Sample records for laboratory scale batch

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shull, H.E.

    The objective of the project was to investigate the economic feasibility of converting potato waste to fuel alcohol. The source of potato starch was Troyer Farms Potato Chips. Experimental work was carried out at both the laboratory scale and the larger pilot scale batch operation at a decommissioned waste water treatment building on campus. The laboratory scale work was considerably more extensive than originally planned, resulting in a much improved scientific work. The pilot scale facility has been completed and operated successfully. In contrast, the analysis of the economic feasibility of commercial production has not yet been completed. The projectmore » was brought to a close with the successful demonstration of the fermentation and distillation using the large scale facilities described previously. Two batches of mash were cooked using the procedures established in support of the laboratory scale work. One of the batches was fermented using the optimum values of the seven controlled factors as predicted by the laboratory scale application of the Box-Wilson design. The other batch was fermented under conditions derived out of Mr. Rouse's interpretation of his long sequence of laboratory results. He was gratified to find that his commitment to the Box-Wilson experiments was justified. The productivity of the Box-Wilson design was greater. The difference between the performance of the two fermentors (one stirred, one not) has not been established yet. Both batches were then distilled together, demonstrating the satisfactory performance of the column still. 4 references.« less

  2. Indomethacin nanocrystals prepared by different laboratory scale methods: effect on crystalline form and dissolution behavior

    NASA Astrophysics Data System (ADS)

    Martena, Valentina; Censi, Roberta; Hoti, Ela; Malaj, Ledjan; Di Martino, Piera

    2012-12-01

    The objective of this study is to select very simple and well-known laboratory scale methods able to reduce particle size of indomethacin until the nanometric scale. The effect on the crystalline form and the dissolution behavior of the different samples was deliberately evaluated in absence of any surfactants as stabilizers. Nanocrystals of indomethacin (native crystals are in the γ form) (IDM) were obtained by three laboratory scale methods: A (Batch A: crystallization by solvent evaporation in a nano-spray dryer), B (Batch B-15 and B-30: wet milling and lyophilization), and C (Batch C-20-N and C-40-N: Cryo-milling in the presence of liquid nitrogen). Nanocrystals obtained by the method A (Batch A) crystallized into a mixture of α and γ polymorphic forms. IDM obtained by the two other methods remained in the γ form and a different attitude to the crystallinity decrease were observed, with a more considerable decrease in crystalline degree for IDM milled for 40 min in the presence of liquid nitrogen. The intrinsic dissolution rate (IDR) revealed a higher dissolution rate for Batches A and C-40-N, due to the higher IDR of α form than γ form for the Batch A, and the lower crystallinity degree for both the Batches A and C-40-N. These factors, as well as the decrease in particle size, influenced the IDM dissolution rate from the particle samples. Modifications in the solid physical state that may occur using different particle size reduction treatments have to be taken into consideration during the scale up and industrial development of new solid dosage forms.

  3. MODELING HEXAVALENT CHROMIUM REDUCTION IN GROUND- WATER IN FIELD-SCALE TRANSPORT AND LABORATORY BATCH EXPERIMENTS

    EPA Science Inventory

    A plausible and consistent model is developed to obtain a quantitative description of the gradual disappearance of hexavalent chromium (Cr(VI)) from groundwater in a small-scale field tracer test and in batch kinetic experiments using aquifer sediments under similar chemical cond...

  4. Bioprocessing Data for the Production of Marine Enzymes

    PubMed Central

    Sarkar, Sreyashi; Pramanik, Arnab; Mitra, Anindita; Mukherjee, Joydeep

    2010-01-01

    This review is a synopsis of different bioprocess engineering approaches adopted for the production of marine enzymes. Three major modes of operation: batch, fed-batch and continuous have been used for production of enzymes (such as protease, chitinase, agarase, peroxidase) mainly from marine bacteria and fungi on a laboratory bioreactor and pilot plant scales. Submerged, immobilized and solid-state processes in batch mode were widely employed. The fed-batch process was also applied in several bioprocesses. Continuous processes with suspended cells as well as with immobilized cells have been used. Investigations in shake flasks were conducted with the prospect of large-scale processing in reactors. PMID:20479981

  5. CALIBRATION OF FULL-SCALE OZONATION SYSTEMS WITH CONSERVATIVE AND REACTIVE TRACERS

    EPA Science Inventory

    A full-scale ozonation reactor was characterized with respect to the overall oxidation budget by coupling laboratory kinetics with reactor hydraulics. The ozone decomposition kinetics and the ratio of the OH radical to the ozone concentration were determined in laboratory batch ...

  6. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors.

    PubMed

    Haghverdi, Laleh; Lun, Aaron T L; Morgan, Michael D; Marioni, John C

    2018-06-01

    Large-scale single-cell RNA sequencing (scRNA-seq) data sets that are produced in different laboratories and at different times contain batch effects that may compromise the integration and interpretation of the data. Existing scRNA-seq analysis methods incorrectly assume that the composition of cell populations is either known or identical across batches. We present a strategy for batch correction based on the detection of mutual nearest neighbors (MNNs) in the high-dimensional expression space. Our approach does not rely on predefined or equal population compositions across batches; instead, it requires only that a subset of the population be shared between batches. We demonstrate the superiority of our approach compared with existing methods by using both simulated and real scRNA-seq data sets. Using multiple droplet-based scRNA-seq data sets, we demonstrate that our MNN batch-effect-correction method can be scaled to large numbers of cells.

  7. Batch test screening of industrial product/byproduct filter materials for agricultural drainage water treatment

    USDA-ARS?s Scientific Manuscript database

    Filter treatment may be a viable means for removing the nitrate, phosphate, and pesticides discharged with agricultural drainage waters that cause adverse environmental impacts within the U.S. on local, regional, and national scales. Laboratory batch test screening for agricultural drainage water ...

  8. Chapter 1.1 Process Scale-Up of Cellulose Nanocrystal Production to 25 kg per Batch at the Forest Products Laboratory

    Treesearch

    Richard S. Reiner; Alan W. Rudie

    2013-01-01

    The Fiber and Chemical Sciences Research Work Unit at the Forest Products Laboratory began working out the preparation of cellulose nanocrystals in 2006, using the method of Dong, Revol, and Gray. Initial samples were provided to several scientists within the Forest Service. Continued requests for this material forced scale-up from the initial 20 g scale to kg...

  9. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nges, Ivo Achu, E-mail: Nges.Ivo_Achu@biotek.lu.se; Escobar, Federico; Fu Xinmei

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competitionmore » for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.« less

  10. Elimination of the Reaction Rate "Scale Effect": Application of the Lagrangian Reactive Particle-Tracking Method to Simulate Mixing-Limited, Field-Scale Biodegradation at the Schoolcraft (MI, USA) Site

    NASA Astrophysics Data System (ADS)

    Ding, Dong; Benson, David A.; Fernández-Garcia, Daniel; Henri, Christopher V.; Hyndman, David W.; Phanikumar, Mantha S.; Bolster, Diogo

    2017-12-01

    Measured (or empirically fitted) reaction rates at groundwater remediation sites are typically much lower than those found in the same material at the batch or laboratory scale. The reduced rates are commonly attributed to poorer mixing at the larger scales. A variety of methods have been proposed to account for this scaling effect in reactive transport. In this study, we use the Lagrangian particle-tracking and reaction (PTR) method to simulate a field bioremediation experiment at the Schoolcraft, MI site. A denitrifying bacterium, Pseudomonas Stutzeri strain KC (KC), was injected to the aquifer, along with sufficient substrate, to degrade the contaminant, carbon tetrachloride (CT), under anaerobic conditions. The PTR method simulates chemical reactions through probabilistic rules of particle collisions, interactions, and transformations to address the scale effect (lower apparent reaction rates for each level of upscaling, from batch to column to field scale). In contrast to a prior Eulerian reaction model, the PTR method is able to match the field-scale experiment using the rate coefficients obtained from batch experiments.

  11. Nanocrystal synthesis in microfluidic reactors: where next?

    PubMed

    Phillips, Thomas W; Lignos, Ioannis G; Maceiczyk, Richard M; deMello, Andrew J; deMello, John C

    2014-09-07

    The past decade has seen a steady rise in the use of microfluidic reactors for nanocrystal synthesis, with numerous studies reporting improved reaction control relative to conventional batch chemistry. However, flow synthesis procedures continue to lag behind batch methods in terms of chemical sophistication and the range of accessible materials, with most reports having involved simple one- or two-step chemical procedures directly adapted from proven batch protocols. Here we examine the current status of microscale methods for nanocrystal synthesis, and consider what role microreactors might ultimately play in laboratory-scale research and industrial production.

  12. Addressing case specific biogas plant tasks: industry oriented methane yields derived from 5L Automatic Methane Potential Test Systems in batch or semi-continuous tests using realistic inocula, substrate particle sizes and organic loading.

    PubMed

    Kolbl, Sabina; Paloczi, Attila; Panjan, Jože; Stres, Blaž

    2014-02-01

    The primary aim of the study was to develop and validate an in-house upscale of Automatic Methane Potential Test System II for studying real-time inocula and real-scale substrates in batch, codigestion and enzyme enhanced hydrolysis experiments, in addition to semi-continuous operation of the developed equipment and experiments testing inoculum functional quality. The successful upscale to 5L enabled comparison of different process configurations in shorter preparation times with acceptable accuracy and high-through put intended for industrial decision making. The adoption of the same scales, equipment and methodologies in batch and semi-continuous tests mirroring those at full scale biogas plants resulted in matching methane yields between the two laboratory tests and full-scale, confirming thus the increased decision making value of the approach for industrial operations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Virus elimination in activated sludge systems: from batch tests to mathematical modeling.

    PubMed

    Haun, Emma; Ulbricht, Katharina; Nogueira, Regina; Rosenwinkel, Karl-Heinz

    2014-01-01

    A virus tool based on Activated Sludge Model No. 3 for modeling virus elimination in activated sludge systems was developed and calibrated with the results from laboratory-scale batch tests and from measurements in a municipal wastewater treatment plant (WWTP). The somatic coliphages were used as an indicator for human pathogenic enteric viruses. The extended model was used to simulate the virus concentration in batch tests and in a municipal full-scale WWTP under steady-state and dynamic conditions. The experimental and modeling results suggest that both adsorption and inactivation processes, modeled as reversible first-order reactions, contribute to virus elimination in activated sludge systems. The model should be a useful tool to estimate the number of viruses entering water bodies from the discharge of treated effluents.

  14. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.

    PubMed

    Nges, Ivo Achu; Escobar, Federico; Fu, Xinmei; Björnsson, Lovisa

    2012-01-01

    Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Consolidated bioprocessing of microalgal biomass to carboxylates by a mixed culture of cow rumen bacteria using anaerobic sequencing batch reactor (ASBR).

    PubMed

    Zhao, Baisuo; Liu, Jie; Frear, Craig; Holtzapple, Mark; Chen, Shulin

    2016-12-01

    This study employed mixed-culture consolidated bioprocessing (CBP) to digest microalgal biomass in an anaerobic sequencing batch reactor (ASBR). The primary objectives are to evaluate the impact of hydraulic residence time (HRT) on the productivity of carboxylic acids and to characterize the bacterial community. HRT affects the production rate and patterns of carboxylic acids. For the 5-L laboratory-scale fermentation, a 12-day HRT was selected because it offered the highest productivity of carboxylic acids and it synthesized longer chains. The variability of the bacterial community increased with longer HRT (R 2 =0.85). In the 5-L laboratory-scale fermentor, the most common phyla were Firmicutes (58.3%), Bacteroidetes (27.4%), and Proteobacteria (11.9%). The dominant bacterial classes were Clostridia (29.8%), Bacteroidia (27.4%), Tissierella (26.2%), and Betaproteobacteria (8.9%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Assessment of Bioremediation Technologies: Focus on Technologies Suitable for Field-Level Demonstrations and Applicable to DoD Contaminants.

    DTIC Science & Technology

    1995-06-01

    include leachate collection systems and some form of aeration. The reactor is set up on an impermeable liner to prevent contaminant migration. Treatment...Bioremediation Microbial Mats Phytoremediation /construc- ted wetlands White Rot Fungus Full scale commercial technology for treatment of hydro...validation Phytoremediation / Constructed Wetlands Some scaled up batch demonstrations. Primarily laboratory scale. White Rot Fungus Pilot scale

  17. Scale-up bioprocess development for production of the antibiotic valinomycin in Escherichia coli based on consistent fed-batch cultivations.

    PubMed

    Li, Jian; Jaitzig, Jennifer; Lu, Ping; Süssmuth, Roderich D; Neubauer, Peter

    2015-06-12

    Heterologous production of natural products in Escherichia coli has emerged as an attractive strategy to obtain molecules of interest. Although technically feasible most of them are still constrained to laboratory scale production. Therefore, it is necessary to develop reasonable scale-up strategies for bioprocesses aiming at the overproduction of targeted natural products under industrial scale conditions. To this end, we used the production of the antibiotic valinomycin in E. coli as a model system for scalable bioprocess development based on consistent fed-batch cultivations. In this work, the glucose limited fed-batch strategy based on pure mineral salt medium was used throughout all scales for valinomycin production. The optimal glucose feed rate was initially detected by the use of a biocatalytically controlled glucose release (EnBase® technology) in parallel cultivations in 24-well plates with continuous monitoring of pH and dissolved oxygen. These results were confirmed in shake flasks, where the accumulation of valinomycin was highest when the specific growth rate decreased below 0.1 h(-1). This correlation was also observed for high cell density fed-batch cultivations in a lab-scale bioreactor. The bioreactor fermentation produced valinomycin with titers of more than 2 mg L(-1) based on the feeding of a concentrated glucose solution. Valinomycin production was not affected by oscillating conditions (i.e. glucose and oxygen) in a scale-down two-compartment reactor, which could mimic similar situations in industrial bioreactors, suggesting that the process is very robust and a scaling of the process to a larger industrial scale appears a realistic scenario. Valinomycin production was scaled up from mL volumes to 10 L with consistent use of the fed-batch technology. This work presents a robust and reliable approach for scalable bioprocess development and represents an example for the consistent development of a process for a heterologously expressed natural product towards the industrial scale.

  18. SiC layer microstructure in AGR-1 and AGR-2 TRISO fuel particles and the influence of its variation on the effective diffusion of key fission products

    DOE PAGES

    Gerczak, Tyler J.; Hunn, John D.; Lowden, Richard A.; ...

    2016-08-15

    Tristructural isotropic (TRISO) coated particle fuel is a promising fuel form for advanced reactor concepts such as high temperature gas-cooled reactors (HTGR) and is being developed domestically under the US Department of Energy’s Nuclear Reactor Technologies Initiative in support of Advanced Reactor Technologies. The fuel development and qualification plan includes a series of fuel irradiations to demonstrate fuel performance from the laboratory to commercial scale. The first irradiation campaign, AGR-1, included four separate TRISO fuel variants composed of multiple, laboratory-scale coater batches. The second irradiation campaign, AGR-2, included TRISO fuel particles fabricated by BWX Technologies with a larger coater representativemore » of an industrial-scale system. The SiC layers of as-fabricated particles from the AGR-1 and AGR-2 irradiation campaigns have been investigated by electron backscatter diffraction (EBSD) to provide key information about the microstructural features relevant to fuel performance. The results of a comprehensive study of multiple particles from all constituent batches are reported. The observations indicate that there were microstructural differences between variants and among constituent batches in a single variant. Finally, insights on the influence of microstructure on the effective diffusivity of key fission products in the SiC layer are also discussed.« less

  19. BIOTRANSFORMATION OF GASOLINE-CONTAMINATED GROUNDWATER UNDER MIXED ELECTRON-ACCEPTOR CONDITIONS

    EPA Science Inventory

    This project represents a cooperative effort between the University of Waterloo and the U.S. Environmental Protection Agency. This report summarizes research conducted using both laboratory batch microcosms and field-scale sheet-piling cells to evaluate whether bioremediation of...

  20. Effect of Growth Conditions and Trehalose Content on Cryotolerance of Bakers' Yeast in Frozen Doughs

    PubMed Central

    Gélinas, Pierre; Fiset, Gisèle; LeDuy, Anh; Goulet, Jacques

    1989-01-01

    The cryotolerance in frozen doughs and in water suspensions of bakers' yeast (Saccharomyces cerevisiae) previously grown under various industrial conditions was evaluated on a laboratory scale. Fed-batch cultures were very superior to batch cultures, and strong aeration enhanced cryoresistance in both cases for freezing rates of 1 to 56°C min−1. Loss of cell viability in frozen dough or water was related to the duration of the dissolved-oxygen deficit during fed-batch growth. Strongly aerobic fed-batch cultures grown at a reduced average specific rate (μ = 0.088 h−1 compared with 0.117 h−1) also showed greater trehalose synthesis and improved frozen-dough stability. Insufficient aeration (dissolved-oxygen deficit) and lower growth temperature (20°C instead of 30°C) decreased both fed-batch-grown yeast cryoresistance and trehalose content. Although trehalose had a cryoprotective effect in S. cerevisiae, its effect was neutralized by even a momentary lack of excess dissolved oxygen in the fed-batch growth medium. PMID:16348024

  1. Tablet Velocity Measurement and Prediction in the Pharmaceutical Film Coating Process.

    PubMed

    Suzuki, Yasuhiro; Yokohama, Chihiro; Minami, Hidemi; Terada, Katsuhide

    2016-01-01

    The purpose of this study was to measure the tablet velocity in pan coating machines during the film coating process in order to understand the impact of the batch size (laboratory to commercial scale), coating machine type (DRIACOATER, HICOATER® and AQUA COATER®) and manufacturing conditions on tablet velocity. We used a high speed camera and particle image velocimetry to measure the tablet velocity in the coating pans. It was observed that increasing batch sizes resulted in increased tablet velocities under the same rotation number because of the differences in circumferential rotation speeds. We also observed the tendency that increase in the filling ratio of tablets resulted in an increased tablet velocity for all coating machines. Statistical analysis was used to make a tablet velocity predictive equation by employing the filling ratio and rotation speed as the parameters from these measured values. The correlation coefficients of predicted value and experimental value were more than 0.959 in each machine. Using the predictive equation to determine tablet velocities, the manufacturing conditions of previous products were reviewed, and it was found that the tablet velocities of commercial scales, in which tablet chipping and breakage problems had occurred, were higher than those of pilot scales or laboratory scales.

  2. Acceptance Test Data for BWXT Coated Particle Batches 93172B and 93173B—Defective IPyC and Pyrocarbon Anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunn, John D.; Helmreich, Grant W.; Dyer, John A.

    Coated particle batches J52O-16-93172B and J52O-16-93173B were produced by Babcock and Wilcox Technologies (BWXT) as part of the production campaign for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR), but were not used in the final fuel composite. However, these batches may be used as demonstration production-scale coated particle fuel for other experiments. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT lot J52R-16-69317 containing a mixture ofmore » 15.5%-enriched uranium carbide and uranium oxide (UCO). The TRISO coatings consisted of four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μm-nominal thickness. The TRISO-coated particle batches were sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batches were designated by appending the letter A to the end of the batch number (e.g., 93172A). Secondary upgrading by sieving was performed on the A-designated batches to remove particles with missing or very-thin buffer layers that were identified during previous analysis of the individual batches for defective IPyC, as reported in the acceptance test data report for the AGR-5/6/7 production batches [Hunn et al. 2017b]. The additionally-upgraded batches were designated by appending the letter B to the end of the batch number (e.g., 93172B).« less

  3. ELECTROCHEMICAL CHROMIC ACID REGENERATION PROCESS: FITTING OF MEMBRANE TRANSPORT PROPERTIES. (R827125)

    EPA Science Inventory

    Abstract

    A mathematical model was developed to predict changes in contaminant concentrations with time, and to estimate contaminant fluxes due to migration, diffusion, and convection in a laboratory-scale batch electrolysis cell for the regeneration of contaminated har...

  4. Preozonation of primary-treated municipal wastewater for reuse in biofuel feedstock generation

    EPA Science Inventory

    The results of a laboratory scale investigation on ozone pretreatment of primary treated municipal wastewater for potential reuse in fermentation processes for the production of biofuels and bio-based feedstock chemicals were presented. Semi-batch preozonation with 3.0 % (w/w) oz...

  5. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Tara E.; Newell, J. David; Woodham, Wesley H.

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing wasmore » prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.« less

  6. Ultrasound pre-treatment for anaerobic digestion improvement.

    PubMed

    Pérez-Elvira, S; Fdz-Polanco, M; Plaza, F I; Garralón, G; Fdz-Polanco, F

    2009-01-01

    Prior research indicates that ultrasounds can be used in batch reactors as pre-treatment before anaerobic digestion, but the specific energy required at laboratory-scale is too high. This work evaluates both the continuous ultrasound device performance (efficiency and solubilisation) and the operation of anaerobic digesters continuously fed with sonicated sludge, and presents energy balance considerations. The results of sludge solubilisation after the sonication treatment indicate that, applying identical specific energy, it is better to increase the power than the residence time. Working with secondary sludge, batch biodegradability tests show that by applying 30 kWh/m3 of sludge, it is possible to increase biogas production by 42%. Data from continuous pilot-scale anaerobic reactors (V=100 L) indicate that operating with a conventional HRT=20 d, a reactor fed with pre-treated sludge increases the volatile solids removal and the biogas production by 25 and 37% respectively. Operating with HRT=15 d, the removal efficiency is similar to the obtained with a reactor fed with non-hydrolysed sludge at HTR=20 d, although the specific biogas productivity per volume of reactor is higher for the pretreated sludge. Regarding the energy balance, although for laboratory-scale devices it is negative, full-scale suppliers state a net generation of 3-10 kW per kW of energy used.

  7. Modeling hexavalent chromium reduction in groundwater in field-scale transport and laboratory batch experiments

    USGS Publications Warehouse

    Friedly, J.C.; Davis, J.A.; Kent, D.B.

    1995-01-01

    A plausible and consistent model is developed to obtain a quantitative description of the gradual disappearance of hexavalent chromium (Cr(VI)) from groundwater in a small-scale field tracer test and in batch kinetic experiments using aquifer sediments under similar chemical conditions. The data exhibit three distinct timescales. Fast reduction occurs in well-stirred batch reactors in times much less than 1 hour and is followed by slow reduction over a timescale of the order of 2 days. In the field, reduction occurs on a timescale of the order of 8 days. The model is based on the following hypotheses. The chemical reduction reaction occurs very fast, and the longer timescales are caused by diffusion resistance. Diffusion into the secondary porosity of grains causes the apparent slow reduction rate in batch experiments. In the model of the field experiments, the reducing agent, heavy Fe(II)-bearing minerals, is heterogeneously distributed in thin strata located between larger nonreducing sand lenses that comprise the bulk of the aquifer solids. It is found that reducing strata of the order of centimeters thick are sufficient to contribute enough diffusion resistance to cause the observed longest timescale in the field. A one-dimensional advection/dispersion model is formulated that describes the major experimental trends. Diffusion rates are estimated in terms of an elementary physical picture of flow through a stratified medium containing identically sized spherical grains. Both reduction and sorption reactions are included. Batch simulation results are sensitive to the fraction of reductant located at or near the surface of grains, which controls the amount of rapid reduction, and the secondary porosity, which controls the rate of slow reduction observed in batch experiments. Results of Cr(VI) transport simulations are sensitive to the thickness and relative size of the reducing stratum. Transport simulation results suggest that nearly all of the reductant must be located in the reducing stratum. Within this context and as long as there is adequate reductive capacity present, the transport simulation results are insensitive to the parameters important for the batch simulations. The results illustrate how a combination of field measurements and batch laboratory studies can be used to improve predictive modeling of contaminant transport.

  8. Influence of voltage input to heavy metal removal from electroplating wastewater using electrocoagulation process

    NASA Astrophysics Data System (ADS)

    Wulan, D. R.; Cahyaningsih, S.; Djaenudin

    2017-03-01

    In medium capacity, electroplating industry usually treats wastewater until 5 m3 per day. Heavy metal content becomes concern that should be reduced. Previous studies performed electrocoagulation method on laboratory scale, either batch or continuous. This study was aimed to compare the influence of voltage input variation into heavy metal removal in electroplating wastewater treatment using electrocoagulation process on laboratory-scale in order to determine the optimum condition for scaling up the reactor into pilot-scale. The laboratory study was performed in 1.5 L glass reactor in batch system using wastewater from electroplating industry, the voltage input varied at 20, 30 and 40 volt. The electrode consisted of aluminium 32 cm2 as sacrifice anode and copper 32 cm2 as cathode. During 120 min electrocoagulation process, the pH value was measured using pH meter, whereas the heavy metal of chromium, copper, iron, and zinc concentration were analysed using Atomic Absorption Spectrophotometer (AAS). Result showed that removal of heavy metals from wastewater increased due to the increasing of voltage input. Different initial concentration of heavy metals on wastewater, resulted the different detention time. At pilot-scale reactor with 30 V voltage input, chromium, iron, and zinc reached removal efficiency until 89-98%, when copper reached 79% efficiency. At 40V, removal efficiencies increased on same detention time, i.e. chromium, iron, and zinc reached 89-99%, whereas copper reached 85%. These removal efficiencies have complied the government standard except for copper that had higher initial concentration in wastewater. Kinetic rate also calculated in this study as the basic factor for scaling up the process.

  9. Acceptance Test Data for BWXT Coated Particle Batch 93164A Defective IPyC Fraction and Pyrocarbon Anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmreich, Grant W.; Hunn, John D.; Skitt, Darren J.

    2017-02-01

    Coated particle fuel batch J52O-16-93164 was produced by Babcock and Wilcox Technologies (BWXT) for possible selection as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR), or may be used as demonstration production-scale coated particle fuel for other experiments. The tristructural-isotropic (TRISO) coatings were deposited in a 150-mm-diameter production-scale fluidizedbed chemical vapor deposition (CVD) furnace onto 425-μm-nominal-diameter spherical kernels from BWXT lot J52L-16-69316. Each kernel contained a mixture of 15.5%-enriched uranium carbide and uranium oxide (UCO) and was coated with four consecutive CVD layers:more » a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μm-nominal thickness. The TRISO-coated particle batch was sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batch was designated by appending the letter A to the end of the batch number (i.e., 93164A).« less

  10. Conversion of H2 and CO2 to CH4 and acetate in fed-batch biogas reactors by mixed biogas community: a novel route for the power-to-gas concept.

    PubMed

    Szuhaj, Márk; Ács, Norbert; Tengölics, Roland; Bodor, Attila; Rákhely, Gábor; Kovács, Kornél L; Bagi, Zoltán

    2016-01-01

    Applications of the power-to-gas principle for the handling of surplus renewable electricity have been proposed. The feasibility of using hydrogenotrophic methanogens as CH4 generating catalysts has been demonstrated. Laboratory and scale-up experiments have corroborated the benefits of the CO2 mitigation via biotechnological conversion of H2 and CO2 to CH4. A major bottleneck in the process is the gas-liquid mass transfer of H2. Fed-batch reactor configuration was tested at mesophilic temperature in laboratory experiments in order to improve the contact time and H2 mass transfer between the gas and liquid phases. Effluent from an industrial biogas facility served as biocatalyst. The bicarbonate content of the effluent was depleted after some time, but the addition of stoichiometric CO2 sustained H2 conversion for an extended period of time and prevented a pH shift. The microbial community generated biogas from the added α-cellulose substrate with concomitant H2 conversion, but the organic substrate did not facilitate H2 consumption. Fed-batch operational mode allowed a fourfold increase in volumetric H2 load and a 6.5-fold augmentation of the CH4 formation rate relative to the CSTR reactor configuration. Acetate was the major by-product of the reaction. Fed-batch reactors significantly improve the efficiency of the biological power-to-gas process. Besides their storage function, biogas fermentation effluent reservoirs can serve as large-scale bio CH4 reactors. On the basis of this recognition, a novel concept is proposed, which merges biogas technology with other means of renewable electricity production for improved efficiency and sustainability.

  11. Characterization Of The As-Received Sludge Batch 9 Qualification Sample (Htf-51-15-81)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareizs, J.

    Savannah River National Laboratory (SRNL) personnel have been requested to qualify the next sludge batch (Sludge Batch 9 – SB9) for processing at the Defense Waste Processing Facility (DWPF). To accomplish this task, Savannah River Remediation (SRR) has sent SRNL a 3-L slurried sample of Tank 51H (HTF-51-15-81) to be characterized, washed, and then used in a lab-scale demonstration of the DWPF flowsheet (potentially after combining with Tank 40H sludge). This report documents the first steps of the qualification process – characterization of the as-received Tank 51H qualification sample. These results will be used to support a reprojection of SB9more » by SRR from which final Tank 51H washing, frit development, and Chemical Processing Cell (CPC) activities will be based.« less

  12. Vinegar production from post-distillation slurry deriving from rice shochu production with the addition of caproic acid-producing bacteria consortium and lactic acid bacterium.

    PubMed

    Yuan, Hua-Wei; Tan, Li; Chen, Hao; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji

    2017-12-01

    To establish a zero emission process, the post-distillation slurry of a new type of rice shochu (NTRS) was used for the production of health promoting vinegar. Since the NTRS post-distillation slurry contained caproic acid and lactic acid, the effect of these two organic acids on acetic acid fermentation was first evaluated. Based on these results, Acetobacter aceti CICC 21684 was selected as a suitable strain for subsequent production of vinegar. At the laboratory scale, acetic acid fermentation of the NTRS post-distillation slurry in batch mode resulted in an acetic acid concentration of 41.9 g/L, with an initial ethanol concentration of 40 g/L, and the acetic acid concentration was improved to 44.5 g/L in fed-batch mode. Compared to the NTRS post-distillation slurry, the vinegar product had higher concentrations of free amino acids and inhibition of angiotensin I converting enzyme activity. By controlling the volumetric oxygen transfer coefficient to be similar to that of the laboratory scale production, 45 g/L of acetic acid was obtained at the pilot scale, using a 75-L fermentor with a working volume of 40 L, indicating that vinegar production can be successfully scaled up. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. [Pilot-scale cultivation of Spirulina plantensis with digested piggery wastewater ].

    PubMed

    Guo, Qing-qing; Liu, Rui; Luo, Jin-fei; Wang, Gen-rong; Chen, Lii-jun; Liu, Xiao

    2014-09-01

    The swine waste pretreated with coagulation sedimentation was used for the outdoor pilot-scale cultivation of Spirulina platensis isolated from digested piggery wastewater (DPW) in a raceway pond. The growth of S. platensis and removal of nitrogen/ phosphorus were studied, moreover, the conversion efficiency of total nitrogen (TN) or total phosphorus (TP) from DPW to S. platensis was calculated. On this basis, the existing problems and countermeasures during outdoor pilot-scale culture were analyzed and summarized combined with the laboratory research. We conducted 6 batches culture experiments, only 3 of which could reach the S. platensis harvest requirements (D560 >0. 8). Meanwhile, the 3 successful batches achieved removal of COD, ammonia nitrogen, TN, TP with corresponding 28. 6% -48. 5% , 0.4% -48. 5% , 41. 8% -48. 6% , 14. 3% -94. 5% , and the conversion efficiency of TN or TP from DPW to S. platensis reached 12. 1% -98. 5% , 21.2% -83.7% , respectively. High concentration of ammonia nitrogen and insect attack of remaining egg hatching in the pretreated swine waste were the main factors to cause the slow-growing of the 3 batches of S. platensis. Therefore, it is highly necessary for the removal of ammonia nitrogen with biological treatment technology and insect eggs with membrane to achieve a stable high productivity.

  14. Laboratory-scale integrated ARP filter test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.; Burket, P.

    2016-03-01

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. There is a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. This task attempted to simulate the entire ARP process, including multiple batches (5), washing, chemical cleaning, andmore » blending the feed with heels and recycle streams. The objective of the tests was to determine whether one of these processes is causing excessive fouling of the crossflow or secondary filter. The authors conducted the tests with feed solutions containing 6.6 M sodium Salt Batch 6 simulant supernate with no MST.« less

  15. Acceptance Test Data for Candidate AGR-5/6/7 TRISO Particle Batches BWXT Coater Batches 93165 93172 Defective IPyC Fraction and Pyrocarbon Anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmreich, Grant W.; Hunn, John D.; Skitt, Darren J.

    2017-03-01

    Coated particle fuel batches J52O-16-93165, 93166, 93168, 93169, 93170, and 93172 were produced by Babcock and Wilcox Technologies (BWXT) for possible selection as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR). Some of these batches may alternately be used as demonstration coated particle fuel for other experiments. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT lot J52R-16-69317 containing a mixture of 15.5%-enriched uranium carbide andmore » uranium oxide (UCO). The TRISO coatings consisted of four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μmnominal thickness. The TRISO-coated particle batches were sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batches were designated by appending the letter A to the end of the batch number (e.g., 93165A).« less

  16. Coal desulfurization by low temperature chlorinolysis, phase 3

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Rohatgi, N. K.; Ernest, J.

    1981-01-01

    Laboratory scale, bench scale batch reactor, and minipilot plant tests were conducted on 22 bituminous, subbituminous, and lignite coals. Chemical pretreatment and post treatment of coals relative to the chlorination were tried as a means of enhancing desulfurization by the chlorinolysis process. Elevated temperature (500-700 C) hydrogen treatment of chlorinolysis-processed coal at atmospheric pressure was found to substantially increase coal desulfurization up to 90 percent. Sulfur forms, proximate and ultimate analyses of the processed coal are included. Minipilot plant operation indicates that the continuous flow reactor provides coal desulfurization results comparable to those obtained in the batch reactor. Seven runs were conducted at coal feed rates of 1.5 to 8.8 kg per hour using water and methylchloroform solvents, gaseous chlorine feed of 3 to 31.4 SCFH at 21 to 70 C, and atmospheric pressure for retention times of 20 to 120 minutes.

  17. The use of ethanol to remove sulfur from coal. Final report, September 1991--December 1992; Revision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, R.L.; Lazarov, L.K.; Prudich, M.E.

    1994-03-10

    The initial technical goal in the project was to develop a chemical method for the cost effective removal of both inorganic and organic sulfur from Ohio coals. Verifying and using a process of reacting ethanol vapors with coal under conditions disclosed in U.S. Patent 4,888,029, the immediate technical objectives were to convert a small scale laborative batch process to a larger scale continuous process which can serve as the basis for commercial development of the technology. This involved getting as much information as possible from small scale batch autoclave or fluid bed laboratory reactors for use in pilot plant studies.more » The laboratory data included material balances on the coal and sulfur, temperature and pressure ranges for the reaction, minimum reaction times at different conditions, the effectiveness of different activators such as oxygen and nitric oxide, the amount and nature of by-products such as sulfur dioxide, hydrogen sulfide and acetaldehyde, the effect of coal particle size on the speed and completeness of the reaction, and the effectiveness of the reaction on different Ohio coals. Because the laboratory experiments using the method disclosed in U.S. 4,888,029 were not successful, the objective for the project was changed to develop a new laboratory process to use ethanol to remove sulfur from coal. Using copper as a catalyst and as an H{sub 2}S scavenger, a new laboratory procedure to use ethanol to remove sulfur from coal has been developed at Ohio University and a patent application covering this process was filed in March, 1993. The process is based on the use of copper as a catalyst for the dehydrogenation of ethanol to produce nascent hydrogen to remove sulfur from the coal and the use of copper as a scavenger to capture the hydrogen sulfide formed from the sulfur removed from coal.« less

  18. NH4+ ad-/desorption in sequencing batch reactors: simulation, laboratory and full-scale studies.

    PubMed

    Schwitalla, P; Mennerich, A; Austermann-Haun, U; Müller, A; Dorninger, C; Daims, H; Holm, N C; Rönner-Holm, S G E

    2008-01-01

    Significant NH4-N balance deficits were found during the measurement campaigns for the data collection for dynamic simulation studies at five full-scale sequencing batch reactor (SBR) waste water treatment plants (WWTPs), as well as during subsequent calibrations at the investigated plants. Subsequent lab scale investigations showed high evidence for dynamic, cycle-specific NH4+ ad-/desorption to the activated flocs as one reason for this balance deficit. This specific dynamic was investigated at five full-scale SBR plants for the search of the general causing mechanisms. The general mechanism found was a NH4+ desorption from the activated flocs at the end of the nitrification phase with subsequent nitrification and a chemical NH4+ adsorption at the flocs in the course of the filling phases. This NH4+ ad-/desorption corresponds to an antiparallel K+ ad/-desorption.One reasonable full-scale application was investigated at three SBR plants, a controlled filling phase at the beginning of the sedimentation phase. The results indicate that this kind of filling event must be specifically hydraulic controlled and optimised in order to prevent too high waste water break through into the clear water phase, which will subsequently be discarded. IWA Publishing 2008.

  19. INTERIOR VIEW SHOWING BATCH SCALES. SERIES OF FIVE SCALES WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW SHOWING BATCH SCALES. SERIES OF FIVE SCALES WITH SIX DIFFERENT MATERIALS. MIX SIFTED DOWN FROM SILOS ABOVE. INGREDIENTS: SAND, SODA ASH, DOLOMITE LIMESTONE, NEPHELINE SYENITE, SALT CAKE. - Chambers-McKee Window Glass Company, Batch Plant, Clay Avenue Extension, Jeannette, Westmoreland County, PA

  20. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR BATCHING OF LABORATORY DATA (UA-C-7.0)

    EPA Science Inventory

    The purpose of this SOP is to describe the steps involved in batching the physical laboratory data forms generated by the Arizona Border Study and slated for data entry. It applies to all physical laboratory data forms entered for this study. This procedure was followed to ensu...

  1. Construction and fed-batch cultivation of Candida famata with enhanced riboflavin production.

    PubMed

    Dmytruk, Kostyantyn; Lyzak, Oleksy; Yatsyshyn, Valentyna; Kluz, Maciej; Sibirny, Vladimir; Puchalski, Czeslaw; Sibirny, Andriy

    2014-02-20

    Riboflavin (vitamin B2) is an essential nutrition component serving as a precursor of coenzymes FMN and FAD that are involved mostly in reactions of oxidative metabolism. Riboflavin is produced in commercial scale and is used in feed and food industries, and in medicine. The yeast Candida famata (Candida flareri) belongs to the group of so called "flavinogenic yeasts" which overproduce riboflavin under iron limitation. Three genes SEF1, RIB1 and RIB7 coding for a putative transcription factor, GTP cyclohydrolase II and riboflavin synthase, respectively were simultaneously overexpressed in the background of a non-reverting riboflavin producing mutant AF-4, obtained earlier in our laboratory using methods of classical selection (Dmytruk et al. (2011), Metabolic Engineering 13, 82-88). Cultivation conditions of the constructed strain were optimized for shake-flasks and bioreactor cultivations. The constructed strain accumulated up to 16.4g/L of riboflavin in optimized medium in a 7L laboratory bioreactor during fed-batch fermentation. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Fluidized bed coal desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  3. Decontamination of Pangasius fish (Pangasius hypophthalmus) with chlorine or peracetic acid in the laboratory and in a Vietnamese processing company.

    PubMed

    Tong Thi, Anh Ngoc; Sampers, Imca; Van Haute, Sam; Samapundo, Simbarashe; Ly Nguyen, Binh; Heyndrickx, Marc; Devlieghere, Frank

    2015-09-02

    This study evaluated the decontamination of Pangasius fillets in chlorine or peracetic acid treated wash water. First, the decontamination efficacy of the washing step with chlorinated water applied by a Vietnamese processing company during trimming of Pangasius fillets was evaluated and used as the basis for the experiments performed on a laboratory scale. As chlorine was only added at the beginning of the batch and used continuously without renewal for 239min; a rapid increase of the bacterial counts and a fast decrease of chlorine in the wash water were found. This could be explained by the rapid accumulation of organic matter (ca. 400mg O2/L of COD after only 24min). Secondly, for the experiments performed on a laboratory scale, a single batch approach (one batch of wash water for treating a fillet) was used. Chlorine and PAA were evaluated at 10, 20, 50 and 150ppm at contact times of 10, 20 and 240s. Washing with chlorine and PAA wash water resulted in a reduction of Escherichia coli on Pangasius fish which ranged from 0-1.0 and 0.4-1.4logCFU/g, respectively while less to no reduction of total psychrotrophic counts, lactic acid bacteria and coliforms on Pangasius fish was observed. However, in comparison to PAA, chlorine was lost rapidly. As an example, 53-83% of chlorine and 15-17% of PAA were lost after washing for 40s (COD=238.2±66.3mg O2/L). Peracetic acid can therefore be an alternative sanitizer. However, its higher cost will have to be taken into consideration. Where (cheaper) chlorine is used, the processors have to pay close attention to the residual chlorine level, pH and COD level during treatment for optimal efficacy. Copyright © 2015. Published by Elsevier B.V.

  4. A Semi-Batch Reactor Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Derevjanik, Mario; Badri, Solmaz; Barat, Robert

    2011-01-01

    This experiment and analysis offer an economic yet challenging semi-batch reactor experience. Household bleach is pumped at a controlled rate into a batch reactor containing pharmaceutical hydrogen peroxide solution. Batch temperature, product molecular oxygen, and the overall change in solution conductivity are metered. The reactor simulation…

  5. Investigation of vinegar production using a novel shaken repeated batch culture system.

    PubMed

    Schlepütz, Tino; Büchs, Jochen

    2013-01-01

    Nowadays, bioprocesses are developed or optimized on small scale. Also, vinegar industry is motivated to reinvestigate the established repeated batch fermentation process. As yet, there is no small-scale culture system for optimizing fermentation conditions for repeated batch bioprocesses. Thus, the aim of this study is to propose a new shaken culture system for parallel repeated batch vinegar fermentation. A new operation mode - the flushing repeated batch - was developed. Parallel repeated batch vinegar production could be established in shaken overflow vessels in a completely automated operation with only one pump per vessel. This flushing repeated batch was first theoretically investigated and then empirically tested. The ethanol concentration was online monitored during repeated batch fermentation by semiconductor gas sensors. It was shown that the switch from one ethanol substrate quality to different ethanol substrate qualities resulted in prolonged lag phases and durations of the first batches. In the subsequent batches the length of the fermentations decreased considerably. This decrease in the respective lag phases indicates an adaptation of the acetic acid bacteria mixed culture to the specific ethanol substrate quality. Consequently, flushing repeated batch fermentations on small scale are valuable for screening fermentation conditions and, thereby, improving industrial-scale bioprocesses such as vinegar production in terms of process robustness, stability, and productivity. Copyright © 2013 American Institute of Chemical Engineers.

  6. Practical considerations, column studies and natural organic material competition for fluoride removal with bone char and aluminum amended materials in the Main Ethiopian Rift Valley.

    PubMed

    Brunson, Laura R; Sabatini, David A

    2014-08-01

    The fluoride removal capacities of three materials, bone char (BC), aluminum oxide coated bone char (ACBC) and aluminum oxide impregnated wood char (AIWC), along with activated alumina (AA) as a baseline material, were investigated in batch and column studies, including comparison between synthetic and natural groundwater. Results suggest that in all cases the laboratory column results exhibited higher fluoride removal efficiency than the field studies conducted in the Ethiopian Rift Valley. Further studies indicate that the reduced effectiveness in the field was likely due to a combination of the high pH of groundwater (8.2) and the presence of competing ions (sulfate). Batch studies testing potential competition from natural organic material (NOM) showed no statistical evidence of NOM competition with BC and minor evidence of competition with ACBC and AIWC. To provide evidence for using Rapid Scale Small Column Test (RSSCT) principles for BC two different column volume and particle sizes were used. The results indicate that RSSCT scaling equations, developed for activated carbon, are applicable for BC removal of fluoride. These results thus provide valuable insights for translating laboratory results of novel sorbents for mitigating fluoride tainted groundwater in the field. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Effects of process parameters on solid self-microemulsifying particles in a laboratory scale fluid bed.

    PubMed

    Mukherjee, Tusharmouli; Plakogiannis, Fotios M

    2012-01-01

    The purpose of this study was to select the critical process parameters of the fluid bed processes impacting the quality attribute of a solid self-microemulsifying (SME) system of albendazole (ABZ). A fractional factorial design (2(4-1)) with four parameters (spray rate, inlet air temperature, inlet air flow, and atomization air pressure) was created by MINITAB software. Batches were manufactured in a laboratory top-spray fluid bed at 625-g scale. Loss on drying (LOD) samples were taken throughout each batch to build the entire moisture profiles. All dried granulation were sieved using mesh 20 and analyzed for particle size distribution (PSD), morphology, density, and flow. It was found that as spray rate increased, sauter-mean diameter (D(s)) also increased. The effect of inlet air temperature on the peak moisture which is directly related to the mean particle size was found to be significant. There were two-way interactions between studied process parameters. The main effects of inlet air flow rate and atomization air pressure could not be found as the data were inconclusive. The partial least square (PLS) regression model was found significant (P < 0.01) and predictive for optimization. This study established a design space for the parameters for solid SME manufacturing process.

  8. Laboratory-scale anaerobic sequencing batch reactor for treatment of stillage from fruit distillation.

    PubMed

    Rada, Elena Cristina; Ragazzi, Marco; Torretta, Vincenzo

    2013-01-01

    This work describes batch anaerobic digestion tests carried out on stillages, the residue of the distillation process on fruit, in order to contribute to the setting of design parameters for a planned plant. The experimental apparatus was characterized by three reactors, each with a useful volume of 5 L. The different phases of the work carried out were: determining the basic components of the chemical oxygen demand (COD) of the stillages; determining the specific production of biogas; and estimating the rapidly biodegradable COD contained in the stillages. In particular, the main goal of the anaerobic digestion tests on stillages was to measure the parameters of specific gas production (SGP) and gas production rate (GPR) in reactors in which stillages were being digested using ASBR (anaerobic sequencing batch reactor) technology. Runs were developed with increasing concentrations of the feed. The optimal loads for obtaining the maximum SGP and GPR values were 8-9 gCOD L(-1) and 0.9 gCOD g(-1) volatile solids.

  9. Characterization of the SRNL-Washed tank 51 sludge batch 9 qualification sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareizs, J. M.

    2016-01-01

    Savannah River National Laboratory (SRNL) personnel have been requested to qualify the next sludge batch (Sludge Batch 9 – SB9) for processing at the Defense Waste Processing Facility (DWPF). To accomplish this task, Savannah River Remediation (SRR) sent SRNL a 3-L sample of Tank 51H slurry to be characterized, washed, and then used in a lab-scale demonstration of the DWPF flowsheet (after combining with Tank 40H sludge). SRNL has washed the Tank 51H sample per the Tank Farm washing strategy as of October 20, 2015. A part of the qualification process is extensive radionuclide and chemical characterization of the SRNL-washedmore » Tank 51H slurry. This report documents the chemical characterization of the washed slurry; radiological characterization is in progress and will be documented in a separate report. The analytical results of this characterization are comparable to the Tank Farm projections. Therefore, it is recommended that SRNL use this washed slurry for the ongoing SB9 qualification activities.« less

  10. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles.

    PubMed

    Li, Xuanyu; Jiang, Xingyu

    2017-12-24

    Microfluidic chips allow the rapid production of a library of nanoparticles (NPs) with distinct properties by changing the precursors and the flow rates, significantly decreasing the time for screening optimal formulation as carriers for drug delivery compared to conventional methods. The batch-to-batch reproducibility which is essential for clinical translation is achieved by precisely controlling the precursors and the flow rate, regardless of operators. Poly (lactic-co-glycolic acid) (PLGA) is the most widely used Food and Drug Administration (FDA)-approved biodegradable polymers. Researchers often combine PLGA with lipids or amphiphilic molecules to assemble into a core/shell structure to exploit the potential of PLGA-based NPs as powerful carriers for cancer-related drug delivery. In this review, we discuss the advantages associated with microfluidic chips for producing PLGA-based functional nanocomplexes for drug delivery. These laboratory-based methods can readily scale up to provide sufficient amount of PLGA-based NPs in microfluidic chips for clinical studies and industrial-scale production. Copyright © 2017. Published by Elsevier B.V.

  11. Pollution prevention applications in batch manufacturing operations

    NASA Astrophysics Data System (ADS)

    Sykes, Derek W.; O'Shaughnessy, James

    2004-02-01

    Older, "low-tech" batch manufacturing operations are often fertile grounds for gains resulting from pollution prevention techniques. This paper presents a pollution prevention technique utilized for wastewater discharge permit compliance purposes at a batch manufacturer of detergents, deodorants, and floor-care products. This manufacturer generated industrial wastewater as a result of equipment rinses required after each product batch changeover. After investing a significant amount of capital on end of pip-line wastewater treatment technology designed to address existing discharge limits, this manufacturer chose to investigate alternate, low-cost approaches to address anticipated new permit limits. Mass balances using spreadsheets and readily available formulation and production data were conducted on over 300 products to determine how each individual product contributed to the total wastewater pollutant load. These mass balances indicated that 22 products accounted for over 55% of the wastewater pollutant. Laboratory tests were conducted to determine whether these same products could accept their individual changeover rinse water as make-up water in formulations without sacrificing product quality. This changeover reuse technique was then implement at the plant scale for selected products. Significant reductions in wastewater volume (25%) and wastewater pollutant loading (85+%) were realized as a direct result of this approach.

  12. Nitrile bioconversion by Microbacterium imperiale CBS 498-74 resting cells in batch and ultrafiltration membrane bioreactors.

    PubMed

    Cantarella, M; Cantarella, L; Gallifuoco, A; Spera, A

    2006-03-01

    The biohydration of acrylonitrile, propionitrile and benzonitrile catalysed by the NHase activity contained in resting cells of Microbacterium imperiale CBS 498-74 was operated at 5, 10 and 20 degrees C in laboratory-scale batch and membrane bioreactors. The bioreactions were conducted in buffered medium (50 mM Na(2)HPO(4)/NaH(2)PO(4), pH 7.0) in the presence of distilled water or tap-water, to simulate a possible end-pipe biotreatment process. The integral bioreactor performances were studied with a cell loading (dry cell weight; DCW) varying from 0.1 mg(DCW) per reactor to 16 mg(DCW) per reactor, in order to realize near 100% bioconversion of acrylonitrile, propionitrile and benzonitrile without consistent loss of NHase activity.

  13. Improvement of ε-poly-L-lysine production through seed stage development based on in situ pH monitoring.

    PubMed

    Sun, Qi-Xing; Chen, Xu-Sheng; Ren, Xi-Dong; Mao, Zhong-Gui

    2015-01-01

    Nissin, natamycin, and ε-poly-L-lysine (ε-PL) are three safe, microbial-produced food preservatives used today in the food industry. However, current industrial production of ε-PL is only performed in several countries. In order to realize large-scale ε-PL production by fermentation, the effects of seed stage on cell growth and ε-PL production were investigated by monitoring of pH in situ in a 5-L laboratory-scale fermenter. A significant increase in ε-PL production in fed-batch fermentation by Streptomyces sp. M-Z18 was achieved, at 48.9 g/L, through the optimization of several factors associated with seed stage, including spore pretreatment, inoculum age, and inoculum level. Compared with conventional fermentation approaches using 24-h-old shake-flask seed broth as inoculum, the maximum ε-PL concentration and productivity were enhanced by 32.3 and 36.6 %, respectively. The effect of optimized inoculum conditions on ε-PL production on a large scale was evaluated using a 50-L pilot-scale fermenter, attaining a maximum ε-PL production of 36.22 g/L in fed-batch fermentation, constituting the first report of ε-PL production at pilot scale. These results will be helpful for efficient ε-PL production by Streptomyces at pilot and plant scales.

  14. Leaching Behavior Of Mineral Processing Waste: Comparison Of Batch And Column Investigations

    EPA Science Inventory

    In this study, a comparison of laboratory batch and column experiments on metal release profile from a mineral processing waste (MPW) is presented. Batch (equilibrium) and column (dynamic) leaching tests were conducted on ground MPW at different liquid–solid ratios (LS) to determ...

  15. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR BATCHING OF LAB DATA (UA-C-7.0)

    EPA Science Inventory

    The purpose of this SOP is to describe the steps involved in batching the physical laboratory data forms generated by NHEXAS Arizona and slated for data entry at the primary NHEXAS Arizona office. It applies to all physical laboratory data forms entered at this site. This proced...

  16. Rational development of solid dispersions via hot-melt extrusion using screening, material characterization, and numeric simulation tools.

    PubMed

    Zecevic, Damir E; Wagner, Karl G

    2013-07-01

    Effective and predictive small-scale selection tools are inevitable during the development of a solubility enhanced drug product. For hot-melt extrusion, this selection process can start with a microscale performance evaluation on a hot-stage microscope (HSM). A batch size of 400 mg can provide sufficient materials to assess the drug product attributes such as solid-state properties, solubility enhancement, and physical stability as well as process related attributes such as processing temperature in a twin-screw extruder (TSE). Prototype formulations will then be fed into a 5 mm TSE (~1-2 g) to confirm performance from the HSM under additional shear stress. Small stress stability testing might be performed with these samples or a larger batch (20-40 g) made by 9 or 12 mm TSE. Simultaneously, numeric process simulations are performed using process data as well as rheological and thermal properties of the formulations. Further scale up work to 16 and 18 mm TSE confirmed and refined the simulation model. Thus, at the end of the laboratory-scale development, not only the clinical trial supply could be manufactured, but also one can form a sound risk assessment to support further scale up even without decades of process experience. Copyright © 2013 Wiley Periodicals, Inc.

  17. Acceptance Test Data for the AGR-5/6/7 Irradiation Test Fuel Composite Defective IPyC Fraction and Pyrocarbon Anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmreich, Grant W.; Hunn, John D.; Skitt, Darren J.

    Coated particle composite J52R-16-98005 was produced by Babcock and Wilcox Technologies (BWXT) as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR). This composite was comprised of four coated particle fuel batches J52O-16-93165B (26%), 93168B (26%), 93169B (24%), and 93170B (24%), chosen based on the Quality Control (QC) data acquired for each individual candidate AGR-5/6/7 batch. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT Lot J52R-16-69317more » containing a mixture of 15.5%-enriched uranium carbide and uranium oxide (UCO). The TRISO coatings consisted of four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μm-nominal thickness. The TRISO-coated particle batches were sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batches were designated by appending the letter A to the end of the batch number (e.g., 93165A). Secondary upgrading by sieving was performed on the A-designated batches to remove particles with missing or very-thin buffer layers that were identified during previous analysis of the individual batches for defective IPyC, as reported in the acceptance test data report for the AGR-5/6/7 production batches [Hunn et al. 2017]. The additionally-upgraded batches were designated by appending the letter B to the end of the batch number (e.g., 93165B).« less

  18. Leaching assessment of road materials containing primary lead and zinc slags.

    PubMed

    Barna, R; Moszkowicz, P; Gervais, C

    2004-01-01

    Characterisation of the leaching behaviour of waste-containing materials is a crucial step in the environmental assessment for reuse scenarios. In our research we applied the multi-step European methodology ENV 12-920 to the leaching assessment of road materials containing metallurgical slag. A Zn slag from an imperial smelting furnace (ISF) and a Pb slag from a lead blast furnace (LBF) are investigated. The two slags contain up to 11.2 wt% of lead and 3.5 wt% of zinc and were introduced as a partial substitute for sand in two road materials, namely sand-cement and sand-bitumen. At the laboratory scale, a leaching assessment was performed first through batch equilibrium leaching tests. Second, the release rate of the contaminants was evaluated using saturated leaching tests on monolithic material. Third, laboratory tests were conducted on monolithic samples under intermittent wetting conditions. Pilot-scale tests were conducted for field testing of intermittent wetting conditions. The results show that the release of Pb and Zn from the materials in a saturated scenario was controlled by the pH of the leachates. For the intermittent wetting conditions, an additional factor, blocking of the pores by precipitation during the drying phase is proposed. Pilot-scale leaching behaviour only partially matched with the laboratory-scale test results: new mass transfer mechanisms and adapted laboratory leaching tests are discussed.

  19. Meeting Report: Batch-to-Batch Variability in Estrogenic Activity in Commercial Animal Diets—Importance and Approaches for Laboratory Animal Research

    PubMed Central

    Heindel, Jerrold J.; vom Saal, Frederick S.

    2008-01-01

    We report information from two workshops sponsored by the National Institutes of Health that were held to a) assess whether dietary estrogens could significantly impact end points in experimental animals, and b) involve program participants and feed manufacturers to address the problems associated with measuring and eliminating batch-to-batch variability in rodent diets that may lead to conflicting findings in animal experiments within and between laboratories. Data were presented at the workshops showing that there is significant batch-to-batch variability in estrogenic content of commercial animal diets, and that this variability results in differences in experimental outcomes. A combination of methods were proposed to determine levels of total estrogenic activity and levels of specific estrogenic constituents in soy-containing, casein-containing, and other soy-free rodent diets. Workshop participants recommended that researchers pay greater attention to the type of diet being used in animal studies and choose a diet whose estrogenic activity (or lack thereof) is appropriate for the experimental model and end points of interest. Information about levels of specific phytoestrogens, as well as estrogenic activity caused by other contaminants and measured by bioassay, should be disclosed in scientific publications. This will require laboratory animal diet manufacturers to provide investigators with information regarding the phytoestrogen content and other estrogenic compounds in commercial diets used in animal research. PMID:18335108

  20. Meeting report: batch-to-batch variability in estrogenic activity in commercial animal diets--importance and approaches for laboratory animal research.

    PubMed

    Heindel, Jerrold J; vom Saal, Frederick S

    2008-03-01

    We report information from two workshops sponsored by the National Institutes of Health that were held to a) assess whether dietary estrogens could significantly impact end points in experimental animals, and b) involve program participants and feed manufacturers to address the problems associated with measuring and eliminating batch-to-batch variability in rodent diets that may lead to conflicting findings in animal experiments within and between laboratories. Data were presented at the workshops showing that there is significant batch-to-batch variability in estrogenic content of commercial animal diets, and that this variability results in differences in experimental outcomes. A combination of methods were proposed to determine levels of total estrogenic activity and levels of specific estrogenic constituents in soy-containing, casein-containing, and other soy-free rodent diets. Workshop participants recommended that researchers pay greater attention to the type of diet being used in animal studies and choose a diet whose estrogenic activity (or lack thereof) is appropriate for the experimental model and end points of interest. Information about levels of specific phytoestrogens, as well as estrogenic activity caused by other contaminants and measured by bioassay, should be disclosed in scientific publications. This will require laboratory animal diet manufacturers to provide investigators with information regarding the phytoestrogen content and other estrogenic compounds in commercial diets used in animal research.

  1. A study on the use of the BioBall® as a biofilm carrier in a sequencing batch reactor.

    PubMed

    Masłoń, Adam; Tomaszek, Janusz A

    2015-11-01

    Described in this study are experiments conducted to evaluate the removal of organics and nutrients from synthetic wastewater by a moving bed sequencing batch biofilm reactor using BioBall® carriers as biofilm media. The work involving a 15L-laboratory scale MBSBBR (moving bed sequencing batch biofilm reactor) model showed that the wastewater treatment system was based on biochemical processes taking place with activated sludge and biofilm microorganisms developing on the surface of the BioBall® carriers. Classical nitrification and denitrification and the typical enhanced biological phosphorus removal process were achieved in the reactor analyzed, which operated with a volumetric organic loading of 0.84-0.978gCODL(-1)d(-1). The average removal efficiencies for COD, total nitrogen and total phosphorus were found to be 97.7±0.5%, 87.8±2.6% and 94.3±1.3%, respectively. Nitrification efficiency reached levels in the range 96.5-99.7%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A reproducible and scalable procedure for preparing bacterial extracts for cell-free protein synthesis.

    PubMed

    Katsura, Kazushige; Matsuda, Takayoshi; Tomabechi, Yuri; Yonemochi, Mayumi; Hanada, Kazuharu; Ohsawa, Noboru; Sakamoto, Kensaku; Takemoto, Chie; Shirouzu, Mikako

    2017-11-01

    Cell-free protein synthesis is a useful method for preparing proteins for functional or structural analyses. However, batch-to-batch variability with regard to protein synthesis activity remains a problem for large-scale production of cell extract in the laboratory. To address this issue, we have developed a novel procedure for large-scale preparation of bacterial cell extract with high protein synthesis activity. The developed procedure comprises cell cultivation using a fermentor, harvesting and washing of cells by tangential flow filtration, cell disruption with high-pressure homogenizer and continuous diafiltration. By optimizing and combining these methods, ∼100 ml of the cell extract was prepared from 150 g of Escherichia coli cells. The protein synthesis activities, defined as the yield of protein per unit of absorbance at 260 nm of the cell extract, were shown to be reproducible, and the average activity of several batches was twice that obtained using a previously reported method. In addition, combinatorial use of the high-pressure homogenizer and diafiltration increased the scalability, indicating that the cell concentration at disruption varies from 0.04 to 1 g/ml. Furthermore, addition of Gam protein and examinations of the N-terminal sequence rendered the extract prepared here useful for rapid screening with linear DNA templates. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  3. Effect of skill laboratory training on academic performance of medical students.

    PubMed

    Khan, Muhammad Alamgir; Shabbir, Faizania; Qamar, Khadija; Rajput, Tausif Ahmed

    2017-05-01

    To observe the effect of skill lab training on academic performance of final year medical students in terms of marks obtained in long case, short case, objective structured clinical examination and viva. The cross-sectional comparative study was conducted at Army Medical College, Rawalpindi from February to April 2015. Two batches of final year MBBS were recruited for the study. Batch 1 received conventional training, and Batch 2 received skill lab training. The performance of students was assessed by comparing the marks obtained in long case, short case, objective structured clinical examination and viva. Data was analysed using SPSS 23. Of the 335 subjects, 168(50.1%) were male and 167(49.9%) were female students with a mean age of 21.79±1.02 years. Batch 1 had 151(45%) students and Batch 2 had 184(55%). Batch 2 got significantly higher marks in long case, short case and objective structured clinical examination (p<0.05 each). Viva result was not found to be related to training (p>0.05). Acquisition of clinical skills significantly improved when medial students were trained in skill laboratories.

  4. Treatment of N-Nitrosodimethylamine (NDMA) in Groundwater Using a Fluidized Bed Bioreactor

    DTIC Science & Technology

    2014-01-01

    by the propanotroph Rhodococcus ruber ENV425 in batch culture. Figure 1.3 Effect of propane on the mineralization of 14C-NDMA to 14CO2 by the...propanotroph Rhodococcus ruber ENV425. Figure 1.4 Percent mineralization of 14C-NDMA to 14CO2 in microcosms prepared with aquifer solids and... mineralization by ENV425 in WSTF water. Figure 5.3 NDMA degradation by ENV425 in WSTF water. Figure 5.4 Photograph of the laboratory-scale FBR

  5. Development of flame resistant treatment for Nomex fibrous structures

    NASA Technical Reports Server (NTRS)

    Toy, M. S.

    1977-01-01

    Flame resistant fibrous materials for space shuttle application were developed through chemical modification of commercially available aromatic polyamide fibrous products. The new surface treatment was achieved in the laboratory by ultraviolet activation of the fabric in the presence of fluoroolefin monomers and a diluent gas. The monomers grafted under these conditions provide the improved properties of the fabric in flame resistance, chemical inertness, and nonwettability without the sacrifice of color or physical properties. The laboratory reaction vessel was scaled-up to a batch continuous process, which treats ten yards of the commercial width textiles. The treated commercial width Nomex (HT-10-41) from the scaled-up reactor is self-extinguishing in an oxygen-enriched environment, water-repellent, soft, silky, and improved in chemical resistance. Unlike most textile processes, the grafting unit operates under dry conditions and no chemical by-products have to be washed out of the finished product.

  6. Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy

    PubMed Central

    2012-01-01

    Background Nanoparticle based delivery of anticancer drugs have been widely investigated. However, a very important process for Research & Development in any pharmaceutical industry is scaling nanoparticle formulation techniques so as to produce large batches for preclinical and clinical trials. This process is not only critical but also difficult as it involves various formulation parameters to be modulated all in the same process. Methods In our present study, we formulated curcumin loaded poly (lactic acid-co-glycolic acid) nanoparticles (PLGA-CURC). This improved the bioavailability of curcumin, a potent natural anticancer drug, making it suitable for cancer therapy. Post formulation, we optimized our process by Reponse Surface Methodology (RSM) using Central Composite Design (CCD) and scaled up the formulation process in four stages with final scale-up process yielding 5 g of curcumin loaded nanoparticles within the laboratory setup. The nanoparticles formed after scale-up process were characterized for particle size, drug loading and encapsulation efficiency, surface morphology, in vitro release kinetics and pharmacokinetics. Stability analysis and gamma sterilization were also carried out. Results Results revealed that that process scale-up is being mastered for elaboration to 5 g level. The mean nanoparticle size of the scaled up batch was found to be 158.5 ± 9.8 nm and the drug loading was determined to be 10.32 ± 1.4%. The in vitro release study illustrated a slow sustained release corresponding to 75% drug over a period of 10 days. The pharmacokinetic profile of PLGA-CURC in rats following i.v. administration showed two compartmental model with the area under the curve (AUC0-∞) being 6.139 mg/L h. Gamma sterilization showed no significant change in the particle size or drug loading of the nanoparticles. Stability analysis revealed long term physiochemical stability of the PLGA-CURC formulation. Conclusions A successful effort towards formulating, optimizing and scaling up PLGA-CURC by using Solid-Oil/Water emulsion technique was demonstrated. The process used CCD-RSM for optimization and further scaled up to produce 5 g of PLGA-CURC with almost similar physicochemical characteristics as that of the primary formulated batch. PMID:22937885

  7. Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy.

    PubMed

    Ranjan, Amalendu P; Mukerjee, Anindita; Helson, Lawrence; Vishwanatha, Jamboor K

    2012-08-31

    Nanoparticle based delivery of anticancer drugs have been widely investigated. However, a very important process for Research & Development in any pharmaceutical industry is scaling nanoparticle formulation techniques so as to produce large batches for preclinical and clinical trials. This process is not only critical but also difficult as it involves various formulation parameters to be modulated all in the same process. In our present study, we formulated curcumin loaded poly (lactic acid-co-glycolic acid) nanoparticles (PLGA-CURC). This improved the bioavailability of curcumin, a potent natural anticancer drug, making it suitable for cancer therapy. Post formulation, we optimized our process by Reponse Surface Methodology (RSM) using Central Composite Design (CCD) and scaled up the formulation process in four stages with final scale-up process yielding 5 g of curcumin loaded nanoparticles within the laboratory setup. The nanoparticles formed after scale-up process were characterized for particle size, drug loading and encapsulation efficiency, surface morphology, in vitro release kinetics and pharmacokinetics. Stability analysis and gamma sterilization were also carried out. Results revealed that that process scale-up is being mastered for elaboration to 5 g level. The mean nanoparticle size of the scaled up batch was found to be 158.5±9.8 nm and the drug loading was determined to be 10.32±1.4%. The in vitro release study illustrated a slow sustained release corresponding to 75% drug over a period of 10 days. The pharmacokinetic profile of PLGA-CURC in rats following i.v. administration showed two compartmental model with the area under the curve (AUC0-∞) being 6.139 mg/L h. Gamma sterilization showed no significant change in the particle size or drug loading of the nanoparticles. Stability analysis revealed long term physiochemical stability of the PLGA-CURC formulation. A successful effort towards formulating, optimizing and scaling up PLGA-CURC by using Solid-Oil/Water emulsion technique was demonstrated. The process used CCD-RSM for optimization and further scaled up to produce 5 g of PLGA-CURC with almost similar physicochemical characteristics as that of the primary formulated batch.

  8. Kinetic study on the effect of temperature on biogas production using a lab scale batch reactor.

    PubMed

    Deepanraj, B; Sivasubramanian, V; Jayaraj, S

    2015-11-01

    In the present study, biogas production from food waste through anaerobic digestion was carried out in a 2l laboratory-scale batch reactor operating at different temperatures with a hydraulic retention time of 30 days. The reactors were operated with a solid concentration of 7.5% of total solids and pH 7. The food wastes used in this experiment were subjected to characterization studies before and after digestion. Modified Gompertz model and Logistic model were used for kinetic study of biogas production. The kinetic parameters, biogas yield potential of the substrate (B), the maximum biogas production rate (Rb) and the duration of lag phase (λ), coefficient of determination (R(2)) and root mean square error (RMSE) were estimated in each case. The effect of temperature on biogas production was evaluated experimentally and compared with the results of kinetic study. The results demonstrated that the reactor with operating temperature of 50°C achieved maximum cumulative biogas production of 7556ml with better biodegradation efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Influence of water quench cooling on degassing and aroma stability of roasted coffee.

    PubMed

    Baggenstoss, Juerg; Poisson, Luigi; Luethi, Regina; Perren, Rainer; Escher, Felix

    2007-08-08

    Coffee roasting experiments with air cooling versus water quench cooling were carried out on laboratory scale with a fluidized-bed hot air roasting system (200 g batch size) and on production scale with a rotating bowl roaster (320 kg batch size). Two series of coffees with different water contents resulted, which were stored at 25 degrees C under normal atmospheric conditions. Carbon dioxide desorption was followed and stability of selected aroma compounds was tested with headspace solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) and stable isotope labeled compounds as internal standards. Degassing is faster in water-quenched coffees with higher moisture content, but pore size distribution in the different coffee samples did not correlate with degassing behavior. Bean firmness, which increases with increasing moisture content, might have an influence on degassing. Air- and water-quenched coffees exhibit similar stability of most aroma compounds despite different degassing behavior. However, evolution of dimethyl trisulfide was different in coffees with increased water content. This suggests higher thiol oxidation rates, a factor that is cited to be related to a faster loss of freshness attributes.

  10. Recent Progress on the Conversion of Surplus Picric Acid/Explosive D to Higher Value Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.Mitchell, A; Hsu, P C; Coburn, M D

    2004-07-06

    The global demilitarization of nuclear and conventional munitions is producing millions of pounds of surplus energetic materials. Historically, energetic materials (high explosives, propellants, and pyrotechnics) have been disposed of by open burning/open detonation (OB/OD). The use of OB/OD is becoming unacceptable due to public concerns and increasingly stringent environmental regulations. Clearly, there is a great need to develop environmentally sound and cost-effective alternatives to OB/OD. The conversion of surplus picric acid and/or ammonium picrate (Explosive D) to1,3,5-triamino-2,4,6- trinitrobenzene (TATB) has been subject of extensive process development studies at Lawrence Livermore National Laboratory (LLNL). LLNL, under the direction and sponsorship ofmore » the U.S. Army Defense Ammunition Center (DAC), is developing a process for the conversion of picric acid to TATB on a larger scale. In FY 03, a 10 g per batch process was developed with good results. Development for a one pound per batch system is required as part of overall scale up process for producing TATB from the surplus feedstocks.« less

  11. Laboratory Evaluation of Expedient Low-Temperature Admixtures for Runway Craters in Cold Weather

    DTIC Science & Technology

    2014-10-01

    ignores typical concerns, such as long-term durability, aesthetics, and corrosion , that are of minimal importance in this expedient field- use ...those identified to be in common use although it was acknowledged that the chloride based compounds caused corrosion problems (Korhonen 1990...batch to batch when using less than a 2000 lb batch, our ability to model and predict results with each batch is degraded. How- ever, when we control

  12. Real-time imaging as an emerging process analytical technology tool for monitoring of fluid bed coating process.

    PubMed

    Naidu, Venkata Ramana; Deshpande, Rucha S; Syed, Moinuddin R; Wakte, Pravin S

    2018-07-01

    A direct imaging system (Eyecon TM ) was used as a Process Analytical Technology (PAT) tool to monitor fluid bed coating process. Eyecon TM generated real-time onscreen images, particle size and shape information of two identically manufactured laboratory-scale batches. Eyecon TM has accuracy of measuring the particle size increase of ±1 μm on particles in the size range of 50-3000 μm. Eyecon TM captured data every 2 s during the entire process. The moving average of D90 particle size values recorded by Eyecon TM were calculated for every 30 min to calculate the radial coating thickness of coated particles. After the completion of coating process, the radial coating thickness was found to be 11.3 and 9.11 μm, with a standard deviation of ±0.68 and 1.8 μm for Batch 1 and Batch 2, respectively. The coating thickness was also correlated with percent weight build-up by gel permeation chromatography (GPC) and dissolution. GPC indicated weight build-up of 10.6% and 9.27% for Batch 1 and Batch 2, respectively. In conclusion, weight build-up of 10% can also be correlated with 10 ± 2 μm increase in the coating thickness of pellets, indicating the potential applicability of real-time imaging as an endpoint determination tool for fluid bed coating process.

  13. Pilot scale system for the production of palm-based Monoester-OH

    NASA Astrophysics Data System (ADS)

    Ngah, Muhammad Syukri; Badri, Khairiah Haji

    2016-11-01

    A mechanically agitate reactor vessel in a moderate scale size of 500 L has been developed. This vessel was constructed to produce palm-based polyurethane polyol with a capacity of maximum 400 L. This is to accomodate the demand required for marketing trial run as part of the commercialization intention. The chemistry background of the process design was thoroughly studied. The esterification and condensation in batch process was maintained from the laboratory scale. Only RBD palm kernel oil was used in this study. This paper will describe the engineering design for the reactor vessel development beginning at the stoichiometric equations for the production process to the detail engineering including the equipment selection and fabrication in order to meet the design and objective specifications.

  14. Sludge Settling Rate Observations and Projections at the Savannah River Site - 13238

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillam, Jeffrey M.; Shah, Hasmukh B.; Keefer, Mark T.

