Sample records for laboratory scale experiments

  1. Achieving across-laboratory replicability in psychophysical scaling

    PubMed Central

    Ward, Lawrence M.; Baumann, Michael; Moffat, Graeme; Roberts, Larry E.; Mori, Shuji; Rutledge-Taylor, Matthew; West, Robert L.

    2015-01-01

    It is well known that, although psychophysical scaling produces good qualitative agreement between experiments, precise quantitative agreement between experimental results, such as that routinely achieved in physics or biology, is rarely or never attained. A particularly galling example of this is the fact that power function exponents for the same psychological continuum, measured in different laboratories but ostensibly using the same scaling method, magnitude estimation, can vary by a factor of three. Constrained scaling (CS), in which observers first learn a standardized meaning for a set of numerical responses relative to a standard sensory continuum and then make magnitude judgments of other sensations using the learned response scale, has produced excellent quantitative agreement between individual observers’ psychophysical functions. Theoretically it could do the same for across-laboratory comparisons, although this needs to be tested directly. We compared nine different experiments from four different laboratories as an example of the level of across experiment and across-laboratory agreement achievable using CS. In general, we found across experiment and across-laboratory agreement using CS to be significantly superior to that typically obtained with conventional magnitude estimation techniques, although some of its potential remains to be realized. PMID:26191019

  2. Simulation of large scale motions and small scale structures in planetary atmospheres and oceans: From laboratory to space experiments on ISS

    NASA Astrophysics Data System (ADS)

    Egbers, Christoph; Futterer, Birgit; Zaussinger, Florian; Harlander, Uwe

    2014-05-01

    Baroclinic waves are responsible for the transport of heat and momentum in the oceans, in the Earth's atmosphere as well as in other planetary atmospheres. The talk will give an overview on possibilities to simulate such large scale as well as co-existing small scale structures with the help of well defined laboratory experiments like the baroclinic wave tank (annulus experiment). The analogy between the Earth's atmosphere and the rotating cylindrical annulus experiment only driven by rotation and differential heating between polar and equatorial regions is obvious. From the Gulf stream single vortices seperate from time to time. The same dynamics and the co-existence of small and large scale structures and their separation can be also observed in laboratory experiments as in the rotating cylindrical annulus experiment. This experiment represents the mid latitude dynamics quite well and is part as a central reference experiment in the German-wide DFG priority research programme ("METSTRÖM", SPP 1276) yielding as a benchmark for lot of different numerical methods. On the other hand, those laboratory experiments in cylindrical geometry are limited due to the fact, that the surface and real interaction between polar and equatorial region and their different dynamics can not be really studied. Therefore, I demonstrate how to use the very successful Geoflow I and Geoflow II space experiment hardware on ISS with future modifications for simulations of small and large scale planetary atmospheric motion in spherical geometry with differential heating between inner and outer spheres as well as between the polar and equatorial regions. References: Harlander, U., Wenzel, J., Wang, Y., Alexandrov, K. & Egbers, Ch., 2012, Simultaneous PIV- and thermography measurements of partially blocked flow in a heated rotating annulus, Exp. in Fluids, 52 (4), 1077-1087 Futterer, B., Krebs, A., Plesa, A.-C., Zaussinger, F., Hollerbach, R., Breuer, D. & Egbers, Ch., 2013, Sheet-like and

  3. Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C. K.; Tzeferacos, P.; Lamb, D.

    X-ray images from the Chandra X-ray Observatory show that the South-East jet in the Crab nebula changes direction every few years. This remarkable phenomenon is also observed in jets associated with pulsar wind nebulae and other astrophysical objects, and therefore is a fundamental feature of astrophysical jet evolution that needs to be understood. Theoretical modeling and numerical simulations have suggested that this phenomenon may be a consequence of magnetic fields (B) and current-driven magnetohydrodynamic (MHD) instabilities taking place in the jet, but until now there has been no verification of this process in a controlled laboratory environment. Here we reportmore » the first such experiments, using scaled laboratory plasma jets generated by high-power lasers to model the Crab jet and monoenergetic-proton radiography to provide direct visualization and measurement of magnetic fields and their behavior. The toroidal magnetic field embedded in the supersonic jet triggered plasma instabilities and resulted in considerable deflections throughout the jet propagation, mimicking the kinks in the Crab jet. We also demonstrated that these kinks are stabilized by high jet velocity, consistent with the observation that instabilities alter the jet orientation but do not disrupt the overall jet structure. We successfully modeled these laboratory experiments with a validated three-dimensional (3D) numerical simulation, which in conjunction with the experiments provide compelling evidence that we have an accurate model of the most important physics of magnetic fields and MHD instabilities in the observed, kinked jet in the Crab nebula. The experiments initiate a novel approach in the laboratory for visualizing fields and instabilities associated with jets observed in various astrophysical objects, ranging from stellar to extragalactic systems. We expect that future work along this line will have important impact on the study and understanding of such fundamental

  4. Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet

    DOE PAGES

    Li, C. K.; Tzeferacos, P.; Lamb, D.; ...

    2016-10-07

    X-ray images from the Chandra X-ray Observatory show that the South-East jet in the Crab nebula changes direction every few years. This remarkable phenomenon is also observed in jets associated with pulsar wind nebulae and other astrophysical objects, and therefore is a fundamental feature of astrophysical jet evolution that needs to be understood. Theoretical modeling and numerical simulations have suggested that this phenomenon may be a consequence of magnetic fields (B) and current-driven magnetohydrodynamic (MHD) instabilities taking place in the jet, but until now there has been no verification of this process in a controlled laboratory environment. Here we reportmore » the first such experiments, using scaled laboratory plasma jets generated by high-power lasers to model the Crab jet and monoenergetic-proton radiography to provide direct visualization and measurement of magnetic fields and their behavior. The toroidal magnetic field embedded in the supersonic jet triggered plasma instabilities and resulted in considerable deflections throughout the jet propagation, mimicking the kinks in the Crab jet. We also demonstrated that these kinks are stabilized by high jet velocity, consistent with the observation that instabilities alter the jet orientation but do not disrupt the overall jet structure. We successfully modeled these laboratory experiments with a validated three-dimensional (3D) numerical simulation, which in conjunction with the experiments provide compelling evidence that we have an accurate model of the most important physics of magnetic fields and MHD instabilities in the observed, kinked jet in the Crab nebula. The experiments initiate a novel approach in the laboratory for visualizing fields and instabilities associated with jets observed in various astrophysical objects, ranging from stellar to extragalactic systems. We expect that future work along this line will have important impact on the study and understanding of such fundamental

  5. Fast laboratory-based micro-computed tomography for pore-scale research: Illustrative experiments and perspectives on the future

    NASA Astrophysics Data System (ADS)

    Bultreys, Tom; Boone, Marijn A.; Boone, Matthieu N.; De Schryver, Thomas; Masschaele, Bert; Van Hoorebeke, Luc; Cnudde, Veerle

    2016-09-01

    Over the past decade, the wide-spread implementation of laboratory-based X-ray micro-computed tomography (micro-CT) scanners has revolutionized both the experimental and numerical research on pore-scale transport in geological materials. The availability of these scanners has opened up the possibility to image a rock's pore space in 3D almost routinely to many researchers. While challenges do persist in this field, we treat the next frontier in laboratory-based micro-CT scanning: in-situ, time-resolved imaging of dynamic processes. Extremely fast (even sub-second) micro-CT imaging has become possible at synchrotron facilities over the last few years, however, the restricted accessibility of synchrotrons limits the amount of experiments which can be performed. The much smaller X-ray flux in laboratory-based systems bounds the time resolution which can be attained at these facilities. Nevertheless, progress is being made to improve the quality of measurements performed on the sub-minute time scale. We illustrate this by presenting cutting-edge pore scale experiments visualizing two-phase flow and solute transport in real-time with a lab-based environmental micro-CT set-up. To outline the current state of this young field and its relevance to pore-scale transport research, we critically examine its current bottlenecks and their possible solutions, both on the hardware and the software level. Further developments in laboratory-based, time-resolved imaging could prove greatly beneficial to our understanding of transport behavior in geological materials and to the improvement of pore-scale modeling by providing valuable validation.

  6. Evaluation of Surface Runoff Generation Processes Using a Rainfall Simulator: A Small Scale Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Danáčová, Michaela; Valent, Peter; Výleta, Roman

    2017-12-01

    of 5 mm/min was used to irrigate a corrupted soil sample. The experiment was undertaken for several different slopes, under the condition of no vegetation cover. The results of the rainfall simulation experiment complied with the expectations of a strong relationship between the slope gradient, and the amount of surface runoff generated. The experiments with higher slope gradients were characterised by larger volumes of surface runoff generated, and by shorter times after which it occurred. The experiments with rainfall simulators in both laboratory and field conditions play an important role in better understanding of runoff generation processes. The results of such small scale experiments could be used to estimate some of the parameters of complex hydrological models, which are used to model rainfall-runoff and erosion processes at catchment scale.

  7. LABORATORY SCALE STEAM INJECTION TREATABILITY STUDIES

    EPA Science Inventory

    Laboratory scale steam injection treatability studies were first developed at The University of California-Berkeley. A comparable testing facility has been developed at USEPA's Robert S. Kerr Environmental Research Center. Experience has already shown that many volatile organic...

  8. Hydrodynamic Scalings: from Astrophysics to Laboratory

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.; Remington, B. A.

    2000-05-01

    A surprisingly general hydrodynamic similarity has been recently described in Refs. [1,2]. One can call it the Euler similarity because it works for the Euler equations (with MHD effects included). Although the dissipation processes are assumed to be negligible, the presence of shocks is allowed. For the polytropic medium (i.e., the medium where the energy density is proportional to the pressure), an evolution of an arbitrarily chosen 3D initial state can be scaled to another system, if a single dimensionless parameter (the Euler number) is the same for both initial states. The Euler similarity allows one to properly design laboratory experiments modeling astrophysical phenomena. We discuss several examples of such experiments related to the physics of supernovae [3]. For the problems with a single spatial scale, the condition of the smallness of dissipative processes can be adequately described in terms of the Reynolds, Peclet, and magnetic Reynolds numbers related to this scale (all three numbers must be large). However, if the system develops small-scale turbulence, dissipation may become important at these smaller scales, thereby affecting the gross behavior of the system. We analyze the corresponding constraints. We discuss also constraints imposed by the presence of interfaces between the substances with different polytropic index. Another set of similarities governs evolution of photoevaporation fronts in astrophysics. Convenient scaling laws exist in situations where the density of the ablated material is very low compared to the bulk density. We conclude that a number of hydrodynamical problems related to such objects as the Eagle Nebula can be adequately simulated in the laboratory. We discuss also possible scalings for radiative astrophysical jets (see Ref. [3] and references therein). This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract W-7405-Eng-48

  9. Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet

    PubMed Central

    Li, C. K.; Tzeferacos, P.; Lamb, D.; Gregori, G.; Norreys, P. A.; Rosenberg, M. J.; Follett, R. K.; Froula, D. H.; Koenig, M.; Seguin, F. H.; Frenje, J. A.; Rinderknecht, H. G.; Sio, H.; Zylstra, A. B.; Petrasso, R. D.; Amendt, P. A.; Park, H. S.; Remington, B. A.; Ryutov, D. D.; Wilks, S. C.; Betti, R.; Frank, A.; Hu, S. X.; Sangster, T. C.; Hartigan, P.; Drake, R. P.; Kuranz, C. C.; Lebedev, S. V.; Woolsey, N. C.

