) was distributed to multiple EPA laboratories and to Lawrence Livermore National Laboratory, which was tasked to serve as a reference laboratory for EPA's Environmental Reference Laboratory Network (ERLN) and to develop and validate analytical procedures. The primary objective of this study was to validate and verify the analytical procedures described in MS666 for analysis of carbamatemore » pesticides in aqueous samples. The gathered data from this validation study will be used to: (1) demonstrate analytical method performance; (2) generate quality control acceptance criteria; and (3) revise the SOP to provide a validated method that would be available for use during a homeland security event. The data contained in this report will be compiled, by EPA CRL, with data generated by other EPA Regional laboratories so that performance metrics of Method EPA MS666 can be determined.« less

  4. Analysis of Ethanolamines: Validation of Semi-Volatile Analysis by HPLC-MS/MS by EPA Method MS888

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, J; Vu, A; Koester, C

    The Environmental Protection Agency's (EPA) Region 5 Chicago Regional Laboratory (CRL) developed a method titled 'Analysis of Diethanolamine, Triethanolamine, n-Methyldiethanolamine, and n-Ethyldiethanolamine in Water by Single Reaction Monitoring Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS): EPA Method MS888'. This draft standard operating procedure (SOP) was distributed to multiple EPA laboratories and to Lawrence Livermore National Laboratory, which was tasked to serve as a reference laboratory for EPA's Environmental Reference Laboratory Network (ERLN) and to develop and validate analytical procedures. The primary objective of this study was to validate and verify the analytical procedures described in 'EPA Method MS888' for analysis of themore » listed ethanolamines in aqueous samples. The gathered data from this validation study will be used to: (1) demonstrate analytical method performance; (2) generate quality control acceptance criteria; and (3) revise the SOP to provide a validated method that would be available for use during a homeland security event. The data contained in this report will be compiled, by EPA CRL, with data generated by other EPA Regional laboratories so that performance metrics of 'EPA Method MS888' can be determined.« less

  5. Analysis of Thiodiglycol: Validation of Semi-Volatile Analysis by HPLC-MS/MS by EPA Method MS777

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, J; Koester, C

    The Environmental Protection Agency's (EPA) Region 5 Chicago Regional Laboratory (CRL) developed a method for the analysis of thiodiglycol, the breakdown product of the sulfur mustard HD, in water by high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS), titled Method EPA MS777 (hereafter referred to as EPA CRL SOP MS777). This draft standard operating procedure (SOP) was distributed to multiple EPA laboratories and to Lawrence Livermore National Laboratory, which was tasked to serve as a reference laboratory for EPA's Environmental Reference Laboratory Network (ERLN) and to develop and validate analytical procedures. The primary objective of this study was to verifymore » the analytical procedures described in MS777 for analysis of thiodiglycol in aqueous samples. The gathered data from this study will be used to: (1) demonstrate analytical method performance; (2) generate quality control acceptance criteria; and (3) revise the SOP to provide a validated method that would be available for use during a homeland security event. The data contained in this report will be compiled, by EPA CRL, with data generated by other EPA Regional laboratories so that performance metrics of Method EPA MS777 can be determined.« less

  6. [The actual possibilities of robotic microscopy in analysis automation and laboratory telemedicine].

    PubMed

    Medovyĭ, V S; Piatnitskiĭ, A M; Sokolinskiĭ, B Z; Balugian, R Sh

    2012-10-01

    The article discusses the possibilities of automation microscopy complexes manufactured by Cellavision and MEKOS to perform the medical analyses of blood films and other biomaterials. The joint work of the complex and physician in the regimen of automatic load stages, screening, sampling and sorting on types with simple morphology, visual sorting of sub-sample with complex morphology provides significant increase of method sensitivity, load decrease and enhancement of physician work conditions. The information technologies, the virtual slides and laboratory telemedicine included permit to develop the representative samples of rare types and pathologies to promote automation methods and medical research targets.

  7. Increasing productivity for the analysis of trace contaminants in food by gas chromatography-mass spectrometry using automated liner exchange, backflushing and heart-cutting.

    PubMed

    David, Frank; Tienpont, Bart; Devos, Christophe; Lerch, Oliver; Sandra, Pat

    2013-10-25

    Laboratories focusing on residue analysis in food are continuously seeking to increase sample throughput by minimizing sample preparation. Generic sample extraction methods such as QuEChERS lack selectivity and consequently extracts are not free from non-volatile material that contaminates the analytical system. Co-extracted matrix constituents interfere with target analytes, even if highly sensitive and selective GC-MS/MS is used. A number of GC approaches are described that can be used to increase laboratory productivity. These techniques include automated inlet liner exchange and column backflushing for preservation of the performance of the analytical system and heart-cutting two-dimensional GC for increasing sensitivity and selectivity. The application of these tools is illustrated by the analysis of pesticides in vegetables and fruits, PCBs in milk powder and coplanar PCBs in fish. It is demonstrated that considerable increase in productivity can be achieved by decreasing instrument down-time, while analytical performance is equal or better compared to conventional trace contaminant analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. 1993-94-95 Kara sea field experiments and analysis. 1995 progress report to onr Arctic Nuclear Waste Assessment Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, G.W.; August, R.A.; King, S.E.

    1996-01-14

    This progress report covers field work and laboratory analysis efforts for quantifying the environmental threat of radioactive waste released in the Arctic seas adjacent to the former Soviet Union and for studying the various transport mechanisms by which this radioactivity could effect populations of the U.S. and other countries bordering the Arctic. We obtained water, sediment, biological samples and oceanographic data from several cruises to the Kara Sea and adjacent waters and conducted detailed laboratory analyses of the samples for radionuclides and physical biological properties. In addition, we obtained water and sediment samples and conducted on site low level radionuclidemore » analysis on the Angara, Yenisey River system which drains a major part of the Siberian industrial heartland and empties into the Kara Sea. We report on radionuclide concentrations, on radionuclide transport and scrubbing by sediments, on adsorption by suspended particles, on transport by surface and benthic boundary layer currents, on the effects of benthic and demersal organisms, on studies of long term monitoring in the Arctic, and on an interlaboratory calibration for radionuclide analysis.« less

  9. Monitoring lipase/esterase activity by stopped flow in a sequential injection analysis system using p-nitrophenyl butyrate.

    PubMed

    Pliego, Jorge; Mateos, Juan Carlos; Rodriguez, Jorge; Valero, Francisco; Baeza, Mireia; Femat, Ricardo; Camacho, Rosa; Sandoval, Georgina; Herrera-López, Enrique J

    2015-01-27

    Lipases and esterases are biocatalysts used at the laboratory and industrial level. To obtain the maximum yield in a bioprocess, it is important to measure key variables, such as enzymatic activity. The conventional method for monitoring hydrolytic activity is to take out a sample from the bioreactor to be analyzed off-line at the laboratory. The disadvantage of this approach is the long time required to recover the information from the process, hindering the possibility to develop control systems. New strategies to monitor lipase/esterase activity are necessary. In this context and in the first approach, we proposed a lab-made sequential injection analysis system to analyze off-line samples from shake flasks. Lipase/esterase activity was determined using p-nitrophenyl butyrate as the substrate. The sequential injection analysis allowed us to measure the hydrolytic activity from a sample without dilution in a linear range from 0.05-1.60 U/mL, with the capability to reach sample dilutions up to 1000 times, a sampling frequency of five samples/h, with a kinetic reaction of 5 min and a relative standard deviation of 8.75%. The results are promising to monitor lipase/esterase activity in real time, in which optimization and control strategies can be designed.

  10. Monitoring Lipase/Esterase Activity by Stopped Flow in a Sequential Injection Analysis System Using p-Nitrophenyl Butyrate

    PubMed Central

    Pliego, Jorge; Mateos, Juan Carlos; Rodriguez, Jorge; Valero, Francisco; Baeza, Mireia; Femat, Ricardo; Camacho, Rosa; Sandoval, Georgina; Herrera-López, Enrique J.

    2015-01-01

    Lipases and esterases are biocatalysts used at the laboratory and industrial level. To obtain the maximum yield in a bioprocess, it is important to measure key variables, such as enzymatic activity. The conventional method for monitoring hydrolytic activity is to take out a sample from the bioreactor to be analyzed off-line at the laboratory. The disadvantage of this approach is the long time required to recover the information from the process, hindering the possibility to develop control systems. New strategies to monitor lipase/esterase activity are necessary. In this context and in the first approach, we proposed a lab-made sequential injection analysis system to analyze off-line samples from shake flasks. Lipase/esterase activity was determined using p-nitrophenyl butyrate as the substrate. The sequential injection analysis allowed us to measure the hydrolytic activity from a sample without dilution in a linear range from 0.05–1.60 U/mL, with the capability to reach sample dilutions up to 1000 times, a sampling frequency of five samples/h, with a kinetic reaction of 5 min and a relative standard deviation of 8.75%. The results are promising to monitor lipase/esterase activity in real time, in which optimization and control strategies can be designed. PMID:25633600

  11. Development of Analytical Protocols For Organics and Isotopes Analysis on the 2009 MARS Science Laboratory.

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.

    2006-01-01

    The Mars Science Laboratory, under development for launch in 2009, is designed explore and quantitatively asses a local region on Mars as a potential habitat for present or past life. Its ambitious goals are to (1) assess the past or present biological potential of the target environment, (2) to characterize the geology and geochemistry at the MSL landing site, and (3) to investigate planetary processes that influence habitability. The planned capabilities of the rover payload will enable a comprehensive search for organic molecules, a determination of definitive mineralogy of sampled rocks and fines, chemical and isotopic analysis of both atmospheric and solid samples, and precision isotope measurements of several volatile elements. A range of contact and remote surface and subsurface survey tools will establish context for these measurements and will facilitate sample identification and selection. The Sample Analysis at Mars (SAM) suite of MSL addresses several of the mission's core measurement goals. It includes a gas chromatograph, a mass spectrometer, and a tunable laser spectrometer. These instruments will be designed to analyze either atmospheric samples or gases extracted from solid phase samples such as rocks and fines. We will describe the range of measurement protocols under development and study by the SAM engineering and science teams for use on the surface of Mars.

  12. Application of the ionscan for the detection of methamphetamine and ephedrine in abondoned clandestine laboratories

    NASA Technical Reports Server (NTRS)

    Brown, Patricia A.; Comparin, Jeffrey H.

    1995-01-01

    Clandestine methamphetamine laboratories are prevalent in southern California. The most common encountered synthesis results in vapor release, and drug residue being left behind. The suspected manufacturing area can be vacuumed and/or methanol wiped and screened immediately at the lab site using the Ionscan. Positive results are confirmed by obtaining vacuum sweep samples with subsequent analysis at the DEA Laboratory. This procedure has been utilized successfully for identifying methamphetamine and ephedrine from clandestine laboratories that have been abandoned and/or remodeled.

  13. Identification of the students' critical thinking skills through biochemistry laboratory work report

    NASA Astrophysics Data System (ADS)

    Anwar, Yunita Arian Sani; Senam, Laksono, Endang W.

    2017-08-01

    This work aims to (1) identify the critical thinking skills of student based on their ability to set up laboratory work reports, and (2) analyze the implementation of biochemistry laboratory work. The method of quantitative content analysis was employed. Quantitative data were in the form of critical thinking skills through the assessment of students' laboratory work reports and questionnaire data. Hoyo rubric was used to measure critical thinking skills with 10 indicators, namely clarity, accuracy, precision, consistency, relevance, evidence, reason, depth, breadth, and fairness. The research sample consisted of 105 students (35 male, 70 female) of Mataram University who took a Biochemistry course and 2 lecturers of Biochemistry course. The results showed students' critical thinking skills through laboratory work reports were still weak. Analysis of the questionnaire showed that three indicators become the biggest problems during the laboratory work implementation, namely, lecturers' involved in laboratory work implementation, the integration of laboratory work implementation of learning in the classroom has not been done optimally and laboratory work implementation as an effort to train critical thinking skills is not optimal yet.

  14. The utility of clinical findings to predict laboratory values in hypertensive disorders of pregnancy.

    PubMed

    So, Jane; Young, Elizabeth; Crnosija, Natalie; Chappelle, Joseph

    2016-04-01

    Preeclampsia is the 2nd leading cause of maternal mortality in the United States. Women with new-onset or worsening hypertension are commonly evaluated for laboratory abnormalities. We aim to investigate whether demographic and/or clinical findings correlate with abnormal laboratory values. A retrospective chart review of women who presented for evaluation of hypertension in pregnancy during 2010. Demographic information, medical history, symptoms, vital signs, and laboratory results were collected. Bivariate analysis was used to investigate associations between predictors and the outcome. Of the 481 women in the sample, 22 were identified as having abnormal laboratory test results (4.6%). Women who reported right upper quadrant pain or tenderness had significantly increased likelihood of having laboratory abnormalities compared to those without the complaint. Only a small percentage of women evaluated were determined to have abnormal laboratory findings, predominantly among women with severe preeclampsia. Right upper quadrant pain or tenderness was positively correlated with laboratory abnormalities. The restriction of laboratory analysis in women with clinical evidence of severe disease may be warranted - a broader study should, however, first be used to confirm our findings.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Wade C.