    2013-07-01

    Since 2004, sludge batches have included a high percentage of stored sludge generated from the H- modified (HM) process. The slow-settling nature of HM sludge means that the settling is often the major part of the washing tank quiescent period between required pump runs to maintain flammability control. Reasonable settling projections are needed to wash soluble salts from sludge in an efficient manner, to determine how much sludge can be washed in a batch within flammability limits, and to provide composition projections for batch qualification work done in parallel with field preparation. Challenges to providing reasonably accurate settling projections includemore » (1) large variations in settling behavior from tank-to-tank, (2) accounting for changing initial concentrations, sludge masses, and combinations of different sludge types, (3) changing the settling behavior upon dissolving some sludge compounds, and (4) sludge preparation schedules that do not allow for much data collection for a particular sludge before washing begins. Scaling from laboratory settling tests has provided inconsistent results. Several techniques have been employed to improve settling projections and therefore the overall batch preparation efficiency. Before any observations can be made on a particular sludge mixture, projections can only be made based on historical experience with similar sludge types. However, scaling techniques can be applied to historical settling models to account for different sludge masses, concentrations, and even combinations of types of sludge. After sludge washing/settling cycles begin, the direct measurement of the sludge height, once generally limited to a single turbidity meter measurement per settle period, is now augmented by examining the temperature profile in the settling tank, to help determine the settled sludge height over time. Recently, a settling model examined at PNNL [1,2,3] has been applied to observed thermocouple and turbidity meter readings to quickly provide settling correlations to project settled heights for other conditions. These tools improve the accuracy and adaptability of short and mid-range planning for sludge batch preparation. (authors)« less

  15. A Thermal Stability Test for Primary Explosive Stab Sensitizers: Study of the Thermal and Hydrolytic Stability of 2-Picryl-5-Nitrotetrazole,

    DTIC Science & Technology

    1984-02-01

    have been described previously (2]. The actual batch used was designated Batch D and was identical to that referred to as Batch C in Reference [2...Tetrazene was type RD1357 prepared at Materials Research Laboratories. The batch used was designated Batch 10/83(A). Lead Azide was type RD1343 and was...Preparation of Experimental Detonators Eperimental detonators were prepared in mild steel tubes, 6 mm o.d., 3.2 mm i.d., length 6 mm, prepared from

  16. Impact of the New Abbott mPLUS Feature on Clinical Laboratory Efficiencies of Abbott RealTime Assays for Detection of HIV-1, Hepatitis C Virus, Hepatitis B Virus, Chlamydia trachomatis, and Neisseria gonorrhoeae

    PubMed Central

    Jones, Sara; Wiesneth, Russ; Barry, Cathy; Webb, Erika; Belova, Larissa; Dolan, Peggy; Ho, Shiaolan; Abravaya, Klara; Cloherty, Gavin

    2013-01-01

    Diagnostic laboratories are under increasing pressure to improve and expand their services. Greater flexibility in sample processing is a critical factor that can improve the time to results while reducing reagent waste, making laboratories more efficient and cost-effective. The introduction of the Abbott mPLUS feature, with the capacity for extended use of amplification reagents, significantly increases the flexibility of the m2000 platform and enables laboratories to customize their workflows based on sample arrival patterns. The flexibility in sample batch size offered by mPLUS enables significant reductions in processing times. For hepatitis B virus tests, a reduction in sample turnaround times of up to 30% (105 min) was observed for batches of 12 samples compared with those for batches of 24 samples; for Chlamydia trachomatis/Neisseria gonorrhoeae tests, the ability to run batches of 24 samples reduced the turnaround time by 83% (54 min) compared with that for batches of 48 samples. Excellent correlations between mPLUS and m2000 standard condition results were observed for all RealTime viral load assays evaluated in this study, with correlation r values of 0.998 for all assays tested. For the qualitative RealTime C. trachomatis/N. gonorrhoeae assay, the overall agreements between the two conditions tested were >98% for C. trachomatis and 100% for N. gonorrhoeae. Comparable precision results were observed for the two conditions tested for all RealTime assays. The enhanced mPLUS capability provides clinical laboratories with increased efficiencies to meet increasingly stringent turnaround time requirements without increased costs associated with discarding partially used amplification reagents. PMID:24088850

  17. Impact of the New Abbott mPLUS feature on clinical laboratory efficiencies of abbott RealTime assays for detection of HIV-1, Hepatitis C Virus, Hepatitis B Virus, Chlamydia trachomatis, and Neisseria gonorrhoeae.

    PubMed

    Lucic, Danijela; Jones, Sara; Wiesneth, Russ; Barry, Cathy; Webb, Erika; Belova, Larissa; Dolan, Peggy; Ho, Shiaolan; Abravaya, Klara; Cloherty, Gavin

    2013-12-01

    Diagnostic laboratories are under increasing pressure to improve and expand their services. Greater flexibility in sample processing is a critical factor that can improve the time to results while reducing reagent waste, making laboratories more efficient and cost-effective. The introduction of the Abbott mPLUS feature, with the capacity for extended use of amplification reagents, significantly increases the flexibility of the m2000 platform and enables laboratories to customize their workflows based on sample arrival patterns. The flexibility in sample batch size offered by mPLUS enables significant reductions in processing times. For hepatitis B virus tests, a reduction in sample turnaround times of up to 30% (105 min) was observed for batches of 12 samples compared with those for batches of 24 samples; for Chlamydia trachomatis/Neisseria gonorrhoeae tests, the ability to run batches of 24 samples reduced the turnaround time by 83% (54 min) compared with that for batches of 48 samples. Excellent correlations between mPLUS and m2000 standard condition results were observed for all RealTime viral load assays evaluated in this study, with correlation r values of 0.998 for all assays tested. For the qualitative RealTime C. trachomatis/N. gonorrhoeae assay, the overall agreements between the two conditions tested were >98% for C. trachomatis and 100% for N. gonorrhoeae. Comparable precision results were observed for the two conditions tested for all RealTime assays. The enhanced mPLUS capability provides clinical laboratories with increased efficiencies to meet increasingly stringent turnaround time requirements without increased costs associated with discarding partially used amplification reagents.

  18. Graphite furnace atomic absorption elemental analysis of ecstasy tablets.

    PubMed

    French, Holly E; Went, Michael J; Gibson, Stuart J

    2013-09-10

    Six metals (copper, magnesium, barium, nickel, chromium and lead) were determined in two separate batches of seized ecstasy tablets by graphite furnace atomic absorption spectroscopy (GFAAS) following digestion with nitric acid and hydrogen peroxide. Large intra-batch variations were found as expected for tablets produced in clandestine laboratories. For example, nickel in batch 1 was present in the range 0.47-13.1 parts per million (ppm) and in batch 2 in the range 0.35-9.06 ppm. Although batch 1 had significantly higher 3,4-methylenedioxy-N-methamphetamine (MDMA) content than batch 2, barium was the only element which discriminated between the two ecstasy seizures (batch 1: 0.19-0.66 ppm, batch 2: 3.77-5.47 ppm). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Application of gas sensor arrays in assessment of wastewater purification effects.

    PubMed

    Guz, Łukasz; Łagód, Grzegorz; Jaromin-Gleń, Katarzyna; Suchorab, Zbigniew; Sobczuk, Henryk; Bieganowski, Andrzej

    2014-12-23

    A gas sensor array consisting of eight metal oxide semiconductor (MOS) type gas sensors was evaluated for its ability for assessment of the selected wastewater parameters. Municipal wastewater was collected in a wastewater treatment plant (WWTP) in a primary sedimentation tank and was treated in a laboratory-scale sequential batch reactor (SBR). A comparison of the gas sensor array (electronic nose) response to the standard physical-chemical parameters of treated wastewater was performed. To analyze the measurement results, artificial neural networks were used. E-nose-gas sensors array and artificial neural networks proved to be a suitable method for the monitoring of treated wastewater quality. Neural networks used for data validation showed high correlation between the electronic nose readouts and: (I) chemical oxygen demand (COD) (r = 0.988); (II) total suspended solids (TSS) (r = 0.938); (III) turbidity (r = 0.940); (IV) pH (r = 0.554); (V) nitrogen compounds: N-NO3 (r = 0.958), N-NO2 (r = 0.869) and N-NH3 (r = 0.978); (VI) and volatile organic compounds (VOC) (r = 0.987). Good correlation of the abovementioned parameters are observed under stable treatment conditions in a laboratory batch reactor.

  20. ENVIRONMENTAL BENIGN MITIGATION OF MICROBIOLOGICALLY INFLUENCED CORROSION (MIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.R. Paterek; G. Husmillo; V. Trbovic

    The overall program objective is to develop and evaluate environmental benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is one or more environmental benign, a.k.a. ''green'' products that can be applied to maintain the structure and dependability of the natural gas infrastructure. The technical approach for this quarter were isolation and cultivation of MIC-causing microorganisms from corroded pipeline samples, optimizing parameters in the laboratory-scale corrosion test loop system and testing the effective concentrations of Capsicum sp. extracts to verifymore » the extent of corrosion on metal coupons by batch culture method. A total of 22 strains from the group of heterotrophic, acid producing, denitrifying and sulfate reducing bacteria were isolated from the gas pipeline samples obtained from Northern Indiana Public Service Company in Trenton, Indiana. They were purified and will be sent out for identification. Bacterial strains of interest were used in antimicrobial screenings and test loop experiments. Parameters for the laboratory-scale test loop system such as gas and culture medium flow rate; temperature; inoculation period; and length of incubation were established. Batch culture corrosion study against Desulfovibrio vulgaris showed that one (S{sub 1}M) out of the four Capsicum sp. extracts tested was effective in controlling the corrosion rate in metal coupons by 33.33% when compared to the untreated group.« less

  1. Parallel steady state studies on a milliliter scale accelerate fed-batch bioprocess design for recombinant protein production with Escherichia coli.

    PubMed

    Schmideder, Andreas; Cremer, Johannes H; Weuster-Botz, Dirk

    2016-11-01

    In general, fed-batch processes are applied for recombinant protein production with Escherichia coli (E. coli). However, state of the art methods for identifying suitable reaction conditions suffer from severe drawbacks, i.e. direct transfer of process information from parallel batch studies is often defective and sequential fed-batch studies are time-consuming and cost-intensive. In this study, continuously operated stirred-tank reactors on a milliliter scale were applied to identify suitable reaction conditions for fed-batch processes. Isopropyl β-d-1-thiogalactopyranoside (IPTG) induction strategies were varied in parallel-operated stirred-tank bioreactors to study the effects on the continuous production of the recombinant protein photoactivatable mCherry (PAmCherry) with E. coli. Best-performing induction strategies were transferred from the continuous processes on a milliliter scale to liter scale fed-batch processes. Inducing recombinant protein expression by dynamically increasing the IPTG concentration to 100 µM led to an increase in the product concentration of 21% (8.4 g L -1 ) compared to an implemented high-performance production process with the most frequently applied induction strategy by a single addition of 1000 µM IPGT. Thus, identifying feasible reaction conditions for fed-batch processes in parallel continuous studies on a milliliter scale was shown to be a powerful, novel method to accelerate bioprocess design in a cost-reducing manner. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1426-1435, 2016. © 2016 American Institute of Chemical Engineers.

  2. Kilogram-scale prexasertib monolactate monohydrate synthesis under continuous-flow CGMP conditions.

    PubMed

    Cole, Kevin P; Groh, Jennifer McClary; Johnson, Martin D; Burcham, Christopher L; Campbell, Bradley M; Diseroad, William D; Heller, Michael R; Howell, John R; Kallman, Neil J; Koenig, Thomas M; May, Scott A; Miller, Richard D; Mitchell, David; Myers, David P; Myers, Steven S; Phillips, Joseph L; Polster, Christopher S; White, Timothy D; Cashman, Jim; Hurley, Declan; Moylan, Robert; Sheehan, Paul; Spencer, Richard D; Desmond, Kenneth; Desmond, Paul; Gowran, Olivia

    2017-06-16

    Advances in drug potency and tailored therapeutics are promoting pharmaceutical manufacturing to transition from a traditional batch paradigm to more flexible continuous processing. Here we report the development of a multistep continuous-flow CGMP (current good manufacturing practices) process that produced 24 kilograms of prexasertib monolactate monohydrate suitable for use in human clinical trials. Eight continuous unit operations were conducted to produce the target at roughly 3 kilograms per day using small continuous reactors, extractors, evaporators, crystallizers, and filters in laboratory fume hoods. Success was enabled by advances in chemistry, engineering, analytical science, process modeling, and equipment design. Substantial technical and business drivers were identified, which merited the continuous process. The continuous process afforded improved performance and safety relative to batch processes and also improved containment of a highly potent compound. Copyright © 2017, American Association for the Advancement of Science.

  3. Monitoring pH and electric conductivity in an EBPR sequencing batch reactor.

    PubMed

    Serralta, J; Borrás, L; Blanco, C; Barat, R; Seco, A

    2004-01-01

    This paper presents laboratory-scale experimentation carried out to study enhanced biological phosphorus removal. Two anaerobic aerobic (A/O) sequencing batch reactors (SBR) have been operated during more than one year to investigate the information provided by monitoring pH and electric conductivity under stationary and transient conditions. Continuous measurements of these parameters allow detecting the end of anaerobic phosphorus release, of aerobic phosphorus uptake and of initial denitrification, as well as incomplete acetic acid uptake. These results suggest the possibility of using pH and electric conductivity as control parameters to determine the length of both anaerobic and aerobic phases in an A/O SBR. More valuable information provided by monitoring pH and electric conductivity is the relation between the amount of phosphorus released and the conductivity increase observed during the anaerobic stages and which group of bacteria (heterotrophic or polyphosphate accumulating) is carrying out the denitrification process.

  4. Coupled solar photo-Fenton and biological treatment for the degradation of diuron and linuron herbicides at pilot scale.

    PubMed

    Farré, Maria José; Maldonado, Manuel Ignacio; Gernjak, Wolfgang; Oller, Isabel; Malato, Sixto; Domènech, Xavier; Peral, José

    2008-06-01

    A coupled solar photo-Fenton (chemical) and biological treatment has been used to remove biorecalcitrant diuron (42 mg l(-1)) and linuron (75 mg l(-1)) herbicides from water at pilot plant scale. The chemical process has been carried out in a 82 l solar pilot plant made up by four compound parabolic collector units, and it was followed by a biological treatment performed in a 40 l sequencing batch reactor. Two Fe(II) doses (2 and 5 mg l(-1)) and sequential additions of H2O2 (20 mg l(-1)) have been used to chemically degrade the initially polluted effluent. Next, biodegradability at different oxidation states has been assessed by means of BOD/COD ratio. A reagent dose of Fe=5 mg l(-1) and H2O2=100 mg l(-1) has been required to obtain a biodegradable effluent after 100 min of irradiation time. Finally, the organic content of the photo-treated solution has been completely assimilated by a biomass consortium in the sequencing batch reactor using a total suspended solids concentration of 0.2 g l(-1) and a hydraulic retention time of 24h. Comparison between the data obtained at pilot plant scale (specially the one corresponding to the chemical step) and previously published data from a similar system performing at laboratory scale, has been carried out.

  5. Manufacturing demonstration of microbially mediated zinc sulfide nanoparticles in pilot-plant scale reactors

    DOE PAGES

    Moon, Ji-Won; Phelps, Tommy J.; Fitzgerald Jr, Curtis L.; ...

    2016-04-27

    The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale ( ≤24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of meso-scale experiments were performed using 100-l and 900-l reactors. Pasteurization and N 2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot-plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2 nm average crystallite size (ACS) and yields of ~0.5g L -1, similar to small-scale batches.more » The 900-L pilot plant reactor produced ~ 320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98% of the buffer chemical costs. In conclusion, the final NP products were characterized using XRD, ICP-OES, FTIR, DLS, and C/N analyses, which confirmed the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.« less

  6. Manufacturing demonstration of microbially mediated zinc sulfide nanoparticles in pilot-plant scale reactors.

    PubMed

    Moon, Ji-Won; Phelps, Tommy J; Fitzgerald, Curtis L; Lind, Randall F; Elkins, James G; Jang, Gyoung Gug; Joshi, Pooran C; Kidder, Michelle; Armstrong, Beth L; Watkins, Thomas R; Ivanov, Ilia N; Graham, David E

    2016-09-01

    The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale (≤ 24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of pilot-plant scale experiments were performed using 100-L and 900-L reactors. Pasteurization and N2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2-nm average crystallite size (ACS) and yields of ~0.5 g L(-1), similar to the small-scale batches. The 900-L pilot plant reactor produced ~320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width × 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic, and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98 % of the buffer chemical costs. The final NP products were characterized using XRD, ICP-OES, TEM, FTIR, PL, DLS, HPLC, and C/N analyses, which confirmed that the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.

  7. X-ray Analysis of Defects and Anomalies in AGR-5/6/7 TRISO Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmreich, Grant W.; Hunn, John D.; Skitt, Darren J.

    2017-06-01

    Coated particle fuel batches J52O-16-93164, 93165, 93166, 93168, 93169, 93170, and 93172 were produced by Babcock and Wilcox Technologies (BWXT) for possible selection as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR), or may be used for other tests. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT lot J52R-16-69317 containing a mixture of 15.4%-enriched uranium carbide and uranium oxide (UCO), with the exception of Batchmore » 93164, which used similar kernels from BWXT lot J52L-16-69316. The TRISO-coatings consisted of a ~50% dense carbon buffer layer with 100-μmnominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μm-nominal thickness. Each coated particle batch was sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batch was designated by appending the letter A to the end of the batch number (e.g., 93164A). Secondary upgrading by sieving was performed on the upgraded batches to remove specific anomalies identified during analysis for Defective IPyC, and the upgraded batches were designated by appending the letter B to the end of the batch number (e.g., 93165B). Following this secondary upgrading, coated particle composite J52R-16-98005 was produced by BWXT as fuel for the AGR Program’s AGR-5/6/7 irradiation test in the INL ATR. This composite was comprised of coated particle fuel batches J52O-16-93165B, 93168B, 93169B, and 93170B.« less

  8. Methane production from food waste leachate in laboratory-scale simulated landfill.

    PubMed

    Behera, Shishir Kumar; Park, Jun Mo; Kim, Kyeong Ho; Park, Hung-Suck

    2010-01-01

    Due to the prohibition of food waste landfilling in Korea from 2005 and the subsequent ban on the marine disposal of organic sludge, including leachate generated from food waste recycling facilities from 2012, it is urgent to develop an innovative and sustainable disposal strategy that is eco-friendly, yet economically beneficial. In this study, methane production from food waste leachate (FWL) in landfill sites with landfill gas recovery facilities was evaluated in simulated landfill reactors (lysimeters) for a period of 90 d with four different inoculum-substrate ratios (ISRs) on volatile solid (VS) basis. Simultaneous biochemical methane potential batch experiments were also conducted at the same ISRs for 30 d to compare CH(4) yield obtained from lysimeter studies. Under the experimental conditions, a maximum CH(4) yield of 0.272 and 0.294 L/g VS was obtained in the batch and lysimeter studies, respectively, at ISR of 1:1. The biodegradability of FWL in batch and lysimeter experiments at ISR of 1:1 was 64% and 69%, respectively. The calculated data using the modified Gompertz equation for the cumulative CH(4) production showed good agreement with the experimental result obtained from lysimeter study. Based on the results obtained from this study, field-scale pilot test is required to re-evaluate the existing sanitary landfills with efficient leachate collection and gas recovery facilities as engineered bioreactors to treat non-hazardous liquid organic wastes for energy recovery with optimum utilization of facilities. 2010 Elsevier Ltd. All rights reserved.

  9. In situ Raman spectroscopy for simultaneous monitoring of multiple process parameters in mammalian cell culture bioreactors.

    PubMed

    Whelan, Jessica; Craven, Stephen; Glennon, Brian

    2012-01-01

    In this study, the application of Raman spectroscopy to the simultaneous quantitative determination of glucose, glutamine, lactate, ammonia, glutamate, total cell density (TCD), and viable cell density (VCD) in a CHO fed-batch process was demonstrated in situ in 3 L and 15 L bioreactors. Spectral preprocessing and partial least squares (PLS) regression were used to correlate spectral data with off-line reference data. Separate PLS calibration models were developed for each analyte at the 3 L laboratory bioreactor scale before assessing its transferability to the same bioprocess conducted at the 15 L pilot scale. PLS calibration models were successfully developed for all analytes bar VCD and transferred to the 15 L scale. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  10. A direct comparison of U.S. Environmental Protection Agency's method 304B and batch tests for determining activated-sludge biodegradation rate constants for volatile organic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cano, M.L.; Wilcox, M.E.; Compernolle, R. van

    Biodegradation rate constants for volatile organic compounds (VOCs) in activated-sludge systems are needed to quantify emissions. One current US environmental Protection Agency method for determining a biodegradation rate constant is Method 304B. In this approach, a specific activated-sludge unit is simulated by a continuous biological treatment system with a sealed headspace. Batch experiments, however, can be alternatives to Method 304B. Two of these batch methods are the batch test that uses oxygen addition (BOX) and the serum bottle test (SBT). In this study, Method 304B was directly compared to BOX and SBT experiments. A pilot-scale laboratory reactor was constructed tomore » serve as the Method 304B unit. Biomass from the unit was also used to conduct BOX and modified SBT experiments (modification involved use of a sealed draft-tube reactor with a headspace recirculation pump instead of a serum bottle) for 1,2-dichloroethane, diisopropyl ether, methyl tertiary butyl ether, and toluene. Three experimental runs--each consisting of one Method 304B experiment, one BOX experiment, and one modified SBT experiment--were completed. The BOX and SBT data for each run were analyzed using a Monod model, and best-fit biodegradation kinetic parameters were determined for each experiment, including a first-order biodegradation rate constant (K{sub 1}). Experimental results suggest that for readily biodegradable VOCs the two batch techniques can provide improved means of determining biodegradation rate constants compared with Method 304B. In particular, these batch techniques avoid the Method 304B problem associated with steady-state effluent concentrations below analytical detection limits. However, experimental results also suggest that the two batch techniques should not be used to determine biodegradation rate constants for slowly degraded VOCs (i.e., K{sub 1} {lt} 0.1 L/g VSS-h).« less

  11. JOB BUILDER remote batch processing subsystem

    NASA Technical Reports Server (NTRS)

    Orlov, I. G.; Orlova, T. L.

    1980-01-01

    The functions of the JOB BUILDER remote batch processing subsystem are described. Instructions are given for using it as a component of a display system developed by personnel of the System Programming Laboratory, Institute of Space Research, USSR Academy of Sciences.

  12. Scale-up of recombinant Opc protein production in Escherichia coli for a meningococcal vaccine.

    PubMed

    Pérez, Raúl Espinosa; Lasa, Alexis Musacchio; Rodríguez, Ricardo Silva; Menéndez, Evelin Caballero; Suárez, José García; Balaguer, Héctor Díaz

    2006-12-15

    Opc is an outer membrane protein from Neisseria meningitidis present in meningococcal vaccine preparations. The opc gene, codifying for this protein, was cloned in to Escherichia coli and the Opc protein was expressed under the control of a tryptophan promoter. The recombinant strain was grown in batch cultures. Opc was expressed as inclusion bodies at about 32% of the total cellular protein. We examined the scale-up culture conditions for the production of the recombinant Opc. The scale-up process was performed from 1.5 l to 50 l culture, using first, the constant power per unit of volume (P/V) as main scaling criteria, and then the oxygen mass transfer coefficient (K(L)a) scaling criteria to adjust the optimal aeration conditions. A final productivity of 52 mgl(-1)h(-1) was obtained at the 50l culture scale compared with the 49 mgl(-1)h(-1) productivity at 1.5l laboratory scale.

  13. Vadose Zone Flow and Transport of Dissolved Organic Carbon at Multiple Scales in Humid Regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, Philip M; Mayes, Melanie; Mulholland, Patrick J

    2006-06-01

    Scientists must embrace the necessity to offset global CO{sub 2} emissions regardless of politics. Efforts to enhance terrestrial organic carbon sequestration have traditionally focused on aboveground biomass and surface soils. An unexplored potential exists in thick lower horizons of widespread, mature soils such as Alfisols, Ultisols, and Oxisols. We present a case study of fate and transport of dissolved organic carbon (DOC) in a highly weathered Ultisol, involving spatial scales from the laboratory to the landscape. Our objectives were to interpret processes observed at various scales and provide an improved understanding of coupled hydrogeochemical mechanisms that control DOC mobility andmore » sequestration in deep subsoils within humid climatic regimes. Our approach is multiscale, using laboratory-scale batch and soil columns (0.2 by 1.0 m), an in situ pedon (2 by 2 by 3 m), a well-instrumented subsurface facility on a subwatershed (0.47 ha), and ephemeral and perennial stream discharge at the landscape scale (38.4 ha). Laboratory-scale experiments confirmed that lower horizons have the propensity to accumulate DOC, but that preferential fracture flow tends to limit sequestration. Intermediate-scale experiments demonstrated the beneficial effects of C diffusion into soil micropores. Field- and landscape-scale studies demonstrated coupled hydrological, geochemical, and microbiological mechanisms that limit DOC sequestration, and their sensitivity to local environmental conditions. Our results suggest a multi-scale approach is necessary to assess the propensity of deep subsoils to sequester organic C in situ. By unraveling fundamental organic C sequestration mechanisms, we improve the conceptual and quantitative understanding needed to predict and alter organic C budgets in soil systems.« less

  14. 6. FLUX WEIGH HOPPERS AND SCALES ON THE BATCHING FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. FLUX WEIGH HOPPERS AND SCALES ON THE BATCHING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP LOOKING SOUTHWEST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  15. Plasmid fermentation process for DNA immunization applications.

    PubMed

    Carnes, Aaron E; Williams, James A

    2014-01-01

    Plasmid DNA for immunization applications must be of the highest purity and quality. The ability of downstream purification to efficiently produce a pure final product is directly influenced by the performance of the upstream fermentation process. While several clinical manufacturing facilities already have validated fermentation processes in place to manufacture plasmid DNA for use in humans, a simple and inexpensive laboratory-scale fermentation process can be valuable for in-house production of plasmid DNA for use in animal efficacy studies. This chapter describes a simple fed-batch fermentation process for producing bacterial cell paste enriched with high-quality plasmid DNA. A constant feeding strategy results in a medium cell density culture with continuously increasing plasmid amplification towards the end of the process. Cell banking and seed culture preparation protocols, which can dramatically influence final product yield and quality, are also described. These protocols are suitable for production of research-grade plasmid DNA at the 100 mg-to-1.5 g scale from a typical 10 L laboratory benchtop fermentor.

  16. Stormwater Pollution Prevention Plan TA-60 Asphalt Batch Plant Revision 2: January 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval, Leonard Frank

    The Stormwater Pollution Prevention Team (PPT) is applicable to operations at the Technical Area (TA)- 60 Asphalt Batch Plant (ABP) located on Eniwetok Drive/Sigma Mesa, in Los Alamos County, New Mexico at Los Alamos National Laboratory (LANL).

  17. Flash chemistry: flow chemistry that cannot be done in batch.

    PubMed

    Yoshida, Jun-ichi; Takahashi, Yusuke; Nagaki, Aiichiro

    2013-11-04

    Flash chemistry based on high-resolution reaction time control using flow microreactors enables chemical reactions that cannot be done in batch and serves as a powerful tool for laboratory synthesis of organic compounds and for production in chemical and pharmaceutical industries.

  18. Inorganic fouling mitigation by salinity cycling in batch reverse osmosis.

    PubMed

    Warsinger, David M; Tow, Emily W; Maswadeh, Laith A; Connors, Grace B; Swaminathan, Jaichander; Lienhard V, John H

    2018-06-15

    Enhanced fouling resistance has been observed in recent variants of reverse osmosis (RO) desalination which use time-varying batch or semi-batch processes, such as closed-circuit RO (CCRO) and pulse flow RO (PFRO). However, the mechanisms of batch processes' fouling resistance are not well-understood, and models have not been developed for prediction of their fouling performance. Here, a framework for predicting reverse osmosis fouling is developed by comparing the fluid residence time in batch and continuous (conventional) reverse osmosis systems to the nucleation induction times for crystallization of sparingly soluble salts. This study considers the inorganic foulants calcium sulfate (gypsum), calcium carbonate (calcite), and silica, and the work predicts maximum recovery ratios for the treatment of typical water sources using batch reverse osmosis (BRO) and continuous reverse osmosis. The prediction method is validated through comparisons to the measured time delay for CaSO 4 membrane scaling in a bench-scale, recirculating reverse osmosis unit. The maximum recovery ratio for each salt solution (CaCO 3 , CaSO 4 ) is individually predicted as a function of inlet salinity, as shown in contour plots. Next, the maximum recovery ratios of batch and conventional RO are compared across several water sources, including seawater, brackish groundwater, and RO brine. Batch RO's shorter residence times, associated with cycling from low to high salinity during each batch, enable significantly higher recovery ratios and higher salinity than in continuous RO for all cases examined. Finally, representative brackish RO brine samples were analyzed to determine the maximum possible recovery with batch RO. Overall, the induction time modeling methodology provided here can be used to allow batch RO to operate at high salinity and high recovery, while controlling scaling. The results show that, in addition to its known energy efficiency improvement, batch RO has superior inorganic fouling resistance relative to conventional RO. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Anaerobic digestion of pressed off leachate from the organic fraction of municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayono, Satoto E.; Institute of Biology for Engineers and Biotechnology of Wastewater, University of Karlsruhe, Am Fasanengarten, 76131 Karlsruhe; Winter, Josef, E-mail: josef.winter@iba.uka.d

    2010-10-15

    A highly polluted liquid ('press water') was obtained from the pressing facility for the organic fraction of municipal solid waste in a composting plant. Methane productivity of the squeezed-off leachate was investigated in batch assays. To assess the technical feasibility of 'press water' as a substrate for anaerobic digestion, a laboratory-scale glass column reactor was operated semi-continuously at 37 {sup o}C. A high methane productivity of 270 m{sup -3} CH{sub 4} ton{sup -1} COD{sub added} or 490 m{sup -3} CH{sub 4} ton{sup -1} VS{sub added} was achieved in the batch experiment. The semi-continuously run laboratory-scale reactor was initially operated atmore » an organic loading rate of 10.7 kg COD m{sup -3} d{sup -1}. The loading was increased to finally 27.7 kg COD m{sup -3} d{sup -1}, corresponding to a reduction of the hydraulic retention time from initially 20 to finally 7.7 days. During the digestion, a stable elimination of organic material (measured as COD elimination) of approximately 60% was achieved. Linearly with the increment of the OLR, the volumetric methane production of the reactor increased from 2.6 m{sup 3} m{sub reactor}{sup -3} d{sup -1} to 7.1 m{sup 3} m{sub reactor}{sup -3} d{sup -1}. The results indicated that 'press water' from the organic fraction of municipal solid waste was a suitable substrate for anaerobic digestion which gave a high biogas yield even at very high loading rates.« less

  20. EDQM biological reference preparation for rabies vaccine (inactivated) for veterinary use.

    PubMed

    Daas, A; Bruckner, L; Milne, C

    2015-01-01

    Rabies is a deadly zoonotic disease. Control of rabies in animals by vaccination is an important strategy to protect humans from infection and control the spread of the disease. Requirements for the quality control of rabies vaccines (inactivated) for veterinary use include an in vivo quantitative potency determination as outlined in the Ph. Eur. monograph 0451. Performance of this assay requires a reference preparation calibrated in International Units (IU). A European Pharmacopeia (Ph. Eur.) Biological Reference Preparation (BRP) for rabies vaccines (inactivated) for veterinary use, calibrated in IU, has been established for this purpose. Due to the dwindling stocks of the current batch (batch 4) of Ph. Eur. BRP for rabies vaccines (inactivated) for veterinary use, a collaborative study was run as part of the EDQM Biological Standardisation Programme to establish BRP batch 5. Ten laboratories, including Official Medicines Control Laboratories and manufacturers, participated. The candidate BRP5 was assayed against the 6(th) International Standard for rabies vaccine using the in vivo vaccination-challenge assay (monograph 0451) to assign a potency value. The candidate was also compared to BRP batch 4 to establish continuity. Taking into account the results from the comparisons a potency of 10 IU/vial was assigned and in March 2015 the Ph. Eur. Commission adopted the material as Ph. Eur. BRP for rabies vaccines (inactivated) for veterinary use batch 5. In addition to the in vivo assay 3 laboratories tested the candidate material using their in-house in vitro assays for information.

  1. Emulsified systems based on glyceryl monostearate and potassium cetyl phosphate: scale-up and characterization of physical properties.

    PubMed

    Baby, André Rolim; Santoro, Diego Monegatto; Velasco, Maria Valéria Robles; Dos Reis Serra, Cristina Helena

    2008-09-01

    Introducing a pharmaceutical product on the market involves several stages of research. The scale-up stage comprises the integration of previous phases of development and their integration. This phase is extremely important since many process limitations which do not appear on the small scale become significant on the transposition to a large one. Since scientific literature presents only a few reports about the characterization of emulsified systems involving their scaling-up, this research work aimed at evaluating physical properties of non-ionic and anionic emulsions during their manufacturing phases: laboratory stage and scale-up. Prototype non-ionic (glyceryl monostearate) and anionic (potassium cetyl phosphate) emulsified systems had the physical properties by the determination of the droplet size (D[4,3], mum) and rheology profile. Transposition occurred from a batch of 500-50,000g. Semi-industrial manufacturing involved distinct conditions: intensity of agitation and homogenization. Comparing the non-ionic and anionic systems, it was observed that anionic emulsifiers generated systems with smaller droplet size and higher viscosity in laboratory scale. Besides that, for the concentrations tested, augmentation of the glyceryl monostearate emulsifier content provided formulations with better physical characteristics. For systems with potassium cetyl phosphate, droplet size increased with the elevation of the emulsifier concentration, suggesting inadequate stability. The scale-up provoked more significant alterations on the rheological profile and droplet size on the anionic systems than the non-ionic.

  2. Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials.

    PubMed

    Gdowski, Andrew; Johnson, Kaitlyn; Shah, Sunil; Gryczynski, Ignacy; Vishwanatha, Jamboor; Ranjan, Amalendu

    2018-02-12

    The process of optimization and fabrication of nanoparticle synthesis for preclinical studies can be challenging and time consuming. Traditional small scale laboratory synthesis techniques suffer from batch to batch variability. Additionally, the parameters used in the original formulation must be re-optimized due to differences in fabrication techniques for clinical production. Several low flow microfluidic synthesis processes have been reported in recent years for developing nanoparticles that are a hybrid between polymeric nanoparticles and liposomes. However, use of high flow microfluidic synthetic techniques has not been described for this type of nanoparticle system, which we will term as nanolipomer. In this manuscript, we describe the successful optimization and functional assessment of nanolipomers fabricated using a microfluidic synthesis method under high flow parameters. The optimal total flow rate for synthesis of these nanolipomers was found to be 12 ml/min and flow rate ratio 1:1 (organic phase: aqueous phase). The PLGA polymer concentration of 10 mg/ml and a DSPE-PEG lipid concentration of 10% w/v provided optimal size, PDI and stability. Drug loading and encapsulation of a representative hydrophobic small molecule drug, curcumin, was optimized and found that high encapsulation efficiency of 58.8% and drug loading of 4.4% was achieved at 7.5% w/w initial concentration of curcumin/PLGA polymer. The final size and polydispersity index of the optimized nanolipomer was 102.11 nm and 0.126, respectively. Functional assessment of uptake of the nanolipomers in C4-2B prostate cancer cells showed uptake at 1 h and increased uptake at 24 h. The nanolipomer was more effective in the cell viability assay compared to free drug. Finally, assessment of in vivo retention in mice of these nanolipomers revealed retention for up to 2 h and were completely cleared at 24 h. In this study, we have demonstrated that a nanolipomer formulation can be successfully synthesized and easily scaled up through a high flow microfluidic system with optimal characteristics. The process of developing nanolipomers using this methodology is significant as the same optimized parameters used for small batches could be translated into manufacturing large scale batches for clinical trials through parallel flow systems.

  3. Actual waste demonstration of the nitric-glycolic flowsheet for sludge batch 9 qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newell, D.; Pareizs, J.; Martino, C.

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Based on the results of this actual-waste qualification and previous simulant studies, SRNL recommends implementation of the nitric-glycolic acid flowsheet in DWPF. Other recommendations resulting from this demonstration are reported in section 5.0.

  4. Comprehensive clone screening and evaluation of fed-batch strategies in a microbioreactor and lab scale stirred tank bioreactor system: application on Pichia pastoris producing Rhizopus oryzae lipase

    PubMed Central

    2014-01-01

    Background In Pichia pastoris bioprocess engineering, classic approaches for clone selection and bioprocess optimization at small/micro scale using the promoter of the alcohol oxidase 1 gene (PAOX1), induced by methanol, present low reproducibility leading to high time and resource consumption. Results An automated microfermentation platform (RoboLector) was successfully tested to overcome the chronic problems of clone selection and optimization of fed-batch strategies. Different clones from Mut+P. pastoris phenotype strains expressing heterologous Rhizopus oryzae lipase (ROL), including a subset also overexpressing the transcription factor HAC1, were tested to select the most promising clones. The RoboLector showed high performance for the selection and optimization of cultivation media with minimal cost and time. Syn6 medium was better than conventional YNB medium in terms of production of heterologous protein. The RoboLector microbioreactor was also tested for different fed-batch strategies with three clones producing different lipase levels. Two mixed substrates fed-batch strategies were evaluated. The first strategy was the enzymatic release of glucose from a soluble glucose polymer by a glucosidase, and methanol addition every 24 hours. The second strategy used glycerol as co-substrate jointly with methanol at two different feeding rates. The implementation of these simple fed-batch strategies increased the levels of lipolytic activity 80-fold compared to classical batch strategies used in clone selection. Thus, these strategies minimize the risk of errors in the clone selection and increase the detection level of the desired product. Finally, the performance of two fed-batch strategies was compared for lipase production between the RoboLector microbioreactor and 5 liter stirred tank bioreactor for three selected clones. In both scales, the same clone ranking was achieved. Conclusion The RoboLector showed excellent performance in clone selection of P. pastoris Mut+ phenotype. The use of fed-batch strategies using mixed substrate feeds resulted in increased biomass and lipolytic activity. The automated processing of fed-batch strategies by the RoboLector considerably facilitates the operation of fermentation processes, while reducing error-prone clone selection by increasing product titers. The scale-up from microbioreactor to lab scale stirred tank bioreactor showed an excellent correlation, validating the use of microbioreactor as a powerful tool for evaluating fed-batch operational strategies. PMID:24606982

  5. Effect of moisture content on fed batch composting reactor of vegetable and fruit wastes.

    PubMed

    Jolanun, B; Tripetchkul, S; Chiemchaisri, C; Chaiprasert, P; Towprayoon, S

    2005-03-01

    Vegetable and fruit wastes mixed with sawdust were composted in a laboratory scale reactor by controlling the waste feeding rate at 21 kg m(-3) day(-1) and aeration rate at 10.6 l m(-3) min(-1). The effects of initial moisture content on organic matter degradation and process performance of fed batch composting were investigated. The absolute amount of removal, removal percentage, and removal rate of dry mass obtained were substantially different among the initial moisture contents. The rapid rise of moisture content and the lowest absolute amount of removal observed were achieved in the 50% condition. The initial moisture content yielding the largest absolute amount of removal in both feeding and curing stage was 30% whereas the removal percentage and rate constant of waste decomposition were highest in the 50% condition. Examined by traditional soil physics method, the moisture content at 50-55% was suitable for satisfying the degree of free air space (65-70%) of compost during the fed batch composting. Most degradable organic matter was mainly consumed in the feeding stage as indicated by a higher removal rate of dry mass in all cases. It is recommended that the initial moisture content of 30% and mode of aeration and agitation should be adopted for achieving practical fed batch composting of vegetable and fruit wastes. The study also demonstrated that the composting kinetics of vegetable and fruit wastes mixed with sawdust can be described by a first order model.

  6. High-accuracy microassembly by intelligent vision systems and smart sensor integration

    NASA Astrophysics Data System (ADS)

    Schilp, Johannes; Harfensteller, Mark; Jacob, Dirk; Schilp, Michael

    2003-10-01

    Innovative production processes and strategies from batch production to high volume scale are playing a decisive role in generating microsystems economically. In particular assembly processes are crucial operations during the production of microsystems. Due to large batch sizes many microsystems can be produced economically by conventional assembly techniques using specialized and highly automated assembly systems. At laboratory stage microsystems are mostly assembled by hand. Between these extremes there is a wide field of small and middle sized batch production wherefore common automated solutions rarely are profitable. For assembly processes at these batch sizes a flexible automated assembly system has been developed at the iwb. It is based on a modular design. Actuators like grippers, dispensers or other process tools can easily be attached due to a special tool changing system. Therefore new joining techniques can easily be implemented. A force-sensor and a vision system are integrated into the tool head. The automated assembly processes are based on different optical sensors and smart actuators like high-accuracy robots or linear-motors. A fiber optic sensor is integrated in the dispensing module to measure contactless the clearance between the dispense needle and the substrate. Robot vision systems using the strategy of optical pattern recognition are also implemented as modules. In combination with relative positioning strategies, an assembly accuracy of the assembly system of less than 3 μm can be realized. A laser system is used for manufacturing processes like soldering.

  7. Optimization aspects of the biological nitrogen removal process in a full-scale twin sequencing batch reactor (SBR) system in series treating landfill leachate.

    PubMed

    Remmas, Nikolaos; Ntougias, Spyridon; Chatzopoulou, Marianna; Melidis, Paraschos

    2018-03-29

    Despite the fact that biological nitrogen removal (BNR) process has been studied in detail in laboratory- and pilot-scale sequencing batch reactor (SBR) systems treating landfill leachate, a limited number of research works have been performed in full-scale SBR plants regarding nitrification and denitrification. In the current study, a full-scale twin SBR system in series of 700 m 3 (350 m 3 each) treating medium-age landfill leachate was evaluated in terms of its carbon and nitrogen removal efficiency in the absence and presence of external carbon source, i.e., glycerol from biodiesel production. Both biodegradable organic carbon and ammonia were highly oxidized [biochemical oxygen demand (BOD 5 ) and total Kjehldahl nitrogen (TKN) removal efficiencies above 90%], whereas chemical oxygen demand (COD) removal efficiency was slightly above 40%, which is within the range reported in the literature for pilot-scale SBRs. As the consequence of the high recalcitrant organic fraction of the landfill leachate, dissimilatory nitrate reduction was restricted in the absence of crude glycerol, although denitrification was improved by electron donor addition, resulting in TN removal efficiencies above 70%. Experimental data revealed that the second SBR negligibly contributed to BNR process, since carbon and ammonia oxidation completion was achieved in the first SBR. On the other hand, the low VSS/SS ratio, due to the lack of primary sedimentation, highly improved sludge settleability, resulting in sludge volume indices (SVI) below 30 mL g -1 .

  8. Moving from Batch to Field Using the RT3D Reactive Transport Modeling System

    NASA Astrophysics Data System (ADS)

    Clement, T. P.; Gautam, T. R.

    2002-12-01

    The public domain reactive transport code RT3D (Clement, 1997) is a general-purpose numerical code for solving coupled, multi-species reactive transport in saturated groundwater systems. The code uses MODFLOW to simulate flow and several modules of MT3DMS to simulate the advection and dispersion processes. RT3D employs the operator-split strategy which allows the code solve the coupled reactive transport problem in a modular fashion. The coupling between reaction and transport is defined through a separate module where the reaction equations are specified. The code supports a versatile user-defined reaction option that allows users to define their own reaction system through a Fortran-90 subroutine, known as the RT3D-reaction package. Further a utility code, known as BATCHRXN, allows the users to independently test and debug their reaction package. To analyze a new reaction system at a batch scale, users should first run BATCHRXN to test the ability of their reaction package to model the batch data. After testing, the reaction package can simply be ported to the RT3D environment to study the model response under 1-, 2-, or 3-dimensional transport conditions. This paper presents example problems that demonstrate the methods for moving from batch to field-scale simulations using BATCHRXN and RT3D codes. The first example describes a simple first-order reaction system for simulating the sequential degradation of Tetrachloroethene (PCE) and its daughter products. The second example uses a relatively complex reaction system for describing the multiple degradation pathways of Tetrachloroethane (PCA) and its daughter products. References 1) Clement, T.P, RT3D - A modular computer code for simulating reactive multi-species transport in 3-Dimensional groundwater aquifers, Battelle Pacific Northwest National Laboratory Research Report, PNNL-SA-28967, September, 1997. Available at: http://bioprocess.pnl.gov/rt3d.htm.

  9. Characterization of Chlorella sorokiniana, UTEX 1230.

    PubMed

    Lizzul, Alessandro Marco; Lekuona-Amundarain, Aitor; Purton, Saul; Campos, Luiza Cintra

    2018-04-13

    This paper characterizes the strain Chlorella sorokiniana UTEX 1230 within a laboratory setting using a 1 L bubble column. The findings show that productivity can be trebled under mixotrophic conditions (from 0.2 g·L −1 ·d −1 to 0.66 g·L −1 ·d −1 ) with the addition of sodium acetate. The results also indicate that both the growth rate and final yield increase with the cultivation temperature, with most parameters showing an optimum in the range of 30–35 °C. The maximum specific growth rate was found to be in the region of 0.12 h −1 at a surface irradiance between 100–500 µE·m −2 ·s −1 . This high growth rate makes the strain particularly suited to the rapid production of biomass, suitable for either whole cell bioprocessing or bioremediation. However, the relatively low lipid productivity (9.2 mg·L −1 ·d −1 ) confirms previous findings which would indicate poor applicability for biodiesel production. The strain shows greater promise in wastewater treatment applications with removal rates of nitrogen and phosphorus in the region of 37 and 30 mg·L −1 ·d −1 respectively. Furthermore, the findings show that a fed-batch strategy to inorganic nutrient loading can increase the final yield by around 50% compared to a conventional batch run. This is particularly interesting as fed-batch production techniques are rarely used within microalgal cultivation, so provide an interesting avenue for further investigation. Overall, the findings show that C. sorokiniana UTEX 1230 is a robust and fast-growing microalgal strain suitable both for the laboratory and scale-up.

  10. Investigation of mircroorganisms colonising activated zeolites during anaerobic biogas production from grass silage.

    PubMed

    Weiss, S; Zankel, A; Lebuhn, M; Petrak, S; Somitsch, W; Guebitz, G M

    2011-03-01

    The colonisation of activated zeolites (i.e. clinoptilolites) as carriers for microorganisms involved in the biogas process was investigated. Zeolite particle sizes of 1.0-2.5mm were introduced to anaerobic laboratory batch-cultures and to continuously operated bioreactors during biogas production from grass silage. Incubation over 5-84 days led to the colonisation of zeolite surfaces in small batch-cultures (500 ml) and even in larger scaled and flow-through disturbed bioreactors (28 l). Morphological insights were obtained by using scanning electron microscopy (SEM). Single strand conformation polymorphism (SSCP) analysis based on amplification of bacterial and archaeal 16S rRNA fragments demonstrated structurally distinct populations preferring zeolite as operational environment. via sequence analysis conspicuous bands from SSCP patterns were identified. Populations immobilised on zeolite (e.g. Ruminofilibacter xylanolyticum) showed pronounced hydrolytic enzyme activity (xylanase) shortly after re-incubation in sterilised sludge on model substrate. In addition, the presence of methanogenic archaea on zeolite particles was demonstrated. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Fed-batch anaerobic valorization of slaughterhouse by-products with mesophilic microbial consortia without methane production.

    PubMed

    Pessiot, J; Nouaille, R; Jobard, M; Singhania, R R; Bournilhas, A; Christophe, G; Fontanille, P; Peyret, P; Fonty, G; Larroche, C

    2012-07-01

    This work aimed at setting up a fully instrumented, laboratory-scale bioreactor enabling anaerobic valorization of solid substrates through hydrogen and/or volatile fatty acid (VFA) production using mixed microbial populations (consortia). The substrate used was made of meat-based wastes, especially from slaughterhouses, which are becoming available in large amounts as a consequence of the growing constraints for waste disposal from meat industry. A reconstituted microbial mesophilic consortium without Archaebacteria (methanogens), named PBr, was cultivated in a 5-L anaerobic bioreactor on slaughterhouse wastes. The experiments were carried out with sequential fed-batch operations, including liquid medium removal from the bioreactor and addition of fresh substrate. VFAs and nitrogen were the main metabolites observed, while hydrogen accumulation was very low and no methane production was evidenced. After 1,300 h of culture, yields obtained for VFAs reached 0.38 g/g dry matter. Strain composition of the microbial consortium was also characterized using molecular tools (temporal temperature gradient gel electrophoresis and gene sequencing).

  12. Batch Immunostaining for Large-Scale Protein Detection in the Whole Monkey Brain

    PubMed Central

    Zangenehpour, Shahin; Burke, Mark W.; Chaudhuri, Avi; Ptito, Maurice

    2009-01-01

    Immunohistochemistry (IHC) is one of the most widely used laboratory techniques for the detection of target proteins in situ. Questions concerning the expression pattern of a target protein across the entire brain are relatively easy to answer when using IHC in small brains, such as those of rodents. However, answering the same questions in large and convoluted brains, such as those of primates presents a number of challenges. Here we present a systematic approach for immunodetection of target proteins in an adult monkey brain. This approach relies on the tissue embedding and sectioning methodology of NeuroScience Associates (NSA) as well as tools developed specifically for batch-staining of free-floating sections. It results in uniform staining of a set of sections which, at a particular interval, represents the entire brain. The resulting stained sections can be subjected to a wide variety of analytical procedures in order to measure protein levels, the population of neurons expressing a certain protein. PMID:19636291

  13. Strategies to increase the hygienic and economic value of fresh fish: Biopreservation using lactic acid bacteria of marine origin.

    PubMed

    Gómez-Sala, Beatriz; Herranz, Carmen; Díaz-Freitas, Belén; Hernández, Pablo E; Sala, Ana; Cintas, Luis M

    2016-04-16

    In this work we describe the development of a biopreservation strategy for fresh fish based on the use of bacteriocinogenic LAB of marine origin. For this purpose, two multibacteriocinogenic LAB strains, Lactobacillus curvatus BCS35 and Enterococcus faecium BNM58, previously isolated from fish and fish products were selected owing to their capability to inhibit the growth of several fish-spoilage and food-borne pathogenic bacteria. Two commercially important fish species were chosen, young hake (Merluccius merluccius) and megrim (Lepidorhombus boscii), and the specimens were acquired at the Marín (Pontevedra, Spain) retail fish market, after one night in the chilled hold of a near-shore fishing vessel. The biopreservation potential and the application strategies of these two LAB strains were first tested at a laboratory scale, where several batches of fresh fish were inoculated with: (i) the multibacteriocinogenic LAB culture(s) as protective culture(s); and/or (ii) their cell-free culture supernatant(s) as food ingredient(s), and (iii) the lyophilized bacteriocin preparation(s) as lyophilized food ingredient(s). All batches were stored in polystyrene boxes, permanently filled with ice at 0-2 °C, for 14 days. Microbiological analyses, as well as sensorial analyses, were carried out during the biopreservation trials. Subsequently, Lb. curvatus BCS35 was selected to up-scale the trials, and combinations of the three application methods were assayed. For this purpose, this strain was grown in a semi-industrial scale fermentor (150l) in modified MRS broth, and three batches of fresh fish were inoculated with the protective culture and/or food ingredient, and stored on ice in a chilled chamber at 0-2 °C at the Marín retail fish market for 14 days. Microbiological analyses were carried out during the storage period, showing that when Lb. curvatus BCS35 culture or the corresponding cell-free culture supernatant was used as protective culture or food ingredient, respectively, bacterial counts were significantly lower than those of the untreated control batches, both for young hake and megrim. In addition, the presence of Listeria spp. in megrim was inhibited in both analyses. The effect of protective culture or food ingredient on the sensory characteristics of fish was evaluated by an official fish appraiser from the Marín retail fish market, who concluded that all the biopreserved batches were worth a higher price in the fish market than the respective control batches, demonstrating that the multibacteriocinogenic strain of marine origin Lb. curvatus BCS35 may be considered as a suitable candidate for its application as fresh fish biopreservative. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Mixture model normalization for non-targeted gas chromatography/mass spectrometry metabolomics data.

    PubMed

    Reisetter, Anna C; Muehlbauer, Michael J; Bain, James R; Nodzenski, Michael; Stevens, Robert D; Ilkayeva, Olga; Metzger, Boyd E; Newgard, Christopher B; Lowe, William L; Scholtens, Denise M

    2017-02-02

    Metabolomics offers a unique integrative perspective for health research, reflecting genetic and environmental contributions to disease-related phenotypes. Identifying robust associations in population-based or large-scale clinical studies demands large numbers of subjects and therefore sample batching for gas-chromatography/mass spectrometry (GC/MS) non-targeted assays. When run over weeks or months, technical noise due to batch and run-order threatens data interpretability. Application of existing normalization methods to metabolomics is challenged by unsatisfied modeling assumptions and, notably, failure to address batch-specific truncation of low abundance compounds. To curtail technical noise and make GC/MS metabolomics data amenable to analyses describing biologically relevant variability, we propose mixture model normalization (mixnorm) that accommodates truncated data and estimates per-metabolite batch and run-order effects using quality control samples. Mixnorm outperforms other approaches across many metrics, including improved correlation of non-targeted and targeted measurements and superior performance when metabolite detectability varies according to batch. For some metrics, particularly when truncation is less frequent for a metabolite, mean centering and median scaling demonstrate comparable performance to mixnorm. When quality control samples are systematically included in batches, mixnorm is uniquely suited to normalizing non-targeted GC/MS metabolomics data due to explicit accommodation of batch effects, run order and varying thresholds of detectability. Especially in large-scale studies, normalization is crucial for drawing accurate conclusions from non-targeted GC/MS metabolomics data.

  15. Enhanced biodegradation of methylhydrazine and hydrazine contaminated NASA wastewater in fixed-film bioreactor.

    PubMed

    Nwankwoala, A U; Egiebor, N O; Nyavor, K

    2001-01-01

    The aerobic biodegradation of National Aeronautics and Space Administration (NASA) wastewater that contains mixtures of highly concentrated methylhydrazine/hydrazine, citric acid and their reaction product was studied on a laboratory-scale fixed film trickle-bed reactor. The degrading organisms, Achromobacter sp., Rhodococcus B30 and Rhodococcus J10, were immobilized on coarse sand grains used as support-media in the columns. Under continuous flow operation, Rhodococcus sp. degraded the methylhydrazine content of the wastewater from a concentration of 10 to 2.5 mg/mL within 12 days and the hydrazine from approximately 0.8 to 0.1 mg/mL in 7 days. The Achromobacter sp. was equally efficient in degrading the organics present in the wastewater, reducing the concentration of the methylhydrazine from 10 to approximately 5 mg/mL within 12 days and that of the hydrazine from approximately 0.8 to 0.2 mg/mL in 7 days. The pseudo first-order rate constants of 0.137 day(-1) and 0.232 day(-1) were obtained for the removal of methylhydrazine and hydrazine, respectively, in wastewater in the reactor column. In the batch cultures, rate constants for the degradation were 0.046 and 0.079 day(-1) for methylhydrazine and hydrazine respectively. These results demonstrate that the continuous flow bioreactor afford greater degradation efficiencies than those obtained when the wastewater was incubated with the microbes in growth-limited batch experiments. They also show that wastewater containing hydrazine is more amenable to microbial degradation than one that is predominant in methylhydrazine, in spite of the longer lag period observed for hydrazine containing wastewater. The influence of substrate concentration and recycle rate on the degradation efficiency is reported. The major advantages of the trickle-bed reactor over the batch system include very high substrate volumetric rate of turnover, higher rates of degradation and tolerance of the 100% concentrated NASA wastewater. The results of the present laboratory scale study will be of great importance in the design and operation of an industrial immobilized biofilm reactor for the treatment of methylhydrazine and hydrazine contaminated NASA wastewater.

  16. The sequencing batch reactor as an excellent configuration to treat wastewater from the petrochemical industry.

    PubMed

    Caluwé, Michel; Daens, Dominique; Blust, Ronny; Geuens, Luc; Dries, Jan

    2017-02-01

    In the present study, the influence of a changing feeding pattern from continuous to pulse feeding on the characteristics of activated sludge was investigated with a wastewater from the petrochemical industry from the harbour of Antwerp. Continuous seed sludge, adapted to the industrial wastewater, was used to start up three laboratory-scale sequencing batch reactors. After an adaptation period from the shift to pulse feeding, the effect of an increasing organic loading rate (OLR) and volume exchange ratio (VER) were investigated one after another. Remarkable changes of the specific oxygen uptake rate (sOUR), microscopic structure, sludge volume index (SVI), SVI 30 /SVI 5 ratio, and settling rate were observed during adaptation. sOUR increased two to five times and treatment time decreased 43.9% in 15 days. Stabilization of the SVI occurred after a period of 20 days and improved significantly from 300 mL·g -1 to 80 mL·g -1 . Triplication of the OLR and VER had no negative influence on sludge settling and effluent quality. Adaptation time of the microorganisms to a new feeding pattern, OLR and VER was relatively short and sludge characteristics related to aerobic granular sludge were obtained. This study indicates significant potential of the batch activated sludge system for the treatment of this industrial petrochemical wastewater.

  17. Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor

    PubMed Central

    Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang

    2015-01-01

    Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3−-N could be removed or reduced, some amount of NO2−-N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy. PMID:26257096

  18. Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor.

    PubMed

    Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang

    2015-08-10

    Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3(-)-N could be removed or reduced, some amount of NO2(-)-N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy.

  19. Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang

    2015-08-01

    Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3--N could be removed or reduced, some amount of NO2--N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy.

  20. Measurement and analysis of the mannitol partition coefficient in sucrose crystallization under simulated industrial conditions.

    PubMed

    Eggleston, Gillian; Yen, Jenny Wu Tiu; Alexander, Clay; Gober, Jessica

    2012-07-01

    Mannitol is a major deterioration product of Leuconstoc mesenteroides bacterial metabolism of sucrose and fructose from both sugarcane and sugar beet. The effect of crystallization conditions on the mannitol partition coefficient (K(eff)) between impure sucrose syrup and crystal has been investigated in a batch laboratory crystallizer and a batch pilot plant-scale vacuum pan. Laboratory crystallization was operated at 65.5°C (150°F), 60.0°C (140°F), and 51.7°C (125°F) with a 78.0 Brix (% refractometric dissolved solids) pure sucrose syrup containing 0%, 0.1%, 0.2%, 1.0%, 2.0%, 3.0%, and 10% (at 65.5°C only) mannitol on a Brix basis. Produced mother liquor and crystals were separated by centrifugation and their mannitol contents measured by ion chromatography with integrated pulsed amperometric detection (IC-IPAD). The extent of mannitol partitioning into the crystals depended strongly on the mannitol concentration in the feed syrup and, to a lesser extent, the crystallization temperature. At 65.5 and 60.0°C, the K(eff) varied from ~0.4% to 3.0% with 0.2% to 3.0% mannitol in the feed syrup, respectively. The mannitol K(eff) was lower than that reported for dextran (~9-10% K(eff)), another product of Leuconstoc deterioration, under similar sucrose crystal growth conditions. At 10% mannitol concentration in the syrup at 65.5°C, co-crystallization of mannitol with sucrose occurred and the crystal growth rate was greatly impeded. In both laboratory and pilot plant crystallizations (95.7% purity; 78.0 Brix; 65.5°C), mannitol tended to cause conglomerates to form, which became progressively worse with increased mannitol syrup concentration. At the 3% mannitol concentration, crystallization at both the laboratory and pilot plant scales was more difficult. Mannitol incorporation into the sucrose crystal results mostly from liquid syrup inclusions but adsorption onto the crystal surface may play a minor role at lower mannitol concentrations. Published by Elsevier Ltd.

  1. Development of criteria for the use of asphalt-rubber as a Stress-Absorbing Membrane Interlayer (SAMI)

    NASA Astrophysics Data System (ADS)

    Newcomb, D. E.; McKeen, R. G.

    1983-12-01

    This report documents over 2 years of research efforts to characterize asphalt-rubber mixtures to be used in Stress-Absorbing Membrane Interlayers (SAMI). The purpose of these SAMIs is to retard or prevent reflection cracking in asphalt-concrete overlays. Several laboratory experiments and one field trial were conducted to define significant test methods and parameters for incorporation into construction design and specification documents. Test methods used in this study included a modified softening point test, force-ductility, and Schweyer viscosity. Variables investigated included (1) Laboratory-mixing temperature; (2) Rubber type; (3) Laboratory storage time; (4) Laboratory storage condition; (5) Laboratory batch replication; (6) Laboratory mixing time; (7) Field mixing time; (8) Laboratory test temperature; (9) Force-Ductility elongation rates; and (10) Asphalt grade. It was found that mixing temperature, mixing time, rubber type, and asphalt grade all have significant effects upon the behavior of asphalt-rubber mixtures. Significant variability was also noticed in different laboratory batch replications. Varying laboratory test temperature and force-ductility elongation rate revealed further differences in asphalt-rubber mixtures.

  2. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale.

    PubMed

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-09-18

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g(-1) volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g(-1) VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH₄ recovery of 189 L kg(-1) VS was achieved and a biogas composition of 55% CH₄ and 38% CO₂ was recorded.

  3. Anaerobic treatment of animal byproducts from slaughterhouses at laboratory and pilot scale.

    PubMed

    Edström, Mats; Nordberg, Ake; Thyselius, Lennart

    2003-01-01

    Different mixtures of animal byproducts, other slaughterhouse waste (i.e., rumen, stomach and intestinal content), food waste, and liquid manure were codigested at mesophilic conditions (37 degrees C) at laboratory and pilot scale. Animal byproducts, including blood, represent 70-80% of the total biogas potential from waste generated during slaughter of animals. The total biogas potential from waste generated during slaughter is about 1300 MJ/cattle and about 140 MJ/pig. Fed-batch digestion of pasteurized (70 degrees C, 1 h) animal byproducts resulted in a fourfold increase in biogas yield (1.14 L/g of volatile solids [VS]) compared with nonpasteurized animal byproducts (0.31 L/g of VS). Mixtures with animal byproducts representing 19-38% of the total dry matter were digested in continuous-flow stirred tank reactors at laboratory and pilot scale. Stable processes at organic loading rates (OLRs) exceeding 2.5 g of VS/(L.d) and hydraulic retention times (HRTs) less than 40 d could be obtained with total ammonia nitrogen concentrations (NH4-N + NH3-N) in the range of 4.0-5.0 g/L. After operating one process for more than 1.5 yr at total ammonia nitrogen concentrations >4 g/L, an increase in OLR to 5 g of VS/(L.d) and a decrease in HRT to 22 d was possible without accumulation of volatile fatty acids.

  4. Scale-up synthesis of zinc borate from the reaction of zinc oxide and boric acid in aqueous medium

    NASA Astrophysics Data System (ADS)

    Kılınç, Mert; Çakal, Gaye Ö.; Yeşil, Sertan; Bayram, Göknur; Eroğlu, İnci; Özkar, Saim

    2010-11-01

    Synthesis of zinc borate was conducted in a laboratory and a pilot scale batch reactor to see the influence of process variables on the reaction parameters and the final product, 2ZnO·3B 2O 3·3.5H 2O. Effects of stirring speed, presence of baffles, amount of seed, particle size and purity of zinc oxide, and mole ratio of H 3BO 3:ZnO on the zinc borate formation reaction were examined at a constant temperature of 85 °C in a laboratory (4 L) and a pilot scale (85 L) reactor. Products obtained from the reaction in both reactors were characterized by chemical analysis, X-ray diffraction, particle size distribution analysis, thermal gravimetric analysis and scanning electron microscopy. The kinetic data for the zinc borate production reaction was fit by using the logistic model. The results revealed that the specific reaction rate, a model parameter, decreases with increase in particle size of zinc oxide and the presence of baffles, but increases with increase in stirring speed and purity of zinc oxide; however, it is unaffected with the changes in the amount of seed and reactants ratio. The reaction completion time is unaffected by scaling-up.

  5. Tackling the widespread and critical impact of batch effects in high-throughput data.

    PubMed

    Leek, Jeffrey T; Scharpf, Robert B; Bravo, Héctor Corrada; Simcha, David; Langmead, Benjamin; Johnson, W Evan; Geman, Donald; Baggerly, Keith; Irizarry, Rafael A

    2010-10-01

    High-throughput technologies are widely used, for example to assay genetic variants, gene and protein expression, and epigenetic modifications. One often overlooked complication with such studies is batch effects, which occur because measurements are affected by laboratory conditions, reagent lots and personnel differences. This becomes a major problem when batch effects are correlated with an outcome of interest and lead to incorrect conclusions. Using both published studies and our own analyses, we argue that batch effects (as well as other technical and biological artefacts) are widespread and critical to address. We review experimental and computational approaches for doing so.

  6. Biogas Production from Rice Husk Waste by using Solid State Anaerobic Digestion (SSAD) Method

    NASA Astrophysics Data System (ADS)

    Matin, Hashfi Hawali Abdul; Hadiyanto

    2018-02-01

    An effort to obtain alternative energy is still interesting subject to be studied, especially production of biogas from agriculture waste. This paper was an overview of the latest development of biogas researches from rice husk waste by Solid State Anaerobic Digestion (SSAD). The main obstacle of biogas production from rice husk waste was the lignin content which is very difficult degraded by microbes. Various pretreatments have been conducted, either physically, chemically as well as biologically. The SSAD method was an attractive option because of the low water content of rice husk waste. The biogas yield by SSAD method gave more attractive result compared to Liquid Anaerobic Digestion (LAD) method. Various studies were still conducted in batch mode laboratory scale and also has not found optimum operating conditions. Research on a larger scale such as bench and pilot scale with continuous systems will be an increase trend in the future research.

  7. ELISA reader does not interfere by mobile phone radiofrequency radiation.

    PubMed

    Mortazavi, Seyyed Mohammad Javad; Baradaran-Ghahfarokhi, Hamid Reza; Abdi, Mohammad Reza; Baradaran-Ghahfarokhi, Milad; Mostafavi, Nayyer Sadat; Mahmoudi, Golshan; Berenjkoub, Nafiseh; Akmali, Zahra; Hossein-Beigi, Fahimeh; Arsang, Vajiheh

    2016-01-01

    The increasing number of mobile phones can physically cause electromagnetic interference (EMI) in medical environments; can also cause errors in immunoassays in laboratories. The ELISA readers are widely used as a useful diagnostic tool for Enzymun colorimetric assay in medicine. The aim of this study was to investigate whether the ELISA reader could be interfered by the exposure to the 900 MHz cell phones in the laboratory. Human serum samples were collected from 14 healthy donors (9 women and 5 men) and each sample was divided into four aliquots and was placed into four batches for the in-vitro quantitative determination of human chorionic gonadotropin (hCG). During colorimetric reading of the first, second, and third batches, the ELISA reader (Stat Fax 2100, Awareness Technology, Inc., USA) was exposed to 0.5, 1.0, and 2.0 W exposure of 900 MHz radiation, respectively. For the forth batch (control group), no radiation was applied. All experiments were performed comparing ELISA read out results of the I, II, and III batches with the control batch, using the Wilcoxon test with criterion level of P = 0.050. The final scores in the exposed batches I, II, and III were not statistically significant relative to the control batch (P > 0.05). The results showed that 900 MHz radiation exposure did not alter the ELISA measured levels of hCG hormone in I (P = 0.219), II (P = 0.909), and III (P = 0.056) batches compared to the control batch. This study showed that ELISA reader does not interfere by mobile phone RF radiation at a closed contact (less than 5 cm distance). However, we recommend that medical institutions discuss these issues in the context of their specific use of technologies and frame a policy that is clear and straightforward to guide staff, patients, and visitors.

  8. ELISA reader does not interfere by mobile phone radiofrequency radiation

    PubMed Central

    Mortazavi, Seyyed Mohammad Javad; Baradaran-Ghahfarokhi, Hamid Reza; Abdi, Mohammad Reza; Baradaran-Ghahfarokhi, Milad; Mostafavi, Nayyer Sadat; Mahmoudi, Golshan; Berenjkoub, Nafiseh; Akmali, Zahra; Hossein-Beigi, Fahimeh; Arsang, Vajiheh

    2016-01-01

    Background: The increasing number of mobile phones can physically cause electromagnetic interference (EMI) in medical environments; can also cause errors in immunoassays in laboratories. The ELISA readers are widely used as a useful diagnostic tool for Enzymun colorimetric assay in medicine. The aim of this study was to investigate whether the ELISA reader could be interfered by the exposure to the 900 MHz cell phones in the laboratory. Materials and Methods: Human serum samples were collected from 14 healthy donors (9 women and 5 men) and each sample was divided into four aliquots and was placed into four batches for the in-vitro quantitative determination of human chorionic gonadotropin (hCG). During colorimetric reading of the first, second, and third batches, the ELISA reader (Stat Fax 2100, Awareness Technology, Inc., USA) was exposed to 0.5, 1.0, and 2.0 W exposure of 900 MHz radiation, respectively. For the forth batch (control group), no radiation was applied. All experiments were performed comparing ELISA read out results of the I, II, and III batches with the control batch, using the Wilcoxon test with criterion level of P = 0.050. Results: The final scores in the exposed batches I, II, and III were not statistically significant relative to the control batch (P > 0.05). The results showed that 900 MHz radiation exposure did not alter the ELISA measured levels of hCG hormone in I (P = 0.219), II (P = 0.909), and III (P = 0.056) batches compared to the control batch. Conclusion: This study showed that ELISA reader does not interfere by mobile phone RF radiation at a closed contact (less than 5 cm distance). However, we recommend that medical institutions discuss these issues in the context of their specific use of technologies and frame a policy that is clear and straightforward to guide staff, patients, and visitors. PMID:27376040

  9. Polyurethane foam (PUF) passive samplers for monitoring phenanthrene in stormwater.

    PubMed

    Dou, Yueqin; Zhang, Tian C; Zeng, Jing; Stansbury, John; Moussavi, Massoum; Richter-Egger, Dana L; Klein, Mitchell R

    2016-04-01

    Pollution from highway stormwater runoff has been an increasing area of concern. Many structural Best Management Practices (BMPs) have been implemented for stormwater treatment and management. One challenge for these BMPs is to sample stormwater and monitor BMP performance. The main objective of this study was to evaluate the feasibility of using polyurethane foam (PUF) passive samplers (PSs) for sampling phenanthrene (PHE) in highway stormwater runoff and BMPs. Tests were conducted using batch reactors, glass-tube columns, and laboratory-scale BMPs (bioretention cells). Results indicate that sorption for PHE by PUF is mainly linearly relative to time, and the high sorption capacity allows the PUF passive sampler to monitor stormwater events for months or years. The PUF passive samplers could be embedded in BMPs for monitoring influent and effluent PHE concentrations. Models developed to link the results of batch and column tests proved to be useful for determining removal or sorption parameters and performance of the PUF-PSs. The predicted removal efficiencies of BMPs were close to the real values obtained from the control columns with errors ranging between -8.46 and 1.52%. This research showed that it is possible to use PUF passive samplers for sampling stormwater and monitoring the performance of stormwater BMPs, which warrants the field-scale feasibility studies in the future.

  10. Integration of the Uncertainties of Anion and TOC Measurements into the Flammability Control Strategy for Sludge Batch 8 at the DWPF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, T. B.

    2013-03-14

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of a flammability control strategy for DWPF’s melter operation during the processing of Sludge Batch 8 (SB8). SRNL’s support has been in response to technical task requests that have been made by SRR’s Waste Solidification Engineering (WSE) organization. The flammability control strategy relies on measurements that are performed on Slurry Mix Evaporator (SME) samples by the DWPF Laboratory. Measurements of nitrate, oxalate, formate, and total organic carbon (TOC) standards generated by the DWPF Laboratory aremore » presented in this report, and an evaluation of the uncertainties of these measurements is provided. The impact of the uncertainties of these measurements on DWPF’s strategy for controlling melter flammability also is evaluated. The strategy includes monitoring each SME batch for its nitrate content and its TOC content relative to the nitrate content and relative to the antifoam additions made during the preparation of the SME batch. A linearized approach for monitoring the relationship between TOC and nitrate is developed, equations are provided that integrate the measurement uncertainties into the flammability control strategy, and sample calculations for these equations are shown to illustrate the impact of the uncertainties on the flammability control strategy.« less

  11. Treatment of Slaughter House Wastewater in a Sequencing Batch Reactor: Performance Evaluation and Biodegradation Kinetics

    PubMed Central

    Kundu, Pradyut; Debsarkar, Anupam; Mukherjee, Somnath

    2013-01-01

    Slaughterhouse wastewater contains diluted blood, protein, fat, and suspended solids, as a result the organic and nutrient concentration in this wastewater is vary high and the residues are partially solubilized, leading to a highly contaminating effect in riverbeds and other water bodies if the same is let off untreated. The performance of a laboratory-scale Sequencing Batch Reactor (SBR) has been investigated in aerobic-anoxic sequential mode for simultaneous removal of organic carbon and nitrogen from slaughterhouse wastewater. The reactor was operated under three different variations of aerobic-anoxic sequence, namely, (4+4), (5+3), and (3+5) hr. of total react period with two different sets of influent soluble COD (SCOD) and ammonia nitrogen (NH4 +-N) level 1000 ± 50 mg/L, and 90 ± 10 mg/L, 1000 ± 50 mg/L and 180 ± 10 mg/L, respectively. It was observed that from 86 to 95% of SCOD removal is accomplished at the end of 8.0 hr of total react period. In case of (4+4) aerobic-anoxic operating cycle, a reasonable degree of nitrification 90.12 and 74.75% corresponding to initial NH4 +-N value of 96.58 and 176.85 mg/L, respectively, were achieved. The biokinetic coefficients (k, K s, Y, k d) were also determined for performance evaluation of SBR for scaling full-scale reactor in future operation. PMID:24027751

  12. High cell density cultivation of a recombinant Escherichia coli strain expressing a 6-O-sulfotransferase for the production of bioengineered heparin.