    2016-01-01

    The remarkable discovery by the Chandra X-ray observatory that the Crab nebula's jet periodically changes direction provides a challenge to our understanding of astrophysical jet dynamics. It has been suggested that this phenomenon may be the consequence of magnetic fields and magnetohydrodynamic instabilities, but experimental demonstration in a controlled laboratory environment has remained elusive. Here we report experiments that use high-power lasers to create a plasma jet that can be directly compared with the Crab jet through well-defined physical scaling laws. The jet generates its own embedded toroidal magnetic fields; as it moves, plasma instabilities result in multiple deflections of the propagation direction, mimicking the kink behaviour of the Crab jet. The experiment is modelled with three-dimensional numerical simulations that show exactly how the instability develops and results in changes of direction of the jet. PMID:27713403

  10. Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet.

    PubMed

    Li, C K; Tzeferacos, P; Lamb, D; Gregori, G; Norreys, P A; Rosenberg, M J; Follett, R K; Froula, D H; Koenig, M; Seguin, F H; Frenje, J A; Rinderknecht, H G; Sio, H; Zylstra, A B; Petrasso, R D; Amendt, P A; Park, H S; Remington, B A; Ryutov, D D; Wilks, S C; Betti, R; Frank, A; Hu, S X; Sangster, T C; Hartigan, P; Drake, R P; Kuranz, C C; Lebedev, S V; Woolsey, N C

    2016-10-07

    The remarkable discovery by the Chandra X-ray observatory that the Crab nebula's jet periodically changes direction provides a challenge to our understanding of astrophysical jet dynamics. It has been suggested that this phenomenon may be the consequence of magnetic fields and magnetohydrodynamic instabilities, but experimental demonstration in a controlled laboratory environment has remained elusive. Here we report experiments that use high-power lasers to create a plasma jet that can be directly compared with the Crab jet through well-defined physical scaling laws. The jet generates its own embedded toroidal magnetic fields; as it moves, plasma instabilities result in multiple deflections of the propagation direction, mimicking the kink behaviour of the Crab jet. The experiment is modelled with three-dimensional numerical simulations that show exactly how the instability develops and results in changes of direction of the jet.

  11. EPOS-WP16: A Platform for European Multi-scale Laboratories

    NASA Astrophysics Data System (ADS)

    Spiers, Chris; Drury, Martyn; Kan-Parker, Mirjam; Lange, Otto; Willingshofer, Ernst; Funiciello, Francesca; Rosenau, Matthias; Scarlato, Piergiorgio; Sagnotti, Leonardo; W16 Participants

    2016-04-01

    The participant countries in EPOS embody a wide range of world-class laboratory infrastructures ranging from high temperature and pressure experimental facilities, to electron microscopy, micro-beam analysis, analogue modeling and paleomagnetic laboratories. Most data produced by the various laboratory centres and networks are presently available only in limited "final form" in publications. As such many data remain inaccessible and/or poorly preserved. However, the data produced at the participating laboratories are crucial to serving society's need for geo-resources exploration and for protection against geo-hazards. Indeed, to model resource formation and system behaviour during exploitation, we need an understanding from the molecular to the continental scale, based on experimental data. This contribution will describe the work plans that the laboratories community in Europe is making, in the context of EPOS. The main objectives are: - To collect and harmonize available and emerging laboratory data on the properties and processes controlling rock system behaviour at multiple scales, in order to generate products accessible and interoperable through services for supporting research activities. - To co-ordinate the development, integration and trans-national usage of the major solid Earth Science laboratory centres and specialist networks. The length scales encompassed by the infrastructures included range from the nano- and micrometer levels (electron microscopy and micro-beam analysis) to the scale of experiments on centimetre sized samples, and to analogue model experiments simulating the reservoir scale, the basin scale and the plate scale. - To provide products and services supporting research into Geo-resources and Geo-storage, Geo-hazards and Earth System Evolution.

  12. EFFECTS OF LARVAL STOCKING DENSITY ON LABORATORY-SCALE AND COMMERICAL-SCALE PRODUCTION OF SUMMER FLOUNDER, PARALICHTHYS DENTATUS

    EPA Science Inventory

    Three experiments investigating larval stocking densities of summer flounder from hatch to metamorphosis, Paralichthys dentatus, were conducted at laboratory-scale (75-L aquaria) and at commercial scale (1,000-L tanks). Experiments 1 and 2 at commercial scale tested the densities...

  13. Wellbore Completion Systems Containment Breach Solution Experiments at a Large Scale Underground Research Laboratory : Sealant placement & scale-up from Lab to Field

    NASA Astrophysics Data System (ADS)

    Goodman, H.

    2017-12-01

    This investigation seeks to develop sealant technology that can restore containment to completed wells that suffer CO2 gas leakages currently untreatable using conventional technologies. Experimentation is performed at the Mont Terri Underground Research Laboratory (MT-URL) located in NW Switzerland. The laboratory affords investigators an intermediate-scale test site that bridges the gap between the laboratory bench and full field-scale conditions. Project focus is the development of CO2 leakage remediation capability using sealant technology. The experimental concept includes design and installation of a field scale completion package designed to mimic well systems heating-cooling conditions that may result in the development of micro-annuli detachments between the casing-cement-formation boundaries (Figure 1). Of particular interest is to test novel sealants that can be injected in to relatively narrow micro-annuli flow-paths of less than 120 microns aperture. Per a special report on CO2 storage submitted to the IPCC[1], active injection wells, along with inactive wells that have been abandoned, are identified as one of the most probable sources of leakage pathways for CO2 escape to the surface. Origins of pressure leakage common to injection well and completions architecture often occur due to tensile cracking from temperature cycles, micro-annulus by casing contraction (differential casing to cement sheath movement) and cement sheath channel development. This discussion summarizes the experiment capability and sealant testing results. The experiment concludes with overcoring of the entire mock-completion test site to assess sealant performance in 2018. [1] IPCC Special Report on Carbon Dioxide Capture and Storage (September 2005), section 5.7.2 Processes and pathways for release of CO2 from geological storage sites, page 244

  14. Fracture induced electromagnetic emissions: extending laboratory findings by observations at the geophysical scale

    NASA Astrophysics Data System (ADS)

    Potirakis, Stelios M.; Contoyiannis, Yiannis; Kopanas, John; Kalimeris, Anastasios; Antonopoulos, George; Peratzakis, Athanasios; Eftaxias, Konstantinos; Nomicos, Constantinos

    2014-05-01

    Under natural conditions, it is practically impossible to install an experimental network on the geophysical scale using the same instrumentations as in laboratory experiments for understanding, through the states of stress and strain and their time variation, the laws that govern the friction during the last stages of EQ generation, or to monitor (much less to control) the principal characteristics of a fracture process. Fracture-induced electromagnetic emissions (EME) in a wide range of frequency bands are sensitive to the micro-structural chances. Thus, their study constitutes a nondestructive method for the monitoring of the evolution of damage process at the laboratory scale. It has been suggested that fracture induced MHz-kHz electromagnetic (EM) emissions, which emerge from a few days up to a few hours before the main seismic shock occurrence permit a real time monitoring of the damage process during the last stages of earthquake preparation, as it happens at the laboratory scale. Since the EME are produced both in the case of the laboratory scale fracture and the EQ preparation process (geophysical scale fracture) they should present similar characteristics in these two scales. Therefore, both the laboratory experimenting scientists and the experimental scientists studying the pre-earthquake EME could benefit from each- other's results. Importantly, it is noted that when studying the fracture process by means of laboratory experiments, the fault growth process normally occurs violently in a fraction of a second. However, a major difference between the laboratory and natural processes is the order-of-magnitude differences in scale (in space and time), allowing the possibility of experimental observation at the geophysical scale for a range of physical processes which are not observable at the laboratory scale. Therefore, the study of fracture-induced EME is expected to reveal more information, especially for the last stages of the fracture process, when it

  15. Scale-up considerations for surface collecting agent assisted in-situ burn crude oil spill response experiments in the Arctic: Laboratory to field-scale investigations.

    PubMed

    Bullock, Robin J; Aggarwal, Srijan; Perkins, Robert A; Schnabel, William

    2017-04-01

    In the event of a marine oil spill in the Arctic, government agencies, industry, and the public have a stake in the successful implementation of oil spill response. Because large spills are rare events, oil spill response techniques are often evaluated with laboratory and meso-scale experiments. The experiments must yield scalable information sufficient to understand the operability and effectiveness of a response technique under actual field conditions. Since in-situ burning augmented with surface collecting agents ("herders") is one of the few viable response options in ice infested waters, a series of oil spill response experiments were conducted in Fairbanks, Alaska, in 2014 and 2015 to evaluate the use of herders to assist in-situ burning and the role of experimental scale. This study compares burn efficiency and herder application for three experimental designs for in-situ burning of Alaska North Slope crude oil in cold, fresh waters with ∼10% ice cover. The experiments were conducted in three project-specific constructed venues with varying scales (surface areas of approximately 0.09 square meters, 9 square meters and 8100 square meters). The results from the herder assisted in-situ burn experiments performed at these three different scales showed good experimental scale correlation and no negative impact due to the presence of ice cover on burn efficiency. Experimental conclusions are predominantly associated with application of the herder material and usability for a given experiment scale to make response decisions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Investigating the dynamics of Vulcanian explosions using scaled laboratory experiments

    NASA Astrophysics Data System (ADS)

    Clarke, A. B.; Phillips, J. C.; Chojnicki, K. N.

    2005-12-01

    Laboratory experiments were conducted to investigate the dynamics of Vulcanian eruptions. A reservoir containing a mixture of water and methanol plus solid particles was pressurized and suddenly released via a rapid-release valve into a 2 ft by 2 ft by 4 ft plexiglass tank containing fresh water. Water and methanol created a light interstitial fluid to simulate buoyant volcanic gases in erupted mixtures. The duration of the subsequent experiments was not pre-determined, but instead was limited by the potential energy associated with the pressurized fluid, rather than by the volume of available fluid. Suspending liquid density was varied between 960 and 1000 kg m-3 by changing methanol concentrations from 5 to 20%. Particle size (4 & 45 microns) and concentration (1 to 5 vol%) were varied in order to change particle settling characteristics and control bulk mixture density. Variations in reservoir pressure and vent size allowed exploration of the controlling source parameters, buoyancy flux (Bo) and momentum flux (Mo). The velocity-height relationship of each experiment was documented by high-speed video, permitting classification of the laboratory flows, which ranged from long continuously accelerating jets, to starting plumes, to low-energy thermals, to collapsing fountains generating density currents. Field-documented Vulcanian explosions exhibit this same wide range of behavior (Self et al. 1979, Nature 277; Sparks & Wilson 1982, Geophys. J. R. astr. Soc. 69; Druitt et al. 2002, Geol. Soc. London, 21), demonstrating that flows obtained in the laboratory are relevant to natural systems. A generalized framework of results was defined as follows. Increasing Mo/Bo for small particles (4 microns; settling time > experiment duration) pushes the system from low-energy thermals toward high-energy, continuously accelerating jets; increasing Mo/Bo for large particles (>45 microns; settling time < experiment duration) pushes the system from a low collapsing fountain to a

  17. Measuring ignitability for in situ burning of oil spills weathered under Arctic conditions: from laboratory studies to large-scale field experiments.