    Oak Ridge Institute for Science and Education (ORISE) personnel visited the United Nuclear Corporation (UNC) Naval Products site on three separate occasions during the months of October and November 2011. The purpose of these visits was to conduct confirmatory surveys of soils associated with the Argyle Street sewer line that was being removed. Soil samples were collected from six different, judgmentally determined locations in the Argyle Street sewer trench. In addition to the six soil samples collected by ORISE, four replicate soil samples were collected by Cabrera Services, Inc. (CSI) for analysis by the ORISE laboratory. Replicate samples S0010 andmore » S0011 were final status survey (FSS) bias samples; S0012 was an FSS systematic sample; and S0015 was a waste characterization sample. Six soil samples were also collected for background determination. Uranium-235 and uranium-238 concentrations were determined via gamma spectroscopy; the spectra were also reviewed for other identifiable photopeaks. Radionuclide concentrations for these soil samples are provided. In addition to the replicate samples and the samples collected by ORISE, CSI submitted three soil samples for inter-laboratory comparison analyses. One sample was from the background reference area, one was from waste characterization efforts (material inside the sewer line), and one was a FSS sample. The inter-laboratory comparison analyses results between ORISE and CSI were in agreement, except for one sample collected in the reference area. Smear results For Argyle Street sewer pipes are tabulated.« less

  16. Venipuncture versus peripheral catheter: do infusions alter laboratory results?

    PubMed

    Hambleton, Victoria Lerma; Gómez, Ignacio Arribas; Andreu, Francisco A Bernabeu

    2014-01-01

    Our aim was to evaluate the equivalence between analytic parameters from blood samples obtained from a saline solution lock device used for the infusion of drugs and those from venipuncture. In our emergency department, patients bearing a saline solution lock device have blood extracted by venipuncture to avoid possible contamination of the sample. Adults from the emergency department with a saline solution lock device who required laboratory tests were selected as candidates for this cross-sectional observational study. Infusions were halted and flushed with 0.9% saline solution; 2 minutes later, 2 mL of blood was drawn and discarded, and the corresponding laboratory tubes were filled. Immediately after, another sample was withdrawn from the opposite extremity by venipuncture. Both samples were analyzed for hematology, biochemistry, venous blood gases, and coagulation parameters. Concordance was evaluated by use of the intraclass correlation coefficient with its 95% confidence intervals; Bland-Altman plots were used to illustrate the percentage of samples with differences exceeding 2 SDs. The mean differences were also checked to detect those exceeding the laboratory's systematic error. An intraclass correlation coefficient of over 0.9 was achieved for all parameters except for pH, partial pressure of carbon dioxide, and partial pressure of oxygen. Differences of over 2 SDs were found in fewer than 10% of all parameters. None of them exceeded 3 SDs, except for pH and venous blood gases. All parameters showed differences below the laboratory's accepted systematic error except for pH and venous blood gases. Blood samples extracted from a peripheral catheter with or without drug infusions are valid for the analysis of hematology, biochemistry, and coagulation parameters but not for venous blood gases. Nurses should know the benefits of using an existing peripheral catheter for drawing blood samples for laboratory analysis even when infusing commonly used drugs. Emergency nurses should consider collecting blood specimens from a venous access device regardless of the type of drug infusions administered, because it is a safe, simple, and fast technique, which is time efficient when treating patients with limited venous access sites. This procedure reduces patient discomfort and the risk of complications related to venipunctures. Copyright © 2014 Emergency Nurses Association. Published by Mosby, Inc. All rights reserved.

  17. Onco-STS: a web-based laboratory information management system for sample and analysis tracking in oncogenomic experiments.

    PubMed

    Gavrielides, Mike; Furney, Simon J; Yates, Tim; Miller, Crispin J; Marais, Richard

    2014-01-01

    Whole genomes, whole exomes and transcriptomes of tumour samples are sequenced routinely to identify the drivers of cancer. The systematic sequencing and analysis of tumour samples, as well other oncogenomic experiments, necessitates the tracking of relevant sample information throughout the investigative process. These meta-data of the sequencing and analysis procedures include information about the samples and projects as well as the sequencing centres, platforms, data locations, results locations, alignments, analysis specifications and further information relevant to the experiments. The current work presents a sample tracking system for oncogenomic studies (Onco-STS) to store these data and make them easily accessible to the researchers who work with the samples. The system is a web application, which includes a database and a front-end web page that allows the remote access, submission and updating of the sample data in the database. The web application development programming framework Grails was used for the development and implementation of the system. The resulting Onco-STS solution is efficient, secure and easy to use and is intended to replace the manual data handling of text records. Onco-STS allows simultaneous remote access to the system making collaboration among researchers more effective. The system stores both information on the samples in oncogenomic studies and details of the analyses conducted on the resulting data. Onco-STS is based on open-source software, is easy to develop and can be modified according to a research group's needs. Hence it is suitable for laboratories that do not require a commercial system.

  18. Solvent Hold Tank Sample Results for MCU-15-129-130-131: January 2015 Monthly Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.; Taylor-Pashow, K. M. L.

    2015-02-19

    SRNL received one set of SHT samples (MCU-15-129, MCU-15-130, and MCU-15-131), pulled on 01/25/2015 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-129-130-131 indicated low concentrations of the suppressor (TiDG), of the extractant (MaxCalix), and of the modifier (CS-7SB) in the solvent relative to their nominal values. This analysis confirms a downward trend of these components. No impurities were found in this solvent. The laboratory will continue to monitor the quality of the solvent in particular for any new impurity or degradation of the solvent components.

  19. Analytical methods of the U.S. Geological Survey's New York District Water-Analysis Laboratory

    USGS Publications Warehouse

    Lawrence, Gregory B.; Lincoln, Tricia A.; Horan-Ross, Debra A.; Olson, Mark L.; Waldron, Laura A.

    1995-01-01

    The New York District of the U.S. Geological Survey (USGS) in Troy, N.Y., operates a water-analysis laboratory for USGS watershed-research projects in the Northeast that require analyses of precipitation and of dilute surface water and soil water for major ions; it also provides analyses of certain chemical constituents in soils and soil gas samples.This report presents the methods for chemical analyses of water samples, soil-water samples, and soil-gas samples collected in wateshed-research projects. The introduction describes the general materials and technicques for each method and explains the USGS quality-assurance program and data-management procedures; it also explains the use of cross reference to the three most commonly used methods manuals for analysis of dilute waters. The body of the report describes the analytical procedures for (1) solution analysis, (2) soil analysis, and (3) soil-gas analysis. The methods are presented in alphabetical order by constituent. The method for each constituent is preceded by (1) reference codes for pertinent sections of the three manuals mentioned above, (2) a list of the method's applications, and (3) a summary of the procedure. The methods section for each constitutent contains the following categories: instrumentation and equipment, sample preservation and storage, reagents and standards, analytical procedures, quality control, maintenance, interferences, safety considerations, and references. Sufficient information is presented for each method to allow the resulting data to be appropriately used in environmental investigations.

  20. Laboratory determination of effective stress laws for deformation and permeability of chalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teufel, L W; Warpinski, N R

    1990-01-01

    Laboratory deformation and permeability measurements have been made on chalk samples from Ekofisk area fields as a function of confining stress and pore pressure to determine the effective stress laws for chalk. An understanding of the effective stress law is essential to obtain correct reservoir-property data from core analysis and is critical for reservoir management studies and reservoir compaction models. A powerful statistical technique known as the response surface method has been used to analyze our laboratory data determine the form of the effective stress law for deformation and permeability. Experiments were conducted on chalk samples that had a rangemore » of porosities from 15% to 36%, because porosity is the dominant intrinsic property that effects deformation and permeability behavior of chalk. Deformation of a 36% porosity chalk was highly nonlinear, but the effective stress law was linear, with {alpha} equal to about unity. Lower-porosity samples showed linear strain behavior and a linear effective stress law with {alpha} as low as 0.74. Analysis of the effective stress law for permeability is presented only for the lowest porosity chalk sample because changes in permeability in the higher-porosity chalk samples due to increasing confining stress or pore pressure were not were large enough, to deduce meaningful effective stress relationships. 15 refs., 8 figs., 2 tabs.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kautsky, Mark; Nguyen, Jason; Darr, Paul S.

    The Long-Term Surveillance and Maintenance Plan (LTSMP) for Amchitka details how the U.S. Department of Energy (DOE) intends to fulfill its mission to maintain protection of human health and the environment at and around the sites on Amchitka Island. The LTSMP calls for monitoring to be performed every 5 years, at least in the initial phase of the project. The purpose of the monitoring is to develop a baseline of activity concentrations for selected radionuclides in biota, water, and soil, both on Amchitka and at the reference location on Adak Island, approximately 322 km (200 miles) northeast of Amchitka. Datamore » compiled by the Consortium for Risk Evaluation with Stakeholder Participation (CRESP, 2006) are being included as part of the baseline data set. The specific biological, water, and sediment samples collected during the 2011 sampling event were developed through close coordination with the primary stakeholders, including the Alaska Department of Environmental Conservation, the Aleutian Pribilof Island Association, and the U.S. Fish and Wildlife Service (USFWS). Amchitka is managed by the USFWS as part of the Alaska Maritime National Wildlife Refuge. Two plans were developed to address specific needs of the biological- and the terrestrial-monitoring programs. Results from these monitoring programs will help determine whether the environment is being impacted by radionuclide migration and uptake, and if subsistence and commercial-catch seafood is safe for human consumption. The RESRAD-BIOTA code is being used to evaluate ecological health relative to the radionuclide levels determined from this sampling event. The samples were sent to three laboratories for analysis. With the exception of the seawater samples, most of the samples were sent to the Center for Accelerator Mass Spectrometry at the Lawrence Livermore National Laboratory. A smaller subset of rock-weed samples, Star reindeer lichen samples, and soil samples collected from beneath the lichen were sent to UAF for cesium-137 analysis. Marine sediment samples were also collected and sent to UAF for testing. The seawater samples were sent to the University of Miami Tritium Laboratory for enriched tritium analysis. Results from the seawater samples for tritium were received in September 2011. Results from the 2011 sampling are expected to be available on the LM web site in 2012. (authors)« less

  2. Solvent hold tank sample results for MCU-16-1247-1248-1249: August 2016 monthly sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.; Jones, D. H.

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-1247-1248-1249), pulled on 08/22/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-1247-1248-1249 indicated the Isopar™L concentration is above its nominal level (101%). The extractant (MaxCalix) and the modifier (CS-7SB) are 7% and 9 % below their nominal concentrations. The suppressor (TiDG) is 63% below its nominal concentration. A summary of the concentration of the relevant solvent components is shown below.

  3. RAPID ON-SITE METHODS OF CHEMICAL ANALYSIS

    EPA Science Inventory

    The analysis of potentially hazardous air, water and soil samples collected and shipped to service laboratories off-site is time consuming and expensive. This Chapter addresses the practical alternative of performing the requisite analytical services on-site. The most significant...

  4. Sampling surface and subsurface particle-size distributions in wadable gravel-and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring

    Treesearch

    Kristin Bunte; Steven R. Abt

    2001-01-01

    This document provides guidance for sampling surface and subsurface sediment from wadable gravel-and cobble-bed streams. After a short introduction to streams types and classifications in gravel-bed rivers, the document explains the field and laboratory measurement of particle sizes and the statistical analysis of particle-size distributions. Analysis of particle...

  5. 76 FR 42130 - Agency Information Collection Activities: BioWatch Filter Holder Log

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... DEPARTMENT OF HOMELAND SECURITY Agency Information Collection Activities: BioWatch Filter Holder...) assigned responsibility for installing and removing filters from aerosol collection devices and transportation to local laboratories for sample analysis. A standard filter log form is completed for each sample...

  6. 76 FR 24504 - Agency Information Collection Activities: BioWatch Filter Holder Log

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... DEPARTMENT OF HOMELAND SECURITY Agency Information Collection Activities: BioWatch Filter Holder...) assigned responsibility for installing and removing filters from aerosol collection devices and transportation to local laboratories for sample analysis. A standard filter log form is completed for each sample...

  7. Search for Chemical Biomarkers on Mars Using the Sample Analysis at Mars Instrument Suite on the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Conrad, P.; Dworkin, J. P.; Eigenbrode, J.; Mahaffy, P. R.

    2011-01-01

    One key goal for the future exploration of Mars is the search for chemical biomarkers including complex organic compounds important in life on Earth. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) will provide the most sensitive measurements of the organic composition of rocks and regolith samples ever carried out in situ on Mars. SAM consists of a gas chromatograph (GC), quadrupole mass spectrometer (QMS), and tunable laser spectrometer to measure volatiles in the atmosphere and released from rock powders heated up to 1000 C. The measurement of organics in solid samples will be accomplished by three experiments: (1) pyrolysis QMS to identify alkane fragments and simple aromatic compounds; pyrolysis GCMS to separate and identify complex mixtures of larger hydrocarbons; and (3) chemical derivatization and GCMS extract less volatile compounds including amino and carboxylic acids that are not detectable by the other two experiments.

  8. Proinsulin is stable at room temperature for 24 hours in EDTA: A clinical laboratory analysis (adAPT 3)

    PubMed Central

    Davidson, Jane; McDonald, Timothy; Sutherland, Calum; Mostazir, Mohammod; VanAalten, Lidy

    2017-01-01

    Aims Reference laboratories advise immediate separation and freezing of samples for the assay of proinsulin, which limit its practicability for smaller centres. Following the demonstration that insulin and C-peptide are stable in EDTA at room temperature for at least 24hours, we undertook simple stability studies to establish whether the same might apply to proinsulin. Methods Venous blood samples were drawn from six adult women, some fasting, some not, aliquoted and assayed immediately and after storage at either 4°C or ambient temperature for periods from 2h to 24h. Results There was no significant variation or difference with storage time or storage condition in either individual or group analysis. Conclusion Proinsulin appears to be stable at room temperature in EDTA for at least 24h. Immediate separation and storage on ice of samples for proinsulin assay is not necessary, which will simplify sample transport, particularly for multicentre trials. PMID:28426711

  9. Sediment laboratory quality-assurance project: studies of methods and materials

    USGS Publications Warehouse

    Gordon, J.D.; Newland, C.A.; Gray, J.R.