    PubMed

    Zhang, J; Suflita, M; Fiaschetti, C M; Li, G; Li, L; Zhang, F; Dordick, J S; Linhardt, R J

    2015-01-01

    One of six heparin biosynthetic enzymes, cloned and expressed in Escherichia coli as a soluble fusion protein, requires large-scale preparation for use in the chemoenzymatic synthesis of heparin, an important anticoagulant drug. The 6-O-sulfotransferase isoform-3 (6-OST-3) can be conveniently prepared at mg/L levels in the laboratory by culturing E. coli on Luria-Bertani medium in shake flasks and inducing with isopropyl β-D-1-thiogalactopyranoside at an optical density of 0·6-0·8. The production of larger amounts of 6-OST-3 required fed-batch cultivation of E. coli in a stirred tank fermenter on medium containing an inexpensive carbon source, such as glucose or glycerol. The cultivation of E. coli on various carbon sources under different feeding schedules and induction strategies was examined. Conditions were established giving yields (5-20 mg g-cell-dry weight(-1)) of active 6-OST-3 with excellent productivity (2-5 mg l(-1) h(-1)). The production of 6-OST-3 in a fed-batch fermentation on an inexpensive carbon source has been demonstrated. The ability to scale-up the production of heparin biosynthetic enzymes, such as 6-OST-3, is critical for scaling-up the chemoenzymatic synthesis of heparin. The success of this project may someday lead to a commercially viable bioengineered heparin to replace the animal-sourced anticoagulant product currently on the market. © 2014 The Society for Applied Microbiology.

  13. Evaluation of pharmaceuticals removal by sewage sludge-derived adsorbents with rapid small-scale column tests

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Ding, R.; Wallace, R.; Bandosz, T.

    2015-12-01

    New composite adsorbents were developed by pyrolyzing sewage sludge and fish waste (75:25 or 90:10 dry mass ratio) at 650 oC and 950 oC. Batch adsorption experiments demonstrated that the composite adsorbents were able to adsorb a wide range of organic contaminants (volatile organic compounds, pharmaceuticals and endocrine disrupting compounds (EDCs), and nitrosamine disinfection byproducts) with high capacities. Here we further examine the performance of the adsorbents for the simultaneous removal of 8 pharmaceuticals and EDCs with rapid small-scale column tests (RSSCT). Results show that the order of breakthrough in RSSCT is in general consistent with the affinity determined via batch tests. As expected, the maximum amount of adsorption for each compound obtained from RSSCT is identical to or less than that obtained from batch tests (with only one exception), due to adsorption kinetics. However, despite the very different input concentration (1 mg/L vs. 100 mg/L) and contact time (2 min empty bed contact time vs. 16 hour equilibrium time) used in RSSCT and batch tests, the maximum amount of pharmaceuticals and EDCs adsorbed under RSSCT is still about one half of that under equilibrium batch tests, validating the approach of using batch tests with much higher input concentrations to determine adsorption capacities. Results of a pilot-scale column test in a drinking water treatment plant for pharmaceuticals removal will also be presented.

  14. Continuous Flow Polymer Synthesis toward Reproducible Large-Scale Production for Efficient Bulk Heterojunction Organic Solar Cells.

    PubMed

    Pirotte, Geert; Kesters, Jurgen; Verstappen, Pieter; Govaerts, Sanne; Manca, Jean; Lutsen, Laurence; Vanderzande, Dirk; Maes, Wouter

    2015-10-12

    Organic photovoltaics (OPV) have attracted great interest as a solar cell technology with appealing mechanical, aesthetical, and economies-of-scale features. To drive OPV toward economic viability, low-cost, large-scale module production has to be realized in combination with increased top-quality material availability and minimal batch-to-batch variation. To this extent, continuous flow chemistry can serve as a powerful tool. In this contribution, a flow protocol is optimized for the high performance benzodithiophene-thienopyrroledione copolymer PBDTTPD and the material quality is probed through systematic solar-cell evaluation. A stepwise approach is adopted to turn the batch process into a reproducible and scalable continuous flow procedure. Solar cell devices fabricated using the obtained polymer batches deliver an average power conversion efficiency of 7.2 %. Upon incorporation of an ionic polythiophene-based cathodic interlayer, the photovoltaic performance could be enhanced to a maximum efficiency of 9.1 %. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Internal quality assurance in a clinical virology laboratory. II. Internal quality control.

    PubMed Central

    Gray, J J; Wreghitt, T G; McKee, T A; McIntyre, P; Roth, C E; Smith, D J; Sutehall, G; Higgins, G; Geraghty, R; Whetstone, R

    1995-01-01

    AIMS--In April 1991 additional quality control procedures were introduced into the virology section of the Clinical Microbiology and Public Health Laboratory, Cambridge. Internal quality control (IQC) samples were gradually included in the serological assays performed in the laboratory and supplemented kit controls and standard sera. METHODS--From April 1991 to December 1993, 2421 IQC procedures were carried out with reference sera. RESULTS--The IQC samples were evaluated according to the Westgard rules. Violations were recorded in 60 of 1808 (3.3%) controls and were highest in the IQC samples of complement fixation tests (25/312 (8%) of controls submitted for complement fixation tests). CONCLUSIONS--The inclusion of IQC samples in the serological assays performed in the laboratory has highlighted batch to batch variation in commercial assays. The setting of acceptable limits for the IQC samples has increased confidence in the validity of assay results. PMID:7730475

  16. Microfluidic biolector-microfluidic bioprocess control in microtiter plates.

    PubMed

    Funke, Matthias; Buchenauer, Andreas; Schnakenberg, Uwe; Mokwa, Wilfried; Diederichs, Sylvia; Mertens, Alan; Müller, Carsten; Kensy, Frank; Büchs, Jochen

    2010-10-15

    In industrial-scale biotechnological processes, the active control of the pH-value combined with the controlled feeding of substrate solutions (fed-batch) is the standard strategy to cultivate both prokaryotic and eukaryotic cells. On the contrary, for small-scale cultivations, much simpler batch experiments with no process control are performed. This lack of process control often hinders researchers to scale-up and scale-down fermentation experiments, because the microbial metabolism and thereby the growth and production kinetics drastically changes depending on the cultivation strategy applied. While small-scale batches are typically performed highly parallel and in high throughput, large-scale cultivations demand sophisticated equipment for process control which is in most cases costly and difficult to handle. Currently, there is no technical system on the market that realizes simple process control in high throughput. The novel concept of a microfermentation system described in this work combines a fiber-optic online-monitoring device for microtiter plates (MTPs)--the BioLector technology--together with microfluidic control of cultivation processes in volumes below 1 mL. In the microfluidic chip, a micropump is integrated to realize distinct substrate flow rates during fed-batch cultivation in microscale. Hence, a cultivation system with several distinct advantages could be established: (1) high information output on a microscale; (2) many experiments can be performed in parallel and be automated using MTPs; (3) this system is user-friendly and can easily be transferred to a disposable single-use system. This article elucidates this new concept and illustrates applications in fermentations of Escherichia coli under pH-controlled and fed-batch conditions in shaken MTPs. Copyright 2010 Wiley Periodicals, Inc.

  17. Conversion of municipal solid waste to hydrogen

    NASA Astrophysics Data System (ADS)

    Richardson, J. H.; Rogers, R. S.; Thorsness, C. B.

    1995-04-01

    LLNL and Texaco are cooperatively developing a physical and chemical treatment method for the conversion of municipal solid waste (MSW) to hydrogen via the steps of hydrothermal pretreatment, gasification and purification. LLNL's focus has been on hydrothermal pretreatment of MSW in order to prepare a slurry of suitable viscosity and heating value to allow efficient and economical gasification and hydrogen production. The project has evolved along 3 parallel paths: laboratory scale experiments, pilot scale processing, and process modeling. Initial laboratory-scale MSW treatment results (e.g., viscosity, slurry solids content) over a range of temperatures and times with newspaper and plastics will be presented. Viscosity measurements have been correlated with results obtained at MRL. A hydrothermal treatment pilot facility has been rented from Texaco and is being reconfigured at LLNL; the status of that facility and plans for initial runs will be described. Several different operational scenarios have been modeled. Steady state processes have been modeled with ASPEN PLUS; consideration of steam injection in a batch mode was handled using continuous process modules. A transient model derived from a general purpose packed bed model is being developed which can examine the aspects of steam heating inside the hydrothermal reactor vessel. These models have been applied to pilot and commercial scale scenarios as a function of MSW input parameters and have been used to outline initial overall economic trends. Part of the modeling, an overview of the MSW gasification process and the modeling of the MSW as a process material, was completed by a DOE SERS (Science and Engineering Research Semester) student. The ultimate programmatic goal is the technical demonstration of the gasification of MSW to hydrogen at the laboratory and pilot scale and the economic analysis of the commercial feasibility of such a process.

  18. Comparative meta-analysis and experimental kinetic investigation of column and batch bottle microcosm treatability studies informing in situ groundwater remedial design.

    PubMed

    Driver, Erin M; Roberts, Jeff; Dollar, Peter; Charles, Maurissa; Hurst, Paul; Halden, Rolf U

    2017-02-05

    A systematic comparison was performed between batch bottle and continuous-flow column microcosms (BMs and CMs, respectively) commonly used for in situ groundwater remedial design. Review of recent literature (2000-2014) showed a preference for reporting batch kinetics, even when corresponding column data were available. Additionally, CMs produced higher observed rate constants, exceeding those of BMs by a factor of 6.1±1.1 standard error. In a subsequent laboratory investigation, 12 equivalent microcosm pairs were constructed from fractured bedrock and perchloroethylene (PCE) impacted groundwater. First-order PCE transformation kinetics of CMs were 8.0±4.8 times faster than BMs (rates: 1.23±0.87 vs. 0.16±0.05d -1 , respectively). Additionally, CMs transformed 16.1±8.0-times more mass than BMs owing to continuous-feed operation. CMs are concluded to yield more reliable kinetic estimates because of much higher data density stemming from long-term, steady-state conditions. Since information from BMs and CMs is valuable and complementary, treatability studies should report kinetic data from both when available. This first systematic investigation of BMs and CMs highlights the need for a more unified framework for data use and reporting in treatability studies informing decision-making for field-scale groundwater remediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Bacteria of the Candidate Phylum TM7 are Prevalent in Acidophilic Nitrifying Sequencing-Batch Reactors

    PubMed Central

    Hanada, Akiko; Kurogi, Takashi; Giang, Nguyen Minh; Yamada, Takeshi; Kamimoto, Yuki; Kiso, Yoshiaki; Hiraishi, Akira

    2014-01-01

    Laboratory-scale acidophilic nitrifying sequencing-batch reactors (ANSBRs) were constructed by seeding with sewage-activated sludge and cultivating with ammonium-containing acidic mineral medium (pH 4.0) with or without a trace amount of yeast extract. In every batch cycle, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate. Attempts to detect nitrifying functional genes in the fully acclimated ANSBRs by PCR with previously designed primers mostly gave negative results. 16S rRNA gene-targeted PCR and a subsequent denaturating gradient gel electrophoresis analysis revealed that a marked change occurred in the bacterial community during the overall period of operation, in which members of the candidate phylum TM7 and the class Gammaproteobacteria became predominant at the fully acclimated stage. This result was fully supported by a 16S rRNA gene clone library analysis, as the major phylogenetic groups of clones detected (>5% of the total) were TM7 (33%), Gammaproteobacteria (37%), Actinobacteria (10%), and Alphaproteobacteria (8%). Fluorescence in situ hybridization with specific probes also demonstrated the prevalence of TM7 bacteria and Gammaproteobacteria. These results suggest that previously unknown nitrifying microorganisms may play a major role in ANSBRs; however, the ecophysiological significance of the TM7 bacteria predominating in this process remains unclear. PMID:25241805

  20. A comparison of anaerobic 2, 4-dichlorophenoxy acetic acid degradation in single-fed and sequencing batch reactor systems

    NASA Astrophysics Data System (ADS)

    Elefsiniotis, P.; Wareham, D. G.; Fongsatitukul, P.

    2017-08-01

    This paper compares the practical limits of 2, 4-dichlorophenoxy acetic acid (2,4-D) degradation that can be obtained in two laboratory-scale anaerobic digestion systems; namely, a sequencing batch reactor (SBR) and a single-fed batch reactor (SFBR) system. The comparison involved synthesizing a decade of research conducted by the lead author and drawing summative conclusions about the ability of each system to accommodate industrial-strength concentrations of 2,4-D. In the main, 2 L liquid volume anaerobic SBRs were used with glucose as a supplemental carbon source for both acid-phase and two-phase conditions. Volatile fatty acids however were used as a supplemental carbon source for the methanogenic SBRs. The anaerobic SBRs were operated at an hydraulic retention time of 48 hours, while being subjected to increasing concentrations of 2,4-D. The SBRs were able to degrade between 130 and 180 mg/L of 2,4-D depending upon whether they were operated in the acid-phase or two-phase regime. The methanogenic-only phase did not achieve 2,4-D degradation however this was primarily attributed to difficulties with obtaining a sufficiently long SRT. For the two-phase SFBR system, 3.5 L liquid-volume digesters were used and no difficulty was experienced with degrading 100 % of the 2,4-D concentration applied (300 mg/L).

  1. Results of Hg speciation testing on DWPF SMECT-8, OGCT-1, AND OGCT-2 samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C.

    2016-02-22

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team. The sixteenth shipment of samples was designated to include a Defense Waste Processing Facility (DWPF) Slurry Mix Evaporator Condensate Tank (SMECT) sample from Sludge Receipt and Adjustment Tank (SRAT) Batch 738 processing and two Off-Gas Condensate Tank (OGCT) samples, one following Batch 736 and one following Batch 738. The DWPF sample designations for the three samples analyzed are provided. The Batch 738 ‘End ofmore » SME Cycle’ SMECT sample was taken at the conclusion of Slurry Mix Evaporator (SME) operations for this batch and represents the fourth SMECT sample examined from Batch 738. Batch 738 experienced a sludge slurry carryover event, which introduced sludge solids to the SMECT that were particularly evident in the SMECT-5 sample, but less evident in the ‘End of SME Cycle’ SMECT-8 sample.« less

  2. Evaluation of activated sludge for biodegradation of propylene glycol as an aircraft deicing fluid.

    PubMed

    Delorit, Justin D; Racz, LeeAnn

    2014-04-01

    Aircraft deicing fluid used at airport facilities is often collected for treatment or disposal in order to prevent serious ecological threats to nearby surface waters. This study investigated lab scale degradation of propylene glycol, the active ingredient in a common aircraft deicing fluid, by way of a laboratory-scale sequencing batch reactor containing municipal waste water treatment facility activated sludge performing simultaneous organic carbon oxidation and nitrification. The ability of activated sludge to remove propylene glycol was evaluated by studying the biodegradation and sorption characteristics of propylene glycol in an activated sludge medium. The results indicate sorption may play a role in the fate of propylene glycol in AS, and the heterotrophic bacteria readily degrade this compound. Therefore, a field deployable bioreactor may be appropriate for use in flight line applications.

  3. Attempt to model laboratory-scale diffusion and retardation data.

    PubMed

    Hölttä, P; Siitari-Kauppi, M; Hakanen, M; Tukiainen, V

    2001-02-01

    Different approaches for measuring the interaction between radionuclides and rock matrix are needed to test the compatibility of experimental retardation parameters and transport models used in assessing the safety of the underground repositories for the spent nuclear fuel. In this work, the retardation of sodium, calcium and strontium was studied on mica gneiss, unaltered, moderately altered and strongly altered tonalite using dynamic fracture column method. In-diffusion of calcium into rock cubes was determined to predict retardation in columns. In-diffusion of calcium into moderately and strongly altered tonalite was interpreted using a numerical code FTRANS. The code was able to interprete in-diffusion of weakly sorbing calcium into the saturated porous matrix. Elution curves of calcium for the moderately and strongly altered tonalite fracture columns were explained adequately using FTRANS code and parameters obtained from in-diffusion calculations. In this paper, mass distribution ratio values of sodium, calcium and strontium for intact rock are compared to values, previously obtained for crushed rock from batch and crushed rock column experiments. Kd values obtained from fracture column experiments were one order of magnitude lower than Kd values from batch experiments.

  4. Design and scaleup of downstream processing of monoclonal antibodies for cancer therapy: from research to clinical proof of principle.

    PubMed

    Horenstein, Alberto L; Crivellin, Federico; Funaro, Ada; Said, Marcela; Malavasi, Fabio

    2003-04-01

    Murine monoclonal antibodies (mAb) from cell culture supernatants have been purified in order to acquire clinical grade for in vivo cancer treatment. The starting material was purified by high performance liquid chromatography (HPLC) systems ranging from the analytical scale process to a scaleup to 1 g per batch. Three columns (Protein A affinity chromatography with single-step elution, hydroxyapatite (HA) chromatography followed by linear gradient elution and endotoxin removing-gel chromatography), exploiting different properties of the mAb were applied. The final batches of antibody were subjected to a large panel of tests for the purpose of evaluating the efficacy of the downstream processing. The resulting data have allowed us to determine the maximum number of times the column can be used and to precisely and thoroughly characterize antibody integrity, specificity, and potency according to in-house reference standards. The optimized bioprocessing is rapid, efficient, and reproducible. Not less importantly, all the techniques applied are characterized by costs which are affordable to medium-sized laboratories. They represent the basis for implementing immunotherapeutic protocols transferable to clinical medicine.

  5. [Batch release of immunoglobulin and monoclonal antibody products].

    PubMed

    Gross, S

    2014-10-01

    The Paul-Ehrlich Institute (PEI) is an independent institution of the Federal Republic of Germany responsible for performing official experimental batch testing of sera. The institute decides about the release of each batch and performs experimental research in the field. The experimental quality control ensures the potency of the product and also the absence of harmful impurities. For release of an immunoglobulin batch the marketing authorization holder has to submit the documentation of the manufacture and the results of quality control measures together with samples of the batch to the PEI. Experimental testing is performed according to the approved specifications regarding the efficacy and safety. Since implementation of the 15th German drug law amendment, the source of antibody is not defined anymore. According to § 32 German drug law, all batches of sera need to be released by an official control laboratory. Sera are medicinal products, which contain antibodies, antibody fragments or fusion proteins with a functional antibody portion. Therefore, all batches of monoclonal antibodies and derivatives must also be released by the PEI and the marketing authorization holder has to submit a batch release application. Under certain circumstances a waiver for certain products can be issued with regard to batch release. The conditions for such a waiver apply to the majority of monoclonal antibodies.

  6. On-field study of anaerobic digestion full-scale plants (part I): an on-field methodology to determine mass, carbon and nutrients balance.

    PubMed

    Schievano, Andrea; D'Imporzano, Giuliana; Salati, Silvia; Adani, Fabrizio

    2011-09-01

    The mass balance (input/output mass flows) of full-scale anaerobic digestion (AD) processes should be known for a series of purposes, e.g. to understand carbon and nutrients balances, to evaluate the contribution of AD processes to elemental cycles, especially when digestates are applied to agricultural land and to measure the biodegradation yields and the process efficiency. In this paper, three alternative methods were studied, to determine the mass balance in full-scale processes, discussing their reliability and applicability. Through a 1-year survey on three full-scale AD plants and through 38 laboratory-scale batch digesters, the congruency of the considered methods was demonstrated and a linear equation was provided that allows calculating the wet weight losses (WL) from the methane produced (MP) by the plant (WL=41.949*MP+20.853, R(2)=0.950, p<0.01). Additionally, this new tool was used to calculate carbon, nitrogen, phosphorous and potassium balances of the three observed AD plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Laboratory- and full-scale studies on the removal of pharmaceuticals in an aerated constructed wetland: effects of aeration and hydraulic retention time on the removal efficiency and assessment of the aquatic risk.

    PubMed

    Auvinen, Hannele; Gebhardt, Wilhelm; Linnemann, Volker; Du Laing, Gijs; Rousseau, Diederik P L

    2017-09-01

    Pharmaceutical residues in wastewater pose a challenge to wastewater treatment technologies. Constructed wetlands (CWs) are common wastewater treatment systems in rural areas and they discharge often in small water courses in which the ecology can be adversely affected by the discharged pharmaceuticals. Hence, there is a need for studies aiming to improve the removal of pharmaceuticals in CWs. In this study, the performance of a full-scale aerated sub-surface flow hybrid CW treating wastewater from a healthcare facility was studied in terms of common water parameters and pharmaceutical removal. In addition, a preliminary aquatic risk assessment based on hazard quotients was performed to estimate the likelihood of adverse effects on aquatic organisms in the forest creek where this CW discharges. The (combined) effect of aeration and hydraulic retention time (HRT) was evaluated in a laboratory-scale batch experiment. Excellent removal of the targeted pharmaceuticals was obtained in the full-scale CW (>90%) and, as a result, the aquatic risk was estimated low. The removal efficiency of only a few of the targeted pharmaceuticals was found to be dependent on the applied aeration (namely gabapentin, metformin and sotalol). Longer and the HRT increased the removal of carbamazepine, diclofenac and tramadol.

  8. Design and fabrication of a fixed-bed batch type pyrolysis reactor for pilot scale pyrolytic oil production in Bangladesh

    NASA Astrophysics Data System (ADS)

    Aziz, Mohammad Abdul; Al-khulaidi, Rami Ali; Rashid, MM; Islam, M. R.; Rashid, MAN

    2017-03-01

    In this research, a development and performance test of a fixed-bed batch type pyrolysis reactor for pilot scale pyrolysis oil production was successfully completed. The characteristics of the pyrolysis oil were compared to other experimental results. A solid horizontal condenser, a burner for furnace heating and a reactor shield were designed. Due to the pilot scale pyrolytic oil production encountered numerous problems during the plant’s operation. This fixed-bed batch type pyrolysis reactor method will demonstrate the energy saving concept of solid waste tire by creating energy stability. From this experiment, product yields (wt. %) for liquid or pyrolytic oil were 49%, char 38.3 % and pyrolytic gas 12.7% with an operation running time of 185 minutes.

  9. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale

    PubMed Central

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-01-01

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g−1 volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g−1 VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH4 recovery of 189 L kg−1 VS was achieved and a biogas composition of 55% CH4 and 38% CO2 was recorded. PMID:26393620

  10. Surfactant enhanced recovery of tetrachloroethylene from a porous medium containing low permeability lenses. 2. Numerical simulation.

    PubMed

    Rathfelder, K M; Abriola, L M; Taylor, T P; Pennell, K D

    2001-04-01

    A numerical model of surfactant enhanced solubilization was developed and applied to the simulation of nonaqueous phase liquid recovery in two-dimensional heterogeneous laboratory sand tank systems. Model parameters were derived from independent, small-scale, batch and column experiments. These parameters included viscosity, density, solubilization capacity, surfactant sorption, interfacial tension, permeability, capillary retention functions, and interphase mass transfer correlations. Model predictive capability was assessed for the evaluation of the micellar solubilization of tetrachloroethylene (PCE) in the two-dimensional systems. Predicted effluent concentrations and mass recovery agreed reasonably well with measured values. Accurate prediction of enhanced solubilization behavior in the sand tanks was found to require the incorporation of pore-scale, system-dependent, interphase mass transfer limitations, including an explicit representation of specific interfacial contact area. Predicted effluent concentrations and mass recovery were also found to depend strongly upon the initial NAPL entrapment configuration. Numerical results collectively indicate that enhanced solubilization processes in heterogeneous, laboratory sand tank systems can be successfully simulated using independently measured soil parameters and column-measured mass transfer coefficients, provided that permeability and NAPL distributions are accurately known. This implies that the accuracy of model predictions at the field scale will be constrained by our ability to quantify soil heterogeneity and NAPL distribution.

  11. Errors introduced by dose scaling for relative dosimetry

    PubMed Central

    Watanabe, Yoichi; Hayashi, Naoki

    2012-01-01

    Some dosimeters require a relationship between detector signal and delivered dose. The relationship (characteristic curve or calibration equation) usually depends on the environment under which the dosimeters are manufactured or stored. To compensate for the difference in radiation response among different batches of dosimeters, the measured dose can be scaled by normalizing the measured dose to a specific dose. Such a procedure, often called “relative dosimetry”, allows us to skip the time‐consuming production of a calibration curve for each irradiation. In this study, the magnitudes of errors due to the dose scaling procedure were evaluated by using the characteristic curves of BANG3 polymer gel dosimeter, radiographic EDR2 films, and GAFCHROMIC EBT2 films. Several sets of calibration data were obtained for each type of dosimeters, and a calibration equation of one set of data was used to estimate doses of the other dosimeters from different batches. The scaled doses were then compared with expected doses, which were obtained by using the true calibration equation specific to each batch. In general, the magnitude of errors increased with increasing deviation of the dose scaling factor from unity. Also, the errors strongly depended on the difference in the shape of the true and reference calibration curves. For example, for the BANG3 polymer gel, of which the characteristic curve can be approximated with a linear equation, the error for a batch requiring a dose scaling factor of 0.87 was larger than the errors for other batches requiring smaller magnitudes of dose scaling, or scaling factors of 0.93 or 1.02. The characteristic curves of EDR2 and EBT2 films required nonlinear equations. With those dosimeters, errors larger than 5% were commonly observed in the dose ranges of below 50% and above 150% of the normalization dose. In conclusion, the dose scaling for relative dosimetry introduces large errors in the measured doses when a large dose scaling is applied, and this procedure should be applied with special care. PACS numbers: 87.56.Da, 06.20.Dk, 06.20.fb PMID:22955658

  12. Characterising and correcting batch variation in an automated direct infusion mass spectrometry (DIMS) metabolomics workflow.

    PubMed

    Kirwan, J A; Broadhurst, D I; Davidson, R L; Viant, M R

    2013-06-01

    Direct infusion mass spectrometry (DIMS)-based untargeted metabolomics measures many hundreds of metabolites in a single experiment. While every effort is made to reduce within-experiment analytical variation in untargeted metabolomics, unavoidable sources of measurement error are introduced. This is particularly true for large-scale multi-batch experiments, necessitating the development of robust workflows that minimise batch-to-batch variation. Here, we conducted a purpose-designed, eight-batch DIMS metabolomics study using nanoelectrospray (nESI) Fourier transform ion cyclotron resonance mass spectrometric analyses of mammalian heart extracts. First, we characterised the intrinsic analytical variation of this approach to determine whether our existing workflows are fit for purpose when applied to a multi-batch investigation. Batch-to-batch variation was readily observed across the 7-day experiment, both in terms of its absolute measurement using quality control (QC) and biological replicate samples, as well as its adverse impact on our ability to discover significant metabolic information within the data. Subsequently, we developed and implemented a computational workflow that includes total-ion-current filtering, QC-robust spline batch correction and spectral cleaning, and provide conclusive evidence that this workflow reduces analytical variation and increases the proportion of significant peaks. We report an overall analytical precision of 15.9%, measured as the median relative standard deviation (RSD) for the technical replicates of the biological samples, across eight batches and 7 days of measurements. When compared against the FDA guidelines for biomarker studies, which specify an RSD of <20% as an acceptable level of precision, we conclude that our new workflows are fit for purpose for large-scale, high-throughput nESI DIMS metabolomics studies.

  13. Results Of Initial Analyses Of The Salt (Macro) Batch 9 Tank 21H Qualification Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T.

    2015-10-08

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Interim Salt Disposition Project (ISDP) Salt (Macro) Batch 9 for processing through the Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU). This document reports the initial results of the analyses of samples of Tank 21H. Analysis of the Tank 21H Salt (Macro) Batch 9 composite sample indicates that the material does not display any unusual characteristics. Further results on the chemistry and other tests will be issued in the future.

  14. Effect of Controlled Ice Nucleation on Stability of Lactate Dehydrogenase During Freeze-Drying.

    PubMed

    Fang, Rui; Tanaka, Kazunari; Mudhivarthi, Vamsi; Bogner, Robin H; Pikal, Michael J

    2018-03-01

    Several controlled ice nucleation techniques have been developed to increase the efficiency of the freeze-drying process as well as to improve the quality of pharmaceutical products. Owing to the reduction in ice surface area, these techniques have the potential to reduce the degradation of proteins labile during freezing. The objective of this study was to evaluate the effect of ice nucleation temperature on the in-process stability of lactate dehydrogenase (LDH). LDH in potassium phosphate buffer was nucleated at -4°C, -8°C, and -12°C using ControLyo™ or allowed to nucleate spontaneously. Both the enzymatic activity and tetramer recovery after freeze-thawing linearly correlated with product ice nucleation temperature (n = 24). Controlled nucleation also significantly improved batch homogeneity as reflected by reduced inter-vial variation in activity and tetramer recovery. With the correlation established in the laboratory, the degradation of protein in manufacturing arising from ice nucleation temperature differences can be quantitatively predicted. The results show that controlled nucleation reduced the degradation of LDH during the freezing process, but this does not necessarily translate to vastly superior stability during the entire freeze-drying process. The capability of improving batch homogeneity provides potential advantages in scaling-up from lab to manufacturing scale. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Nitrogen and phosphorus treatment of marine wastewater by a laboratory-scale sequencing batch reactor with eco-friendly marine high-efficiency sediment.

    PubMed

    Cho, Seonghyeon; Kim, Jinsoo; Kim, Sungchul; Lee, Sang-Seob

    2017-06-22

    We screened and identified a NH 3 -N-removing bacterial strain, Bacillus sp. KGN1, and a [Formula: see text] removing strain, Vibrio sp. KGP1, from 960 indigenous marine isolates from seawater and marine sediment from Tongyeong, South Korea. We developed eco-friendly high-efficiency marine sludge (eco-HEMS), and inoculated these marine bacterial strains into the marine sediment. A laboratory-scale sequencing batch reactor (SBR) system using the eco-HEMS for marine wastewater from land-based fish farms improved the treatment performance as indicated by 88.2% removal efficiency (RE) of total nitrogen (initial: 5.6 mg/L) and 90.6% RE of total phosphorus (initial: 1.2 mg/L) under the optimal operation conditions (food and microorganism (F/M) ratio, 0.35 g SCOD Cr /g mixed liquor volatile suspended solids (MLVSS)·d; dissolved oxygen (DO) 1.0 ± 0.2 mg/L; hydraulic retention time (HRT), 6.6 h; solids retention time (SRT), 12 d). The following kinetic parameters were obtained: cell yield (Y), 0.29 g MLVSS/g SCOD Cr ; specific growth rate (µ), 0.06 d -1 ; specific nitrification rate (SNR), 0.49 mg NH 3 -N/g MLVSS·h; specific denitrification rate (SDNR), 0.005 mg [Formula: see text]/g MLVSS·h; specific phosphorus uptake rate (SPUR), 0.12 mg [Formula: see text]/g MLVSS·h. The nitrogen- and phosphorus-removing bacterial strains comprised 18.4% of distribution rate in the microbial community of eco-HEMS under the optimal operation conditions. Therefore, eco-HEMS effectively removed nitrogen and phosphorus from highly saline marine wastewater from land-based fish farms with improving SNR, SDNR, and SPUR values in more diverse microbial communities. DO: dissolved oxygen; Eco-HEMS: eco-friendly high efficiency marine sludge; F/M: food and microorganism ratio; HRT: hydraulic retention time; ML(V)SS: mixed liquor (volatile) suspended solids; NCBI: National Center for Biotechnology Information; ND: not determined; qPCR: quantitative real-time polymerase chain reaction; RE: removal efficiency; SBR: sequencing batch reactor; SD: standard deviation; SDNR: specific denitrification rate; SNR: specific nitrification rate; SPUR: specific phosphate uptake rate; SRT: solids retention time; T-N: total nitrogen; T-P: total phosphorus; (V)SS: (volatile) suspended solids; w.w.: wet weight.

  16. PERMEABLE REACTIVE BARRIER STRATEGIES FOR REMEDIATION OF ARSENIC-CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Results are presented from laboratory batch tests using zero-valent iron to treat arsenic-contaminated groundwater. The laboratory tests were conducted using near- neutral pH groundwater from a contaminated aquifer located adjacent to a custom smelting facility. Experiments we...

  17. Stormwater Pollution Prevention Plan - TA-60 Asphalt Batch Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval, Leonard Frank

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector P-Land Transportation and Warehousing as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA-60-01 Asphalt Batch Plant at Los Alamos National Laboratory. Los Alamos Nationalmore » Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-60 Asphalt Batch Plant and associated areas. The current permit expires at midnight on June 4, 2020.« less

  18. Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weimin; Criddle, Craig S.

    2015-11-16

    We (the Stanford research team) were invited as external collaborators to contribute expertise in environmental engineering and field research at the ORNL IFRC, Oak Ridge, TN, for projects carried out at the Argonne National Laboratory and funded by US DOE. Specifically, we assisted in the design of batch and column reactors using ORNL IFRC materials to ensure the experiments were relevant to field conditions. During the funded research period, we characterized ORNL IFRC groundwater and sediments in batch microcosm and column experiments conducted at ANL, and we communicated with ANL team members through email and conference calls and face-to-face meetingsmore » at the annual ERSP PI meeting and national meetings. Microcosm test results demonstrated that U(VI) in sediments was reduced to U(IV) when amended with ethanol. The reduced products were not uraninite but unknown U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. Due to budget reductions at ANL, Stanford contributions ended in 2011.« less

  19. NITRATE CONVERSION OF HB-LINE REILLEXTM HPQ RESIN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steimke, J.; Williams, M.; Steeper, T.

    Reillex{trademark} HPQ ion exchange resin is used by HB Line to remove plutonium from aqueous streams. Reillex{trademark} HPQ resin currently available from Vertellus Specialties LLC is a chloride ionic form, which can cause stress corrosion cracking in stainless steels. Therefore, HB Line Engineering requested that Savannah River National Laboratory (SRNL) convert resin from chloride form to nitrate form in the Engineering Development Laboratory (EDL). To perform this task, SRNL treated two batches of resin in 2012. The first batch of resin from Reilly Industries Batch 80302MA was initially treated at SRNL in 2001 to remove chloride. This batch of resin,more » nominally 30 liters, has been stored wet in carboys since that time until being retreated in 2012. The second batch of resin from Batch 23408 consisted of 50 kg of new resin purchased from Vertellus Specialties in 2012. Both batches were treated in a column designed to convert resin using downflow of 1.0 M sodium nitrate solution through the resin bed followed by rinsing with deionized water. Both batches were analyzed for chloride concentration, before and after treatment, using Neutron Activation Analysis (NAA). The resin specification [Werling, 2003] states the total chlorine and chloride concentration shall be less than 250 ppm. The resin condition for measuring this concentration is not specified; however, in service the resin would always be fully wet. Measurements in SRNL showed that changing from oven dry resin to fully wet resin, with liquid in the particle interstices but no supernatant, increases the total weight by a factor of at least three. Therefore, concentration of chlorine or chloride expressed as parts per million (ppm) decreases by a factor of three. Therefore, SRNL recommends measuring chlorine concentration on an oven dry basis, then dividing by three to estimate chloride concentration in the fully wet condition. Chloride concentration in the first batch (No.80302MA) was nearly the same before the current treatment (759 ppm dry) and after treatment (745 ppm dry or {approx}248 ppm wet). Treatment of the second batch of resin (No.23408) was very successful. Chloride concentration decreased from 120,000 ppm dry to an average of 44 ppm dry or {approx}15ppm wet, which easily passes the 250 ppm wet criterion. Per guidance from HB Line Engineering, SRNL blended Batch 80302 resin with Batch P9059 resin which had been treated previously by ResinTech to remove chloride. The chloride concentrations for the two drums of Batch P9059 were 248 ppm dry ({approx}83 ppm wet) {+-}22.8% and 583 ppm dry ({approx}194 ppm wet) {+-} 11.8%. The blended resin was packaged in five gallon buckets.« less

  20. Improved Mannanase Production from Penicillium occitanis by Fed-Batch Fermentation Using Acacia Seeds

    PubMed Central

    Blibech, Monia; Ellouz Ghorbel, Raoudha; Chaari, Fatma; Dammak, Ilyes; Bhiri, Fatma; Neifar, Mohamed; Ellouz Chaabouni, Semia

    2011-01-01

    By applying a fed-batch strategy, production of Penicillium occitanis mannanases could be almost doubled as compared to a batch cultivation on acacia seeds (76 versus 41 U/mL). Also, a 10-fold increase of enzyme activities was observed from shake flask fermentation to the fed-batch fermentation. These production levels were 3-fold higher than those obtained on coconut meal. The high mannanase production using acacia seeds powder as inducer substrate showed the suitability of this culture process for industrial-scale development. PMID:23724314

  1. An Undergraduate Laboratory Exercise for Studying Kinetics of Batch Crystallization

    ERIC Educational Resources Information Center

    Louhi­-Kultanen, Marjatta; Han, Bing; Nurkka, Annikka; Hatakka, Henry

    2015-01-01

    The present work describes an undergraduate laboratory exercise for improving understanding of fundamental phenomena in cooling crystallization. The exercise of nucleation and crystal growth kinetics supports learning of theories and models presented in lectures and calculation exercises. The teaching methodology incorporates precepts the…

  2. Remediation potential of mulch for removing lead.

    PubMed

    Jang, A; Bishop, P L

    2012-01-01

    Hardwood bark mulch has good physicochemical properties for the adsorption of lead (Pb(II)). Batch tests were conducted to obtain the sorption coefficient of Pb(II) in mulch. The results of the Freundlich model were not in as good agreement as for the case of the Langmuir model. In addition, a laboratory-scale mulch permeable reactive barrier (PRB) system was designed for the treatment of Pb(II)-contaminated groundwater. The mulch PRB system, using a mulch layer, can potentially be used in the subsurface for cost-effective and in situ transformation of the Pb(II) into environmentally acceptable forms. From the Pb(II) breakthrough curve, the mulch becomes saturated more quickly at higher flow rates.

  3. Chemometrics applications in biotechnology processes: predicting column integrity and impurity clearance during reuse of chromatography resin.

    PubMed

    Rathore, Anurag S; Mittal, Shachi; Lute, Scott; Brorson, Kurt

    2012-01-01

    Separation media, in particular chromatography media, is typically one of the major contributors to the cost of goods for production of a biotechnology therapeutic. To be cost-effective, it is industry practice that media be reused over several cycles before being discarded. The traditional approach for estimating the number of cycles a particular media can be reused for involves performing laboratory scale experiments that monitor column performance and carryover. This dataset is then used to predict the number of cycles the media can be used at manufacturing scale (concurrent validation). Although, well accepted and widely practiced, there are challenges associated with extrapolating the laboratory scale data to manufacturing scale due to differences that may exist across scales. Factors that may be different include: level of impurities in the feed material, lot to lot variability in feedstock impurities, design of the column housing unit with respect to cleanability, and homogeneity of the column packing. In view of these challenges, there is a need for approaches that may be able to predict column underperformance at the manufacturing scale over the product lifecycle. In case such an underperformance is predicted, the operators can unpack and repack the chromatography column beforehand and thus avoid batch loss. Chemometrics offers one such solution. In this article, we present an application of chemometrics toward the analysis of a set of chromatography profiles with the intention of predicting the various events of column underperformance including the backpressure buildup and inefficient deoxyribonucleic acid clearance. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  4. New Experimental Technique for Nodularity and Mg Fading Control in Compacted Graphite Iron Production on Laboratory Scale

    NASA Astrophysics Data System (ADS)

    Hernando, Juan Carlos; Domeij, Björn; González, Daniel; Amieva, José Manuel; Diószegi, Attila

    2017-11-01

    The narrow production window for compacted graphite iron material (CGI) drastically reduces the possibilities to produce it in small batches outside an industrial environment. This fact hinders laboratory-scale investigations on CGI solidification. This work presents a solution to that issue by introducing an experimental technique to produce graphitic cast iron of the main three families. Samples of a base hypereutectic spheroidal graphite iron (SGI) were re-melted in a resistance furnace under Ar atmosphere. Varying the holding time at 1723 K (1450 °C), graphitic irons ranging from spheroidal to lamellar were produced. Characterization of the graphite morphology evolution, in terms of nodularity as a function of holding time, is presented. The nodularity decay for the SGI region suggests a linear correlation with the holding time. In the CGI region, nodularity deterioration shows a slower rate, concluding with the sudden appearance of lamellar graphite. The fading process of magnesium, showing agreement with previous researchers, is described by means of empirical relations as a function of holding time and nodularity. The results on nodularity fade and number of nodules per unit area fade suggest that both phenomena occur simultaneously during the fading process of magnesium.

  5. A concise synthesis of benzimidazoles via the microwave-assisted one-pot batch reaction of amino acids up to a 10-g scale.

    PubMed

    Peng, Pai; Xiong, Jin-Feng; Mo, Guang-Zhen; Zheng, Jia-Li; Chen, Ren-Hong; Chen, Xiao-Yun; Wang, Zhao-Yang

    2014-10-01

    An efficient method for the synthesis of aminomethyl benzimidazoles is developed by using a one-pot batch reaction between amino acids and o-phenylenediamines. This reaction proceeds smoothly in an unmodified household microwave oven, even though scale-up is to 10 g. A desirable method for the quick synthesis of benzimidazoles, which are used as a kind of important intermediates in drug synthesis, is provided by the scale-up utilization of amino acid resource.

  6. MODELING OF ION-EXCHANGE FOR CESIUM REMOVAL FROM DISSOLVED SALTCAKE IN SRS TANKS 1-3, 37 AND 41

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, F

    2007-08-15

    This report presents an evaluation of the expected performance of engineered Crystalline Silicotitanate (CST) and spherical Resorcinol-Formaldehyde (RF) ion exchange resin for the removal of cesium from dissolved saltcake in SRS Tanks 1-3, 37 and 41. The application presented in this report reflects the expected behavior of engineered CST IE-911 and spherical RF resin manufactured at the intermediate-scale (approximately 100 gallon batch size; batch 5E-370/641). It is generally believed that scale-up to production-scale in RF resin manufacturing will result in similarly behaving resin batches whose chemical selectivity is unaffected while total capacity per gram of resin may vary. As such,more » the predictions provided within this report should provide reasonable estimates of production-scale column performance. Two versions of the RF cesium isotherm were used. The older version provides a conservative estimate of the resin capacity while the newer version more accurately fits the most recent experimental data.« less

  7. The development of an industrial-scale fed-batch fermentation simulation.

    PubMed

    Goldrick, Stephen; Ştefan, Andrei; Lovett, David; Montague, Gary; Lennox, Barry

    2015-01-10

    This paper describes a simulation of an industrial-scale fed-batch fermentation that can be used as a benchmark in process systems analysis and control studies. The simulation was developed using a mechanistic model and validated using historical data collected from an industrial-scale penicillin fermentation process. Each batch was carried out in a 100,000 L bioreactor that used an industrial strain of Penicillium chrysogenum. The manipulated variables recorded during each batch were used as inputs to the simulator and the predicted outputs were then compared with the on-line and off-line measurements recorded in the real process. The simulator adapted a previously published structured model to describe the penicillin fermentation and extended it to include the main environmental effects of dissolved oxygen, viscosity, temperature, pH and dissolved carbon dioxide. In addition the effects of nitrogen and phenylacetic acid concentrations on the biomass and penicillin production rates were also included. The simulated model predictions of all the on-line and off-line process measurements, including the off-gas analysis, were in good agreement with the batch records. The simulator and industrial process data are available to download at www.industrialpenicillinsimulation.com and can be used to evaluate, study and improve on the current control strategy implemented on this facility. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  8. An efficient laboratory workflow for environmental risk assessment of organic chemicals.

    PubMed

    Zhu, Linyan; Santiago-Schübel, Beatrix; Xiao, Hongxia; Thiele, Björn; Zhu, Zhiliang; Qiu, Yanling; Hollert, Henner; Küppers, Stephan

    2015-07-01

    In this study, we demonstrate a fast and efficient workflow to investigate the transformation mechanism of organic chemicals and evaluate the toxicity of their transformation products (TPs) in laboratory scale. The transformation process of organic chemicals was first simulated by electrochemistry coupled online to mass spectrometry (EC-MS). The simulated reactions were scaled up in a batch EC reactor to receive larger amounts of a reaction mixture. The mixture sample was purified and concentrated by solid phase extraction (SPE) for the further ecotoxicological testing. The combined toxicity of the reaction mixture was evaluated in fish egg test (FET) (Danio rerio) compared to the parent compound. The workflow was verified with carbamazepine (CBZ). By using EC-MS seven primary TPs of CBZ were identified; the degradation mechanism was elucidated and confirmed by comparison to literature. The reaction mixture and one primary product (acridine) showed higher ecotoxicity in fish egg assay with 96 h EC50 values of 1.6 and 1.0 mg L(-1) than CBZ with the value of 60.8 mg L(-1). The results highlight the importance of transformation mechanism study and toxicological effect evaluation for organic chemicals brought into the environment since transformation of them may increase the toxicity. The developed process contributes a fast and efficient laboratory method for the risk assessment of organic chemicals and their TPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Continuous processing of recombinant proteins: Integration of inclusion body solubilization and refolding using simulated moving bed size exclusion chromatography with buffer recycling.

    PubMed

    Wellhoefer, Martin; Sprinzl, Wolfgang; Hahn, Rainer; Jungbauer, Alois

    2013-12-06

    An integrated process which combines continuous inclusion body dissolution with NaOH and continuous matrix-assisted refolding based on closed-loop simulated moving bed size exclusion chromatography was designed and experimentally evaluated at laboratory scale. Inclusion bodies from N(pro) fusion pep6His and N(pro) fusion MCP1 from high cell density fermentation were continuously dissolved with NaOH, filtered and mixed with concentrated refolding buffer prior to refolding by size exclusion chromatography (SEC). This process enabled an isocratic operation of the simulated moving bed (SMB) system with a closed-loop set-up with refolding buffer as the desorbent buffer and buffer recycling by concentrating the raffinate using tangential flow filtration. With this continuous refolding process, we increased the refolding and cleavage yield of both model proteins by 10% compared to batch dilution refolding. Furthermore, more than 99% of the refolding buffer of the raffinate could be recycled which reduced the buffer consumption significantly. Based on the actual refolding data, we compared throughput, productivity, and buffer consumption between two batch dilution refolding processes - one using urea for IB dissolution, the other one using NaOH for IB dissolution - and our continuous refolding process. The higher complexity of the continuous refolding process was rewarded with higher throughput and productivity as well as significantly lower buffer consumption compared to the batch dilution refolding processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Translational arrest due to cytoplasmic redox stress delays adaptation to growth on methanol and heterologous protein expression in a typical fed-batch culture of Pichia pastoris.

    PubMed

    Edwards-Jones, Bryn; Aw, Rochelle; Barton, Geraint R; Tredwell, Gregory D; Bundy, Jacob G; Leak, David J

    2015-01-01

    We have followed a typical fed-batch induction regime for heterologous protein production under the control of the AOX1 promoter using both microarray and metabolomic analysis. The genetic constructs involved 1 and 3 copies of the TRY1 gene, encoding human trypsinogen. In small-scale laboratory cultures, expression of the 3 copy-number construct induced the unfolded protein response (UPR) sufficiently that titres of extracellular trypsinogen were lower in the 3-copy construct than with the 1-copy construct. In the fed-batch-culture, a similar pattern was observed, with higher expression from the 1-copy construct, but in this case there was no significant induction of UPR with the 3-copy strain. Analysis of the microarray and metabolomic information indicates that the 3-copy strain was undergoing cytoplasmic redox stress at the point of induction with methanol. In this Crabtree-negative yeast, this redox stress appeared to delay the adaptation to growth on methanol and supressed heterologous protein production, probably due to a block in translation. Although redox imbalance as a result of artificially imposed hypoxia has previously been described, this is the first time that it has been characterised as a result of a transient metabolic imbalance and shown to involve a stress response which can lead to translational arrest. Without detailed analysis of the underlying processes it could easily have been mis-interpreted as secretion stress, transmitted through the UPR.

  11. Collaborative study for the calibration of the Ph. Eur. prekallikrein activator in albumin BRP batches 4, 5 and 6.

    PubMed

    Lackner, F; Daas, A; Terao, E

    2015-01-01

    An international collaborative study was organised by the European Directorate for the Quality of Medicines & HealthCare (EDQM, Council of Europe) to calibrate replacement batches for the current European Pharmacopoeia (Ph. Eur.) prekallikrein activator (PKA) in albumin biological reference preparation (BRP), whose stocks were dwindling. The study was run in the framework of the Biological Standardisation Programme (BSP) of the Council of Europe and the European Union (EU) Commission. Twenty three laboratories from official medicines control authorities and manufacturers in Europe and outside Europe took part in the study. Three candidate replacement batches were produced from the same material as the one used for the World Health Organization (WHO) 2(nd) International Standard (IS) for PKA in albumin (02/168) and the Ph. Eur. PKA in albumin BRP batches 1, 2 and 3. Participants were requested to evaluate the candidate batches against the current WHO IS using their routine assay method. The Ph. Eur. PKA in albumin BRP batch 3 (BRP3) was also included in the test panel to ensure the continuity of the consecutive BRP batches. The study confirmed the stability of the PKA content of the current BRP3. The candidate batches were found to be comparable. Previous data on the starting material support its high stability. Thermal stress study on the candidate batches confirmed the stability of their PKA activity. The Commission of the Ph. Eur. officially adopted in November 2013 the 3 candidate batches as Ph. Eur. PKA in albumin BRP batches 4, 5 and 6 with an assigned content of 38 IU/vial. The activity of the 3 new batches of Ph. Eur. PKA in albumin BRP will be regularly monitored.

  12. Identification of crop cultivars with consistently high lignocellulosic sugar release requires the use of appropriate statistical design and modelling

    PubMed Central

    2013-01-01

    Background In this study, a multi-parent population of barley cultivars was grown in the field for two consecutive years and then straw saccharification (sugar release by enzymes) was subsequently analysed in the laboratory to identify the cultivars with the highest consistent sugar yield. This experiment was used to assess the benefit of accounting for both the multi-phase and multi-environment aspects of large-scale phenotyping experiments with field-grown germplasm through sound statistical design and analysis. Results Complementary designs at both the field and laboratory phases of the experiment ensured that non-genetic sources of variation could be separated from the genetic variation of cultivars, which was the main target of the study. The field phase included biological replication and plot randomisation. The laboratory phase employed re-randomisation and technical replication of samples within a batch, with a subset of cultivars chosen as duplicates that were randomly allocated across batches. The resulting data was analysed using a linear mixed model that incorporated field and laboratory variation and a cultivar by trial interaction, and ensured that the cultivar means were more accurately represented than if the non-genetic variation was ignored. The heritability detected was more than doubled in each year of the trial by accounting for the non-genetic variation in the analysis, clearly showing the benefit of this design and approach. Conclusions The importance of accounting for both field and laboratory variation, as well as the cultivar by trial interaction, by fitting a single statistical model (multi-environment trial, MET, model), was evidenced by the changes in list of the top 40 cultivars showing the highest sugar yields. Failure to account for this interaction resulted in only eight cultivars that were consistently in the top 40 in different years. The correspondence between the rankings of cultivars was much higher at 25 in the MET model. This approach is suited to any multi-phase and multi-environment population-based genetic experiment. PMID:24359577

  13. Cultivation of aerobic granules in a novel configuration of sequencing batch airlift reactor.

    PubMed

    Rezaei, Laya Siroos; Ayati, Bita; Ganjidoust, Hossein

    2012-01-01

    Aerobic granules can be formed in sequencing batch airlift reactors (SBAR) and sequencing batch reactors (SBR). Comparing these two systems, the SBAR has excellent mixing condition, but due to a high height-to-diameter ratio (H/D), there is no performance capability at full scale at the present time. This research examined a novel configuration of SBAR at laboratory scale (with a box structure) for industrial wastewater treatment. To evaluate chemical oxygen demand (COD) removal efficiency and granule formation of the novel reactor (R1), in comparison a conventional SBAR (R2) was operated under similar conditions during the experimental period. R1 and R2 with working volumes of 3.6 L and 4.5 L, respectively, were used to cultivate aerobic granules. Both reactors were operated for 4 h per cycle. Experiments were done at different organic loading rates (OLRs) ranging from 0.6-4.5 kg COD/m3.d for R1 and from 0.72-5.4 kg COD/m3.d for R2. After 150 days of operation, large-sized black filamentous granules with diameters of 0.5-2 mm and 2-11 mm were formed in R1 and R2, respectively. In the second part of the experiment, the efficiency of removal of a toxic substance by aerobic granules was investigated using aniline as a carbon source with a concentration in the range 1.2-6.6 kg COD/m3.d and 1.44-7.92 kg COD/m3.d in R1 and R2, respectively. It was found that COD removal efficiency of the novel airlift reactor was over 97% and 94.5% using glucose and aniline as carbon sources, respectively. Sludge volume index (SVI) was also decreased to 30 mL/g by granulation in the novel airlift reactor.

  14. Collaborative study for the establishment of the WHO 3(rd) International Standard for Endotoxin, the Ph. Eur. endotoxin biological reference preparation batch 5 and the USP Reference Standard for Endotoxin Lot H0K354.

    PubMed

    Findlay, L; Desai, T; Heath, A; Poole, S; Crivellone, M; Hauck, W; Ambrose, M; Morris, T; Daas, A; Rautmann, G; Buchheit, K H; Spieser, J M; Terao, E

    2015-01-01

    An international collaborative study was organised jointly by the World Health Organization (WHO)/National Institute for Biological Standards and Control (NIBSC), the United States Pharmacopeia (USP) and the European Directorate for the Quality of Medicines & HealthCare (EDQM/Council of Europe) for the establishment of harmonised replacement endotoxin standards for these 3 organisations. Thirty-five laboratories worldwide, including Official Medicines Control Laboratories (OMCLs) and manufacturers enrolled in the study. Three candidate preparations (10/178, 10/190 and 10/196) were produced with the same material and same formulation as the current reference standards with the objective of generating a new (3(rd)) International Standard (IS) with the same potency (10 000 IU/vial) as the current (2(nd)) IS, as well as new European Pharmacopoeia (Ph. Eur.). and USP standards. The suitability of the candidate preparations to act as the reference standard in assays for endotoxin performed according to compendial methods was evaluated. Their potency was calibrated against the WHO 2(nd) IS for Endotoxin (94/580). Gelation and photometric methods produced similar results for each of the candidate preparations. The overall potency estimates for the 3 batches were comparable. Given the intrinsic assay precision, the observed differences between the batches may be considered unimportant for the intended use of these materials. Overall, these results were in line with those generated for the establishment of the current preparations of reference standards. Accelerated degradation testing of vials stored at elevated temperatures supported the long-term stability of the 3 candidate preparations. It was agreed between the 3 organisations that batch 10/178 be shared between WHO and EDQM and that batches 10/190 and 10/196 be allocated to USP, with a common assigned value of 10 000 IU/vial. This value maintains the continuity of the global harmonisation of reference materials and unitage for the testing of endotoxins in parenteral pharmaceutical products. Based on the results of the collaborative study, batch 10/178 was established by the European Pharmacopoeia Commission as the Ph. Eur. Endotoxin Biological Reference Preparation (BRP) batch 5. The same batch was also established by the Expert Committee on Biological Standardisation (ECBS) of WHO as the WHO 3(rd) IS for Endotoxin. Batch 10/190 was adopted as the USP Endotoxin Reference Standard, lot H0K354 and vials from this same batch (10/190) will serve as the United States Food and Drug Administration (USFDA) Endotoxin Standard, EC-7.

  15. In situ redox manipulation of subsurface sediments from Fort Lewis, Washington: Iron reduction and TCE dechlorination mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JE Szecsody; JS Fruchter; DS Sklarew

    2000-03-21

    Pacific Northwest National Laboratory (PNNL) conducted a bench-scale study to determine how effective chemically treated Ft. Lewis sediments can degrade trichloroethylene (TCE). The objectives of this experimental study were to quantify: (1) sediment reduction and oxidation reactions, (2) TCE degradation reactions, and (3) other significant geochemical changes that occurred. Sediment reduction and oxidation were investigated to determine the mass of reducible iron in the Ft. Lewis sediments and the rate of this reduction and subsequent oxidation at different temperatures. The temperature dependence was needed to be able to predict field-scale reduction in the relatively cold ({approximately}11 C) Ft. Lewis aquifer.more » Results of these experiments were used in conjunction with other geochemical and hydraulic characterization to design the field-scale injection experiment and predict barrier longevity. For example, the sediment reduction rate controls the amount of time required for the dithionite solution to fully react with sediments. Sediment oxidation experiments were additionally conducted to determine the oxidation rate and provide a separate measure of the mass of reduced iron. Laboratory experiments that were used to meet these objectives included: (1) sediment reduction in batch (static) systems, (2) sediment reduction in 1-D columns, and (3) sediment oxidation in 1-D columns. Multiple reaction modeling was conducted to quantify the reactant masses and reaction rates.« less

  16. Control of algal production in a high rate algal pond: investigation through batch and continuous experiments.

    PubMed

    Derabe Maobe, H; Onodera, M; Takahashi, M; Satoh, H; Fukazawa, T

    2014-01-01

    For decades, arid and semi-arid regions in Africa have faced issues related to water availability for drinking, irrigation and livestock purposes. To tackle these issues, a laboratory scale greywater treatment system based on high rate algal pond (HRAP) technology was investigated in order to guide the operation of the pilot plant implemented in the 2iE campus in Ouagadougou (Burkina Faso). Because of the high suspended solids concentration generally found in effluents of this system, the aim of this study is to improve the performance of HRAPs in term of algal productivity and removal. To determine the selection mechanism of self-flocculated algae, three sets of sequencing batch reactors (SBRs) and three sets of continuous flow reactors (CFRs) were operated. Despite operation with the same solids retention time and the similarity of the algal growth rate found in these reactors, the algal productivity was higher in the SBRs owing to the short hydraulic retention time of 10 days in these reactors. By using a volume of CFR with twice the volume of our experimental CFRs, the algal concentration can be controlled during operation under similar physical conditions in both reactors.

  17. Biodegradation of industrial-strength 2,4-dichlorophenoxyacetic acid wastewaters in the presence of glucose in aerobic and anaerobic sequencing batch reactors.

    PubMed

    Elefsiniotis, Panagiotis; Wareham, David G

    2013-01-01

    This research explored the biodegradability of 2,4-dichlorophenoxyacetic acid (2,4-D) in two laboratory-scale sequencing batch reactors (SBRs) that operated under aerobic and anaerobic conditions. The potential limit of 2,4-D degradation was investigated at a hydraulic retention time of 48 h, using glucose as a supplemental substrate and increasing feed concentrations of 2,4-D; namely 100 to 700 mg/L (i.e. industrial strength) for the aerobic system and 100 to 300 mg/L for the anaerobic SBR. The results revealed that 100 mg/L of 2,4-D was completely degraded following an acclimation period of 29 d (aerobic SBR) and 70 d (anaerobic SBR). The aerobic system achieved total 2,4-D removal at feed concentrations up to 600 mg/L which appeared to be a practical limit, since a further increase to 700 mg/L impaired glucose degradation while 2,4-D biodegradation was non-existent. In all cases, glucose was consumed before the onset of 2,4-D degradation. In the anaerobic SBR, 2,4-D degradation was limited to 120 mg/L.

  18. Continuous Flow Chemistry: Reaction of Diphenyldiazomethane with p-Nitrobenzoic Acid.

    PubMed

    Aw, Alex; Fritz, Marshall; Napoline, Jonathan W; Pollet, Pamela; Liotta, Charles L

    2017-11-15

    Continuous flow technology has been identified as instrumental for its environmental and economic advantages leveraging superior mixing, heat transfer and cost savings through the "scaling out" strategy as opposed to the traditional "scaling up". Herein, we report the reaction of diphenyldiazomethane with p-nitrobenzoic acid in both batch and flow modes. To effectively transfer the reaction from batch to flow mode, it is essential to first conduct the reaction in batch. As a consequence, the reaction of diphenyldiazomethane was first studied in batch as a function of temperature, reaction time, and concentration to obtain kinetic information and process parameters. The glass flow reactor set-up is described and combines two types of reaction modules with "mixing" and "linear" microstructures. Finally, the reaction of diphenyldiazomethane with p-nitrobenzoic acid was successfully conducted in the flow reactor, with up to 95% conversion of the diphenyldiazomethane in 11 min. This proof of concept reaction aims to provide insight for scientists to consider flow technology's competitiveness, sustainability, and versatility in their research.

  19. Summary of Group Development and Testing for Single Shell Tank Closure at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harbour, John, R.

    2005-04-28

    This report is a summary of the bench-scale and large scale experimental studies performed by Savannah River National Laboratory for CH2M HILL to develop grout design mixes for possible use in producing fill materials as a part of Tank Closure of the Single-Shell Tanks at Hanford. The grout development data provided in this report demonstrates that these design mixes will produce fill materials that are ready for use in Hanford single shell tank closure. The purpose of this report is to assess the ability of the proposed grout specifications to meet the current requirements for successful single shell tank closuremore » which will include the contracting of services for construction and operation of a grout batch plant. The research and field experience gained by SRNL in the closure of Tanks 17F and 20F at the Savannah River Site was leveraged into the grout development efforts for Hanford. It is concluded that the three Hanford grout design mixes provide fill materials that meet the current requirements for successful placement. This conclusion is based on the completion of recommended testing using Hanford area materials by the operators of the grout batch plant. This report summarizes the regulatory drivers and the requirements for grout mixes as tank fill material. It is these requirements for both fresh and cured grout properties that drove the development of the grout formulations for the stabilization, structural and capping layers.« less

  20. [Evaluation of the AOAC 985.29 enzimic gravimetric method for determination of dietary fiber in oat and corn grains].

    PubMed

    da Silva, Leila Picolli; Ciocca, Maria de Lourdes Santorio; Furlong, Eliana Badiale

    2003-12-01

    The precision attributes and use of the enzymatic-gravimetric method of Prosky et al. (1992) (AOAC 985.29) were evaluated using corn (BR 5202 Pampa) and oat (UFRGS 15) samples. The effect of laboratory batches carried out in different days were evaluated in six laboratory batches, using for each material one duplicate for total fiber (FT) determination, one duplicate for insoluble fiber (FI) determination and blank ones for FT and for FI (both in duplicate). In order to characterize repetitive aspects, five other FT and FI determinations added to each sample were evaluated, summing up 11 data. The low coefficients of variation in the first six batches were considered acceptable as an expression of expected total intralaboratory variation. The repetitive of the method was considered good for FT determinations (CVs < 10%). However, in the FI determination a high frequency of negative values of ash and blanks was found, impairing the repetitive aspects evaluation. The magnitude of the total gravimetric corrections varies with the kind of the sample and is especially influenced by the protein content.

  1. Large-scale manufacturing of GMP-compliant anti-EGFR targeted nanocarriers: production of doxorubicin-loaded anti-EGFR-immunoliposomes for a first-in-man clinical trial.

    PubMed

    Wicki, Andreas; Ritschard, Reto; Loesch, Uli; Deuster, Stefanie; Rochlitz, Christoph; Mamot, Christoph

    2015-04-30

    We describe the large-scale, GMP-compliant production process of doxorubicin-loaded and anti-EGFR-coated immunoliposomes (anti-EGFR-ILs-dox) used in a first-in-man, dose escalation clinical trial. 10 batches of this nanoparticle have been produced in clean room facilities. Stability data from the pre-GMP and the GMP batch indicate that the anti-EGFR-ILs-dox nanoparticle was stable for at least 18 months after release. Release criteria included visual inspection, sterility testing, as well as measurements of pH (pH 5.0-7.0), doxorubicin HCl concentration (0.45-0.55 mg/ml), endotoxin concentration (<1.21 IU/ml), leakage (<10%), particle size (Z-average of Caelyx ± 20 nm), and particle uptake (uptake absolute: >0.50 ng doxorubicin/μg protein; uptake relatively to PLD: >5 fold). All batches fulfilled the defined release criteria, indicating a high reproducibility as well as batch-to-batch uniformity of the main physico-chemical features of the nanoparticles in the setting of the large-scale GMP process. In the clinical trial, 29 patients were treated with this nanoparticle between 2007 and 2010. Pharmacokinetic data of anti-EGFR-ILs-dox collected during the clinical study revealed stability of the nanocarrier in vivo. Thus, reliable and GMP-compliant production of anti-EGFR-targeted nanoparticles for clinical application is feasible. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Development of poly(aspartic acid-co-malic acid) composites for calcium carbonate and sulphate scale inhibition.

    PubMed

    Mithil Kumar, N; Gupta, Sanjay Kumar; Jagadeesh, Dani; Kanny, K; Bux, F

    2015-01-01

    Polyaspartic acid (PSI) is suitable for the inhibition of inorganic scale deposition. To enhance its scale inhibition efficiency, PSI was modified by reacting aspartic acid with malic acid (MA) using thermal polycondensation polymerization. This reaction resulted in poly(aspartic acid-co-malic acid) (PSI-co-MA) dual polymer. The structural, chemical and thermal properties of the dual polymers were analysed by using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and gel permeation chromatography. The effectiveness of six different molar ratios of PSI-co-MA dual polymer for calcium carbonate and calcium sulphate scale inhibition at laboratory scale batch experiments was evaluated with synthetic brine solution at selected doses of polymer at 65-70°C by the static scale test method. The performance of PSI-co-MA dual polymer for the inhibition of calcium carbonate and calcium sulphate precipitation was compared with that of a PSI single polymer. The PSI-co-MA exhibited excellent ability to control inorganic minerals, with approximately 85.36% calcium carbonate inhibition and 100% calcium sulphate inhibition at a level of 10 mg/L PSI-co-MA, respectively. Therefore, it may be reasonably concluded that PSI-co-MA is a highly effective scale inhibitor for cooling water treatment applications.

  3. ISDP salt batch #2 supernate qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.; Nash, C. A.; Fink, S. D.

    2009-01-05

    This report covers the laboratory testing and analyses of the second Integrated Salt Disposition Project (ISDP) salt supernate samples, performed in support of initial radioactive operations of Actinide Removal Process (ARP) and Modular Caustic-Side Solvent Extraction Unit (MCU). Major goals of this work include characterizing Tank 22H supernate, characterizing Tank 41H supernate, verifying actinide and strontium adsorption with a standard laboratory-scale test using monosodium titanate (MST) and filtration, and checking cesium mass transfer behavior for the MCU solvent performance when contacted with the liquid produced from MST contact. This study also includes characterization of a post-blend Tank 49H sample asmore » part of the Nuclear Criticality Safety Evaluation (NCSE). This work was specified by Task Technical Request and by Task Technical and Quality Assurance Plan (TTQAP). In addition, a sampling plan will be written to guide analytical future work. Safety and environmental aspects of the work were documented in a Hazard Assessment Package.« less

  4. Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool

    NASA Astrophysics Data System (ADS)

    Torlapati, Jagadish; Prabhakar Clement, T.

    2013-01-01

    We present the details of a comprehensive numerical modeling tool, RT1D, which can be used for simulating biochemical and geochemical reactive transport problems. The code can be run within the standard Microsoft EXCEL Visual Basic platform, and it does not require any additional software tools. The code can be easily adapted by others for simulating different types of laboratory-scale reactive transport experiments. We illustrate the capabilities of the tool by solving five benchmark problems with varying levels of reaction complexity. These literature-derived benchmarks are used to highlight the versatility of the code for solving a variety of practical reactive transport problems. The benchmarks are described in detail to provide a comprehensive database, which can be used by model developers to test other numerical codes. The VBA code presented in the study is a practical tool that can be used by laboratory researchers for analyzing both batch and column datasets within an EXCEL platform.

  5. A laboratory treatability study on RDX-contaminated soil from the Iowa Army Ammunition Plant, Burlington, Iowa.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boopathy, R.; Manning, J. F.; Environmental Research

    2000-03-01

    Soil in certain areas of the Iowa Army Ammunition Plant in Burlington, Iowa, was contaminated with hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). A laboratory treatability study was conducted to examine the ability of native soil bacteria present in the contaminated site to degrade RDX. The results indicated that RDX can be removed effectively from the soil by native soil bacteria through a co-metabolic process. Molasses, identified as an effective cosubstrate, is inexpensive, and this factor makes the treatment system cost effective. The successful operation of aerobic-anoxic soil-slurry reactors in batch mode with RDX-contaminated soil showed that the technology can be scaled up for fieldmore » demonstration. The RDX concentration in the contaminated soil was decreased by 98% after 4 months of reactor operation. The advantage of the slurry reactor is the simplicity of its operation. The method needs only mixing and the addition of molasses as cosubstrate.« less

  6. GenBank.

    PubMed

    Benson, Dennis A; Karsch-Mizrachi, Ilene; Lipman, David J; Ostell, James; Wheeler, David L

    2008-01-01

    GenBank (R) is a comprehensive database that contains publicly available nucleotide sequences for more than 260 000 named organisms, obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects. Most submissions are made using the web-based BankIt or standalone Sequin programs and accession numbers are assigned by GenBank staff upon receipt. Daily data exchange with the European Molecular Biology Laboratory Nucleotide Sequence Database in Europe and the DNA Data Bank of Japan ensures worldwide coverage. GenBank is accessible through NCBI's retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. To access GenBank and its related retrieval and analysis services, begin at the NCBI Homepage: www.ncbi.nlm.nih.gov.

  7. GenBank

    PubMed Central

    Benson, Dennis A.; Karsch-Mizrachi, Ilene; Lipman, David J.; Ostell, James; Wheeler, David L.

    2008-01-01

    GenBank (R) is a comprehensive database that contains publicly available nucleotide sequences for more than 260 000 named organisms, obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects. Most submissions are made using the web-based BankIt or standalone Sequin programs and accession numbers are assigned by GenBank staff upon receipt. Daily data exchange with the European Molecular Biology Laboratory Nucleotide Sequence Database in Europe and the DNA Data Bank of Japan ensures worldwide coverage. GenBank is accessible through NCBI's retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. To access GenBank and its related retrieval and analysis services, begin at the NCBI Homepage: www.ncbi.nlm.nih.gov PMID:18073190

  8. Phytoremediation of hazardous wastes. Technical report, 23--26 July 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCutcheon, S.C.; Wolfe, N.L.; Carreria, L.H.

    1995-07-26

    A new and innovative approach to phytoremediation (the use of plants to degrade hazardous contaminants) was developed. The new approach to phytoremediation involves rigorous pathway analyses, mass balance determinations, and identification of specific enzymes that break down trinitrotoluene (TNT), other explosives (RDX and HMX), nitrobenzene, and chlorinated solvents (e.g., TCE and PCE) (EPA 1994). As a good example, TNT is completely and rapidly degraded by nitroreductase and laccase enzymes. The aromatic ring is broken and the carbon in the ring fragments is incorporated into new plant fiber, as part of the natural lignification process. Half lives for TNT degradation approachmore » 1 hr or less under ideal laboratory conditions. Continuous-flow pilot studies indicate that scale up residence times in created wetlands may be two to three times longer than in laboratory batch studies. The use of created wetlands and land farming techniques guided by rigorous field biochemistry and ecology promises to be a vital part of a newly evolving field, ecological engineering.« less

  9. Phytoremediation of hazardous wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCutcheon, S.C.; Wolfe, N.L.; Carreria, L.H.