    PubMed

    Fritt-Rasmussen, Janne; Brandvik, Per Johan

    2011-08-01

    This paper compares the ignitability of Troll B crude oil weathered under simulated Arctic conditions (0%, 50% and 90% ice cover). The experiments were performed in different scales at SINTEF's laboratories in Trondheim, field research station on Svalbard and in broken ice (70-90% ice cover) in the Barents Sea. Samples from the weathering experiments were tested for ignitability using the same laboratory burning cell. The measured ignitability from the experiments in these different scales showed a good agreement for samples with similar weathering. The ice conditions clearly affected the weathering process, and 70% ice or more reduces the weathering and allows a longer time window for in situ burning. The results from the Barents Sea revealed that weathering and ignitability can vary within an oil slick. This field use of the burning cell demonstrated that it can be used as an operational tool to monitor the ignitability of oil spills. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Some relevant parameters for assessing fire hazards of combustible mine materials using laboratory scale experiments

    PubMed Central

    Litton, Charles D.; Perera, Inoka E.; Harteis, Samuel P.; Teacoach, Kara A.; DeRosa, Maria I.; Thomas, Richard A.; Smith, Alex C.

    2018-01-01

    When combustible materials ignite and burn, the potential for fire growth and flame spread represents an obvious hazard, but during these processes of ignition and flaming, other life hazards present themselves and should be included to ensure an effective overall analysis of the relevant fire hazards. In particular, the gases and smoke produced both during the smoldering stages of fires leading to ignition and during the advanced flaming stages of a developing fire serve to contaminate the surrounding atmosphere, potentially producing elevated levels of toxicity and high levels of smoke obscuration that render the environment untenable. In underground mines, these hazards may be exacerbated by the existing forced ventilation that can carry the gases and smoke to locations far-removed from the fire location. Clearly, materials that require high temperatures (above 1400 K) and that exhibit low mass loss during thermal decomposition, or that require high heat fluxes or heat transfer rates to ignite represent less of a hazard than materials that decompose at low temperatures or ignite at low levels of heat flux. In order to define and quantify some possible parameters that can be used to assess these hazards, small-scale laboratory experiments were conducted in a number of configurations to measure: 1) the toxic gases and smoke produced both during non-flaming and flaming combustion; 2) mass loss rates as a function of temperature to determine ease of thermal decomposition; and 3) mass loss rates and times to ignition as a function of incident heat flux. This paper describes the experiments that were conducted, their results, and the development of a set of parameters that could possibly be used to assess the overall fire hazard of combustible materials using small scale laboratory experiments. PMID:29599565

  19. Some relevant parameters for assessing fire hazards of combustible mine materials using laboratory scale experiments.

    PubMed

    Litton, Charles D; Perera, Inoka E; Harteis, Samuel P; Teacoach, Kara A; DeRosa, Maria I; Thomas, Richard A; Smith, Alex C

    2018-04-15

    When combustible materials ignite and burn, the potential for fire growth and flame spread represents an obvious hazard, but during these processes of ignition and flaming, other life hazards present themselves and should be included to ensure an effective overall analysis of the relevant fire hazards. In particular, the gases and smoke produced both during the smoldering stages of fires leading to ignition and during the advanced flaming stages of a developing fire serve to contaminate the surrounding atmosphere, potentially producing elevated levels of toxicity and high levels of smoke obscuration that render the environment untenable. In underground mines, these hazards may be exacerbated by the existing forced ventilation that can carry the gases and smoke to locations far-removed from the fire location. Clearly, materials that require high temperatures (above 1400 K) and that exhibit low mass loss during thermal decomposition, or that require high heat fluxes or heat transfer rates to ignite represent less of a hazard than materials that decompose at low temperatures or ignite at low levels of heat flux. In order to define and quantify some possible parameters that can be used to assess these hazards, small-scale laboratory experiments were conducted in a number of configurations to measure: 1) the toxic gases and smoke produced both during non-flaming and flaming combustion; 2) mass loss rates as a function of temperature to determine ease of thermal decomposition; and 3) mass loss rates and times to ignition as a function of incident heat flux. This paper describes the experiments that were conducted, their results, and the development of a set of parameters that could possibly be used to assess the overall fire hazard of combustible materials using small scale laboratory experiments.

  20. Computational simulation of laboratory-scale volcanic jets

    NASA Astrophysics Data System (ADS)

    Solovitz, S.; Van Eaton, A. R.; Mastin, L. G.; Herzog, M.

    2017-12-01

    Volcanic eruptions produce ash clouds that may travel great distances, significantly impacting aviation and communities downwind. Atmospheric hazard forecasting relies partly on numerical models of the flow physics, which incorporate data from eruption observations and analogue laboratory tests. As numerical tools continue to increase in complexity, they must be validated to fine-tune their effectiveness. Since eruptions are relatively infrequent and challenging to observe in great detail, analogue experiments can provide important insights into expected behavior over a wide range of input conditions. Unfortunately, laboratory-scale jets cannot easily attain the high Reynolds numbers ( 109) of natural volcanic eruption columns. Comparisons between the computational models and analogue experiments can help bridge this gap. In this study, we investigate a 3-D volcanic plume model, the Active Tracer High-resolution Atmospheric Model (ATHAM), which has been used to simulate a variety of eruptions. However, it has not been previously validated using laboratory-scale data. We conducted numerical simulations of three flows that we have studied in the laboratory: a vertical jet in a quiescent environment, a vertical jet in horizontal cross flow, and a particle-laden jet. We considered Reynolds numbers from 10,000 to 50,000, jet-to-cross flow velocity ratios of 2 to 10, and particle mass loadings of up to 25% of the exit mass flow rate. Vertical jet simulations produce Gaussian velocity profiles in the near exit region by 3 diameters downstream, matching the mean experimental profiles. Simulations of air entrainment are of the correct order of magnitude, but they show decreasing entrainment with vertical distance from the vent. Cross flow simulations reproduce experimental trajectories for the jet centerline initially, although confinement appears to impact the response later. Particle-laden simulations display minimal variation in concentration profiles between cases with

  1. SIMILARITY PROPERTIES AND SCALING LAWS OF RADIATION HYDRODYNAMIC FLOWS IN LABORATORY ASTROPHYSICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falize, E.; Bouquet, S.; Michaut, C., E-mail: emeric.falize@cea.fr

    The spectacular recent development of modern high-energy density laboratory facilities which concentrate more and more energy in millimetric volumes allows the astrophysical community to reproduce and to explore, in millimeter-scale targets and during very short times, astrophysical phenomena where radiation and matter are strongly coupled. The astrophysical relevance of these experiments can be checked from the similarity properties and especially scaling law establishment, which constitutes the keystone of laboratory astrophysics. From the radiating optically thin regime to the so-called optically thick radiative pressure regime, we present in this paper, for the first time, a complete analysis of the main radiatingmore » regimes that we encountered in laboratory astrophysics with the same formalism based on Lie group theory. The use of the Lie group method appears to be a systematic method which allows us to construct easily and systematically the scaling laws of a given problem. This powerful tool permits us to unify the recent major advances on scaling laws and to identify new similarity concepts that we discuss in this paper, and suggests important applications for present and future laboratory astrophysics experiments. All these results enable us to demonstrate theoretically that astrophysical phenomena in such radiating regimes can be explored experimentally thanks to powerful facilities. Consequently, the results presented here are a fundamental tool for the high-energy density laboratory astrophysics community in order to quantify the astrophysics relevance and justify laser experiments. Moreover, relying on Lie group theory, this paper constitutes the starting point of any analysis of the self-similar dynamics of radiating fluids.« less

  2. MHD scaling: from astrophysics to the laboratory

    NASA Astrophysics Data System (ADS)

    Ryutov, Dmitri

    2000-10-01

    During the last few years, considerable progress has been made in simulating astrophysical phenomena in laboratory experiments with high power lasers [1]. Astrophysical phenomena that have drawn particular interest include supernovae explosions; young supernova remnants; galactic jets; the formation of fine structures in late supernova remnants by instabilities; and the ablation driven evolution of molecular clouds illuminated by nearby bright stars, which may affect star formation. A question may arise as to what extent the laser experiments, which deal with targets of a spatial scale 0.01 cm and occur at a time scale of a few nanoseconds, can reproduce phenomena occurring at spatial scales of a million or more kilometers and time scales from hours to many years. Quite remarkably, if dissipative processes (like, e.g., viscosity, Joule dissipation, etc.) are subdominant in both systems, and the matter behaves as a polytropic gas, there exists a broad hydrodynamic similarity (the ``Euler similarity" of Ref. [2]) that allows a direct scaling of laboratory results to astrophysical phenomena. Following a review of relevant earlier work (in particular, [3]-[5]), discussion is presented of the details of the Euler similarity related to the presence of shocks and to a special case of a strong drive. After that, constraints stemming from possible development of small-scale turbulence are analyzed. Generalization of the Euler similarity to the case of a gas with spatially varying polytropic index is presented. A possibility of scaled simulations of ablation front dynamics is one more topic covered in this paper. It is shown that, with some additional constraints, a simple similarity exists. This, in particular, opens up the possibility of scaled laboratory simulation of the aforementioned ablation (photoevaporation) fronts. A nonlinear transformation [6] that establishes a duality between implosion and explosion processes is also discussed in the paper. 1. B.A. Remington et

  3. FLARE (Facility for Laboratory Reconnection Experiments): A Major Next-Step for Laboratory Studies of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ji, Hantao; Bhattacharjee, A.; Prager, S.; Daughton, W.; Bale, Stuart D.; Carter, T.; Crocker, N.; Drake, J.; Egedal, J.; Sarff, J.; Fox, W.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Yamada, M.; Yoo, J.

    2015-04-01

    A new intermediate-scale plasma experiment, called the Facility for Laboratory Reconnection Experiments or FLARE (flare.pppl.gov), is under construction at Princeton as a joint project by five universities and two national labs to study magnetic reconnection in regimes directly relevant to heliophysical and astrophysical plasmas. The currently existing small-scale experiments have been focusing on the single X-line reconnection process in plasmas either with small effective sizes or at low Lundquist numbers, both of which are typically very large in natural plasmas. These new regimes involve multiple X-lines as guided by a reconnection "phase diagram", in which different coupling mechanisms from the global system scale to the local dissipation scale are classified into different reconnection phases [H. Ji & W. Daughton, Phys. Plasmas 18, 111207 (2011)]. The design of the FLARE device is based on the existing Magnetic Reconnection Experiment (MRX) (mrx.pppl.gov) and is to provide experimental access to the new phases involving multiple X-lines at large effective sizes and high Lundquist numbers, directly relevant to magnetospheric, solar wind, and solar coronal plasmas. After a brief summary of recent laboratory results on the topic of magnetic reconnection, the motivating major physics questions, the construction status, and the planned collaborative research especially with heliophysics communities will be discussed.