    2001-01-01

    In August 1996 the U.S. Geological Survey initiated the Sediment Laboratory Quality-Assurance project. The Sediment Laboratory Quality Assurance project is part of the National Sediment Laboratory Quality-Assurance program. This paper addresses the fmdings of the sand/fme separation analysis completed for the single-blind reference sediment-sample project and differences in reported results between two different analytical procedures. From the results it is evident that an incomplete separation of fme- and sand-size material commonly occurs resulting in the classification of some of the fme-size material as sand-size material. Electron microscopy analysis supported the hypothesis that the negative bias for fme-size material and the positive bias for sand-size material is largely due to aggregation of some of the fine-size material into sand-size particles and adherence of fine-size material to the sand-size grains. Electron microscopy analysis showed that preserved river water, which was low in dissolved solids, specific conductance, and neutral pH, showed less aggregation and adhesion than preserved river water that was higher in dissolved solids and specific conductance with a basic pH. Bacteria were also found growing in the matrix, which may enhance fme-size material aggregation through their adhesive properties. Differences between sediment-analysis methods were also investigated as pan of this study. Suspended-sediment concentration results obtained from one participating laboratory that used a total-suspended solids (TSS) method had greater variability and larger negative biases than results obtained when this laboratory used a suspended-sediment concentration method. When TSS methods were used to analyze the reference samples, the median suspended sediment concentration percent difference was -18.04 percent. When the laboratory used a suspended-sediment concentration method, the median suspended-sediment concentration percent difference was -2.74 percent. The percent difference was calculated as follows: Percent difference = (( reported mass - known mass)/known mass ) X 100.

  10. 1QCY17 Saltstone waste characterization analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, F. C.

    2017-07-25

    In the first quarter of calendar year 2017, a salt solution sample was collected from Tank 50 on January 16, 2017 in order to meet South Carolina (SC) Regulation 61-107.19 Part I C, “Solid Waste Management: Solid Waste Landfills and Structural Fill – General Requirements” and the Saltstone Disposal Facility Class 3 Landfill Permit. The Savannah River National Laboratory (SRNL) was requested to prepare and ship saltstone samples to a United States Environmental Protection Agency (EPA) certified laboratory to perform the Toxicity Characteristic Leaching Procedure (TCLP) and subsequent characterization.

  11. Evaluation of a New Spraying Machine for Barrier Treatment and Penetration of Bifenthrin on Vegetation Against Mosquitoes

    DTIC Science & Technology

    2015-03-01

    one at the University of Florida Veterinary Entomology Laboratory (UF- VEL). Leaf samples for both laboratories were collected together. All samples...Mulla’s formula (Mulla et al. 1971): % reduction 5 100 2 (C1/T1 3 T2/C2) 3 100. The C1 variable was the mean number of mosquitoes from the control site...statistical analysis was performed using JMP 11.1 software (SAS Insti- tute Inc., Cary, NC). Treatment mortality was corrected with Abbott’s formula

  12. Analysis of on-line clinical laboratory manuals and practical recommendations.

    PubMed

    Beckwith, Bruce; Schwartz, Robert; Pantanowitz, Liron

    2004-04-01

    On-line clinical laboratory manuals are a valuable resource for medical professionals. To our knowledge, no recommendations currently exist for their content or design. To analyze publicly accessible on-line clinical laboratory manuals and to propose guidelines for their content. We conducted an Internet search for clinical laboratory manuals written in English with individual test listings. Four individual test listings in each manual were evaluated for 16 data elements, including sample requirements, test methodology, units of measure, reference range, and critical values. Web sites were also evaluated for supplementary information and search functions. We identified 48 on-line laboratory manuals, including 24 academic or community hospital laboratories and 24 commercial or reference laboratories. All manuals had search engines and/or test indices. No single manual contained all 16 data elements evaluated. An average of 8.9 (56%) elements were present (range, 4-14). Basic sample requirements (specimen and volume needed) were the elements most commonly present (98% of manuals). The frequency of the remaining data elements varied from 10% to 90%. On-line clinical laboratory manuals originate from both hospital and commercial laboratories. While most manuals were user-friendly and contained adequate specimen-collection information, other important elements, such as reference ranges, were frequently absent. To ensure that clinical laboratory manuals are of maximal utility, we propose the following 13 data elements be included in individual test listings: test name, synonyms, test description, test methodology, sample requirements, volume requirements, collection guidelines, transport guidelines, units of measure, reference range, critical values, test availability, and date of latest revision.

  13. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology.

    PubMed

    Clark, Andrew E; Kaleta, Erin J; Arora, Amit; Wolk, Donna M

    2013-07-01

    Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the "nuts and bolts" of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care.

  14. Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: a Fundamental Shift in the Routine Practice of Clinical Microbiology

    PubMed Central

    Clark, Andrew E.; Kaleta, Erin J.; Arora, Amit

    2013-01-01

    SUMMARY Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the “nuts and bolts” of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care. PMID:23824373

  15. Characteristics of coking coal burnout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, M.; Bailey, J.G.

    An attempt was made to clarify the characteristics of coking coal burnout by the morphological analysis of char and fly ash samples. Laboratory-scale combustion testing, simulating an ignition process, was carried out for three kinds of coal (two coking coals and one non-coking coal for reference), and sampled chars were analyzed for size, shape and type by image analysis. The full combustion process was examined in industrial-scale combustion testing for the same kinds of coal. Char sampled at the burner outlet and fly ash at the furnace exit were also analyzed. The difference between the char type, swelling properties, agglomeration,more » anisotropy and carbon burnout were compared at laboratory scale and at industrial scale. As a result, it was found that coking coals produced chars with relatively thicker walls, which mainly impeded char burnout, especially for low volatile coals.« less

  16. Automated Clean Chemistry for Bulk Analysis of Environmental Swipe Samples - FY17 Year End Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ticknor, Brian W.; Metzger, Shalina C.; McBay, Eddy H.

    Sample preparation methods for mass spectrometry are being automated using commercial-off-the-shelf (COTS) equipment to shorten lengthy and costly manual chemical purification procedures. This development addresses a serious need in the International Atomic Energy Agency’s Network of Analytical Laboratories (IAEA NWAL) to increase efficiency in the Bulk Analysis of Environmental Samples for Safeguards program with a method that allows unattended, overnight operation. In collaboration with Elemental Scientific Inc., the prepFAST-MC2 was designed based on COTS equipment. It was modified for uranium/plutonium separations using renewable columns packed with Eichrom TEVA and UTEVA resins, with a chemical separation method based on the Oakmore » Ridge National Laboratory (ORNL) NWAL chemical procedure. The newly designed prepFAST-SR has had several upgrades compared with the original prepFAST-MC2. Both systems are currently installed in the Ultra-Trace Forensics Science Center at ORNL.« less

  17. Analytical capabilities and services of Lawrence Livermore Laboratory's General Chemistry Division. [Methods available at Lawrence Livermore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutmacher, R.; Crawford, R.

    This comprehensive guide to the analytical capabilities of Lawrence Livermore Laboratory's General Chemistry Division describes each analytical method in terms of its principle, field of application, and qualitative and quantitative uses. Also described are the state and quantity of sample required for analysis, processing time, available instrumentation, and responsible personnel.

  18. Analysis of environmental contamination resulting from catastrophic incidents: part 1. Building and sustaining capacity in laboratory networks.

    PubMed

    Magnuson, Matthew; Ernst, Hiba; Griggs, John; Fitz-James, Schatzi; Mapp, Latisha; Mullins, Marissa; Nichols, Tonya; Shah, Sanjiv; Smith, Terry; Hedrick, Elizabeth

    2014-11-01

    Catastrophic incidents, such as natural disasters, terrorist attacks, and industrial accidents, can occur suddenly and have high impact. However, they often occur at such a low frequency and in unpredictable locations that planning for the management of the consequences of a catastrophe can be difficult. For those catastrophes that result in the release of contaminants, the ability to analyze environmental samples is critical and contributes to the resilience of affected communities. Analyses of environmental samples are needed to make appropriate decisions about the course of action to restore the area affected by the contamination. Environmental samples range from soil, water, and air to vegetation, building materials, and debris. In addition, processes used to decontaminate any of these matrices may also generate wastewater and other materials that require analyses to determine the best course for proper disposal. This paper summarizes activities and programs the United States Environmental Protection Agency (USEPA) has implemented to ensure capability and capacity for the analysis of contaminated environmental samples following catastrophic incidents. USEPA's focus has been on building capability for a wide variety of contaminant classes and on ensuring national laboratory capacity for potential surges in the numbers of samples that could quickly exhaust the resources of local communities. USEPA's efforts have been designed to ensure a strong and resilient laboratory infrastructure in the United States to support communities as they respond to contamination incidents of any magnitude. The efforts include not only addressing technical issues related to the best-available methods for chemical, biological, and radiological contaminants, but also include addressing the challenges of coordination and administration of an efficient and effective response. Laboratory networks designed for responding to large scale contamination incidents can be sustained by applying their resources during incidents of lesser significance, for special projects, and for routine surveillance and monitoring as part of ongoing activities of the environmental laboratory community. Published by Elsevier Ltd.

  19. ERLN Technical Support for Labs

    EPA Pesticide Factsheets

    The Environmental Response Laboratory Network provides policies and guidance on lab and data requirements, Standardized Analytical Methods, and technical support for water and radiological sampling and analysis

  20. Surface Analysis of Nerve Agent Degradation Products by ...

    EPA Pesticide Factsheets

    Report This sampling and analytical procedure was developed and applied by a single laboratory to investigate nerve agent degradation products, which may persist at a contaminated site, via surface wiping followed by analytical characterization. The performance data presented demonstrate the fitness-for-purpose regarding surface analysis in that single laboratory. Surfaces (laminate, glass, galvanized steel, vinyl tile, painted drywall and treated wood) were wiped with cotton gauze wipes, sonicated, extracted with distilled water, and filtered. Samples were analyzed with direct injection electrospray ionization liquid chromatography tandem mass spectrometry (ESI-LC/MS/MS) without derivatization. Detection limit data were generated for all analytes of interest on a laminate surface. Accuracy and precision data were generated from each surface fortified with these analytes.

  1. The Investigation of Perchlorate/Iron Phase Mixtures as A Possible Source of Oxygen Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Heil, E.; Morris, R. V.; Archer, P. D.; Ming, D. W.; Niles, P. B.; Eigenbrode, J. L.; Franz, H.; Freissinet C.; Glavin, D. P.; hide

    2015-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detected O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumberland (CB) drill hole materials in Gale Crater. Chlorinated hydrocarbons have also been detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS). These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander's Wet Chemistry Laboratory (WCL) suggesting perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of individual per-chlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander's Wet Chemistry Laboratory suggested perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of pure perchlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. Analog laboratory analysis of iron mineralogy detected in Gale materials that was physically mixed with Ca- and Mg-perchlorate has been shown to catalyze lower O2 release temperatures and approach some SAM O2 release data. Instead of physical mixtures used in previous work, the work presented here utilized perchlorate solutions added to Fe phases. This technique allowed for perchlorate to come in closer contact with the Fe-phase and may more closely mimic Mars conditions where humidity can increase enough to cause deliquescence of the highly hygroscopic perchlorate phases. The objective of this work is to: 1) Utilize a laboratory SAM analog instrument to evaluate the O2 release temperatures from Mg- and Ca-perchlorates solutions applied to Fephases detetected in Gale Crate; and 2) Determine if perchlorate solutions can provide improved matches with the SAM O2 temperature release profiles.

  2. Workers’ Exposure to Nano-Objects with Different Dimensionalities in R&D Laboratories: Measurement Strategy and Field Studies

    PubMed Central

    Boccuni, Fabio; Ferrante, Riccardo; Tombolini, Francesca; Lega, Daniela; Antonini, Alessandra; Alvino, Antonello; Pingue, Pasqualantonio; Beltram, Fabio; Sorba, Lucia; Piazza, Vincenzo; Gemmi, Mauro; Porcari, Andrea; Iavicoli, Sergio

    2018-01-01

    With the increasing interest in the potential benefits of nanotechnologies, concern is still growing that they may present emerging risks for workers. Various strategies have been developed to assess the exposure to nano-objects and their agglomerates and aggregates (NOAA) in the workplace, integrating different aerosol measurement instruments and taking into account multiple parameters that may influence NOAA toxicity. The present study proposes a multi-metric approach for measuring and sampling NOAA in the workplace, applied to three case studies in laboratories each dedicated to materials with different shapes and dimensionalities: graphene, nanowires, and nanoparticles. The study is part of a larger project with the aim of improving risk management tools in nanomaterials research laboratories. The harmonized methodology proposed by the Organization for Economic Cooperation and Development (OECD) has been applied, including information gathering about materials and processes, measurements with easy-to-use and hand-held real-time devices, air sampling with personal samplers, and off-line analysis using scanning electron microscopy. Significant values beyond which an emission can be attributed to the NOAA production process were identified by comparison of the particle number concentration (PNC) time series and the corresponding background levels in the three laboratories. We explored the relations between background PNC and microclimatic parameters. Morphological and elemental analysis of sampled filters was done to identify possible emission sources of NOAA during the production processes: rare particles, spherical, with average diameter similar to the produced NOAA were identified in the nanoparticles laboratory, so further investigation is recommended to confirm the potential for worker exposure. In conclusion, the information obtained should provide a valuable basis for improving risk management strategies in the laboratory at work. PMID:29364852

  3. Workers' Exposure to Nano-Objects with Different Dimensionalities in R&D Laboratories: Measurement Strategy and Field Studies.