    1995-11-01

    A new and innovative approach to phytoremediation (the use of plants to degrade hazardous contaminants) was developed. The new approach to phytoremediation involves rigorous pathway analyses, mass balance determinations, and identification of specific enzymes that break down trinitrotoluene (TNT), other explosives (RDX and HMX), nitrobenzene, and chlorinated solvents (e.g., TCE and PCE) (EPA 1994). As a good example, TNT is completely and rapidly degraded by nitroreductase and laccase enzymes. The aromatic ring is broken and the carbon in the ring fragments is incorporated into new plant fiber, as part of the natural lignification process. Half lives for TNT degradation approachmore » 1 hr or less under ideal laboratory conditions. Continuous-flow pilot studies indicate that scale up residence times in created wetlands may be two to three times longer than in laboratory batch studies. The use of created wetlands and land farming techniques guided by rigorous field biochemistry and ecology promises to be a vital part of a newly evolving field, ecological engineering.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abboud, Alexander; Guillen, Donna Post; Pokorny, Richard

    At the Hanford site in the state of Washington, more than 56 million gallons of radioactive waste is stored in underground tanks. The cleanup plan for this waste is vitrification at the Waste Treatment Plant (WTP), currently under construction. At the WTP, the waste will be blended with glass-forming materials and heated to 1423K, then poured into stainless steel canisters to cool and solidify. A fundamental understanding of the glass batch melting process is needed to optimize the process to reduce cost and decrease the life cycle of the cleanup effort. The cold cap layer that floats on the surfacemore » of the glass melt is the primary reaction zone for the feed-to-glass conversion. The conversion reactions include water release, melting of salts, evolution of batch gases, dissolution of quartz and the formation of molten glass. Obtaining efficient heat transfer to this region is crucial to achieving high rates of glass conversion. Computational fluid dynamics (CFD) modeling is being used to understand the heat transfer dynamics of the system and provide insight to optimize the process. A CFD model was developed to simulate the DM1200, a pilot-scale melter that has been extensively tested by the Vitreous State Laboratory (VSL). Electrodes are built into the melter to provide Joule heating to the molten glass. To promote heat transfer from the molten glass into the reactive cold cap layer, bubbling of the molten glass is used to stimulate forced convection within the melt pool. A three-phase volume of fluid approach is utilized to model the system, wherein the molten glass and cold cap regions are modeled as separate liquid phases, and the bubbling gas and plenum regions are modeled as one lumped gas phase. The modeling of the entire system with a volume of fluid model allows for the prescription of physical properties on a per-phase basis. The molten glass phase and the gas phase physical properties are obtained from previous experimental work. Finding representative properties for the cold cap region is more difficult, as this region is not a true liquid, but rather a multilayer region consisting of a porous and a foamy layer. Physical properties affecting heat transfer, namely the thermal conductivity and heat capacity, have been fit to closely match data and observations from laboratory experiments. Data from xray tomography and quenching of laboratory-scale cold caps provide insight into the topology of bubble distribution within the cold cap at various temperatures. Heat transfer within the melter was validated by comparison with VSL data for the pilot-scale melter.« less

  11. 40 CFR 80.65 - General requirements for refiners and importers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... % Olefins content 2.5 vol % Benzene content 0.21 vol % Ethanol content 0.4 vol % Methanol content 0.2 vol... the property at one additional independent laboratory. If this second independent laboratory obtains a... representative sample from a batch of reformulated gasoline, to: (A) Obtain the refiner's or importer's assigned...

  12. 40 CFR 80.65 - General requirements for refiners and importers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... % Olefins content 2.5 vol % Benzene content 0.21 vol % Ethanol content 0.4 vol % Methanol content 0.2 vol... the property at one additional independent laboratory. If this second independent laboratory obtains a... representative sample from a batch of reformulated gasoline, to: (A) Obtain the refiner's or importer's assigned...

  13. LABORATORY STUDIES ON THE STABILITY AND TRANSPORT OF INORGANIC COLLOIDS THROUGH NATURAL AQUIFER MATERIAL

    EPA Science Inventory

    The stability and transport of radio-labeled Fe2O3 particles were studied using laboratory batch and column techniques. Core material collected from shallow sand and gravel aquifer was used as the immobile column matrix material. Variables in the study included flow rate, pH, i...

  14. Upscaling of U (VI) desorption and transport from decimeter‐scale heterogeneity to plume‐scale modeling

    USGS Publications Warehouse

    Curtis, Gary P.; Kohler, Matthias; Kannappan, Ramakrishnan; Briggs, Martin A.; Day-Lewis, Frederick D.

    2015-01-01

    Scientifically defensible predictions of field scale U(VI) transport in groundwater requires an understanding of key processes at multiple scales. These scales range from smaller than the sediment grain scale (less than 10 μm) to as large as the field scale which can extend over several kilometers. The key processes that need to be considered include both geochemical reactions in solution and at sediment surfaces as well as physical transport processes including advection, dispersion, and pore-scale diffusion. The research summarized in this report includes both experimental and modeling results in batch, column and tracer tests. The objectives of this research were to: (1) quantify the rates of U(VI) desorption from sediments acquired from a uranium contaminated aquifer in batch experiments;(2) quantify rates of U(VI) desorption in column experiments with variable chemical conditions, and(3) quantify nonreactive tracer and U(VI) transport in field tests.

  15. Limestone and Zeolite as Alternative Media in Horizontal Subsurface Flow Constructed Wetlands: Laboratory-Scale Studies

    NASA Astrophysics Data System (ADS)

    Lizama, K.; Jaque, I.; Ayala, J.

    2016-12-01

    Arsenic is well known for its chronic toxicity. Millions of people around the world are currently at risk, drinking water with As concentrations above 10 ppb, the WHO drinking water guideline. Although different treatment options exist, they are often limited by elevated costs and maintenance requirements. Constructed wetlands are a natural water treatment system, capable to remove metals and metalloids -including As- via different physical, chemical and biological processes. The use of alternative supporting media to enhance As removal in subsurface flow wetlands has been recommended, but not sufficiently studied. Limestone and zeolite have been identified as effective supporting media in subsurface flow wetlands aiming As removal. However, there are still key aspects to be addressed, such as the implications of using these media, the speciation in the solid phase, the role of vegetation, etc. This study investigated the performance of limestone and zeolite in three types of experiments: batch, column and as main supporting media in a bench scale horizontal subsurface flow wetland system. Synthetic water resembling a contaminated river in Chile (As concentration=3 mg/L, Fe concentration= 100 mg/L, pH=2) was used in all experiments. In the batch experiments, the As concentration, the mass of media and the contact time were varied. The column system consisted of three limestone columns and three zeolite columns, operated under a hydraulic loading of 20 mm/d. The wetland system consisted of twelve PVC cells: six filled with zeolite and six with limestone. Phragmites australis were planted in three cells of each media type, as control cells. From the batch experiments, maximum As sorption capacities as indicated by Langmuir model were 1.3 mg/g for limestone and 0.17 mg/g for zeolite, at 18 h contact time and 6.3 g/L medium concentration. EDS and XPS analyses revealed that As and Fe were retained in zeolite at the end of the batch experiments. Zeolite and limestone columns presented As removal >99.5% on average. In the wetland system, As removal percentages were also similar between media types, regardless of the presence of vegetation: For limestone, removal percentages were 99.7% and 99.6%, for vegetated and non-vegetated cells respectively; whereas for zeolite, removal percentages were 99.8% and 99.7% respectively.

  16. Testing of the Defense Waste Processing Facility Cold Chemical Dissolution Method in Sludge Batch 9 Qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, T.; Pareizs, J.; Coleman, C.

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) tests the applicability of the digestion methods used by the DWPF Laboratory for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt samples and SRAT Product process control samples. DWPF SRAT samples are typically dissolved using a method referred to as the DWPF Cold Chemical or Cold Chem Method (CC), (see DWPF Procedure SW4- 15.201). Testing indicates that the CC method produced mixed results. The CC method did not result in complete dissolution of either the SRAT Receipt ormore » SRAT Product with some fine, dark solids remaining. However, elemental analyses did not reveal extreme biases for the major elements in the sludge when compared with analyses obtained following dissolution by hot aqua regia (AR) or sodium peroxide fusion (PF) methods. The CC elemental analyses agreed with the AR and PF methods well enough that it should be adequate for routine process control analyses in the DWPF after much more extensive side-by-side tests of the CC method and the PF method are performed on the first 10 SRAT cycles of the Sludge Batch 9 (SB9) campaign. The DWPF Laboratory should continue with their plans for further tests of the CC method during these 10 SRAT cycles.« less

  17. [Study of blending method for the extracts of herbal plants].

    PubMed

    Liu, Yongsuo; Cao, Min; Chen, Yuying; Hu, Yuzhu; Wang, Yiming; Luo, Guoan

    2006-03-01

    The irregularity in herbal plant composition is influenced by multiple factors. As for quality control of traditional Chinese medicine, the most critical challenge is to ensure the dosage content uniformity. This content uniformity can be improved by blending different batches of the extracts of herbal plants. Nonlinear least-squares regression was used to calculate the blending coefficient, which means no great absolute differences allowed for all ingredients. For traditional Chinese medicines, even relatively smaller differences could present to be very important for all the ingredients. The auto-scaling pretreatment was used prior to the calculation of the blending coefficients. The pretreatment buffered the characteristics of individual data for the ingredients in different batches, so an improved auto-scaling pretreatment method was proposed. With the improved auto-scaling pretreatment, the relative. differences decreased after blending different batches of extracts of herbal plants according to the reference samples. And the content uniformity control of the specific ingredients could be achieved by the error control coefficient. In the studies for the extracts of fructus gardeniae, the relative differences of all the ingredients is less than 3% after blending different batches of the extracts. The results showed that nonlinear least-squares regression can be used to calculate the blending coefficient of the herbal plant extracts.

  18. Establishment of replacement batches for heparin low-molecular-mass for calibration CRS, and the International Standard Low Molecular Weight Heparin for Calibration.

    PubMed

    Mulloy, B; Heath, A; Behr-Gross, M-E

    2007-12-01

    An international collaborative study involving fourteen laboratories has taken place, organised by the European Directorate for the Quality of Medicines & HealthCare (EDQM) with National Institute for Biological Standards & Control (NIBSC) (in its capacity as a World Health Organisation (WHO) Laboratory for Biological Standardisation) to provide supporting data for the establishment of replacement batches of Heparin Low-Molecular-Mass (LMM) for Calibration Chemical Reference Substance (CRS), and of the International Reference Reagent (IRR) Low Molecular Weight Heparin for Molecular Weight Calibration. A batch of low-molecular-mass heparin was donated to the organisers and candidate preparations of freeze-dried heparin were produced at NIBSC and EDQM. The establishment study was organised in two phases: a prequalification (phase 1, performed in 3 laboratories in 2005) followed by an international collaborative study (phase 2). In phase 2, started in March 2006, molecular mass parameters were determined for seven different LMM heparin samples using the current CRS batch and two batches of candidate replacement material with a defined number average relative molecular mass (Mn) of 3,700, determined in phase 1. The values calculated using the candidates as standard were systematically different from values calculated using the current batch with its assigned number-average molecular mass (Mna) of 3,700. Using raw data supplied by participants, molecular mass parameters were recalculated using the candidates as standard with values for Mna of 3,800 and 3,900. Values for these parameters agreed more closely with those calculated using the current batch supporting the fact that the candidates, though similar to batch 1 in view of the production processes used, differ slightly in terms of molecular mass distribution. Therefore establishment of the candidates was recommended with an assigned Mna value of 3,800 that is both consistent with phase 1 results and guarantees continuity with the current CRS batch. In phase 2, participants also determined molecular weight parameters for the seven different LMM heparin samples using both the 1st IRR (90/686) and its Broad Standard Table and the candidate World Health Organization (WHO) 2nd International Standard (05/112) (2nd IS) using a Broad Standard Table established in phase 1. Mean molecular weights calculated using 2nd IS were slightly higher than with 1st IRR, and participants in the study indicated that this systematic difference precluded establishment of 2nd IS with the table supplied. A replacement Broad Standard Table has been devised on the basis of the central recalculations of raw data supplied by participants; this table gives improved agreement between values derived using the 1st IRR and the candidate 2nd IS. On the basis of this study a recommendation was made for the establishment of 2nd IS and its proposed Broad Standard Table as a replacement for the 1st International Reference Reagent Low Molecular Weight Heparin for Molecular Weight Calibration. Unlike the 1st IRR however, the candidate material 2nd IS is not suitable for use with the method of Nielsen. The candidate materials were established as heparin low-molecular-mass for calibration batches 2 and 3 by the Ph. Eur. Commission in March 2007 and as 2nd IS low-molecular-weight heparin for molecular weight calibration (05/112) by the Expert Committee on Biological Standardization in November 2007.

  19. An Inorganic Microsphere Composite for the Selective Removal of Cesium 137 from Acidic Nuclear Waste Solutions - Parts 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. J. Tranter; T. A. Vereschchagina; V. Utgikar

    2009-03-01

    A new inorganic ion exchange composite for removing radioactive cesium from acidic waste streams has been developed. The new material consists of ammonium molybdophosphate, (NH4)3P(Mo3O10)4•3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C), which are produced as a by-product from coal combustion. The selective cesium exchange capacity of this inorganic composite was evaluated in bench-scale column tests using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Total cesium loading on the columns at saturation agreed very well with equilibrium values predicted from isotherm experiments performed previously. A numericalmore » algorithm for solving the governing partial differential equations (PDE) for cesium uptake was developed using the intraparticle mass transfer coefficient obtained from previous batch kinetic experiments. Solutions to the governing equations were generated to obtain the cesium concentration at the column effluent as a function of throughput volume using the same conditions as those used for the actual column experiments. The numerical solutions of the PDE fit the column break through data quite well for all the experimental conditions in the study. The model should therefore provide a reliable prediction of column performance at larger scales. A new inorganic ion exchange composite consisting of ammonium molybdophosphate, (NH4)3P(Mo3O10)4•3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C) has been developed. Two different batches of the sorbent were produced resulting in 20% and 25% AMP loading for two and three loading cycles, respectively. The selective cesium exchange capacity of this inorganic composite was evaluated using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Equilibrium isotherms obtained from these experiments were very favorable for cesium uptake and indicated maximum cesium loading of approximately 9 % by weight of dry AMP. Batch kinetic experiments were also performed to obtain the necessary data to estimate the effective diffusion coefficient for cesium in the sorbent particle. These experiments resulted in effective intraparticle cesium diffusivity coefficients of 4.99 x 10-8 cm2/min and 4.72 x 10-8 cm2/min for the 20% and 25 % AMP-C material, respectively.« less

  20. Detecting potential impacts of deep subsurface CO2 injection on shallow drinking water

    NASA Astrophysics Data System (ADS)

    Smyth, R. C.; Yang, C.; Romanak, K.; Mickler, P. J.; Lu, J.; Hovorka, S. D.

    2012-12-01

    Presented here are results from one aspect of collective research conducted at Gulf Coast Carbon Center, BEG, Jackson School at UT Austin. The biggest hurdle to public acceptance of CCS is to show that drinking water resources will not be impacted. Since late 1990s our group has been supported by US DOE NETL and private industry to research how best to detect potential impacts to shallow (0 to ~0.25 km) subsurface drinking water from deep (~1 to 3.5 km) injection of CO2. Work has and continues to include (1) field sampling and testing, (2) laboratory batch experiments, (3) geochemical modeling. The objective has been to identify the most sensitive geochemical indicators using data from research-level investigations, which can be economically applied on an industrial-scale. The worst-case scenario would be introduction of CO2 directly into drinking water from a leaking wellbore at a brownfield site. This is unlikely for a properly screened and/or maintained site, but needs to be considered. Our results show aquifer matrix (carbonate vs. clastic) to be critical to interpretation of pH and carbonate (DIC, Alkalinity, and δ13C of DIC) parameters because of the influence of water-rock reaction (buffering vs. non-buffering) on aqueous geochemistry. Field groundwater sampling sites to date are Cranfield, MS and SACROC, TX CO2-EOR oilfields. Two major aquifer types are represented, one dominated by silicate (Cranfield) and the other by carbonate (SACROC) water-rock reactions. We tested sensitivity of geochemical indicators (pH, DIC, Alkalinity, and δ13C of DIC) by modeling the effects of increasing pCO2 on aqueous geochemistry, and laboratory batch experiments, both with partial pressure of CO2 gas (pCO2) at 1x105 Pa (1 atm). Aquifer matrix and groundwater data provided constraints for the geochemical models. We used results from modeling and batch experiments to rank geochemical parameter sensitivity to increased pCO2 into weakly, mildly and strongly sensitive categories for both aquifer systems. DIC concentration is strongly sensitive to increased pCO2 for both aquifers; however, CO2 outgassing during sampling complicates direct field measurement of DIC. Interpretation of data from in-situ push-pull aquifer tests is ongoing and will be used to augment results summarized here. We are currently designing groundwater monitoring plans for two additional industrial-scale sites where we will further test the sensitivity and utility of our sampling approach.

  1. Mineralogical characterization of selected shales in support of nuclear waste repository studies: Progress report, October 1987--September 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. Y.; Hyder, L. K.; Baxter, P. M.

    1989-07-01

    One objective of the Sedimentary Rock Program at the Oak Ridge National Laboratory has been to examine end-member shales to develop a data base that will aid in evaluations if shales are ever considered as a repository host rock. Five end-member shales were selected for comprehensive characterization: the Chattanooga Shale from Fentress County, Tennessee; the Pierre Shale from Gregory County, South Dakota; the Green River Formation from Garfield County, Colorado; and the Nolichucky Shale and Pumpkin Valley Shale from Roane County, Tennessee. Detailed micromorphological and mineralogical characterizations of the shales were completed by Lee et al. (1987) in ORNL/TM-10567. Thismore » report is a supplemental characterization study that was necessary because second batches of the shale samples were needed for additional studies. Selected physical, chemical, and mineralogical properties were determined for the second batches; and their properties were compared with the results from the first batches. Physical characterization indicated that the second-batch and first-batch samples had a noticeable difference in apparent-size distributions but had similar primary-particle-size distributions. There were some differences in chemical composition between the batches, but these differences were not considered important in comparison with the differences among the end-member shales. The results of x-ray diffraction analyses showed that the second batches had mineralogical compositions very similar to the first batches. 9 refs., 9 figs., 4 tabs.« less

  2. Collaborative study for the calibration of replacement batches for the heparin low-molecular-mass for assay biological reference preparation.

    PubMed

    Terao, E; Daas, A

    2016-01-01

    The European Pharmacopoeia (Ph. Eur.) prescribes the control of the activity of low molecular mass heparins by assays for anti-Xa and anti-IIa activities (monograph 0828), using a reference standard calibrated in International Units (IU). An international collaborative study coded BSP133 was launched in the framework of the Biological Standardisation Programme (BSP) run under the aegis of the Council of Europe and the European Commission to calibrate replacement batches for the dwindling stocks of the Heparin low-molecular-mass for assay Biological Reference Preparation (BRP) batch 8. Thirteen official medicines control and manufacturers laboratories from European and non-European countries took part in this study to calibrate two freeze-dried candidate batches against the 3rd International Standard (IS) for heparin, low molecular weight (11/176; 3rd IS). The Heparin low-molecular-mass for assay BRP (batch 8) was also included in the test panel to check the continuity between subsequent BRP batches. Taking into account the stability data, the results of this collaborative study and on the basis of the central statistical analysis performed at the European Directorate for the Quality of Medicines & HealthCare (EDQM), the 2 candidate batches were officially adopted by the Commission of the European Pharmacopoeia as Heparin low-molecular-mass for assay BRP batches 9 and 10 with assigned anti-Xa activities of 102 and 100 IU/vial and anti-IIa activities of 34 and 33 IU/vial respectively.

  3. 42 CFR 493.1261 - Standard: Bacteriology.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) For antimicrobial susceptibility tests, the laboratory must check each batch of media and each lot number and shipment of antimicrobial agent(s) before, or concurrent with, initial use, using approved...

  4. Unobtrusive integration of data management with fMRI analysis.

    PubMed

    Poliakov, Andrew V; Hertzenberg, Xenia; Moore, Eider B; Corina, David P; Ojemann, George A; Brinkley, James F

    2007-01-01

    This note describes a software utility, called X-batch which addresses two pressing issues typically faced by functional magnetic resonance imaging (fMRI) neuroimaging laboratories (1) analysis automation and (2) data management. The first issue is addressed by providing a simple batch mode processing tool for the popular SPM software package (http://www.fil.ion. ucl.ac.uk/spm/; Welcome Department of Imaging Neuroscience, London, UK). The second is addressed by transparently recording metadata describing all aspects of the batch job (e.g., subject demographics, analysis parameters, locations and names of created files, date and time of analysis, and so on). These metadata are recorded as instances of an extended version of the Protégé-based Experiment Lab Book ontology created by the Dartmouth fMRI Data Center. The resulting instantiated ontology provides a detailed record of all fMRI analyses performed, and as such can be part of larger systems for neuroimaging data management, sharing, and visualization. The X-batch system is in use in our own fMRI research, and is available for download at http://X-batch.sourceforge.net/.

  5. European Pharmacopoeia biological reference preparation for poliomyelitis vaccine (inactivated): collaborative study for the establishment of batch No. 3.

    PubMed

    Martin, J; Daas, A; Milne, C

    2016-01-01

    Inactivated poliomyelitis vaccines are an important part of the World Health Organization (WHO) control strategy to eradicate poliomyelitis. Requirements for the quality control of poliomyelitis vaccines (inactivated) include the use of an in vitro D antigen quantification assay for potency determination on the final lot as outlined in the European Pharmacopoeia (Ph. Eur.) monograph 0214. Performance of this assay requires a reference preparation calibrated in International Units (IU). A Ph. Eur. biological reference preparation (BRP) for poliomyelitis vaccine (inactivated) calibrated in IU has been established for this purpose. Due to the dwindling stocks of batch 2 of the BRP a collaborative study was run as part of the European Directorate for the Quality of Medicines & HealthCare (EDQM) Biological Standardisation Programme to establish BRP batch 3 (BRP3). Twelve laboratories including Official Medicines Control Laboratories (OMCLs) and manufacturers participated. The candidate BRP3 (cBRP3) was from the same source and had the same characteristics as BRP batch 2 (BRP2). During the study the candidate was calibrated against the 3 rd International Standard for inactivated poliomyelitis vaccine using in-house D antigen ELISA assays in line with the Ph. Eur. monograph 0214. The candidate was also compared to BRP2 to evaluate the continuity. Based on the results of the study, values of 320 DU/mL, 78 DU/mL and 288 DU/mL (D antigen units/mL) (IU) for poliovirus type 1, 2 and 3 respectively were assigned to the candidate. In June 2016, the Ph. Eur. Commission adopted the material as Ph. Eur. BRP for poliomyelitis vaccine (inactivated) batch 3.

  6. Upscaling of a Batch De-Vulcanization Process for Ground Car Tire Rubber to a Continuous Process in a Twin Screw Extruder.

    PubMed

    Saiwari, Sitisaiyidah; van Hoek, Johannes W; Dierkes, Wilma K; Reuvekamp, Louis E A M; Heideman, Geert; Blume, Anke; Noordermeer, Jacques W M

    2016-08-24

    As a means to decrease the amount of waste tires and to re-use tire rubber for new tires, devulcanization of ground passenger car tires is a promising process. Being an established process for NR and EPDM, earlier work has shown that for ground passenger car tire rubber with a relatively high amount of SBR, a devulcanization process can be formulated, as well. This was proven for a laboratory-scale batch process in an internal mixer, using diphenyl disulfide as the devulcanization aid and powder-sized material. In this paper, the devulcanization process for passenger car tire rubber is upscaled from 15 g per batch and transformed into a continuous process in a co-rotating twin screw extruder with a capacity of 2 kg/h. As SBR is rather sensitive to devulcanization process conditions, such as thermal and mechanical energy input, the screw design was based on a low shear concept. A granulate with particle sizes from 1-3.5 mm was chosen for purity, as well as economic reasons. The devulcanization process conditions were fine-tuned in terms of: devulcanization conditions (time/temperature profile, concentration of devulcanization aid), extruder parameters (screw configuration, screw speed, fill factor) and ancillary equipment (pre-treatment, extrudate handling). The influence of these parameters on the devulcanization efficiency and the quality of the final product will be discussed. The ratio of random to crosslink scission as determined by a Horikx plot was taken for the evaluation of the process and material. A best practice for continuous devulcanization will be given.

  7. Modelling the anaerobic digestion of solid organic waste - Substrate characterisation method for ADM1 using a combined biochemical and kinetic parameter estimation approach.

    PubMed

    Poggio, D; Walker, M; Nimmo, W; Ma, L; Pourkashanian, M

    2016-07-01

    This work proposes a novel and rigorous substrate characterisation methodology to be used with ADM1 to simulate the anaerobic digestion of solid organic waste. The proposed method uses data from both direct substrate analysis and the methane production from laboratory scale anaerobic digestion experiments and involves assessment of four substrate fractionation models. The models partition the organic matter into a mixture of particulate and soluble fractions with the decision on the most suitable model being made on quality of fit between experimental and simulated data and the uncertainty of the calibrated parameters. The method was tested using samples of domestic green and food waste and using experimental data from both short batch tests and longer semi-continuous trials. The results showed that in general an increased fractionation model complexity led to better fit but with increased uncertainty. When using batch test data the most suitable model for green waste included one particulate and one soluble fraction, whereas for food waste two particulate fractions were needed. With richer semi-continuous datasets, the parameter estimation resulted in less uncertainty therefore allowing the description of the substrate with a more complex model. The resulting substrate characterisations and fractionation models obtained from batch test data, for both waste samples, were used to validate the method using semi-continuous experimental data and showed good prediction of methane production, biogas composition, total and volatile solids, ammonia and alkalinity. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Translational Arrest Due to Cytoplasmic Redox Stress Delays Adaptation to Growth on Methanol and Heterologous Protein Expression in a Typical Fed-Batch Culture of Pichia pastoris

    PubMed Central

    Edwards-Jones, Bryn; Aw, Rochelle; Barton, Geraint R.; Tredwell, Gregory D.; Bundy, Jacob G.; Leak, David J.

    2015-01-01

    Results We have followed a typical fed-batch induction regime for heterologous protein production under the control of the AOX1 promoter using both microarray and metabolomic analysis. The genetic constructs involved 1 and 3 copies of the TRY1 gene, encoding human trypsinogen. In small-scale laboratory cultures, expression of the 3 copy-number construct induced the unfolded protein response (UPR) sufficiently that titres of extracellular trypsinogen were lower in the 3-copy construct than with the 1-copy construct. In the fed-batch-culture, a similar pattern was observed, with higher expression from the 1-copy construct, but in this case there was no significant induction of UPR with the 3-copy strain. Analysis of the microarray and metabolomic information indicates that the 3-copy strain was undergoing cytoplasmic redox stress at the point of induction with methanol. In this Crabtree-negative yeast, this redox stress appeared to delay the adaptation to growth on methanol and supressed heterologous protein production, probably due to a block in translation. Conclusion Although redox imbalance as a result of artificially imposed hypoxia has previously been described, this is the first time that it has been characterised as a result of a transient metabolic imbalance and shown to involve a stress response which can lead to translational arrest. Without detailed analysis of the underlying processes it could easily have been mis-interpreted as secretion stress, transmitted through the UPR. PMID:25785713

  9. Upscaling of a Batch De-Vulcanization Process for Ground Car Tire Rubber to a Continuous Process in a Twin Screw Extruder

    PubMed Central

    Saiwari, Sitisaiyidah; van Hoek, Johannes W.; Dierkes, Wilma K.; Reuvekamp, Louis E.A.M.; Heideman, Geert; Blume, Anke; Noordermeer, Jacques W.M.

    2016-01-01

    As a means to decrease the amount of waste tires and to re-use tire rubber for new tires, devulcanization of ground passenger car tires is a promising process. Being an established process for NR and EPDM, earlier work has shown that for ground passenger car tire rubber with a relatively high amount of SBR, a devulcanization process can be formulated, as well. This was proven for a laboratory-scale batch process in an internal mixer, using diphenyl disulfide as the devulcanization aid and powder-sized material. In this paper, the devulcanization process for passenger car tire rubber is upscaled from 15 g per batch and transformed into a continuous process in a co-rotating twin screw extruder with a capacity of 2 kg/h. As SBR is rather sensitive to devulcanization process conditions, such as thermal and mechanical energy input, the screw design was based on a low shear concept. A granulate with particle sizes from 1–3.5 mm was chosen for purity, as well as economic reasons. The devulcanization process conditions were fine-tuned in terms of: devulcanization conditions (time/temperature profile, concentration of devulcanization aid), extruder parameters (screw configuration, screw speed, fill factor) and ancillary equipment (pre-treatment, extrudate handling). The influence of these parameters on the devulcanization efficiency and the quality of the final product will be discussed. The ratio of random to crosslink scission as determined by a Horikx plot was taken for the evaluation of the process and material. A best practice for continuous devulcanization will be given. PMID:28773843

  10. Preliminary report of the discovery of a new pharmaceutical granulation process using foamed aqueous binders.

    PubMed

    Keary, Colin M; Sheskey, Paul J

    2004-09-01

    Spray granulation is commonly used to improve the flow of drug formulation powders by adding liquid binders. We have discovered a new granulation process whereby liquid binders are added as aqueous foam. Initial experiments indicate that foam granulations require less binder than spray granulations, less water is added to the powder mass, rates of addition of foam can be greater than rates of addition of sprayed liquids, and foam can be added in a single batch to the surface of the powder mass for incorporation at some later stage in the process. This new process appears to have no detrimental effects on granulate, tablet, or in vitro drug dissolution properties. In addition, the elimination of spray addition reduces the complexity of the process and avoids the plugging problems associated with spray nozzles. Several formulations were successfully scaled up from laboratory scale (1.5 kg) to pilot scale (15 kg). Process control was good and there was no detrimental effect on tablet and drug dissolution properties. This paper also proposes a working hypothesis of the mechanism by which foam granulation operates.

  11. Dynamic genome-scale metabolic modeling of the yeast Pichia pastoris.

    PubMed

    Saitua, Francisco; Torres, Paulina; Pérez-Correa, José Ricardo; Agosin, Eduardo

    2017-02-21

    Pichia pastoris shows physiological advantages in producing recombinant proteins, compared to other commonly used cell factories. This yeast is mostly grown in dynamic cultivation systems, where the cell's environment is continuously changing and many variables influence process productivity. In this context, a model capable of explaining and predicting cell behavior for the rational design of bioprocesses is highly desirable. Currently, there are five genome-scale metabolic reconstructions of P. pastoris which have been used to predict extracellular cell behavior in stationary conditions. In this work, we assembled a dynamic genome-scale metabolic model for glucose-limited, aerobic cultivations of Pichia pastoris. Starting from an initial model structure for batch and fed-batch cultures, we performed pre/post regression diagnostics to ensure that model parameters were identifiable, significant and sensitive. Once identified, the non-relevant ones were iteratively fixed until a priori robust modeling structures were found for each type of cultivation. Next, the robustness of these reduced structures was confirmed by calibrating the model with new datasets, where no sensitivity, identifiability or significance problems appeared in their parameters. Afterwards, the model was validated for the prediction of batch and fed-batch dynamics in the studied conditions. Lastly, the model was employed as a case study to analyze the metabolic flux distribution of a fed-batch culture and to unravel genetic and process engineering strategies to improve the production of recombinant Human Serum Albumin (HSA). Simulation of single knock-outs indicated that deviation of carbon towards cysteine and tryptophan formation improves HSA production. The deletion of methylene tetrahydrofolate dehydrogenase could increase the HSA volumetric productivity by 630%. Moreover, given specific bioprocess limitations and strain characteristics, the model suggests that implementation of a decreasing specific growth rate during the feed phase of a fed-batch culture results in a 25% increase of the volumetric productivity of the protein. In this work, we formulated a dynamic genome scale metabolic model of Pichia pastoris that yields realistic metabolic flux distributions throughout dynamic cultivations. The model can be calibrated with experimental data to rationally propose genetic and process engineering strategies to improve the performance of a P. pastoris strain of interest.

  12. Unraveling the Fate and Transport of SrEDTA-2 and Sr+2 in Hanford Sediments

    NASA Astrophysics Data System (ADS)

    Pace, M. N.; Mayes, M. A.; Jardine, P. M.; Mehlhorn, T. L.; Liu, Q. G.; Yin, X. L.

    2004-12-01

    Accelerated migration of strontium-90 has been observed in the vadose zone beneath the Hanford tank farm. The goal of this paper is to provide an improved understanding of the hydrogeochemical processes that contribute to strontium transport in the far-field Hanford vadose zone. Laboratory scale batch, saturated packed column experiments, and an unsaturated transport experiment in an undisturbed core were conducted to quantify geochemical and hydrological processes controlling Sr+2 and SrEDTA-2 sorption to Hanford flood deposits. After experimentation, the undisturbed core was disassembled and samples were collected from different bedding units as a function of depth. Sequential extractions were then performed on the samples. It has been suggested that organic chelates such as EDTA may be responsible for the accelerated transport of strontium due to the formation of stable anionic complexes. Duplicate batch and column experiments performed with Sr+2 and SrEDTA-2 suggested that the SrEDTA-2 complex was not stable in the presence of soil and rapid dissociation allowed strontium to be transported as a divalent cation. Batch experiments indicated a decrease in sorption with increasing rock:water ratios, whereas saturated packed column experiments indicated equal retardation in columns of different lengths. This difference between the batch and column experiments is primarily due to the difference between equilibrium conditions where dissolution of cations may compete for sorption sites versus flowing conditions where any dissolved cations are flushed through the system minimizing competition for sorption sites. Unsaturated transport in the undisturbed core resulted in significant Sr+2 retardation despite the presence of physical nonequilibrium. Core disassembly and sequential extractions revealed the mass wetness distribution and reactive mineral phases associated with strontium in the core. Overall, results indicated that strontium will most likely be transported through the Hanford far-field vadose zone as a divalent cation.

  13. Results of Hg speciation testing on DWPF SMECT-4, SMECT-6, and RCT-2 samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.

    2016-02-04

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team.i,ii The fifteenth shipment of samples was designated to include Defense Waste Processing Facility (DWPF) Slurry Mix Evaporator Condensate Tank (SMECT) samples from Sludge Receipt and Adjustment Tank (SRAT) Batch 738 and a Recycle Condensate Tank (RCT) sample from SRAT Batch 736. The DWPF sample designations for the three samples analyzed are provided in Table 1. The Batch 738 ‘Baseline’ SMECT sample was taken priormore » to Precipitate Reactor Feed Tank (PRFT) addition and concentration and therefore, precedes the SMECT-5 sample reported previously. iii The Batch 738 ‘End of SRAT Cycle’ SMECT sample was taken at the conclusion of SRAT operations for this batch (PRFT addition/concentration, acid additions, initial concentration, MCU addition, and steam stripping). Batch 738 experienced a sludge slurry carryover event, which introduced sludge solids to the SMECT that were particularly evident in the SMECT-5 sample, but less evident in the ‘End of SRAT Cycle’ SMECT-6 sample. The Batch 736 ‘After SME’ RCT sample was taken after completion of SMECT transfers at the end of the SME cycle.« less

  14. Kinetics of Hydrolysis of Acetic Anhydride by In-Situ FTIR Spectroscopy: An Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Haji, Shaker; Erkey, Can

    2005-01-01

    A reaction kinetics experiment for the chemical engineering undergraduate laboratory course was developed in which in-situ Fourier Transfer Infrared spectroscopy was used to measure reactant and product concentrations. The kinetics of the hydrolysis of acetic anhydride was determined by experiments carried out in a batch reactor. The results…

  15. An Automated Distillation Column for the Unit Operations Laboratory

    ERIC Educational Resources Information Center

    Perkins, Douglas M.; Bruce, David A.; Gooding, Charles H.; Butler, Justin T.

    2005-01-01

    A batch distillation apparatus has been designed and built for use in the undergraduate unit operations laboratory course. The column is fully automated and is accompanied by data acquisition and control software. A mixture of 1­-propanol and 2-­propanol is separated in the column, using either a constant distillate rate or constant composition…

  16. Passive flux meter measurement of water and nutrient flux in saturated porous media: bench-scale laboratory tests.

    PubMed

    Cho, Jaehyun; Annable, Michael D; Jawitz, James W; Hatfield, Kirk

    2007-01-01

    The passive nutrient flux meter (PNFM) is introduced for simultaneous measurement of both water and nutrient flux through saturated porous media. The PNFM comprises a porous sorbent pre-equilibrated with a suite of alcohol tracers, which have different partitioning coefficients. Water flux was estimated based on the loss of loaded resident tracers during deployment, while nutrient flux was quantified based on the nutrient solute mass captured on the sorbent. An anionic resin, Lewatit 6328 A, was used as a permeable sorbent and phosphate (PO4(3-)) was the nutrient studied. The phosphate sorption capacity of the resin was measured in batch equilibration tests as 56 mg PO4(3-) g(-1), which was determined to be adequate capacity to retain PO4(3-) loads intercepted over typical PNFM deployment periods in most natural systems. The PNFM design was validated with bench-scale laboratory tests for a range of 9.8 to 28.3 cm d(-1) Darcy velocities and 6 to 43 h deployment durations. Nutrient and water fluxes measured by the PNFM averaged within 6 and 12% of the applied values, respectively, indicating that the PNFM shows promise as a tool for simultaneous measurement of water and nutrient fluxes.

  17. 40 CFR 792.113 - Mixtures of substances with carriers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... according to written standard operating procedures, which provide for periodic analysis of each batch. (b... SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Test, Control, and Reference Substances...

  18. 40 CFR 792.113 - Mixtures of substances with carriers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... according to written standard operating procedures, which provide for periodic analysis of each batch. (b... SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Test, Control, and Reference Substances...

  19. 40 CFR 792.113 - Mixtures of substances with carriers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... according to written standard operating procedures, which provide for periodic analysis of each batch. (b... SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Test, Control, and Reference Substances...

  20. 40 CFR 792.113 - Mixtures of substances with carriers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... according to written standard operating procedures, which provide for periodic analysis of each batch. (b... SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Test, Control, and Reference Substances...

  1. Effect of feeding strategies on pharmaceutical removal by subsurface flow constructed wetlands.

    PubMed

    Zhang, Dong Qing; Gersberg, Richard M; Hua, Tao; Zhu, Junfei; Nguyen, Anh Tuan; Law, Wing-Keung; Ng, Wun Jern; Tan, Soon Keat

    2012-01-01

    This study presents findings on an assessment of the effect of continuous and batch feeding strategies on the removal of selected pharmaceuticals from synthetic wastewater. Six mesocosm-scale constructed wetlands, including three horizontal subsurface flow constructed wetlands and three sand filters, were set up at the campus of Nanyang Technological University, Singapore. The findings showed that ibuprofen and diclofenac removal in the wetlands was significantly ( < 0.05) enhanced in the batch versus continuous mode. In contrast, naproxen and carbamazepine showed no significant differences ( > 0.05) in elimination under either feeding strategy. Our results also clearly showed that the presence of plants exerts a stimulatory effect on pharmaceutical removal for ibuprofen, diclofenac, and naproxen in batch and continuous mode. Estimation of the quantitative role of this stimulatory effect on pharmaceutical elimination of batch operation as compared with the effect of the presence of the higher plant alone showed that batch operation may account for 40 to 87% of the contribution conferred by the aquatic plant. The findings of this study imply that where maximal removal of pharmaceutical compounds is desired, periodic draining and filling might be the preferred operational strategy for full-scale, subsurface flow constructed wetlands. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Estimating Animal Abundance in Ground Beef Batches Assayed with Molecular Markers

    PubMed Central

    Hu, Xin-Sheng; Simila, Janika; Platz, Sindey Schueler; Moore, Stephen S.; Plastow, Graham; Meghen, Ciaran N.

    2012-01-01

    Estimating animal abundance in industrial scale batches of ground meat is important for mapping meat products through the manufacturing process and for effectively tracing the finished product during a food safety recall. The processing of ground beef involves a potentially large number of animals from diverse sources in a single product batch, which produces a high heterogeneity in capture probability. In order to estimate animal abundance through DNA profiling of ground beef constituents, two parameter-based statistical models were developed for incidence data. Simulations were applied to evaluate the maximum likelihood estimate (MLE) of a joint likelihood function from multiple surveys, showing superiority in the presence of high capture heterogeneity with small sample sizes, or comparable estimation in the presence of low capture heterogeneity with a large sample size when compared to other existing models. Our model employs the full information on the pattern of the capture-recapture frequencies from multiple samples. We applied the proposed models to estimate animal abundance in six manufacturing beef batches, genotyped using 30 single nucleotide polymorphism (SNP) markers, from a large scale beef grinding facility. Results show that between 411∼1367 animals were present in six manufacturing beef batches. These estimates are informative as a reference for improving recall processes and tracing finished meat products back to source. PMID:22479559

  3. Results of initial analyses of the salt (macro) batch 9 tank 21H qualification samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    2015-10-01

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Interim Salt Disposition Project (ISDP) Salt (Macro) Batch 9 for processing through the Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU). This document reports the initial results of the analyses of samples of Tank 21H. Analysis of the Tank 21H Salt (Macro) Batch 9 composite sample indicates that the material does not display any unusual characteristics or observations, such as floating solids, the presence of large amount of solids, or unusual colors. Further results on the chemistry and other tests willmore » be issued in the future.« less

  4. Lupus anticoagulants: first French interlaboratory Etalonorme survey.

    PubMed

    Roussi, J; Roisin, J P; Goguel, A

    1996-06-01

    In 1994, the, French National Quality Control Group for Hematology, Etalonorme, conducted a large-scale interlaboratory survey concerning the detection of lupus anticoagulants (LA) involving all the 4,500 French laboratories. Each laboratory received the same batch of a lyophilized citrated plasma (94B3) prepared from a patient with LA that had been confirmed by all the techniques used in the intralaboratory study. In the interlaboratory survey, the screening test was activated partial thromboplastin time (APTT); mean APTT calculated from the results reported by 4,029 labs was prolonged (clotting ratio = 1.44) with a large dispersion (coefficients of variation = 18.8%). APTT of the mixture 94B3 + normal plasma were performed by 2,698 laboratories. No correction of APTT was obtained (R = 1.36, Rosner index = 24) with a wide variation between reagents (17 < Rosner index < 39). Only 15% of the participants performed confirmatory tests; dilute tissue thromboplastin inhibition test (TTI) performed by 509 laboratories gave 75% positive results. Tests with an increased amount of phospholipids (Staclot LA and Staclot PNP from Diagnostica Stago), used by 116 and 72 laboratories, gave 88% and 61% positive results, respectively. A total of 1,862 laboratories made the diagnosis of LA. The majority of those who failed in diagnosing LA used an APTT reagent largely used in France, containing kaolin. This survey allowed Etalonorme to inform French biologists and draft an educational program for the biologic detection of LA and the identification of its mechanism of action.

  5. Beware batch culture: Seasonality and niche construction predicted to favor bacterial adaptive diversification

    PubMed Central

    Knibbe, Carole; Schneider, Dominique; Beslon, Guillaume

    2017-01-01

    Metabolic cross-feeding interactions between microbial strains are common in nature, and emerge during evolution experiments in the laboratory, even in homogeneous environments providing a single carbon source. In sympatry, when the environment is well-mixed, the reasons why emerging cross-feeding interactions may sometimes become stable and lead to monophyletic genotypic clusters occupying specific niches, named ecotypes, remain unclear. As an alternative to evolution experiments in the laboratory, we developed Evo2Sim, a multi-scale model of in silico experimental evolution, equipped with the whole tool case of experimental setups, competition assays, phylogenetic analysis, and, most importantly, allowing for evolvable ecological interactions. Digital organisms with an evolvable genome structure encoding an evolvable metabolic network evolved for tens of thousands of generations in environments mimicking the dynamics of real controlled environments, including chemostat or batch culture providing a single limiting resource. We show here that the evolution of stable cross-feeding interactions requires seasonal batch conditions. In this case, adaptive diversification events result in two stably co-existing ecotypes, with one feeding on the primary resource and the other on by-products. We show that the regularity of serial transfers is essential for the maintenance of the polymorphism, as it allows for at least two stable seasons and thus two temporal niches. A first season is externally generated by the transfer into fresh medium, while a second one is internally generated by niche construction as the provided nutrient is replaced by secreted by-products derived from bacterial growth. In chemostat conditions, even if cross-feeding interactions emerge, they are not stable on the long-term because fitter mutants eventually invade the whole population. We also show that the long-term evolution of the two stable ecotypes leads to character displacement, at the level of the metabolic network but also of the genome structure. This difference of genome structure between both ecotypes impacts the stability of the cross-feeding interaction, when the population is propagated in chemostat conditions. This study shows the crucial role played by seasonality in temporal niche partitioning and in promoting cross-feeding subgroups into stable ecotypes, a premise to sympatric speciation. PMID:28358919

  6. Evaluation of Municipal Wastewater Treatment Plant Activated Sludge for Biodegradation of Propylene Glycol as an Aircraft Deicing Fluid

    DTIC Science & Technology

    2012-03-01

    Propylene Glycol Deicer Biodegredation Kinetics: Complete-Mix Stirred Tank Reactors , Filter, and Fluidized Bed . Journal of Environmental...scale sequencing batch reactor containing municipal waste water treatment facility activated sludge (AS) performing simultaneous organic carbon...Sequencing Batch Reactor Operation ..................................................................... 13 PG extraction from AS

  7. Comparison of batch and column tests for the elution of artificial turf system components.

    PubMed

    Krüger, O; Kalbe, U; Berger, W; Nordhauβ, K; Christoph, G; Walzel, H-P

    2012-12-18

    Synthetic athletic tracks and turf areas for outdoor sporting grounds may release contaminants due to the chemical composition of some components. A primary example is that of zinc from reused scrap tires (main constituent, styrene butadiene rubber, SBR), which might be harmful to the environment. Thus, methods for the risk assessment of those materials are required. Laboratory leaching methods like batch and column tests are widely used to examine the soil-groundwater pathway. We tested several components for artificial sporting grounds with batch tests at a liquid to solid (LS) ratio of 2 L/kg and column tests with an LS up to 26.5 L/kg. We found a higher zinc release in the batch test eluates for all granules, ranging from 15% higher to 687% higher versus data from column tests for SBR granules. Accompanying parameters, especially the very high turbidity of one ethylene propylene diene monomer rubber (EPDM) or thermoplastic elastomer (TPE) eluates, reflect the stronger mechanical stress of batch testing. This indicates that batch test procedures might not be suitable for the risk assessment of synthetic sporting ground components. Column tests, on the other hand, represent field conditions more closely and allow for determination of time-dependent contaminants release.

  8. Characterization of Nanoparticle Batch-To-Batch Variability

    PubMed Central

    Mülhopt, Sonja; Dilger, Marco; Adelhelm, Christel; Anderlohr, Christopher; Gómez de la Torre, Johan; Langevin, Dominique; Mahon, Eugene; Piella, Jordi; Puntes, Victor; Ray, Sikha; Schneider, Reinhard; Wilkins, Terry; Weiss, Carsten

    2018-01-01

    A central challenge for the safe design of nanomaterials (NMs) is the inherent variability of NM properties, both as produced and as they interact with and evolve in, their surroundings. This has led to uncertainty in the literature regarding whether the biological and toxicological effects reported for NMs are related to specific NM properties themselves, or rather to the presence of impurities or physical effects such as agglomeration of particles. Thus, there is a strong need for systematic evaluation of the synthesis and processing parameters that lead to potential variability of different NM batches and the reproducible production of commonly utilized NMs. The work described here represents over three years of effort across 14 European laboratories to assess the reproducibility of nanoparticle properties produced by the same and modified synthesis routes for four of the OECD priority NMs (silica dioxide, zinc oxide, cerium dioxide and titanium dioxide) as well as amine-modified polystyrene NMs, which are frequently employed as positive controls for nanotoxicity studies. For 46 different batches of the selected NMs, all physicochemical descriptors as prioritized by the OECD have been fully characterized. The study represents the most complete assessment of NMs batch-to-batch variability performed to date and provides numerous important insights into the potential sources of variability of NMs and how these might be reduced. PMID:29738461

  9. Versatile, High Quality and Scalable Continuous Flow Production of Metal-Organic Frameworks

    PubMed Central

    Rubio-Martinez, Marta; Batten, Michael P.; Polyzos, Anastasios; Carey, Keri-Constanti; Mardel, James I.; Lim, Kok-Seng; Hill, Matthew R.

    2014-01-01

    Further deployment of Metal-Organic Frameworks in applied settings requires their ready preparation at scale. Expansion of typical batch processes can lead to unsuccessful or low quality synthesis for some systems. Here we report how continuous flow chemistry can be adapted as a versatile route to a range of MOFs, by emulating conditions of lab-scale batch synthesis. This delivers ready synthesis of three different MOFs, with surface areas that closely match theoretical maxima, with production rates of 60 g/h at extremely high space-time yields. PMID:24962145

  10. Semi-industrial scale (30 m3) fed-batch fermentation for the production of D-lactate by Escherichia coli strain HBUT-D15.

    PubMed

    Fu, Xiangmin; Wang, Yongze; Wang, Jinhua; Garza, Erin; Manow, Ryan; Zhou, Shengde

    2017-02-01

    D(-)-lactic acid is needed for manufacturing of stereo-complex poly-lactic acid polymer. Large scale D-lactic acid fermentation, however, has yet to be demonstrated. A genetically engineered Escherichia coli strain, HBUT-D, was adaptively evolved in a 15% calcium lactate medium for improved lactate tolerance. The resulting strain, HBUT-D15, was tested at a lab scale (7 L) by fed-batch fermentation with up to 200 g L -1 of glucose, producing 184-191 g L -1 of D-lactic acid, with a volumetric productivity of 4.38 g L -1  h -1 , a yield of 92%, and an optical purity of 99.9%. The HBUT-D15 was then evaluated at a semi-industrial scale (30 m 3 ) via fed-batch fermentation with up to 160 g L -1 of glucose, producing 146-150 g L -1 of D-lactic acid, with a volumetric productivity of 3.95-4.29 g L -1  h -1 , a yield of 91-94%, and an optical purity of 99.8%. These results are comparable to that of current industrial scale L(+)-lactic acid fermentation.

  11. Efficient arachidonic acid-rich oil production by Mortierella alpina through a repeated fed-batch fermentation strategy.

    PubMed

    Ji, Xiao-Jun; Zhang, Ai-Hui; Nie, Zhi-Kui; Wu, Wen-Jia; Ren, Lu-Jing; Huang, He

    2014-10-01

    Arachidonic acid (ARA)-rich oil production by Mortierella alpina is a long fermentation period needed process due to the low growth rate of the filamentous fungus used. This causes the low productivity of ARA-rich oil and hinders its industrial mass scale production. In the present study, different fed-batch strategies were conducted to shorten the fermentation period. The result showed that compared with the batch culture, the fermentation period was shortened from 7days to 5days with the productivity of ARA-rich oil increased from 0.9g/(L·d) to 1.3g/(L·d) by using the fed-batch fermentation strategy. Furthermore, repeated fed-batch fermentation strategy was adopted to achieve the purpose of continuous production. By using this strategy, the fermentation period was shortened from 40days to 26days in a four cycle repeated fed-batch fermentation. This strategy proved to be convenient and economical for ARA-rich oil commercial production process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Microchannel Reactor System for Catalytic Hydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeniyi Lawal; Woo Lee; Ron Besser

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstratedmore » on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.« less

  13. 40 CFR 160.113 - Mixtures of substances with carriers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standard operating procedures, which provide for periodic analysis of each batch. (b) Where any of the...) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Test, Control, and Reference Substances § 160.113...

  14. 40 CFR 160.113 - Mixtures of substances with carriers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standard operating procedures, which provide for periodic analysis of each batch. (b) Where any of the...) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Test, Control, and Reference Substances § 160.113...

  15. 40 CFR 160.113 - Mixtures of substances with carriers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standard operating procedures, which provide for periodic analysis of each batch. (b) Where any of the...) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Test, Control, and Reference Substances § 160.113...

  16. 40 CFR 160.113 - Mixtures of substances with carriers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standard operating procedures, which provide for periodic analysis of each batch. (b) Where any of the...) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Test, Control, and Reference Substances § 160.113...

  17. 40 CFR 160.113 - Mixtures of substances with carriers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standard operating procedures, which provide for periodic analysis of each batch. (b) Where any of the...) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Test, Control, and Reference Substances § 160.113...

  18. Actual Waste Demonstration of the Nitric-Glycolic Flowsheet for Sludge Batch 9 Qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. D. Newell; Pareizs, J. M.; Martino, C. J.

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Testing performed by the Savannah River National Laboratory has shown glycolic acid to be effective in replacing the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the catalytic generation of hydrogen and ammonia which could allow purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allowsmore » for effective rheology adjustment, and is favorable with respect to melter flammability. In order to implement the new flowsheet, SRAT and SME cycles, designated SC-18, were performed using a Sludge Batch (SB) 9 slurry blended from SB8 Tank 40H and Tank 51H samples. The SRAT cycle involved adding nitric and glycolic acids to the sludge, refluxing to steam strip mercury, and dewatering to a targeted solids concentration. Data collected during the SRAT cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. The SME cycle demonstrated the addition of glass frit and the replication of six canister decontamination additions. The demonstration concluded with dewatering to a targeted solids concentration. Data collected during the SME cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. Slurry and condensate samples were collected for subsequent analysis« less

  19. Laboratory diagnosis of gestational diabetes: An in silico investigation into the effects of pre-analytical processing on the diagnostic sensitivity and specificity of the oral glucose tolerance test.

    PubMed

    Mansell, Erin; Lunt, Helen; Docherty, Paul

    2017-06-01

    Delayed separation of red cells from plasma causes pre analytical glucose loss, which in turn results in an under-diagnosis of GDM (gestational diabetes) based on the OGTT (oral glucose tolerance test). In silico investigations may help laboratory decision making, when exploring pragmatic improvements to sample processing. Late pregnancy 0, 1 and 2h 75g OGTT values were obtained from two distinct populations of pregnant women: 1. Values derived from the HAPO (Hyperglycemia and Adverse Pregnancy Outcome) Study and 2. New Zealand women identified as at higher risk of GDM by their caregivers, undergoing OGTT during routine antenatal care. In both populations studied, in silico modelling focussed on the effects of pre-analytical delays in plasma separation, when using fluoride collection tubes. Using a model that 'batched' samples from the three OGTT collection times, diagnostic sensitivity was estimated as follows: 66.1% for HAPO research population and 48.4% for the 1305 women receiving routine antenatal care. If samples were not batched, but processed shortly after each blood sample was collected, then sensitivity increased to 81%. Exploration of a range of clinical and laboratory scenarios using in silico modelling, showed that delaying the processing of pregnancy OGTT samples, using batched sample collection into fluoride tubes, causes unacceptable loss of GDM diagnostic sensitivity across two distinct population groups. This modelling approach will hopefully provide information that helps with final decision making around improved laboratory processing techniques. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  20. Collaborative study for the establishment of replacement batches of heparin low- molecular-mass for assay biological reference preparations.

    PubMed

    Terao, E; Daas, A; Rautmann, G; Buchheit, K-H

    2010-10-01

    A collaborative study was run by the European Directorate for the Quality of Medicines & HealthCare (EDQM) in the context of the Biological Standardisation Programme (BSP), under the aegis of the Council of Europe and the European Commission, to establish replacement batches for the dwindling stocks of the Heparin low-molecular-mass for assay European Pharmacopoeia Biological Reference Preparation (BRP). The replacement batches of BRP are intended to be used in the assays for anti-Xa and anti-IIa activities, as described in the European Pharmacopoeia (Ph. Eur.) monograph Heparins, low-molecular-mass (0828). Three freeze-dried candidate batches were calibrated against the current International Standard (IS) for Heparin, lowmolecular- weight (2nd IS, 01/608). For the purpose of the continuity check between subsequent BRP batches, the current Heparin low-molecular-mass for assay BRP (batch 5) was also included in the test panel. Thirteen official medicines control and manufacturers laboratories from European and non-European countries contributed data. A central statistical analysis of the datasets was performed at the EDQM. On the basis of the results, the 3 candidate materials were assigned a potency of 104 IU/vial for the anti-Xa activity and 31 IU/vial for the anti-IIa activity. Taken into account the preliminary stability data and the results of this collaborative study, the 3 batches of candidate BRP were adopted in June 2010 by the Commission of the Ph. Eur. as Heparin low-molecular-mass for assay BRP batches 6, 7 and 8.

  1. A Laboratory Exercise to Illustrate Protein-Membrane Interactions

    ERIC Educational Resources Information Center

    Weers, Paul M. M.; Prenner, Elmar J.; Curic, Spomenka; Lohmeier-Vogel, Elke M.

    2016-01-01

    The laboratory protocol presented here takes about 3 hours to perform and investigates protein and lipid interactions. Students first purify His6-tagged human apolipoprotein A-I (apoA-I) with Ni-NTA affinity resin in a simple batch protocol and prepare multilamellar vesicles (MLV) from pre-dried phospholipid films. When apoA-I is added to the MLV,…

  2. Automated radiosynthesis of Al[18F]PSMA-11 for large scale routine use.

    PubMed

    Kersemans, Ken; De Man, Kathia; Courtyn, Jan; Van Royen, Tessa; Piron, Sarah; Moerman, Lieselotte; Brans, Boudewijn; De Vos, Filip

    2018-05-01

    We report a reproducible automated radiosynthesis for large scale batch production of clinical grade Al[ 18 F]PSMA-11. A SynthraFCHOL module was optimized to synthesize Al[ 18 F]PSMA-11 by Al[ 18 F]-chelation. Results Al[ 18 F]PSMA-11 was synthesized within 35min in a yield of 21 ± 3% (24.0 ± 6.0GBq) and a radiochemical purity > 95%. Batches were stable for 4h and conform the European Pharmacopeia guidelines. The automated synthesis of Al[ 18 F]PSMA-11 allows for large scale production and distribution of Al[ 18 F]PSMA-11. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The kinetics for ammonium and nitrite oxidation under the effect of hydroxylamine.

    PubMed

    Wan, Xinyu; Xiao, Pengying; Zhang, Daijun; Lu, Peili; Yao, Zongbao; He, Qiang

    2016-01-01

    The kinetics for ammonium (NH4(+)) oxidation and nitrite (NO2(-)) oxidation under the effect of hydroxylamine (NH2OH) were studied by respirometry using the nitrifying sludge from a laboratory-scale sequencing batch reactor. Modified models were used to estimate kinetics parameters of ammonia and nitrite oxidation under the effect of hydroxylamine. An inhibition effect of hydroxylamine on the ammonia oxidation was observed under different hydroxylamine concentration levels. The self-inhibition coefficient of hydroxylamine oxidation and noncompetitive inhibition coefficient of hydroxylamine for nitrite oxidation was estimated by simulating exogenous oxygen-uptake rate profiles, respectively. The inhibitive effect of NH2OH on nitrite-oxidizing bacteria was stronger than on ammonia-oxidizing bacteria. This work could provide fundamental data for the kinetic investigation of the nitrification process.

  4. Scrap tyre recycling process with molten zinc as direct heat transfer and solids separation fluid: A new reactor concept.

    PubMed

    Riedewald, Frank; Goode, Kieran; Sexton, Aidan; Sousa-Gallagher, Maria J

    2016-01-01

    Every year about 1.5 billion tyres are discarded worldwide representing a large amount of solid waste, but also a largely untapped source of raw materials. The objective of the method was to prove the concept of a novel scrap tyre recycling process which uses molten zinc as the direct heat transfer fluid and, simultaneously, uses this media to separate the solids products (i.e. steel and rCB) in a sink-float separation at an operating temperature of 450-470 °C. This methodology involved: •construction of the laboratory scale batch reactor,•separation of floating rCB from the zinc,•recovery of the steel from the bottom of the reactor following pyrolysis.

  5. Model extension, calibration and validation of partial nitritation-anammox process in moving bed biofilm reactor (MBBR) for reject and mainstream wastewater.

    PubMed

    Trojanowicz, K; Plaza, E; Trela, J

    2017-11-09

    In the paper, the extension of mathematical model of partial nitritation-anammox process in a moving bed biofilm reactor (MBBR) is presented. The model was calibrated with a set of kinetic, stoichiometric and biofilm parameters, whose values were taken from the literature and batch tests. The model was validated with data obtained from: laboratory batch experiments, pilot-scale MBBR for a reject water deammonification operated at Himmerfjärden wastewater treatment and pilot-scale MBBR for mainstream wastewater deammonification at Hammarby Sjöstadsverk research facility, Sweden. Simulations were conducted in AQUASIM software. The proposed, extended model proved to be useful for simulating of partial nitritation/anammox process in biofilm reactor both for reject water and mainstream wastewater at variable substrate concentrations (influent total ammonium-nitrogen concentration of 530 ± 68; 45 ± 2.6 and 38 ± 3 gN/m 3 - for reject water - and two cases of mainstream wastewater treatment, respectively), temperature (24 ± 2.8; 15 ± 1.1 and 18 ± 0.5°C), pH (7.8 ± 0.2; 7.3 ± 0.1 and 7.4 ± 0.1) and aeration patterns (continuous aeration and intermittent aeration with variable dissolved oxygen concentrations and length of aerated and anoxic phases). The model can be utilized for optimizing and testing different operational strategies of deammonification process in biofilm systems.

  6. Biodegradation of bilge water: Batch test under anaerobic and aerobic conditions and performance of three pilot aerobic Moving Bed Biofilm Reactors (MBBRs) at different filling fractions.

    PubMed

    Vyrides, Ioannis; Drakou, Efi-Maria; Ioannou, Stavros; Michael, Fotoula; Gatidou, Georgia; Stasinakis, Athanasios S

    2018-07-01

    The bilge water that is stored at the bottom of the ships is saline and greasy wastewater with a high Chemical Oxygen Demand (COD) fluctuations (2-12 g COD L -1 ). The aim of this study was to examine at a laboratory scale the biodegradation of bilge water using first anaerobic granular sludge followed by aerobic microbial consortium (consisted of 5 strains) and vice versa and then based on this to implement a pilot scale study. Batch results showed that granular sludge and aerobic consortium can remove up to 28% of COD in 13 days and 65% of COD removal in 4 days, respectively. The post treatment of anaerobic and aerobic effluent with aerobic consortium and granular sludge resulted in further 35% and 5% COD removal, respectively. The addition of glycine betaine or nitrates to the aerobic consortium did not enhance significantly its ability to remove COD from bilge water. The aerobic microbial consortium was inoculated in 3 pilot (200 L) Moving Bed Biofilm Reactors (MBBRs) under filling fractions of 10%, 20% and 40% and treated real bilge water for 165 days under 36 h HRT. The MBBR with a filling fraction of 40% resulted in the highest COD decrease (60%) compared to the operation of the MBBRs with a filling fraction of 10% and 20%. GC-MS analysis on 165 day pointed out the main organic compounds presence in the influent and in the MBBR (10% filling fraction) effluent. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Upscaling of U(VI) Desorption and Transport from Decimeter-Scale Heterogeneity to Plume-Scale Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, Gary P.; Kohler, Matthias; Kannappan, Ramakrishnan

    2015-02-24

    Scientifically defensible predictions of field scale U(VI) transport in groundwater requires an understanding of key processes at multiple scales. These scales range from smaller than the sediment grain scale (less than 10 μm) to as large as the field scale which can extend over several kilometers. The key processes that need to be considered include both geochemical reactions in solution and at sediment surfaces as well as physical transport processes including advection, dispersion, and pore-scale diffusion. The research summarized in this report includes both experimental and modeling results in batch, column and tracer tests. The objectives of this research weremore » to: (1) quantify the rates of U(VI) desorption from sediments acquired from a uranium contaminated aquifer in batch experiments;(2) quantify rates of U(VI) desorption in column experiments with variable chemical conditions, and(3) quantify nonreactive tracer and U(VI) transport in field tests.« less

  8. Application of a mechanistic model as a tool for on-line monitoring of pilot scale filamentous fungal fermentation processes-The importance of evaporation effects.

    PubMed

    Mears, Lisa; Stocks, Stuart M; Albaek, Mads O; Sin, Gürkan; Gernaey, Krist V

    2017-03-01

    A mechanistic model-based soft sensor is developed and validated for 550L filamentous fungus fermentations operated at Novozymes A/S. The soft sensor is comprised of a parameter estimation block based on a stoichiometric balance, coupled to a dynamic process model. The on-line parameter estimation block models the changing rates of formation of product, biomass, and water, and the rate of consumption of feed using standard, available on-line measurements. This parameter estimation block, is coupled to a mechanistic process model, which solves the current states of biomass, product, substrate, dissolved oxygen and mass, as well as other process parameters including k L a, viscosity and partial pressure of CO 2 . State estimation at this scale requires a robust mass model including evaporation, which is a factor not often considered at smaller scales of operation. The model is developed using a historical data set of 11 batches from the fermentation pilot plant (550L) at Novozymes A/S. The model is then implemented on-line in 550L fermentation processes operated at Novozymes A/S in order to validate the state estimator model on 14 new batches utilizing a new strain. The product concentration in the validation batches was predicted with an average root mean sum of squared error (RMSSE) of 16.6%. In addition, calculation of the Janus coefficient for the validation batches shows a suitably calibrated model. The robustness of the model prediction is assessed with respect to the accuracy of the input data. Parameter estimation uncertainty is also carried out. The application of this on-line state estimator allows for on-line monitoring of pilot scale batches, including real-time estimates of multiple parameters which are not able to be monitored on-line. With successful application of a soft sensor at this scale, this allows for improved process monitoring, as well as opening up further possibilities for on-line control algorithms, utilizing these on-line model outputs. Biotechnol. Bioeng. 2017;114: 589-599. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. BIOLAB experiment development status 2005

    NASA Astrophysics Data System (ADS)

    Brinckmann, Enno; Manieri, Pierfilippo

    2005-08-01

    BIOLAB, ESA's major facility for biological Space research on the International Space Station (ISS), will accommodate the first two batches of experiments after its launch with the "Columbus" Laboratory (spring 2007). Seven experiments have been selected for development: three of the first batch have concluded Phase A/B with the testing of the breadboards, in which the main functions of the scientific studies can be simulated and defined for further inputs to the final design of the experiment hardware. The biological specimens of the first batch are scorpions, plant seedlings, bacteria suspensions and cell cultures of mammalian and invertebrate origin. The experiment protocols request demanding resources ranging from life support for the entire mission (90 days) to skilled crew operations and transport/storage in deep freezers. Even more sophisticated experiments are in preparation for the second batch, dealing with various cell culture systems. This presentation gives an overview about the experiment development status, whilst the science background and breadboard test results will be presented by the respective experiment teams.

  10. Sequencing batch-reactor control using Gaussian-process models.

    PubMed

    Kocijan, Juš; Hvala, Nadja

    2013-06-01

    This paper presents a Gaussian-process (GP) model for the design of sequencing batch-reactor (SBR) control for wastewater treatment. The GP model is a probabilistic, nonparametric model with uncertainty predictions. In the case of SBR control, it is used for the on-line optimisation of the batch-phases duration. The control algorithm follows the course of the indirect process variables (pH, redox potential and dissolved oxygen concentration) and recognises the characteristic patterns in their time profile. The control algorithm uses GP-based regression to smooth the signals and GP-based classification for the pattern recognition. When tested on the signals from an SBR laboratory pilot plant, the control algorithm provided a satisfactory agreement between the proposed completion times and the actual termination times of the biodegradation processes. In a set of tested batches the final ammonia and nitrate concentrations were below 1 and 0.5 mg L(-1), respectively, while the aeration time was shortened considerably. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Adsorption and Desorption of Cesium in Clay Minerals: Effects of Natural Organic Matter and pH

    NASA Astrophysics Data System (ADS)

    Yoon, Hongkyu; Ilgen, Anastasia; Mills, Melissa; Lee, Moo; Seol, Jeung Gun; Cho, Nam Chan; Kang, Hyungyu

    2017-04-01

    Cesium (Cs) released into the environment (e.g., Fukushima accident) poses significant environmental concerns and remediation challenges. A majority of Cs in the environment have remained within the surface soils due to the strong adsorption affinity of Cs towards clay minerals. Different clay minerals have different bonding sites, resulting in various adsorption mechanisms at nanometer scale. For example, the illite commonly has a basal spacing of 1.0 nm, but becomes wider to 1.4 nm once other cations exchange with K in the interlayer site. Cs adsorbs into these expanded wedged zone strongly, which can control its mobility in the environment. In addition, natural organic matter (NOM) in the surface soils can interact with clay minerals, which can modify the mechanisms of Cs adsorption on the clay minerals by blocking specific adsorption sites and/or providing Cs adsorption sites on NOM surface. In this work, three representative clay minerals (illite, vermiculite, montmorillonite) and humic acid (HA) are used to systematically investigate the adsorption and desorption behavior of Cs. We performed batch adsorption experiments over a range of Cs concentrations on three clay minerals with and without HA, followed by sequential desorption batch testing. We tested desorption efficiency as a function of initial adsorbed Cs concentration, HA content, sodium concentration, and pH. The sequential extraction results are compared to the structural changes in clay minerals, measured using extended X-ray absorption fine structure spectroscopy (EXAFS) and aberration-corrected (scanning) transmission electron microscopy (TEM) - energy dispersive X-ray spectroscopy (EDX). Hence, this work aims to identify the mechanisms of Cs fixation at the nanometer (or atomic-) scale as a function of the clay mineral properties (e.g. expandability, permanent surface charge) and varying organic matter content at different pH values and to enhance our atomic-scale mechanistic understanding of the clay mineral interactions with cesium in the presence of NOM. The expandability of clay minerals and effect of HA addition on Cs adsorption and desorption are highlighted to address the efficiency of Cs removal schemes from contaminated soils. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Immunogenicity and safety of the candidate RTS,S/AS01 vaccine in young Nigerian children: a randomized, double-blind, lot-to-lot consistency trial.

    PubMed

    Umeh, Rich; Oguche, Stephen; Oguonu, Tagbo; Pitmang, Simon; Shu, Elvis; Onyia, Jude-Tony; Daniyam, Comfort A; Shwe, David; Ahmad, Abdullahi; Jongert, Erik; Catteau, Grégory; Lievens, Marc; Ofori-Anyinam, Opokua; Leach, Amanda

    2014-11-12

    For regulatory approval, consistency in manufacturing of vaccine lots is expected to be demonstrated in confirmatory immunogenicity studies using two-sided equivalence trials. This randomized, double-blind study (NCT01323972) assessed consistency of three RTS,S/AS01 malaria vaccine batches formulated from commercial-scale purified antigen bulk lots in terms of anti-CS-responses induced. Healthy children aged 5-17 months were randomized (1:1:1:1) to receive RTS,S/AS01 at 0-1-2 months from one of three commercial-scale purified antigen bulk lots (1600 litres-fermentation scale; commercial-scale lots), or a comparator vaccine batch made from pilot-scale purified antigen bulk lot (20 litres-fermentation scale; pilot-scale lot). The co-primary objectives were to first demonstrate consistency of antibody responses against circumsporozoite (CS) protein at one month post-dose 3 for the three commercial-scale lots and second demonstrate non-inferiority of anti-CS antibody responses at one month post-dose 3 for the commercial-scale lots compared to the pilot-scale lot. Safety and reactogenicity were evaluated as secondary endpoints. One month post-dose-3, anti-CS antibody geometric mean titres (GMT) for the 3 commercial scale lots were 319.6 EU/ml (95% confidence interval (CI): 268.9-379.8), 241.4 EU/ml (207.6-280.7), and 302.3 EU/ml (259.4-352.3). Consistency for the RTS,S/AS01 commercial-scale lots was demonstrated as the two-sided 95% CI of the anti-CS antibody GMT ratio between each pair of lots was within the range of 0.5-2.0. GMT of the pooled commercial-scale lots (285.8 EU/ml (260.7-313.3)) was non-inferior to the pilot-scale lot (271.7 EU/ml (228.5-323.1)). Each RTS,S/AS01 lot had an acceptable tolerability profile, with infrequent reports of grade 3 solicited symptoms. No safety signals were identified and no serious adverse events were considered related to vaccination. RTS,S/AS01 lots formulated from commercial-scale purified antigen bulk batches induced a consistent anti-CS antibody response, and the anti-CS GMT of pooled commercial-scale lots was non-inferior to that of a lot formulated from a pilot-scale antigen bulk batch. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Bismaleimide resins for flame resistant honeycomb sandwich panels

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A 60 kg batch of Resin M751 was produced in pilot plant scale. The resin was delivered to the prepreg company as an NMP solution. 100 kg of glass-fabric prepregs were fabricated. Prepreg characteristics and curing cycles for laminate fabrication were provided. A new batch of Resin M756 (Code M756 - 2) was synthesized.

  14. High rate psychrophilic anaerobic digestion of high solids (35%) dairy manure in sequence batch reactor.

    PubMed

    Saady, Noori M Cata; Massé, Daniel I

    2015-06-01

    Zero liquid discharge is increasingly adopted as an objective for waste treatment process. The objective of this study was to increase the feed total solids (TS) and the organic loading rate (OLR) fed to a novel psychrophilic (20°C) dry anaerobic digestion (PDAD). Duplicate laboratory-scale bioreactors were fed cow feces and wheat straw (35% TS in feed) at OLR of 6.0 g TCOD kg(-1) inoculum d(-1) during long-term operation (147 days consisting of 7 successive cycles). An overall average specific methane yield (SMY) of 151.8±7.9 N L CH4 kg(-1) VS fed with an averaged volatile solids removal of 42.4±4.3% were obtained at a volatile solids-based inoculum-to-substrate ratio (ISR) of 2.13±0.2. The operation was stable as indicated by biogas and VFAs profiles and the results were reproducible in successive cycles; a maximum SMY of 163.3±5.7 N L CH4 kg(-1) VS fed was obtained. Hydrolysis was the reaction limiting step. High rate PDAD of 35% TS dairy manure is possible in sequential batch reactor within 21 days treatment cycle length. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  15. Small, mobile, persistent: Trifluoroacetate in the water cycle - Overlooked sources, pathways, and consequences for drinking water supply.