  4. Fluid dynamics structures in a fire environment observed in laboratory-scale experiments

    Treesearch

    J. Lozano; W. Tachajapong; D.R. Weise; S. Mahalingam; M. Princevac

    2010-01-01

    Particle Image Velocimetry (PIV) measurements were performed in laboratory-scale experimental fires spreading across horizontal fuel beds composed of aspen (Populus tremuloides Michx) excelsior. The continuous flame, intermittent flame, and thermal plume regions of a fire were investigated. Utilizing a PIV system, instantaneous velocity fields for...

  5. Large-Scale Laboratory Experiments of Incipient Motion, Transport, and Fate of Underwater Munitions Under Waves, Currents, and Combined Flows

    DTIC Science & Technology

    2015-12-01

    little or no sediment cover (e.g., such as on coral reefs ) versus a sandy or muddy bottom. However, there is a dearth of direct observations made under...where there is little or no sediment cover (e.g., such as on coral reefs ) versus a sandy or muddy bottom. However, there is a dearth of direct...INTERIM REPORT Large-Scale Laboratory Experiments of Incipient Motion, Transport, and Fate of Underwater Munitions under Waves , Currents, and

  6. Physical barriers formed from gelling liquids: 1. numerical design of laboratory and field experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finsterle, S.; Moridis, G.J.; Pruess, K.

    1994-01-01

    The emplacement of liquids under controlled viscosity conditions is investigated by means of numerical simulations. Design calculations are performed for a laboratory experiment on a decimeter scale, and a field experiment on a meter scale. The purpose of the laboratory experiment is to study the behavior of multiple gout plumes when injected in a porous medium. The calculations for the field trial aim at designing a grout injection test from a vertical well in order to create a grout plume of a significant extent in the subsurface.

  7. Development of Laboratory Seismic Exploration Experiment for Education and Demonstration

    NASA Astrophysics Data System (ADS)

    Kuwano, O.; Nakanishi, A.

    2016-12-01

    We developed a laboratory experiment to simulate a seismic refraction survey for educational purposes. The experiment is tabletop scaled experiment using the soft hydrogel as an analogue material of a layered crust. So, we can conduct the seismic exploration experiment in a laboratory or a classroom. The softness and the transparency of the gel material enable us to observe the wave propagation with our naked eyes, using the photoelastic technique. By analyzing the waveforms obtained by the image analysis of the movie of the experiment, one can estimate the velocities and the structure of the gel specimen in the same way as an actual seismic survey. We report details of the practical course and the public outreach activities using the experiment.

  8. Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abichou, Tarek, E-mail: abichou@eng.fsu.edu; Mahieu, Koenraad; Chanton, Jeff

    2011-05-15

    Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions.more » These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, K{sub m}, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.« less

  9. Scaled experiments of explosions in cavities

    DOE PAGES

    Grun, J.; Cranch, G. A.; Lunsford, R.; ...

    2016-05-11

    Consequences of an explosion inside an air-filled cavity under the earth's surface are partly duplicated in a laboratory experiment on spatial scales 1000 smaller. The experiment measures shock pressures coupled into a block of material by an explosion inside a gas-filled cavity therein. The explosion is generated by suddenly heating a thin foil that is located near the cavity center with a short laser pulse, which turns the foil into expanding plasma, most of whose energy drives a blast wave in the cavity gas. Variables in the experiment are the cavity radius and explosion energy. Measurements and GEODYN code simulationsmore » show that shock pressuresmeasured in the block exhibit a weak dependence on scaled cavity radius up to ~25 m/kt 1/3, above which they decrease rapidly. Possible mechanisms giving rise to this behavior are described. As a result, the applicability of this work to validating codes used to simulate full-scale cavityexplosions is discussed.« less

  10. Radionuclide migration: laboratory experiments with isolated fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rundberg, R.S.; Thompson, J.L.; Maestas, S.

    Laboratory experiments examining flow and element migration in rocks containing isolated fractures have been initiated at the Los Alamos National Laboratory. Techniques are being developed to establish simple fracture flow systems which are appropriate to models using analytical solutions to the matrix diffusion-flow equations, such as those of I. Neretnieks [I. Neretnieks, Diffusion in the Rock Matrix: An Important Factor in Radionuclide Retardation? J. Geophys. Res. 85, 4379 (1980).] These experiments are intended to be intermediate steps toward larger scale field experiments where it may become more difficult to establish and control the parameters important to nuclide migration in fracturedmore » media. Laboratory experiments have been run on fractures ranging in size from 1 to 20 cm in length. The hydraulic flow in these fractures was studied to provide the effective apertures. The flows established in these fracture systems are similar to those in the granite fracture flow experiments of Witherspoon et al. [P.A. Witherspoon, J.S.Y. Wang, K. Iwai, and J.E. Gale, Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture, Lawrence Berkeley Laboratory report LBL-9557 (October 1979).] Traced solutions containing {sup 85}Sr and {sup 137}Cs were flowed through fractures in Climax Stock granite and welded tuff (Bullfrog and Tram members, Yucca Mountain, Nevada Test Site). The results of the elutions through granite agree with the matrix diffusion calculations based on independent measurements of K/sub d/. The results of the elutions through tuff, however, agree only if the K/sub d/ values used in the calculations are lower than the K/sub d/ values measured using a batch technique. This trend has been previously observed in chromatographic column experiments with tuff. 5 figures, 3 tables.« less

  11. Probing the frontiers of particle physics with tabletop-scale experiments.

    PubMed

    DeMille, David; Doyle, John M; Sushkov, Alexander O

    2017-09-08

    The field of particle physics is in a peculiar state. The standard model of particle theory successfully describes every fundamental particle and force observed in laboratories, yet fails to explain properties of the universe such as the existence of dark matter, the amount of dark energy, and the preponderance of matter over antimatter. Huge experiments, of increasing scale and cost, continue to search for new particles and forces that might explain these phenomena. However, these frontiers also are explored in certain smaller, laboratory-scale "tabletop" experiments. This approach uses precision measurement techniques and devices from atomic, quantum, and condensed-matter physics to detect tiny signals due to new particles or forces. Discoveries in fundamental physics may well come first from small-scale experiments of this type. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Large-scale laboratory testing of bedload-monitoring technologies: overview of the StreamLab06 Experiments

    USGS Publications Warehouse

    Marr, Jeffrey D.G.; Gray, John R.; Davis, Broderick E.; Ellis, Chris; Johnson, Sara; Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.

    2010-01-01

    A 3-month-long, large-scale flume experiment involving research and testing of selected conventional and surrogate bedload-monitoring technologies was conducted in the Main Channel at the St. Anthony Falls Laboratory under the auspices of the National Center for Earth-surface Dynamics. These experiments, dubbed StreamLab06, involved 25 researchers and volunteers from academia, government, and the private sector. The research channel was equipped with a sediment-recirculation system and a sediment-flux monitoring system that allowed continuous measurement of sediment flux in the flume and provided a data set by which samplers were evaluated. Selected bedload-measurement technologies were tested under a range of flow and sediment-transport conditions. The experiment was conducted in two phases. The bed material in phase I was well-sorted siliceous sand (0.6-1.8 mm median diameter). A gravel mixture (1-32 mm median diameter) composed the bed material in phase II. Four conventional bedload samplers – a standard Helley-Smith, Elwha, BLH-84, and Toutle River II (TR-2) sampler – were manually deployed as part of both experiment phases. Bedload traps were deployed in study Phase II. Two surrogate bedload samplers – stationarymounted down-looking 600 kHz and 1200 kHz acoustic Doppler current profilers – were deployed in experiment phase II. This paper presents an overview of the experiment including the specific data-collection technologies used and the ambient hydraulic, sediment-transport and environmental conditions measured as part of the experiment. All data collected as part of the StreamLab06 experiments are, or will be available to the research community.

  13. The Underground Laboratory in South Korea : facilities and experiments

    NASA Astrophysics Data System (ADS)

    Kim, Yeongduk

    2017-01-01

    We have developed underground physics programs for last 15 years in South Korea. The scientific and technical motivation for this initiative was the lack of local facility of a large accelerator in Korea. Thanks to the large underground electric power generator in Yangyang area, we could construct a deep underground laboratory (Yangyang Laboratory, Y2L) and has performed some pioneering experiments for dark matter search and double beta decay experiments. Since year of 2013, a new research center in the Institute for Basic Science (IBS), Center for Underground Physics (CUP), is approved by the government and Y2L laboratory is managed by CUP. Due to the limited space in Y2L, we are proposing to construct a new deep underground laboratory where we can host larger scale experiments of next generation. The site is in an active iron mine, and will be made in 1100 meter underground with a space of about 2000 m2 by the end of 2019. I will describe the status and future plan for this underground laboratory. CUP has two main experimental programs. (1) Identification of dark matter : The annual modulation signal of DAMA/LIBRA experiment has been contradictory to many other experiments such as XENON100, LUX, and Super CDMS. Yale University and CUP (COSINE-100) experimentalists agreed to do an experiment together at the Y2L and recently commissioned a 100kg scale low background NaI(Tl) crystal experiment. In future, we will develop NaI(Tl) crystals with lower internal backgrounds and try to run identical detectors at both north and south hemisphere. Low mass WIMP search is also planned with a development of low temperature sensors coupled with highly scintillating crystals. (2) Neutrinoless double beta decay search : The mass of the lightest neutrino and the Majorana nature of the neutrinos are not determined yet. Neutrinoless double beta decay experiment can answer both of the questions directly, and ultra-low backgrounds and excellent energy resolution are critical to

  14. Complementarity of Laboratory and Space Experiments on Reconnexion

    NASA Astrophysics Data System (ADS)

    Moore, T. E.; Chen, L. J.

    2017-12-01

    Reconnection research has for some time been focused upon understanding the electron scale physics in the electron diffusion region (EDR), both in space and in the laboratory. Ren et al. [2008 PRL] reported identification and resolution of the EDR in the MRX laboratory experiment. More recently, Burch et al. [2016] reported identification of the EDR in reconnection at the magnetopause. Space observations from MMS have also provided the first capability to resolve and measure the full electron VDF within and around the EDR, making it possible to observe electron acceleration by the reconnection electric field and revealing new features of the EDR. Laboratory and space explorations of EDR physics may complement and inspire each other in other ways to be discussed by the panel.