    PubMed

    Boccuni, Fabio; Ferrante, Riccardo; Tombolini, Francesca; Lega, Daniela; Antonini, Alessandra; Alvino, Antonello; Pingue, Pasqualantonio; Beltram, Fabio; Sorba, Lucia; Piazza, Vincenzo; Gemmi, Mauro; Porcari, Andrea; Iavicoli, Sergio

    2018-01-24

    With the increasing interest in the potential benefits of nanotechnologies, concern is still growing that they may present emerging risks for workers. Various strategies have been developed to assess the exposure to nano-objects and their agglomerates and aggregates (NOAA) in the workplace, integrating different aerosol measurement instruments and taking into account multiple parameters that may influence NOAA toxicity. The present study proposes a multi-metric approach for measuring and sampling NOAA in the workplace, applied to three case studies in laboratories each dedicated to materials with different shapes and dimensionalities: graphene, nanowires, and nanoparticles. The study is part of a larger project with the aim of improving risk management tools in nanomaterials research laboratories. The harmonized methodology proposed by the Organization for Economic Cooperation and Development (OECD) has been applied, including information gathering about materials and processes, measurements with easy-to-use and hand-held real-time devices, air sampling with personal samplers, and off-line analysis using scanning electron microscopy. Significant values beyond which an emission can be attributed to the NOAA production process were identified by comparison of the particle number concentration (PNC) time series and the corresponding background levels in the three laboratories. We explored the relations between background PNC and microclimatic parameters. Morphological and elemental analysis of sampled filters was done to identify possible emission sources of NOAA during the production processes: rare particles, spherical, with average diameter similar to the produced NOAA were identified in the nanoparticles laboratory, so further investigation is recommended to confirm the potential for worker exposure. In conclusion, the information obtained should provide a valuable basis for improving risk management strategies in the laboratory at work.

  4. Modeling Canadian Quality Control Test Program for Steroid Hormone Receptors in Breast Cancer: Diagnostic Accuracy Study.

    PubMed

    Pérez, Teresa; Makrestsov, Nikita; Garatt, John; Torlakovic, Emina; Gilks, C Blake; Mallett, Susan

    The Canadian Immunohistochemistry Quality Control program monitors clinical laboratory performance for estrogen receptor and progesterone receptor tests used in breast cancer treatment management in Canada. Current methods assess sensitivity and specificity at each time point, compared with a reference standard. We investigate alternative performance analysis methods to enhance the quality assessment. We used 3 methods of analysis: meta-analysis of sensitivity and specificity of each laboratory across all time points; sensitivity and specificity at each time point for each laboratory; and fitting models for repeated measurements to examine differences between laboratories adjusted by test and time point. Results show 88 laboratories participated in quality control at up to 13 time points using typically 37 to 54 histology samples. In meta-analysis across all time points no laboratories have sensitivity or specificity below 80%. Current methods, presenting sensitivity and specificity separately for each run, result in wide 95% confidence intervals, typically spanning 15% to 30%. Models of a single diagnostic outcome demonstrated that 82% to 100% of laboratories had no difference to reference standard for estrogen receptor and 75% to 100% for progesterone receptor, with the exception of 1 progesterone receptor run. Laboratories with significant differences to reference standard identified with Generalized Estimating Equation modeling also have reduced performance by meta-analysis across all time points. The Canadian Immunohistochemistry Quality Control program has a good design, and with this modeling approach has sufficient precision to measure performance at each time point and allow laboratories with a significantly lower performance to be targeted for advice.

  5. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust.

    PubMed

    Barone, T L; Patts, J R; Janisko, S J; Colinet, J F; Patts, L D; Beck, T W; Mischler, S E

    2016-01-01

    Airborne coal dust mass measurements in underground bituminous coal mines can be challenged by the presence of airborne limestone dust, which is an incombustible dust applied to prevent the propagation of dust explosions. To accurately measure the coal portion of this mixed airborne dust, the National Institute for Occupational Safety and Health (NIOSH) developed a sampling and analysis protocol that used a stainless steel cassette adapted with an isokinetic inlet and the low temperature ashing (LTA) analytical method. The Mine Safety and Health Administration (MSHA) routinely utilizes this LTA method to quantify the incombustible content of bulk dust samples collected from the roof, floor, and ribs of mining entries. The use of the stainless steel cassette with isokinetic inlet allowed NIOSH to adopt the LTA method for the analysis of airborne dust samples. Mixtures of known coal and limestone dust masses were prepared in the laboratory, loaded into the stainless steel cassettes, and analyzed to assess the accuracy of this method. Coal dust mass measurements differed from predicted values by an average of 0.5%, 0.2%, and 0.1% for samples containing 20%, 91%, and 95% limestone dust, respectively. The ability of this method to accurately quantify the laboratory samples confirmed the validity of this method and allowed NIOSH to successfully measure the coal fraction of airborne dust samples collected in an underground coal mine.

  6. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust

    PubMed Central

    Barone, T. L.; Patts, J. R.; Janisko, S. J.; Colinet, J. F.; Patts, L. D.; Beck, T. W.; Mischler, S. E.

    2016-01-01

    Airborne coal dust mass measurements in underground bituminous coal mines can be challenged by the presence of airborne limestone dust, which is an incombustible dust applied to prevent the propagation of dust explosions. To accurately measure the coal portion of this mixed airborne dust, the National Institute for Occupational Safety and Health (NIOSH) developed a sampling and analysis protocol that used a stainless steel cassette adapted with an isokinetic inlet and the low temperature ashing (LTA) analytical method. The Mine Safety and Health Administration (MSHA) routinely utilizes this LTA method to quantify the incombustible content of bulk dust samples collected from the roof, floor, and ribs of mining entries. The use of the stainless steel cassette with isokinetic inlet allowed NIOSH to adopt the LTA method for the analysis of airborne dust samples. Mixtures of known coal and limestone dust masses were prepared in the laboratory, loaded into the stainless steel cassettes, and analyzed to assess the accuracy of this method. Coal dust mass measurements differed from predicted values by an average of 0.5%, 0.2%, and 0.1% for samples containing 20%, 91%, and 95% limestone dust, respectively. The ability of this method to accurately quantify the laboratory samples confirmed the validity of this method and allowed NIOSH to successfully measure the coal fraction of airborne dust samples collected in an underground coal mine. PMID:26618374

  7. Performance evaluation of the Abbott CELL-DYN Emerald for use as a bench-top analyzer in a research setting.

    PubMed

    Khoo, T-L; Xiros, N; Guan, F; Orellana, D; Holst, J; Joshua, D E; Rasko, J E J

    2013-08-01

    The CELL-DYN Emerald is a compact bench-top hematology analyzer that can be used for a three-part white cell differential analysis. To determine its utility for analysis of human and mouse samples, we evaluated this machine against the larger CELL-DYN Sapphire and Sysmex XT2000iV hematology analyzers. 120 human (normal and abnormal) and 30 mouse (normal and abnormal) samples were analyzed on both the CELL-DYN Emerald and CELL-DYN Sapphire or Sysmex XT2000iV analyzers. For mouse samples, the CELL-DYN Emerald analyzer required manual recalibration based on the histogram populations. Analysis of the CELL-DYN Emerald showed excellent precision, within accepted ranges (white cell count CV% = 2.09%; hemoglobin CV% = 1.68%; platelets CV% = 4.13%). Linearity was excellent (R² ≥ 0.99), carryover was minimal (<1%), and overall interinstrument agreement was acceptable for both human and mouse samples. Comparison between the CELL-DYN Emerald and Sapphire analyzers for human samples or Sysmex XT2000iV analyzer for mouse samples showed excellent correlation for all parameters. The CELL-DYN Emerald was generally comparable to the larger reference analyzer for both human and mouse samples. It would be suitable for use in satellite research laboratories or as a backup system in larger laboratories. © 2012 John Wiley & Sons Ltd.

  8. Evolved Gas Analysis of Mars Analog Samples from the Arctic Mars Analog Svalbard Expedition: Implications for Analyses by the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    McAdam, A.; Stern, J. C.; Mahaffy, P. R.; Blake, D. F.; Bristow, T.; Steele, A.; Amundsen, H. E. F.

    2012-01-01

    The 2011 Arctic Mars Analog Svalbard Expedition (AMASE) investigated several geologic settings on Svalbard, using methodologies and techniques being developed or considered for future Mars missions, such as the Mars Science Laboratory (MSL). The Sample Analysis at Mars (SAM) instrument suite on MSL consists of a quadrupole mass spectrometer (QMS), a gas chromatograph (GC), and a tunable laser spectrometer (TLS), which analyze gases created by pyrolysis of samples. During AMASE, a Hiden Evolved Gas Analysis-Mass Spectrometer (EGA-MS) system represented the EGA-QMS capability of SAM. Another MSL instrument, CheMin, will use x-ray diffraction (XRD) and x-ray fluorescence (XRF) to perform quantitative mineralogical characterization of samples. Field-portable versions of CheMin were used during AMASE. AMASE 2011 sites spanned a range of environments relevant to understanding martian surface materials, processes and habitability. They included the basaltic Sverrefjell volcano, which hosts carbonate globules, cements and coatings, carbonate and sulfate units at Colletth0gda, Devonian sandstone redbeds in Bockfjorden, altered basaltic lava delta deposits at Mt. Scott Keltie, and altered dolerites and volcanics at Botniahalvoya. Here we focus on SAM-like EGA-MS of a subset of the samples, with mineralogy comparisons to CheMin team results. The results allow insight into sample organic content as well as some constraints on sample mineralogy.

  9. Hydrogen recombiner catalyst test supporting data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britton, M.D.

    1995-01-19

    This is a data package supporting the Hydrogen Recombiner Catalyst Performance and Carbon Monoxide Sorption Capacity Test Report, WHC-SD-WM-TRP-211, Rev 0. This report contains 10 appendices which consist of the following: Mass spectrometer analysis reports: HRC samples 93-001 through 93-157; Gas spectrometry analysis reports: HRC samples 93-141 through 93-658; Mass spectrometer procedure PNL-MA-299 ALO-284; Alternate analytical method for ammonia and water vapor; Sample log sheets; Job Safety analysis; Certificate of mixture analysis for feed gases; Flow controller calibration check; Westinghouse Standards Laboratory report on Bois flow calibrator; and Sorption capacity test data, tables, and graphs.

  10. Measuring the efficiency of large pharmaceutical companies: an industry analysis.

    PubMed

    Gascón, Fernando; Lozano, Jesús; Ponte, Borja; de la Fuente, David

    2017-06-01

    This paper evaluates the relative efficiency of a sample of 37 large pharmaceutical laboratories in the period 2008-2013 using a data envelopment analysis (DEA) approach. We describe in detail the procedure followed to select and construct relevant inputs and outputs that characterize the production and innovation activity of these pharmaceutical firms. Models are estimated with financial information from Datastream, including R&D investment, and the number of new drugs authorized by the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) considering the time effect. The relative performances of these firms-taking into consideration the strategic importance of R&D-suggest that the pharmaceutical industry is a highly competitive sector given that there are many laboratories at the efficient frontier and many inefficient laboratories close to this border. Additionally, we use data from S&P Capital IQ to analyze 2071 financial transactions announced by our sample of laboratories as an alternative way to gain access to new drugs, and we link these transactions with R&D investment and DEA efficiency. We find that efficient laboratories make on average more financial transactions, and the relative size of each transaction is larger. However, pharmaceutical companies that simultaneously are more efficient and invest more internally in R&D announce smaller transactions relative to total assets.

  11. Laboratory Evolved Gas Analyses of Si-rich Amorphous Materials: Implications for Analyses of Si-rich Amorphous Material in Gale Crater by the Mars Science Laboratory Sample Analysis at Mars Instrument

    NASA Astrophysics Data System (ADS)

    McAdam, A.; Knudson, C. A.; Sutter, B.; Andrejkovicova, S. C.; Archer, P. D., Jr.; Franz, H. B.; Eigenbrode, J. L.; Morris, R. V.; Ming, D. W.; Sun, V. Z.; Milliken, R.; Wilhelm, M. B.; Mahaffy, P. R.; Navarro-Gonzalez, R.

    2016-12-01

    The Chemistry and Mineralogy (CheMin) instrument onboard the Mars Science Laboratory (MSL) rover detected Si-rich amorphous or poorly ordered materials in several samples from Murray Formation mudstones and Stimson Formation sandstones. High-SiO2 amorphous materials such as opal-A or rhyolitic glass are candidate phases, but CheMin data cannot be used to distinguish between these possibilities. In the Buckskin (BS) sample from the upper Murray Formation, and the Big Sky (BY) and Greenhorn (GH) samples from the Stimson Formation, evolved gas analyses by the Sample Analysis at Mars (SAM) instrument showed very broad H2O evolutions during sample heating at temperatures >450-500°C, which had not been observed from previous samples. BS also had a significant broad evolution <450-500°C. We have undertaken a laboratory study targeted at understanding if the data from SAM analyses can be used to place constraints on the nature of the amorphous phases. SAM-like evolved gas analyses have been performed on several opal and rhyolitic glass samples. Opal-A samples exhibited wide <500°C H2O evolutions, with lesser H2O evolved above 500°C. H2O evolution traces from rhyolitic glasses varied, having either two broad H2O peaks, <300°C and >500°C, or a broad peak centered around 400°C. For samples that produced two evolutions, the lower temperature peak was more intense than the higher temperature peak, a trend also exhibited by opal-A. This trend is consistent with data from BS, but does not seem consistent with data from BY and GH which evolved most of their H2O >500°C. It may be that dehydration of opal-A and/or rhyolitic glass can result in some preferential loss of lower temperature H2O, to produce traces that more closely resemble BY and GH. This is currently under investigation and results will be reported.

  12. Development of automation software for neutron activation analysis process in Malaysian nuclear agency

    NASA Astrophysics Data System (ADS)

    Yussup, N.; Rahman, N. A. A.; Ibrahim, M. M.; Mokhtar, M.; Salim, N. A. A.; Soh@Shaari, S. C.; Azman, A.