    PubMed

    Scheurer, Marco; Nödler, Karsten; Freeling, Finnian; Janda, Joachim; Happel, Oliver; Riegel, Marcel; Müller, Uwe; Storck, Florian Rüdiger; Fleig, Michael; Lange, Frank Thomas; Brunsch, Andrea; Brauch, Heinz-Jürgen

    2017-12-01

    Elevated concentrations of trifluoroacetate (TFA) of more than 100 μg/L in a major German river led to the occurrence of more than 20 μg/L TFA in bank filtration based tap waters. Several spatially resolved monitoring programs were conducted and discharges from an industrial company were identified as the point source of TFA contamination. Treatment options for TFA removal were investigated at full-scale waterworks and in laboratory batch tests. Commonly applied techniques like ozonation or granulated activated carbon filtration are inappropriate for TFA removal, whereas TFA was partly removed by ion exchange and completely retained by reverse osmosis. Further investigations identified wastewater treatment plants (WWTPs) as additional TFA dischargers into the aquatic environment. TFA was neither removed by biological wastewater treatment, nor by a retention soil filter used for the treatment of combined sewer overflows. WWTP influents can even bear a TFA formation potential, when appropriate CF 3 -containing precursors are present. Biological degradation and ozonation batch experiments with chemicals of different classes (flurtamone, fluopyram, tembotrione, flufenacet, fluoxetine, sitagliptine and 4:2 fluorotelomer sulfonate) proved that there are yet overlooked sources and pathways of TFA, which need to be addressed in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Alternative solutions for the bio-denitrification of landfill leachates using pine bark and compost.

    PubMed

    Trois, Cristina; Pisano, Giulia; Oxarango, Laurent

    2010-06-15

    Nitrified leachate may still require an additional bio-denitrification step, which occurs with the addition of often-expensive chemicals as carbon source. This study explores the applicability of low-cost carbon sources such as garden refuse compost and pine bark for the denitrification of high strength landfill leachates. The overall objective is to assess efficiency, kinetics and performance of the substrates in the removal of high nitrate concentrations. Garden refuse and pine bark are currently disposed of in general waste landfills in South Africa, separated from the main waste stream. A secondary objective is to assess the feasibility of re-using green waste as by-product of an integrated waste management system. Denitrification processes in fixed bed reactors were simulated at laboratory scale using anaerobic batch tests and leaching columns packed with immature compost and pine bark. Biologically treated leachate from a Sequencing Batch Reactor (SBR) with nitrate concentrations of 350, 700 and 1100 mgN/l were used for the trials. Preliminary results suggest that, passed the acclimatization step (40 days for both substrates), full denitrification is achieved in 10-20 days for the pine bark and 30-40 days for the compost. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Results of initial analyses of the salt (macro) batch 10 tank 21H qualification samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    2017-01-01

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Interim Salt Disposition Project (ISDP) Salt (Macro) Batch 10 for processing through the Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU). This document reports the initial results of the analyses of samples of Tank 21H. Analysis of the Tank 21H Salt (Macro) Batch 10 composite sample indicates that the material does not display any unusual characteristics or observations, such as floating solids, the presence of large amount of solids, or unusual colors. Further sample results will be reported in a futuremore » document. This memo satisfies part of Deliverable 3 of the Technical Task Request (TTR).« less

  18. Results of initial analyses of the salt (macro) batch 11 Tank 21H qualification samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Interim Salt Disposition Project (ISDP) Salt (Macro) Batch 11 for processing through the Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU). This document reports the initial results of the analyses of samples of Tank 21H. Analysis of the Tank 21H Salt (Macro) Batch 11 composite sample indicates that the material does not display any unusual characteristics or observations, such as floating solids, the presence of large amounts of solids, or unusual colors. Further sample results will be reported in a futuremore » document. This memo satisfies part of Deliverable 3 of the Technical Task Request (TTR).« less

  19. Laboratory studies to characterize the efficacy of sand capping a coal tar-contaminated sediment.

    PubMed

    Hyun, Seunghun; Jafvert, Chad T; Lee, Linda S; Rao, P Suresh C

    2006-06-01

    Placement of a microbial active sand cap on a coal tar-contaminated river sediment has been suggested as a cost effective remediation strategy. This approach assumes that the flux of contaminants from the sediment is sufficiently balanced by oxygen and nutrient fluxes into the sand layer such that microbial activity will reduce contaminant concentrations within the new benthic zone and reduce the contaminant flux to the water column. The dynamics of such a system were evaluated using batch and column studies with microbial communities from tar-contaminated sediment under different aeration and nutrient inputs. In a 30-d batch degradation study on aqueous extracts of coal tar sediment, oxygen and nutrient concentrations were found to be key parameters controlling the degradation rates of polycyclic aromatic hydrocarbons (PAHs). For the five PAHs monitored (naphthalene, fluorene, phenanthrene, anthracene, and pyrene), degradation rates were inversely proportional to molecular size. For the column studies, where three columns were packed with a 20-cm sand layer on the top of a 5 cm of sediment layer, flow was established to sand layers with (1) aerated water, (2) N(2) sparged water, or (3) HgCl(2)-sterilized N(2) sparged water. After steady-state conditions, PAH concentrations in effluents were the lowest in the aerated column, except for pyrene, whose concentration was invariant with all effluents. These laboratory scale studies support that if sufficient aeration can be achieved in the field through either active and passive means, the resulting microbially active sand layer can improve the water quality of the benthic zone and reduce the flux of many, but not all, PAHs to the water column.

  20. Chemical disinfection of combined sewer overflow waters using performic acid or peracetic acids.

    PubMed

    Chhetri, Ravi Kumar; Thornberg, Dines; Berner, Jesper; Gramstad, Robin; Öjstedt, Ulrik; Sharma, Anitha Kumari; Andersen, Henrik Rasmus

    2014-08-15

    We investigated the possibility of applying performic acid (PFA) and peracetic acid (PAA) for disinfection of combined sewer overflow (CSO) in existing CSO management infrastructures. The disinfection power of PFA and PAA towards Escherichia coli (E. coli) and Enterococcus was studied in batch-scale and pre-field experiments. In the batch-scale experiment, 2.5 mg L(-1) PAA removed approximately 4 log unit of E. coli and Enterococcus from CSO with a 360 min contact time. The removal of E. coli and Enterococcus from CSO was always around or above 3 log units using 2-4 mg L(-1) PFA; with a 20 min contact time in both batch-scale and pre-field experiments. There was no toxicological effect measured by Vibrio fischeri when CSO was disinfected with PFA; a slight toxic effect was observed on CSO disinfected with PAA. When the design for PFA based disinfection was applied to CSO collected from an authentic event, the disinfection efficiencies were confirmed and degradation rates were slightly higher than predicted in simulated CSO. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Continuous production of ethanol with Zymomonas mobilis growing on Jerusalem artichoke juice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allais, J.J.; Torres, E.F.; Baratti, J.

    1987-04-01

    Recent work from the authors laboratory has shown that, compared to yeasts, much higher ethanol productivity and yield can be obtained in batch or continuous cultures using the bacterium Zymomonas mobilis grown on fructose media. In batch culture, hydrolyzed Jerusalem artichoke juice with sugar concentrations ranging from 100 to 250 g/L can be converted efficiently to ethanol. The present work describes the conversion of the hydrolyzed juice to ethanol in continuous culture. The extraction and enzymatic hydrolysis of inulin from the tubers of Jerusalem artichoke is also reported.

  2. The Design and Implementation of Adsorptive Removal of Cu(II) from Leachate Using ANFIS

    PubMed Central

    Turan, Nurdan Gamze; Ozgonenel, Okan

    2013-01-01

    Clinoptilolite was investigated for the removal of Cu(II) ions from industrial leachate. Adaptive neural fuzzy interface system (ANFIS) was used for modeling the batch experimental system and predicting the optimal input values, that is, initial pH, adsorbent dosage, and contact time. Experiments were studied under laboratory batch and fixed bed conditions. The outcomes of suggested ANFIS modeling were then compared to a full factorial experimental design (23), which was utilized to assess the effect of three factors on the adsorption of Cu(II) ions in aqueous leachate of industrial waste. It was observed that the optimized parameters are almost close to each other. The highest removal efficiency was found as about 93.65% at pH 6, adsorbent dosage 11.4 g/L, and contact time 33 min for batch conditions of 23 experimental design and about 90.43% at pH 5, adsorbent dosage 15 g/L and contact time 35 min for batch conditions of ANFIS. The results show that clinoptilolite is an efficient sorbent and ANFIS, which is easy to implement and is able to model the batch experimental system. PMID:23844405

  3. Sludge Washing and Demonstration of the DWPF Nitric/Formic Flowsheet in the SRNL Shielded Cells for Sludge Batch 9 Qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareizs, J.; Newell, D.; Martino, C.

    Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to qualify the next batch of sludge – Sludge Batch 9 (SB9). Current practice is to prepare sludge batches in Tank 51 by transferring sludge to Tank 51 from other tanks. The sludge is washed and transferred to Tank 40, the current Defense Waste Process Facility (DWPF) feed tank. Prior to sludge transfer from Tank 51 to Tank 40, the Tank 51 sludge must be qualified. SRNL qualifies the sludge in multiple steps. First, a Tank 51 sample is received, then characterized, washed, and again characterized. SRNL thenmore » demonstrates the DWPF Chemical Process Cell (CPC) flowsheet with the sludge. The final step of qualification involves chemical durability measurements of glass fabricated in the DWPF CPC demonstrations. In past sludge batches, SRNL had completed the DWPF demonstration with Tank 51 sludge. For SB9, SRNL has been requested to process a blend of Tank 51 and Tank 40 at a targeted ratio of 44% Tank 51 and 56% Tank 40 on an insoluble solids basis.« less

  4. Reproducibility of telomere length assessment: an international collaborative study.

    PubMed

    Martin-Ruiz, Carmen M; Baird, Duncan; Roger, Laureline; Boukamp, Petra; Krunic, Damir; Cawthon, Richard; Dokter, Martin M; van der Harst, Pim; Bekaert, Sofie; de Meyer, Tim; Roos, Goran; Svenson, Ulrika; Codd, Veryan; Samani, Nilesh J; McGlynn, Liane; Shiels, Paul G; Pooley, Karen A; Dunning, Alison M; Cooper, Rachel; Wong, Andrew; Kingston, Andrew; von Zglinicki, Thomas

    2015-10-01

    Telomere length is a putative biomarker of ageing, morbidity and mortality. Its application is hampered by lack of widely applicable reference ranges and uncertainty regarding the present limits of measurement reproducibility within and between laboratories. We instigated an international collaborative study of telomere length assessment: 10 different laboratories, employing 3 different techniques [Southern blotting, single telomere length analysis (STELA) and real-time quantitative PCR (qPCR)] performed two rounds of fully blinded measurements on 10 human DNA samples per round to enable unbiased assessment of intra- and inter-batch variation between laboratories and techniques. Absolute results from different laboratories differed widely and could thus not be compared directly, but rankings of relative telomere lengths were highly correlated (correlation coefficients of 0.63-0.99). Intra-technique correlations were similar for Southern blotting and qPCR and were stronger than inter-technique ones. However, inter-laboratory coefficients of variation (CVs) averaged about 10% for Southern blotting and STELA and more than 20% for qPCR. This difference was compensated for by a higher dynamic range for the qPCR method as shown by equal variance after z-scoring. Technical variation per laboratory, measured as median of intra- and inter-batch CVs, ranged from 1.4% to 9.5%, with differences between laboratories only marginally significant (P = 0.06). Gel-based and PCR-based techniques were not different in accuracy. Intra- and inter-laboratory technical variation severely limits the usefulness of data pooling and excludes sharing of reference ranges between laboratories. We propose to establish a common set of physical telomere length standards to improve comparability of telomere length estimates between laboratories. © The Author 2014. Published by Oxford University Press on behalf of the International Epidemiological Association.

  5. Removing Batch Effects from Longitudinal Gene Expression - Quantile Normalization Plus ComBat as Best Approach for Microarray Transcriptome Data

    PubMed Central

    Müller, Christian; Schillert, Arne; Röthemeier, Caroline; Trégouët, David-Alexandre; Proust, Carole; Binder, Harald; Pfeiffer, Norbert; Beutel, Manfred; Lackner, Karl J.; Schnabel, Renate B.; Tiret, Laurence; Wild, Philipp S.; Blankenberg, Stefan

    2016-01-01

    Technical variation plays an important role in microarray-based gene expression studies, and batch effects explain a large proportion of this noise. It is therefore mandatory to eliminate technical variation while maintaining biological variability. Several strategies have been proposed for the removal of batch effects, although they have not been evaluated in large-scale longitudinal gene expression data. In this study, we aimed at identifying a suitable method for batch effect removal in a large study of microarray-based longitudinal gene expression. Monocytic gene expression was measured in 1092 participants of the Gutenberg Health Study at baseline and 5-year follow up. Replicates of selected samples were measured at both time points to identify technical variability. Deming regression, Passing-Bablok regression, linear mixed models, non-linear models as well as ReplicateRUV and ComBat were applied to eliminate batch effects between replicates. In a second step, quantile normalization prior to batch effect correction was performed for each method. Technical variation between batches was evaluated by principal component analysis. Associations between body mass index and transcriptomes were calculated before and after batch removal. Results from association analyses were compared to evaluate maintenance of biological variability. Quantile normalization, separately performed in each batch, combined with ComBat successfully reduced batch effects and maintained biological variability. ReplicateRUV performed perfectly in the replicate data subset of the study, but failed when applied to all samples. All other methods did not substantially reduce batch effects in the replicate data subset. Quantile normalization plus ComBat appears to be a valuable approach for batch correction in longitudinal gene expression data. PMID:27272489

  6. Effects of region, demography, and protection from fishing on batch fecundity of common coral trout ( Plectropomus leopardus)

    NASA Astrophysics Data System (ADS)

    Carter, Alex B.; Davies, Campbell R.; Mapstone, Bruce D.; Russ, Garry R.; Tobin, Andrew J.; Williams, Ashley J.

    2014-09-01

    Batch fecundity of female Plectropomus leopardus, a coral reef fish targeted by commercial and recreational fishing, was compared between reefs open to fishing and reefs within no-take marine reserves within three regions of the Great Barrier Reef (GBR), Australia. Length, weight, and age had positive effects on batch fecundity of spawners from northern and central reefs but negligible effects on spawners from southern reefs. Females were least fecund for a given length, weight, and age in the southern GBR. Batch fecundity of a 500-mm fork length female was 430 % greater on central reefs and 207 % greater on northern reefs than on southern reefs. The effects of length and age on batch fecundity did not differ significantly between reserve and fished reefs in any region, but weight-specific fecundity was 100 % greater for large 2.0 kg females on reserve reefs compared with fished reefs in the central GBR. We hypothesize that regional variation in batch fecundity is likely driven by water temperature and prey availability. Significant regional variation in batch fecundity highlights the need for understanding spatial variation in reproductive output where single conservation or fishery management strategies cover large, potentially diverse, spatial scales.

  7. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller.

    PubMed

    Soons, Zita I T A; van den IJssel, Jan; van der Pol, Leo A; van Straten, Gerrit; van Boxtel, Anton J B

    2009-04-01

    This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst others the headspace and tubing to the analyzer. These gas phase dynamics are modelled using knowledge of the system in order to reconstruct oxygen consumption. The second aspect is to evaluate performance of the monitoring and control system with the required modifications of the oxygen consumption calculation on pilot-scale. In pilot-scale fed-batch cultivation good monitoring and control performance is obtained enabling a doubled concentration of bulk vaccine compared to standard batch production.

  8. Towards a consensus-based biokinetic model for green microalgae - The ASM-A.

    PubMed

    Wágner, Dorottya S; Valverde-Pérez, Borja; Sæbø, Mariann; Bregua de la Sotilla, Marta; Van Wagenen, Jonathan; Smets, Barth F; Plósz, Benedek Gy

    2016-10-15

    Cultivation of microalgae in open ponds and closed photobioreactors (PBRs) using wastewater resources offers an opportunity for biochemical nutrient recovery. Effective reactor system design and process control of PBRs requires process models. Several models with different complexities have been developed to predict microalgal growth. However, none of these models can effectively describe all the relevant processes when microalgal growth is coupled with nutrient removal and recovery from wastewaters. Here, we present a mathematical model developed to simulate green microalgal growth (ASM-A) using the systematic approach of the activated sludge modelling (ASM) framework. The process model - identified based on a literature review and using new experimental data - accounts for factors influencing photoautotrophic and heterotrophic microalgal growth, nutrient uptake and storage (i.e. Droop model) and decay of microalgae. Model parameters were estimated using laboratory-scale batch and sequenced batch experiments using the novel Latin Hypercube Sampling based Simplex (LHSS) method. The model was evaluated using independent data obtained in a 24-L PBR operated in sequenced batch mode. Identifiability of the model was assessed. The model can effectively describe microalgal biomass growth, ammonia and phosphate concentrations as well as the phosphorus storage using a set of average parameter values estimated with the experimental data. A statistical analysis of simulation and measured data suggests that culture history and substrate availability can introduce significant variability on parameter values for predicting the reaction rates for bulk nitrate and the intracellularly stored nitrogen state-variables, thereby requiring scenario specific model calibration. ASM-A was identified using standard cultivation medium and it can provide a platform for extensions accounting for factors influencing algal growth and nutrient storage using wastewater resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Surfactant-enhanced remediation of a trichloroethene-contaminated aquifer. 1. Transport of triton X-100

    USGS Publications Warehouse

    Smith, J.A.; Sahoo, D.; Mclellan, H.M.; Imbrigiotta, T.E.

    1997-01-01

    Transport of a nonionic surfactant (Triton X-100) at aqueous concentrations less than 400 mg/L through a trichloroethene-contaminated sand-and-gravel aquifer at Picatinny Arsenal, NJ, has been studied through a series of laboratory and field experiments. In the laboratory, batch and column experiments were conducted to quantify the rate and amount of Triton X-100 sorption to the aquifer sediments. In the field, a 400 mg/L aqueous Triton X-100 solution was injected into the aquifer at a rate of 26.5 L/min for a 35-d period. The transport of Triton X-100 was monitored by sampling and analysis of groundwater at six locations surrounding the injection well. Equilibrium batch sorption experiments showed that Triton X-100 sorbs strongly and nonlinearly to the field soil with the sharpest inflection point of the isotherm occurring at an equilibrium aqueous Triton X-100 concentration close to critical micelle concentration. Batch, soil column, and field experimental data were analyzed with zero-, one-, and two- dimensional (respectively) transient solute transport models with either equilibrium or rate-limited sorption. These analyses reveal that Triton X- 100 sorption to the aquifer solids is slow relative to advective and dispersive transport and that an equilibrium sorption model cannot simulate accurately the observed soil column and field data. Comparison of kinetic sorption parameters from batch, column, and field transport data indicate that both physical heterogeneities and Triton X-100 mass transfer between water and soil contribute to the kinetic transport effects.Transport of a nonionic surfactant (Triton X-100) at aqueous concentrations less than 400 mg/L through a trichloroethene-contaminated sand-and-gravel aquifer was studied. Equilibrium batch sorption experiments showed that Triton X-100 sorbs strongly and nonlinearly to the field soil with the sharpest inflection point of the isotherm occurring at an equilibrium aqueous Triton X-100 concentration close to critical micelle concentration. Batch, soil column, and field experimental data were analyzed with zero-, one-, and two-dimensional transient solute transport models with either equilibrium or rate-limited sorption. These analyses revealed that Triton X-100 sorption to the aquifer solids was slow relative to advective and dispersive transport.

  10. GenBank.

    PubMed

    Benson, Dennis A; Karsch-Mizrachi, Ilene; Lipman, David J; Ostell, James; Sayers, Eric W

    2010-01-01

    GenBank is a comprehensive database that contains publicly available nucleotide sequences for more than 300,000 organisms named at the genus level or lower, obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects, including whole genome shotgun (WGS) and environmental sampling projects. Most submissions are made using the web-based BankIt or standalone Sequin programs, and accession numbers are assigned by GenBank staff upon receipt. Daily data exchange with the European Molecular Biology Laboratory Nucleotide Sequence Database in Europe and the DNA Data Bank of Japan ensures worldwide coverage. GenBank is accessible through the NCBI Entrez retrieval system, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bi-monthly releases and daily updates of the GenBank database are available by FTP. To access GenBank and its related retrieval and analysis services, begin at the NCBI homepage: www.ncbi.nlm.nih.gov.

  11. Using GenBank.

    PubMed

    Wheeler, David

    2007-01-01

    GenBank(R) is a comprehensive database of publicly available DNA sequences for more than 205,000 named organisms and for more than 60,000 within the embryophyta, obtained through submissions from individual laboratories and batch submissions from large-scale sequencing projects. Daily data exchange with the European Molecular Biology Laboratory (EMBL) in Europe and the DNA Data Bank of Japan ensures worldwide coverage. GenBank is accessible through the National Center for Biotechnology Information (NCBI) retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases with taxonomy, genome, mapping, protein structure, and domain information and the biomedical journal literature through PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available through FTP. GenBank usage scenarios ranging from local analyses of the data available through FTP to online analyses supported by the NCBI Web-based tools are discussed. To access GenBank and its related retrieval and analysis services, go to the NCBI Homepage at http://www.ncbi.nlm.nih.gov.

  12. GenBank.

    PubMed

    Benson, Dennis A; Karsch-Mizrachi, Ilene; Lipman, David J; Ostell, James; Sayers, Eric W

    2009-01-01

    GenBank is a comprehensive database that contains publicly available nucleotide sequences for more than 300,000 organisms named at the genus level or lower, obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects. Most submissions are made using the web-based BankIt or standalone Sequin programs, and accession numbers are assigned by GenBank(R) staff upon receipt. Daily data exchange with the European Molecular Biology Laboratory Nucleotide Sequence Database in Europe and the DNA Data Bank of Japan ensures worldwide coverage. GenBank is accessible through the National Center for Biotechnology Information (NCBI) Entrez retrieval system, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. To access GenBank and its related retrieval and analysis services, begin at the NCBI Homepage: www.ncbi.nlm.nih.gov.

  13. What do we know about the yeast strains from the Brazilian fuel ethanol industry?

    PubMed

    Della-Bianca, Bianca Eli; Basso, Thiago Olitta; Stambuk, Boris Ugarte; Basso, Luiz Carlos; Gombert, Andreas Karoly

    2013-02-01

    The production of fuel ethanol from sugarcane-based raw materials in Brazil is a successful example of a large-scale bioprocess that delivers an advanced biofuel at competitive prices and low environmental impact. Two to three fed-batch fermentations per day, with acid treatment of the yeast cream between consecutive cycles, during 6-8 months of uninterrupted production in a nonaseptic environment are some of the features that make the Brazilian process quite peculiar. Along the past decades, some wild Saccharomyces cerevisiae strains were isolated, identified, characterized, and eventually, reintroduced into the process, enabling us to build up knowledge on these organisms. This information, combined with physiological studies in the laboratory and, more recently, genome sequencing data, has allowed us to start clarifying why and how these strains behave differently from the better known laboratory, wine, beer, and baker's strains. All these issues are covered in this minireview, which also presents a brief discussion on future directions in the field and on the perspectives of introducing genetically modified strains in this industrial process.

  14. Optimization of the dissolution of molybdenum disks. FY-16 results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tkac, Peter; Rotsch, David A.; Chemerisov, Sergey D.

    2016-09-01

    Argonne National Laboratory is providing technical development assistance to NorthStar Medical Technologies LLC in its pursuit of two pathways for production of molybdenum-99: the 98Mo(n,γ) 99Mo reaction and the photonuclear reaction, 100Mo(γ,n) 99Mo. Processing of irradiated targets, from either production mode, requires dissolution of the target material in H 2O 2 followed by a concentration step, addition of ferric ion to precipitate impurities, and conversion of the final solution to 5M potassium hydroxide solution of potassium molybdate. Currently, NorthStar is using pressed and sintered Mo disks as targets. Several options are being considered for the design of Mo targets formore » the production of 99Mo using the (γ,n) reaction. In the current design, the target holder contains a series of sintered Mo disks lined up perpendicular to two incident electron beams, one entering from each side of the target stack. In this configuration, the front-most disks absorb most of the heat from the electron beam and need to be thinner to allow for better cooling, while the middle of the target can be thicker. Distribution of the total mass of Mo allows for larger masses of Mo material and thus larger production batches of 99Mo. A limitation of the sintering approach is the production of very thin disks. Recent advances in 3D printing allow for much thinner target components can be achieved than when the traditional press-and-sinter approach is used. We have demonstrated that several factors can play important roles in dissolution behavior: particle size of Mo metal used for production of targets, sintering conditions, degree of open porosity, and thickness of the sintered Mo targets. Here we report experimental results from studies of small-scale dissolution of sintered Mo disks fabricated from various recycled and commercial Mo materials, and dissolution of 3D-printed Mo disks that were fabricated by Oak Ridge National Laboratory (ORNL). We also report on large-scale dissolution studies with 600 g batches of sintered Mo disks.« less

  15. Occurrence and fate of the antidiabetic drug metformin and its metabolite guanylurea in the environment and during drinking water treatment.

    PubMed

    Scheurer, Marco; Michel, Amandine; Brauch, Heinz-Jürgen; Ruck, Wolfgang; Sacher, Frank

    2012-10-01

    Metformin, an antidiabetic drug with one of the highest consumption rates of all pharmaceuticals worldwide, is biologically degraded to guanylurea in wastewater treatment plants. Due to high metformin influent concentrations of up to 100 μg/L and its high but incomplete degradation both compounds are released in considerable amounts of up to several tens of μg/L into recipient rivers. This is the first systematic study on their environmental fate and the effectiveness of treatment techniques applied in waterworks to remove metformin and guanylurea from surface water influenced raw waters. The concentrations in surface waters depend strongly on the respective wastewater burden of rivers and creeks and are typically in the range of about 1 μg/L for metformin and several μg/L for guanylurea but can reach elevated average concentrations of more than 3 and 20 μg/L, respectively. Treatment techniques applied in waterworks were investigated by an extended monitoring program in three facilities and accompanied by laboratory-scale batch tests. Flocculation and activated carbon filtration proved to be ineffective for removal of metformin and guanylurea. During ozonation and chlorination experiments with waterworks-relevant ozone and chlorine doses they were partly transformed to yet unknown compounds. The effectiveness of the treatment steps under investigation can be ordered chlorination > ozonation > activated carbon filtration > flocculation. However, most effective for removal of both compounds at the three full-scale waterworks studied proved to be an underground passage (riverbank filtration or artificial groundwater recharge). A biological degradation is most likely as sorption can be neglected. This is based on laboratory batch tests conducted with three different soil materials according to OECD guideline 106. Since such treatment steps were implemented in all three drinking water treatment plants, even traces of metformin and its metabolite guanylurea could not be detected at the end of the treatment trains. Both can only be expected in finished drinking water if surface influenced raw water is used by direct abstraction without underground passage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Manufacturing Study for a Four Meter Lightweight Mirror

    DTIC Science & Technology

    1980-04-01

    Preparation 2.1.1 The batch consists of the proper mixture of SiCl4 and TiCl4. This is accomplished by a weight process using electronic scales. The batch is...the requirement for this program. 2.2 Glass Laydown - Flame Hydrolysis 2.2.1 The laydown process is the operation where the SiCl4 and TiCl 4 are

  17. Hot-bench simulation of the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Buttrill, Carey S.; Houck, Jacob A.

    1990-01-01

    Two simulations, one batch and one real-time, of an aeroelastically-scaled wind-tunnel model were developed. The wind-tunnel model was a full-span, free-to-roll model of an advanced fighter concept. The batch simulation was used to generate and verify the real-time simulation and to test candidate control laws prior to implementation. The real-time simulation supported hot-bench testing of a digital controller, which was developed to actively control the elastic deformation of the wind-tunnel model. Time scaling was required for hot-bench testing. The wind-tunnel model, the mathematical models for the simulations, the techniques employed to reduce the hot-bench time-scale factors, and the verification procedures are described.

  18. Scheduling algorithm for flow shop with two batch-processing machines and arbitrary job sizes

    NASA Astrophysics Data System (ADS)

    Cheng, Bayi; Yang, Shanlin; Hu, Xiaoxuan; Li, Kai

    2014-03-01

    This article considers the problem of scheduling two batch-processing machines in flow shop where the jobs have arbitrary sizes and the machines have limited capacity. The jobs are processed in batches and the total size of jobs in each batch cannot exceed the machine capacity. Once a batch is being processed, no interruption is allowed until all the jobs in it are completed. The problem of minimising makespan is NP-hard in the strong sense. First, we present a mathematical model of the problem using integer programme. We show the scale of feasible solutions of the problem and provide optimality properties. Then, we propose a polynomial time algorithm with running time in O(nlogn). The jobs are first assigned in feasible batches and then scheduled on machines. For the general case, we prove that the proposed algorithm has a performance guarantee of 4. For the special case where the processing times of each job on the two machines satisfy p 1 j = ap 2 j , the performance guarantee is ? for a > 0.

  19. NRCSD Replacement Operations

    NASA Image and Video Library

    2014-02-20

    ISS038-E-053258 (19 Feb. 2014) --- In the inner hatch of the International Space Station's Kibo laboratory airlock, Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, prepares a second batch of NanoRacks CubeSats for deployment.

  20. B827 Chemical Synthhesis Project - Industrial Control System Integration - Statement of Work & Specification with Attachments 1-14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, F. E.

    The Chemical Synthesis Pilot Process at the Lawrence Livermore National Laboratory (LLNL) Site 300 827 Complex will be used to synthesize small quantities of material to support research and development. The project will modernize and increase current capabilities for chemical synthesis at LLNL. The primary objective of this project is the conversion of a non-automated hands-on process to a remoteoperation process, while providing enhanced batch process step control, stored recipe-specific parameter sets, process variable visibility, monitoring, alarm and warning handling, and comprehensive batch record data logging. This Statement of Work and Specification provides the industrial-grade process control requirements for themore » chemical synthesis batching control system, hereafter referred to as the “Control System” to be delivered by the System Integrator.« less

  1. Scale-up of industrial biodiesel production to 40 m(3) using a liquid lipase formulation.

    PubMed

    Price, Jason; Nordblad, Mathias; Martel, Hannah H; Chrabas, Brent; Wang, Huali; Nielsen, Per Munk; Woodley, John M

    2016-08-01

    In this work, we demonstrate the scale-up from an 80 L fed-batch scale to 40 m(3) along with the design of a 4 m(3) continuous process for enzymatic biodiesel production catalyzed by NS-40116 (a liquid formulation of a modified Thermomyces lanuginosus lipase). Based on the analysis of actual pilot plant data for the transesterification of used cooking oil and brown grease, we propose a method applying first order integral analysis to fed-batch data based on either the bound glycerol or free fatty acid content in the oil. This method greatly simplifies the modeling process and gives an indication of the effect of mixing at the various scales (80 L to 40 m(3) ) along with the prediction of the residence time needed to reach a desired conversion in a CSTR. Suitable process metrics reflecting commercial performance such as the reaction time, enzyme efficiency, and reactor productivity were evaluated for both the fed-batch and CSTR cases. Given similar operating conditions, the CSTR operation on average, has a reaction time which is 1.3 times greater than the fed-batch operation. We also showed how the process metrics can be used to quickly estimate the selling price of the enzyme. Assuming a biodiesel selling price of 0.6 USD/kg and a one-time use of the enzyme (0.1% (w/woil ) enzyme dosage); the enzyme can then be sold for 30 USD/kg which ensures that that the enzyme cost is not more than 5% of the biodiesel revenue. Biotechnol. Bioeng. 2016;113: 1719-1728. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Laboratory study of biological retention for urban stormwater management.

    PubMed

    Davis, A P; Shokouhian, M; Sharma, H; Minami, C

    2001-01-01

    Urban stormwater runoff contains a broad range of pollutants that are transported to natural water systems. A practice known as biological retention (bioretention) has been suggested to manage stormwater runoff from small, developed areas. Bioretention facilities consist of porous soil, a topping layer of hardwood mulch, and a variety of different plant species. A detailed study of the characteristics and performance of bioretention systems for the removal of several heavy metals (copper, lead, and zinc) and nutrients (phosphorus, total Kjeldahl nitrogen [TKN], ammonium, and nitrate) from a synthetic urban stormwater runoff was completed using batch and column adsorption studies along with pilot-scale laboratory systems. The roles of the soil, mulch, and plants in the removal of heavy metals and nutrients were evaluated to estimate the treatment capacity of laboratory bioretention systems. Reductions in concentrations of all metals were excellent (> 90%) with specific metal removals of 15 to 145 mg/m2 per event. Moderate reductions of TKN, ammonium, and phosphorus levels were found (60 to 80%). Little nitrate was removed, and nitrate production was noted in several cases. The importance of the mulch layer in metal removal was identified. Overall results support the use of bioretention as a stormwater best management practice and indicate the need for further research and development.

  3. Scale-Up Method for the Shock Compaction of Powders

    NASA Astrophysics Data System (ADS)

    Carton, E. P.; Stuivinga, M.

    2004-07-01

    Shock wave compaction in the cylindrical configuration lends itself to be scaled-up for small-scale industrial applications. While scaling up in the axial direction is easy, scaling up in the lateral direction is less straightforward and may lead to cracks in the center. A different scale up method is presented here; aluminum tubes are filled with the powder to be compacted and placed in a circle inside a large metal tube, with a metal shock wave reflector in the center. The space in between is filled with an inert powder medium: alumina, salt or sand. It is found that salt is the best medium for the integrity of the aluminum tube and for the ease of removal of the aluminum tube out of the (densified) powder medium. Experimental results of (slightly ellipsoidal) shock compacted tubes that are produced this way are shown as an example. In the case of B4C, after infiltration with the aluminum of the tube, fully dense cermet compacts without any cracks are thus produced, batch by batch.

  4. Recovery of energy and nutrient resources from cattle paunch waste using temperature phased anaerobic digestion.

    PubMed

    Jensen, Paul D; Mehta, Chirag M; Carney, Chris; Batstone, D J

    2016-05-01

    Cattle paunch is comprised of partially digested cattle feed, containing mainly grass and grain and is a major waste produced at cattle slaughterhouses contributing 20-30% of organic matter and 40-50% of P waste produced on-site. In this work, Temperature Phased Anaerobic Digestion (TPAD) and struvite crystallization processes were developed at pilot-scale to recover methane energy and nutrients from paunch solid waste. The TPAD plant achieved a maximum sustainable organic loading rate of 1-1.5kgCODm(-3)day(-1) using a feed solids concentration of approximately 3%; this loading rate was limited by plant engineering and not the biology of the process. Organic solids destruction (60%) and methane production (230LCH4kg(-1) VSfed) achieved in the plant were similar to levels predicted from laboratory biochemical methane potential (BMP) testing. Model based analysis identified no significant difference in batch laboratory parameters vs pilot-scale continuous parameters, and no change in speed or extent of degradation. However the TPAD process did result in a degree of process intensification with a high level of solids destruction at an average treatment time of 21days. Results from the pilot plant show that an integrated process enabled resource recovery at 7.8GJ/dry tonne paunch, 1.8kgP/dry tonne paunch and 1.0kgN/dry tonne paunch. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Scale factor management in the studies of affine models of shockproof garment elements

    NASA Astrophysics Data System (ADS)

    Denisov, Oleg; Pleshko, Mikhail; Ponomareva, Irina; Merenyashev, Vitaliy

    2018-03-01

    New samples of protective garment for performing construction work at height require numerous tests in conditions close to real conditions of extreme vital activity. The article presents some results of shockproof garment element studies and a description of a patented prototype. The tests were carried out on a model which geometric dimensions were convenient for manufacturing it in a limited batch. In addition, the used laboratory equipment (for example, a unique power pendulum), blanks made of a titanium-nickel alloy with a shape memory effect also imposed their limitations. The problem of the adequacy of the obtained experimental results transfer to mass-produced products was solved using tools of the classical similarity theory. Scale factor management influence in the affine modeling of the shockproof element, studied on the basis of the equiatomic titanium-nickel alloy with the shape memory effect, allowed us to assume, with a sufficient degree of reliability, the technical possibility of extrapolating the results of experimental studies to full-scale objects for the formation of the initial data of the mathematical model of shockproof garment dynamics elastoplastic deformation (while observing the similarity of the features of external loading).

  6. Commercial-scale recycling of NdFeB-type magnets with grain boundary modification yields products with 'designer properties' that exceed those of starting materials.

    PubMed

    Zakotnik, M; Tudor, C O

    2015-10-01

    NdFeB-type magnets dominate the market for high performance magnetic materials, yet production of 'virgin' magnets via mining is environmentally, financially and energetically costly. Hence, interest is growing in 'magnet to magnet' recycling schemes that offer the potential for cheaper, more environmentally-friendly solutions to the world's growing appetite for rare-earth based magnetic materials. Unfortunately, previously described recycling processes only partially capitalise on this potential, because the methods described to date are limited to 'laboratory scale' or operate only under ideal conditions and result in products that fail to recapture the coercivity of the starting, scrap materials. Herein, we report a commercial scale process (120 kg batches) that completely recovers the properties of the starting scrap magnets. Indeed, 'grain boundary modification', via careful addition of a proprietary mix of blended elements, produces magnets with 'designer properties' that can exceed those of the starting materials and can be closely tailored to meet a wide variety of end-user applications, including high-coercivity (>2000 kA/m), sintered magnets suitable for motor applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Fabricating micro-instruments in surface-micromachined polycrystalline silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comtois, J.H.; Michalicek, M.A.; Barron, C.C.

    1997-04-01

    Smaller, lighter instruments can be fabricated as Micro-Electro-Mechanical Systems (MEMS), having micron scale moving parts packaged together with associated control and measurement electronics. Batch fabrication of these devices will make economical applications such as condition-based machine maintenance and remote sensing. The choice of instrumentation is limited only by the designer`s imagination. This paper presents one genre of MEMS fabrication, surface-micromachined polycrystalline silicon (polysilicon). Two currently available but slightly different polysilicon processes are presented. One is the ARPA-sponsored ``Multi-User MEMS ProcesS`` (MUMPS), available commercially through MCNC; the other is the Sandia National Laboratories ``Sandia Ultra-planar Multilevel MEMS Technology`` (SUMMiT). Example componentsmore » created in both processes will be presented, with an emphasis on actuators, actuator force testing instruments, and incorporating actuators into larger instruments.« less

  8. Encapsulation of brewing yeast in alginate/chitosan matrix: lab-scale optimization of lager beer fermentation.

    PubMed

    Naydenova, Vessela; Badova, Mariyana; Vassilev, Stoyan; Iliev, Vasil; Kaneva, Maria; Kostov, Georgi

    2014-03-04

    Two mathematical models were developed for studying the effect of main fermentation temperature ( T MF ), immobilized cell mass ( M IC ) and original wort extract (OE) on beer fermentation with alginate-chitosan microcapsules with a liquid core. During the experiments, the investigated parameters were varied in order to find the optimal conditions for beer fermentation with immobilized cells. The basic beer characteristics, i.e. extract, ethanol, biomass concentration, pH and colour, as well as the concentration of aldehydes and vicinal diketones, were measured. The results suggested that the process parameters represented a powerful tool in controlling the fermentation time. Subsequently, the optimized process parameters were used to produce beer in laboratory batch fermentation. The system productivity was also investigated and the data were used for the development of another mathematical model.

  9. Encapsulation of brewing yeast in alginate/chitosan matrix: lab-scale optimization of lager beer fermentation

    PubMed Central

    Naydenova, Vessela; Badova, Mariyana; Vassilev, Stoyan; Iliev, Vasil; Kaneva, Maria; Kostov, Georgi

    2014-01-01

    Two mathematical models were developed for studying the effect of main fermentation temperature (T MF), immobilized cell mass (M IC) and original wort extract (OE) on beer fermentation with alginate-chitosan microcapsules with a liquid core. During the experiments, the investigated parameters were varied in order to find the optimal conditions for beer fermentation with immobilized cells. The basic beer characteristics, i.e. extract, ethanol, biomass concentration, pH and colour, as well as the concentration of aldehydes and vicinal diketones, were measured. The results suggested that the process parameters represented a powerful tool in controlling the fermentation time. Subsequently, the optimized process parameters were used to produce beer in laboratory batch fermentation. The system productivity was also investigated and the data were used for the development of another mathematical model. PMID:26019512

  10. Biotransformation of sweet lime pulp waste into high-quality nanocellulose with an excellent productivity using Komagataeibacter europaeus SGP37 under static intermittent fed-batch cultivation.

    PubMed

    Dubey, Swati; Singh, Jyoti; Singh, R P

    2018-01-01

    Herein, sweet lime pulp waste (SLPW) was utilized as a low- or no-cost feedstock for the production of bacterial nanocellulose (BNC) alone and in amalgamation with other nutritional supplements by the isolate K. europaeus SGP37 under static batch and static intermittent fed-batch cultivation. The highest yield (26.2±1.50gL -1 ) was obtained in the hot water extract of SLPW supplemented with the components of HS medium, which got further boosted to 38±0.85gL -1 as the cultivation strategy was shifted from static batch to static intermittent fed-batch. BNC obtained from various SLPW medium was similar or even superior to that obtained with standard HS medium in terms of its physicochemical properties. The production yields of BNC thus obtained are significantly higher and fit well in terms of industrial scale production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Summary Report For The Analysis Of The Sludge Batch 7b (Macrobatch 9) DWPF Pour Stream Glass Sample For Canister S04023

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, F. C.

    2013-11-18

    In order to comply with the Defense Waste Processing Facility (DWPF) Waste Form Compliance Plan for Sluldge Batch 7b, Savannah River National Laboratory (SRNL) personnel characterized the Defense Waste Processing Facility (DWPF) pour stream (PS) glass sample collected while filling canister S04023. This report summarizes the results of the compositional analysis for reportable oxides and radionuclides and the normalized Product Consistency Test (PCT) results. The PCT responses indicate that the DWPF produced glass that is significantly more durable than the Environmental Assessment glass.

  12. Results from the interim salt disposition program macrobatch 10 tank 21H qualification samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.; Bannochie, C. J.

    2017-02-23

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 10 for the Interim Salt Disposition Program (ISDP). This document reports characterization data on the samples of Tank 21H and fulfills the requirements of Deliverable 3 of the Technical Task Request (TTR). Further work will report the results of the Extraction-Scrub-Strip (ESS) testing (Task 5 of the TTR) using the Tank 21H material. Task 4 of the TTR (MST Strike) will not be completed for Salt Batch 10.

  13. Characterization of tank 51 sludge samples (HTF-51-17-44/ HTF-51-17-48) in support of sludge batch 10 processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L. N.

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) Engineering (SRR-E) to provide sample characterization and analyses of Tank 51 sludge samples in support of Sludge Batch (SB) 10. The two Tank 51 sludge samples were sampled and delivered to SRNL in May of 2017. These two tank 51 sludge samples were combined into one composite sample and analyzed for corrosion controls analytes, select radionuclides, chemical elements, density and weight percent total solids and aluminum hydroxides (gibbsite and boehmite) by x-ray diffraction.

  14. Study of twenty preparations of human albumin solution which failed in quality control testing due to elevated sodium content, a poor internal quality control at manufacturing unit.

    PubMed

    Prasad, J P; Madhu, Y; Singh, Surinder; Soni, G R; Agnihotri, N; Singh, Varsha; Kumar, Pradeep; Jain, Nidhi; Prakash, Anu; Singh, Varun

    2016-11-01

    Current study is conducted in our laboratory due to failure in quality control testing of twenty batches of Human Albumin solution in which sodium content is higher than the prescribed limit. These batches are received in short duration from indigenous manufacturer and is the first incident of failure of Human albumin preparation in sodium content of manufacturer. On request of manufacturer, study is conducted to rule out the cause. Repeat testing of each out of specification batch is conducted and a trend analysis is drawn between our findings and manufacturer's results, also study of trend analysis of manufacturer for the last one year. Trend analysis data indicated towards poor consistency of batches with major shift at various time intervals in sodium content of human albumin preparation. Further analysis rule out that non-traceable quality of standard used in the internal quality control testing by manufacturer is the root cause of the problem. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  15. Kinetics and modeling of hexavalent chromium reduction in Enterobacter cloacae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Koji; Kato, Junichi; Yano, Takuo

    1993-01-05

    Kinetics of bacterial reduction of toxic hexavalent chromium (chromate: CrO[sub 4][sup [minus]2]) was investigated using batch and fed-batch cultures of Enterobacter cloacae strain HO1. In fed-batch cultures, the CrO[sub 4][sup [minus]2] feed was controlled on the basis of the rate of pH change. This control strategy has proven to be useful for avoiding toxic CrO[sub 3][sup [minus]2] overload. A simple mathematical model was developed to describe the bacterial process of CrO[sub 4][sup [minus]2] reduction. In this model, two types of bacterial cells were considered: induced, CrO[sub 4][sup [minus]2]-resistant cells and uninduced, sensitive ones. Only resistant cells were assumed to bemore » able to reduce CrO[sub 4][sup [minus]2]. These fundamental ideas were supported by the model predictions which well approximated all experimental data. In a simulation study, the model was also used to optimize fed-batch cultures, instead of lengthy and expensive laboratory experiments.« less

  16. Removal of Cesium From Acidic Radioactive Tank Waste Using IONSIV IE-911 (CST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Nicholas Robert; Todd, Terry Allen

    2004-10-01

    IONSIV IE-911, or the engineered form of crystalline silicotitanate (CST), manufactured by UOP Molecular Sieves, has been evaluated for the removal of cesium from Idaho National Engineering and Environmental Laboratory (INEEL) acidic radioactive tank waste. A series of batch contacts and column tests were performed by using three separate batches of CST. Batch contacts were performed to evaluate the concentration effects of nitric acid, sodium, and potassium ions on cesium sorption. Additional batch tests were performed to determine if americium, mercury, and plutonium would sorb onto IONSIV IE-911. An equilibrium isotherm was generated by using a concentrated tank waste simulant.more » Column tests using a 1.5 cm 3 column and flow rates of 3, 5, 10, 20, and 30 bed volumes (BV)/hr were performed to elucidate dynamic cesium sorption capacities and sorption kinetics. Additional experiments investigated the effect of CST batch and pretreatment on cesium sorption. The thermal stability of IONSIV IE-911 was evaluated by performing thermal gravimetric analysis/differential thermal analysis. Overall, IONSIV IE-911 was shown to be effective for cesium sorption from complex, highly acidic solutions; however, sorbent stability in these solutions may have a deleterious effect on cesium sorption.« less

  17. Micropollutant removal by attached and suspended growth in a hybrid biofilm-activated sludge process.

    PubMed

    Falås, P; Longrée, P; la Cour Jansen, J; Siegrist, H; Hollender, J; Joss, A

    2013-09-01

    Removal of organic micropollutants in a hybrid biofilm-activated sludge process was investigated through batch experiments, modeling, and full-scale measurements. Batch experiments with carriers and activated sludge from the same full-scale reactor were performed to assess the micropollutant removal rates of the carrier biofilm under oxic conditions and the sludge under oxic and anoxic conditions. Clear differences in the micropollutant removal kinetics of the attached and suspended growth were demonstrated, often with considerably higher removal rates for the biofilm compared to the sludge. For several micropollutants, the removal rates were also affected by the redox conditions, i.e. oxic and anoxic. Removal rates obtained from the batch experiments were used to model the micropollutant removal in the full-scale process. The results from the model and plant measurements showed that the removal efficiency of the process can be predicted with acceptable accuracy (± 25%) for most of the modeled micropollutants. Furthermore, the model estimations indicate that the attached growth in hybrid biofilm-activated sludge processes can contribute significantly to the removal of individual compounds, such as diclofenac. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Physicochemical characterization of fine particles from small-scale wood combustion

    NASA Astrophysics Data System (ADS)

    Lamberg, Heikki; Nuutinen, Kati; Tissari, Jarkko; Ruusunen, Jarno; Yli-Pirilä, Pasi; Sippula, Olli; Tapanainen, Maija; Jalava, Pasi; Makkonen, Ulla; Teinilä, Kimmo; Saarnio, Karri; Hillamo, Risto; Hirvonen, Maija-Riitta; Jokiniemi, Jorma

    2011-12-01

    Emissions from small-scale wood combustion appliances are of special interest since fine particles have been consistently associated with adverse health effects. It has been reported that the physicochemical characteristics of the emitted particles affect also their toxic properties but the mechanisms behind these phenomena and the causative role of particles from wood combustion sources are still mostly unknown. Combustion situations vary significantly in small-scale appliances, especially in batch combustion. Combustion behaviour is affected by fuel properties, appliance type and operational practice. Particle samples were collected from six appliances representing different combustion situations in small-scale combustion. These appliances were five wood log fuelled stoves, including one stove equipped with modern combustion technology, three different conventional combustion appliances and one sauna stove. In addition, a modern small-scale pellet boiler represented advanced continuous combustion technology. The aim of the study was to analyze gas composition and fine particle properties over different combustion situations. Fine particle (PM 1) emissions and their chemical constituents emerging from different combustion situations were compared and this physicochemical data was combined with the toxicological data on cellular responses induced by the same particles (see Tapanainen et al., 2011). There were significant differences in the particle emissions from different combustion situations. Overall, the efficient combustion in the pellet boiler produced the smallest emissions whereas inefficient batch combustion in a sauna stove created the largest emissions. Improved batch combustion with air-staging produced about 2.5-fold PM 1 emissions compared to the modern pellet boiler (50.7 mg MJ -1 and 19.7 mg MJ -1, respectively), but the difference in the total particulate PAH content was 750-fold (90 μg MJ -1 and 0.12 μg MJ -1, respectively). Improved batch combustion and conventional batch combustion showed almost the same PM 1 emissions (51.6 mg MJ -1), but a 10-fold difference in total particulate PAH emissions (910 μg MJ -1). These results highlight that same PM 1 emissions can be associated with very different chemical compositions, potentially leading to different toxic properties of the particles. Thus, changing from an old, less efficient, combustion appliance to a modern appliance can have a greater impact on toxic properties than the emitted PM 1 mass might indicate.

  19. The use of dissolved oxygen-controlled, fed-batch aerobic cultivation for recombinant protein subunit vaccine manufacturing.

    PubMed

    Farrell, Patrick; Sun, Jacob; Champagne, Paul-Philippe; Lau, Heron; Gao, Meg; Sun, Hong; Zeiser, Arno; D'Amore, Tony

    2015-11-27

    A simple "off-the-shelf" fed-batch approach to aerobic bacterial cultivation for recombinant protein subunit vaccine manufacturing is presented. In this approach, changes in the dissolved oxygen levels are used to adjust the nutrient feed rate (DO-stat), so that the desired dissolved oxygen level is maintained throughout cultivation. This enables high Escherichia coli cell densities and recombinant protein titers. When coupled to a kLa-matched scale-down model, process performance is shown to be consistent at the 2L, 20L, and 200L scales for two recombinant E. coli strains expressing different protein subunit vaccine candidates. Additionally, by mining historical DO-stat nutrient feeding data, a method to transition from DO-stat to a pre-determined feeding profile suitable for larger manufacturing scales without using feedback control is demonstrated at the 2L, 20L, and 200L scales. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Gravimetric enrichment of high lipid and starch accumulating microalgae.

    PubMed

    Hassanpour, Morteza; Abbasabadi, Mahsa; Ebrahimi, Sirous; Hosseini, Maryam; Sheikhbaglou, Ahmad

    2015-11-01

    This study presents gravimetric enrichment of mixed culture to screen starch and lipid producing species separately in a sequencing batch reactor. In the enriched starch-producing mixed culture photobioreactor, the starch content at the end of steady state batch became 3.42 times the beginning of depletion. Whereas in the enriched lipid-producing photobioreactor, the lipid content at the end of steady state batch became 3 times the beginning of famine phase. The obtained results revealed that the gravimetric enrichment is a suitable screening method for specific production of storage compounds in none-sterile large-scaled condition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Evaluation of enzymatic reactors for large-scale panose production.

    PubMed

    Fernandes, Fabiano A N; Rodrigues, Sueli

    2007-07-01

    Panose is a trisaccharide constituted by a maltose molecule bonded to a glucose molecule by an alpha-1,6-glycosidic bond. This trisaccharide has potential to be used in the food industry as a noncariogenic sweetener, as the oral flora does not ferment it. Panose can also be considered prebiotic for stimulating the growth of benefic microorganisms, such as lactobacillus and bifidobacteria, and for inhibiting the growth of undesired microorganisms such as E. coli and Salmonella. In this paper, the production of panose by enzymatic synthesis in a batch and a fed-batch reactor was optimized using a mathematical model developed to simulate the process. Results show that optimum production is obtained in a fed-batch process with an optimum production of 11.23 g/l h of panose, which is 51.5% higher than production with batch reactor.

  2. SOA FROM ISOPRENE OXIDATION PRODUCTS: MODEL SIMULATION OF CLOUD CHEMISTRY

    EPA Science Inventory

    Recent laboratory evidence supports the hypothesis that secondary organic aerosol (SOA) is formed in the atmosphere through aqueous-phase reactions in clouds. The results of batch photochemical reactions of glyoxal, methylglyoxal and hydrogen peroxide are presented. These labor...

  3. Kinetic Release of Alkalinity from Particle-Containing Oil-in-Water Emulsions

    NASA Astrophysics Data System (ADS)

    Muller, K.; Chapra, S. C.; Ramsburg, A.

    2014-12-01

    Oil-in-water emulsions are typically employed during remediation to promote biotic reduction of contaminants. Emulsions, however, hold promise for encapsulated delivery of many types of active ingredients required for successful site remediation or long-term site stewardship. Our research is currently focused on using alkalinity-containing particles held within oil-in-water emulsions to sustain control of subsurface pH. Here we describe results from laboratory experiments and mathematical modeling conducted to quantify the kinetics associated with the emulsion delivery and alkalinity release process. Kinetically stable oil-in-water emulsions containing (~60 nmCaCO3 or ~100 nm MgO particles) were previously developed using soybean oil and Gum Arabic as a stabilizing agent. Batch and column experiments were employed to assess the accessibility and release of the alkalinity from the emulsion. Successive additions of HCl were used in batch systems to produce several pH responses (pH rebounds) that were subsequently modeled to elucidate release mechanisms and rates for varying emulsion compositions and particle types. Initial results suggest that a linear-driving-force model is generally able to capture the release behavior in the batch system when the temporally-constant, lumped mass-transfer coefficient is scaled by the fraction of particle mass remaining within the droplets. This result suggests that the rate limiting step in the release process may be the interphase transfer of reactive species at the oil-water interface. 1-d column experiments were also completed in order to quantify the extent and rate of alkalinity release from emulsion droplets retained in a sandy medium. Alkalinity release from the retained droplets treated a pH 4 influent water for 25-60 pore volumes (the duration depended on particle type and mass loading), and the cessation in treatment corresponded to exhaustion of the particle mass held within the oil. Column experiments were simulated using a transport code containing the linear-driving-force expression evaluated in the batch experiments. In these simulations the lumped mass transfer coefficient was fit and compared with values predicted using existing correlations for liquid-liquid and solid-liquid interfaces in porous media.

  4. Do lab-derived distribution coefficient values of pesticides match distribution coefficient values determined from column and field-scale experiments? A critical analysis of relevant literature.

    PubMed

    Vereecken, H; Vanderborght, J; Kasteel, R; Spiteller, M; Schäffer, A; Close, M

    2011-01-01

    In this study, we analyzed sorption parameters for pesticides that were derived from batch and column or batch and field experiments. The batch experiments analyzed in this study were run with the same pesticide and soil as in the column and field experiments. We analyzed the relationship between the pore water velocity of the column and field experiments, solute residence times, and sorption parameters, such as the organic carbon normalized distribution coefficient ( ) and the mass exchange coefficient in kinetic models, as well as the predictability of sorption parameters from basic soil properties. The batch/column analysis included 38 studies with a total of 139 observations. The batch/field analysis included five studies, resulting in a dataset of 24 observations. For the batch/column data, power law relationships between pore water velocity, residence time, and sorption constants were derived. The unexplained variability in these equations was reduced, taking into account the saturation status and the packing status (disturbed-undisturbed) of the soil sample. A new regression equation was derived that allows estimating the values derived from column experiments using organic matter and bulk density with an value of 0.56. Regression analysis of the batch/column data showed that the relationship between batch- and column-derived values depends on the saturation status and packing of the soil column. Analysis of the batch/field data showed that as the batch-derived value becomes larger, field-derived values tend to be lower than the corresponding batch-derived values, and vice versa. The present dataset also showed that the variability in the ratio of batch- to column-derived value increases with increasing pore water velocity, with a maximum value approaching 3.5. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  5. Demonstration-Scale High-Cell-Density Fermentation of Pichia pastoris.

    PubMed

    Liu, Wan-Cang; Zhu, Ping

    2018-01-01

    Pichia pastoris has been one of the most successful heterologous overexpression systems in generating proteins for large-scale production through high-cell-density fermentation. However, optimizing conditions of the large-scale high-cell-density fermentation for biochemistry and industrialization is usually a laborious and time-consuming process. Furthermore, it is often difficult to produce authentic proteins in large quantities, which is a major obstacle for functional and structural features analysis and industrial application. For these reasons, we have developed a protocol for efficient demonstration-scale high-cell-density fermentation of P. pastoris, which employs a new methanol-feeding strategy-biomass-stat strategy and a strategy of increased air pressure instead of pure oxygen supplement. The protocol included three typical stages of glycerol batch fermentation (initial culture phase), glycerol fed-batch fermentation (biomass accumulation phase), and methanol fed-batch fermentation (induction phase), which allows direct online-monitoring of fermentation conditions, including broth pH, temperature, DO, anti-foam generation, and feeding of glycerol and methanol. Using this protocol, production of the recombinant β-xylosidase of Lentinula edodes origin in 1000-L scale fermentation can be up to ~900 mg/L or 9.4 mg/g cells (dry cell weight, intracellular expression), with the specific production rate and average specific production of 0.1 mg/g/h and 0.081 mg/g/h, respectively. The methodology described in this protocol can be easily transferred to other systems, and eligible to scale up for a large number of proteins used in either the scientific studies or commercial purposes.

  6. Valorization of crude glycerol and eggshell biowaste as media components for hydrogen production: A scale-up study using co-culture system.

    PubMed

    Pachapur, Vinayak Laxman; Das, Ratul Kumar; Brar, Satinder Kaur; Le Bihan, Yann; Buelna, Gerardo

    2017-02-01

    The properties of eggshells (EGS) as neutralizing and immobilizing agent were investigated for hydrogen (H 2 ) production using crude glycerol (CG) by co-culture system. Eggshells of different sizes and concentrations were used during batch and repeated-batch fermentation. For batch and repeated-batch fermentation, the maximum H 2 production (36.53±0.53 and 41.16±0.95mmol/L, respectively) was obtained with the EGS size of 33μm

  7. Conjugated Polymers Via Direct Arylation Polymerization in Continuous Flow: Minimizing the Cost and Batch-to-Batch Variations for High-Throughput Energy Conversion.

    PubMed

    Gobalasingham, Nemal S; Carlé, Jon E; Krebs, Frederik C; Thompson, Barry C; Bundgaard, Eva; Helgesen, Martin

    2017-11-01

    Continuous flow methods are utilized in conjunction with direct arylation polymerization (DArP) for the scaled synthesis of the roll-to-roll compatible polymer, poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(4,7-di(thiophen-2-yl)-benzo[c][1,2,5]thiadiazole)] (PPDTBT). PPDTBT is based on simple, inexpensive, and scalable monomers using thienyl-flanked benzothiadiazole as the acceptor, which is the first β-unprotected substrate to be used in continuous flow via DArP, enabling critical evaluation of the suitability of this emerging synthetic method for minimizing defects and for the scaled synthesis of high-performance materials. To demonstrate the usefulness of the method, DArP-prepared PPDTBT via continuous flow synthesis is employed for the preparation of indium tin oxide (ITO)-free and flexible roll-coated solar cells to achieve a power conversion efficiency of 3.5% for 1 cm 2 devices, which is comparable to the performance of PPDTBT polymerized through Stille cross coupling. These efforts demonstrate the distinct advantages of the continuous flow protocol with DArP avoiding use of toxic tin chemicals, reducing the associated costs of polymer upscaling, and minimizing batch-to-batch variations for high-quality material. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, JP; Thapaliya, N; Kelly, MJ

    Fatty acids (FAs) derived via thermal hydrolysis of food-grade lard and canola oil were deoxygenated in the liquid phase using a commercially available 5 wt % Pd/C catalyst. Online quadrupole mass spectrometry and gas chromatography were used to monitor the effluent gases from the semi-batch stirred autoclave reactors. Stearic, oleic, and palmitic acids were employed as model compounds. A catalyst lifetime exceeding 2200 turnovers for oleic acid deoxygenation was demonstrated at 300 degrees C and 15 atm under 10% H-2. The initial decarboxylation rate of palmitic acid under 5% H-2 decreases sharply with increasing initial concentration; in contrast, the initialmore » decarbonylation rate increases linearly, indicative of first-order kinetics. Scale-up of diesel-range hydrocarbon production was investigated by increasing the reactor vessel size, initial FA concentration, and FA/catalyst mass ratio. Lower CO2 selectivity and batch productivity were observed at the larger scales (600 and 5000 mL), primarily because of the higher initial FA concentration (67 wt %) employed. Because unsaturated FAs must be hydrogenated before deoxygenation can proceed at an appreciable rate, the additional batch time required for FA hydrogenation reduces the batch productivity for unsaturated feedstocks. Low-temperature hydrogenation of unsaturated feedstocks (using Pd/C or another less-expensive catalyst) prior to deoxygenation is recommended.« less

  9. Cultivation of oleaginous Rhodotorula mucilaginosa in airlift bioreactor by using seawater.

    PubMed

    Yen, Hong-Wei; Liao, Yu-Ting; Liu, Yi Xian

    2016-02-01

    The enormous water resource consumption is a concern to the scale-up fermentation process, especially for those cheap fermentation commodities, such as microbial oils as the feedstock for biodiesel production. The direct cultivation of oleaginous Rhodotorula mucilaginosa in a 5-L airlift bioreactor using seawater instead of pure water led to a slightly lower biomass being achieved, at 17.2 compared to 18.1 g/L, respectively. Nevertheless, a higher lipid content of 65 ± 5% was measured in the batch using seawater as compared to the pure water batch. Both the salinity and osmotic pressure decreased as the cultivation time increased in the seawater batch, and these effects may contribute to the high tolerance for salinity. No effects were observed for the seawater on the fatty acid profiles. The major components for both batches using seawater and pure water were C16:0 (palmitic acid), C18:1 (oleic acid) and C18:2 (linoleic acid), which together accounted for over 85% of total lipids. The results of this study indicated that seawater could be a suitable option for scaling up the growth of oleaginous R. mucilaginosa, especially from the perspective of water resource utilization. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Application of Biosurfactants Produced by Pseudomonas putida using Crude Palm Oil (CPO) as Substrate for Crude Oil Recovery using Batch Method

    NASA Astrophysics Data System (ADS)

    Suryanti, V.; Handayani, D. S.; Masykur, A.; Septyaningsih, I.

    2018-03-01

    The application of biosurfactants which have been produced by Pseudomonas putida in nutrient broth medium supplemented with NaCl and crude palm oil (CPO) for oil recovery has been evaluated. The crude and purified biosurfactants have been examined for oil recovery from a laboratory oil-contaminated sand in agitated flask (batch method). Two synthetic surfactants and water as control was also performed for oil recovery as comparisons. Using batch method, the results showed that removing ability of crude oil from the oil-contaminated sand by purified and crude biosurfactants were 79.40±3.10 and 46.84±2.23 %, respectively. On other hand, the recoveries obtained with the SDS, Triton X-100 and water were 94.33±0.47, 74.84±7.39 and 34.42±1.21%respectively.

  11. Ion exchange of several radionuclides on the hydrous crystalline silicotitanate, UOP IONSIV IE-911

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huckman, M.E.; Latheef, I.M.; Anthony, R.G.

    1999-04-01

    The crystalline silicotitanate, UOP IONSIV IE-911, is a proven material for removing radionuclides from a wide variety of waste streams. It is superior for removing several radionuclides from the highly alkaline solutions typical of DOE wastes. This laboratory previously developed an equilibrium model applicable to complex solutions for IE-910 (the power form of the granular IE-911), and more recently, the authors have developed several single component ion-exchange kinetic models for predicting column breakthrough curves and batch reactor concentration histories. In this paper, the authors model ion-exchange column performance using effective diffusivities determined from batch kinetic experiments. This technique is preferablemore » because the batch experiments are easier, faster, and cheaper to perform than column experiments. They also extend these ideas to multicomponent systems. Finally, they evaluate the ability of the equilibrium model to predict data for IE-911.« less

  12. Production Experiences with the Cray-Enabled TORQUE Resource Manager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ezell, Matthew A; Maxwell, Don E; Beer, David

    High performance computing resources utilize batch systems to manage the user workload. Cray systems are uniquely different from typical clusters due to Cray s Application Level Placement Scheduler (ALPS). ALPS manages binary transfer, job launch and monitoring, and error handling. Batch systems require special support to integrate with ALPS using an XML protocol called BASIL. Previous versions of Adaptive Computing s TORQUE and Moab batch suite integrated with ALPS from within Moab, using PERL scripts to interface with BASIL. This would occasionally lead to problems when all the components would become unsynchronized. Version 4.1 of the TORQUE Resource Manager introducedmore » new features that allow it to directly integrate with ALPS using BASIL. This paper describes production experiences at Oak Ridge National Laboratory using the new TORQUE software versions, as well as ongoing and future work to improve TORQUE.« less

  13. Coal desulfurization by chlorinolysis production and combustion test evaluation of product coals

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Daly, D.

    1982-01-01

    Laboratory-scale screening tests were carried out on coal from Harrison County, Ohio to establish chlorination and hydrodesulfurization conditions for the batch reactor production of chlorinolysis and chlorinolysis-hydrodesulfurized coals. In addition, three bituminous coals, were treated on the lab scale by the chlorinolysis process to provide 39 to 62% desulfurization. Two bituminous coals and one subbituminous coal were then produced in 11 to 15 pound lots as chlorinolysis and hydrodesulfurized coals. The chlorinolysis coals had a desulfurization of 29-69%, reductions in voltatiles and hydrogen. Hydrodesulfurization provided a much greater desulfurization (56-86%), reductions in volatiles and hydrogen. The three coals were combustion tested in the Penn State ""plane flame furnace'' to determine ignition and burning characteristics. All three coals burned well to completion as: raw coals, chlorinolysis processed coals, and hydrodesulfurized coals. The hydrodesulfurized coals experienced greater ignition delays and reduced burning rates than the other coals because of the reduced volatile content. It is thought that the increased open pore volume in the desulfurized-devolatilized coals compensates in part for the decreased volatiles effect on ignition and burning.

  14. One-dimensional cold cap model for melters with bubblers

    DOE PAGES

    Pokorny, Richard; Hilliard, Zachary J.; Dixon, Derek R.; ...

    2015-07-28

    The rate of glass production during vitrification in an all-electrical melter greatly impacts the cost and schedule of nuclear waste treatment and immobilization. The feed is charged to the melter on the top of the molten glass, where it forms a layer of reacting and melting material, called the cold cap. During the final stages of the batch-to-glass conversion process, gases evolved from reactions produce primary foam, the growth and collapse of which controls the glass production rate. The mathematical model of the cold cap was revised to include functional representation of primary foam behavior and to account for themore » dry cold cap surface. The melting rate is computed as a response to the dependence of the primary foam collapse temperature on the heating rate and melter operating conditions, including the effect of bubbling on the cold cap bottom and top surface temperatures. The simulation results are in good agreement with experimental data from laboratory-scale and pilot-scale melter studies. Lastly, the cold cap model will become part of the full three-dimensional mathematical model of the waste glass melter.« less

  15. Anaerobic treatability of high oil and grease rendering wastewater.

    PubMed

    Nakhla, George; Al-Sabawi, Mustafa; Bassi, Amerjeet; Liu, Victor

    2003-08-29

    This study evaluated the use of a new biosurfactant, BOD-Balance, derived from cactus for the treatment of oil-and-grease-laden rendering wastewater anaerobically. Batch laboratory experimental results and preliminary full-scale data are presented. The biosurfactant affected a significant increase in the COD degradation rate for the raw wastewater. However, after reduction of the oil and grease (O&G) by dissolved air flotation, the biosurfactant did not exhibit any advantages. Modeling of the data indicated that various COD fractions, i.e. both soluble and particulate as well as total COD at various testing conditions conformed well to both zero-order and first-order models. The biosurfactant affected a 164-238 and 164-247% increase in COD and particulate COD biodegradation rate for the raw wastewater. The reduction of O&G concentration to <800 mg/l increased total and soluble COD degradation rates by 106%. Results from the full-scale mesophilic anaerobic digestion system indicated that the addition of the biosurfactant at doses of 130-200 mg/l decreased O&G concentrations from 66,300 to 10,200 mg/l over a 2-month-period.

  16. Optimising the design and operation of semi-continuous affinity chromatography for clinical and commercial manufacture.

    PubMed

    Pollock, James; Bolton, Glen; Coffman, Jon; Ho, Sa V; Bracewell, Daniel G; Farid, Suzanne S

    2013-04-05

    This paper presents an integrated experimental and modelling approach to evaluate the potential of semi-continuous chromatography for the capture of monoclonal antibodies (mAb) in clinical and commercial manufacture. Small-scale single-column experimental breakthrough studies were used to derive design equations for the semi-continuous affinity chromatography system. Verification runs with the semi-continuous 3-column and 4-column periodic counter current (PCC) chromatography system indicated the robustness of the design approach. The product quality profiles and step yields (after wash step optimisation) achieved were comparable to the standard batch process. The experimentally-derived design equations were incorporated into a decisional tool comprising dynamic simulation, process economics and sizing optimisation. The decisional tool was used to evaluate the economic and operational feasibility of whole mAb bioprocesses employing PCC affinity capture chromatography versus standard batch chromatography across a product's lifecycle from clinical to commercial manufacture. The tool predicted that PCC capture chromatography would offer more significant savings in direct costs for early-stage clinical manufacture (proof-of-concept) (∼30%) than for late-stage clinical (∼10-15%) or commercial (∼5%) manufacture. The evaluation also highlighted the potential facility fit issues that could arise with a capture resin (MabSelect) that experiences losses in binding capacity when operated in continuous mode over lengthy commercial campaigns. Consequently, the analysis explored the scenario of adopting the PCC system for clinical manufacture and switching to the standard batch process following product launch. The tool determined the PCC system design required to operate at commercial scale without facility fit issues and with similar costs to the standard batch process whilst pursuing a process change application. A retrofitting analysis established that the direct cost savings obtained by 8 proof-of-concept batches would be sufficient to pay back the investment cost of the pilot-scale semi-continuous chromatography system. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Work flow analysis of around-the-clock processing of blood culture samples and integrated MALDI-TOF mass spectrometry analysis for the diagnosis of bloodstream infections.

    PubMed

    Schneiderhan, Wilhelm; Grundt, Alexander; Wörner, Stefan; Findeisen, Peter; Neumaier, Michael

    2013-11-01

    Because sepsis has a high mortality rate, rapid microbiological diagnosis is required to enable efficient therapy. The effectiveness of MALDI-TOF mass spectrometry (MALDI-TOF MS) analysis in reducing turnaround times (TATs) for blood culture (BC) pathogen identification when available in a 24-h hospital setting has not been determined. On the basis of data from a total number of 912 positive BCs collected within 140 consecutive days and work flow analyses of laboratory diagnostics, we evaluated different models to assess the TATs for batch-wise and for immediate response (real-time) MALDI-TOF MS pathogen identification of positive BC results during the night shifts. The results were compared to TATs from routine BC processing and biochemical identification performed during regular working hours. Continuous BC incubation together with batch-wise MALDI-TOF MS analysis enabled significant reductions of up to 58.7 h in the mean TATs for the reporting of the bacterial species. The TAT of batch-wise MALDI-TOF MS analysis was inferior by a mean of 4.9 h when compared to the model of the immediate work flow under ideal conditions with no constraints in staff availability. Together with continuous cultivation of BC, the 24-h availability of MALDI-TOF MS can reduce the TAT for microbial pathogen identification within a routine clinical laboratory setting. Batch-wise testing of positive BC loses a few hours compared to real-time identification but is still far superior to classical BC processing. Larger prospective studies are required to evaluate the contribution of rapid around-the-clock pathogen identification to medical decision-making for septicemic patients.

  18. Systematic interpolation method predicts protein chromatographic elution with salt gradients, pH gradients and combined salt/pH gradients.

    PubMed

    Creasy, Arch; Barker, Gregory; Carta, Giorgio

    2017-03-01

    A methodology is presented to predict protein elution behavior from an ion exchange column using both individual or combined pH and salt gradients based on high-throughput batch isotherm data. The buffer compositions are first optimized to generate linear pH gradients from pH 5.5 to 7 with defined concentrations of sodium chloride. Next, high-throughput batch isotherm data are collected for a monoclonal antibody on the cation exchange resin POROS XS over a range of protein concentrations, salt concentrations, and solution pH. Finally, a previously developed empirical interpolation (EI) method is extended to describe protein binding as a function of the protein and salt concentration and solution pH without using an explicit isotherm model. The interpolated isotherm data are then used with a lumped kinetic model to predict the protein elution behavior. Experimental results obtained for laboratory scale columns show excellent agreement with the predicted elution curves for both individual or combined pH and salt gradients at protein loads up to 45 mg/mL of column. Numerical studies show that the model predictions are robust as long as the isotherm data cover the range of mobile phase compositions where the protein actually elutes from the column. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Start-up and operation strategies on the liquefied food waste anaerobic digestion and a full-scale case application.