  15. Characterization of seismic properties across scales: from the laboratory- to the field scale

    NASA Astrophysics Data System (ADS)

    Grab, Melchior; Quintal, Beatriz; Caspari, Eva; Maurer, Hansruedi; Greenhalgh, Stewart

    2016-04-01

    When exploring geothermal systems, the main interest is on factors controlling the efficiency of the heat exchanger. This includes the energy state of the pore fluids and the presence of permeable structures building part of the fluid transport system. Seismic methods are amongst the most common exploration techniques to image the deep subsurface in order to evaluate such a geothermal heat exchanger. They make use of the fact that a seismic wave caries information on the properties of the rocks in the subsurface through which it passes. This enables the derivation of the stiffness and the density of the host rock from the seismic velocities. Moreover, it is well-known that the seismic waveforms are modulated while propagating trough the subsurface by visco-elastic effects due to wave induced fluid flow, hence, delivering information about the fluids in the rock's pore space. To constrain the interpretation of seismic data, that is, to link seismic properties with the fluid state and host rock permeability, it is common practice to measure the rock properties of small rock specimens in the laboratory under in-situ conditions. However, in magmatic geothermal systems or in systems situated in the crystalline basement, the host rock is often highly impermeable and fluid transport predominately takes place in fracture networks, consisting of fractures larger than the rock samples investigated in the laboratory. Therefore, laboratory experiments only provide the properties of relatively intact rock and an up-scaling procedure is required to characterize the seismic properties of large rock volumes containing fractures and fracture networks and to study the effects of fluids in such fractured rock. We present a technique to parameterize fractured rock volumes as typically encountered in Icelandic magmatic geothermal systems, by combining laboratory experiments with effective medium calculations. The resulting models can be used to calculate the frequency-dependent bulk

  16. EPOS-WP16: A coherent and collaborative network of Solid Earth Multi-scale laboratories

    NASA Astrophysics Data System (ADS)

    Calignano, Elisa; Rosenau, Matthias; Lange, Otto; Spiers, Chris; Willingshofer, Ernst; Drury, Martyn; van Kan-Parker, Mirjam; Elger, Kirsten; Ulbricht, Damian; Funiciello, Francesca; Trippanera, Daniele; Sagnotti, Leonardo; Scarlato, Piergiorgio; Tesei, Telemaco; Winkler, Aldo

    2017-04-01

    Laboratory facilities are an integral part of Earth Science research. The diversity of methods employed in such infrastructures reflects the multi-scale nature of the Earth system and is essential for the understanding of its evolution, for the assessment of geo-hazards and for the sustainable exploitation of geo-resources. In the frame of EPOS (European Plate Observing System), the Working Package 16 represents a developing community of European Geoscience Multi-scale laboratories. The participant and collaborating institutions (Utrecht University, GFZ, RomaTre University, INGV, NERC, CSIC-ICTJA, CNRS, LMU, C4G-UBI, ETH, CNR*) embody several types of laboratory infrastructures, engaged in different fields of interest of Earth Science: from high temperature and pressure experimental facilities, to electron microscopy, micro-beam analysis, analogue tectonic and geodynamic modelling and paleomagnetic laboratories. The length scales encompassed by these infrastructures range from the nano- and micrometre levels (electron microscopy and micro-beam analysis) to the scale of experiments on centimetres-sized samples, and to analogue model experiments simulating the reservoir scale, the basin scale and the plate scale. The aim of WP16 is to provide two services by the year 2019: first, providing virtual access to data from laboratories (data service) and, second, providing physical access to laboratories (transnational access, TNA). Regarding the development of a data service, the current status is such that most data produced by the various laboratory centres and networks are available only in limited "final form" in publications, many data remain inaccessible and/or poorly preserved. Within EPOS the TCS Multi-scale laboratories is collecting and harmonizing available and emerging laboratory data on the properties and process controlling rock system behaviour at all relevant scales, in order to generate products accessible and interoperable through services for supporting

  17. Infrared thermography applied to the study of heated and solar pavement: from numerical modeling to small scale laboratory experiments

    NASA Astrophysics Data System (ADS)

    Le Touz, N.; Toullier, T.; Dumoulin, J.

    2017-05-01

    The present study addresses the thermal behaviour of a modified pavement structure to prevent icing at its surface in adverse winter time conditions or overheating in hot summer conditions. First a multi-physic model based on infinite elements method was built to predict the evolution of the surface temperature. In a second time, laboratory experiments on small specimen were carried out and the surface temperature was monitored by infrared thermography. Results obtained are analyzed and performances of the numerical model for real scale outdoor application are discussed. Finally conclusion and perspectives are proposed.

  18. Predicting the performance uncertainty of a 1-MW pilot-scale carbon capture system after hierarchical laboratory-scale calibration and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhijie; Lai, Canhai; Marcy, Peter William

    2017-05-01

    A challenging problem in designing pilot-scale carbon capture systems is to predict, with uncertainty, the adsorber performance and capture efficiency under various operating conditions where no direct experimental data exist. Motivated by this challenge, we previously proposed a hierarchical framework in which relevant parameters of physical models were sequentially calibrated from different laboratory-scale carbon capture unit (C2U) experiments. Specifically, three models of increasing complexity were identified based on the fundamental physical and chemical processes of the sorbent-based carbon capture technology. Results from the corresponding laboratory experiments were used to statistically calibrate the physical model parameters while quantifying some of theirmore » inherent uncertainty. The parameter distributions obtained from laboratory-scale C2U calibration runs are used in this study to facilitate prediction at a larger scale where no corresponding experimental results are available. In this paper, we first describe the multiphase reactive flow model for a sorbent-based 1-MW carbon capture system then analyze results from an ensemble of simulations with the upscaled model. The simulation results are used to quantify uncertainty regarding the design’s predicted efficiency in carbon capture. In particular, we determine the minimum gas flow rate necessary to achieve 90% capture efficiency with 95% confidence.« less

  19. The effect of entrapped nonaqueous phase liquids on tracer transport in heterogeneous porous media: Laboratory experiments at the intermediate scale

    USGS Publications Warehouse

    Barth, Gilbert R.; Illangasekare, T.H.; Rajaram, H.

    2003-01-01

    This work considers the applicability of conservative tracers for detecting high-saturation nonaqueous-phase liquid (NAPL) entrapment in heterogeneous systems. For this purpose, a series of experiments and simulations was performed using a two-dimensional heterogeneous system (10??1.2 m), which represents an intermediate scale between laboratory and field scales. Tracer tests performed prior to injecting the NAPL provide the baseline response of the heterogeneous porous medium. Two NAPL spill experiments were performed and the entrapped-NAPL saturation distribution measured in detail using a gamma-ray attenuation system. Tracer tests following each of the NAPL spills produced breakthrough curves (BTCs) reflecting the impact of entrapped NAPL on conservative transport. To evaluate significance, the impact of NAPL entrapment on the conservative-tracer breakthrough curves was compared to simulated breakthrough curve variability for different realizations of the heterogeneous distribution. Analysis of the results reveals that the NAPL entrapment has a significant impact on the temporal moments of conservative-tracer breakthrough curves. ?? 2003 Elsevier B.V. All rights reserved.

  20. QuickEval: a web application for psychometric scaling experiments

    NASA Astrophysics Data System (ADS)

    Van Ngo, Khai; Storvik, Jehans J.; Dokkeberg, Christopher A.; Farup, Ivar; Pedersen, Marius

    2015-01-01

    QuickEval is a web application for carrying out psychometric scaling experiments. It offers the possibility of running controlled experiments in a laboratory, or large scale experiment over the web for people all over the world. It is a unique one of a kind web application, and it is a software needed in the image quality field. It is also, to the best of knowledge, the first software that supports the three most common scaling methods; paired comparison, rank order, and category judgement. It is also the first software to support rank order. Hopefully, a side effect of this newly created software is that it will lower the threshold to perform psychometric experiments, improve the quality of the experiments being carried out, make it easier to reproduce experiments, and increase research on image quality both in academia and industry. The web application is available at www.colourlab.no/quickeval.

  1. Slow Slip and Earthquake Nucleation in Meter-Scale Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Mclaskey, G.

    2017-12-01

    The initiation of dynamic rupture is thought to be preceded by a quasistatic nucleation phase. Observations of recent earthquakes sometimes support this by illuminating slow slip and foreshocks in the vicinity of the eventual hypocenter. I describe laboratory earthquake experiments conducted on two large-scale loading machines at Cornell University that provide insight into the way earthquake nucleation varies with normal stress, healing time, and loading rate. The larger of the two machines accommodates a 3 m long granite sample, and when loaded to 7 MPa stress levels, we observe dynamic rupture events that are preceded by a measureable nucleation zone with dimensions on the order of 1 m. The smaller machine accommodates a 0.76 m sample that is roughly the same size as the nucleation zone. On this machine, small variations in nucleation properties result in measurable differences in slip events, and we generate both dynamic rupture events (> 0.1 m/s slip rates) and slow slip events ( 0.001 to 30 mm/s slip rates). Slow events occur when instability cannot fully nucleate before reaching the sample ends. Dynamic events occur after long healing times or abrupt increases in loading rate which suggests that these factors shrink the spatial and temporal extents of the nucleation zone. Arrays of slip, strain, and ground motion sensors installed on the sample allow us to quantify seismic coupling and study details of premonitory slip and afterslip. The slow slip events we observe are primarily aseismic (less than 1% of the seismic coupling of faster events) and produce swarms of very small M -6 to M -8 events. These mechanical and seismic interactions suggest that faults with transitional behavior—where creep, small earthquakes, and tremor are often observed—could become seismically coupled if loaded rapidly, either by a slow slip front or dynamic rupture of an earthquake that nucleated elsewhere.

  2. Laboratory and Pilot Scale Evaluation of Coagulation, Clarification, and Filtration for Upgrading Sewage Lagoon Effluents.

    DTIC Science & Technology

    1980-08-01

    AD-AGAB 906 ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG--ETC FIG 14/2 LABORATORY AND PILOT SCALE EVALUATION OF COAGULATION, CLARIFICA -ETC U...FILTRATION FOR LWGRADING JEWAGE LAGOON EFFLUENTS~ w IL j0 ( M John ullinane, Jr., Richard A. hafer (0 Environmental Laboratory gel U. S. Army Engineer ...Shafer 9. PERFORMING ORGANIZATION NAME AND ADORESS SO. PROGRAM ELEMENT, PROJECT, TASK AREA a WORK UNIT NUMBERS U. S. Army Engineer Waterways Experiment

  3. A Simple Laboratory Scale Model of Iceberg Dynamics and its Role in Undergraduate Education

    NASA Astrophysics Data System (ADS)

    Burton, J. C.; MacAyeal, D. R.; Nakamura, N.

    2011-12-01

    Lab-scale models of geophysical phenomena have a long history in research and education. For example, at the University of Chicago, Dave Fultz developed laboratory-scale models of atmospheric flows. The results from his laboratory were so stimulating that similar laboratories were subsequently established at a number of other institutions. Today, the Dave Fultz Memorial Laboratory for Hydrodynamics (http://geosci.uchicago.edu/~nnn/LAB/) teaches general circulation of the atmosphere and oceans to hundreds of students each year. Following this tradition, we have constructed a lab model of iceberg-capsize dynamics for use in the Fultz Laboratory, which focuses on the interface between glaciology and physical oceanography. The experiment consists of a 2.5 meter long wave tank containing water and plastic "icebergs". The motion of the icebergs is tracked using digital video. Movies can be found at: http://geosci.uchicago.edu/research/glaciology_files/tsunamigenesis_research.shtml. We have had 3 successful undergraduate interns with backgrounds in mathematics, engineering, and geosciences perform experiments, analyze data, and interpret results. In addition to iceberg dynamics, the wave-tank has served as a teaching tool in undergraduate classes studying dam-breaking and tsunami run-up. Motivated by the relatively inexpensive cost of our apparatus (~1K-2K dollars) and positive experiences of undergraduate students, we hope to serve as a model for undergraduate research and education that other universities may follow.

  4. Quantifying the role that laboratory experiment sample scale has on observed material properties and mechanistic behaviors that cause well systems to fail

    NASA Astrophysics Data System (ADS)

    Huerta, N. J.; Fahrman, B.; Rod, K. A.; Fernandez, C. A.; Crandall, D.; Moore, J.