    2017-01-01

    Neutron Activation Analysis (NAA) process has been established in Malaysian Nuclear Agency (Nuclear Malaysia) since 1980s. Most of the procedures established especially from sample registration to sample analysis are performed manually. These manual procedures carried out by the NAA laboratory personnel are time consuming and inefficient. Hence, a software to support the system automation is developed to provide an effective method to replace redundant manual data entries and produce faster sample analysis and calculation process. This paper describes the design and development of automation software for NAA process which consists of three sub-programs. The sub-programs are sample registration, hardware control and data acquisition; and sample analysis. The data flow and connection between the sub-programs will be explained. The software is developed by using National Instrument LabView development package.

  13. Remote water monitoring system

    NASA Technical Reports Server (NTRS)

    Grana, D. C.; Haynes, D. P. (Inventor)

    1978-01-01

    A remote water monitoring system is described that integrates the functions of sampling, sample preservation, sample analysis, data transmission and remote operation. The system employs a floating buoy carrying an antenna connected by lines to one or more sampling units containing several sample chambers. Receipt of a command signal actuates a solenoid to open an intake valve outward from the sampling unit and communicates the water sample to an identifiable sample chamber. Such response to each signal receipt is repeated until all sample chambers are filled in a sample unit. Each sample taken is analyzed by an electrochemical sensor for a specific property and the data obtained is transmitted to a remote sending and receiving station. Thereafter, the samples remain isolated in the sample chambers until the sampling unit is recovered and the samples removed for further laboratory analysis.

  14. Forsterite and Enstatite Shock Temperatures: Implications for Planetary Impact Melting

    NASA Astrophysics Data System (ADS)

    Davies, Erik; Root, Seth; Kraus, Rick; Spaulding, Dylan; Stewart, Sarah; Jacobsen, Stein; Mattsson, Thomas; Lemke, Ray

    2017-06-01

    We present experimental results on enstatite and forsterite to probe extreme conditions in the laboratory in order to examine melting and vaporization of rocky planet mantles upon shock and release. Flyer plate impact experiments are carried out on the Z-Machine at Sandia National Laboratory. Planar, supported shock waves are generated in single crystal samples, permitting observation of both compressed and released states. Shock velocity of the sample is measured using laser interferometry, and the pressure and particle velocity are derived through impedance matching to the aluminum flyer. Temperature of the shocked state is measured with a streaked visible spectrum and calibrated with a quartz standard, mounted downrange from the sample. Preliminary analysis shows that current equation of state models underestimate the entropy gain, which suggests that for shock pressures above 250 GPa, a higher degree of impact vaporization will be reached. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation for the U.S. DOE's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Evaluation of PLS, LS-SVM, and LWR for quantitative spectroscopic analysis of soils

    USDA-ARS?s Scientific Manuscript database

    Soil testing requires the analysis of large numbers of samples in laboratory that are often time consuming and expensive. Mid-infrared spectroscopy (mid-IR) and near-infrared spectroscopy (NIRS) are fast, non-destructive, and inexpensive analytical methods that have been used for soil analysis, in l...

  16. Scaling ice microstructures from the laboratory to nature: cryo-EBSD on large samples.

    NASA Astrophysics Data System (ADS)

    Prior, David; Craw, Lisa; Kim, Daeyeong; Peyroux, Damian; Qi, Chao; Seidemann, Meike; Tooley, Lauren; Vaughan, Matthew; Wongpan, Pat

    2017-04-01

    Electron backscatter diffraction (EBSD) has extended significantly our ability to conduct detailed quantitative microstructural investigations of rocks, metals and ceramics. EBSD on ice was first developed in 2004. Techniques have improved significantly in the last decade and EBSD is now becoming more common in the microstructural analysis of ice. This is particularly true for laboratory-deformed ice where, in some cases, the fine grain sizes exclude the possibility of using a thin section of the ice. Having the orientations of all axes (rather than just the c-axis as in an optical method) yields important new information about ice microstructure. It is important to examine natural ice samples in the same way so that we can scale laboratory observations to nature. In the case of ice deformation, higher strain rates are used in the laboratory than those seen in nature. These are achieved by increasing stress and/or temperature and it is important to assess that the microstructures produced in the laboratory are comparable with those observed in nature. Natural ice samples are coarse grained. Glacier and ice sheet ice has a grain size from a few mm up to several cm. Sea and lake ice has grain sizes of a few cm to many metres. Thus extending EBSD analysis to larger sample sizes to include representative microstructures is needed. The chief impediments to working on large ice samples are sample exchange, limitations on stage motion and temperature control. Large ice samples cannot be transferred through a typical commercial cryo-transfer system that limits sample sizes. We transfer through a nitrogen glove box that encloses the main scanning electron microscope (SEM) door. The nitrogen atmosphere prevents the cold stage and the sample from becoming covered in frost. Having a long optimal working distance for EBSD (around 30mm for the Otago cryo-EBSD facility) , by moving the camera away from the pole piece, enables the stage to move without crashing into either the EBSD camera or the SEM pole piece (final lens). In theory a sample up to 100mm perpendicular to the tilt axis by 150mm parallel to the tilt axis can be analysed. In practice, the motion of our stage is restricted to maximum dimensions of 100 by 50mm by a conductive copper braid on our cold stage. Temperature control becomes harder as the samples become larger. If the samples become too warm then they will start to sublime and the quality of EBSD data will reduce. Large samples need to be relatively thin ( 5mm or less) so that conduction of heat to the cold stage is more effective at keeping the surface temperature low. In the Otago facility samples of up to 40mm by 40mm present little problem and can be analysed for several hours without significant sublimation. Larger samples need more care, e.g. fast sample transfer to keep the sample very cold. The largest samples we work on routinely are 40 by 60mm in size. We will show examples of EBSD data from glacial ice and sea ice from Antarctica and from large laboratory ice samples.

  17. Analysis of Environmental Contamination resulting from Catastrophic Incidents: Part two: Building Laboratory Capability by Selecting and Developing Analytical Methodologies

    EPA Science Inventory

    Catastrophic incidents can generate a large number of samples with analytically diverse types including forensic, clinical, environmental, food, and others. Environmental samples include water, wastewater, soil, air, urban building and infrastructure materials, and surface resid...

  18. EVALUATION OF DISPOSABLE DIAPERS FOR QUANTATIVE MEASUREMENTS OF PESTICIDE METABOLITES AND CREATININE IN URINE SAMPLES

    EPA Science Inventory

    This project consisted of a laboratory study to evaluate an extraction and analysis method for quantifying biomarkers of pesticide exposure and creatinine in urine samples collected with commercially-available disposable diapers. For large exposure studies, such as the National ...

  19. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--LIST OF STANDARD OPERATING PROCEDURES

    EPA Science Inventory

    This document lists available protocols and SOPs for the U.S.-Mexico Border Program study. It identifies protocols and SOPs for the following study components: (1) Sample collection and field operations, (2) Sample analysis, (3) General laboratory procedures, (4) Quality Assuranc...

  20. Analysis of nutrition-relevant trace elements in human blood and serum by means of total reflection X-ray fluorescence (TXRF) spectroscopy

    NASA Astrophysics Data System (ADS)

    Stosnach, Hagen; Mages, Margarete

    2009-04-01

    In clinical service laboratories, one of the most common analytical tasks with regard to inorganic traces is the determination of the nutrition-relevant elements Fe, Cu, Zn, and Se. Because of the high numbers of samples and the commercial character of these analyses, a time-consuming sample preparation must be avoided. In this presentation, the results of total reflection X-ray fluorescence measurements with a low-power system and different sample preparation procedures are compared with those derived from analysis with common methods like Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The results of these investigations indicate that the optimal total reflection X-ray fluorescence analysis of the nutrition-relevant elements Fe, Cu, Zn, and Se can be performed by preparing whole blood and serum samples after dilution with ultrapure water and transferring 10 μl of internally standardized sample to an unsiliconized quartz glass sample carrier with subsequent drying in a laboratory oven. Suitable measurement time was found to be 600 s. The enhanced sample preparation by means of microwave or open digestion, in parts combined with cold plasma ashing, led to an improvement of detection limits by a factor of 2 for serum samples while for whole blood samples an improvement was only observed for samples prepared by means of microwave digestion. As the matrix elements P, S, Cl, and for whole blood Fe have a major influence on the detection limits, most probably a further enhancement of analytical quality requires the removal of the organic matrix. However, for the routine analysis of the nutrition-relevant elements, the dilution preparation was found to be sufficient.

  1. Analysis report for 241-BY-104 Auger samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, M.A.

    1994-11-10

    This report describes the analysis of the surface crust samples taken from single-shell tank (SST) BY-104, suspected of containing ferrocyanide wastes. This sampling and analysis will assist in ascertaining whether there is any hazard due to combustion (burning) or explosion of these solid wastes. These characteristics are important to future efforts to characterize the salt and sludge in this type of waste tank. This report will outline the methodology and detail the results of analyses performed during the characterization of this material. All analyses were performed by Westinghouse Hanford Company at the 222-S laboratory unless stated otherwise.

  2. [Survey on the medical mycology processes to the members of the French Society for Medical Mycology].

    PubMed

    Kauffmann-Lacroix, C; Albouy-Llaty, M; Migeot, V; Contet-Audonneau, N

    2011-09-01

    The objective of the survey was to describe the practices of clinical laboratories in terms of cultures in medical mycology. We have implemented this project within the members of the French Society for Medical Mycology (SFMM) to evaluate the analytical processes of the mycological examination in our laboratories. This preliminary study would help to suggest the future French guidelines. A questionnaire regarding the processing of mycology analysis was sent to the 227 members of the SFMM in 2009. The data involved 21 types of samples, direct microscopic examination with or without colouring and the reagents, the number of culture media, the types of media (Sabouraud, Sabouraud antibiotic, Sabouraud cycloheximide and chromogenic medium), temperature and duration of the incubation (days) and the existence of a first result before the end of the incubation period. The analytical processes were compared to an accredited laboratory according to EN ISO 15189. A great heterogeneity was observed in the 36 forms from 27 (75%) laboratories belonging to university hospitals among the 38 existing in France. As for deep samples, two microscopic exams were performed, only one was usually done. A more sensitive technique was preferred to the wet-mount for some samples. Routine samples are often inoculated on a chromogenic media. For deep samples two medium are inoculated (chromogenic media, Sabouraud and antibiotics). If the temperature of incubation is unique, 30°C was chosen. A temperature of 37°C was preferred for samples where Candida spp. is selected. When there are two temperatures of incubation, 27°C and 37°C were preferred. Each biologist can compare his proceedings to the other laboratories and to a laboratory already accredited. The question is to find the best strategies for each medical mycology specimen. They will aid the process of accreditation according to EN ISO 15189, which now applies in all laboratories in Europe. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  3. Optimization of the tungsten oxide technique for measurement of atmospheric ammonia

    NASA Technical Reports Server (NTRS)

    Brown, Kenneth G.

    1987-01-01

    Hollow tubes coated with tungstic acid have been shown to be of value in the determination of ammonia and nitric acid in ambient air. Practical application of this technique was demonstrated utilizing an automated sampling system for in-flight collection and analysis of atmospheric samples. Due to time constraints these previous measurements were performed on tubes that had not been well characterized in the laboratory. As a result the experimental precision could not be accurately estimated. Since the technique was being compared to other techniques for measuring these compounds, it became necessary to perform laboratory tests which would establish the reliability of the technique. This report is a summary of these laboratory experiments as they are applied to the determination of ambient ammonia concentration.

  4. Portable total reflection x-ray fluorescence analysis in the identification of unknown laboratory hazards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ying, E-mail: liu.ying.48r@st.kyoto-u.ac.jp; Imashuku, Susumu; Sasaki, Nobuharu

    In this study, a portable total reflection x-ray fluorescence (TXRF) spectrometer was used to analyze unknown laboratory hazards that precipitated on exterior surfaces of cooling pipes and fume hood pipes in chemical laboratories. With the aim to examine the accuracy of TXRF analysis for the determination of elemental composition, analytical results were compared with those of wavelength-dispersive x-ray fluorescence spectrometry, scanning electron microscope and energy-dispersive x-ray spectrometry, energy-dispersive x-ray fluorescence spectrometry, inductively coupled plasma atomic emission spectrometry, x-ray diffraction spectrometry (XRD), and x-ray photoelectron spectroscopy (XPS). Detailed comparison of data confirmed that the TXRF method itself was not sufficient tomore » determine all the elements (Z > 11) contained in the samples. In addition, results suggest that XRD should be combined with XPS in order to accurately determine compound composition. This study demonstrates that at least two analytical methods should be used in order to analyze the composition of unknown real samples.« less

  5. Emergency department visual urinalysis versus laboratory urinalysis.

    PubMed

    Worrall, James C

    2009-11-01

    The primary objective of this study was to compare the results of nurse-performed urinalysis (NPU) interpreted visually in the emergency department (ED) with laboratory performed urinalysis (LPU) interpreted by reflectance photometry. This was a prospective observational study based on a convenience sample from my emergency practice. Emergency nurses, who were unaware of the study, performed usual dipstick analysis before sending the same urine sample to the laboratory for testing. Of 140 urinalyses performed during the study period, 124 were suitable for analysis. When compared with the reference standard LPU, the NPU had an overall sensitivity of 100% (95% confidence interval [CI] 95%-100%) and a specificity of 49% (95% CI 33%-65%) for the presence of any 1 of blood, leukocyte esterase, nitrites, protein, glucose or ketones in the urine. Of 20 falsely positive NPUs, 18 were a result of the nurse recording 1 or more components as "trace" positive. Although NPU does not yield identical results to LPU, a negative LPU is expected when the initial NPU in the ED is negative.

  6. Laboratory Determined Sugar Content and Composition of Commercial Infant Formulas, Baby Foods and Common Grocery Items Targeted to Children.