    PubMed

    Meng, Ying; Shen, Fei; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Chufo, Akiber; Jaffar, Muhammad; Li, Xiujin

    2014-11-01

    Batch anaerobic digestion was employed to investigate the efficient start-up strategies for the liquefied food waste, and sequencing batch digestion was also performed to determine maximum influent organic loading rate (OLR) for efficient and stable operation. The results indicated that the start-up could be well improved using appropriate wastewater organic load and food-to-microorganism ratios (F/M). When digestion was initialized at low chemical oxygen demand (COD) concentration of 20.0 gCOD L(-1), the start-up would go well using lower F/M ratio of 0.5-0.7. The OLR 7.0 gCOD L(-1) day(-1) was recommended for operating the ASBR digestion, in which the COD conversion of 96.7 ± 0.53% and biomethane yield of 3.5 ± 0.2 L gCOD(-1) were achieved, respectively. The instability would occur when OLR was higher than 7.0 gCOD L(-1) day(-1), and this instability was not recoverable. Lipid was suggested to be removed before anaerobic digestion. The anaerobic digestion process in engineering project ran well, and good performance was achieved when the start-up and operational strategies from laboratory study were applied. For case application, stable digestion performance was achieved in a digester (850 m(3) volume) with biogas production of 1.0-3.8 m(3) m(-3) day(-1).

  20. Breeding Strategy To Generate Robust Yeast Starter Cultures for Cocoa Pulp Fermentations

    PubMed Central

    Meersman, Esther; Steensels, Jan; Paulus, Tinneke; Struyf, Nore; Saels, Veerle; Mathawan, Melissa; Koffi, Jean; Vrancken, Gino

    2015-01-01

    Cocoa pulp fermentation is a spontaneous process during which the natural microbiota present at cocoa farms is allowed to ferment the pulp surrounding cocoa beans. Because such spontaneous fermentations are inconsistent and contribute to product variability, there is growing interest in a microbial starter culture that could be used to inoculate cocoa pulp fermentations. Previous studies have revealed that many different fungi are recovered from different batches of spontaneous cocoa pulp fermentations, whereas the variation in the prokaryotic microbiome is much more limited. In this study, therefore, we aimed to develop a suitable yeast starter culture that is able to outcompete wild contaminants and consistently produce high-quality chocolate. Starting from specifically selected Saccharomyces cerevisiae strains, we developed robust hybrids with characteristics that allow them to efficiently ferment cocoa pulp, including improved temperature tolerance and fermentation capacity. We conducted several laboratory and field trials to show that these new hybrids often outperform their parental strains and are able to dominate spontaneous pilot scale fermentations, which results in much more consistent microbial profiles. Moreover, analysis of the resulting chocolate showed that some of the cocoa batches that were fermented with specific starter cultures yielded superior chocolate. Taken together, these results describe the development of robust yeast starter cultures for cocoa pulp fermentations that can contribute to improving the consistency and quality of commercial chocolate production. PMID:26150457

  1. Effects of selected pharmaceutically active compounds on treatment performance in sequencing batch reactors mimicking wastewater treatment plants operations.

    PubMed

    Wang, Shuyi; Gunsch, Claudia K

    2011-05-01

    The impact of four pharmaceutically active compounds (PhACs) introduced both individually and in mixtures was ascertained on the performance of laboratory-scale wastewater treatment sequencing batch reactors (SBRs). When introduced individually at concentrations of 0.1, 1 and 10 μM, no significant differences were observed with respect to chemical oxygen demand (COD) and ammonia removal. Microbial community analyses reveal that although similarity index values generally decreased over time with an increase in PhAC concentrations as compared to the controls, no major microbial community shifts were observed for total bacteria and ammonia-oxidizing bacteria (AOB) communities. However, when some PhACs were introduced in mixtures, they were found to both inhibit nitrification and alter AOB community structure. Ammonia removal decreased by up to 45% in the presence of 0.25 μM gemfibrozil and 0.75 μM naproxen. PhAC mixtures did not however affect COD removal performance suggesting that heterotrophic bacteria are more robust to PhACs than AOB. These results highlight that the joint action of PhACs in mixtures may have significantly different effects on nitrification than the individual PhACs. This phenomenon should be further investigated with a wider range of PhACs so that toxicity effects can more accurately be predicted. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Breeding Strategy To Generate Robust Yeast Starter Cultures for Cocoa Pulp Fermentations.

    PubMed

    Meersman, Esther; Steensels, Jan; Paulus, Tinneke; Struyf, Nore; Saels, Veerle; Mathawan, Melissa; Koffi, Jean; Vrancken, Gino; Verstrepen, Kevin J

    2015-09-01

    Cocoa pulp fermentation is a spontaneous process during which the natural microbiota present at cocoa farms is allowed to ferment the pulp surrounding cocoa beans. Because such spontaneous fermentations are inconsistent and contribute to product variability, there is growing interest in a microbial starter culture that could be used to inoculate cocoa pulp fermentations. Previous studies have revealed that many different fungi are recovered from different batches of spontaneous cocoa pulp fermentations, whereas the variation in the prokaryotic microbiome is much more limited. In this study, therefore, we aimed to develop a suitable yeast starter culture that is able to outcompete wild contaminants and consistently produce high-quality chocolate. Starting from specifically selected Saccharomyces cerevisiae strains, we developed robust hybrids with characteristics that allow them to efficiently ferment cocoa pulp, including improved temperature tolerance and fermentation capacity. We conducted several laboratory and field trials to show that these new hybrids often outperform their parental strains and are able to dominate spontaneous pilot scale fermentations, which results in much more consistent microbial profiles. Moreover, analysis of the resulting chocolate showed that some of the cocoa batches that were fermented with specific starter cultures yielded superior chocolate. Taken together, these results describe the development of robust yeast starter cultures for cocoa pulp fermentations that can contribute to improving the consistency and quality of commercial chocolate production. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Comparison of some characteristics of aerobic granules and sludge flocs from sequencing batch reactors.

    PubMed

    Li, J; Garny, K; Neu, T; He, M; Lindenblatt, C; Horn, H

    2007-01-01

    Physical, chemical and biological characteristics were investigated for aerobic granules and sludge flocs from three laboratory-scale sequencing batch reactors (SBRs). One reactor was operated as normal SBR (N-SBR) and two reactors were operated as granular SBRs (G-SBR1 and G-SBR2). G-SBR1 was inoculated with activated sludge and G-SBR2 with granules from the municipal wastewater plant in Garching (Germany). The following major parameters and functions were measured and compared between the three reactors: morphology, settling velocity, specific gravity (SG), sludge volume index (SVI), specific oxygen uptake rate (SOUR), distribution of the volume fraction of extracellular polymeric substances (EPS) and bacteria, organic carbon and nitrogen removal. Compared with sludge flocs, granular sludge had excellent settling properties, good solid-liquid separation, high biomass concentration, simultaneous nitrification and denitrification. Aerobic granular sludge does not have a higher microbial activity and there are some problems including higher effluent suspended solids, lower ratio of VSS/SS and no nitrification at the beginning of cultivation. Measurement with CLSM and additional image analysis showed that EPS glycoconjugates build one main fraction inside the granules. The aerobic granules from G-SBR1 prove to be heavier, smaller and have a higher microbial activity compared with G-SBR2. Furthermore, the granules were more compact, with lower SVI and less filamentous bacteria.

  4. Application of process analytical technology for monitoring freeze-drying of an amorphous protein formulation: use of complementary tools for real-time product temperature measurements and endpoint detection.

    PubMed

    Schneid, Stefan C; Johnson, Robert E; Lewis, Lavinia M; Stärtzel, Peter; Gieseler, Henning

    2015-05-01

    Process analytical technology (PAT) and quality by design have gained importance in all areas of pharmaceutical development and manufacturing. One important method for monitoring of critical product attributes and process optimization in laboratory scale freeze-drying is manometric temperature measurement (MTM). A drawback of this innovative technology is that problems are encountered when processing high-concentrated amorphous materials, particularly protein formulations. In this study, a model solution of bovine serum albumin and sucrose was lyophilized at both conservative and aggressive primary drying conditions. Different temperature sensors were employed to monitor product temperatures. The residual moisture content at primary drying endpoints as indicated by temperature sensors and batch PAT methods was quantified from extracted sample vials. The data from temperature probes were then used to recalculate critical product parameters, and the results were compared with MTM data. The drying endpoints indicated by the temperature sensors were not suitable for endpoint indication, in contrast to the batch methods endpoints. The accuracy of MTM Pice data was found to be influenced by water reabsorption. Recalculation of Rp and Pice values based on data from temperature sensors and weighed vials was possible. Overall, extensive information about critical product parameters could be obtained using data from complementary PAT tools. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. The bacterial biota of laboratory-reared edible mealworms (Tenebrio molitor L.): From feed to frass.

    PubMed

    Osimani, Andrea; Milanović, Vesna; Cardinali, Federica; Garofalo, Cristiana; Clementi, Francesca; Pasquini, Marina; Riolo, Paola; Ruschioni, Sara; Isidoro, Nunzio; Loreto, Nino; Franciosi, Elena; Tuohy, Kieran; Petruzzelli, Annalisa; Foglini, Martina; Gabucci, Claudia; Tonucci, Franco; Aquilanti, Lucia

    2018-05-02

    Tenebrio molitor represents one of the most popular species used for the large-scale conversion of plant biomass into protein and is characterized by high nutritional value. In the present laboratory study, the bacterial biota characterizing a pilot production chain of fresh T. molitor larvae was investigated. To this end, different batches of fresh mealworm larvae, their feeding substrate (wheatmeal) and frass were analyzed by viable microbial counts, PCR-DGGE and Illumina sequencing. Moreover, the occurrence of Coxiella burnetii, Pseudomonas aeruginosa and Shiga toxin-producing E. coli (STEC) was assessed through qualitative real-time PCR assays. Microbial viable counts highlighted low microbial contamination of the wheatmeal, whereas larvae and frass were characterized by high loads of Enterobacteriaceae, lactic acid bacteria, and several species of mesophilic aerobes. Spore-forming bacteria were detected to a lesser extent in all the samples. The combined molecular approach used to profile the microbiota confirmed the low microbial contamination of wheatmeal and allowed the detection of Enterobacter spp., Erwinia spp., Enterococcus spp. and Lactococcus spp. as dominant genera in both larvae and frass. Moreover, Klebsiella spp., Pantoea spp., and Xenorhabdus spp. were found to be in the minority. Entomoplasmatales (including Spiroplasma spp.) constituted a major fraction of the microbiota of one batch of larvae. From the real-time PCR assays, no sample was positive for either C. burnetii or STEC, whereas P. aeruginosa was detected in one sample of frass. Based on the overall results, two sources of microbial contamination were hypothesized, namely feeding with wheatmeal and vertical transmission of microorganisms from mother to offspring. Since mealworms are expected to be eaten as a whole, the overall outcomes collected in this laboratory study discourage the consumption of fresh mealworm larvae. Moreover, microbial loads and the absence of potential pathogens known to be associated with this insect species should be carefully assessed in order to reduce the minimum risk for consumers, by identifying the most opportune processing methods (e.g., boiling, frying, drying, etc.). Copyright © 2018 Elsevier B.V. All rights reserved.

  6. LOSS OF ORGANIC CHEMICALS IN SOIL: PURE COMPOUND TREATABILITY STUDIES

    EPA Science Inventory

    Comprehensive screening data on the treatability of 32 organic chemicals in soil were developed. Of the evaluated chemicals, 22 were phenolic compounds. Aerobic batch laboratory microcosm experiments were conducted using two soils: an acidic clay soil with <1% organic matter and ...

  7. Sensitive Electroanalysis Using Solid Electrodes.

    ERIC Educational Resources Information Center

    Wang, Joseph

    1982-01-01

    A hydrodynamic modulation voltammetry (HMV) experiment involving use of simple hydrodynamic modulation procedures is described. Competing with time/equipment restrictions of most teaching laboratories (stopped-stirring and stopped-flow volumetry), students perform both batch and flow analyses and are introduced to analytical flow systems and the…

  8. A Methodology for Characterizing Potential Uranium Transport in Deep Geological Disposal Sites

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.; Reimus, P. W.

    2013-12-01

    In order to make safe and reasonable decisions about radioactive waste disposal in deep geologic sites, it is important to understand the fate and potential transport of long half-life transuranic radionuclides over a wide range of time and distance scales. The objective of this study was to evaluate and demonstrate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured/weathered granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments involving uranium, as well as other actinides, have already been conducted. Working on this system provides a unique opportunity to compare lab experimental results with field-scale observations. Drilled rock cores and weathered fracture fill material (FFM) from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption/desorption and column breakthrough experiments. Uranium solutions were made by adding uranium to a synthetic Grimsel groundwater that matched the natural water chemistry found in the GTS groundwater. Batch and breakthrough experiments were conducted using solutions between pH 6.9 and 9.0. All column experiments were conducted using syringe pumps at low flow rate (<0.3 ml h-1) in small columns containing 5 g of material with pore volumes of 2-3 ml. These small columns allow rapid and economical evaluation of sorption/desorption behavior under flowing conditions (and in duplicate or triplicate). Solutions were switched to uranium-free synthetic Grimsel groundwater after equilibration in batch experiments or after near-steady uranium breakthrough occurred in column experiments. The measurement of uranium concentrations as a function of time under these conditions allowed interrogation of desorption rates which we believe control uranium fate and transport over long time and distance scales. Uranium transport was conservative and matched tritium breakthrough for pH 9.0; however, retardation increased when pH was reduced to 7.9 and 6.9. We are currently evaluating uranium adsorption/desorption rates as a function of water chemistry (initial focus on pH), with future testing planned to evaluate the influence of carbonate concentrations, flow rates, mineralogy, bentonite colloids and other actinides (e.g., Am). Figure 1. Uranium breakthrough results for (a) 6.5 μM U, (b) U-free solution, (c) flow rate increased from 0.3 to 0.6 mL h-1, (d) pH increased from 6.8 to 7.2, and (e) pH increased from 7.2 to 8.8.

  9. Perfusion cell culture decreases process and product heterogeneity in a head-to-head comparison with fed-batch.

    PubMed

    Walther, Jason; Lu, Jiuyi; Hollenbach, Myles; Yu, Marcella; Hwang, Chris; McLarty, Jean; Brower, Kevin

    2018-05-30

    In this study, we compared the impacts of fed-batch and perfusion platforms on process and product attributes for IgG1- and IgG4-producing cell lines. A "plug-and-play" approach was applied to both platforms at bench scale, using commercially available basal and feed media, a standard feed strategy for fed-batch, and ATF filtration for perfusion. Product concentration in fed-batch was 2.5 times greater than perfusion, while average productivity in perfusion was 7.5 times greater than fed-batch. PCA revealed more variability in the cell environment and metabolism during the fed-batch run. LDH measurements showed that exposure of product to cell lysate was 7-10 times greater in fed-batch. Product analysis shows larger abundances of neutral species in perfusion, likely due to decreased bioreactor residence times and extracellular exposure. The IgG1 perfusion product also had higher purity and lower half-antibody. Glycosylation was similar across both culture modes. The first perfusion harvest slice for both product types showed different glycosylation than subsequent harvests, suggesting that product quality lags behind metabolism. In conclusion, process and product data indicate that intra-lot heterogeneity is decreased in perfusion cultures. Additional data and discussion is required to understand the developmental, clinical and commercial implications, and in what situations increased uniformity would be beneficial. This article is protected by copyright. All rights reserved.

  10. Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink

    PubMed Central

    Spinelli, L.; Botwicz, M.; Zolek, N.; Kacprzak, M.; Milej, D.; Sawosz, P.; Liebert, A.; Weigel, U.; Durduran, T.; Foschum, F.; Kienle, A.; Baribeau, F.; Leclair, S.; Bouchard, J.-P.; Noiseux, I.; Gallant, P.; Mermut, O.; Farina, A.; Pifferi, A.; Torricelli, A.; Cubeddu, R.; Ho, H.-C.; Mazurenka, M.; Wabnitz, H.; Klauenberg, K.; Bodnar, O.; Elster, C.; Bénazech-Lavoué, M.; Bérubé-Lauzière, Y.; Lesage, F.; Khoptyar, D.; Subash, A. A.; Andersson-Engels, S.; Di Ninni, P.; Martelli, F.; Zaccanti, G.

    2014-01-01

    A multi-center study has been set up to accurately characterize the optical properties of diffusive liquid phantoms based on Intralipid and India ink at near-infrared (NIR) wavelengths. Nine research laboratories from six countries adopting different measurement techniques, instrumental set-ups, and data analysis methods determined at their best the optical properties and relative uncertainties of diffusive dilutions prepared with common samples of the two compounds. By exploiting a suitable statistical model, comprehensive reference values at three NIR wavelengths for the intrinsic absorption coefficient of India ink and the intrinsic reduced scattering coefficient of Intralipid-20% were determined with an uncertainty of about 2% or better, depending on the wavelength considered, and 1%, respectively. Even if in this study we focused on particular batches of India ink and Intralipid, the reference values determined here represent a solid and useful starting point for preparing diffusive liquid phantoms with accurately defined optical properties. Furthermore, due to the ready availability, low cost, long-term stability and batch-to-batch reproducibility of these compounds, they provide a unique fundamental tool for the calibration and performance assessment of diffuse optical spectroscopy instrumentation intended to be used in laboratory or clinical environment. Finally, the collaborative work presented here demonstrates that the accuracy level attained in this work for optical properties of diffusive phantoms is reliable. PMID:25071947

  11. Synthesis of Cyclic α-Diazo-β-keto Sulfoxides in Batch and Continuous Flow.

    PubMed

    McCaw, Patrick G; Buckley, Naomi M; Eccles, Kevin S; Lawrence, Simon E; Maguire, Anita R; Collins, Stuart G

    2017-04-07

    Diazo transfer to β-keto sulfoxides to form stable isolable α-diazo-β-keto sulfoxides has been achieved for the first time. Both monocyclic and benzofused ketone derived β-keto sulfoxides were successfully explored as substrates for diazo transfer. Use of continuous flow leads to isolation of the desired compounds in enhanced yields relative to standard batch conditions, with short reaction times, increased safety profile, and potential to scale up.

  12. Dynamic Resource Allocation to Improve Service Performance in Order Fulfillment Systems

    DTIC Science & Technology

    2009-01-01

    efficient system uses economies of scale at two points: orders are batched before processing, which reduces processing costs, and processed or- ders ...the ef- fects of batching on order picking processes is well-researched and well-understood ( van den Berg and Gademann, 1999). Because orders are...a final so- journ time distribution. Our work builds on existing research in matrix-geometric methods by Neuts (1981), Asmussen and M0ller (2001

  13. NITRATE REDUCTION AND TRANSFORMATION IN ORGANIC COMPOST MEDIA: LABORATORY BATCH STUDIES

    EPA Science Inventory

    We studied the effectiveness of three organic solid reactive media (cotton burr compost, mulch compost, and Canadian sphagnum peat) that may be potentially used in permeable reactive barriers (PRBs) for groundwater nitrate removal. We aimed at answering the question about the na...

  14. EVALUATION OF SOLID SORBENTS AS A RETROFIT TECHNOLOGY FOR CO2 CAPTURE FROM COAL-FIRED POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holly Krutka; Sharon Sjostrom

    2011-07-31

    Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process/equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designedmore » and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines; 31 carbon based materials; 6 zeolites; 7 supported carbonates (evaluated under separate funding); and 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different field sites. ADA designed and fabricated a slipstream pilot to allow an evaluation of the kinetic behavior of sorbents and provide some flexibility for the physical characteristics of the materials. The design incorporated a transport reactor for the adsorber (co-current reactor) and a fluidized-bed in the regenerator. This combination achieved the sorbent characterization goals and provided an opportunity to evaluate whether the potential cost savings associated with a relatively simple process design could overcome the sacrifices inherent in a co-current separation process. The system was installed at two field sites during the project, Luminant's Martin Lake Steam Electric Station and Xcel Energy's Sherburne County Generating Station (Sherco). Although the system could not maintain continuous 90% CO{sub 2} removal with the sorbents evaluated under this program, it was useful to compare the CO{sub 2} removal properties of several different sorbents on actual flue gas. One of the supported amine materials, sorbent R, was evaluated at both Martin Lake and Sherco. The 1 kWe pilot was operated in continuous mode as well as batch mode. In continuous mode, the sorbent performance could not overcome the limitations of the cocurrent adsorbent design. In batch mode, sorbent R was able to remove up to 90% CO{sub 2} for several cycles. Approximately 50% of the total removal occurred in the first three feet of the adsorption reactor, which was a transport reactor. During continuous testing at Sherco, CO{sub 2} removal decreased to approximately 20% at steady state. The lack of continuous removal was due primarily to the combination of a co-current adsorption system with a fluidized bed for regeneration, a combination which did not provide an adequate driving force to maintain an acceptable working CO{sub 2} capacity. In addition, because sorbent R consisted of a polymeric amine coated on a silica substrate, it was believed that the 50% amine loaded resulted in mass diffusion limitations related to the CO{sub 2} uptake rate. Three additional supported amine materials, sorbents AX, F, and BN, were selected for evaluation using the 1 kW pilot at Sherco. Sorbent AX was operated in batch mode and performed similarly to sorbent R (i.e. could achieve up to 90% removal when given adequate regeneration time). Sorbent BN was not expected to be subject to the same mass diffusion limitations as experienced with sorbent R. When sorbent BN was used in continuous mode the steady state CO{sub 2} removal was approximately double that of sorbent R, which highlighted the importance of sorbents without kinetic limitations.« less

  15. Biotransformation and biodegradation of selected nitroaromatics under anaerobic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razo-Flores, E.; Lettinga, G.; Field, J.A.

    The fate of four nitroaromatic compounds (5-nitrosalicylate, 5NSA; 4-nitrobenzoate, 4NBc; 2,4-dinitrotoluene, 2,4DNT; nitrobenzene, NB) was studied in 160 mL laboratory-scale upward-flow anaerobic sludge bed reactors supplied with a mixture of volatile fatty acids and/or glucose as electron donors. All the nitroaromatics were transformed stoichiometrically to their corresponding aromatic amines. After prolonged reactor operation, 5NSA and 4NBc were completely mineralized to CH[sub 4] and CO[sub 2], whereas 2,4DNT was partially transformed to a nonidentified and nondegradable metabolite. Batch nitro-reduction experiments indicated that the position of the nitro group in relation to the other substituents in the aromatic ring plays a keymore » role in the rate of the nitro-group reduction. The results obtained indicate that certain nitroaromatic compounds can be completely mineralized and serve as a carbon and energy source for anaerobic bacteria.« less

  16. Microbial fuel cells for direct electrical energy recovery from urban wastewaters.

    PubMed

    Capodaglio, A G; Molognoni, D; Dallago, E; Liberale, A; Cella, R; Longoni, P; Pantaleoni, L

    2013-01-01

    Application of microbial fuel cells (MFCs) to wastewater treatment for direct recovery of electric energy appears to provide a potentially attractive alternative to traditional treatment processes, in an optic of costs reduction, and tapping of sustainable energy sources that characterizes current trends in technology. This work focuses on a laboratory-scale, air-cathode, and single-chamber MFC, with internal volume of 6.9 L, operating in batch mode. The MFC was fed with different types of substrates. This study evaluates the MFC behaviour, in terms of organic matter removal efficiency, which reached 86% (on average) with a hydraulic retention time of 150 hours. The MFC produced an average power density of 13.2 mW/m(3), with a Coulombic efficiency ranging from 0.8 to 1.9%. The amount of data collected allowed an accurate analysis of the repeatability of MFC electrochemical behaviour, with regards to both COD removal kinetics and electric energy production.

  17. LSSA large area silicon sheet task continuous Czochralski process development

    NASA Technical Reports Server (NTRS)

    Rea, S. N.

    1978-01-01

    A Czochralski crystal growing furnace was converted to a continuous growth facility by installation of a premelter to provide molten silicon flow into the primary crucible. The basic furnace is operational and several trial crystals were grown in the batch mode. Numerous premelter configurations were tested both in laboratory-scale equipment as well as in the actual furnace. The best arrangement tested to date is a vertical, cylindrical graphite heater containing small fused silicon test tube liner in which the incoming silicon is melted and flows into the primary crucible. Economic modeling of the continuous Czochralski process indicates that for 10 cm diameter crystal, 100 kg furnace runs of four or five crystals each are near-optimal. Costs tend to asymptote at the 100 kg level so little additional cost improvement occurs at larger runs. For these conditions, crystal cost in equivalent wafer area of around $20/sq m exclusive of polysilicon and slicing was obtained.

  18. Optimization of the treatment cycle of pressed-off leachate produced in a facility processing the organic fraction of municipal solid waste.

    PubMed

    d'Antonio, Luca; Fabbricino, Massimiliano; Pontoni, Ludovico

    2015-01-01

    The paper investigates, at a laboratory scale, the applicability of anaerobic digestion for the treatment of pressed-off leachate produced in a biomechanical treatment plant for municipal solid waste. Batch tests show that the anaerobic process proceeds smoothly and produces about 10,000 mL of methane per litre of treated leachate. The process is characterized by a lag phase lasting about 30 days, and is completed in about 2 months. Chemical oxygen demand (COD) and volatile fatty acids monitoring allows studying process kinetics that are modelled through a triple linear expression. Physical and biological treatments are also investigated to reduce the residual organic charge of the produced digestate. The best performances are obtained via aerobic degradation followed by assisted sedimentation. This cycle reduces the residual COD of about 85%, and allows the correct disposal of the final waste stream.

  19. Effect of temperature on solids reductions and on degradation kinetics during thermophilic aerobic digestion of a simulated sludge.

    PubMed

    Toki, C J

    2008-07-01

    Laboratory-scale experiments were conducted to determine the influence of higher thermophilic temperatures on thermophilic aerobic digestion treatment of a simulated sludge. The efficiency of the process was evaluated in respect of solids removal and degradation rate constants at four thermophilic temperatures. Batch runs were operated at a retention time of one day and temperatures of 65, 70, 72 and 75 degrees C. The results indicated that temperature increase did not impart any significant benefits to the digestion operation in terms of suspended solids and biochemichal oxygen demand reduction. The findings from this research also suggested that the treatment would not appear to benefit from temperatures higher than 65 degrees C, as classically suggested by Van't Hoff-Arrhenius. Therefore, increase of thermophilic temperature in the tested 65-75 degrees C range does not enhance the efficiency of thermophilic, aerobic sludge digestion treatment.

  20. Application of a microcomputer-based system to control and monitor bacterial growth.

    PubMed

    Titus, J A; Luli, G W; Dekleva, M L; Strohl, W R

    1984-02-01

    A modular microcomputer-based system was developed to control and monitor various modes of bacterial growth. The control system was composed of an Apple II Plus microcomputer with 64-kilobyte random-access memory; a Cyborg ISAAC model 91A multichannel analog-to-digital and digital-to-analog converter; paired MRR-1 pH, pO(2), and foam control units; and in-house-designed relay, servo control, and turbidimetry systems. To demonstrate the flexibility of the system, we grew bacteria under various computer-controlled and monitored modes of growth, including batch, turbidostat, and chemostat systems. The Apple-ISAAC system was programmed in Labsoft BASIC (extended Applesoft) with an average control program using ca. 6 to 8 kilobytes of memory and up to 30 kilobytes for datum arrays. This modular microcomputer-based control system was easily coupled to laboratory scale fermentors for a variety of fermentations.

  1. Application of a Microcomputer-Based System to Control and Monitor Bacterial Growth

    PubMed Central

    Titus, Jeffrey A.; Luli, Gregory W.; Dekleva, Michael L.; Strohl, William R.

    1984-01-01

    A modular microcomputer-based system was developed to control and monitor various modes of bacterial growth. The control system was composed of an Apple II Plus microcomputer with 64-kilobyte random-access memory; a Cyborg ISAAC model 91A multichannel analog-to-digital and digital-to-analog converter; paired MRR-1 pH, pO2, and foam control units; and in-house-designed relay, servo control, and turbidimetry systems. To demonstrate the flexibility of the system, we grew bacteria under various computer-controlled and monitored modes of growth, including batch, turbidostat, and chemostat systems. The Apple-ISAAC system was programmed in Labsoft BASIC (extended Applesoft) with an average control program using ca. 6 to 8 kilobytes of memory and up to 30 kilobytes for datum arrays. This modular microcomputer-based control system was easily coupled to laboratory scale fermentors for a variety of fermentations. PMID:16346462

  2. GenBank

    PubMed Central

    Benson, Dennis A.; Karsch-Mizrachi, Ilene; Lipman, David J.; Ostell, James; Wheeler, David L.

    2007-01-01

    GenBank (R) is a comprehensive database that contains publicly available nucleotide sequences for more than 240 000 named organisms, obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects. Most submissions are made using the web-based BankIt or standalone Sequin programs and accession numbers are assigned by GenBank staff upon receipt. Daily data exchange with the EMBL Data Library in Europe and the DNA Data Bank of Japan ensures worldwide coverage. GenBank is accessible through NCBI's retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. To access GenBank and its related retrieval and analysis services, begin at the NCBI Homepage (). PMID:17202161

  3. Biological treatment of toxic petroleum spent caustic in fluidized bed bioreactor using immobilized cells of Thiobacillus RAI01.

    PubMed

    Potumarthi, Ravichandra; Mugeraya, Gopal; Jetty, Annapurna

    2008-12-01

    In the present studies, newly isolated Thiobacillus sp was used for the treatment of synthetic spent sulfide caustic in a laboratory-scale fluidized bed bioreactor. The sulfide oxidation was tested using Ca-alginate immobilized Thiobacillus sp. Initially, response surface methodology was applied for the optimization of four parameters to check the sulfide oxidation efficiency in batch mode. Further, reactor was operated in continuous mode for 51 days at different sulfide loading rates and retention times to test the sulfide oxidation and sulfate and thiosulfate formation. Sulfide conversions in the range of 90-98% were obtained at almost all sulfide loading rates and hydraulic retention times. However, increased loading rates resulted in lower sulfide oxidation capacity. All the experiments were conducted at constant pH of around 6 and temperature of 30 +/- 5 degrees C.

  4. Simultaneous effect of temperature, cyanide and ammonia-oxidizing bacteria concentrations on ammonia oxidation.

    PubMed

    Do, Hyojin; Lim, Juntaek; Shin, Seung Gu; Wu, Yi-Ju; Ahn, Johng-Hwa; Hwang, Seokhwan

    2008-11-01

    For biological nitrification, a set of experiments were carried out to approximate the response of lag period along with ammonia oxidation rate with respect to different concentrations of cyanide (CN-) and ammonia-oxidizing bacteria (AOB), and temperature variation in laboratory-scale batch reactors. The effects of simultaneous changes in these three factors on ammonia oxidation were quantitatively estimated and modeled using response surface analysis. The lag period and the ammonia oxidation rate responded differently to changes in the three factors. The lag period and the ammonia oxidation rate were significantly affected by the CN- and AOB concentrations, while temperature changes only affected the ammonia oxidation rate. The increase of AOB concentration and temperature alleviated the inhibition effect of cyanide on ammonia oxidation. The statistical method used in this study can be extended to estimate the quantitative effects of other environmental factors that can change simultaneously.

  5. Biochemical methane potential (BMP) of artichoke waste: the inoculum effect.

    PubMed

    Fabbri, Andrea; Serranti, Silvia; Bonifazi, Giuseppe

    2014-03-01

    The aim of this work was to investigate anaerobic digestibility of artichoke waste resulting from industrial transformation. A series of batch anaerobic digestion tests was performed in order to evaluate the biochemical methane potential of the matrix in respect of the process. A comparison of the different performances of the laboratory-scale reactors operating in mesophilic conditions and utilizing three different values of the inoculum/substrate ratio was carried out. The best performance was achieved with an inoculum/substrate ratio of 2. Artichoke-processing byproducts showed a classical organic waste decomposition behaviour: a fast start-up phase, an acclimation stage, and a final stabilization phase. Following this approach, artichoke waste reached chemical oxygen demand removal of about 90% in 40 days. The high methane yield (average 408.62 mL CH4 gvs (-1) voltatile solids), makes artichoke waste a good product to be utilized in anaerobic digestion plants for biogas production.

  6. Production and characterization of alginate microcapsules produced by a vibrational encapsulation device.

    PubMed

    Mazzitelli, S; Tosi, A; Balestra, C; Nastruzzi, C; Luca, G; Mancuso, F; Calafiore, R; Calvitti, M

    2008-09-01

    The optimization, through a Design of Experiments (DoE) approach, of a microencapsulation procedure for isolated neonatal porcine islets (NPI) is described. The applied method is based on the generation of monodisperse droplets by a vibrational nozzle. An alginate/polyornithine encapsulation procedure, developed and validated in our laboratory for almost a decade, was used to embody pancreatic islets. We analyzed different experimental parameters including frequency of vibration, amplitude of vibration, polymer pumping rate, and distance between the nozzle and the gelling bath. We produced calcium-alginate gel microbeads with excellent morphological characteristics as well as a very narrow size distribution. The automatically produced microcapsules did not alter morphology, viability and functional properties of the enveloped NPI. The optimization of this automatic procedure may provide a novel approach to obtain a large number of batches possibly suitable for large scale production of immunoisolated NPI for in vivo cell transplantation procedures in humans.

  7. Anaerobic digestion of glycerol derived from biodiesel manufacturing.

    PubMed

    Siles López, José Angel; Martín Santos, María de Los Angeles; Chica Pérez, Arturo Francisco; Martín Martín, Antonio

    2009-12-01

    The anaerobic digestion of glycerol derived from biodiesel manufacturing, in which COD was found to be 1010 g/kg, was studied in batch laboratory-scale reactors at mesophilic temperature using granular and non-granular sludge. Due to the high KOH concentration of this by-product, H(3)PO(4) was added to recover this alkaline catalyst as agricultural fertilizer (potassium phosphates). Although it would not be economically viable, a volume of glycerol was distilled and utilised as reference substrate. The anaerobic revalorisation of glycerol using granular sludge achieved a biodegradability of around 100%, while the methane yield coefficient was 0.306 m(3) CH(4)/kg acidified glycerol. Anaerobic digestion could be a good option for revalorising this available, impure and low priced by-product derived from the surplus of biodiesel companies. The organic loading rate studied was 0.21-0.38 g COD/g VSS d, although an inhibition phenomenon was observed at the highest load.

  8. EVALUATING CAPACITIES OF GAC PRELOADED WITH NATURAL WATER

    EPA Science Inventory

    Adsorption studies are conducted to determine how preloading a natural groundwater onto GAC affects the adsorption of cis-1,2-dichloroexthene in small-scale and pilot-scale columns. Capacities are determined from batch-isotherm tests, microcolumns, and pilot columns, which are p...

  9. Pilot scale production of the vaccine adjuvant Proteoliposome derived Cochleates (AFCo1) from Neisseria meningitidis serogroup B

    PubMed Central

    2013-01-01

    The use of new adjuvants in vaccine formulations is a subject of current research. Only few parenteral adjuvants have been licensed. We have developed a mucosal and parenteral adjuvant known as AFCo1 (Adjuvant Finlay Cochleate 1, derived from proteoliposomes of N. meningitidis B) using a dialysis procedure to produce them on lab scale. The immunogenicity of the AFCo1 produced by dialysis has been already evaluated, but it was necessary to demonstrate the feasibility of a larger-scale manufacturing process. Therefore, we used a crossflow diafiltration system (CFS) that allows easy scale up to obtain large batches in an aseptic environment. The aim of this work was to produce AFCo1 on pilot scale, while conserving the adjuvant properties. The proteoliposomes (raw material) were resuspended in a buffer containing sodium deoxycholate and were transformed into AFCo1 under the action of a calcium forming buffer. The detergent was removed from the protein solution by diafiltration to a constant volume. In this CFS, we used a hollow fiber cartridge from Amicon (polysulfona cartridge of 10 kDa porosity, 1mm channel diameter of fiber and 0.45 m2 area of filtration), allowing production of a batch of up to 20 L. AFCo1 were successfully produced by tangential filtration to pilot scale. The batch passed preliminary stability tests. Nasal immunization of BALB/c mice, induced specific saliva IgA and serum IgG. The induction of Th1 responses were demonstrated by the induction of IgG2a, IFNγ and not IL-5. The adjuvant action over Neisseria (self) antigens and with co-administered (heterologous) antigens such as ovalbumin and a synthetic peptide from haemolytic Streptococcus B was also demonstrated. PMID:23458578

  10. Comparative embryology of five species of lampreys of the upper Great Lakes

    USGS Publications Warehouse

    Smith, Allen J.; Howell, John H.; Piavis, George W.

    1968-01-01

    The four species of lampreys native to the upper Great Lakes (American brook lamprey, Lampetra lamotteni; chestnut lamprey, Ichthyomyzon castaneus; northern brook lamprey, I. fossor; and silver lamprey, I. unicuspis) were collected in various stages of their life cycle and maintained in the laboratory until sexually mature. Secondary sex characters of the four native species are compared. Several batches of eggs of each species were reared at 18.4A?C and their development was compared to that of the exotic sea lamprey, Petromyzon marinus. The temperature of 18.4A?C was previously determined to be optimum for development of the sea lamprey. The high percentage survival of many batches of eggs of native species to prolarvae indicated that 18.4A?C was near the optimum for them. Survival to the burrowing stage varied considerably among different batches of eggs from the same species; some batches failed to produce prolarvae. The staging characteristics used for the sea lamprey were applicable to the native species, except for the end point of the burrowing stage. Embryos of the native species in each stage of development appeared according to the time sequence established for the sea lamprey.

  11. A novel model-based control strategy for aerobic filamentous fungal fed-batch fermentation processes.

    PubMed

    Mears, Lisa; Stocks, Stuart M; Albaek, Mads O; Cassells, Benny; Sin, Gürkan; Gernaey, Krist V

    2017-07-01

    A novel model-based control strategy has been developed for filamentous fungal fed-batch fermentation processes. The system of interest is a pilot scale (550 L) filamentous fungus process operating at Novozymes A/S. In such processes, it is desirable to maximize the total product achieved in a batch in a defined process time. In order to achieve this goal, it is important to maximize both the product concentration, and also the total final mass in the fed-batch system. To this end, we describe the development of a control strategy which aims to achieve maximum tank fill, while avoiding oxygen limited conditions. This requires a two stage approach: (i) calculation of the tank start fill; and (ii) on-line control in order to maximize fill subject to oxygen transfer limitations. First, a mechanistic model was applied off-line in order to determine the appropriate start fill for processes with four different sets of process operating conditions for the stirrer speed, headspace pressure, and aeration rate. The start fills were tested with eight pilot scale experiments using a reference process operation. An on-line control strategy was then developed, utilizing the mechanistic model which is recursively updated using on-line measurements. The model was applied in order to predict the current system states, including the biomass concentration, and to simulate the expected future trajectory of the system until a specified end time. In this way, the desired feed rate is updated along the progress of the batch taking into account the oxygen mass transfer conditions and the expected future trajectory of the mass. The final results show that the target fill was achieved to within 5% under the maximum fill when tested using eight pilot scale batches, and over filling was avoided. The results were reproducible, unlike the reference experiments which show over 10% variation in the final tank fill, and this also includes over filling. The variance of the final tank fill is reduced by over 74%, meaning that it is possible to target the final maximum fill reproducibly. The product concentration achieved at a given set of process conditions was unaffected by the control strategy. Biotechnol. Bioeng. 2017;114: 1459-1468. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Low acetate concentrations favor polyphosphate-accumulating organisms over glycogen-accumulating organisms in enhanced biological phosphorus removal from wastewater.

    PubMed

    Tu, Yunjie; Schuler, Andrew J

    2013-04-16

    Glycogen-accumulating organisms (GAOs) are thought to compete with polyphosphate-accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) wastewater treatment systems. A laboratory sequencing batch reactor (SBR) was operated for one year to test the hypothesis that PAOs have a competitive advantage at low acetate concentrations, with a focus on low pH conditions previously shown to favor GAOs. PAOs dominated the system under conventional SBR operation with rapid acetate addition (producing high in-reactor concentrations) and pH values of 7.4-8.4. GAOs dominated when the pH was decreased (6.4-7.0). Decreasing the acetate addition rate led to very low reactor acetate concentrations, and PAOs recovered, supporting the study hypothesis. When the acetate feed rate was increased, EBPR failed again. Dominant PAOs and GAOs were Candidatus Accumulibacter phosphatis and Defluviicoccus Cluster 2, respectively, according to fluorescent in situ hybridization and 454 pyrosequencing. Surprisingly, GAOs were not the immediate causes of PAO failures, based on functional and population measurements. Pyrosequencing results suggested Dechloromonas and Tetrasphaera spp. may have also been PAOs, and additional potential GAOs were also identified. Full-scale systems typically have lower in-reactor acetate concentrations than laboratory SBRs, and so, previous laboratory studies may have overestimated the practical importance of GAOs as causes of EBPR failure.

  13. Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Gen, Santiago; Sousbie, Philippe; Rangaraj, Ganesh

    2015-01-15

    Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowlymore » biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.« less

  14. A novel fed-batch based strategy for enhancing cell-density and recombinant cyprosin B production in bioreactors.

    PubMed

    Sampaio, P N; Pais, M S; Fonseca, L P

    2014-12-01

    Nowadays, the dairy industry is continuously looking for new and more efficient clotting enzymes to create innovative products. Cyprosin B is a plant aspartic protease characterized by clotting activity that was previously cloned in Saccharomyces cerevisiae BJ1991 strain. The production of recombinant cyprosin B by a batch and fed-batch culture was compared using glucose and galactose as carbon sources. The strategy for fed-batch cultivation involved two steps: in the first batch phase, the culture medium presented glucose 1 % (w/v) and galactose 0.5 % (w/v), while in the feed step the culture medium was constituted by 5 % (w/v) galactose with the aim to minimize the GAL7 promoter repression. Based on fed-batch, in comparison to batch growth, an increase in biomass (6.6-fold), protein concentration (59 %) and cyprosin B activity (91 %) was achieved. The recombinant cyprosin B was purified by a single hydrophobic chromatography, presenting a specific activity of 6 × 10(4) U·mg(-1), corresponding to a purification degree of 12.5-fold and a recovery yield of 16.4 %. The SDS-PAGE analysis showed that recovery procedure is suitable for achieving the purified recombinant cyprosin B. The results show that the recombinant cyprosin B production can be improved based on two distinct steps during the fed-batch, presenting that this strategy, associated with a simplified purification procedure, could be applied to large-scale production, constituting a new and efficient alternative for animal and fungal enzymes widely used in cheese making.

  15. BATCH AND COLUMN STUDIES ON BTEX BIODEGRADATION BY AQUIFER MICROORGANISMS UNDER DENITRIFYING CONDITIONS

    EPA Science Inventory

    The objective of these laboratory experiments was to determine the role nitrate plays in enhancing the biodegradation of fuel contaminated groundwater. Column studies were conducted to simulate the nitrate field demonstration project carried out earlier at Traverse City, MI so a...

  16. Batch Isolation of Microsatellites for Tropical Plant Species Pyrosequencing

    USDA-ARS?s Scientific Manuscript database

    Microsatellites were developed for ten tropical species using a method recently developed in our laboratory that involves a combination of two adapters at the SSR-enrichment stage and allows for cost saving and simultaneous loading of samples. The species for which microsatellites were isolated are...

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.; Bannochie, C. J.

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of verification of Macrobatch (Salt Batch) 11 for the Interim Salt Disposition Program (ISDP) for processing. This document reports characterization data on the samples of Tank 21H and fulfills the requirements of Deliverable 3 of the Technical Task Request (TTR).

  18. What food and feeding rates are optimum for the Chironomus dilutus sediment toxicity test method?

    EPA Science Inventory

    Laboratory tests with benthic macroinvertebrates conducted using standard toxicity test procedures are used to assess the potential toxicity of contaminated sediments. Results are compared across sites or for batches of samples, and the performance of organisms in control treatme...

  19. 42 CFR 493.1263 - Standard: Mycology.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Standard: Mycology. 493.1263 Section 493.1263 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Systems § 493.1263 Standard: Mycology. (a) The laboratory must check each batch (prepared in-house), lot...

  20. Actual distribution of Cronobacter spp. in industrial batches of powdered infant formula and consequences for performance of sampling strategies.

    PubMed

    Jongenburger, I; Reij, M W; Boer, E P J; Gorris, L G M; Zwietering, M H

    2011-11-15

    The actual spatial distribution of microorganisms within a batch of food influences the results of sampling for microbiological testing when this distribution is non-homogeneous. In the case of pathogens being non-homogeneously distributed, it markedly influences public health risk. This study investigated the spatial distribution of Cronobacter spp. in powdered infant formula (PIF) on industrial batch-scale for both a recalled batch as well a reference batch. Additionally, local spatial occurrence of clusters of Cronobacter cells was assessed, as well as the performance of typical sampling strategies to determine the presence of the microorganisms. The concentration of Cronobacter spp. was assessed in the course of the filling time of each batch, by taking samples of 333 g using the most probable number (MPN) enrichment technique. The occurrence of clusters of Cronobacter spp. cells was investigated by plate counting. From the recalled batch, 415 MPN samples were drawn. The expected heterogeneous distribution of Cronobacter spp. could be quantified from these samples, which showed no detectable level (detection limit of -2.52 log CFU/g) in 58% of samples, whilst in the remainder concentrations were found to be between -2.52 and 2.75 log CFU/g. The estimated average concentration in the recalled batch was -2.78 log CFU/g and a standard deviation of 1.10 log CFU/g. The estimated average concentration in the reference batch was -4.41 log CFU/g, with 99% of the 93 samples being below the detection limit. In the recalled batch, clusters of cells occurred sporadically in 8 out of 2290 samples of 1g taken. The two largest clusters contained 123 (2.09 log CFU/g) and 560 (2.75 log CFU/g) cells. Various sampling strategies were evaluated for the recalled batch. Taking more and smaller samples and keeping the total sampling weight constant, considerably improved the performance of the sampling plans to detect such a type of contaminated batch. Compared to random sampling, stratified random sampling improved the probability to detect the heterogeneous contamination. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Treatment of duck house wastewater by a pilot-scale sequencing batch reactor system for sustainable duck production.

    PubMed

    Su, Jung-Jeng; Huang, Jeng-Fang; Wang, Yi-Lei; Hong, Yu-Ya

    2018-06-15

    The objective of this study is trying to solve water pollution problems related to duck house wastewater by developing a novel duck house wastewater treatment technology. A pilot-scale sequencing batch reactor (SBR) system using different hydraulic retention times (HRTs) for treating duck house wastewater was developed and applied in this study. Experimental results showed that removal efficiency of chemical oxygen demand in untreated duck house wastewater was 98.4, 98.4, 87.8, and 72.5% for the different HRTs of 5, 3, 1, and 0.5 d, respectively. In addition, removal efficiency of biochemical oxygen demand in untreated duck house wastewater was 99.6, 99.3, 90.4, and 58.0%, respectively. The pilot-scale SBR system was effective and deemed capable to be applied to treat duck house wastewater. It is feasible to apply an automatic SBR system on site based on the previous case study of the farm-scale automatic SBR systems for piggery wastewater treatment.

  2. On-Line Control of Glucose Concentration in High-Yielding Mammalian Cell Cultures Enabled Through Oxygen Transfer Rate Measurements.

    PubMed

    Goldrick, Stephen; Lee, Kenneth; Spencer, Christopher; Holmes, William; Kuiper, Marcel; Turner, Richard; Farid, Suzanne S

    2018-04-01

    Glucose control is vital to ensure consistent growth and protein production in mammalian cell cultures. The typical fed-batch glucose control strategy involving bolus glucose additions based on infrequent off-line daily samples results in cells experiencing significant glucose concentration fluctuations that can influence product quality and growth. This study proposes an on-line method to control and manipulate glucose utilizing readily available process measurements. The method generates a correlation between the cumulative oxygen transfer rate and the cumulative glucose consumed. This correlation generates an on-line prediction of glucose that has been successfully incorporated into a control algorithm manipulating the glucose feed-rate. This advanced process control (APC) strategy enables the glucose concentration to be maintained at an adjustable set-point and has been found to significantly reduce the deviation in glucose concentration in comparison to conventional operation. This method has been validated to produce various therapeutic proteins across cell lines with different glucose consumption demands and is successfully demonstrated on micro (15 mL), laboratory (7 L), and pilot (50 L) scale systems. This novel APC strategy is simple to implement and offers the potential to significantly enhance the glucose control strategy for scales spanning micro-scale systems through to full scale industrial bioreactors. © 2018 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Nitrate reduction in a simulated free-water surface wetland system.

    PubMed

    Misiti, Teresa M; Hajaya, Malek G; Pavlostathis, Spyros G

    2011-11-01

    The feasibility of using a constructed wetland for treatment of nitrate-contaminated groundwater resulting from the land application of biosolids was investigated for a site in the southeastern United States. Biosolids degradation led to the release of ammonia, which upon oxidation resulted in nitrate concentrations in the upper aquifer in the range of 65-400 mg N/L. A laboratory-scale system was constructed in support of a pilot-scale project to investigate the effect of temperature, hydraulic retention time (HRT) and nitrate and carbon loading on denitrification using soil and groundwater from the biosolids application site. The maximum specific reduction rates (MSRR), measured in batch assays conducted with an open to the atmosphere reactor at four initial nitrate concentrations from 70 to 400 mg N/L, showed that the nitrate reduction rate was not affected by the initial nitrate concentration. The MSRR values at 22 °C for nitrate and nitrite were 1.2 ± 0.2 and 0.7 ± 0.1 mg N/mg VSS(COD)-day, respectively. MSRR values were also measured at 5, 10, 15 and 22 °C and the temperature coefficient for nitrate reduction was estimated at 1.13. Based on the performance of laboratory-scale continuous-flow reactors and model simulations, wetland performance can be maintained at high nitrogen removal efficiency (>90%) with an HRT of 3 days or higher and at temperature values as low as 5 °C, as long as there is sufficient biodegradable carbon available to achieve complete denitrification. The results of this study show that based on the climate in the southeastern United States, a constructed wetland can be used for the treatment of nitrate-contaminated groundwater to low, acceptable nitrate levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Safety Testing of AGR-2 UCO Compacts 5-2-2, 2-2-2, and 5-4-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunn, John D.; Morris, Robert Noel; Baldwin, Charles A.

    2016-08-01

    Post-irradiation examination (PIE) is being performed on tristructural-isotropic (TRISO) coated-particle fuel compacts from the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program second irradiation experiment (AGR-2). This effort builds upon the understanding acquired throughout the AGR-1 PIE campaign, and is establishing a database for the different AGR-2 fuel designs. The AGR-2 irradiation experiment included TRISO fuel particles coated at BWX Technologies (BWXT) with a 150-mm-diameter engineering-scale coater. Two coating batches were tested in the AGR-2 irradiation experiment. Batch 93085 had 508-μm-diameter uranium dioxide (UO 2) kernels. Batch 93073 had 427-μm-diameter UCO kernels, which is a kernel design where somemore » of the uranium oxide is converted to uranium carbide during fabrication to provide a getter for oxygen liberated during fission and limit CO production. Fabrication and property data for the AGR-2 coating batches have been compiled and compared to those for AGR-1. The AGR-2 TRISO coatings were most like the AGR-1 Variant 3 TRISO deposited in the 50-mm-diameter ORNL lab-scale coater. In both cases argon-dilution of the hydrogen and methyltrichlorosilane coating gas mixture employed to deposit the SiC was used to produce a finer-grain, more equiaxed SiC microstructure. In addition to the fact that AGR-1 fuel had smaller, 350-μm-diameter UCO kernels, notable differences in the TRISO particle properties included the pyrocarbon anisotropy, which was slightly higher in the particles coated in the engineering-scale coater, and the exposed kernel defect fraction, which was higher for AGR-2 fuel due to the detected presence of particles with impact damage introduced during TRISO particle handling.« less

  5. Hydrocarbon fuels from brown grease: Moving from the research laboratory toward an industrial process

    NASA Astrophysics Data System (ADS)

    Pratt, Lawrence M.; Strothers, Joel; Pinnock, Travis; Hilaire, Dickens Saint; Bacolod, Beatrice; Cai, Zhuo Biao; Sim, Yoke-Leng

    2017-04-01

    Brown grease is a generic term for the oily solids and semi-solids that accumulate in the sewer system and in sewage treatment plants. It has previously been shown that brown grease undergoes pyrolysis to form a homologous series of alkanes and 1-alkenes between 7 and 17 carbon atoms, with smaller amounts of higher hydrocarbons and ketones up to about 30 carbon atoms. The initial study was performed in batch mode on a scale of up to 50 grams of starting material. However, continuous processes are usually more efficient for large scale production of fuels and commodity chemicals. This work describes the research and development of a continuous process. The first step was to determine the required reactor temperature. Brown grease consists largely of saturated and unsaturated fatty acids, and they react at different rates, and produce different products and intermediates. Intermediates include ketones, alcohols, and aldehydes, and Fe(III) ion catalyzes at least some of the reactions. By monitoring the pyrolysis of brown grease, its individual components, and intermediates, it was determined that a reactor temperature of at least 340 °C is required. A small scale (1 L) continuous stirred tank reactor was built and its performance is described.

  6. [Serodiagnosis of toxoplasmosis: a comparative multicenter study of a standard scale through various actual tests and expression of the results in international units. Groupe de travail toxoplasmose du Contrôle national de qualité en parasotologie. Syndicat des fabricants de réactifs de laboratoire. Groupe de travail standardisation des tests sérologiques du Réseau européen de lutte contre la toxoplasmose congénitale].

    PubMed

    Petithory, J C; Ambroise-Thomas, P; De Loye, J; Pelloux, H; Goullier-Fleuret, A; Milgram, M; Buffard, C; Garin, J P

    1996-01-01

    Reported are the results of a multicentre study involving 40 laboratories that was carried out in France to assess all the currently available methods used for the serodiagnosis of toxoplasmosis. For this purpose 10 batches of control sera were prepared with titres in the range 0-260 IU per ml. These sera were tested in nine laboratories using immunofluorescence methods; in three laboratories using dye tests; in forty laboratories using enzyme-linked immunosorbent assay; in four laboratories using direct agglutination and haemagglutination; in seven laboratories using the high-sensitivity IgG agglutination test; and in three laboratories using the latex agglutination test. In this way, 70 series of titrations were carried out using seven procedures and the results were compared with those obtained using the WHO reference serum in 15 cases, with the French national E6 serum in 16 other cases, and in 39 cases using 15 reference sera supplied by the reagent manufacturers. Rigorous comparison of the tests was not possible in all cases because one aim of the study was to ensure that the tests were carried out under the usual working conditions that prevailed in the participating laboratories. The results obtained indicate that the serological tests currently available for toxoplasmosis are acceptable for its serodiagnosis. Presentation of the titres in IU has advantages; however, caution is required since the definition of IU varies according to the test and reagents used. It is therefore essential that the conditions and limits for a positive reaction be carefully defined in each case, especially for commercially available kits.

  7. Effect on orange juice of batch pasteurization in an improved pilot-scale microwave oven.

    PubMed

    Cinquanta, L; Albanese, D; Cuccurullo, G; Di Matteo, M

    2010-01-01

    The effects on orange juice batch pasteurization in an improved pilot-scale microwave (MW) oven was evaluated by monitoring pectin methyl-esterase (PME) activity, color, carotenoid compounds and vitamin C content. Trials were performed on stirred orange juice heated at different temperatures (60, 70, 75, and 85 degrees C) during batch process. MW pilot plant allowed real-time temperature control of samples using proportional integrative derivative (PID) techniques based on the infrared thermography temperature read-out. The inactivation of heat sensitive fraction of PME, that verifies orange juice pasteurization, showed a z-value of 22.1 degrees C. Carotenoid content, responsible for sensorial and nutritional quality in fresh juices, decreased by about 13% after MW pasteurization at 70 degrees C for 1 min. Total of 7 carotenoid compounds were quantified during MW heating: zeaxanthin and beta-carotene content decreased by about 26%, while no differences (P < 0.05) were found for beta-cryptoxanthin in the same trial. A slight decrease in vitamin C content was monitored after MW heating. Results showed that MW heating with a fine temperature control could result in promising stabilization treatments.

  8. Batch and semi-continuous anaerobic co-digestion of goose manure with alkali solubilized wheat straw: A case of carbon to nitrogen ratio and organic loading rate regression optimization.

    PubMed

    Hassan, Muhammad; Ding, Weimin; Umar, Muhammad; Rasool, Ghulam

    2017-04-01

    The present study focused on carbon to nitrogen ratio (C/N) and organic loading rate (OLR) optimization of goose manure (GM) and wheat straw (WS). Dealing the anaerobic digestion of poultry manure on industrial scale; the question of optimum C/N (mixing ratio) and OLR (daily feeding concentration) have significant importance still lack in literature. Therefore, Batch and CSTR co-digestion experiments of the GM and WS were carried out at mesophilic condition. The alkali (NaOH) solubilization pretreatment for the WS had greatly enhanced its anaerobic digestibility. The highest methane production was evaluated between the C/N of 20-30 during Batch experimentation while for CSTRs; the second applied OLR of (3g.VS/L.d) was proved as the optimum with maximum methane production capability of 254.65ml/g.VS for reactor B at C/N of 25. The C/N and OLR regression optimization models were developed for their commercial scale usefulness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Sucrose fed-batch strategy enhanced biomass, polysaccharide, and ganoderic acids production in fermentation of Ganoderma lucidum 5.26.

    PubMed

    Wei, Zhen-hua; Liu, Lianliang; Guo, Xiao-feng; Li, Yan-jun; Hou, Bao-chao; Fan, Qiu-ling; Wang, Kai-xiang; Luo, Yingdi; Zhong, Jian-jiang

    2016-01-01

    Ganoderma, as a Chinese traditional medicine, has multiple bioactivities. However, industrial production was limited due to low yield during Ganoderma fermentation. In this work, sucrose was found to greatly enhance intracellular polysaccharide (IPS) content and specific extracellular polysaccharide (EPS) production rate. The mechanism was studied by analyzing the activities of enzymes related to polysaccharide biosynthesis. The results revealed that sucrose regulated the activities of phosphoglucomutase and phosphoglucose isomerase. When glucose and sucrose mixture was used as carbon source, biomass, polysaccharide and ganoderic acids (GAs) production was greatly enhanced. A sucrose fed-batch strategy was developed in 10-L bioreactor, and was scaled up to 300-L bioreactor. The biomass, EPS and IPS production was 25.5, 2.9 and 4.8 g/L, respectively, which was the highest biomass and IPS production in pilot scale. This study provides information for further understanding the regulation mechanism of Ganoderma polysaccharide biosynthesis. It demonstrates that sucrose fed-batch is a useful strategy for enhancing Ganoderma biomass, polysaccharide and GAs production.

  10. Co-digestion of food waste in a municipal wastewater treatment plant: Comparison of batch tests and full-scale experiences.

    PubMed

    Koch, Konrad; Plabst, Markus; Schmidt, Andreas; Helmreich, Brigitte; Drewes, Jörg E

    2016-01-01

    The effects of co-digestion of food waste in a municipal wastewater treatment plant (WWTP) were studied in batch tests. The results obtained were compared with the mass balance of a digester at a full-scale WWTP for a one-year period without and with the addition of co-substrate. The specific methane yield calculated from the balance was 18% higher than the one in the batch tests, suggesting a stimulation of methane generation by co-digestion. It was hypothesized that this increase was caused by shifting the C/N ratio of raw sludge (8.8) to a more favourable ratio of the added food waste (17.7). In addition, potential benefits by adding food waste for energy autarky was investigated. While just 25% of the total energy demand of the plant could be recovered by biogas generation when no co-substrate was fed, this percentage has more than doubled when food waste was added at a ratio of 10% (w/w). Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Metabolic Engineering toward Sustainable Production of Nylon-6.

    PubMed

    Turk, Stefan C H J; Kloosterman, Wigard P; Ninaber, Dennis K; Kolen, Karin P A M; Knutova, Julia; Suir, Erwin; Schürmann, Martin; Raemakers-Franken, Petronella C; Müller, Monika; de Wildeman, Stefaan M A; Raamsdonk, Leonie M; van der Pol, Ruud; Wu, Liang; Temudo, Margarida F; van der Hoeven, Rob A M; Akeroyd, Michiel; van der Stoel, Roland E; Noorman, Henk J; Bovenberg, Roel A L; Trefzer, Axel C

    2016-01-15

    Nylon-6 is a bulk polymer used for many applications. It consists of the non-natural building block 6-aminocaproic acid, the linear form of caprolactam. Via a retro-synthetic approach, two synthetic pathways were identified for the fermentative production of 6-aminocaproic acid. Both pathways require yet unreported novel biocatalytic steps. We demonstrated proof of these bioconversions by in vitro enzyme assays with a set of selected candidate proteins expressed in Escherichia coli. One of the biosynthetic pathways starts with 2-oxoglutarate and contains bioconversions of the ketoacid elongation pathway known from methanogenic archaea. This pathway was selected for implementation in E. coli and yielded 6-aminocaproic acid at levels up to 160 mg/L in lab-scale batch fermentations. The total amount of 6-aminocaproic acid and related intermediates generated by this pathway exceeded 2 g/L in lab-scale fed-batch fermentations, indicating its potential for further optimization toward large-scale sustainable production of nylon-6.

  12. Molecular-scale characterization of uranium sorption by bone apatite materials for a permeable reactive barrier demonstration

    USGS Publications Warehouse

    Fuller, C.C.; Bargar, J.R.; Davis, J.A.

    2003-01-01

    Uranium binding to bone charcoal and bone meal apatite materials was investigated using U LIII-edge EXAFS spectroscopy and synchrotron source XRD measurements of laboratory batch preparations in the absence and presence of dissolved carbonate. Pelletized bone char apatite recovered from a permeable reactive barrier (PRB) at Fry Canyon, UT, was also studied. EXAFS analyses indicate that U(VI) sorption in the absence of dissolved carbonate occurred by surface complexation of U(VI) for sorbed concentrations ??? 5500 ??g U(VI)/g for all materials with the exception of crushed bone char pellets. Either a split or a disordered equatorial oxygen shell was observed, consistent with complexation of uranyl by the apatite surface. A second shell of atoms at a distance of 2.9 A?? was required to fit the spectra of samples prepared in the presence of dissolved carbonate (4.8 mM total) and is interpreted as formation of ternary carbonate complexes with sorbed U(VI). A U-P distance at 3.5-3.6 A?? was found for most samples under conditions where uranyl phosphate phases did not form, which is consistent with monodentate coordination of uranyl by phosphate groups in the apatite surface. At sorbed concentrations ??? 5500 ??g U(VI)/g in the absence of dissolved carbonate, formation of the uranyl phosphate solid phase, chernikovite, was observed. The presence of dissolved carbonate (4.8 mM total) suppressed the formation of chernikovite, which was not detected even with sorbed U(VI) up to 12 300 ??g U(VI)/g in batch samples of bone meal, bone charcoal, and reagent-grade hydroxyapatite. EXAFS spectra of bone char samples recovered from the Fry Canyon PRB were comparable to laboratory samples in the presence of dissolved carbonate where U(VI) sorption occurred by surface complexation. Our findings demonstrate that uranium uptake by bone apatite will probably occur by surface complexation instead of precipitation of uranyl phosphate phases under the groundwater conditions found at many U-contaminated sites.

  13. Simultaneous biodegradation of three mononitrophenol isomers by a tailor-made microbial consortium immobilized in sequential batch reactors.

    PubMed

    Fu, H; Zhang, J-J; Xu, Y; Chao, H-J; Zhou, N-Y

    2017-03-01

    The ortho-nitrophenol (ONP)-utilizing Alcaligenes sp. strain NyZ215, meta-nitrophenol (MNP)-utilizing Cupriavidus necator JMP134 and para-nitrophenol (PNP)-utilizing Pseudomonas sp. strain WBC-3 were assembled as a consortium to degrade three nitrophenol isomers in sequential batch reactors. Pilot test was conducted in flasks to demonstrate that a mixture of three mononitrophenols at 0·5 mol l -1 each could be mineralized by this microbial consortium within 84 h. Interestingly, neither ONP nor MNP was degraded until PNP was almost consumed by strain WBC-3. By immobilizing this consortium into polyurethane cubes, all three mononitrophenols were continuously degraded in lab-scale sequential reactors for six batch cycles over 18 days. Total concentrations of ONP, MMP and PNP that were degraded were 2·8, 1·5 and 2·3 mol l -1 during this time course respectively. Quantitative real-time PCR analysis showed that each member in the microbial consortium was relatively stable during the entire degradation process. This study provides a novel approach to treat polluted water, particularly with a mixture of co-existing isomers. Nitroaromatic compounds are readily spread in the environment and pose great potential toxicity concerns. Here, we report the simultaneous degradation of three isomers of mononitrophenol in a single system by employing a consortium of three bacteria, both in flasks and lab-scale sequential batch reactors. The results demonstrate that simultaneous biodegradation of three mononitrophenol isomers can be achieved by a tailor-made microbial consortium immobilized in sequential batch reactors, providing a pilot study for a novel approach for the bioremediation of mixed pollutants, especially isomers present in wastewater. © 2016 The Society for Applied Microbiology.

  14. TRANSPORT OF INORGANIC COLLOIDS THROUGH NATURAL AQUIFER MATERIAL: IMPLICATIONS FOR CONTAMINANT TRANSPORT

    EPA Science Inventory

    The stability and transport of radiolabeled Fe2O3 particles were studied using laboratory batch and column techniques. Core material collected from a shallow sand and gravel aquifer was used as the immobile column matrix material. Variables in the study incl...

  15. THE REDUCTIVE TRANSFORMATION OF PERCHLORATE IN A FRESH WATER SEDIMENT: LABORATORY BATCH STUDIES

    EPA Science Inventory

    Perchlorate is widely used as a propellant in solid rocket fuel, and has recently been found in ground, surface, and drinking water, in many cases above the interim action level of 18 ppb. Perchlorate is recalcitrant to chemical reduction, however, studies of perchlorate in pure ...

  16. THE REDUCTIVE TRANSFORMATION OF PERCHLORATE IN A FRESH WATER SEDIMENT: LABORATORY BATCH STUDIES.

    EPA Science Inventory

    Perchlorate is widely used as a propellant in solid rocket fuel, and has recently been found in ground, surface, and drinking water, in many cases above the interim action level of 18 ppb. Perchlorate is recalcitrant to chemical reduction, however, studies of perchlorate in pure ...

  17. Measurement and analysis of the mannitol partition coefficient in sucrose crystallization under simulated industrial conditions

    USDA-ARS?s Scientific Manuscript database

    Mannitol is a major deterioration product of Leuconstoc mesenteroides bacterial deterioration of both sugarcane and sugar beet. The effect of crystallization conditions on the mannitol partition coefficient (Keff) between impure sucrose syrup and crystal has been investigated in a batch laboratory c...

  18. The leaching behavior of cement stabilized air pollution control residues: a comparison of field and laboratory investigations.

    PubMed

    Baur, I; Ludwig, C; Johnson, C A

    2001-07-01

    The factors controlling leachate composition of cement stabilized air pollution control (APC) residues (41% APC residues, 22% cement, 3% Na2CO3, and 32% water, w/w) have been investigated both in the laboratory and in a pilot landfill. Batch leaching and tank leaching tests were carried out in the laboratory in order to determine solubility controlling phases and diffusion controlled species. The major species Ca, SO4, Al, and Si could be partially modeled by assuming calcium silicate hydrate (C-S-H), portlandite, and ettringite to be the solubility controlling phases both in field and laboratory. There were obviously additional minerals that could not be taken into account in calculations because of the lack of data. The determined effective diffusion coefficients (De) for Na and K (2.18e-12 and 5.43e-12 m2s-1) were used to model field concentrations. Agreement with field data was good. Heavy metal concentrations were in the range of 10(-8) mol dm-1 (Cd, Co, Cu, Mn, Ni) to 10(-6) mol dm-1 (Mo, Pb, W, Zn) in all experiments and often lower in the field leachate than expected from batch experiments. In laboratory experiments, the solubility of Mo and W was most probably controlled by their calcium metalates, Cu by CuO, Ni by Ni(OH)2, and Zn probably by a Zn containing C-S-H phase. In the field, diffusion seems to control Mo and W leachability, with calculated De values of 3.49e-14 and 1.35e-15 m2s-1.

  19. Part 1: Tracing Russian VX to its synthetic routes by multivariate statistics of chemical attribution signatures.

    PubMed

    Holmgren, Karin Höjer; Valdez, Carlos A; Magnusson, Roger; Vu, Alexander K; Lindberg, Sandra; Williams, Audrey M; Alcaraz, Armando; Åstot, Crister; Hok, Saphon; Norlin, Rikard

    2018-08-15

    Chemical attribution signatures (CAS) associated with different synthetic routes used for the production of Russian VX (VR) were identified. The goal of the study was to retrospectively determine the production method employed for an unknown VR sample. Six different production methods were evaluated, carefully chosen to include established synthetic routes used in the past for large scale production of the agent, routes involving general phosphorus-sulfur chemistry pathways leading to the agent, and routes whose main characteristic is their innate simplicity in execution. Two laboratories worked in parallel and synthesized a total of 37 batches of VR via the six synthetic routes following predefined synthesis protocols. The chemical composition of impurities and byproducts in each route was analyzed by GC/MS-EI and 49 potential CAS were recognized as important markers in distinguishing these routes using Principal Component Analysis (PCA). The 49 potential CAS included expected species based on knowledge of reaction conditions and pathways but also several novel compounds that were fully identified and characterized by a combined analysis that included MS-CI, MS-EI and HR-MS. The CAS profiles of the calibration set were then analyzed using partial least squares discriminant analysis (PLS-DA) and a cross validated model was constructed. The model allowed the correct classification of an external test set without any misclassifications, demonstrating the utility of this methodology for attributing VR samples to a particular production method. This work is part one of a three-part series in this Forensic VSI issue of a Sweden-United States collaborative effort towards the understanding of the CAS of VR in diverse batches and matrices. This part focuses on the CAS in synthesized batches of crude VR and in the following two parts of the series the influence of food matrices on the CAS profiles are investigated. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Low-temperature catalytic gasification of food processing wastes. 1995 topical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.C.; Hart, T.R.

    The catalytic gasification system described in this report has undergone continuing development and refining work at Pacific Northwest National Laboratory (PNNL) for over 16 years. The original experiments, performed for the Gas Research Institute, were aimed at developing kinetics information for steam gasification of biomass in the presence of catalysts. From the fundamental research evolved the concept of a pressurized, catalytic gasification system for converting wet biomass feedstocks to fuel gas. Extensive batch reactor testing and limited continuous stirred-tank reactor tests provided useful design information for evaluating the preliminary economics of the process. This report is a follow-on to previousmore » interim reports which reviewed the results of the studies conducted with batch and continuous-feed reactor systems from 1989 to 1994, including much work with food processing wastes. The discussion here provides details of experiments on food processing waste feedstock materials, exclusively, that were conducted in batch and continuous- flow reactors.« less

  1. Column Chromatography To Obtain Organic Cation Sorption Isotherms.

    PubMed

    Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A

    2016-08-02

    Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation.

  2. Extraction-Scrub-Strip test results from the interim Salt Disposition Program Macrobatch 9 Tank 21H qualification samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T.

    2016-02-23

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 9 for the Interim Salt Disposition Program (ISDP). The Salt Batch 9 characterization results were previously reported. An Extraction-Scrub-Strip (ESS) test was performed to determine cesium distribution ratios (D (Cs)) and cesium concentration in the strip effluent and decontaminated salt solution (DSS) streams; this data will be used by Tank Farm Engineering to project a cesium decontamination factor (DF). This test used actual Tank 21H material, and a blend solvent prepared by SRNL that mimics the solvent composition currently being used atmore » the Modular Caustic-Side Solvent Extraction Unit (MCU). The ESS test showed acceptable performance with an extraction D (Cs) value of 52.4. This value is consistent with results from previous salt batch ESS tests using similar solvent formulations. This compares well against the predicted value of 56.5 from a recently created D (Cs) model« less

  3. Extraction, -scrub, -strip test results from the interim salt disposition program macrobatch 10 tank 21H qualification samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 10 for the Interim Salt Disposition Program (ISDP). The Salt Batch 10 characterization results were previously reported.ii,iii An Extraction, -Scrub, -Strip (ESS) test was performed to determine cesium distribution ratios (D(Cs)) and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams; this data will be used by Tank Farm Engineering to project a cesium decontamination factor (DF). This test used actual Tank 21H material, and a sample of the NGS Blend solvent currently being used at the Modularmore » Caustic-Side Solvent Extraction Unit (MCU). The ESS test showed acceptable performance with an extraction D(Cs) value of 110. This value is consistent with results from previous salt batch ESS tests using similar solvent formulations. This is better than the predicted value of 39.8 from a recently created D(Cs) model.« less

  4. Characterization of Tank 51 Sludge Slurry Samples (HTF-51-17-67, -68, -69, -74, -75, and -76) in Support of Sludge Batch 10 Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L. N.; Reboul, S. H.

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) Engineering (SRR-E) to provide sample characterization and analyses of Tank 51 sludge samples in support of Sludge Batch (SB) 10. The six Tank 51 sludge samples were sampled and delivered to SRNL in August of 2017. These six Tank 51 sludge samples, after undergoing physical characterizations which included rheology, weight percent total solid, dissolved solids and density measurements, were combined into one composite Tank 51 sample and analyzed for corrosion controls analytes, select radionuclides, chemical elements, density and weight percent total solids.