    2017-12-01

    Laboratory experiments provide a robust method to analyze well integrity. Experiments are relatively cheap, controlled, and repeatable. However, simplifying assumptions, apparatus limitations, and scaling are ubiquitous obstacles for translating results from the bench to the field. We focus on advancing the correlation between laboratory results and field conditions by characterizing how failure varies with specimen geometry using two experimental approaches. The first approach is designed to measure the shear bond strength between steel and cement in a down-scaled (< 3" diameter) well geometry. We use several cylindrical casing-cement-casing geometries that either mimic the scaling ratios found in the field or maximize the amount of metal and cement in the sample. We subject the samples to thermal shock cycles to simulate damage to the interfaces from operations. The bond was then measured via a push-out test. We found that not only did expected parameters, e.g. curing time, play a role in shear-bond strength but also that scaling of the geometry was important. The second approach is designed to observe failure of the well system due to pressure applied on the inside of a lab-scale (1.5" diameter) cylindrical casing-cement-rock geometry. The loading apparatus and sample are housed within an industrial X-ray CT scanner capable of imaging the system while under pressure. Radial tension cracks were observed in the cement after an applied internal pressure of 3000 psi and propagated through the cement and into the rock as pressure was increased. Based on our current suite of tests we find that the relationship between sample diameters and thicknesses is an important consideration when observing the strength and failure of well systems. The test results contribute to our knowledge of well system failure, evaluation and optimization of new cements, as well as the applicability of using scaled-down tests as a proxy for understanding field-scale conditions.

  5. The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers

    NASA Astrophysics Data System (ADS)

    Gregori, G.; Reville, B.; Miniati, F.

    2015-11-01

    The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.

  6. FLARE (Facility for Laboratory Reconnection Experiments): A Major Next-Step for Laboratory Studies of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W. S.; Bale, S. D.; Carter, T. A.; Crocker, N.; Drake, J. F.; Egedal, J.; Sarff, J.; Wallace, J.; Belova, E.; Ellis, R.; Fox, W. R., II; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C. E.; Que, W.; Ren, Y.; Titus, P.; Yamada, M.; Yoo, J.

    2014-12-01

    A new intermediate-scale plasma experiment, called the Facility for Laboratory Reconnection Experiments or FLARE, is under construction at Princeton as a joint project by five universities and two national labs to study magnetic reconnection in regimes directly relevant to space, solar and astrophysical plasmas. The currently existing small-scale experiments have been focusing on the single X-line reconnection process in plasmas either with small effective sizes or at low Lundquist numbers, both of which are typically very large in natural plasmas. These new regimes involve multiple X-lines as guided by a reconnection "phase diagram", in which different coupling mechanisms from the global system scale to the local dissipation scale are classified into different reconnection phases [H. Ji & W. Daughton, Phys. Plasmas 18, 111207 (2011)]. The design of the FLARE device is based on the existing Magnetic Reconnection Experiment (MRX) at Princeton (http://mrx.pppl.gov) and is to provide experimental access to the new phases involving multiple X-lines at large effective sizes and high Lundquist numbers, directly relevant to space and solar plasmas. The motivating major physics questions, the construction status, and the planned collaborative research especially with space and solar research communities will be discussed.

  7. Flow-sediment-large woody debris interplay: Introducing an appropriately scaled laboratory experiment

    NASA Astrophysics Data System (ADS)

    Friedrich, H.; Spreitzer, G.; Tunnicliffe, J. F.

    2017-12-01

    The morphology of steep (>0.01 m/m) forested streams is governed not only by water-sediment interplay, but also by accumulations of coarse and fine organic debris. In this project we look at the jamming dynamics (formation, persistence and hydraulic feedbacks) of large woody debris with the help of scaled laboratory experiments. In New Zealand, the recruitment of wood from both natural tree-fall and forest harvesting has led to obstruction of culverts, bridges and other river constrictions. Understanding the dynamics of jam formation and persistence is important for harvest practice guidelines, management of sediment accumulation, as well as establishing impacts to habitat and infrastructure. In this study, we provide the context of our work, present our experimental setup for studying the complex flow-sediment-wood interactions and present some initial results. In our experimental setup, we varied feed rates of sediment and organic fine material in order to establish concentration thresholds for jam formation, and development of sediment retention capacity upstream of the jam. Large woody debris accumulation is studied for different blocking scenarios, and the effect on sediment transport is measured. Sediment quantities and changes in channel bed morphology upstream of the critical cross section are evaluated, together with resulting backwater effects, and associated energy losses. In the long term, our results will inform our understanding of the processes that take place from the mobilization of woody debris to accumulation.

  8. Laboratory-Scale Evidence for Lightning-Mediated Gene Transfer in Soil

    PubMed Central

    Demanèche, Sandrine; Bertolla, Franck; Buret, François; Nalin, Renaud; Sailland, Alain; Auriol, Philippe; Vogel, Timothy M.; Simonet, Pascal

    2001-01-01

    Electrical fields and current can permeabilize bacterial membranes, allowing for the penetration of naked DNA. Given that the environment is subjected to regular thunderstorms and lightning discharges that induce enormous electrical perturbations, the possibility of natural electrotransformation of bacteria was investigated. We demonstrated with soil microcosm experiments that the transformation of added bacteria could be increased locally via lightning-mediated current injection. The incorporation of three genes coding for antibiotic resistance (plasmid pBR328) into the Escherichia coli strain DH10B recipient previously added to soil was observed only after the soil had been subjected to laboratory-scale lightning. Laboratory-scale lightning had an electrical field gradient (700 versus 600 kV m−1) and current density (2.5 versus 12.6 kA m−2) similar to those of full-scale lightning. Controls handled identically except for not being subjected to lightning produced no detectable antibiotic-resistant clones. In addition, simulated storm cloud electrical fields (in the absence of current) did not produce detectable clones (transformation detection limit, 10−9). Natural electrotransformation might be a mechanism involved in bacterial evolution. PMID:11472916

  9. Effect of nacelle on wake meandering in a laboratory scale wind turbine using LES

    NASA Astrophysics Data System (ADS)

    Foti, Daniel; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis

    2015-11-01

    Wake meandering, large scale motion in the wind turbine wakes, has considerable effects on the velocity deficit and turbulence intensity in the turbine wake from the laboratory scale to utility scale wind turbines. In the dynamic wake meandering model, the wake meandering is assumed to be caused by large-scale atmospheric turbulence. On the other hand, Kang et al. (J. Fluid Mech., 2014) demonstrated that the nacelle geometry has a significant effect on the wake meandering of a hydrokinetic turbine, through the interaction of the inner wake of the nacelle vortex with the outer wake of the tip vortices. In this work, the significance of the nacelle on the wake meandering of a miniature wind turbine previously used in experiments (Howard et al., Phys. Fluid, 2015) is demonstrated with large eddy simulations (LES) using immersed boundary method with fine enough grids to resolve the turbine geometric characteristics. The three dimensionality of the wake meandering is analyzed in detail through turbulent spectra and meander reconstruction. The computed flow fields exhibit wake dynamics similar to those observed in the wind tunnel experiments and are analyzed to shed new light into the role of the energetic nacelle vortex on wake meandering. This work was supported by Department of Energy DOE (DE-EE0002980, DE-EE0005482 and DE-AC04-94AL85000), and Sandia National Laboratories. Computational resources were provided by Sandia National Laboratories and the University of Minnesota Supercomputing.

  10. Replicating the microbial community and water quality performance of full-scale slow sand filters in laboratory-scale filters.

    PubMed

    Haig, Sarah-Jane; Quince, Christopher; Davies, Robert L; Dorea, Caetano C; Collins, Gavin

    2014-09-15

    Previous laboratory-scale studies to characterise the functional microbial ecology of slow sand filters have suffered from methodological limitations that could compromise their relevance to full-scale systems. Therefore, to ascertain if laboratory-scale slow sand filters (L-SSFs) can replicate the microbial community and water quality production of industrially operated full-scale slow sand filters (I-SSFs), eight cylindrical L-SSFs were constructed and were used to treat water from the same source as the I-SSFs. Half of the L-SSFs sand beds were composed of sterilized sand (sterile) from the industrial filters and the other half with sand taken directly from the same industrial filter (non-sterile). All filters were operated for 10 weeks, with the microbial community and water quality parameters sampled and analysed weekly. To characterize the microbial community phyla-specific qPCR assays and 454 pyrosequencing of the 16S rRNA gene were used in conjunction with an array of statistical techniques. The results demonstrate that it is possible to mimic both the water quality production and the structure of the microbial community of full-scale filters in the laboratory - at all levels of taxonomic classification except OTU - thus allowing comparison of LSSF experiments with full-scale units. Further, it was found that the sand type composing the filter bed (non-sterile or sterile), the water quality produced, the age of the filters and the depth of sand samples were all significant factors in explaining observed differences in the structure of the microbial consortia. This study is the first to the authors' knowledge that demonstrates that scaled-down slow sand filters can accurately reproduce the water quality and microbial consortia of full-scale slow sand filters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. 30 CFR 14.21 - Laboratory-scale flame test apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Laboratory-scale flame test apparatus. 14.21 Section 14.21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING... Technical Requirements § 14.21 Laboratory-scale flame test apparatus. The principal parts of the apparatus...

  12. 30 CFR 14.21 - Laboratory-scale flame test apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Laboratory-scale flame test apparatus. 14.21 Section 14.21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING... Technical Requirements § 14.21 Laboratory-scale flame test apparatus. The principal parts of the apparatus...

  13. How can laboratory plasma experiments contribute to space and &astrophysics?

    NASA Astrophysics Data System (ADS)

    Yamada, M.

    Plasma physics plays key role in a wide range of phenomena in the universe, from laboratory plasmas to the magnetosphere, the solar corona, and to the tenuous interstellar and intergalactic gas. Despite the huge difference in physical scales, there are striking similarities in plasma behavior of laboratory and space plasmas. Similar plasma physics problems have been investigated independently by both laboratory plasma physicists and astrophysicists. Since 1991, cross fertilization has been increased among laboratory plasma physicists and space physicists through meeting such as IPELS [Interrelationship between Plasma Experiments in the Laboratory and Space] meeting. The advances in laboratory plasma physics, along with the recent surge of astronomical data from satellites, make this moment ripe for research collaboration to further advance plasma physics and to obtain new understanding of key space and astrophysical phenomena. The recent NRC review of astronomy and astrophysics notes the benefit that can accrue from stronger connection to plasma physics. The present talk discusses how laboratory plasma studies can contribute to the fundamental understandings of the space and astrophysical phenomena by covering common key physics topics such as magnetic reconnection, dynamos, angular momentum transport, ion heating, and magnetic self-organization. In particular, it has recently been recognized that "physics -issue- dedicated" laboratory experiments can contribute significantly to the understanding of the fundamental physics for space-astrophysical phenomena since they can create fundamental physics processes in controlled manner and provide well-correlated plasma parameters at multiple plasma locations simultaneously. Such dedicated experiments not only can bring about better understanding of the fundamental physics processes but also can lead to findings of new physics principles as well as new ideas for fusion plasma confinement. Several dedicated experiments have

  14. Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field.