    PubMed

    Walker, Ryan W; Goran, Michael I

    2015-07-16

    Excess added sugar consumption is tied to poor health outcomes in children. The sugar content of beverages and foods children are exposed to is mostly unknown, yet this information is imperative for understanding potential risks from overconsumption of sugars in early life. We determined actual sugar content by conducting a blinded laboratory analysis in infant formulas, breakfast cereals, packaged baked goods and yogurts. One hundred samples were sent to an independent laboratory for analysis via gas chromatography. Sugar content and composition was determined and total sugar was compared against nutrition labels. Of the 100 samples analyzed, 74% contained ≥20% of total calories per serving from added sugars. Nutrient label data underestimated or overestimated actual sugars and ~25% of all samples had actual total sugar values that were either <10% or >10% of labeled total sugar. Many products that are frequently marketed to and consumed by infants and young children contain sugars in amounts that differ from nutrition labels and often in excess of recommended daily levels. These findings provide further support for adding more comprehensive sugar labeling to food and beverage products, specifically those marketed to, or commonly consumed by, children.

  7. Laboratory Determined Sugar Content and Composition of Commercial Infant Formulas, Baby Foods and Common Grocery Items Targeted to Children

    PubMed Central

    Walker, Ryan W.; Goran, Michael I.

    2015-01-01

    Excess added sugar consumption is tied to poor health outcomes in children. The sugar content of beverages and foods children are exposed to is mostly unknown, yet this information is imperative for understanding potential risks from overconsumption of sugars in early life. We determined actual sugar content by conducting a blinded laboratory analysis in infant formulas, breakfast cereals, packaged baked goods and yogurts. One hundred samples were sent to an independent laboratory for analysis via gas chromatography. Sugar content and composition was determined and total sugar was compared against nutrition labels. Of the 100 samples analyzed, 74% contained ≥20% of total calories per serving from added sugars. Nutrient label data underestimated or overestimated actual sugars and ~25% of all samples had actual total sugar values that were either <10% or >10% of labeled total sugar. Many products that are frequently marketed to and consumed by infants and young children contain sugars in amounts that differ from nutrition labels and often in excess of recommended daily levels. These findings provide further support for adding more comprehensive sugar labeling to food and beverage products, specifically those marketed to, or commonly consumed by, children. PMID:26193309

  8. Reference method for detection of Pgp mediated multidrug resistance in human hematological malignancies: a method validated by the laboratories of the French Drug Resistance Network.

    PubMed

    Huet, S; Marie, J P; Gualde, N; Robert, J

    1998-12-15

    Multidrug resistance (MDR) associated with overexpression of the MDR1 gene and of its product, P-glycoprotein (Pgp), plays an important role in limiting cancer treatment efficacy. Many studies have investigated Pgp expression in clinical samples of hematological malignancies but failed to give definitive conclusion on its usefulness. One convenient method for fluorescent detection of Pgp in malignant cells is flow cytometry which however gives variable results from a laboratory to another one, partly due to the lack of a reference method rigorously tested. The purpose of this technical note is to describe each step of a reference flow cytometric method. The guidelines for sample handling, staining and analysis have been established both for Pgp detection with monoclonal antibodies directed against extracellular epitopes (MRK16, UIC2 and 4E3), and for Pgp functional activity measurement with Rhodamine 123 as a fluorescent probe. Both methods have been validated on cultured cell lines and clinical samples by 12 laboratories of the French Drug Resistance Network. This cross-validated multicentric study points out crucial steps for the accuracy and reproducibility of the results, like cell viability, data analysis and expression.

  9. International Interlaboratory Digital PCR Study Demonstrating High Reproducibility for the Measurement of a Rare Sequence Variant.

    PubMed

    Whale, Alexandra S; Devonshire, Alison S; Karlin-Neumann, George; Regan, Jack; Javier, Leanne; Cowen, Simon; Fernandez-Gonzalez, Ana; Jones, Gerwyn M; Redshaw, Nicholas; Beck, Julia; Berger, Andreas W; Combaret, Valérie; Dahl Kjersgaard, Nina; Davis, Lisa; Fina, Frederic; Forshew, Tim; Fredslund Andersen, Rikke; Galbiati, Silvia; González Hernández, Álvaro; Haynes, Charles A; Janku, Filip; Lacave, Roger; Lee, Justin; Mistry, Vilas; Pender, Alexandra; Pradines, Anne; Proudhon, Charlotte; Saal, Lao H; Stieglitz, Elliot; Ulrich, Bryan; Foy, Carole A; Parkes, Helen; Tzonev, Svilen; Huggett, Jim F

    2017-02-07

    This study tested the claim that digital PCR (dPCR) can offer highly reproducible quantitative measurements in disparate laboratories. Twenty-one laboratories measured four blinded samples containing different quantities of a KRAS fragment encoding G12D, an important genetic marker for guiding therapy of certain cancers. This marker is challenging to quantify reproducibly using quantitative PCR (qPCR) or next generation sequencing (NGS) due to the presence of competing wild type sequences and the need for calibration. Using dPCR, 18 laboratories were able to quantify the G12D marker within 12% of each other in all samples. Three laboratories appeared to measure consistently outlying results; however, proper application of a follow-up analysis recommendation rectified their data. Our findings show that dPCR has demonstrable reproducibility across a large number of laboratories without calibration. This could enable the reproducible application of molecular stratification to guide therapy and, potentially, for molecular diagnostics.

  10. Laboratory spectroscopy of meteorite samples at UV-vis-NIR wavelengths: Analysis and discrimination by principal components analysis

    NASA Astrophysics Data System (ADS)

    Penttilä, Antti; Martikainen, Julia; Gritsevich, Maria; Muinonen, Karri

    2018-02-01

    Meteorite samples are measured with the University of Helsinki integrating-sphere UV-vis-NIR spectrometer. The resulting spectra of 30 meteorites are compared with selected spectra from the NASA Planetary Data System meteorite spectra database. The spectral measurements are transformed with the principal component analysis, and it is shown that different meteorite types can be distinguished from the transformed data. The motivation is to improve the link between asteroid spectral observations and meteorite spectral measurements.

  11. Summary Report for the Environmental Protection Agency MERL/FRMAC/RAP Mission Alignment Exercise held at the Savannah River Site on June 9-13 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Mark B.; Shanks, Sonoya Toyoko; Fournier, Sean Donovan

    From June 9th thru June 13th 2014, members of the Federal Radiological Monitoring and Assessment Center (FRMAC), the Environmental Protection Agency (EPA) and the Department of Energy Radiological Assistance Program (DOE RAP) Region-3 participated in a joint nuclear incident emergency response exercise at the Savannah River Site (SRS) near Aiken, South Carolina. The purpose of this exercise was to strengthen the interoperability relationship between the FRMAC, RAP, and the EPA Mobile Environmental Radiation Laboratory (MERL) stationed in Montgomery, Alabama. The exercise was designed to allowed members of the DOE RAP Region-3 team to collect soil, water, vegetation and air samplesmore » from SRS and submit them through an established FRMAC hotline. Once received and processed through the hotline, FRMAC delivered the samples to the EPA MERL for sample preparation and laboratory radiological analysis. Upon completion of laboratory analysis, data was reviewed and submitted back to FRMAC via an electronic data deliverable (EDD). As part of the exercise, an evaluation was conducted to identify gaps and potential improvements in each step of the processes. Additionally, noteworthy practices and potential future areas of interoperability between FRMAC and EPA were acknowledged. The exercise also provided a unique opportunity for FRMAC personnel to observe EPA sample receipt and sample preparation processes and to gain familiarity with the MERL laboratory instrumentation and radiation detection capabilities. The observations and lessons-learned from this exercise will be critical for developing a more efficient, integrated response for future interactions between the FRMAC and EPA assets.« less

  12. Solid tissue culture for cytogenetic analysis: a collaborative survey for the Association of Clinical Cytogeneticists.

    PubMed Central

    Rodgers, C S; Creasy, M R; Fitchett, M; Maliszewska, C T; Pratt, N R; Waters, J J

    1996-01-01

    AIMS: To survey the diagnostic service provided by UK laboratories for the culture of solid tissue samples (excluding tumours) and in particular to examine the variation in culture success rates and the problems of maternal cell overgrowth. METHODS: Twenty seven laboratories took part in a collaborative survey during 1992. Each laboratory submitted data on up to a maximum of 60 consecutive specimens (n = 1361) over a six month period. RESULTS: Skin specimens, the largest category received (n = 520), were the most problematic (51% success rate). Culture success rates were significantly lower (43%) when skin specimens (n = 140) were transported dry to the laboratory. Success rates for skin specimens also varied, depending on the origin of the specimen, from 18% for intra-uterine deaths (IUD) (n = 94) to 85% for neonatal deaths (n = 33) and 83% for live patients (n = 54). Culture of selected extra-fetal tissues from IUD, stillbirths and following elective termination of pregnancy (TOP) gave comparable success rates to those achieved for skin samples from neonatal deaths and live births. Skewed sex ratios, female > male, were identified for products of conception (POC) (n = 298) and placental biopsy specimens (n = 97). CONCLUSIONS: By appropriate selection, transport and processing of tissues, and in particular by avoiding relying solely on skin samples from IUD, stillbirths and TOP, an increase in culture success rates for solid tissue samples submitted for cytogenetic analysis could be achieved. The high risk of maternal cell contamination from POC and placental biopsy specimens was also identified in this survey. PMID:8881913

  13. Comparison of Ion Personal Genome Machine Platforms for the Detection of Variants in BRCA1 and BRCA2.

    PubMed

    Hwang, Sang Mee; Lee, Ki Chan; Lee, Min Seob; Park, Kyoung Un

    2018-01-01

    Transition to next generation sequencing (NGS) for BRCA1 / BRCA2 analysis in clinical laboratories is ongoing but different platforms and/or data analysis pipelines give different results resulting in difficulties in implementation. We have evaluated the Ion Personal Genome Machine (PGM) Platforms (Ion PGM, Ion PGM Dx, Thermo Fisher Scientific) for the analysis of BRCA1 /2. The results of Ion PGM with OTG-snpcaller, a pipeline based on Torrent mapping alignment program and Genome Analysis Toolkit, from 75 clinical samples and 14 reference DNA samples were compared with Sanger sequencing for BRCA1 / BRCA2 . Ten clinical samples and 14 reference DNA samples were additionally sequenced by Ion PGM Dx with Torrent Suite. Fifty types of variants including 18 pathogenic or variants of unknown significance were identified from 75 clinical samples and known variants of the reference samples were confirmed by Sanger sequencing and/or NGS. One false-negative results were present for Ion PGM/OTG-snpcaller for an indel variant misidentified as a single nucleotide variant. However, eight discordant results were present for Ion PGM Dx/Torrent Suite with both false-positive and -negative results. A 40-bp deletion, a 4-bp deletion and a 1-bp deletion variant was not called and a false-positive deletion was identified. Four other variants were misidentified as another variant. Ion PGM/OTG-snpcaller showed acceptable performance with good concordance with Sanger sequencing. However, Ion PGM Dx/Torrent Suite showed many discrepant results not suitable for use in a clinical laboratory, requiring further optimization of the data analysis for calling variants.

  14. Amino acid distribution in meteorites: diagenesis, extraction methods, and standard metrics in the search for extraterrestrial biosignatures.

    PubMed

    McDonald, Gene D; Storrie-Lombardi, Michael C

    2006-02-01

    The relative abundance of the protein amino acids has been previously investigated as a potential marker for biogenicity in meteoritic samples. However, these investigations were executed without a quantitative metric to evaluate distribution variations, and they did not account for the possibility of interdisciplinary systematic error arising from inter-laboratory differences in extraction and detection techniques. Principal component analysis (PCA), hierarchical cluster analysis (HCA), and stochastic probabilistic artificial neural networks (ANNs) were used to compare the distributions for nine protein amino acids previously reported for the Murchison carbonaceous chondrite, Mars meteorites (ALH84001, Nakhla, and EETA79001), prebiotic synthesis experiments, and terrestrial biota and sediments. These techniques allowed us (1) to identify a shift in terrestrial amino acid distributions secondary to diagenesis; (2) to detect differences in terrestrial distributions that may be systematic differences between extraction and analysis techniques in biological and geological laboratories; and (3) to determine that distributions in meteoritic samples appear more similar to prebiotic chemistry samples than they do to the terrestrial unaltered or diagenetic samples. Both diagenesis and putative interdisciplinary differences in analysis complicate interpretation of meteoritic amino acid distributions. We propose that the analysis of future samples from such diverse sources as meteoritic influx, sample return missions, and in situ exploration of Mars would be less ambiguous with adoption of standardized assay techniques, systematic inclusion of assay standards, and the use of a quantitative, probabilistic metric. We present here one such metric determined by sequential feature extraction and normalization (PCA), information-driven automated exploration of classification possibilities (HCA), and prediction of classification accuracy (ANNs).

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, T.

    The Nuclear Forensics Analysis Center (NFAC) is part of Savannah River National Laboratory (SRNL) and is one of only two USG National Laboratories accredited to perform nuclear forensic analyses to the requirements of ISO 17025. SRNL NFAC is capable of analyzing nuclear and radiological samples from bulk material to ultra-trace samples. NFAC provides analytical support to the FBI's Radiological Evidence Examination Facility (REEF), which is located within SRNL. REEF gives the FBI the capability to perform traditional forensics on material that is radiological and/or is contaminated. SRNL is engaged in research and development efforts to improve the USG technical nuclearmore » forensics capabilities. Research includes improving predictive signatures and developing a database containing comparative samples.« less

  16. Sensitive and specific identification by polymerase chain reaction of Eimeria tenella and Eimeria maxima, important protozoan pathogens in laboratory avian facilities.