  5. 2010 Workplace and Gender Relations Survey of Active Duty Members. Administration, Datasets, and Codebook

    DTIC Science & Technology

    2011-04-01

    from the survey litho code list if a survey form was sent or independently if only a letter was sent. Ticket Numbers for Web Survey Access Prior...variables BATCH, SERIAL, and LITHO uniquely identify each returned survey. LITHO is the lithocode scanned from the survey. BATCH and SERIAL are the...Uned 593 LEADERSAT Tabs: Leadership Satisfaction Scale- Q11 176 LITHO * Litho code 1086 MAILTYP* Mail Type 1087 MENTOR 12. [12] Do you have a

  6. Radionuclide migration: laboratory experiments with isolated fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rundberg, R.S.; Thompson, J.L.; Maestas, S.

    Laboratory experiments examining flow and element migration in rocks containing isolated fractures have been initiated at the Los Alamos National Laboratory. Techniques are being developed to establish simple fracture flow systems which are appropriate to models using analytical solutions to the matrix diffusion-flow equations, such as those of I. Neretnieks [I. Neretnieks, Diffusion in the Rock Matrix: An Important Factor in Radionuclide Retardation? J. Geophys. Res. 85, 4379 (1980).] These experiments are intended to be intermediate steps toward larger scale field experiments where it may become more difficult to establish and control the parameters important to nuclide migration in fracturedmore » media. Laboratory experiments have been run on fractures ranging in size from 1 to 20 cm in length. The hydraulic flow in these fractures was studied to provide the effective apertures. The flows established in these fracture systems are similar to those in the granite fracture flow experiments of Witherspoon et al. [P.A. Witherspoon, J.S.Y. Wang, K. Iwai, and J.E. Gale, Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture, Lawrence Berkeley Laboratory report LBL-9557 (October 1979).] Traced solutions containing {sup 85}Sr and {sup 137}Cs were flowed through fractures in Climax Stock granite and welded tuff (Bullfrog and Tram members, Yucca Mountain, Nevada Test Site). The results of the elutions through granite agree with the matrix diffusion calculations based on independent measurements of K/sub d/. The results of the elutions through tuff, however, agree only if the K/sub d/ values used in the calculations are lower than the K/sub d/ values measured using a batch technique. This trend has been previously observed in chromatographic column experiments with tuff. 5 figures, 3 tables.« less

  7. Aquifer recharge with reclaimed water in the Llobregat Delta. Laboratory batch experiments and field test site.

    NASA Astrophysics Data System (ADS)

    Tobella, J.

    2010-05-01

    Summary Spain, as most other Mediterranean countries, faces near future water shortages, generalized pollution and loss of water dependent ecosystems. Aquifer recharge represents a promising option to become a source for indirect potable reuse purposes but presence of pathogens as well as organic and inorganic pollutants should be avoided. To this end, understanding the processes of biogeochemical degradation occurring within the aquifer during infiltration is capital. A set of laboratory batch experiments has been assembled in order to assess the behaviour of selected pesticides, drugs, estrogens, surfactant degradation products, biocides and phthalates under different redox conditions. Data collected during laboratory experiments and monitoring activities at the Sant Vicenç dels Horts test site will be used to build and calibrate a numerical model (i) of the physical-chemical-biochemical processes occurring in the batches and (ii) of multicomponent reactive transport in the unsaturated/saturated zone at the test site. Keywords Aquifer recharge, batch experiments, emerging micropollutants, infiltration, numerical model, reclaimed water, redox conditions, Soil Aquifer Treatment (SAT). 1. Introduction In Spain, the Llobregat River and aquifers, which supply water to Barcelona, have been overexploited for years and therefore, suffer from serious damages: the river dries up on summer, riparian vegetation has disappeared and seawater has intruded the aquifer. In a global context, solutions to water stress problems are urgently needed yet must be sustainable, economical and safe. Recent developments of analytical techniques detect the presence of the so-called "emerging" organic micropollutants in water and soils. Such compounds may affect living organisms when occurring in the environment at very low concentrations (microg/l or ng/l). In wastewater and drinking water treatment plants, a remarkable removal of these chemicals from water can be obtained only using advanced and costly treatments. Nevertheless, a number of studies are demonstrating that physical, chemical and biochemical processes associated with water movement within the subsoil represent a natural alternative way to reduce the presence of these contaminants. This processes are called Soil Aquifer Treatment (SAT). Aquifer recharge will become a source for indirect potable reuse purposes as long as the presence of pathogens and organic and inorganic pollutants is avoided. To this end, understanding the biogeochemical degradation processes occurring within the aquifer during infiltration is capital. 2. Laboratory batch experiments A set of laboratory batch experiments has been assembled to assess the behaviour of selected pesticides, drugs, estrogens, surfactant degradation products, biocides and phthalates under different redox conditions. The setup of the experiments consists of glass bottles containing 120 g of soil and 240 ml of synthetic water spiked with the mix of micropollutants. A source of easily degradable organic carbon and, depending on the type of test, electron acceptors are added in order to yield aerobic respiration and nitrate/iron/manganese/sulphate reduction conditions. The evolution of the processes is monitored by sacrificing duplicate bottles according to a defined schedule and analysing water for major and minor components as well as for micropollutants. Results from biotic tests are compared with abiotic ones in order to discern biodegradation from other chemical processes. The soil, the synthetic water and the micropollutants selected for the experiments are representative of a test site in the nearby of Barcelona (Spain) where artificial recharge of groundwater through ponds is going to be performed using river water or tertiary effluent from a waste water treatment plant. The results of the experiments improve the knowledge on the behaviour of the selected micropollutants under different redox conditions and provide with useful information on the conditions to develop at the test site during artificial recharge. The data collected during the laboratory experiments and in the test site will be used to build and calibrate a numerical model of the physical-chemical-biochemical processes developing in the batches and of multicomponent reactive transport in the unsaturated/saturated zone in the test site area. 3. Field test site The infiltration site of Sant Vicenç dels Horts has been selected to assessing the biogeochemical processes occurring during SAT. The system consists of two ponds that have been built as compensatory measure for the reduction in natural recharge caused by the construction of the High Speed Train Line. The first pond acts as a decantation pond while the second one acts as an infiltration basin (Figure 1). Recharge water comes from the tertiary treatment plant of the El Prat de Llobregat WWTP and the river (?). The CUADLL (Lower Llobregat Aquifer End-Users Community) is now managing the system operation. Tasks that are currently being carried out at this Test Site aims at (i) improving the local experience on MAR through infiltration ponds operational aspects and (ii) monitoring the changes in water quality during the recharge processes (unsaturated and saturated zone). Special attention is being paid to the fate of emerging organic pollutants (pharmaceuticals, surfactants, pesticides, etc.). The yielding of the monitoring will be compared with the results from the laboratory batch experiments on the behaviour of selected emerging organic pollutants. To this end, observation wells have been constructed, pressure / temperature / electrical conductivity transducers have been installed and the vadose zone under the infiltration pond has been instrumented (tensiometers, water content probes and suction cups). In addition double ring and infiltration tests have been performed in order to forecast the infiltration capacity of the basin.

  8. Cocoa residues as viable biomass for renewable energy production through anaerobic digestion.

    PubMed

    Acosta, Nayaret; De Vrieze, Jo; Sandoval, Verónica; Sinche, Danny; Wierinck, Isabella; Rabaey, Korneel

    2018-05-31

    The aim of this work was to evaluate the bioenergy potential of cocoa residue via anaerobic digestion. Batch and fed-batch lab-scale reactors were operated under low and high solids conditions. In the batch tests, 59 ± 4% of Chemical Oxygen Demand (COD) was recovered as methane. This corresponded with an average methane yield of 174 (wet) and 193 (dry) L kg -1 volatile solids fed, whereas a series of fed-batch reactors produced 70 ± 24 (wet) and 107 ± 39 (dry) L CH 4  kg -1 volatile solids fed during stable conditions. A case study was developed for canton Balao (Ecuador) based on our experimental data, operational estimates and available cocoa waste in the area. Annually, 8341 MWh could be produced, meeting 88% of the current electricity demand in Balao. This case study proves the potential for cocoa waste as a source of renewable energy in rural areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Enhancement of ε-poly-L-lysine synthesis in Streptomyces by exogenous glutathione.

    PubMed

    Yan, Peng; Sun, Haoben; Lu, Pengqi; Liu, Haili; Tang, Lei

    2018-01-01

    Our previous work indicated that the vigor of Streptomyces decreased at the later stage of ε-poly-L-lysine (ε-PL) fermentation. In this study, we observed that the level of reactive oxygen species (ROS) in vivo increased sharply after 24 h, and the addition of an antioxidant glutathione (GSH) before this increase in ROS stimulated ε-PL synthesis in shake-flask fermentation. The enhancement of ε-PL production by GSH was further verified in batch and fed-batch fermentations. On a 5-l fermenter scale, the highest increasement was 68.8% in batch fermentation and the highest ε-PL level was 46.5 g l - 1 in fed-batch fermentation. The RT-qPCR analysis showed that the transcriptional level of the catalase gene was down-regulated, and the decrease in cell activity was alleviated by the addition of GSH. The results revealed that exogenous antioxidant might maintain the cell vigor by reducing the excess ROS which provided a novel approach to regulate ε-PL synthesis.

  10. Systematic optimization of fed-batch simultaneous saccharification and fermentation at high-solid loading based on enzymatic hydrolysis and dynamic metabolic modeling of Saccharomyces cerevisiae.

    PubMed

    Unrean, Pornkamol; Khajeeram, Sutamat; Laoteng, Kobkul

    2016-03-01

    An integrative simultaneous saccharification and fermentation (SSF) modeling is a useful guiding tool for rapid process optimization to meet the techno-economic requirement of industrial-scale lignocellulosic ethanol production. In this work, we have developed the SSF model composing of a metabolic network of a Saccharomyces cerevisiae cell associated with fermentation kinetics and enzyme hydrolysis model to quantitatively capture dynamic responses of yeast cell growth and fermentation during SSF. By using model-based design of feeding profiles for substrate and yeast cell in the fed-batch SSF process, an efficient ethanol production with high titer of up to 65 g/L and high yield of 85 % of theoretical yield was accomplished. The ethanol titer and productivity was increased by 47 and 41 %, correspondingly, in optimized fed-batch SSF as compared to batch process. The developed integrative SSF model is, therefore, considered as a promising approach for systematic design of economical and sustainable SSF bioprocessing of lignocellulose.

  11. Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes.

    PubMed

    García-Gen, Santiago; Sousbie, Philippe; Rangaraj, Ganesh; Lema, Juan M; Rodríguez, Jorge; Steyer, Jean-Philippe; Torrijos, Michel

    2015-01-01

    A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 gVS/Ld. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Improving tablet coating robustness by selecting critical process parameters from retrospective data.

    PubMed

    Galí, A; García-Montoya, E; Ascaso, M; Pérez-Lozano, P; Ticó, J R; Miñarro, M; Suñé-Negre, J M

    2016-09-01

    Although tablet coating processes are widely used in the pharmaceutical industry, they often lack adequate robustness. Up-scaling can be challenging as minor changes in parameters can lead to varying quality results. To select critical process parameters (CPP) using retrospective data of a commercial product and to establish a design of experiments (DoE) that would improve the robustness of the coating process. A retrospective analysis of data from 36 commercial batches. Batches were selected based on the quality results generated during batch release, some of which revealed quality deviations concerning the appearance of the coated tablets. The product is already marketed and belongs to the portfolio of a multinational pharmaceutical company. The Statgraphics 5.1 software was used for data processing to determine critical process parameters in order to propose new working ranges. This study confirms that it is possible to determine the critical process parameters and create design spaces based on retrospective data of commercial batches. This type of analysis is thus converted into a tool to optimize the robustness of existing processes. Our results show that a design space can be established with minimum investment in experiments, since current commercial batch data are processed statistically.

  13. Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments.

    PubMed

    Yamamoto, Hiroshi; Nakamura, Yudai; Moriguchi, Shigemi; Nakamura, Yuki; Honda, Yuta; Tamura, Ikumi; Hirata, Yoshiko; Hayashi, Akihide; Sekizawa, Jun

    2009-02-01

    We selected eight pharmaceuticals with relatively high potential ecological risk and high consumption-namely, acetaminophen, atenolol, carbamazepine, ibuprofen, ifenprodil, indomethacin, mefenamic acid, and propranolol-and conducted laboratory experiments to examine the persistence and partitioning of these compounds in the aquatic environment. In the results of batch sunlight photolysis experiments, three out of eight pharmaceuticals-propranolol, indomethacin, and ifenprodil-were relatively easily photodegraded (i.e., half-life<24h), whereas the other five pharmaceuticals were relatively stable against sunlight. The results of batch biodegradation experiments using river water suggested relatively slow biodegradation (i.e., half-life>24h) for all eight pharmaceuticals, but the rate constant was dependent on sampling site and time. Batch sorption experiments were also conducted to determine the sorption coefficients to river sediments and a model soil sample. The determined coefficients (K(d) values) were much higher for three amines (atenolol, ifenprodil, and propranolol) than for neutral compounds or carboxylic acids; the K(d) values of the amines were comparable to those of a four-ring polycyclic aromatic hydrocarbon (PAH) pyrene. The coefficients were also higher for sediment/soil with higher organic content, and the organic carbon-based sorption coefficient (logK(oc)) showed a poor linear correlation with the octanol-water distribution coefficient (logD(ow)) at neutral pH. These results suggest other sorption mechanisms-such as electrochemical affinity, in addition to hydrophobic interaction-play an important role in sorption to sediment/soil at neutral pH.

  14. Catalytic thermal cracking of postconsumer waste plastics to fuels. 2. Pilot-scale thermochemical conversion

    USDA-ARS?s Scientific Manuscript database

    Synthetic gasoline and diesel fuels were prepared via catalytic and noncatalytic pyrolysis of waste polyethylene and polypropylene plastics followed by distillation of plastic crude oils. Reaction conditions optimized using a 2 L batch reactor were applied to pilot-scale production of plastic crude ...

  15. Stoichiometric evaluation of partial nitritation, anammox and denitrification processes in a sequencing batch reactor and interpretation of online monitoring parameters.

    PubMed

    Langone, Michela; Ferrentino, Roberta; Cadonna, Maria; Andreottola, Gianni

    2016-12-01

    A laboratory-scale sequencing batch reactor (SBR) performing partial nitritation - anammox and denitrification was used to treat anaerobic digester effluents. The SBR cycle consisted of a short mixing filling phase followed by oxic and anoxic reaction phases. Working at 25 °C, an ammonium conversion efficiency of 96.5%, a total nitrogen removal efficiency of 88.6%, and an organic carbon removal efficiency of 63.5% were obtained at a nitrogen loading rate of 0.15 kg N m -3 d -1 , and a biodegradable organic carbon to nitrogen ratio of 0.37. The potential contribution of each biological process was evaluated by using a stoichiometric model. The nitritation contribution decreased as the temperature decreased, while the contribution from anammox depended on the wastewater type and soluble carbon to nitrogen ratio. Denitrification improved the total nitrogen removal efficiency, and it was influenced by the biodegradable organic carbon to nitrogen ratio. The characteristic patterns of conductivity, oxidation-reduction potential (ORP) and pH in the SBR cycle were well related to biological processes. Conductivity profiles were found to be directly related to the decreasing profiles of ammonium. Positive ORP values at the end of the anoxic phases were detected for total nitrogen removal efficiency of lower than 85%, and the occurrence of bending points on the ORP curves during the anoxic phases was associated with nitrite depletion by the anammox process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Comparison of batch sorption tests, pilot studies, and modeling for estimating GAC bed life.

    PubMed

    Scharf, Roger G; Johnston, Robert W; Semmens, Michael J; Hozalski, Raymond M

    2010-02-01

    Saint Paul Regional Water Services (SPRWS) in Saint Paul, MN experiences annual taste and odor episodes during the warm summer months. These episodes are attributed primarily to geosmin that is produced by cyanobacteria growing in the chain of lakes used to convey and store the source water pumped from the Mississippi River. Batch experiments, pilot-scale experiments, and model simulations were performed to determine the geosmin removal performance and bed life of a granular activated carbon (GAC) filter-sorber. Using batch adsorption isotherm parameters, the estimated bed life for the GAC filter-sorber ranged from 920 to 1241 days when challenged with a constant concentration of 100 ng/L of geosmin. The estimated bed life obtained using the AdDesignS model and the actual pilot-plant loading history was 594 days. Based on the pilot-scale GAC column data, the actual bed life (>714 days) was much longer than the simulated values because bed life was extended by biological degradation of geosmin. The continuous feeding of high concentrations of geosmin (100-400 ng/L) in the pilot-scale experiments enriched for a robust geosmin-degrading culture that was sustained when the geosmin feed was turned off for 40 days. It is unclear, however, whether a geosmin-degrading culture can be established in a full-scale filter that experiences taste and odor episodes for only 1 or 2 months per year. The results of this research indicate that care must be exercised in the design and interpretation of pilot-scale experiments and model simulations for predicting taste and odor removal in full-scale GAC filter-sorbers. Adsorption and the potential for biological degradation must be considered to estimate GAC bed life for the conditions of intermittent geosmin loading typically experienced by full-scale systems. (c) 2009 Elsevier Ltd. All rights reserved.

  17. Biomanufacturing process analytical technology (PAT) application for downstream processing: Using dissolved oxygen as an indicator of product quality for a protein refolding reaction.

    PubMed

    Pizarro, Shelly A; Dinges, Rachel; Adams, Rachel; Sanchez, Ailen; Winter, Charles

    2009-10-01

    Process analytical technology (PAT) is an initiative from the US FDA combining analytical and statistical tools to improve manufacturing operations and ensure regulatory compliance. This work describes the use of a continuous monitoring system for a protein refolding reaction to provide consistency in product quality and process performance across batches. A small-scale bioreactor (3 L) is used to understand the impact of aeration for refolding recombinant human vascular endothelial growth factor (rhVEGF) in a reducing environment. A reverse-phase HPLC assay is used to assess product quality. The goal in understanding the oxygen needs of the reaction and its impact to quality, is to make a product that is efficiently refolded to its native and active form with minimum oxidative degradation from batch to batch. Because this refolding process is heavily dependent on oxygen, the % dissolved oxygen (DO) profile is explored as a PAT tool to regulate process performance at commercial manufacturing scale. A dynamic gassing out approach using constant mass transfer (k(L)a) is used for scale-up of the aeration parameters to manufacturing scale tanks (2,000 L, 15,000 L). The resulting DO profiles of the refolding reaction show similar trends across scales and these are analyzed using rpHPLC. The desired product quality attributes are then achieved through alternating air and nitrogen sparging triggered by changes in the monitored DO profile. This approach mitigates the impact of differences in equipment or feedstock components between runs, and is directly inline with the key goal of PAT to "actively manage process variability using a knowledge-based approach." (c) 2009 Wiley Periodicals, Inc.

  18. Process model comparison and transferability across bioreactor scales and modes of operation for a mammalian cell bioprocess.

    PubMed

    Craven, Stephen; Shirsat, Nishikant; Whelan, Jessica; Glennon, Brian

    2013-01-01

    A Monod kinetic model, logistic equation model, and statistical regression model were developed for a Chinese hamster ovary cell bioprocess operated under three different modes of operation (batch, bolus fed-batch, and continuous fed-batch) and grown on two different bioreactor scales (3 L bench-top and 15 L pilot-scale). The Monod kinetic model was developed for all modes of operation under study and predicted cell density, glucose glutamine, lactate, and ammonia concentrations well for the bioprocess. However, it was computationally demanding due to the large number of parameters necessary to produce a good model fit. The transferability of the Monod kinetic model structure and parameter set across bioreactor scales and modes of operation was investigated and a parameter sensitivity analysis performed. The experimentally determined parameters had the greatest influence on model performance. They changed with scale and mode of operation, but were easily calculated. The remaining parameters, which were fitted using a differential evolutionary algorithm, were not as crucial. Logistic equation and statistical regression models were investigated as alternatives to the Monod kinetic model. They were less computationally intensive to develop due to the absence of a large parameter set. However, modeling of the nutrient and metabolite concentrations proved to be troublesome due to the logistic equation model structure and the inability of both models to incorporate a feed. The complexity, computational load, and effort required for model development has to be balanced with the necessary level of model sophistication when choosing which model type to develop for a particular application. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  19. The FP7 ULTimateCO2 project: a study of the long term fate of CO2

    NASA Astrophysics Data System (ADS)

    Audigane, Pascal; Waldmann, Svenja; Pearce, Jonathan; Dimier, Alain; Le Gallo, Yann; Frykman, Peter; Maurand, Nicolas; Gherardi, Fabrizio; Yalamas, Thierry; Cremer, Holger; Spiers, Chris; Nussbaum, Christophe

    2014-05-01

    The objectives of the European FP7 ULTimateCO2 project are to study specific processes that could influence the long-term fate of geologically stored CO2, mainly: the trapping mechanisms occurring in the storage reservoir, the influence of fluid-rock interactions on mechanical integrity of caprock and well vicinity, and also the modifications induced at the regional scale (brine displacement, fault reactivation, hydrogeology changes...). A comprehensive approach combining laboratory experiments, numerical modeling and natural analogue studies is developed to assess all the processes mentioned above. A collection of data has been generated from natural and industrial (oil industry) analogues on the fluid flow and mechanical properties, structure, and mineralogy of faults and fractures that could affect the long-term storage capacity of underground CO2 storage sites. To address geochemical trapping at reservoir scale, an experimental approach is developed using sandstone core materials in batch reactive mode with CO2 and impurities at reservoir pressure and temperature conditions. Three inter-related lines of laboratory experiments investigate the long-term evolution of the mechanical properties and sealing integrity of fractured and faulted caprocks using Opalinus clay of Mont Terri Gallery (Switzerland), an analogue for caprock well investigated in the past for nuclear waste disposal purpose. To evaluate the interactions between CO2 (and formation fluid) and the well environment (formation, cement, casing) and to assess the consequences of these interactions on the transport properties of well materials, a 1 to 1 scale experiment has been set in the Mont Terri Gallery Opalinus clay to reproduce classical well objects (cemented annulus, casing and cement plug) perforating caprock formations. An extensive program of numerical modeling is also developed to calibrate, to reproduce and to extrapolate the experimental results at longer time scales including uncertainty assessment methods. www.ultimateco2.eu

  20. Dextran Utilization During Its Synthesis by Weissella cibaria RBA12 Can Be Overcome by Fed-Batch Fermentation in a Bioreactor.

    PubMed

    Baruah, Rwivoo; Deka, Barsha; Kashyap, Niharika; Goyal, Arun

    2018-01-01

    Weissella cibaria RBA12 produced a maximum of 9 mg/ml dextran (with 90% efficiency) using shake flask culture under the optimized concentration of medium components viz. 2% (w/v) of each sucrose, yeast extract, and K 2 HPO 4 after incubation at optimized conditions of 20 °C and 180 rpm for 24 h. The optimized medium and conditions were used for scale-up of dextran production from Weissella cibaria RBA12 in 2.5-l working volume under batch fermentation in a bioreactor that yielded a maximum of 9.3 mg/ml dextran (with 93% efficiency) at 14 h. After 14 h, dextran produced was utilized by the bacterium till 18 h in its stationary phase under sucrose depleted conditions. Dextran utilization was further studied by fed-batch fermentation using sucrose feed. Dextran on production under fed-batch fermentation in bioreactor gave 35.8 mg/ml after 32 h. In fed-batch mode, there was no decrease in dextran concentration as observed in the batch mode. This showed that the utilization of dextran by Weissella cibaria RBA12 is initiated when there is sucrose depletion and therefore the presence of sucrose can possibly overcome the dextran hydrolysis. This is the first report of utilization of dextran, post-sucrose depletion by Weissella sp. studied in bioreactor.

  1. Use of soybean oil and ammonium sulfate additions to optimize secondary metabolite production.

    PubMed

    Junker, B; Mann, Z; Gailliot, P; Byrne, K; Wilson, J

    1998-12-05

    A valine-overproducing mutant (MA7040, Streptomyces hygroscopicus) was found to produce 1.5 to 2.0 g/L of the immunoregulant, L-683,590, at the 0.6 m3 fermentation scale in a simple batch process using soybean oil and ammonium sulfate-based GYG5 medium. Levels of both lower (L-683,795) and higher (HH1 and HH2) undesirable homolog levels were controlled adequately. This batch process was utilized to produce broth economically at the 19 m3 fermentation scale. Material of acceptable purity was obtained without the multiple pure crystallizations previously required for an earlier culture, MA6678, requiring valine supplementation for impurity control. Investigations at the 0.6 m3 fermentation scale were conducted, varying agitation, pH, initial soybean oil/ammonium sulfate charges, and initial aeration rate to further improve growth and productivity. Mid-cycle ammonia levels and lipase activity appeared to have an important role. Using mid-cycle soybean oil additions, a titer of 2.3 g/L of L-683,590 was obtained, while titers reached 2.7 g/L using mid-cycle soybean oil and ammonium sulfate additions. Both higher and lower homolog levels remained acceptable during this fed-batch process. Optimal timing of mid-cycle oil and ammonium sulfate additions was considered a critical factor to further titer improvements. Copyright 1998 John Wiley & Sons, Inc.

  2. Characterization of Long-term Stability of Sodium Dithionite for Evaluation of its Potential Utility for Cr(VI) Remediation at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Telfeyan, K.; Migdissov, A. A.; Reimus, P. W.

    2017-12-01

    Sodium dithionite (Na2S2O4) has proven to be an effective remediation agent in aquifers contaminated with Cr(VI). S2O42- rapidly reduces the Fe(III) in aquifer sediments to Fe(II), which then reduces aqueous Cr(VI) to insoluble Cr(III). Previous work demonstrated that the reaction products from this treatment have no long-lasting undesirable effects. However, current literature regarding the stability of dithionite in aqueous solution and its decomposition products, which are important for developing a practical treatment approach, is sparse and inconsistent. Furthermore, S2O42- treatment effectiveness depends on site-specific geochemical and hydrological conditions, so experiments using site-specific materials are necessary to develop an optimal treatment strategy. In this study, we conducted (1) batch aqueous-phase-only experiments aimed at elucidating dithionite lifetimes and decomposition products as a function of dithionite concentration and pH, (2) batch experiments at the most practical pH for a field deployment, with use of four different representations of site aquifer sediments to evaluate dithionite reaction rates in the presence of the sediments and to determine the reduction capacity of the treated sediments, and (3) column experiments to represent a field-scale deployment of dithionite and determine the Cr(VI) reduction capacity of the reduced sediments. The aqueous-phase-only batch experiments verified the presence of S2O42- in aqueous anoxic solution beyond 100 days at alkaline pH. Each sampling interval also recorded the concentration of decomposition products, which enabled the derivation of a possible hydrolysis/decomposition reaction. In the batch experiments with sediments, dithionite reacted more rapidly than in blank solutions, but measurable concentrations remained for over a month. Cr was then added to the reactors to determine the efficacy of treatment. Depending on the sediment type and concentration of dithionite, the treated sediments were able to remove between 100 and 1000 µg Cr per gram of sediment. Column experiments then determined that the dithionite treatment of aquifer sediments could treat over 30 pore volumes of contaminated water (900 ppb Cr) prior to any breakthrough of Cr, suggesting that S2O42- should be an effective treatment agent at this site.

  3. SHINE and Mini-SHINE Column Designs for Recovery of Mo from 140 g-U/L Uranyl Sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepinski, Dominique C.; Vandegrift, George F.

    Argonne is assisting SHINE Medical Technologies (SHINE) in their efforts to develop an accelerator-driven process that utilizes a uranyl-sulfate solution for the production of fission Mo-99. In an effort to design a Mo-recovery system for the SHINE project using low-enriched uranium (LEU), we conducted batch, breakthrough, and pulse tests to determine the Mo isotherm, mass-transfer zone (MTZ), and system parameters for a 130 g-U/L uranyl sulfate solution at pH 1 and 80°C, as described previously. The VERSE program was utilized to calculate the MTZ under various loading times and velocities. The results were then used to design Mo separation andmore » recovery columns employing a pure titania sorbent (110-μm particles, S110, and 60 Å pore size). The plant-scale column designs assume Mo will be separated from 271 L of a 141 g-U/L uranyl sulfate solution, pH 1, containing 0.0023 mM Mo. The VERSE-designed recovery systems have been tested and verified in laboratory-scale experiments, and this approach was found to be very successful.« less

  4. Optimizing contaminant desorption and bioavailability in dense slurry systems. 2. PAH bioavailability and rates of degradation.

    PubMed

    Kim, Han S; Weber, Walter J

    2005-04-01

    The effects of mechanical mixing on rates of polycyclic aromatic hydrocarbon (PAH) biodegradation in dense geosorbent slurry (67% solids content, w/w) systems were evaluated using laboratory-scale intermittently mixed batch bioreactors. A PAH-contaminated soil and a phenanthrene-sorbed mineral sorbent (alpha-Al2O3) were respectively employed as slurry solids in aerobic and anaerobic biodegradation studies. Both slurries exhibited a characteristic behavior of pseudoplastic non-Newtonian fluids, and the impeller revolution rate and its diameter had dramatic impacts on power and torque requirements in their laminar flow mixing. Rates of phenanthrene biodegradation were markedly enhanced by relatively low-level auger mixing under both aerobic and anaerobic (denitrifying) conditions. Parameters for empirical models correlating biodegradation rate coefficient (k(b)) values to the degree of mixing were similar to those for correlations between mass transfer (desorption) rate coefficient (k(r)) values for rapidly desorbing fractions of soil organic matter and degree of mixing reported in a companion study, supporting a conclusion that performance-efficient and cost-effective enhancements of PAH mass transfer (desorption) and its biodegradation processes can be achieved by the introduction of optimal levels of reactor-scale mechanical mixing.

  5. System Vaccinology for the Evaluation of Influenza Vaccine Safety by Multiplex Gene Detection of Novel Biomarkers in a Preclinical Study and Batch Release Test

    PubMed Central

    Mizukami, Takuo; Momose, Haruka; Kuramitsu, Madoka; Takizawa, Kazuya; Araki, Kumiko; Furuhata, Keiko; Ishii, Ken J.; Hamaguchi, Isao; Yamaguchi, Kazunari

    2014-01-01

    Vaccines are beneficial and universal tools to prevent infectious disease. Thus, safety of vaccines is strictly evaluated in the preclinical phase of trials and every vaccine batch must be tested by the National Control Laboratories according to the guidelines published by each country. Despite many vaccine production platforms and methods, animal testing for safety evaluation is unchanged thus far. We recently developed a systems biological approach to vaccine safety evaluation where identification of specific biomarkers in a rat pre-clinical study evaluated the safety of vaccines for pandemic H5N1 influenza including Irf7, Lgals9, Lgalsbp3, Cxcl11, Timp1, Tap2, Psmb9, Psme1, Tapbp, C2, Csf1, Mx2, Zbp1, Ifrd1, Trafd1, Cxcl9, β2m, Npc1, Ngfr and Ifi47. The current study evaluated whether these 20 biomarkers could evaluate the safety, batch-to-batch and manufacturer-to-manufacturer consistency of seasonal trivalent influenza vaccine using a multiplex gene detection system. When we evaluated the influenza HA vaccine (HAv) from four different manufactures, the biomarker analysis correlated to findings from conventional animal use tests, such as abnormal toxicity test. In addition, sensitivity of toxicity detection and differences in HAvs were higher and more accurate than with conventional methods. Despite a slight decrease in body weight caused by HAv from manufacturer B that was not statistically significant, our results suggest that HAv from manufacturer B is significantly different than the other HAvs tested with regard to Lgals3bp, Tapbp, Lgals9, Irf7 and C2 gene expression in rat lungs. Using the biomarkers confirmed in this study, we predicted batch-to-batch consistency and safety of influenza vaccines within 2 days compared with the conventional safety test, which takes longer. These biomarkers will facilitate the future development of new influenza vaccines and provide an opportunity to develop in vitro methods of evaluating batch-to-batch consistency and vaccine safety as an alternative to animal testing. PMID:25010690

  6. 40 CFR 455.40 - Applicability; description of the pesticide formulating, packaging and repackaging subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and emergency operation of safety showers and eye washes; storm water; Department of Transportation (DOT) aerosol leak test bath water from non-continuous overflow baths (batch baths) where no cans have burst from the time of the last water change-out; and on-site laboratories from cleaning analytical...

  7. 40 CFR 455.40 - Applicability; description of the pesticide formulating, packaging and repackaging subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and emergency operation of safety showers and eye washes; storm water; Department of Transportation (DOT) aerosol leak test bath water from non-continuous overflow baths (batch baths) where no cans have burst from the time of the last water change-out; and on-site laboratories from cleaning analytical...

  8. Removal of phosphorus using AMD-treated lignocellulosic material

    Treesearch

    James S. Han; Soo-Hong Min; Yeong-Kwan Kim

    2005-01-01

    Excess nutrients, including phosphorus, can cause eutrophication in surface water and reservoirs. We tested the phosphate removal capacity of juniper fiber through isotherm, kinetic, column, and field tests. Heavy metals from an acid mine drainage (AMD) site were precipitated on the surface ofjuniper fiber. The modified fiber was tested in laboratory- caled batch and...

  9. LABORATORY EVALUATION OF ZERO-VALENT IRON TO TREAT WATER IMPACTED BY ACID MINE DRAINAGE

    EPA Science Inventory

    This study examines the applicability and limitations of granular zero-valent iron for the treatment of water impacted by mine wastes. Rates of acid neutralization and of metal (Cu, Cd, Ni, Zn, Hg, Al, and Mn) and metalloid (As) uptake were determined in batch systems using simu...

  10. Autochthonous bioaugmentation with environmental samples rich in hydrocarbonoclastic bacteria for bench-scale bioremediation of oily seawater and desert soil.

    PubMed

    Ali, Nedaa; Dashti, Narjes; Salamah, Samar; Al-Awadhi, Husain; Sorkhoh, Naser; Radwan, Samir

    2016-05-01

    Oil-contaminated seawater and desert soil batches were bioaugmented with suspensions of pea (Pisum sativum) rhizosphere and soil with long history of oil pollution. Oil consumption was measured by gas-liquid chromatography. Hydrocarbonoclastic bacteria in the bioremediation batches were counted using a mineral medium with oil vapor as a sole carbon source and characterized by their 16S ribosomal RNA (rRNA)-gene sequences. Most of the oil was consumed during the first 2-4 months, and the oil-removal rate decreased or ceased thereafter due to nutrient and oxygen depletion. Supplying the batches with NaNO3 (nitrogen fertilization) at a late phase of bioremediation resulted in reenhanced oil consumption and bacterial growth. In the seawater batches bioaugmented with rhizospheric suspension, the autochthonous rhizospheric bacterial species Microbacterium oxidans and Rhodococcus spp. were established and contributed to oil-removal. The rhizosphere-bioaugmented soil batches selectively favored Arthrobacter nitroguajacolicus, Caulobacter segnis, and Ensifer adherens. In seawater batches bioaugmented with long-contaminated soil, the predominant oil-removing bacterium was the marine species Marinobacter hydrocarbonoclasticus. In soil batches on the other hand, the autochthonous inhabitants of the long-contaminated soil, Pseudomonas and Massilia species were established and contributed to oil removal. It was concluded that the use of rhizospheric bacteria for inoculating seawater and desert soil and of bacteria in long-contaminated soil for inoculating desert soil follows the concept of "autochthonous bioaugmentation." Inoculating seawater with bacteria in long-contaminated soil, on the other hand, merits the designation "allochthonous bioaugmentation."

  11. Monitoring Uranium Transformations Determined by the Evolution of Biogeochemical Processes: Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Criddle, Craig S.; Wu, Weimin

    2013-04-17

    With funds provided by the US DOE, Argonne National Laboratory subcontracted the design of batch and column studies to a Stanford University team with field experience at the ORNL IFRC, Oak Ridge, TN. The contribution of the Stanford group ended in 2011 due to budget reduction in ANL. Over the funded research period, the Stanford research team characterized ORNL IFRC groundwater and sediments and set up microcosm reactors and columns at ANL to ensure that experiments were relevant to field conditions at Oak Ridge. The results of microcosm testing demonstrated that U(VI) in sediments was reduced to U(IV) with themore » addition of ethanol. The reduced products were not uraninite but were instead U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. The Stanford team communicated with the ANL team members through email and conference calls and face to face at the annual ERSP PI meeting and national meetings.« less

  12. The optimization of total laboratory automation by simulation of a pull-strategy.

    PubMed

    Yang, Taho; Wang, Teng-Kuan; Li, Vincent C; Su, Chia-Lo

    2015-01-01

    Laboratory results are essential for physicians to diagnose medical conditions. Because of the critical role of medical laboratories, an increasing number of hospitals use total laboratory automation (TLA) to improve laboratory performance. Although the benefits of TLA are well documented, systems occasionally become congested, particularly when hospitals face peak demand. This study optimizes TLA operations. Firstly, value stream mapping (VSM) is used to identify the non-value-added time. Subsequently, batch processing control and parallel scheduling rules are devised and a pull mechanism that comprises a constant work-in-process (CONWIP) is proposed. Simulation optimization is then used to optimize the design parameters and to ensure a small inventory and a shorter average cycle time (CT). For empirical illustration, this approach is applied to a real case. The proposed methodology significantly improves the efficiency of laboratory work and leads to a reduction in patient waiting times and increased service level.

  13. Hypoxia-elicited impairment of cell wall integrity, glycosylation precursor synthesis, and growth in scaled-up high-cell density fed-batch cultures of Saccharomyces cerevisiae.

    PubMed

    Aon, Juan C; Sun, Jianxin; Leighton, Julie M; Appelbaum, Edward R

    2016-08-15

    In this study we examine the integrity of the cell wall during scale up of a yeast fermentation process from laboratory scale (10 L) to industrial scale (10,000 L). In a previous study we observed a clear difference in the volume fraction occupied by yeast cells as revealed by wet cell weight (WCW) measurements between these scales. That study also included metabolite analysis which suggested hypoxia during scale up. Here we hypothesize that hypoxia weakens the yeast cell wall during the scale up, leading to changes in cell permeability, and/or cell mechanical resistance, which in turn may lead to the observed difference in WCW. We tested the cell wall integrity by probing the cell wall sensitivity to Zymolyase. Also exometabolomics data showed changes in supply of precursors for the glycosylation pathway. The results show a more sensitive cell wall later in the production process at industrial scale, while the sensitivity at early time points was similar at both scales. We also report exometabolomics data, in particular a link with the protein glycosylation pathway. Significantly lower levels of Man6P and progressively higher GDP-mannose indicated partially impaired incorporation of this sugar nucleotide during co- or post-translational protein glycosylation pathways at the 10,000 L compared to the 10 L scale. This impairment in glycosylation would be expected to affect cell wall integrity. Although cell viability from samples obtained at both scales were similar, cells harvested from 10 L bioreactors were able to re-initiate growth faster in fresh shake flask media than those harvested from the industrial scale. The results obtained help explain the WCW differences observed at both scales by hypoxia-triggered weakening of the yeast cell wall during the scale up.

  14. Robust high-throughput batch screening method in 384-well format with optical in-line resin quantification.

    PubMed

    Kittelmann, Jörg; Ottens, Marcel; Hubbuch, Jürgen

    2015-04-15

    High-throughput batch screening technologies have become an important tool in downstream process development. Although continuative miniaturization saves time and sample consumption, there is yet no screening process described in the 384-well microplate format. Several processes are established in the 96-well dimension to investigate protein-adsorbent interactions, utilizing between 6.8 and 50 μL resin per well. However, as sample consumption scales with resin volumes and throughput scales with experiments per microplate, they are limited in costs and saved time. In this work, a new method for in-well resin quantification by optical means, applicable in the 384-well format, and resin volumes as small as 0.1 μL is introduced. A HTS batch isotherm process is described, utilizing this new method in combination with optical sample volume quantification for screening of isotherm parameters in 384-well microplates. Results are qualified by confidence bounds determined by bootstrap analysis and a comprehensive Monte Carlo study of error propagation. This new approach opens the door to a variety of screening processes in the 384-well format on HTS stations, higher quality screening data and an increase in throughput. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Additions to Mars Global Reference Atmospheric Model (MARS-GRAM)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, Bonnie

    1992-01-01

    Three major additions or modifications were made to the Mars Global Reference Atmospheric Model (Mars-GRAM): (1) in addition to the interactive version, a new batch version is available, which uses NAMELIST input, and is completely modular, so that the main driver program can easily be replaced by any calling program, such as a trajectory simulation program; (2) both the interactive and batch versions now have an option for treating local-scale dust storm effects, rather than just the global-scale dust storms in the original Mars-GRAM; and (3) the Zurek wave perturbation model was added, to simulate the effects of tidal perturbations, in addition to the random (mountain wave) perturbation model of the original Mars-GRAM. A minor modification was also made which allows heights to go 'below' local terrain height and return 'realistic' pressure, density, and temperature, and not the surface values, as returned by the original Mars-GRAM. This feature will allow simulations of Mars rover paths which might go into local 'valley' areas which lie below the average height of the present, rather coarse-resolution, terrain height data used by Mars-GRAM. Sample input and output of both the interactive and batch versions of Mars-GRAM are presented.

  16. Additions to Mars Global Reference Atmospheric Model (Mars-GRAM)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.

    1991-01-01

    Three major additions or modifications were made to the Mars Global Reference Atmospheric Model (Mars-GRAM): (1) in addition to the interactive version, a new batch version is available, which uses NAMELIST input, and is completely modular, so that the main driver program can easily be replaced by any calling program, such as a trajectory simulation program; (2) both the interactive and batch versions now have an option for treating local-scale dust storm effects, rather than just the global-scale dust storms in the original Mars-GRAM; and (3) the Zurek wave perturbation model was added, to simulate the effects of tidal perturbations, in addition to the random (mountain wave) perturbation model of the original Mars-GRAM. A minor modification has also been made which allows heights to go below local terrain height and return realistic pressure, density, and temperature (not the surface values) as returned by the original Mars-GRAM. This feature will allow simulations of Mars rover paths which might go into local valley areas which lie below the average height of the present, rather coarse-resolution, terrain height data used by Mars-GRAM. Sample input and output of both the interactive and batch version of Mars-GRAM are presented.

  17. Pore water colloid properties in argillaceous sedimentary rocks.

    PubMed

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay colloid concentration is expected to be very low (<1ppb, for 10-100nm) which restricts their relevance for radionuclide transport. Copyright © 2016. Published by Elsevier B.V.

  18. Development of EnergyPlus Utility to Batch Simulate Building Energy Performance on a National Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valencia, Jayson F.; Dirks, James A.

    2008-08-29

    EnergyPlus is a simulation program that requires a large number of details to fully define and model a building. Hundreds or even thousands of lines in a text file are needed to run the EnergyPlus simulation depending on the size of the building. To manually create these files is a time consuming process that would not be practical when trying to create input files for thousands of buildings needed to simulate national building energy performance. To streamline the process needed to create the input files for EnergyPlus, two methods were created to work in conjunction with the National Renewable Energymore » Laboratory (NREL) Preprocessor; this reduced the hundreds of inputs needed to define a building in EnergyPlus to a small set of high-level parameters. The first method uses Java routines to perform all of the preprocessing on a Windows machine while the second method carries out all of the preprocessing on the Linux cluster by using an in-house built utility called Generalized Parametrics (GPARM). A comma delimited (CSV) input file is created to define the high-level parameters for any number of buildings. Each method then takes this CSV file and uses the data entered for each parameter to populate an extensible markup language (XML) file used by the NREL Preprocessor to automatically prepare EnergyPlus input data files (idf) using automatic building routines and macro templates. Using a Linux utility called “make”, the idf files can then be automatically run through the Linux cluster and the desired data from each building can be aggregated into one table to be analyzed. Creating a large number of EnergyPlus input files results in the ability to batch simulate building energy performance and scale the result to national energy consumption estimates.« less

  19. Recent NASA/GSFC cryogenic measurements of the total hemispheric emissivity of black surface preparations

    NASA Astrophysics Data System (ADS)

    Tuttle, J.; Canavan, E.

    2015-12-01

    High-emissivity (black) surfaces are commonly used on deep-space radiators and thermal radiation absorbers in test chambers. Since 2011 NASA Goddard Space Flight Center has measured the total hemispheric emissivity of such surfaces from 20 to 300 K using a test apparatus inside a small laboratory cryostat. We report the latest data from these measurements, including Aeroglaze Z307 paint, Black Kapton, and a configuration of painted aluminum honeycomb that was not previously tested. We also present the results of batch-to- batch reproducibility studies in Ball Infrared BlackTM and painted aluminum honeycomb. Finally, we describe a recently-adopted temperature control method which significantly speeds the data acquisition, and we discuss efforts to reduce the noise in future data.

  20. Production of orthophosphate suspension fertilizers from wet-process acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, T.M.; Burnell, J.R.

    1984-01-01

    For many years, the Tennessee Valley Authority (TVA) has worked toward development of suspension fertilizers. TVA has two plants for production of base suspension fertilizers from wet-process orthophosphoric acid. One is a demonstration-scale plant where a 13-38-0 grade base suspension is produced by a three-stage ammoniation process. The other is a new batch-type pilot plant which is capable of producing high-grade base suspensions of various ratios and grades from wet-process acid. In this batch plant, suspensions and solutions can also be produced from solid intermediates.

  1. Biological treatment of TMAH (tetra-methyl ammonium hydroxide) in a full-scale TFT-LCD wastewater treatment plant.

    PubMed

    Hu, Tai-Ho; Whang, Liang-Ming; Liu, Pao-Wen Grace; Hung, Yu-Ching; Chen, Hung-Wei; Lin, Li-Bin; Chen, Chia-Fu; Chen, Sheng-Kun; Hsu, Shu Fu; Shen, Wason; Fu, Ryan; Hsu, Romel

    2012-06-01

    This study evaluated biological treatment of TMAH in a full-scale methanogenic up-flow anaerobic sludge blanket (UASB) followed by an aerobic bioreactor. In general, the UASB was able to perform a satisfactory TMAH degradation efficiency, but the effluent COD of the aerobic bioreactor seemed to increase with an increased TMAH in the influent wastewater. The batch test results confirmed that the UASB sludge under methanogenic conditions would be favored over the aerobic ones for TMAH treatment due to its superb ability of handling high strength of TMAH-containing wastewaters. Based on batch experiments, inhibitory chemicals present in TFT-LCD wastewater like surfactants and sulfate should be avoided to secure a stable methanogenic TMAH degradation. Finally, molecular monitoring of Methanomethylovorans hollandica and Methanosarcina mazei in the full-scale plant, the dominant methanogens in the UASB responsible for TMAH degradation, may be beneficial for a stable TMAH treatment performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Evaluation and Testing of IONSIV IE-911 for the Removal of Cesium-137 from INEEL Tank Waste and Dissolved Calcines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. R. Mann; T. A. Todd; K. N. Brewer

    1999-04-01

    Development of waste treatment processes for the remediation of radioactive wastes is currently underway. A number of experiments were performed at the Idaho Nuclear Technology and Environmental Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) with the commercially available sorbent material, IONSIV IE-911, crystalline silicotitanate (CST), manufactured by UOP LLC. The purpose of this work was to evaluate the removal efficiency, sorbent capacity and selectivity of CST for removing Cs-137 from actual and simulated acidic tank waste in addition to dissolved pilot-plant calcine solutions. The scope of this work included batch contact tests performed with non-radioactivemore » dissolved Al and Run-64 pilot plant calcines in addition to simulants representing the average composition of tank waste. Small-scale column tests were performed with actual INEEL tank WM-183 waste, tank waste simulant, dissolved Al and Run-64 pilot plant calcine solutions. Small-scale column experiments using actual WM-183 tank waste resulted in fifty-percent Cs-137 breakthrough at approximately 589 bed volumes. Small-scale column experiments using the tank waste simulant displayed fifty-percent Cs-137 breakthrough at approximately 700 bed volumes. Small-scale column experiments using dissolved Al calcine simulant displayed fifty-percent Cs-137 breakthrough at approximately 795 bed volumes. Column experiments with dissolved Run-64, pilot plant calcine did not reach fifty-percent breakthrough throughout the test.« less

  3. "RCL-Pooling Assay": A Simplified Method for the Detection of Replication-Competent Lentiviruses in Vector Batches Using Sequential Pooling.

    PubMed

    Corre, Guillaume; Dessainte, Michel; Marteau, Jean-Brice; Dalle, Bruno; Fenard, David; Galy, Anne

    2016-02-01

    Nonreplicative recombinant HIV-1-derived lentiviral vectors (LV) are increasingly used in gene therapy of various genetic diseases, infectious diseases, and cancer. Before they are used in humans, preparations of LV must undergo extensive quality control testing. In particular, testing of LV must demonstrate the absence of replication-competent lentiviruses (RCL) with suitable methods, on representative fractions of vector batches. Current methods based on cell culture are challenging because high titers of vector batches translate into high volumes of cell culture to be tested in RCL assays. As vector batch size and titers are continuously increasing because of the improvement of production and purification methods, it became necessary for us to modify the current RCL assay based on the detection of p24 in cultures of indicator cells. Here, we propose a practical optimization of this method using a pairwise pooling strategy enabling easier testing of higher vector inoculum volumes. These modifications significantly decrease material handling and operator time, leading to a cost-effective method, while maintaining optimal sensibility of the RCL testing. This optimized "RCL-pooling assay" ameliorates the feasibility of the quality control of large-scale batches of clinical-grade LV while maintaining the same sensitivity.

  4. Collaborative study for the establishment of erythropoietin BRP batch 4.

    PubMed

    Burns, C; Bristow, A F; Daas, A; Costanzo, A

    2015-01-01

    The European Pharmacopoeia (Ph. Eur.) Biological Reference Preparation (BRP) for erythropoietin (EPO) is used as a working standard for potency determination of EPO preparations by in vivo bioassay as prescribed in the Ph. Eur. monograph Erythropoietin concentrated solution (1316). The BRP batch 3 was calibrated in 2006 and its stocks are depleted. The European Directorate for the Quality of Medicines & HealthCare (EDQM) thus initiated a project to calibrate a replacement batch in International Units against the WHO 3(rd) International Standard (IS) for Erythropoietin, recombinant, for bioassay (11/170). A Ph. Eur. Chemical Reference Substance (CRS) was established recently for use as reference in some of the physicochemical tests prescribed in the monograph. Therefore, the EPO BRP batch 4 was only calibrated for the normocythaemic and polycythaemic mouse in vivo bioassays described in the Assay section of the Ph. Eur. monograph (1316). The collaborative study involved seven laboratories from Europe, the USA and South America. The results confirmed that the candidate BRP (cBRP) is suitable for use as a reference preparation in the potency determination of EPO medicinal products by bioassay (using the normocythaemic or polycythaemic mouse methods). The outcome of the study enabled the Ph. Eur. Commission to establish the proposed standard as erythropoietin BRP batch 4 in November 2014 for use as a reference preparation solely for the polycythaemic and normocythaemic mouse bioassay, with an assigned potency of 13 000 IU/vial. Furthermore, the potency of BRP3 was confirmed during the study, thus warranting a good continuity of the IU.

  5. A scalable architecture for online anomaly detection of WLCG batch jobs

    NASA Astrophysics Data System (ADS)

    Kuehn, E.; Fischer, M.; Giffels, M.; Jung, C.; Petzold, A.

    2016-10-01

    For data centres it is increasingly important to monitor the network usage, and learn from network usage patterns. Especially configuration issues or misbehaving batch jobs preventing a smooth operation need to be detected as early as possible. At the GridKa data and computing centre we therefore operate a tool BPNetMon for monitoring traffic data and characteristics of WLCG batch jobs and pilots locally on different worker nodes. On the one hand local information itself are not sufficient to detect anomalies for several reasons, e.g. the underlying job distribution on a single worker node might change or there might be a local misconfiguration. On the other hand a centralised anomaly detection approach does not scale regarding network communication as well as computational costs. We therefore propose a scalable architecture based on concepts of a super-peer network.

  6. Validation of two commercial real-time RT-PCR kits for rapid and specific diagnosis of classical swine fever virus.

    PubMed

    Le Dimna, M; Vrancken, R; Koenen, F; Bougeard, S; Mesplède, A; Hutet, E; Kuntz-Simon, G; Le Potier, M F

    2008-01-01

    Two real-time RT-PCR kits, developed by LSI (TaqVet CSF) and ADIAGENE (Adiavet CSF), obtained an agreement to be commercialised in France, subject to conditions, defined by the French Classical Swine Fever (CSF) National Reference Laboratory. The producers were asked to introduce an internal control to check the RNA extraction efficacy. The different criteria assessed were sensitivity, "pestivirus specificity", reproducibility and ease of handling, using 189 different samples. These samples were either CSFV inactivated strains or blood/serum/organs collected from CSFV experimentally infected pigs or naturally infected wild boars. The reproducibility of the assays was confirmed by the analysis of a batch-to-batch panel control that was used for inter-laboratory tests involving nine laboratories. The two kits were also tested for the use in mass diagnostics and the results proved the kits to be suited using pools of blood, serum and tonsils. Moreover, a field evaluation, carried out on spleen samples collected from the CSF surveillance of wild boars in an area known to be infected and from domestic pigs at a slaughterhouse, confirmed the high sensitivity and specificity of the two kits. This step-by-step evaluation procedure confirmed that the two commercial CSF real-time RT-PCR kits have a higher predictive value than the current diagnostic standard, Virus Isolation.

  7. Quantifying Apparent Groundwater Ages near Managed Aquifer Recharge Operations Using Radio-Sulfur ( 35S) as an Intrinsic Tracer

    DOE PAGES

    Clark, Jordan; Urióstegui, Stephanie; Bibby, Richard; ...

    2016-10-25

    The application of the cosmogenic radioisotope sulfur-35 ( 35S) as a chronometer near spreading basins is evaluated at two well-established Managed Aquifer Recharge (MAR) sites: the Atlantis facility (South Africa) and Orange County Water District’s (OCWD’s) Kraemer Basin (Northern Orange County, CA, USA). Source water for both of these sites includes recycled wastewater. Despite lying nearer to the outlet end of their respective watersheds than to the headwaters, 35S was detected in most of the water sampled, including from wells found close to the spreading ponds and in the source water. Dilution with 35S-dead continental SO 4 was minimal, amore » surprising finding given its short ~3 month half-life. The initial work at the Atlantis MAR site demonstrated that remote laboratories could be set up and that small volume samples—saline solutions collected after the resin elution step from the recently developed batch method described below—can be stored and transported to the counting laboratory. This study also showed that the batch method needed to be altered to remove unknown compounds eluted from the resin along with SO 4. Using the improved batch method, times series measurements of both source and well water from OCWD’s MAR site showed significant temporal variations. Finally, this result indicates that during future studies, monthly to semi-monthly sampling should be conducted. Nevertheless, both of these initial studies suggest the 35S chronometer may become a valuable tool for managing MAR sites where regulations require minimum retention times.« less

  8. Quantifying Apparent Groundwater Ages near Managed Aquifer Recharge Operations Using Radio-Sulfur ( 35S) as an Intrinsic Tracer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Jordan; Urióstegui, Stephanie; Bibby, Richard

    The application of the cosmogenic radioisotope sulfur-35 ( 35S) as a chronometer near spreading basins is evaluated at two well-established Managed Aquifer Recharge (MAR) sites: the Atlantis facility (South Africa) and Orange County Water District’s (OCWD’s) Kraemer Basin (Northern Orange County, CA, USA). Source water for both of these sites includes recycled wastewater. Despite lying nearer to the outlet end of their respective watersheds than to the headwaters, 35S was detected in most of the water sampled, including from wells found close to the spreading ponds and in the source water. Dilution with 35S-dead continental SO 4 was minimal, amore » surprising finding given its short ~3 month half-life. The initial work at the Atlantis MAR site demonstrated that remote laboratories could be set up and that small volume samples—saline solutions collected after the resin elution step from the recently developed batch method described below—can be stored and transported to the counting laboratory. This study also showed that the batch method needed to be altered to remove unknown compounds eluted from the resin along with SO 4. Using the improved batch method, times series measurements of both source and well water from OCWD’s MAR site showed significant temporal variations. Finally, this result indicates that during future studies, monthly to semi-monthly sampling should be conducted. Nevertheless, both of these initial studies suggest the 35S chronometer may become a valuable tool for managing MAR sites where regulations require minimum retention times.« less

  9. Background music in the dissection laboratory: impact on stress associated with the dissection experience.

    PubMed

    Anyanwu, Emeka G

    2015-06-01

    Notable challenges, such as mental distress, boredom, negative moods, and attitudes, have been associated with learning in the cadaver dissection laboratory (CDL). The ability of background music (BM) to enhance the cognitive abilities of students is well documented. The present study was designed to investigate the impact of BM in the CDL and on stress associated with the dissection experience. After 8 wk of normal dissection without BM, various genres of BM were introduced into the cadaver dissection sessions of 260 medical and dental students for 3 wk. Feedback on the impact of BM on students in the CDL and students' attitude were accessed using a questionnaire. Psychological stress assessment was done using Psychological Stress Measure 9. Two batches of 30 students each were made to dissect same areas of the body for 2 h, one batch with BM playing and the other batch without. The same examination was given to both groups at the end. Over 90% of the participants expressed a desire to incorporate BM into the CDL; 87% of the sampled population that expressed love for music also reported BM to be a very useful tool that could be used to enhance learning conditions in the CDL. A strong positive relationship was established between love for music and its perception as a tool for learning in the CDL (P < 0.001). Students that studied under the influence of BM had significantly higher scores (P < 0.001) in the overall examination result. BM reduced the level of stress associated with the dissection experience by ∼33%. Copyright © 2015 The American Physiological Society.

  10. TESTING AND PERFORMANCE ANALYSIS OF NASA 5 CM BY 5 CM BI-SUPPORTED SOLID OXIDE ELECTROLYSIS CELLS OPERATED IN BOTH FUEL CELL AND STEAM ELECTROLYSIS MODES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. C. O'Brien; J. E. O'Brien; C. M. Stoots

    A series of 5 cm by 5 cm bi-supported Solid Oxide Electrolysis Cells (SOEC) were produced by NASA for the Idaho National Laboratory (INL) and tested under the INL High Temperature Steam Electrolysis program. The results from the experimental demonstration of cell operation for both hydrogen production and operation as fuel cells is presented. An overview of the cell technology, test apparatus and performance analysis is also provided. The INL High Temperature Steam Electrolysis laboratory has developed significant test infrastructure in support of single cell and stack performance analyses. An overview of the single cell test apparatus is presented. Themore » test data presented in this paper is representative of a first batch of NASA's prototypic 5 cm by 5 cm SOEC single cells. Clearly a significant relationship between the operational current density and cell degradation rate is evident. While the performance of these cells was lower than anticipated, in-house testing at NASA Glenn has yielded significantly higher performance and lower degradation rates with subsequent production batches of cells. Current post-test microstructure analyses of the cells tested at INL will be published in a future paper. Modification to cell compositions and cell reduction techniques will be altered in the next series of cells to be delivered to INL with the aim to decrease the cell degradation rate while allowing for higher operational current densities to be sustained. Results from the testing of new batches of single cells will be presented in a future paper.« less

  11. 40 CFR 455.40 - Applicability; description of the pesticide formulating, packaging and repackaging subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equipment; the testing and emergency operation of safety showers and eye washes; storm water; Department of Transportation (DOT) aerosol leak test bath water from non-continuous overflow baths (batch baths) where no cans have burst from the time of the last water change-out; and on-site laboratories from cleaning...

  12. 40 CFR 455.40 - Applicability; description of the pesticide formulating, packaging and repackaging subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equipment; the testing and emergency operation of safety showers and eye washes; storm water; Department of Transportation (DOT) aerosol leak test bath water from non-continuous overflow baths (batch baths) where no cans have burst from the time of the last water change-out; and on-site laboratories from cleaning...

  13. 40 CFR 455.40 - Applicability; description of the pesticide formulating, packaging and repackaging subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equipment; the testing and emergency operation of safety showers and eye washes; storm water; Department of Transportation (DOT) aerosol leak test bath water from non-continuous overflow baths (batch baths) where no cans have burst from the time of the last water change-out; and on-site laboratories from cleaning...

  14. Remediation of Perfluoroalkyl Contaminated Aquifers Using an In-situ Two-layer Barrier: Laboratory Batch and Column Study

    DTIC Science & Technology

    2013-04-01

    the only possible pathway which is unfortunately less potent. Thus, the perfluorination in PFC renders these compounds essentially inert to those...5.1 EXPERIMENTS ....................................................................................................21 5.1.1 SORPTION ISOTHERMS...19 Figure 13. Sorption isotherm of laccase on granular activated carbon at 25°C. .....................20 Figure 14

  15. Direct infusion mass spectrometry metabolomics dataset: a benchmark for data processing and quality control

    PubMed Central

    Kirwan, Jennifer A; Weber, Ralf J M; Broadhurst, David I; Viant, Mark R

    2014-01-01

    Direct-infusion mass spectrometry (DIMS) metabolomics is an important approach for characterising molecular responses of organisms to disease, drugs and the environment. Increasingly large-scale metabolomics studies are being conducted, necessitating improvements in both bioanalytical and computational workflows to maintain data quality. This dataset represents a systematic evaluation of the reproducibility of a multi-batch DIMS metabolomics study of cardiac tissue extracts. It comprises of twenty biological samples (cow vs. sheep) that were analysed repeatedly, in 8 batches across 7 days, together with a concurrent set of quality control (QC) samples. Data are presented from each step of the workflow and are available in MetaboLights. The strength of the dataset is that intra- and inter-batch variation can be corrected using QC spectra and the quality of this correction assessed independently using the repeatedly-measured biological samples. Originally designed to test the efficacy of a batch-correction algorithm, it will enable others to evaluate novel data processing algorithms. Furthermore, this dataset serves as a benchmark for DIMS metabolomics, derived using best-practice workflows and rigorous quality assessment. PMID:25977770

  16. Leaching of TCIPP from furniture foam is rapid and substantial.

    PubMed

    Stubbings, William A; Harrad, Stuart

    2018-02-01

    A series of laboratory experiments were conducted, in which waste furniture polyurethane foam samples containing tris (1-chloro-2-propyl) phosphate (TCIPP) were contacted with a range of leaching fluids, formulated to simulate the composition of landfill leachate. Leaching was examined under a number of different scenarios, such as: dissolved humic matter concentration, pH, and temperature, as well as the effect of agitation, and waste:leaching fluid contact duration. In addition to single batch (no replenishment of leaching fluid), serial batch (draining of leachate and replenishment with fresh leaching fluid at various time intervals) experiments were conducted. Leaching of TCIPP from PUF appears to be a first order process. Concentrations of TCIPP in leachate generated by the experiments in this study ranged from 13 mg L -1 to 130 mg L -1 . In serial batch leaching experiments, >95% of TCIPP was depleted from PUF after 168 h total contact with leaching fluid. Our experiments indicate leaching is potentially a very significant pathway of TCIPP emissions to the environment. Copyright © 2017. Published by Elsevier Ltd.

  17. 'Own-Label' Versus Branded Commercial Dental Resin Composite Materials: Mechanical And Physical Property Comparisons.

    PubMed

    Shaw, Kathryn; Martins, Ricardo; Hadis, Mohammed Abdul; Burke, Trevor; Palin, William

    2016-09-01

    A majority of dental materials are manufactured by companies who have experience in the field. However, a number of "own label" materials have become available, principally marketed by distributors and other companies with little or no experience in the field. These materials are attractive because of their reduced cost, but they may have no research on which clinicians might base their potential performance. It is therefore the purpose of this work to compare the performance of different batches of a number of "own-label" dental materials with a similar number from manufacturers with experience in the field, using a variety of laboratory test regimes which include filler determination, degree of conversion, flexural strength and flexural modulus, in order to evaluate key material properties. The results indicated that own-label dental resin composites produced similar results to materials from established companies in terms of flexural strength characteristics and degree of conversion. However, a greater batch-to-batch variation in several mechanical and physical properties of the own-label materials was noted. Copyright© 2016 Dennis Barber Ltd.

  18. Aerobic granular sludge: a promising technology for decentralised wastewater treatment.

    PubMed

    Li, Z H; Kuba, T; Kusuda, T

    2006-01-01

    In order to evaluate the characteristics of aerobic granular sludge, a sequencing batch reactor, feeding with synthetic wastewater at the organic loading rate of 8 kg COD/m3 d, was employed on the laboratory scale. Granules occurred in the reactor within 1 week after the inoculation from conventional flocculent sludge. Aerobic granular sludge was characterised by the outstanding settling properties and considerable contaminates removal efficiencies. The SVI30 values were in the range of 20 to 40 ml g(-1). However, the sludge volume index of short settling time (e.g. SVI10--10 min) is suggested to describe the fast settling properties of aerobic granular sludge. The potential application in the decentralised system is evaluated from the point view of footprint and high bioactivity. The occurrence of sloughing, resulting from the outgrowth of filamentous organisms, would be responsible for the instability of aerobic granules. The starvation phase should therefore be carefully controlled for the maintenance and stability of aerobic granular sludge system.

  19. Decolorization and mineralization of Diarylide Yellow 12 (PY12) by photo-Fenton process: the Response Surface Methodology as the optimization tool.

    PubMed

    GilPavas, Edison; Dobrosz-Gómez, Izabela; Gómez-García, Miguel Ángel

    2012-01-01

    The Response Surface Methodology (RSM) was applied as a tool for the optimization of the operational conditions of the photo-degradation of highly concentrated PY12 wastewater, resulting from a textile industry located in the suburbs of Medellin (Colombia). The Box-Behnken experimental Design (BBD) was chosen for the purpose of response optimization. The photo-Fenton process was carried out in a laboratory-scale batch photo-reactor. A multifactorial experimental design was proposed, including the following variables: the initial dyestuff concentration, the H(2)O(2) and the Fe(+2) concentrations, as well as the UV wavelength radiation. The photo-Fenton process performed at the optimized conditions resulted in ca. 100% of dyestuff decolorization, 92% of COD and 82% of TOC degradation. A kinetic study was accomplished, including the identification of some intermediate compounds generated during the oxidation process. The water biodegradability reached a final DBO(5)/DQO = 0.86 value.

  20. GenBank.

    PubMed

    Benson, Dennis A; Karsch-Mizrachi, Ilene; Lipman, David J; Ostell, James; Wheeler, David L

    2007-01-01

    GenBank (R) is a comprehensive database that contains publicly available nucleotide sequences for more than 240 000 named organisms, obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects. Most submissions are made using the web-based BankIt or standalone Sequin programs and accession numbers are assigned by GenBank staff upon receipt. Daily data exchange with the EMBL Data Library in Europe and the DNA Data Bank of Japan ensures worldwide coverage. GenBank is accessible through NCBI's retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. To access GenBank and its related retrieval and analysis services, begin at the NCBI Homepage (www.ncbi.nlm.nih.gov).

  1. GenBank.

    PubMed

    Benson, Dennis A; Karsch-Mizrachi, Ilene; Lipman, David J; Ostell, James; Wheeler, David L

    2005-01-01

    GenBank is a comprehensive database that contains publicly available DNA sequences for more than 165,000 named organisms, obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects. Most submissions are made using the web-based BankIt or standalone Sequin programs and accession numbers are assigned by GenBank staff upon receipt. Daily data exchange with the EMBL Data Library in the UK and the DNA Data Bank of Japan helps to ensure worldwide coverage. GenBank is accessible through NCBI's retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. To access GenBank and its related retrieval and analysis services, go to the NCBI Homepage at http://www.ncbi.nlm.nih.gov.

  2. GenBank.

    PubMed

    Benson, Dennis A; Karsch-Mizrachi, Ilene; Lipman, David J; Ostell, James; Wheeler, David L

    2006-01-01

    GenBank (R) is a comprehensive database that contains publicly available DNA sequences for more than 205 000 named organisms, obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects. Most submissions are made using the Web-based BankIt or standalone Sequin programs and accession numbers are assigned by GenBank staff upon receipt. Daily data exchange with the EMBL Data Library in Europe and the DNA Data Bank of Japan ensures worldwide coverage. GenBank is accessible through NCBI's retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. To access GenBank and its related retrieval and analysis services, go to the NCBI Homepage at www.ncbi.nlm.nih.gov.

  3. Comparison of animal infectivity, excystation, and fluorogenic dye as measures of Giardia muris cyst inactivation by ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labatiuk, C.W.; Finch, G.R.; Belosevic, M.

    1991-11-01

    Giardia muris cyst viability after ozonation was compared by using fluorescein diacetate-ethidium bromide staining, the C3H/HeN mouse-G. muris model, and in vitro excystation. Bench-scale batch experiments were conducted under laboratory conditions (pH 6.7, 22C) in ozone-demand-free phosphate buffer. There was a significant difference between fluorogenic staining and infectivity with fluorogenic staining overestimating viability compared with infectivity estimates of viability. This suggests that viable cysts as indicated by fluorogenic dyes may not be able to complete the life cycle and produce an infection. No significant differences between infectivity and excystation and between fluorogenic staining and excystation were detected for inactivations upmore » to 99.9%. Only animal infectivity had the sensitivity to detect inactivations greater than 99.9%. Therefore, the animal model is the best method currently available for detecting high levels of G. muris cyst inactivation.« less

  4. Transesterification of Waste Activated Sludge for Biosolids Reduction and Biodiesel Production.

    PubMed

    Maeng, Min Ho; Cha, Daniel K

    2018-02-01

      Transesterification of waste activated sludge (WAS) was evaluated as a cost-effective technique to reduce excess biosolids and recover biodiesel feedstock from activated sludge treatment processes. A laboratory-scale sequencing batch reactor (SBR) was operated with recycling transesterification-treated WAS back to the aeration basin. Seventy percent recycling of WAS resulted in a 48% reduction of excess biosolids in comparison with a conventional SBR, which was operated in parallel as the control SBR. Biodiesel recovery of 8.0% (dried weight basis) was achieved at an optimum transesterification condition using acidic methanol and xylene as cosolvent. Average effluent soluble chemical oxygen demand (COD) and total suspended solids (TSS) concentrations from the test SBR and control SBR were comparable, indicating that the recycling of transesterification-treated WAS did not have detrimental effect on the effluent quality. This study demonstrated that transesterification and recycling of WAS may be a feasible technique for reducing excess biosolids, while producing valuable biodiesel feedstock from the activated sludge process.

  5. Genotoxicity evaluation of effluents from textile industries of the region Fez-Boulmane, Morocco: a case study.

    PubMed

    Giorgetti, Lucia; Talouizte, Hakima; Merzouki, Mohammed; Caltavuturo, Leonardo; Geri, Chiara; Frassinetti, Stefania

    2011-11-01

    In order to investigate the biological hazard of effluents from textile industries of Fez-Boulmane region in Morocco, mutagenicity and phytotoxicity tests were performed on different biological systems. Moreover, the efficiency of a Sequencing Batch Reactor (SBR) system, working by activated sludge on a laboratory scale, was estimated by comparing the ecotoxicity results observed before and after wastewater treatment. Evaluation of the genotoxic potential was investigated by means of classic mutagenicity tests on D7 strain of Saccharomyces cerevisiae and by phytotoxicity tests on Allium sativum L., Vicia faba L. and Lactuca sativa L., estimating micronuclei presence, mitotic index and cytogenetic anomalies. The results obtained by testing untreated wastewater demonstrated major genotoxicity effects in S. cerevisiae and various levels of phytotoxicity in the three plant systems, while after SBR treatment no more ecotoxicological consequences were observed. These data confirm the effectiveness of the SBR system in removing toxic substances from textile wastewaters in Fez-Boulmane region. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Analysis of emulsion stability in acrylic dispersions

    NASA Astrophysics Data System (ADS)

    Ahuja, Suresh

    2012-02-01

    Emulsions either micro or nano permit transport or solubilization of hydrophobic substances within a water-based phase. Different methods have been introduced at laboratory and industrial scales: mechanical stirring, high-pressure homogenization, or ultrasonics. In digital imaging, toners may be formed by aggregating a colorant with a latex polymer formed by batch or semi-continuous emulsion polymerization. Latex emulsions are prepared by making a monomer emulsion with monomer like Beta-carboxy ethyl acrylate (β-CEA) and stirring at high speed with an anionic surfactant like branched sodium dodecyl benzene sulfonates , aqueous solution until an emulsion is formed. Initiator for emulsion polymerization is 2-2'- azobis isobutyramide dehydrate with chain transfer agent are used to make the latex. If the latex emulsion is unstable, the resulting latexes produce a toner with larger particle size, broader particle size distribution with relatively higher latex sedimentation, and broader molecular weight distribution. Oswald ripening and coalescence cause droplet size to increase and can result in destabilization of emulsions. Shear thinning and elasticity of emulsions are applied to determine emulsion stability.

  7. Laboratory and pilot-scale field experiments for application of iron oxide nanoparticle-loaded chitosan composites to phosphate removal from natural water.