    PubMed

    Albertazzi, B; Ciardi, A; Nakatsutsumi, M; Vinci, T; Béard, J; Bonito, R; Billette, J; Borghesi, M; Burkley, Z; Chen, S N; Cowan, T E; Herrmannsdörfer, T; Higginson, D P; Kroll, F; Pikuz, S A; Naughton, K; Romagnani, L; Riconda, C; Revet, G; Riquier, R; Schlenvoigt, H-P; Skobelev, I Yu; Faenov, A Ya; Soloviev, A; Huarte-Espinosa, M; Frank, A; Portugall, O; Pépin, H; Fuchs, J

    2014-10-17

    Although bipolar jets are seen emerging from a wide variety of astrophysical systems, the issue of their formation and morphology beyond their launching is still under study. Our scaled laboratory experiments, representative of young stellar object outflows, reveal that stable and narrow collimation of the entire flow can result from the presence of a poloidal magnetic field whose strength is consistent with observations. The laboratory plasma becomes focused with an interior cavity. This gives rise to a standing conical shock from which the jet emerges. Following simulations of the process at the full astrophysical scale, we conclude that it can also explain recently discovered x-ray emission features observed in low-density regions at the base of protostellar jets, such as the well-studied jet HH 154. Copyright © 2014, American Association for the Advancement of Science.

  15. Two LANL laboratory astrophysics experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Intrator, Thomas P.

    2014-01-24

    Two laboratory experiments are described that have been built at Los Alamos (LANL) to gain access to a wide range of fundamental plasma physics issues germane to astro, space, and fusion plasmas. The overarching theme is magnetized plasma dynamics which includes significant currents, MHD forces and instabilities, magnetic field creation and annihilation, sheared flows and shocks. The Relaxation Scaling Experiment (RSX) creates current sheets and flux ropes that exhibit fully 3D dynamics, and can kink, bounce, merge and reconnect, shred, and reform in complicated ways. Recent movies from a large data set describe the 3D magnetic structure of a drivenmore » and dissipative single flux rope that spontaneously self-saturates a kink instability. Examples of a coherent shear flow dynamo driven by colliding flux ropes will also be shown. The Magnetized Shock Experiment (MSX) uses Field reversed configuration (FRC) experimental hardware that forms and ejects FRCs at 150km/sec. This is sufficient to drive a collision less magnetized shock when stagnated into a mirror stopping field region with Alfven Mach number MA=3 so that super critical shocks can be studied. We are building a plasmoid accelerator to drive Mach numbers MA >> 3 to access solar wind and more exotic astrophysical regimes. Unique features of this experiment include access to parallel, oblique and perpendicular shocks, shock region much larger than ion gyro radii and ion inertial length, room for turbulence, and large magnetic and fluid Reynolds numbers.« less

  16. FLARE: A New User Facility for Laboratory Studies of Multiple-Scale Physics of Magnetic Reconnection and Related Phenomena in Heliophysics and Astrophysics

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Goodman, A.; Prager, S.; Daughton, W.; Cutler, R.; Fox, W.; Hoffmann, F.; Kalish, M.; Kozub, T.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Sloboda, P.; Yamada, M.; Yoo, J.; Bale, S. D.; Carter, T.; Dorfman, S.; Drake, J.; Egedal, J.; Sarff, J.; Wallace, J.

    2017-10-01

    The FLARE device (Facility for Laboratory Reconnection Experiments; flare.pppl.gov) is a new laboratory experiment under construction at Princeton with first plasmas expected in the fall of 2017, based on the design of Magnetic Reconnection Experiment (MRX; mrx.pppl.gov) with much extended parameter ranges. Its main objective is to provide an experimental platform for the studies of magnetic reconnection and related phenomena in the multiple X-line regimes directly relevant to space, solar, astrophysical and fusion plasmas. The main diagnostics is an extensive set of magnetic probe arrays, simultaneously covering multiple scales from local electron scales ( 2 mm), to intermediate ion scales ( 10 cm), and global MHD scales ( 1 m). Specific example space physics topics which can be studied on FLARE will be discussed.

  17. Modeling hexavalent chromium reduction in groundwater in field-scale transport and laboratory batch experiments

    USGS Publications Warehouse

    Friedly, J.C.; Davis, J.A.; Kent, D.B.

    1995-01-01

    A plausible and consistent model is developed to obtain a quantitative description of the gradual disappearance of hexavalent chromium (Cr(VI)) from groundwater in a small-scale field tracer test and in batch kinetic experiments using aquifer sediments under similar chemical conditions. The data exhibit three distinct timescales. Fast reduction occurs in well-stirred batch reactors in times much less than 1 hour and is followed by slow reduction over a timescale of the order of 2 days. In the field, reduction occurs on a timescale of the order of 8 days. The model is based on the following hypotheses. The chemical reduction reaction occurs very fast, and the longer timescales are caused by diffusion resistance. Diffusion into the secondary porosity of grains causes the apparent slow reduction rate in batch experiments. In the model of the field experiments, the reducing agent, heavy Fe(II)-bearing minerals, is heterogeneously distributed in thin strata located between larger nonreducing sand lenses that comprise the bulk of the aquifer solids. It is found that reducing strata of the order of centimeters thick are sufficient to contribute enough diffusion resistance to cause the observed longest timescale in the field. A one-dimensional advection/dispersion model is formulated that describes the major experimental trends. Diffusion rates are estimated in terms of an elementary physical picture of flow through a stratified medium containing identically sized spherical grains. Both reduction and sorption reactions are included. Batch simulation results are sensitive to the fraction of reductant located at or near the surface of grains, which controls the amount of rapid reduction, and the secondary porosity, which controls the rate of slow reduction observed in batch experiments. Results of Cr(VI) transport simulations are sensitive to the thickness and relative size of the reducing stratum. Transport simulation results suggest that nearly all of the reductant must be

  18. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  19. Laboratory and theoretical models of planetary-scale instabilities and waves

    NASA Technical Reports Server (NTRS)

    Hart, John E.; Toomre, Juri

    1990-01-01

    Meteorologists and planetary astronomers interested in large-scale planetary and solar circulations recognize the importance of rotation and stratification in determining the character of these flows. In the past it has been impossible to accurately model the effects of sphericity on these motions in the laboratory because of the invariant relationship between the uni-directional terrestrial gravity and the rotation axis of an experiment. Researchers studied motions of rotating convecting liquids in spherical shells using electrohydrodynamic polarization forces to generate radial gravity, and hence centrally directed buoyancy forces, in the laboratory. The Geophysical Fluid Flow Cell (GFFC) experiments performed on Spacelab 3 in 1985 were analyzed. Recent efforts at interpretation led to numerical models of rotating convection with an aim to understand the possible generation of zonal banding on Jupiter and the fate of banana cells in rapidly rotating convection as the heating is made strongly supercritical. In addition, efforts to pose baroclinic wave experiments for future space missions using a modified version of the 1985 instrument led to theoretical and numerical models of baroclinic instability. Rather surprising properties were discovered, which may be useful in generating rational (rather than artificially truncated) models for nonlinear baroclinic instability and baroclinic chaos.

  20. Multidimensional Screening as a Pharmacology Laboratory Experience.

    ERIC Educational Resources Information Center

    Malone, Marvin H.; And Others

    1979-01-01

    A multidimensional pharmacodynamic screening experiment that addresses drug interaction is included in the pharmacology-toxicology laboratory experience of pharmacy students at the University of the Pacific. The student handout with directions for the procedure is reproduced, drug compounds tested are listed, and laboratory evaluation results are…

  1. Scaling of Sediment Dynamics in a Reach-Scale Laboratory Model of a Sand-Bed Stream with Riparian Vegetation

    NASA Astrophysics Data System (ADS)

    Gorrick, S.; Rodriguez, J. F.

    2011-12-01

    A movable bed physical model was designed in a laboratory flume to simulate both bed and suspended load transport in a mildly sinuous sand-bed stream. Model simulations investigated the impact of different vegetation arrangements along the outer bank to evaluate rehabilitation options. Preserving similitude in the 1:16 laboratory model was very important. In this presentation the scaling approach, as well as the successes and challenges of the strategy are outlined. Firstly a near-bankfull flow event was chosen for laboratory simulation. In nature, bankfull events at the field site deposit new in-channel features but cause only small amounts of bank erosion. Thus the fixed banks in the model were not a drastic simplification. Next, and as in other studies, the flow velocity and turbulence measurements were collected in separate fixed bed experiments. The scaling of flow in these experiments was simply maintained by matching the Froude number and roughness levels. The subsequent movable bed experiments were then conducted under similar hydrodynamic conditions. In nature, the sand-bed stream is fairly typical; in high flows most sediment transport occurs in suspension and migrating dunes cover the bed. To achieve similar dynamics in the model equivalent values of the dimensionless bed shear stress and the particle Reynolds number were important. Close values of the two dimensionless numbers were achieved with lightweight sediments (R=0.3) including coal and apricot pips with a particle size distribution similar to that of the field site. Overall the moveable bed experiments were able to replicate the dominant sediment dynamics present in the stream during a bankfull flow and yielded relevant information for the analysis of the effects of riparian vegetation. There was a potential conflict in the strategy, in that grain roughness was exaggerated with respect to nature. The advantage of this strategy is that although grain roughness is exaggerated, the similarity of

  2. BOW SHOCK FRAGMENTATION DRIVEN BY A THERMAL INSTABILITY IN LABORATORY ASTROPHYSICS EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki-Vidal, F.; Lebedev, S. V.; Pickworth, L. A.

    The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counterstreaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame, and the experiments are driven over many times the characteristic cooling timescale. The initially smooth bow shock rapidly develops small-scale nonuniformities over temporal and spatial scalesmore » that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with the radiative packages ABAKO/RAPCAL.« less

  3. Bacterial Transport in Heterogeneous Porous Media: Laboratory and Field Experiments

    NASA Astrophysics Data System (ADS)

    Fuller, M. E.

    2001-12-01

    A fully instrumented research site for examining field-scale bacterial transport has been established on the eastern shore of Virginia. Studies employing intact sediment cores from the South Oyster site have been performed to examine the effects of physical and chemical heterogeneity, to derive transport parameters, and to aid in the selection of bacterial strains for use in field experiments. A variety of innovative methods for tracking bacteria were developed and evaluated under both laboratory and field conditions, providing the tools to detect target cell concentrations in groundwater down to <20 cells/ml, and to perform real-time monitoring in the field. Comprehensive modeling efforts have provided a framework for the layout and instrumentation of the field site, and have aided in the design and interpretation of field-scale bacterial transport experiments. Field transport experiments were conducted in both aerobic and an anoxic flow cells to determine the effects of physical and chemical heterogeneity on field-scale bacterial transport. The results of this research not only contribute to the development of more effective bioremediation strategies, but also have implications for a better understanding of bacterial movement in the subsurface as it relates to public health microbiology and general microbial ecology.

  4. Simulation of the 3-D Evolution of Electron Scale Magnetic Reconnection - Motivated by Laboratory Experiments Predictions for MMS

    NASA Astrophysics Data System (ADS)

    Buechner, J.; Jain, N.; Sharma, A.