    PubMed

    Lee, Hyun-A; Hong, Sunhwa; Chung, Yungho; Kim, Okjin

    2011-09-01

    Eimeria tenella and Eimeria maxima are important pathogens causing intracellular protozoa infections in laboratory avian animals and are known to affect experimental results obtained from contaminated animals. This study aimed to find a fast, sensitive, and efficient protocol for the molecular identification of E. tenella and E. maxima in experimental samples using chickens as laboratory avian animals. DNA was extracted from fecal samples collected from chickens and polymerase chain reaction (PCR) analysis was employed to detect E. tenella and E. maxima from the extracted DNA. The target nucleic acid fragments were specifically amplified by PCR. Feces secreting E. tenella and E. maxima were detected by a positive PCR reaction. In this study, we were able to successfully detect E. tenella and E. maxima using the molecular diagnostic method of PCR. As such, we recommended PCR for monitoring E. tenella and E. maxima in laboratory avian facilities.

  17. Determination of Reaction Stoichiometries by Flow Injection Analysis.

    ERIC Educational Resources Information Center

    Rios, Angel; And Others

    1986-01-01

    Describes a method of flow injection analysis intended for calculation of complex-formation and redox reaction stoichiometries based on a closed-loop configuration. The technique is suitable for use in undergraduate laboratories. Information is provided for equipment, materials, procedures, and sample results. (JM)

  18. [On the way to national reference system of laboratory medicine].

    PubMed

    Muravskaia, N P; Men'shikov, V V

    2014-10-01

    The application of standard samples and reference techniques of implementation of measurements is needed for a valid support of reliability of analyses applied in clinical diagnostic laboratories. They play role of landmarks under metrologic monitoring, calibration of devices and control of quality of results. The article presents analysis of shortcomings interfering with formation of national reference system in Russia harmonized with possibilities provided by international organizations. Among them are the joint Committee on metrologic monitoring in laboratory medicine under the auspices of the International Bureau of Weights and Measures, the International Federation of clinical chemistry and laboratory medicine, etc. The results of the recent development of national normative documents, standard samples and techniques assisted by the authors of article are considered. They are the first steps to organization of national reference system which would comprise all range of modern analytical technologies of laboratory medicine. The national and international measures are proposed to enhance the promptest resolving of task of organization of national reference system for laboratory medicine in the interests of increasing of effectiveness of medical care to citizen of Russia.

  19. Validation of a near infrared microscopy method for the detection of animal products in feedingstuffs: results of a collaborative study.

    PubMed

    Boix, A; Fernández Pierna, J A; von Holst, C; Baeten, V

    2012-01-01

    The performance characteristics of a near infrared microscopy (NIRM) method, when applied to the detection of animal products in feedingstuffs, were determined via a collaborative study. The method delivers qualitative results in terms of the presence or absence of animal particles in feed and differentiates animal from vegetable feed ingredients on the basis of the evaluation of near infrared spectra obtained from individual particles present in the sample. The specificity ranged from 86% to 100%. The limit of detection obtained on the analysis of the sediment fraction, prepared as for the European official method, was 0.1% processed animal proteins (PAPs) in feed, since all laboratories correctly identified the positive samples. This limit has to be increased up to 2% for the analysis of samples which are not sedimented. The required sensitivity for the official control is therefore achieved in the analysis of the sediment fraction of the samples where the method can be applied for the detection of the presence of animal meal. Criteria for the classification of samples, when fewer than five spectra are found, as being of animal origin needs to be set up in order to harmonise the approach taken by the laboratories when applying NIRM for the detection of the presence of animal meal in feed.

  20. Exploring laser-induced breakdown spectroscopy for nuclear materials analysis and in-situ applications

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Allman, Steve; Brice, Deanne J.; Martin, Rodger C.; Andre, Nicolas O.

    2012-08-01

    Laser-induced breakdown spectroscopy (LIBS) has been used to determine the limits of detection of strontium (Sr) and cesium (Cs), common nuclear fission products. Additionally, detection limits were determined for cerium (Ce), often used as a surrogate for radioactive plutonium in laboratory studies. Results were obtained using a laboratory instrument with a Nd:YAG laser at fundamental wavelength of 1064 nm, frequency doubled to 532 nm with energy of 50 mJ/pulse. The data was compared for different concentrations of Sr and Ce dispersed in a CaCO3 (white) and carbon (black) matrix. We have addressed the sampling errors, limits of detection, reproducibility, and accuracy of measurements as they relate to multivariate analysis in pellets that were doped with the different elements at various concentrations. These results demonstrate that LIBS technique is inherently well suited for in situ analysis of nuclear materials in hot cells. Three key advantages are evident: (1) small samples (mg) can be evaluated; (2) nuclear materials can be analyzed with minimal sample preparation; and (3) samples can be remotely analyzed very rapidly (ms-seconds). Our studies also show that the methods can be made quantitative. Very robust multivariate models have been used to provide quantitative measurement and statistical evaluation of complex materials derived from our previous research on wood and soil samples.

  1. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of antimony by automated-hydride atomic absorption spectrophotometry

    USGS Publications Warehouse

    Brown, G.E.; McLain, B.J.

    1994-01-01

    The analysis of natural-water samples for antimony by automated-hydride atomic absorption spectrophotometry is described. Samples are prepared for analysis by addition of potassium and hydrochloric acid followed by an autoclave digestion. After the digestion, potassium iodide and sodium borohydride are added automatically. Antimony hydride (stibine) gas is generated, then swept into a heated quartz cell for determination of antimony by atomic absorption spectrophotometry. Precision and accuracy data are presented. Results obtained on standard reference water samples agree with means established by interlaboratory studies. Spike recoveries for actual samples range from 90 to 114 percent. Replicate analyses of water samples of varying matrices give relative standard deviations from 3 to 10 percent.

  2. Hydrocarbon group type determination in jet fuels by high performance liquid chromatography

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.

    1977-01-01

    Results are given for the analysis of some jet and diesel fuel samples which were prepared from oil shale and coal syncrudes. Thirty-two samples of varying chemical composition and physical properties were obtained. Hydrocarbon types in these samples were determined by fluorescent indicator adsorption (FIA) analysis, and the results from three laboratories are presented and compared. Recently, rapid high performance liquid chromatography (HPLC) methods have been proposed for hydrocarbon group type analysis, with some suggestion for their use as a replacement of the FIA technique. Two of these methods were used to analyze some of the samples, and these results are also presented and compared. Two samples of petroleum-based Jet A fuel are similarly analyzed.

  3. Laboratory-based ROTEM(®) analysis: implementing pneumatic tube transport and real-time graphic transmission.

    PubMed

    Colucci, G; Giabbani, E; Barizzi, G; Urwyler, N; Alberio, L

    2011-08-01

    ROTEM(®) is considered a helpful point-of-care device to monitor blood coagulation. Centrally performed analysis is desirable but rapid transport of blood samples and real-time transmission of graphic results are an important prerequisite. The effect of sample transport through a pneumatic tube system on ROTEM(®) results is unknown. The aims of the present work were (i) to determine the influence of blood sample transport through a pneumatic tube system on ROTEM(®) parameters compared to manual transportation, and (ii) to verify whether graphic results can be transmitted on line via virtual network computing using local area network to the physician in charge of the patient. Single centre study with 30 normal volunteers. Two whole blood samples were transferred to the central haematology laboratory by either normal transport or pneumatic delivery. EXTEM, INTEM, FIBTEM and APTEM were analysed in parallel with two ROTEM(®) devices and compared. Connection between central laboratory, emergency and operating rooms was established using local area network. All collected ROTEM(®) parameters were within normal limits. No statistically significant differences between normal transport and pneumatic delivery were observed. Real-time transmission of the original ROTEM(®) curves using local area network is feasible and easy to establish. At our institution, transport of blood samples by pneumatic delivery does not influence ROTEM(®) parameters. Blood samples can be analysed centrally, and results transmitted live via virtual network computing to emergency or operating rooms. Prior to analyse blood samples centrally, the type of sample transport should be tested to exclude in vitro blood activation by local pneumatic transport system. © 2011 Blackwell Publishing Ltd.

  4. Blood meal analysis of tabanid fly after it biting the rare Sumatran rhinoceros.

    PubMed

    Rovie-Ryan, Jeffrine Japning; Zainuddin, Zainal Zahari; Marni, Wahap; Ahmad, Abdul Hamid; Ambu, Laurentius N; Payne, Junaidi

    2013-02-01

    To demonstrate a noninvasive large mammalian genetic sampling method using blood meal obtained from a tabanid fly. Blood meal was recovered from the abdomen of an engorged tabanid fly (Haematopota sp.) which was captured immediately after biting a Sumatran rhino in captivity. The blood was applied on to a Whatman FTA(®) blood card. Subsequent laboratory work was conducted to extract, amplify and sequence the DNA from the sample. Validation was done by sampling the hair follicles and blood samples from the rhinoceros and subjecting it to the same laboratory process. BLAST search and constructed phylogenetic trees confirmed the blood meal samples were indeed from the rhino. This method could be used in the field application to noninvasively collect genetic samples. Collection of tabanids and other haematophagous arthropods (e.g. mosquitoes and ticks) and other blood-sucking parasites (e.g. leeches and worms) could also provide information on vector-borne diseases.

  5. EVALUATION OF SPERM CHROMATIN STRUCTURE ASSAY (SCSA REGISTERED TRADEMARK) IN HUMAN SPERM AFTER SIMULATED OVERNIGHT SHIPMENT

    EPA Science Inventory

    Home semen collection kits allow men to collect a sample at their convenience and send it via overnight mail to the laboratory. Benefits of this approach include facilitated sample collection from different geographic locations, minimized variability through analysis by a central...

  6. PCB Content of Sediments Collected at Manistique Harbor, Michigan

    DTIC Science & Technology

    2014-06-01

    2013 10:19 PM Page 23 of 35 Date Reported: 1/24/2013 Original WO#: 1211282RTI Laboratories - DATES REPORT Leachate Date USACE- Detroit District...REPORT Leachate Date USACE- Detroit District Manistique Harbor 0004 Client: Project: Sample ID Test NameMatrixCollection DateClient Sample ID Analysis

  7. Response to in-depth safety audit of the L Lake sampling station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladden, J.B.

    1986-10-15

    An in-depth safety audit of several of the facilities and operations supporting the Biological Monitoring Program on L Lake was conducted. Subsequent to the initial audit, the audit team evaluated the handling of samples taken for analysis of Naegleria fowleri at the 704-U laboratory facility.

  8. ON-SITE SOLID PHRASE EXTRACTION AND LABORATORY ANALYSIS OF ULTRA-TRACE SYNTHETIC MUSKS IN MUNICIPAL SEWAGE EFFLUENT USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY, FULL-SCAN MODE

    EPA Science Inventory



    Fragrance materials, such as synthetic musks in aqueous samples, are normally analyzed by GC/MS in the selected ion monitoring (SIM) mode to provide maximum sensitivity after liquid-liquid extraction of I -L samples. A I -L sample, however, usually provides too little ana...

  9. Evaluation of chemical data from selected sites in the Surface-Water Ambient Monitoring Program (SWAMP) in Florida

    USGS Publications Warehouse

    Katz, B.G.; Collins, J.J.

    1998-01-01

    A cooperative study between the Florida Department of Environmental Protection (FDEP) and the U.S. Geological Survey was conducted to assess the integrity of selected water-quality data collected at 150 sites in the FDEP Surface-Water Ambient Monitoring Program (SWAMP) in Florida. The assessment included determining the consistency of the water-quality data collected statewide, including commonality of monitoring procedures and analytes, screening of the gross validity of a chemical analysis, and quality assurance and quality control (QA/QC) procedures. Four tests were used to screen data at selected SWAMP sites to estimate the gross validity of selected chemical data: (1) the ratio of dissolved solids (in milligrams per liter) to specific conductance (in microsiemens per centimeter); (2) the ratio of total cations (in milliequivalents per liter) multiplied by 100 to specific conductance (in microsiemens per centimeter); (3) the ratio of total anions (in milliequivalents per liter) multiplied by 100 to specific conductance (in microsiemens per centimeter); and (4) the ionic charge-balance error. Although the results of the four screening tests indicate that the chemical data generally are quite reliable, the extremely small number of samples (less than 5 percent of the total number of samples) with sufficient chemical information to run the tests may not provide a representative indication of the analytical accuracy of all laboratories in the program. In addition to the four screening tests, unusually low or high values were flagged for field and laboratory pH (less than 4.0 and greater than 9.0) and specific conductance (less than 10 and greater than 10,000 microsiemens per centimeter). The numbers of flagged data were less than 1 percent of the 19,937 water samples with pH values and less than 0.6 percent of the 16,553 water samples with specific conductance values. Thirty-four agencies responded to a detailed questionnaire that was sent to more than 60 agencies involved in the collection and analysis of surface-water-quality data for SWAMP. The purpose of the survey was to evaluate quality assurance methods and consistency of methods statewide. Information was compiled and summarized on monitoring network design, data review and upload procedures, laboratory and field sampling methods, and data practices. Currently, most agencies that responded to the survey follow FDEP-approved QA/QC protocol for sampling and have quality assurance practices for recording and reporting data. Also, most agencies responded that calibration procedures were followed in the laboratory for analysis of data, but no responses were given about the specific procedures. Approximately 50 percent of the respondents indicated that laboratory analysis methods have changed over time. With so many laboratories involved in analyzing samples for SWAMP, it is difficult to compare water quality from one site to another due to different reporting conventions for chemical constituents and different analytical methods over time. Most agencies responded that calibration methods are followed in the field, but no specific details were provided. Grab samples are the most common method of collection. Other data screening procedures are necessary to further evaluate the validity of chemical data collected at SWAMP sites. High variability in the concentration of targeted constituents may signal analytical problems, but more likely changes in concentration are related to hydrologic conditions. This underscores the need for accurate measurements of discharge, lake stage, tidal stage at the time of sampling so that changes in constituent concentrations can be properly evaluated and fluxes (loads) of nutrients or metals, for example, can be calculated and compared over time.