    PubMed

    Kim, Jae-Hyun; Kim, Song-Bae; Lee, Sang-Hyup; Choi, Jae-Woo

    2018-03-01

    The aim of this study was to apply iron oxide nanoparticle-chitosan (ION-chitosan) composites to phosphate removal from natural water collected from the Seoho Stream in Suwon, Republic of Korea. Laboratory batch experiments showed that phosphate removal by the ION-chitosan composites was not sensitive to pH changes between pH values of 5.0 and 9.0. During six cycles of adsorption-desorption, the composites could be successfully regenerated with 5 mM NaOH solution and reused for phosphate removal. Laboratory fixed-bed column experiments (column height = 10 and 20 cm, inner diameter = 2.5 cm, flow rate = 8.18 and 16.36 mL/min) demonstrated that the composites could be successfully applied for phosphate removal under dynamic flow conditions. A pilot-scale field experiment was performed in a pilot plant, which was mainly composed of chemical reactor/dissolved air flotation and an adsorption tower, built nearby the Seoho Stream. The natural water was pumped from the Seoho Stream into the pilot plant, passed through the chemical reactor/dissolved air flotation process, and then introduced into the adsorption tower (height = 100 cm, inner diameter = 45 cm, flow rate = 7.05 ± 0.18 L/min) for phosphate removal via the composites (composite volume = 80 L, composite weight = 85.74 kg). During monitoring of the adsorption tower (33 days), the influent total phosphorus (T-P) concentration was in the range of 0.020-0.046 mgP/L, whereas the effluent T-P concentration was in the range of 0.010-0.028 mgP/L. The percent removal of T-P in the adsorption tower was 52.3% with a phosphate removal capacity of 0.059 mgP/g.

  8. A large-scale field trial experiment to derive effective release of heavy metals from incineration bottom ashes during construction in land reclamation.

    PubMed

    Chan, Wei-Ping; Ren, Fei; Dou, Xiaomin; Yin, Ke; Chang, Victor Wei-Chung

    2018-05-08

    Recycling of incineration bottom ashes (IBA) is attracting great interest as it is considered as a vital aspect for closing the waste loop to achieve sustainable development at the growing cities around the world. Various laboratory-testing methods are developed to assess the release potential of heavy metals - one of the most important concerns of using IBA, by reflecting the release conditions of heavy metals from IBA based on the targeted land reclamation application scenarios and corresponding environmental conditions. However, realistic release of the concerned elements in actual application with the presence of complex environment could possibly deviate from the outcomes produced by leaching tests carried out in the laboratory. Hence, a set of large-scale column trial experiments was performed to experimentally determine the effective release of heavy metals, when IBA is used as a filling material in land reclamation. 20 tons of IBA and 320 m 3 of seawater were used in six column trial experiments. The release of 13 heavy metal elements was analyzed through multiple aspects which included kinetics of release, distribution of elements in seawater and the impacts of two different dumping methods, with and without application of a chute. After dumping of IBA into the seawater, almost instantaneous release of heavy metals with uniform horizontal dispersion was observed. Higher concentration of these elements was observed near the bottom of the column, especially when a chute was applied. Comparative analysis was then carried out to establish relationships between the results obtained from the column trial with batch leaching test carried out in the laboratory. Distinctive relationships were observed for different heavy metals which suggests the need of pursuance of further understanding on leaching of IBA in real application scenario and complex environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The bacteriological quality of different brands of bottled water available to consumers in Ile-Ife, south-western Nigeria.

    PubMed

    Igbeneghu, Oluwatoyin A; Lamikanra, Adebayo

    2014-11-28

    The upsurge in the demand for bottled water has prompted the interest of many manufacturers in the production of bottled water and very many water bottling companies are therefore involved in its production. These range from large scale multinational companies to medium scale business enterprises, institutional and government business investment companies as well as small scale entrepreneurs. There is however little information on the comparative quality of bottled water brands produced by different classes of water bottling companies in Nigeria. This study was undertaken to determine the bacteriological quality of brands of bottled water available to consumers in Ile-Ife. Forty-three samples of bottled water comprising of three batches each of thirteen bottled water brands and two batches of two brands were purchased and analyzed for total bacterial count, presence of coliform and the presence of other bacterial indicators of drinking water quality. Only 67.4% of the water samples representing the products of 10 companies or 66.7% of the brands had heterotrophic counts within the acceptable limits. Coliforms present in 100 ml of water were detected in 26.7% of the bottled water brands. Other indicator organisms detected included Staphylococci isolated from 27.9% of the samples (33.3% of the brands) and specifically Staphylococcus aureus found in four brands constituting 14% of the samples. Pseudomonas strains were consistently detected in consecutive batches of three brands of the water samples. Bottled water samples produced by the large scale multinational producers were of acceptable bacteriological quality unlike those produced by most small companies. There is need for a greater control of water bottling processes carried out by commercial bottled water producers in Nigeria.

  10. Minor allergen patterns in birch pollen allergen products-A question of pollen?

    PubMed

    Zimmer, J; Döring, S; Strecker, D; Trösemeier, J H; Hanschmann, K M; Führer, F; Vieths, S; Kaul, S

    2017-08-01

    Contrary to the scientific differentiation between major and minor allergens, the regulatory framework controlling allergen products in the EU distinguishes relevant and non-relevant allergens. Given the lack of knowledge on their clinical relevance, minor allergens are usually not controlled by allergen product specifications. Especially, in birch pollen (BP) allergen products, minor allergens are commonly disregarded. To quantify three minor allergens in BP allergen products from different manufacturers and to assess the influence of the utilized BP on minor allergen patterns. Apart from common quality parameters such as Bet v 1 content, Bet v 4, Bet v 6 and Bet v 7 were quantified in 70 BP allergen product batches from six manufacturers, using ELISA systems developed in-house. Batch-to-batch variability was checked for agreement with a variability margin of 50%-200% from mean of the given batches for individual allergen content. Subsequently, minor allergen patterns were generated via multidimensional scaling and related to information on the pollen lots used in production of the respective product batches. Like the already established Bet v 4 ELISA, the ELISA systems for quantification of Bet v 6 and Bet v 7 were successfully validated. Differences in minor allergen content between products and batch-to-batch consistency were observed. Correlations between minor and major allergen content were low to moderate. About 20% of batches exceeded the variability margin for at least one minor allergen. Interestingly, these fluctuations could not in all cases be linked to the use of certain BP lots. The impact of the observed minor allergen variability on safety and efficacy of BP allergen products can currently not be estimated. As the described differences could only in few cases be related to the used pollen lots, it is evident that additional factors influence minor allergens in BP allergen products. © 2017 John Wiley & Sons Ltd.

  11. Characterization and Multicentric Validation of a Common Standard for Toxoplasma gondii Detection Using Nucleic Acid Amplification Assays

    PubMed Central

    Varlet-Marie, Emmanuelle; Sterkers, Yvon; Brenier-Pinchart, Marie-Pierre; Cassaing, Sophie; Dalle, Frédéric; Delhaes, Laurence; Filisetti, Denis; Pelloux, Hervé; Touafek, Fériel; Yera, Hélène

    2014-01-01

    The molecular diagnosis of toxoplasmosis essentially relies upon laboratory-developed methods and suffers from lack of standardization, hence the large diversity of performances between laboratories. Moreover, quantifications of parasitic loads differ among centers, a fact which prevents the possible prediction of the severity of this disease as a function of parasitic loads. The objectives of this multicentric study performed in eight proficient laboratories of the Molecular Biology Pole of the French National Reference Center for Toxoplasmosis (NRC-T) were (i) to assess the suitability of a lyophilized preparation of Toxoplasma gondii as a common standard for use in this PCR-based molecular diagnosis and (ii) to make this standard available to the community. High-quality written procedures were used for the production and qualification of this standard. Three independent batches of this standard, containing concentrations ranging from 104 to 0.01 T. gondii genome equivalents per PCR, were first assessed: the linear dynamic range was ≥6 log, the intra-assay coefficients of variation (CV) from a sample containing 10 T. gondii organisms per PCR were 0.3% to 0.42%, and the interassay CV over a 2-week period was 0.76% to 1.47%. A further assessment in eight diagnostic centers showed that the standard is stable, robust, and reliable. These lyophilized standards can easily be produced at a larger scale when needed and can be made widely available at the national level. To our knowledge, this is the first quality control assessment of a common standard which is usable both for self-evaluation in laboratories and for accurate quantification of parasitic loads in T. gondii prenatal infections. PMID:25187637

  12. Characterization and multicentric validation of a common standard for Toxoplasma gondii detection using nucleic acid amplification assays.

    PubMed

    Varlet-Marie, Emmanuelle; Sterkers, Yvon; Brenier-Pinchart, Marie-Pierre; Cassaing, Sophie; Dalle, Frédéric; Delhaes, Laurence; Filisetti, Denis; Pelloux, Hervé; Touafek, Fériel; Yera, Hélène; Bastien, Patrick

    2014-11-01

    The molecular diagnosis of toxoplasmosis essentially relies upon laboratory-developed methods and suffers from lack of standardization, hence the large diversity of performances between laboratories. Moreover, quantifications of parasitic loads differ among centers, a fact which prevents the possible prediction of the severity of this disease as a function of parasitic loads. The objectives of this multicentric study performed in eight proficient laboratories of the Molecular Biology Pole of the French National Reference Center for Toxoplasmosis (NRC-T) were (i) to assess the suitability of a lyophilized preparation of Toxoplasma gondii as a common standard for use in this PCR-based molecular diagnosis and (ii) to make this standard available to the community. High-quality written procedures were used for the production and qualification of this standard. Three independent batches of this standard, containing concentrations ranging from 10(4) to 0.01 T. gondii genome equivalents per PCR, were first assessed: the linear dynamic range was ≥ 6 log, the intra-assay coefficients of variation (CV) from a sample containing 10 T. gondii organisms per PCR were 0.3% to 0.42%, and the interassay CV over a 2-week period was 0.76% to 1.47%. A further assessment in eight diagnostic centers showed that the standard is stable, robust, and reliable. These lyophilized standards can easily be produced at a larger scale when needed and can be made widely available at the national level. To our knowledge, this is the first quality control assessment of a common standard which is usable both for self-evaluation in laboratories and for accurate quantification of parasitic loads in T. gondii prenatal infections. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. MODELING CST ION EXCHANGE FOR CESIUM REMOVAL FROM SCIX BATCHES 1 - 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, F.

    2011-04-25

    The objective of this work is, through modeling, to predict the performance of Crystalline Silicotitinate (CST) for the removal of cesium from Small Column Ion Exchange (SCIX) Batches 1-4 (as proposed in Revision 16 of the Liquid Waste System Plan). The scope of this task is specified in Technical Task Request (TTR) 'SCIX Feed Modeling', HLE-TTR-2011-003, which specified using the Zheng, Anthony, Miller (ZAM) code to predict CST isotherms for six given SCIX feed compositions and the VErsatile Reaction and SEparation simulator for Liquid Chromatography (VERSE-LC) code to predict ion-exchange column behavior. The six SCIX feed compositions provided in themore » TTR represent SCIX Batches 1-4 and Batches 1 and 2 without caustic addition. The study also investigated the sensitivity in column performance to: (1) Flow rates of 5, 10, and 20 gpm with 10 gpm as the nominal flow; and (2) Temperatures of 25, 35, and 45 C with 35 C as the nominal temperature. The isotherms and column predictions presented in this report reflect the expected performance of engineered CST IE-911. This form of CST was used in experiments conducted at the Savannah River National Laboratory (SRNL) that formed the basis for estimating model parameters (Hamm et al., 2002). As has been done previously, the engineered resin capacity is estimated to be 68% of the capacity of particulate CST without binder.« less

  14. Regeneration of iron-based adsorptive media used for removing arsenic from groundwater.

    PubMed

    Chen, Abraham S C; Sorg, Thomas J; Wang, Lili

    2015-06-15

    Adsorptive media technology is regarded as a simple, low cost method of removing arsenic from drinking water particularly for small systems. Currently, when the effluent of a treatment system reaches the USEPA maximum contaminant level (MCL) of 10 ug/L, the exhausted media is removed and replaced by new virgin media. Although the commonly used iron-based media products are reasonable in price, the replacement cost accounts for around 80% of the systems total operational costs. One option to media replacement is on-site regeneration and reuse of the exhausted media. To determine whether an iron based media can be successfully regenerated and reused, laboratory batch and column regeneration tests were conducted on six exhausted iron-based media products obtained from six full scale arsenic removal treatment systems. Batch tests conducted on three of the media products to evaluate the effectiveness of 1-6% caustic regenerant solutions found that arsenic desorption increased until around 4%. Using 4% caustic solutions, the columns tests on the six exhausted media products showed arsenic removals ranged from 25 to 90% with the best results obtained with the Severn Trent E33 media. Exposing the media to caustic (pH ≥ 13) and acid (pH ≤ 2) solutions found minimal media loss with the caustic solution, but significant media dissolution with a pH 2 acid solution. A six column pilot plant test at an Ohio test site with the lab regenerated media products found that the regenerated media could achieve arsenic removals somewhat similar to virgin media. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Feeding schemes and C/N ratio of a laboratory-scale step-fed sequencing batch reactor for liquid swine manure treatment.

    PubMed

    Wu, Sarah Xiao; Zhu, Jun; Chen, Lide

    2017-07-03

    This study was undertaken to investigate the effect of two split feeding schemes (600 mL/200 mL and 400 mL/400 mL, designated as FS1 and FS2, respectively) on the performance of a step-fed sequencing batch reactor (SBR) in treating liquid swine manure for nutrient removal. The SBR was run on an 8-h cycle with a repeated pattern of anaerobic/anoxic/aerobic phases in each cycle and the two feedings always occurred at the beginning of each anaerobic phase. A low-level aeration was used (1.0 L/m 3 .sec) for the anoxic/aerobic phase to facilitate nitrification and phosphorus uptake while reducing the energy consumption. The results showed that FS1 reduced NH 4 + -N by 98.7% and FS2 by 98.3%. FS1 had 12.3 mg/L NO 3 -N left in the effluent, while FS2 had 4.51 mg/L. For soluble phosphorus removal, FS1 achieved 95.2%, while FS2 reached only 68.5%. Both feeding schemes achieved ≥ 95% removal of COD. A good power regression was observed between total nitrogen (sum of all three nitrogen species) and the carbon to nitrogen (C/N) ratio, with the correlation coefficients of 0.9729 and 0.9542 for FS1 and FS2, respectively, based on which it was concluded that higher C/N ratios were required to achieve higher nitrogen removal efficiencies.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cort, John R.; Alperin, Paul J.; Cho, Herman M.

    The highly toxic organic compound brodifacoum exists as two diastereomers. The diasteromer ratio in a sample depends on the methods and conditions used for synthesis and purification, and may vary over time due to differential stability of the diastereomers. The stereoisomer distribution may thus be viewed as a chemical forensic signature, containing information about the production and history of unknown samples, and providing a basis of comparison between samples. A determination of diastereomer ratios can be performed by a number of techniques, notably gas or liquid chromatography or nuclear magnetic resonance (NMR) spectroscopy. An analysis of a cross-section of U.S.-mademore » commercial technical grade brodifacoum material shows that there are detectable manufacturer-to-manufacturer and batch-to-batch variations in diastereomer ratios. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less

  17. Characterization of DWPF recycle condensate materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.; Adamson, D. J.; King, W. D.

    2015-04-01

    A Defense Waste Processing Facility (DWPF) Recycle Condensate Tank (RCT) sample was delivered to the Savannah River National Laboratory (SRNL) for characterization with particular interest in the concentration of I-129, U-233, U-235, total U, and total Pu. Since a portion of Salt Batch 8 will contain DWPF recycle materials, the concentration of I-129 is important to understand for salt batch planning purposes. The chemical and physical characterizations are also needed as input to the interpretation of future work aimed at determining the propensity of the RCT material to foam, and methods to remediate any foaming potential. According to DWPF themore » Tank Farm 2H evaporator has experienced foaming while processing DWPF recycle materials. The characterization work on the RCT samples has been completed and is reported here.« less

  18. Mechanisms and kinetics of cellulose fermentation for protein production

    NASA Technical Reports Server (NTRS)

    Dunlap, C. A.

    1971-01-01

    The development of a process (and ancillary processing and analytical techniques) to produce bacterial single-cell protein of good nutritional quality from waste cellulose is discussed. A fermentation pilot plant and laboratory were developed and have been in operation for about two years. Single-cell protein (SCP) can be produced from sugarcane bagasse--a typical agricultural cellulosic waste. The optimization and understanding of this process and its controlling variables are examined. Both batch and continuous fermentation runs have been made under controlled conditions in the 535 liter pilot plant vessel and in the laboratory 14-liter fermenters.

  19. Sliding mode control of dissolved oxygen in an integrated nitrogen removal process in a sequencing batch reactor (SBR).

    PubMed

    Muñoz, C; Young, H; Antileo, C; Bornhardt, C

    2009-01-01

    This paper presents a sliding mode controller (SMC) for dissolved oxygen (DO) in an integrated nitrogen removal process carried out in a suspended biomass sequencing batch reactor (SBR). The SMC performance was compared against an auto-tuning PI controller with parameters adjusted at the beginning of the batch cycle. A method for cancelling the slow DO sensor dynamics was implemented by using a first order model of the sensor. Tests in a lab-scale reactor showed that the SMC offers a better disturbance rejection capability than the auto-tuning PI controller, furthermore providing reasonable performance in a wide range of operation. Thus, SMC becomes an effective robust nonlinear tool to the DO control in this process, being also simple from a computational point of view, allowing its implementation in devices such as industrial programmable logic controllers (PLCs).

  20. Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater.

    PubMed

    Liang, Yuan; Cao, Xinde; Zhao, Ling; Arellano, Eduardo

    2014-03-01

    Long-term wastewater irrigation or solid waste disposal has resulted in the heavy metal contamination in both soil and groundwater. It is often separately implemented for remediation of contaminated soil or groundwater at a specific site. The main objective of this study was to demonstrate the hypothesis of simultaneous remediation of both heavy metal contaminated soil and groundwater by integrating the chemical immobilization and pump-and-treat methods. To accomplish the objective, three experiments were conducted, i.e., an incubation experiment was first conducted to determine how dairy-manure-derived biochar and phosphate rock tailing induced immobilization of Cd in the Cd-contaminated soils; second, a batch sorption experiment was carried out to determine whether the pre-amended contaminated soil still had the ability to retain Pb, Zn and Cd from aqueous solution. BCR sequential extraction as well as XRD and SEM analysis were conducted to explore the possible retention mechanism; and last, a laboratory-scale model test was undertaken by leaching the Pb, Zn, and Cd contaminated groundwater through the pre-amended contaminated soils to demonstrate how the heavy metals in both contaminated soil and groundwater were simultaneously retained and immobilized. The incubation experiment showed that the phosphate biochar were effective in immobilizing soil Cd with Cd concentration in TCLP (toxicity characteristics leaching procedure) extract reduced by 19.6 % and 13.7 %, respectively. The batch sorption experiment revealed that the pre-amended soil still had ability to retain Pb, Zn, and Cd from aqueous solution. The phosphate-induced metal retention was mainly due to the metal-phosphate precipitation, while both sorption and precipitation were responsible for the metal stabilization in the biochar amendment. The laboratory-scale test demonstrated that the soil amended with phosphate removed groundwater Pb, Zn, and Cd by 96.4 %, 44.6 %, and 49.2 %, respectively, and the soil amended with biochar removed groundwater Pb, Zn, and Cd by 97.4 %, 53.4 %, and 54.5 %, respectively. Meanwhile, the metals from both groundwater and soil itself were immobilized with the amendments, with the leachability of the three metals in the CaCl2 and TCLP extracts being reduced by up to 98.1 % and 62.7 %, respectively. Our results indicate that the integrated chemical immobilization and pump-and-treat method developed in this study provides a novel way for simultaneous remediation of both metal-contaminated soil and groundwater.

  1. Development of Safe and Flavor-Rich Doenjang (Korean Fermented Soybean Paste) Using Autochthonous Mixed Starters at the Pilot Plant Scale.

    PubMed

    Lee, Eun Jin; Hyun, Jiye; Choi, Yong-Ho; Hurh, Byung-Serk; Choi, Sang-Ho; Lee, Inhyung

    2018-06-01

    Doenjang (Korean fermented soybean paste) with an improved flavor and safety was prepared by the simultaneous fermentation of autochthonous mixed starters at the pilot plan scale. First, whole soybean meju was fermented by coculturing safety-verified starters Aspergillus oryzae MJS14 and Bacillus amyloliquefaciens zip6 or Bacillus subtilis D119C. These fermented whole soybean meju were aged in a brine solution after the additional inoculation of Tetragenococcus halophilus 7BDE22 and Zygosaccharomyces rouxii SMY045 to yield doenjang. Four doenjang batches prepared using a combination of mold, bacilli, lactic acid bacteria, and yeast starters were free of safety issues and had the general properties of traditional doenjang, a rich flavor and taste. All doenjang batches received a high consumer acceptability score, especially the ABsT and ABsTZ batches. This study suggests that flavor-rich doenjang similar to traditional doenjang can be manufactured safely and reproducibly in industry by mimicking the simultaneous fermentation of autochthonous mixed starters as in traditional doenjang fermentation. The development of a pilot plant process for doenjang fermentation using safety-verified autochthonous mixed starter will facilitate the manufacture of flavor-rich doenjang similar to traditional doenjang safely and reproducibly in industry. © 2018 Institute of Food Technologists®.

  2. (99)Tc(VII) Retardation, Reduction, and Redox Rate Scaling in Naturally Reduced Sediments.

    PubMed

    Liu, Yuanyuan; Liu, Chongxuan; Kukkadapu, Ravi K; McKinley, James P; Zachara, John; Plymale, Andrew E; Miller, Micah D; Varga, Tamas; Resch, Charles T

    2015-11-17

    An experimental and modeling study was conducted to investigate pertechnetate (Tc(VII)O4(-)) retardation, reduction, and rate scaling in three sediments from Ringold formation at U.S. Department of Energy's Hanford site, where (99)Tc is a major contaminant in groundwater. Tc(VII) was reduced in all the sediments in both batch reactors and diffusion columns, with a faster rate in a sediment containing a higher concentration of HCl-extractable Fe(II). Tc(VII) migration in the diffusion columns was reductively retarded with retardation degrees correlated with Tc(VII) reduction rates. The reduction rates were faster in the diffusion columns than those in the batch reactors, apparently influenced by the spatial distribution of redox-reactive minerals along transport paths that supplied Tc(VII). X-ray computed tomography and autoradiography were performed to identify the spatial locations of Tc(VII) reduction and transport paths in the sediments, and results generally confirmed the newly found behavior of reaction rate changes from batch to column. The results from this study implied that Tc(VII) migration can be reductively retarded at Hanford site with a retardation degree dependent on reactive Fe(II) content and its distribution in sediments. This study also demonstrated that an effective reaction rate may be faster in transport systems than that in well-mixed reactors.

  3. Universal Batch Steganalysis

    DTIC Science & Technology

    2014-06-30

    steganalysis) in large-scale datasets such as might be obtained by monitoring a corporate network or social network. Identifying guilty actors...guilty’ user (of steganalysis) in large-scale datasets such as might be obtained by monitoring a corporate network or social network. Identifying guilty...floating point operations (1 TFLOPs) for a 1 megapixel image. We designed a new implementation using Compute Unified Device Architecture (CUDA) on NVIDIA

  4. A pilot-scale steam autoclave system for treating municipal solid waste for recovery of renewable organic content: Operational results and energy usage

    USDA-ARS?s Scientific Manuscript database

    A pilot-scale (1800'kg per batch capacity) autoclave used in this study reduces municipal solid waste to a debris contaminated pulp product that is efficiently separated into its renewable organic content and non-renewable organic content fractions using a rotary trommel screen. The renewable organi...

  5. Life History of Cochliomyia macellaria (Fabricius, 1775) (Diptera, Calliphoridae), a Blowfly of Medical and Forensic Importance.

    PubMed

    Alvarez Garcia, D M; Pérez-Hérazo, A; Amat, E

    2017-12-01

    The life history traits of blow fly Cochliomyia macellaria (Fabricius, 1775) was studied under semi-controlled laboratory conditions at 29.14°C temperature, 72.53% relative humidity, and 12-h photoperiod. The raw data were analyzed based on the age-stage, two-sex life table, considering the development rates among individuals of both sexes. Cochliomyia macellaria survival rate was 0.43 (♂) and 0.40 (♀), while life expectancy was 17.9 (♂) and 20.9 (♀) days, for adult males and females, respectively. The total fecundity was 681.15 eggs/female, with an average of 3.65 batches/female and 199 eggs/batch. The intrinsic rate of increase (r) was 0.327 days -1 , the finite rate of population increase (λ) was 3.35 days -1 , the mean generation time (T) was 17.15 days, and the net reproduction rate (R 0 ) was 272.46 offspring/individual. The population parameters found here corroborates that C. macellaria population act as a r selected species under laboratory conditions. Additionally, development data and accumulated degree days (ADD) for each stage of C. macellaria are provided and its implications for the forensic use are discussed.

  6. Efficient production of l-lactic acid from hydrolysate of Jerusalem artichoke with immobilized cells of Lactococcus lactis in fibrous bed bioreactors.

    PubMed

    Shi, Zhouming; Wei, Peilian; Zhu, Xiangcheng; Cai, Jin; Huang, Lei; Xu, Zhinan

    2012-10-10

    Hydrolysate of Jerusalem artichoke was applied for the production of l-lactic acid by immobilized Lactococcus lactis cells in a fibrous bed bioreactor system. Preliminary experiments had indicated that the high quality hydrolysate, which was derived from the 40 min acid treatment at 95 °C and pH 1.8, was sufficient to support the cell growth and synthesis of l-lactic acid. With the addition of 5 g/l yeast extract, the fermentative performance of free cell system was evidently improved. After the basal settlement of hydrolysate based fermentation, the batch mode and the fed-batch mode fermentation were carried out in the free cell system and the fibrous bed bioreactor system, respectively. In all cases the immobilized cells presented the superior ability to produce l-lactic acid. The comparison of batch mode and fed-batch mode also indicated that the growth-limiting feeding strategy could reduce the lag phase of fermentation process and enhance the production of l-lactic acid. The achieved maximum concentration of l-lactic acid was 142 g/l in the fed-batch mode. Subsequent repeated-batch fermentation of the fibrous bed bioreactor system had further exhibited the persistence and stability of this system for the high production of l-lactic acid in a long term. Our work suggested the great potential of the fibrous bed bioreactor system and hydrolysate of J. artichoke in the economical production of l-lactic acid at industrial scale. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Determination of emamectin benzoate in medicated fish feed: a multisite study.

    PubMed

    Farer, Leslie J

    2005-01-01

    A new method was developed for the quantitation of emamectin benzoate in medicated fish feed at levels between 1 and 30 ppm. The new procedure, based on a previously reported assay, consists of a wet methanolic extraction of ground feed, followed by solid-phase extraction and injection onto a gradient liquid chromatographic system. A multisite study involving 3 laboratories (the developing laboratory and 2 independent laboratories) was performed to evaluate precision, recovery, linearity, and sensitivity. Mean recove;ries for triplicate analyses at 3 levels, performed by 2 analysts per laboratory, were between 89 and 97%, with coefficients of variation ranging from 1.6 to 8.6%. Coefficients of determination (r2) obtained from the plotted data were > or =0.993. The precision of the method, determined from 6 replicate preparations from the same batch of medicated feed assayed in 3 separate trials per laboratory, was between 0.6 and 5.8%. The quantitation limit was established at 0.5 ppm. Specificity and robustness studies were performed by the developing laboratory.

  8. Seven-Year Clinical Surveillance Program Demonstrates Consistent MARD Accuracy Performance of a Blood Glucose Test Strip.

    PubMed

    Setford, Steven; Grady, Mike; Mackintosh, Stephen; Donald, Robert; Levy, Brian

    2018-05-01

    MARD (mean absolute relative difference) is increasingly used to describe performance of glucose monitoring systems, providing a single-value quantitative measure of accuracy and allowing comparisons between different monitoring systems. This study reports MARDs for the OneTouch Verio® glucose meter clinical data set of 80 258 data points (671 individual batches) gathered as part of a 7.5-year self-surveillance program Methods: Test strips were routinely sampled from randomly selected manufacturer's production batches and sent to one of 3 clinic sites for clinical accuracy assessment using fresh capillary blood from patients with diabetes, using both the meter system and standard laboratory reference instrument. Evaluation of the distribution of strip batch MARD yielded a mean value of 5.05% (range: 3.68-6.43% at ±1.96 standard deviations from mean). The overall MARD for all clinic data points (N = 80 258) was also 5.05%, while a mean bias of 1.28 was recorded. MARD by glucose level was found to be consistent, yielding a maximum value of 4.81% at higher glucose (≥100 mg/dL) and a mean absolute difference (MAD) of 5.60 mg/dL at low glucose (<100 mg/dL). MARD by year of manufacture varied from 4.67-5.42% indicating consistent accuracy performance over the surveillance period. This 7.5-year surveillance program showed that this meter system exhibits consistently low MARD by batch, glucose level and year, indicating close agreement with established reference methods whilste exhibiting lower MARD values than continuous glucose monitoring (CGM) systems and providing users with confidence in the performance when transitioning to each new strip batch.

  9. HgCdTe liquid phase epitaxy - An overview

    NASA Astrophysics Data System (ADS)

    Castro, C. A.; Korenstein, R.

    1982-08-01

    Techniques and results of using liquid phase epitaxy (LPE) to form crystalline thin HgCdTe films for industrial-scale applications in IR detectors and focal plane arrays are discussed. Varying the mole fraction of CdTe in HgCdTe is noted to permit control of the bandwidth. LPE-grown films are noted to have a low carrier concentration, on the order of 4 x 10 to the 14th to 5 x 10 to the 15th/cu cm, a good surface morphology and be amenable to production scale-up. Details of the isothermal, equilibrium cooling, and supersaturation cooling LPE growth modes are reviewed, noting the necessity of developing a reliable method for determining the liquidus temperature for all modes to maintain uniformity of film growth from batch to batch. Mechanical steps can be either dipping the substrate into the melt or the slider boat approach, which is used in the production of compound semiconductors.

  10. Inferring silicate weathering rates over recent timescales (less than 100 years) in crystalline aquifers by calibrating lumped parameters models with atmospheric tracers

    NASA Astrophysics Data System (ADS)

    Marçais, J.; Labasque, T.; Gauvain, A.; De Dreuzy, J. R.; Aquilina, L.; Abbott, B. W.

    2016-12-01

    Silicate minerals (e.g. feldspars, micas and olivines) are ubiquitous in crystalline rocks such as granite and schist. Groundwater dissolves some of this silica via weathering processes as it passes through the catchment, increasing silica concentration with residence time. However, quantifying weathering rates is complicated by the fact that groundwater residence time distributions (RTD) are typically unknown. Batch experiments can characterize weathering reaction type and provide estimates of dissolution rates, but weathering timescales in the field are far greater than what can be simulated in the laboratory (White and Brantley, 2003). Here we implement a novel approach coupling chlorofluorocarbons (CFC) and dissolved silica concentrations to infer timescales of silica weathering processes at the watershed scale. We investigated 6 crystalline aquifers in Brittany with contrasting lithology. We quantified silicate weathering at the watershed scale based on individual measurements from multiple wells, assuming first-order reaction kinetics. For each well, we used a lumped parameter model to determined RTD with inverse gaussian distributions, which allow two degrees of freedom. Production rate and initial silicate concentration were then optimized at the watershed scale with the calibrated model. Weathering rates were relatively similar among watersheds, varying for most sites from 0.16 to 0.42 mg/L/yr (SD = 0.09 mg/L/yr), and estimates of weathering rates were not significantly influenced by single well measurements. This work demonstrates how atmospheric tracers can be used with dissolved silica concentration to inform both RTD and first order kinetics of weathering reactions. Together these results suggest that dissolved silica could be a robust and cheap groundwater age proxy for recent timescales (less than 100 years). ------------------ White, Art F, and Susan L Brantley. 2003. « The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? » Chemical Geology, Controls on Chemical Weathering, 202 (3-4): 479-506. doi:10.1016/j.chemgeo.2003.03.001.

  11. The concurrent growth of plants and chemical purification of wastewater used as a hydroponic unit.

    PubMed

    Jurdi, M; Soufi, M; Acra, A

    1987-01-01

    In this study the seedling of a variety of plants were successfully grown hydroponically on raw wastewater obtained from one of the main sewer outfalls in Beirut. In the first phase, a series of experiments was run on a batch system in glass or plastic containers provided with aeration facilities. A continuous-flow system with recirculation was adopted in the second phase. Iron supplementation was applied in all cases to compensate for its deficiency in the raw wastewater used. The immediate and ultimate objectives of the project were threefold: (a) to demonstrate the feasibility of utilizing as a hydroponic medium untreated municipal wastewater having relatively high mean values for BOD and mineral content; (b) to achieve the growth of useful plants on such readily available hydroponic media, thereby saving on fertilizers and scarce water resources; and (c) reclamation of the wastewater through biological purification leading to the gradual depletion of the nutritive constituents. Experimental conditions are described, and the data presented leads to the conclusion that the system is practicable on a laboratory scale. It has great potential for trial on a pilot scale prior to field applications in developing countries suffering from water shortage and hard currency expended on imported fertilizers and wastewater purification facilities.

  12. Robotic platform for parallelized cultivation and monitoring of microbial growth parameters in microwell plates.

    PubMed

    Knepper, Andreas; Heiser, Michael; Glauche, Florian; Neubauer, Peter

    2014-12-01

    The enormous variation possibilities of bioprocesses challenge process development to fix a commercial process with respect to costs and time. Although some cultivation systems and some devices for unit operations combine the latest technology on miniaturization, parallelization, and sensing, the degree of automation in upstream and downstream bioprocess development is still limited to single steps. We aim to face this challenge by an interdisciplinary approach to significantly shorten development times and costs. As a first step, we scaled down analytical assays to the microliter scale and created automated procedures for starting the cultivation and monitoring the optical density (OD), pH, concentrations of glucose and acetate in the culture medium, and product formation in fed-batch cultures in the 96-well format. Then, the separate measurements of pH, OD, and concentrations of acetate and glucose were combined to one method. This method enables automated process monitoring at dedicated intervals (e.g., also during the night). By this approach, we managed to increase the information content of cultivations in 96-microwell plates, thus turning them into a suitable tool for high-throughput bioprocess development. Here, we present the flowcharts as well as cultivation data of our automation approach. © 2014 Society for Laboratory Automation and Screening.

  13. Polygalacturonase and ethanol production in Kluyveromyces marxianus: potential use of polygalacturonase in foodstuffs.

    PubMed

    Serrat, Manuel; Bermúdez, Rosa C; Villa, Tomás G

    2004-04-01

    The coproduction of ethanol and polygalacturonase (PG) in a pilot-scale batch fermentor using yeast extract--glucose (YD)--and sugar beet molasses (SBM)-based media was implemented utilizing a new high-PG-producing strain of Kluyveromyces marxianus. A certain growth inhibition was observed in SBM medium, causing ethanol and PG production to be lower. Ethanol productivity and accumulation values of 1.94 g/(L x h) and 40 g/L, respectively, were attained in YD, whereas the best fermentation efficiency (95.1%) was achieved with SBM medium. Maximal PG synthesis occurred at the end of cell growth, with values of 1.08 and 0.46 U/(mg x h) for the YD and SBM media, respectively. When the cultures reached stationary phase, PG production stopped. The highest accumulation level (17 U/mL) occurred in YD medium, in agreement with previous laboratory-scale studies carried out for this strain. The potential applications of the crude enzyme preparations were evaluated with different fruit juices and vegetable slices. The enzyme was able to increase the filtration rate of orange, pear, and apple juices by twofold. Additionally, complete clarification of apple juice was readily accomplished, whereas cucumber, carrot, and banana tissues were macerated to a lesser extent. Copyright 2004 Humana Press Inc.

  14. Enhancement of Micropollutant Degradation at the Outlet of Small Wastewater Treatment Plants

    PubMed Central

    Rossi, Luca; Queloz, Pierre; Brovelli, Alessandro; Margot, Jonas; Barry, D. A.

    2013-01-01

    The aim of this work was to evaluate low-cost and easy-to-operate engineering solutions that can be added as a polishing step to small wastewater treatment plants to reduce the micropollutant load to water bodies. The proposed design combines a sand filter/constructed wetland with additional and more advanced treatment technologies (UV degradation, enhanced adsorption to the solid phase, e.g., an engineered substrate) to increase the elimination of recalcitrant compounds. The removal of five micropollutants with different physico-chemical characteristics (three pharmaceuticals: diclofenac, carbamazepine, sulfamethoxazole, one pesticide: mecoprop, and one corrosion inhibitor: benzotriazole) was studied to evaluate the feasibility of the proposed system. Separate batch experiments were conducted to assess the removal efficiency of UV degradation and adsorption. The efficiency of each individual process was substance-specific. No process was effective on all the compounds tested, although elimination rates over 80% using light expanded clay aggregate (an engineered material) were observed. A laboratory-scale flow-through setup was used to evaluate interactions when removal processes were combined. Four of the studied compounds were partially eliminated, with poor removal of the fifth (benzotriazole). The energy requirements for a field-scale installation were estimated to be the same order of magnitude as those of ozonation and powdered activated carbon treatments. PMID:23484055

  15. Freeze concentration for enrichment of nutrients in yellow water from no-mix toilets.

    PubMed

    Gulyas, H; Bruhn, P; Furmanska, M; Hartrampf, K; Kot, K; Lüttenberg, B; Mahmood, Z; Stelmaszewska, K; Otterpohl, R

    2004-01-01

    Separately collected urine ("yellow water") can be utilized as fertilizer. In order to decrease storage volumes and energy consumption for yellow water transport to fields, enrichment of nutrients in yellow water has to be considered. Laboratory-scale batch freeze concentration of yellow water has been tested in ice-front freezing apparatus: a stirred vessel and a falling film freeze concentrator (coolant temperatures: -6 to -16 degrees C). With progressing enrichment of the liquid concentrate, the frozen ice was increasingly contaminated with yellow water constituents (ammonia, total nitrogen, total phosphorus, TOC, and salts determined as conductivity). The higher the initial salinity of the yellow water and the lower the mechanical agitation of the liquid phase contacting the growing ice front, the more the frozen ice was contaminated. The results indicate, that in ice-front freezing devices multistage processes are necessary, i.e. the melted ice phase has to be purified (and the concentrates must be further enriched) in a second or even in a third stage. Energy consumption of this process is very high. However, technical scale suspension freeze concentration is reasonable in centralized ecological sanitation schemes if the population exceeds 0.5 million and distance of yellow water transportation to fields is more than 80 km.

  16. Continuous engineering of nano-cocrystals for medical and energetic applications.

    PubMed

    Spitzer, D; Risse, B; Schnell, F; Pichot, V; Klaumünzer, M; Schaefer, M R

    2014-10-10

    Cocrystals, solid mixtures of different molecules on molecular scale, are supposed to be tailor made materials with improved employability compared to their pristine individual components in domains such as medicine and explosives. In medicine, cocrystals are obtained by crystallization of active pharmaceutical ingredients with precisely chosen coformers to design medicaments that demonstrate enhanced stability, high solubility, and therefore high bioavailability and optimized drug up-take. Nanoscaling may further advance these characteristica compared to their micronsized counterparts - because of a larger surface to volume ratio of nanoparticles. In the field of energetic materials, cocrystals offer the opportunity to design smart explosives, combining high reactivity with significantly reduced sensitivity, nowadays essential for a safe manipulation and handling. Furthermore, cocrystals are used in ferroelectrics, non-linear material response and electronic organics. However, state of the art batch processes produce low volume of cocrystals of variable quality and only have produced micronsized cocrystals so far, no nano-cocrystals. Here we demonstrate the continuous preparation of pharmaceutical and energetic micro- and nano-cocrystals using the Spray Flash Evaporation process. Our laboratory scale pilot plant continuously prepared up to 8 grams per hour of Caffeine/Oxalic acid 2:1, Caffeine/Glutaric acid 1:1, TNT/CL-20 1:1 and HMX/Cl-20 1:2 nano- and submicronsized cocrystals.

  17. Continuous engineering of nano-cocrystals for medical and energetic applications

    NASA Astrophysics Data System (ADS)

    Spitzer, D.; Risse, B.; Schnell, F.; Pichot, V.; Klaumünzer, M.; Schaefer, M. R.

    2014-10-01

    Cocrystals, solid mixtures of different molecules on molecular scale, are supposed to be tailor made materials with improved employability compared to their pristine individual components in domains such as medicine and explosives. In medicine, cocrystals are obtained by crystallization of active pharmaceutical ingredients with precisely chosen coformers to design medicaments that demonstrate enhanced stability, high solubility, and therefore high bioavailability and optimized drug up-take. Nanoscaling may further advance these characteristica compared to their micronsized counterparts - because of a larger surface to volume ratio of nanoparticles. In the field of energetic materials, cocrystals offer the opportunity to design smart explosives, combining high reactivity with significantly reduced sensitivity, nowadays essential for a safe manipulation and handling. Furthermore, cocrystals are used in ferroelectrics, non-linear material response and electronic organics. However, state of the art batch processes produce low volume of cocrystals of variable quality and only have produced micronsized cocrystals so far, no nano-cocrystals. Here we demonstrate the continuous preparation of pharmaceutical and energetic micro- and nano-cocrystals using the Spray Flash Evaporation process. Our laboratory scale pilot plant continuously prepared up to 8 grams per hour of Caffeine/Oxalic acid 2:1, Caffeine/Glutaric acid 1:1, TNT/CL-20 1:1 and HMX/Cl-20 1:2 nano- and submicronsized cocrystals.

  18. Flow Reactor for studying Physicochemical and aging properties of SOA

    NASA Astrophysics Data System (ADS)

    Babar, Z. B.

    2016-12-01

    Secondary organic aerosols (SOA) have importance in environmental processes such as affecting earth's radiative balance and cloud formation processes. For studying SOA formation large scale environmental batch reactors and laboratory scale flow reactors have been used. In this study application of flow reactor to study physicochemical properties of SOA is also investigated after its characterization. The flow reactor is of cylindrical design (ID 15 cm x L 70 cm) equipped with UV lamps. It is coupled with various instruments such as scanning mobility particle sizer, NOx analyzer, ozone analyzer, VOC analyzer, hygrometer, and temperature sensors for gas and particle phase measurements. OH radicals were generated by custom build ozone generator and relative humidity. The following characterizations were performed: (1) residence time distribution (RTD) measurements, (2) RH and temperature control, (3) OH radical exposure range (atmospheric aging time), (4) gas phase oxidation of SOA precursors such as α-pinene by OH radical. The flow reactor yielded narrow RTDs. In particular, RH and temperature can be controlled effectively between 0-60% and 22-43oC, respectively. OH radical exposure ranges from 6.49x1010 to 3.68x1011 molecules/cm3s (0.49 to 4.91 days). Our initial efforts on OH radical generation using hydrogen peroxide and its quantification by using flourescenet technique will be also be presented.

  19. Continuous engineering of nano-cocrystals for medical and energetic applications

    PubMed Central

    Spitzer, D.; Risse, B.; Schnell, F.; Pichot, V.; Klaumünzer, M.; Schaefer, M. R.

    2014-01-01

    Cocrystals, solid mixtures of different molecules on molecular scale, are supposed to be tailor made materials with improved employability compared to their pristine individual components in domains such as medicine and explosives. In medicine, cocrystals are obtained by crystallization of active pharmaceutical ingredients with precisely chosen coformers to design medicaments that demonstrate enhanced stability, high solubility, and therefore high bioavailability and optimized drug up-take. Nanoscaling may further advance these characteristica compared to their micronsized counterparts – because of a larger surface to volume ratio of nanoparticles. In the field of energetic materials, cocrystals offer the opportunity to design smart explosives, combining high reactivity with significantly reduced sensitivity, nowadays essential for a safe manipulation and handling. Furthermore, cocrystals are used in ferroelectrics, non-linear material response and electronic organics. However, state of the art batch processes produce low volume of cocrystals of variable quality and only have produced micronsized cocrystals so far, no nano-cocrystals. Here we demonstrate the continuous preparation of pharmaceutical and energetic micro- and nano-cocrystals using the Spray Flash Evaporation process. Our laboratory scale pilot plant continuously prepared up to 8 grams per hour of Caffeine/Oxalic acid 2:1, Caffeine/Glutaric acid 1:1, TNT/CL-20 1:1 and HMX/Cl-20 1:2 nano- and submicronsized cocrystals. PMID:25300652

  20. Parameters of Concrete Modified with Glass Meal and Chalcedonite Dust

    NASA Astrophysics Data System (ADS)

    Kotwa, Anna

    2017-10-01

    Additives used for production of concrete mixtures affect the rheological properties and parameters of hardened concrete, including compressive strength, water resistance, durability and shrinkage of hardened concrete. By their application, the use of cement and production costs may be reduced. The scheduled program of laboratory tests included preparation of six batches of concrete mixtures with addition of glass meal and / or chalcedonite dust. Mineral dust is a waste product obtained from crushed aggregate mining, with grain size below 0,063μm. The main ingredient of chalcedonite dust is silica. Glass meal used in the study is a material with very fine grain size, less than 65μm. This particle size is present in 60% - 90% of the sample. Additives were used to replace cement in concrete mixes in an amount of 15% and 25%. The amount of aggregate was left unchanged. The study used Portland cement CEM I 42.5R. Concrete mixes were prepared with a constant rate w / s = 0.4. The aim of the study was to identify the effect of the addition of chalcedonite dust and / or glass meal on the parameters of hardened concrete, i.e. compressive strength, water absorption and capillarity. Additives used in the laboratory tests significantly affect the compressive strength. The largest decrease in compressive strength of concrete samples was recorded for samples with 50% substitutes of cement additives. This decrease is 34.35%. The smallest decrease in compressive strength was noted in concrete with the addition of 15% of chalcedonite dust or 15% glass meal, it amounts to an average of 15%. The study of absorption shows that all concrete with the addition of chalcedonite dust and glass meal gained a percentage weight increase between 2.7 ÷ 3.1% for the test batches. This is a very good result, which is probably due to grout sealing. In capillary action for the test batches, the percentage weight gains of samples ranges from 4.6% to 5.1%. However, the reference concrete obtained the lowest water absorption as compared to other batches.

  1. CO 2-induced chemo-mechanical alteration in reservoir rocks assessed via batch reaction experiments and scratch testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aman, Michael; Espinoza, D. Nicolas; Ilgen, Anastasia G.

    Here, the injection of carbon dioxide (CO 2) into geological formations results in a chemical re-equilibration between the mineral assemblage and the pore fluid, with ensuing mineral dissolution and re-precipitation. Hence, target rock formations may exhibit changes of mechanical and petrophysical properties due to CO 2 exposure. We conducted batch reaction experiments with Entrada Sandstone and Summerville Siltstone exposed to de-ionized water and synthetic brine under reservoir pressure (9–10 MPa) and temperature (80°C) for up to four weeks. Samples originate from the Crystal Geyser field site, where a naturally occurring CO 2 seepage alters portions of these geologic formations. Wemore » conducted micro-scratch tests on rock samples without alteration, altered under laboratory conditions, and naturally altered over geologic time. Scratch toughness and hardness decrease as a function of exposure time and water salinity up to 52% in the case of Entrada and 87% in the case of Summerville after CO 2-induced alteration in the laboratory. Imaging of altered cores with SEM-EDS and X-ray microCT methods show dissolution of carbonate and silica cements and matrix accompanied by minor dissolution of Fe-oxides, clays, and other silicates. Parallel experiments using powdered samples confirm that dissolution of carbonate and silica are the primary reactions. The batch reaction experiments in the autoclave utilize a high fluid to rock volume ratio and represent an end member of possible alteration associated with CO 2 storage systems. These types of tests serve as a pre-screening tool to identify the susceptibility of rock facies to CO 2-related chemical-mechanical alteration during long-term CO 2 storage.« less

  2. CO 2-induced chemo-mechanical alteration in reservoir rocks assessed via batch reaction experiments and scratch testing

    DOE PAGES

    Aman, Michael; Espinoza, D. Nicolas; Ilgen, Anastasia G.; ...

    2017-09-22

    Here, the injection of carbon dioxide (CO 2) into geological formations results in a chemical re-equilibration between the mineral assemblage and the pore fluid, with ensuing mineral dissolution and re-precipitation. Hence, target rock formations may exhibit changes of mechanical and petrophysical properties due to CO 2 exposure. We conducted batch reaction experiments with Entrada Sandstone and Summerville Siltstone exposed to de-ionized water and synthetic brine under reservoir pressure (9–10 MPa) and temperature (80°C) for up to four weeks. Samples originate from the Crystal Geyser field site, where a naturally occurring CO 2 seepage alters portions of these geologic formations. Wemore » conducted micro-scratch tests on rock samples without alteration, altered under laboratory conditions, and naturally altered over geologic time. Scratch toughness and hardness decrease as a function of exposure time and water salinity up to 52% in the case of Entrada and 87% in the case of Summerville after CO 2-induced alteration in the laboratory. Imaging of altered cores with SEM-EDS and X-ray microCT methods show dissolution of carbonate and silica cements and matrix accompanied by minor dissolution of Fe-oxides, clays, and other silicates. Parallel experiments using powdered samples confirm that dissolution of carbonate and silica are the primary reactions. The batch reaction experiments in the autoclave utilize a high fluid to rock volume ratio and represent an end member of possible alteration associated with CO 2 storage systems. These types of tests serve as a pre-screening tool to identify the susceptibility of rock facies to CO 2-related chemical-mechanical alteration during long-term CO 2 storage.« less

  3. Evaluation of a laboratory-scale bioreactive in situ sediment cap for the treatment of organic contaminants.

    PubMed

    Himmelheber, David W; Pennell, Kurt D; Hughes, Joseph B

    2011-11-01

    The development of bioreactive sediment caps, in which microorganisms capable of contaminant transformation are placed within an in situ cap, provides a potential remedial design that can sustainably treat sediment and groundwater contaminants. The goal of this study was to evaluate the ability and limitations of a mixed, anaerobic dechlorinating consortium to treat chlorinated ethenes within a sand-based cap. Results of batch experiments demonstrate that a tetrachloroethene (PCE)-to-ethene mixed consortium was able to completely dechlorinate dissolved-phase PCE to ethene when supplied only with sediment porewater obtained from a sediment column. To simulate a bioreactive cap, laboratory-scale sand columns inoculated with the mixed culture were placed in series with an upflow sediment column and directly supplied sediment effluent and dissolved-phase chlorinated ethenes. The mixed consortium was not able to sustain dechlorination activity at a retention time of 0.5 days without delivery of amendments to the sediment effluent, evidenced by the loss of cis-1,2-dichloroethene (cis-DCE) dechlorination to vinyl chloride. When soluble electron donor was supplied to the sediment effluent, complete dechlorination of cis-DCE to ethene was observed at retention times of 0.5 days, suggesting that sediment effluent lacked sufficient electron donor to maintain active dechlorination within the sediment cap. Introduction of elevated contaminant concentrations also limited biotransformation performance of the dechlorinating consortium within the cap. These findings indicate that in situ bioreactive capping can be a feasible remedial approach, provided that residence times are adequate and that appropriate levels of electron donor and contaminant exist within the cap. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Low temperature-pressure batch experiments and field push-pull tests: Assessing potential effects of an unintended CO2 release from CCUS projects on groundwater chemistry

    NASA Astrophysics Data System (ADS)

    Mickler, P. J.; Yang, C.; Lu, J.; Reedy, R. C.; Scanlon, B. R.

    2012-12-01

    Carbon Capture Utilization and Storage projects (CCUS), where CO2 is captured at point sources such as power stations and compressed into a supercritical liquid for underground storage, has been proposed to reduce atmospheric CO2 and mitigate global climate change. Problems may arise from CO2 releases along discreet pathways such as abandoned wells and faults, upwards and into near surface groundwater. Migrating CO2 may inversely impact fresh water resources by increasing mineral solubility and dissolution rates and mobilizing harmful trace elements including As and Pb. This study addresses the impacts on fresh water resources through a combination of laboratory batch experiments, where aquifer sediment are reacted in their corresponding groundwater in 100% CO2 environments, and field push-pull tests where groundwater is equilibrated with 100% CO2, reacted in-situ in the groundwater system, and pulled out for analyses. Batch experiments were performed on aquifer material from carbonate dominated, mixed carbonate/silicalstic, and siliclastic dominated systems. A mixed silicalstic/carbonate system was chosen for the field based push-pull test. Batch experiment results suggest carbonate dissolution increased the concentration of Ca, Mg, Sr, Ba, Mn, U and HCO3- in groundwater. In systems with significant carbonate content, dissolution continued until carbonate saturation was achieved at approximately 1000 hr. Silicate dissolution increased the conc. of Si, K Ni and Co, but at much lower rates than carbonate dissolution. The elements As, Mo, V, Zn, Se and Cd generally show similar behavior where concentrations initially increase but soon drop to levels at or below the background concentrations (~48 hours). A Push-Pull test on one aquifer system produced similar geochemical behavior but observed reaction rates are higher in batch experiments relative to push-pull tests. Release of CO2 from CCUS sites into overlying aquifer systems may adversely impact groundwater quality primarily through carbonate dissolution which releases Ca and elements that substitute for Ca in crystal lattices. Silicate weathering releases primarily Si and K at lower rates. Chemical changes with the addition of CO2 may initially mobilize As, Mo, V, Zn, Se and Cd but these elements become immobile in the lowered pH water and sorb onto aquifer minerals. A combined laboratory batch experiment and field push-pull test in fresh water aquifers overlying CCUS projects will best characterize the response of the aquifer to increased pCO2. The long experimental duration of the batch experiments may allow reactions to reach equilibrium however; reaction rates may be artificially high due to increased mineral surface areas. Field based push-pull tests offer a more realistic water rock ratio and test a much larger volume of aquifer material but the test must be shorter in duration because the high pCO2 water is subject to mixing with low pCO2 background water and migration away from the test well with groundwater flow. A comparison of the two methods best characterizes the potential effects on groundwater chemistry

  5. Comparison of different estimation techniques for biomass concentration in large scale yeast fermentation.

    PubMed

    Hocalar, A; Türker, M; Karakuzu, C; Yüzgeç, U

    2011-04-01

    In this study, previously developed five different state estimation methods are examined and compared for estimation of biomass concentrations at a production scale fed-batch bioprocess. These methods are i. estimation based on kinetic model of overflow metabolism; ii. estimation based on metabolic black-box model; iii. estimation based on observer; iv. estimation based on artificial neural network; v. estimation based on differential evaluation. Biomass concentrations are estimated from available measurements and compared with experimental data obtained from large scale fermentations. The advantages and disadvantages of the presented techniques are discussed with regard to accuracy, reproducibility, number of primary measurements required and adaptation to different working conditions. Among the various techniques, the metabolic black-box method seems to have advantages although the number of measurements required is more than that for the other methods. However, the required extra measurements are based on commonly employed instruments in an industrial environment. This method is used for developing a model based control of fed-batch yeast fermentations. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Stress fermentation strategies for the production of hyperthermostable superoxide dismutase from Thermus thermophilus HB27: effects of ions.

    PubMed

    Zhu, Hu; Liu, Jianguo; Qu, Jianbo; Gao, Xinliang; Pan, Tao; Cui, Zhanfeng; Zhao, Xiubo; Lu, Jian R

    2013-11-01

    In this study, we explored how ammonium and metal ion stresses affected the production of recombinant hyperthermostable manganese superoxide dismutase (Mn-SOD). To improve Mn-SOD production, fed-batch culture in shake flasks and bioreactor fermentation were undertaken to examine the effects of [Formula: see text] and Mn(2+) feeding. Under the optimized feeding time and concentrations of [Formula: see text] and Mn(2+), the maximal SOD activity obtained from bioreactor fermentation reached some 480 U/ml, over 4 times higher than that in batch cultivation (113 U/ml), indicating a major enhancement of the concentration of Mn-SOD in the scale-up of hyperthermostable Mn-SOD production. In contrast, when the fed-batch culture with appropriate [Formula: see text] and Mn(2+) feeding was carried out in the same 5-L stirred tank bioreactor, a maximal SOD concentration of some 450 U/ml was obtained, again indicating substantial increase in SOD activity as a result of [Formula: see text] and Mn(2+) feeding. The isoelectric point (pI) of the sample was found to be 6.2. It was highly stable at 90 °C and circular dichroism measurements indicated a high α-helical content of 70 % as well, consistent with known SOD properties. This study indicates that [Formula: see text] and Mn(2+) play important roles in Mn-SOD expression. Stress fermentation strategies established in this study are useful for large-scale efficient production of hyperthermostable Mn-SOD and may also be valuable for the scale-up of other extremozymes.

  7. Bioprocess development for the production of mouse-human chimeric anti-epidermal growth factor receptor vIII antibody C12 by suspension culture of recombinant Chinese hamster ovary cells.

    PubMed

    Hu, Suwen; Deng, Lei; Wang, Huamao; Zhuang, Yingping; Chu, Ju; Zhang, Siliang; Li, Zhonghai; Guo, Meijin

    2011-05-01

    The mouse-human chimeric anti-epidermal growth factor receptor vIII (EGFRvIII) antibody C12 is a promising candidate for the diagnosis of hepatocellular carcinoma (HCC). In this study, 3 processes were successfully developed to produce C12 by cultivation of recombinant Chinese hamster ovary (CHO-DG44) cells in serum-free medium. The effect of inoculum density was evaluated in batch cultures of shaker flasks to obtain the optimal inoculum density of 5 × 10(5) cells/mL. Then, the basic metabolic characteristics of CHO-C12 cells were studied in stirred bioreactor batch cultures. The results showed that the limiting concentrations of glucose and glutamine were 6 and 1 mM, respectively. The culture process consumed significant amounts of aspartate, glutamate, asparagine, serine, isoleucine, leucine, and lysine. Aspartate, glutamate, asparagine, and serine were particularly exhausted in the early growth stage, thus limiting cell growth and antibody synthesis. Based on these findings, fed-batch and perfusion processes in the bioreactor were successfully developed with a balanced amino acid feed strategy. Fed-batch and especially perfusion culture effectively maintained high cell viability to prolong the culture process. Furthermore, perfusion cultures maximized the efficiency of nutrient utilization; the mean yield coefficient of antibody to consumed glucose was 44.72 mg/g and the mean yield coefficient of glutamine to antibody was 721.40 mg/g. Finally, in small-scale bioreactor culture, the highest total amount of C12 antibody (1,854 mg) was realized in perfusion cultures. Therefore, perfusion culture appears to be the optimal process for small-scale production of C12 antibody by rCHO-C12 cells.

  8. Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deo, Milind; Huang, Hai; Kweon, Hyukmin

    2016-03-28

    Reactivity of carbon dioxide (CO 2), rocks and brine is important in a number of practical situations in carbon dioxide sequestration. Injectivity of CO 2 will be affected by near wellbore dissolution or precipitation. Natural fractures or faults containing specific minerals may reactivate leading to induced seismicity. In this project, we first examined if the reactions between CO 2, brine and rocks affect the nature of the porous medium and properties including petrophysical properties in the timeframe of the injection operations. This was done by carrying out experiments at sequestration conditions (2000 psi for corefloods and 2400 psi for batchmore » experiments, and 600°C) with three different types of rocks – sandstone, limestone and dolomite. Experiments were performed in batch mode and corefloods were conducted over a two-week period. Batch experiments were performed with samples of differing surface area to understand the impact of surface area on overall reaction rates. Toughreact, a reactive transport model was used to interpret and understand the experimental results. The role of iron in dissolution and precipitation reactions was observed to be significant. Iron containing minerals – siderite and ankerite dissolved resulting in changes in porosity and permeability. Corefloods and batch experiments revealed similar patterns. With the right cationic balance, there is a possibility of precipitation of iron bearing carbonates. The results indicate that during injection operations mineralogical changes may lead to injectivity enhancements near the wellbore and petrophysical changes elsewhere in the system. Limestone and dolomite cores showed consistent dissolution at the entrance of the core. The dissolution led to formation of wormholes and interconnected dissolution zones. Results indicate that near wellbore dissolution in these rock-types may lead to rock failure. Micro-CT images of the cores before and after the experiments revealed that an initial high-permeability pathway facilitated the formation of wormholes. The peak cation concentrations and general trends were matched using Toughreact. Batch reactor modeling showed that the geometric factors obtained using powder data that related effective surface area to the BET surface area had to be reduced for fractured samples and cores. This indicates that the available surface area in consolidated samples is lower than that deduced from powder experiments. Field-scale modeling of reactive transport and geomechanics was developed in parallel at Idaho National Laboratory. The model is able to take into account complex chemistry, and consider interactions of natural fractures and faults. Poroelastic geomechanical considerations are also included in the model.« less

  9. A practical approach to determination of laboratory GC-MS limits of detection.

    PubMed

    Underwood, P J; Kananen, G E; Armitage, E K

    1997-01-01

    Determination of limit of detection (LOD) values in a forensic laboratory serves a fundamental forensic requirement for assay performance. In addition to demonstrating assay capability, LOD values can also be used to fulfill certification requirements of a high-volume forensic drug laboratory. The LOD was defined as the lowest concentration of drug that the laboratory can detect in a specimen with forensic certainty at a minimum of 85% of the time. Overall batch acceptance criteria included acceptable quantitation of control materials (within 20% of target), acceptable chromatography (symmetry, peak integration, peak shape, peak, and baseline resolution), retention time within +/-1% of the extracted standard, and mass ion ratios within +/-20% of the extracted standard mass ion ratios. Individual specimen acceptance criteria were the same as the batch acceptance criteria excluding the quantitation requirement. Data were collected from all instruments on different runs. A minimum of ten data points was required for each certified instrument, and a minimum of 85% of data points was acceptable. Quantitation within +/-20% of the LOD concentration was not required, but acceptable mass ratios were required. Data points with poor chromatography (internal standard failed mass ratios; interference of the baseline, for example, shoulders; asymmetry; and baseline resolution) was omitted from the acceptable rate calculation. Data points with good chromatography with failed mass ion ratios were included in the acceptable rate calculation. With these criteria, we established the following LODs: 11-nor-delta 9-tetrahydrocannabinol-9-carboxylic acid, 2 ng/mL; benzoylecgonine, 5 ng/mL; phencyclidine, 2.5 ng/mL; amphetamine, 150 ng/mL; methamphetamine, 100 ng/mL; codeine, 500 ng/mL; and morphine, 1000 ng/mL.

  10. Tank 241-AY-101 Privatization Push Mode Core Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEMPLETON, A.M.

    2000-01-12

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for samples obtained from tank 241-AY-101. The purpose of this sampling event is to obtain information about the characteristics of the contents of 241-AY-101 required to satisfy Data Quality Objectives For RPP Privatization Phase I: Confirm Tank T Is An Appropriate Feed Source For High-Level Waste Feed Batch X(HLW DQO) (Nguyen 1999a), Data Quality Objectives For TWRS Privatization Phase I : Confirm Tank T Is An Appropriate Feed Source For Low-Activity Waste Feed Batch X (LAW DQO) (Nguyen 1999b), Low Activitymore » Waste and High-Level Waste Feed Data Quality Objectives (L and H DQO) (Patello et al. 1999), and Characterization Data Needs for Development, Design, and Operation of Retrieval Equipment Developed through the Data Quality Objective Process (Equipment DQO) (Bloom 1996). Special instructions regarding support to the LAW and HLW DQOs are provided by Baldwin (1999). Push mode core samples will be obtained from risers 15G and 150 to provide sufficient material for the chemical analyses and tests required to satisfy these data quality objectives. The 222-S Laboratory will extrude core samples; composite the liquids and solids; perform chemical analyses on composite and segment samples; archive half-segment samples; and provide subsamples to the Process Chemistry Laboratory. The Process Chemistry Laboratory will prepare test plans and perform process tests to evaluate the behavior of the 241-AY-101 waste undergoing the retrieval and treatment scenarios defined in the applicable DQOs. Requirements for analyses of samples originating in the process tests will be documented in the corresponding test plans and are not within the scope of this SAP.« less

  11. DWPF SIMULANT CPC STUDIES FOR SB7B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, D.

    2011-11-01

    Lab-scale DWPF simulations of Sludge Batch 7b (SB7b) processing were performed. Testing was performed at the Savannah River National Laboratory - Aiken County Technology Laboratory (SRNL-ACTL). The primary goal of the simulations was to define a likely operating window for acid stoichiometry for the DWPF Sludge Receipt and Adjustment Tank (SRAT). In addition, the testing established conditions for the SRNL Shielded Cells qualification simulation of SB7b-Tank 40 blend, supported validation of the current glass redox model, and validated the coupled process flowsheet at the nominal acid stoichiometry. An acid window of 105-140% by the Koopman minimum acid (KMA) equation (107-142%more » DWPF Hsu equation) worked for the sludge-only flowsheet. Nitrite was present in the SRAT product for the 105% KMA run at 366 mg/kg, while SME cycle hydrogen reached 94% of the DWPF Slurry Mix Evaporator (SME) cycle limit in the 140% KMA run. The window was determined for sludge with added caustic (0.28M additional base, or roughly 12,000 gallons 50% NaOH to 820,000 gallons waste slurry). A suitable processing window appears to be 107-130% DWPF acid equation for sludge-only processing allowing some conservatism for the mapping of lab-scale simulant data to full-scale real waste processing including potentially non-conservative noble metal and mercury concentrations. This window should be usable with or without the addition of up to 7,000 gallons of caustic to the batch. The window could potentially be wider if caustic is not added to SB7b. It is recommended that DWPF begin processing SB7b at 115% stoichiometry using the current DWPF equation. The factor could be increased if necessary, but changes should be made with caution and in small increments. DWPF should not concentrate past 48 wt.% total solids in the SME cycle if moderate hydrogen generation is occurring simultaneously. The coupled flowsheet simulation made more hydrogen in the SRAT and SME cycles than the sludge-only run with the same acid stoichiometric factor. The slow acid addition in MCU seemed to alter the reactions that consumed the small excess acid present such that hydrogen generation was promoted relative to sludge-only processing. The coupled test reached higher wt.% total solids, and this likely contributed to the SME cycle hydrogen limit being exceeded at 110% KMA. It is clear from the trends in the SME processing GC data, however, that the frit slurry formic acid contributed to driving the hydrogen generation rate above the SME cycle limit. Hydrogen generation rates after the second frit addition generally exceeded those after the first frit addition. SRAT formate loss increased with increasing acid stoichiometry (15% to 35%). A substantial nitrate gain which was observed to have occurred after acid addition (and nitrite destruction) was reversed to a net nitrate loss in runs with higher acid stoichiometry (nitrate in SRAT product less than sum of sludge nitrate and added nitric acid). Increased ammonium ion formation was also indicated in the runs with nitrate loss. Oxalate loss on the order 20% was indicated in three of the four acid stoichiometry runs and in the coupled flowsheet run. The minimum acid stoichiometry run had no indicated loss. The losses were of the same order as the official analytical uncertainty of the oxalate concentration measurement, but were not randomly distributed about zero loss, so some actual loss was likely occurring. Based on the entire set of SB7b test data, it is recommended that DWPF avoid concentrating additional sludge solids in single SRAT batches to limit the concentrations of noble metals to SB7a processing levels (on a grams noble metal per SRAT batch basis). It is also recommended that DWPF drop the formic acid addition that accompanies the process frit 418 additions, since SME cycle data showed considerable catalytic activity for hydrogen generation from this additional acid (about 5% increase in stoichiometry occurred from the frit formic acid). Frit 418 also does not appear to need formic acid addition to prevent gel formation in the frit slurry. Simulant processing was successful using 100 ppm of 747 antifoam added prior to nitric acid instead of 200 ppm. This is a potential area for DWPF to cut antifoam usage in any future test program. An additional 100 ppm was added before formic acid addition. Foaming during formic acid addition was not observed. No build-up of oily or waxy material was observed in the off-gas equipment. Lab-scale mercury stripping behavior was similar to SB6 and SB7a. More mercury was unaccounted for as the acid stoichiometry increased.« less

  12. A Comparison of EFL Raters' Essay-Rating Processes across Two Types of Rating Scales

    ERIC Educational Resources Information Center

    Li, Hang; He, Lianzhen

    2015-01-01

    This study used think-aloud protocols to compare essay-rating processes across holistic and analytic rating scales in the context of China's College English Test Band 6 (CET-6). A group of 9 experienced CET-6 raters scored the same batch of 10 CET-6 essays produced in an operational CET-6 administration twice, using both the CET-6 holistic…

  13. Recovery of Escherichia coli from Soil after Addition of Sterile Organic Wastes

    PubMed Central

    Unc, Adrian; Gardner, Julie; Springthorpe, Susan

    2006-01-01

    Laboratory batch tests indicate that addition of sterile municipal sewage biosolids to clay soil from four depths increases the numbers of Escherichia coli isolates recoverable in EC-MUG broth (EC broth with 4-methylumbelliferyl-β-glucuronide). This effect was most marked for the deeper soil layers, with increases of about 2.6 orders of magnitude in E. coli most probable number. PMID:16517690

  14. Genetically engineered Escherichia coli FBR5 to use cellulosic sugars: Production of ethanol from corn fiber hydrolyzate employing commercial nutrient medium

    USDA-ARS?s Scientific Manuscript database

    Transportation biofuel ethanol was produced from xylose and corn fiber hydrolyzate (CFH) in a batch reactor employing Escherichia coli FBR5. This strain was previously developed in our laboratory to use cellulosic sugars. The culture can produce up to 49.32 gL-1 ethanol from approximately 125 gL-1 x...

  15. Inductively Coupled Plasma Mass Spectrometry: Sample Analysis of Zirconium and Ruthenium in Metal Organic Frameworks

    DTIC Science & Technology

    2018-02-01

    international proficiency testing sponsored by the Organisation for the Prohibition of Chemical Weapons (The Hague, Netherlands). Traditionally...separate batch of standards at each level for a total of six analyses at each calibration level. Concentrations of the tested calibration levels are...and ruthenium at each calibration level. 11 REFERENCES 1. General Requirements for the Competence of Testing and Calibration Laboratories

  16. Test for Chemical Induction of Chromosome Aberrations in Cultured Chinese Hamster (CHO) Cells With and Without Metabolic Activation. Test Article. Diethylene triamine trinitrate (DETN)

    DTIC Science & Technology

    2010-02-25

    metabolic activation mixture was prepared by SITEK Research Laboratories and it consisted of phenobarbital -S,6-Benzoflavone (phenobarbitallB-naphthoflavone... Phenobarbital -S,6-Benzoflavone <-70°C May 21, 2011 Detailed infonnation about the S-9 batch used in the Assay is provided in Appendix N. 13 SITEK Study No

  17. Leachate Testing of Hamlet City Lake, North Carolina, Sediment

    DTIC Science & Technology

    1992-11-01

    release; distribution is unlimited. 13. ABSTRACT (Maximum 200 words) Sediment leaching studies of Hamlet City Lake, Hamlet, NC, were conducted in...laboratories at the U.S. Army Engineer Waterways Experiment Station. The pur- pose of these studies was to provide quantitative information on the...conditions similar to landfarming. The study involved three elements: batch leach tests, column leach tests, and simulations using the Hydrologic

  18. COED Transactions, Vol. X, No. 6, June 1978. Concentric-Tube Heat Exchanger Analysis and Data Reduction.

    ERIC Educational Resources Information Center

    Marcovitz, Alan B., Ed.

    Four computer programs written in FORTRAN and BASIC develop theoretical predictions and data reduction for a junior-senior level heat exchanger experiment. Programs may be used at the terminal in the laboratory to check progress of the experiment or may be used in the batch mode for interpretation of final information for a formal report. Several…

  19. Microencapsulation of Biocides for Reduced Copper, Long-life Antifouling Coatings

    DTIC Science & Technology

    2007-02-01

    together with Microtek produce microencapsulated DCOIT. Laboratory facilities equipped to produce from 100g – 500kg batches of microcapsules . These...FINAL REPORT Microencapsulation of Biocides for Reduced Copper, Long-life Antifouling Coatings ESTCP Project WP-0306 FEBRUARY 2007...octyl-4-isothi azolin-3-one (DCOIT) hns been microencapsulated nnd incorporated into collUllercially relevanl AF coatings. Re•ulls demon•ll’ntt long

  20. Low cost batch fabrication of microdevices using ultraviolet light-emitting diode photolithography technique

    NASA Astrophysics Data System (ADS)

    Lee, Neam Heng; Swamy, Varghese; Ramakrishnan, Narayanan

    2016-01-01

    Solid-state technology has enabled the use of light-emitting diodes (LEDs) in lithography systems due to their low cost, low power requirement, and higher efficiency relative to the traditional mercury lamp. Uniform irradiance distribution is essential for photolithography to ensure the critical dimension (CD) of the feature fabricated. However, light illuminated from arrays of LEDs can have nonuniform irradiance distribution, which can be a problem when using LED arrays as a source to batch-fabricate multiple devices on a large wafer piece. In this study, the irradiance distribution of an UV LED array was analyzed, and the separation distance between light source and mask optimized to obtain maximum irradiance uniformity without the use of a complex lens. Further, employing a diffuser glass enhanced the fabrication process and the CD loss was minimized to an average of 300 nm. To assess the performance of the proposed technology, batch fabrication of surface acoustic wave devices on lithium niobate substrate was carried out, and all the devices exhibited identical insertion loss of -18 dB at a resonance frequency of 39.33 MHz. The proposed low-cost UV lithography setup can be adapted in academic laboratories for research and teaching on microdevices.

Top