  10. The Kjeldahl method as a primary reference procedure for total protein in certified reference materials used in clinical chemistry. I. A review of Kjeldahl methods adopted by laboratory medicine.

    PubMed

    Chromý, Vratislav; Vinklárková, Bára; Šprongl, Luděk; Bittová, Miroslava

    2015-01-01

    We found previously that albumin-calibrated total protein in certified reference materials causes unacceptable positive bias in analysis of human sera. The simplest way to cure this defect is the use of human-based serum/plasma standards calibrated by the Kjeldahl method. Such standards, commutative with serum samples, will compensate for bias caused by lipids and bilirubin in most human sera. To find a suitable primary reference procedure for total protein in reference materials, we reviewed Kjeldahl methods adopted by laboratory medicine. We found two methods recommended for total protein in human samples: an indirect analysis based on total Kjeldahl nitrogen corrected for its nonprotein nitrogen and a direct analysis made on isolated protein precipitates. The methods found will be assessed in a subsequent article.

  11. Interlaboratory calibration of atmospheric nitrous oxide measurements

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. A.; Pierotti, D.

    1978-01-01

    Samples representative of Northern Hemispheric conditions in mid-1976 were analyzed by 11 laboratories to resolve the question of the absolute tropospheric concentration of nitrous oxide. The laboratories all employed electron capture-gas chromatography for the analysis. After exclusion of one anomalously low determination, the calibration results showed a mean concentration of 323.5 + or - 8.7 ppb v/v nitrous oxide.

  12. Volumetric Titrations Using Electrolytically Generated Reagents for the Determination of Ascorbic Acid and Iron in Dietary Supplement Tablets: An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Scanlon, Christopher; Gebeyehu, Zewdu; Griffin, Kameron; Dabke, Rajeev B.

    2014-01-01

    An undergraduate laboratory experiment for the volumetric quantitative analysis of ascorbic acid and iron in dietary supplement tablets is presented. Powdered samples of the dietary supplement tablets were volumetrically titrated against electrolytically generated reagents, and the mass of dietary reagent in the tablet was determined from the…

  13. Tank 241-AZ-102 Privatization Push Mode Core Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RASMUSSEN, J.H.

    1999-08-02

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for samples obtained from tank 241-AZ-102. The purpose of this sampling event is to obtain information about the characteristics of the contents of 241-AZ-102 required to satisfy the Data Quality Objectives For TWRS Privatization Phase I: Confirm Tank TIS An Appropriate Feed Source For High-Level Waste Feed Batch X(HLW DQO) (Nguyen 1999a), Data Quality Objectives For TWRS Privatization Phase 1: Confirm Tank TIS An Appropriate Feed Source For Low-Activity Waste Feed Batch X (LAW DQO) (Nguyen 1999b), Low Activity Waste andmore » High Level Waste Feed Data Quality Objectives (L&H DQO) (Patello et al. 1999) and Characterization Data Needs for Development, Design, and Operation of Retrieval Equipment Developed through the Data Quality Objective Process (Equipment DQO) (Bloom 1996). The Tank Characterization Technical Sampling Basis document (Brown et al. 1998) indicates that these issues, except the Equipment DQO apply to tank 241-AZ-102 for this sampling event. The Equipment DQO is applied for shear strength measurements of the solids segments only. Poppiti (1999) requires additional americium-241 analyses of the sludge segments. Brown et al. (1998) also identify safety screening, regulatory issues and provision of samples to the Privatization Contractor(s) as applicable issues for this tank. However, these issues will not be addressed via this sampling event. Reynolds et al. (1999) concluded that information from previous sampling events was sufficient to satisfy the safety screening requirements for tank 241 -AZ-102. Push mode core samples will be obtained from risers 15C and 24A to provide sufficient material for the chemical analyses and tests required to satisfy these data quality objectives. The 222-S Laboratory will extrude core samples, composite the liquids and solids, perform chemical analyses, and provide subsamples to the Process Chemistry Laboratory. The Process Chemistry Laboratory will prepare test plans and perform process tests to evaluate the behavior of the 241-AZ-102 waste undergoing the retrieval and treatment scenarios defined in the applicable DQOs. Requirements for analyses of samples originating in the process tests will be documented in the corresponding test plan.« less

  14. Alterations in rotation thromboelastometry (ROTEM®) parameters: point-of-care testing vs analysis after pneumatic tube system transport.

    PubMed

    Martin, J; Schuster, T; Moessmer, G; Kochs, E F; Wagner, K J

    2012-10-01

    Thromboelastometry as point-of-care (POC) testing enables the analysis of the clotting process at the bedside, providing rapid results to guide haemostatic therapy. However, POC testing utilizes medical staff who are managing critically ill patients, as non-laboratory personnel may not be sufficiently trained to run the devices. To resolve these problems, thromboelastometry can be performed in the central laboratory and rapid transport of samples can be accomplished via a pneumatic tube system (PTS). This study compares thromboelastometry parameters of blood samples analysed immediately with those analysed after PTS transport. In patients with normal haemostasis, two arterial blood samples were collected from each patient (n=92) in citrated plastic tubes to investigate the assays INTEM (n=35), EXTEM (n=27), and FIBTEM (n=30). One blood sample was analysed immediately, the other sample after PTS transport. Thromboelastometry was performed using a single ROTEM(®) device. The mean clot firmness values were significantly lower for PTS samples in both the INTEM (-0.7 mm cf. -1.1 mm) and EXTEM (-1.4 cf. -1.7 mm) assays. INTEM coagulation time (CT) was significantly lower in PTS samples with a mean difference of -13 s. EXTEM CT was significantly higher in PTS samples with a mean difference of +3.9 s. Thromboelastometry parameters of blood samples analysed after PTS transport are significantly altered compared with those analysed immediately. However, in patients with normal haemostasis, the alterations were small and without clinical consequence, implying that analysis after PTS transport is an acceptable alternative to prompt analysis at the bedside. Further studies should focus on patients with impaired haemostasis.

  15. Evaluation of the annual Canadian biodosimetry network intercomparisons

    PubMed Central

    Wilkins, Ruth C.; Beaton-Green, Lindsay A.; Lachapelle, Sylvie; Kutzner, Barbara C.; Ferrarotto, Catherine; Chauhan, Vinita; Marro, Leonora; Livingston, Gordon K.; Boulay Greene, Hillary; Flegal, Farrah N.

    2015-01-01

    Abstract Purpose: To evaluate the importance of annual intercomparisons for maintaining the capacity and capabilities of a well-established biodosimetry network in conjunction with assessing efficient and effective analysis methods for emergency response. Materials and methods: Annual intercomparisons were conducted between laboratories in the Canadian National Biological Dosimetry Response Plan. Intercomparisons were performed over a six-year period and comprised of the shipment of 10–12 irradiated, blinded blood samples for analysis by each of the participating laboratories. Dose estimates were determined by each laboratory using the dicentric chromosome assay (conventional and QuickScan scoring) and where possible the cytokinesis block micronucleus (CBMN) assay. Dose estimates were returned to the lead laboratory for evaluation and comparison. Results: Individual laboratories performed comparably from year to year with only slight fluctuations in performance. Dose estimates using the dicentric chromosome assay were accurate about 80% of the time and the QuickScan method for scoring the dicentric chromosome assay was proven to reduce the time of analysis without having a significant effect on the dose estimates. Although analysis with the CBMN assay was comparable to QuickScan scoring with respect to speed, the accuracy of the dose estimates was greatly reduced. Conclusions: Annual intercomparisons are necessary to maintain a network of laboratories for emergency response biodosimetry as they evoke confidence in their capabilities. PMID:25670072

  16. Analysis of Phosphonic Acids: Validation of Semi-Volatile Analysis by HPLC-MS/MS by EPA Method MS999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, J; Vu, A; Koester, C

    The Environmental Protection Agency's (EPA) Region 5 Chicago Regional Laboratory (CRL) developed a method titled Analysis of Diisopropyl Methylphosphonate, Ethyl Hydrogen Dimethylamidophosphate, Isopropyl Methylphosphonic Acid, Methylphosphonic Acid, and Pinacolyl Methylphosphonic Acid in Water by Multiple Reaction Monitoring Liquid Chromatography/Tandem Mass Spectrometry: EPA Version MS999. This draft standard operating procedure (SOP) was distributed to multiple EPA laboratories and to Lawrence Livermore National Laboratory, which was tasked to serve as a reference laboratory for EPA's Environmental Reference Laboratory Network (ERLN) and to develop and validate analytical procedures. The primary objective of this study was to validate and verify the analytical procedures describedmore » in EPA Method MS999 for analysis of the listed phosphonic acids and surrogates in aqueous samples. The gathered data from this validation study will be used to: (1) demonstrate analytical method performance; (2) generate quality control acceptance criteria; and (3) revise the SOP to provide a validated method that would be available for use during a homeland security event. The data contained in this report will be compiled, by EPA CRL, with data generated by other EPA Regional laboratories so that performance metrics of EPA Method MS999 can be determined.« less

  17. Solvent hold tank sample results for MCU-16-1317-1318-1319: September 2016 monthly sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.; Jones, D. H.

    Savannah River National Laboratory (SRNL) received one set of three Solvent Hold Tank (SHT) samples (MCU-16-1317-1318-1319), pulled on 09/12/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-1317-1318-1319 indicated the Isopar™L concentration is above its nominal level (102%). The extractant (MaxCalix) and the modifier (CS-7SB) are 5% and 9% below their nominal concentrations. The suppressor (TiDG) is 76% below its nominal concentration. A summary of the concentration of the relevant solvent components is shown below.

  18. Solvent hold tank sample results for MCU-16-1363-1364-1365: November 2016 monthly sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.; Jones, D. H.

    Savannah River National Laboratory (SRNL) received one set of three Solvent Hold Tank (SHT) samples (MCU-16-1363-1364-1365), pulled on 11/15/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-1363-1364-1365 indicated the Isopar™L concentration is at its nominal level (100%). The extractant (MaxCalix) and the modifier (CS- 7SB) are 8% and 2 % below their nominal concentrations. The suppressor (TiDG) is 7% below its nominal concentration. A summary of the concentration of the relevant solvent components is shown below.

  19. Chromosomal Microarray versus Karyotyping for Prenatal Diagnosis

    PubMed Central

    Wapner, Ronald J.; Martin, Christa Lese; Levy, Brynn; Ballif, Blake C.; Eng, Christine M.; Zachary, Julia M.; Savage, Melissa; Platt, Lawrence D.; Saltzman, Daniel; Grobman, William A.; Klugman, Susan; Scholl, Thomas; Simpson, Joe Leigh; McCall, Kimberly; Aggarwal, Vimla S.; Bunke, Brian; Nahum, Odelia; Patel, Ankita; Lamb, Allen N.; Thom, Elizabeth A.; Beaudet, Arthur L.; Ledbetter, David H.; Shaffer, Lisa G.; Jackson, Laird

    2013-01-01

    Background Chromosomal microarray analysis has emerged as a primary diagnostic tool for the evaluation of developmental delay and structural malformations in children. We aimed to evaluate the accuracy, efficacy, and incremental yield of chromosomal microarray analysis as compared with karyotyping for routine prenatal diagnosis. Methods Samples from women undergoing prenatal diagnosis at 29 centers were sent to a central karyotyping laboratory. Each sample was split in two; standard karyotyping was performed on one portion and the other was sent to one of four laboratories for chromosomal microarray. Results We enrolled a total of 4406 women. Indications for prenatal diagnosis were advanced maternal age (46.6%), abnormal result on Down’s syndrome screening (18.8%), structural anomalies on ultrasonography (25.2%), and other indications (9.4%). In 4340 (98.8%) of the fetal samples, microarray analysis was successful; 87.9% of samples could be used without tissue culture. Microarray analysis of the 4282 nonmosaic samples identified all the aneuploidies and unbalanced rearrangements identified on karyotyping but did not identify balanced translocations and fetal triploidy. In samples with a normal karyotype, microarray analysis revealed clinically relevant deletions or duplications in 6.0% with a structural anomaly and in 1.7% of those whose indications were advanced maternal age or positive screening results. Conclusions In the context of prenatal diagnostic testing, chromosomal microarray analysis identified additional, clinically significant cytogenetic information as compared with karyotyping and was equally efficacious in identifying aneuploidies and unbalanced rearrangements but did not identify balanced translocations and triploidies. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT01279733.) PMID:23215555

  20. Sigma metric analysis for performance of creatinine with fresh frozen serum.

    PubMed

    Kang, Fengfeng; Zhang, Chuanbao; Wang, Wei; Wang, Zhiguo

    2016-01-01

    Six sigma provides an objective and quantitative methodology to describe the laboratory testing performance. In this study, we conducted a national trueness verification scheme with fresh frozen serum (FFS) for serum creatinine to evaluate its performance in China. Two different concentration levels of FFS, targeted with reference method, were sent to 98 laboratories in China. Imprecision and bias of the measurement procedure were calculated for each participant to further evaluate the sigma value. Quality goal index (QGI) analysis was used to investigate the reason of unacceptable performance for laboratories with σ < 3. Our study indicated that the sample with high concentration of creatinine had preferable sigma values. For the enzymatic method, 7.0% (5/71) to 45.1% (32/71) of the laboratories need to improve their measurement procedures (σ < 3). And for the Jaffe method, the percentages were from 11.5% (3/26) to 73.1% (19/26). QGI analysis suggested that most of the laboratories (62.5% for the enzymatic method and 68.4% for the Jaffe method) should make an effort to improve the trueness (QGI > 1.2). Only 3.1-5.3% of the laboratories should improve both of the precision and trueness. Sigma metric analysis of the serum creatinine assays is disappointing, which was mainly due to the unacceptable analytical bias according to the QGI analysis. Further effort is needed to enhance the trueness of the creatinine measurement.

Top