    2013-12-01

    The four s/c of the Magnetospheric Multiscale (MMS) mission, to be launched in 2014, will use the Earth's magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes. One of them is magnetic reconnection, an essentially multi-scale process. While laboratory experiments and past theoretical investigations have shown that important processes necessary to understand magnetic reconnection take place at electron scales the MMS mission for the first time will be able to resolve these scales by in space observations. For the measurement strategy of MMS it is important to make specific predictions of the behavior of current sheets with a thickness of the order of the electron skin depth which play an important role in the evolution of collisionless magnetic reconnection. Since these processes are highly nonlinear and non-local numerical simulation is needed to specify the current sheet evolution. Here we present new results about the nonlinear evolution of electron-scale current sheets starting from the linear stage and using 3-D electron-magnetohydrodynamic (EMHD) simulations. The growth rates of the simulated instabilities compared well with the growth rates obtained from linear theory. Mechanisms and conditions of the formation of flux ropes and of current filamentation will be discussed in comparison with the results of fully kinetic simulations. In 3D the X- and O-point configurations of the magnetic field formed in reconnection planes alternate along the out-of-reconnection-plane direction with the wavelength of the unstable mode. In the presence of multiple reconnection sites, the out-of-plane magnetic field can develop nested structure of quadrupoles in reconnection planes, similar to the 2-D case, but now with variations in the out-of-plane direction. The structures of the electron flow and magnetic field in 3-D simulations will be compared with those in 2-D simulations to discriminate the essentially 3D features. We also discuss

  5. Two LANL laboratory astrophysics experiments

    NASA Astrophysics Data System (ADS)

    Intrator, Thomas; Weber, Thomas; Feng, Yan; Hutchinson, Trevor; Dunn, John; Akcay, Cihan

    2014-06-01

    Two laboratory experiments are described that have been built at Los Alamos (LANL) to gain access to a wide range of fundamental plasma physics issues germane to astro, space, and fusion plasmas. The over arching theme is magnetized plasma dynamics which includes significant currents, MHD forces and instabilities, magnetic field creation and annihilation, sheared flows and shocks. The Relaxation Scaling Experiment (RSX) creates current sheets and flux ropes that exhibit fully 3D dynamics, and can kink, bounce, merge and reconnect, shred, and reform in complicated ways. Recent movies from a large data set describe the 3D magnetic structure of a driven and dissipative single flux rope that spontaneously self saturates a kink instability. Examples of a coherent shear flow dynamo driven by colliding flux ropes will also be shown.The Magnetized Shock Experiment (MSX) uses Field reversed configuration (FRC) experimental hardware that forms and ejects FRCs at 150km/sec. This is sufficient to drive a collision less magnetized shock when stagnated into a mirror stopping field region with Alfven Mach number MA=3 so that super critical shocks can be studied. We are building a plasmoid accelerator to drive Mach numbers MA >> 3 to access solar wind and more exotic astrophysical regimes. Unique features of this experiment include access to parallel, oblique and perpendicular shocks, shock region much larger than ion gyro radii and ion inertial length, room for turbulence, and large magnetic and fluid Reynolds numbers.*DOE Office of Fusion Energy Sciences under LANS contract DE-AC52-06NA25396, NASA Geospace NNHIOA044I, Basic, Center for Magnetic Self Organization

  6. Building a Laboratory-Scale Biogas Plant and Verifying its Functionality

    NASA Astrophysics Data System (ADS)

    Boleman, Tomáš; Fiala, Jozef; Blinová, Lenka; Gerulová, Kristína

    2011-01-01

    The paper deals with the process of building a laboratory-scale biogas plant and verifying its functionality. The laboratory-scale prototype was constructed in the Department of Safety and Environmental Engineering at the Faculty of Materials Science and Technology in Trnava, of the Slovak University of Technology. The Department has already built a solar laboratory to promote and utilise solar energy, and designed SETUR hydro engine. The laboratory is the next step in the Department's activities in the field of renewable energy sources and biomass. The Department is also involved in the European Union project, where the goal is to upgrade all existed renewable energy sources used in the Department.

  7. Study of Multiple Scale Physics of Magnetic Reconnection on the FLARE (Facility for Laboratory Reconnection Experiments)

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W. S.; Bale, S. D.; Carter, T. A.; Crocker, N.; Drake, J. F.; Egedal, J.; Sarff, J.; Wallace, J.; Chen, Y.; Cutler, R.; Fox, W. R., II; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C. E.; Ren, Y.; Yamada, M.; Yoo, J.

    2015-12-01

    The FLARE device (flare.pppl.gov) is a new intermediate-scale plasma experiment under construction at Princeton to study magnetic reconnection in regimes directly relevant to space, solar and astrophysical plasmas. The existing small-scale experiments have been focusing on the single X-line reconnection process either with small effective sizes or at low Lundquist numbers, but both of which are typically very large in natural plasmas. The configuration of the FLARE device is designed to provide experimental access to the new regimes involving multiple X-lines, as guided by a reconnection "phase diagram" [Ji & Daughton, PoP (2011)]. Most of major components of the FLARE device have been designed and are under construction. The device will be assembled and installed in 2016, followed by commissioning and operation in 2017. The planned research on FLARE as a user facility will be discussed on topics including the multiple scale nature of magnetic reconnection from global fluid scales to ion and electron kinetic scales. Results from scoping simulations based on particle and fluid codes and possible comparative research with space measurements will be presented.

  8. Do-It-Yourself Experiments for the Instructional Laboratory

    ERIC Educational Resources Information Center

    Craig, Norman C.; Hill, Cortland S.

    2012-01-01

    A new design for experiments in the general chemistry laboratory incorporates a "do-it-yourself" component for students. In this design, students perform proven experiments to gain experience with techniques for about two-thirds of a laboratory session and then spend the last part in the do-it-yourself component, applying the techniques to an…

  9. Role of Laboratory Plasma Experiments in exploring the Physics of Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Tripathi, S.

    2017-12-01

    Solar eruptive events are triggered over a broad range of spatio-temporal scales by a variety of fundamental processes (e.g., force-imbalance, magnetic-reconnection, electrical-current driven instabilities) associated with arched magnetoplasma structures in the solar atmosphere. Contemporary research on solar eruptive events is at the forefront of solar and heliospheric physics due to its relevance to space weather. Details on the formation of magnetized plasma structures on the Sun, storage of magnetic energy in such structures over a long period (several Alfven transit times), and their impulsive eruptions have been recorded in numerous observations and simulated in computer models. Inherent limitations of space observations and uncontrolled nature of solar eruptions pose significant challenges in testing theoretical models and developing the predictive capability for space-weather. The pace of scientific progress in this area can be significantly boosted by tapping the potential of appropriately scaled laboratory plasma experiments to compliment solar observations, theoretical models, and computer simulations. To give an example, recent results from a laboratory plasma experiment on arched magnetic flux ropes will be presented and future challenges will be discussed. (Work supported by National Science Foundation, USA under award number 1619551)

  10. Detecting Tsunami Source Energy and Scales from GNSS & Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Song, Y. T.; Yim, S. C.; Mohtat, A.

    2016-12-01

    Historically, tsunami warnings based on the earthquake magnitude have not been very accurate. According to the 2006 U.S. Government Accountability Office report, an unacceptable 75% false alarm rate has prevailed in the Pacific Ocean (GAO-06-519). One of the main reasons for those inaccurate warnings is that an earthquake's magnitude is not the scale or power of the resulting tsunami. For the last 10 years, we have been developing both theories and algorithms to detect tsunami source energy and scales, instead of earthquake magnitudes per se, directly from real-time Global Navigation Satellite System (GNSS) stations along coastlines for early warnings [Song 2007; Song et al., 2008; Song et al., 2012; Xu and Song 2013; Titov et al, 2016]. Here we will report recent progress on two fronts: 1) Examples of using GNSS in detecting the tsunami energy scales for the 2004 Sumatra M9.1 earthquake, the 2005 Nias M8.7 earthquake, the 2010 M8.8 Chilean earthquake, the 2011 M9.0 Tohoku-Oki earthquake, and the 2015 M8.3 Illapel earthquake. 2) New results from recent state-of-the-art wave-maker experiments and comparisons with GNSS data will also be presented. Related reference: Titov, V., Y. T. Song, L. Tang, E. N. Bernard, Y. Bar-Sever, and Y. Wei (2016), Consistent estimates of tsunami energy show promise for improved early warning, Pur Appl. Geophs., DOI: 10.1007/s00024-016-1312-1. Xu, Z. and Y. T. Song (2013), Combining the all-source Green's functions and the GPS-derived source for fast tsunami prediction - illustrated by the March 2011 Japan tsunami, J. Atmos. Oceanic Tech., jtechD1200201. Song, Y. T., I. Fukumori, C. K. Shum, and Y. Yi (2012), Merging tsunamis of the 2011 Tohoku-Oki earthquake detected over the open ocean, Geophys. Res. Lett., doi:10.1029/2011GL050767. Song, Y. T., L.-L. Fu, V. Zlotnicki, C. Ji, V. Hjorleifsdottir, C.K. Shum, and Y. Yi, 2008: The role of horizontal impulses of the faulting continental slope in generating the 26 December 2004 Tsunami (2007

  11. Modelling high Reynolds number wall–turbulence interactions in laboratory experiments using large-scale free-stream turbulence

    PubMed Central

    Dogan, Eda; Hearst, R. Jason

    2017-01-01

    A turbulent boundary layer subjected to free-stream turbulence is investigated in order to ascertain the scale interactions that dominate the near-wall region. The results are discussed in relation to a canonical high Reynolds number turbulent boundary layer because previous studies have reported considerable similarities between these two flows. Measurements were acquired simultaneously from four hot wires mounted to a rake which was traversed through the boundary layer. Particular focus is given to two main features of both canonical high Reynolds number boundary layers and boundary layers subjected to free-stream turbulence: (i) the footprint of the large scales in the logarithmic region on the near-wall small scales, specifically the modulating interaction between these scales, and (ii) the phase difference in amplitude modulation. The potential for a turbulent boundary layer subjected to free-stream turbulence to ‘simulate’ high Reynolds number wall–turbulence interactions is discussed. The results of this study have encouraging implications for future investigations of the fundamental scale interactions that take place in high Reynolds number flows as it demonstrates that these can be achieved at typical laboratory scales. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167584

  12. Modelling high Reynolds number wall-turbulence interactions in laboratory experiments using large-scale free-stream turbulence.

    PubMed

    Dogan, Eda; Hearst, R Jason; Ganapathisubramani, Bharathram

    2017-03-13

    A turbulent boundary layer subjected to free-stream turbulence is investigated in order to ascertain the scale interactions that dominate the near-wall region. The results are discussed in relation to a canonical high Reynolds number turbulent boundary layer because previous studies have reported considerable similarities between these two flows. Measurements were acquired simultaneously from four hot wires mounted to a rake which was traversed through the boundary layer. Particular focus is given to two main features of both canonical high Reynolds number boundary layers and boundary layers subjected to free-stream turbulence: (i) the footprint of the large scales in the logarithmic region on the near-wall small scales, specifically the modulating interaction between these scales, and (ii) the phase difference in amplitude modulation. The potential for a turbulent boundary layer subjected to free-stream turbulence to 'simulate' high Reynolds number wall-turbulence interactions is discussed. The results of this study have encouraging implications for future investigations of the fundamental scale interactions that take place in high Reynolds number flows as it demonstrates that these can be achieved at typical laboratory scales.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  13. Fluid Flow Experiment for Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Vilimpochapornkul, Viroj; Obot, Nsima T.

    1986-01-01

    The undergraduate fluid mechanics laboratory at Clarkson University consists of three experiments: mixing; drag measurements; and fluid flow and pressure drop measurements. The latter experiment is described, considering equipment needed, procedures used, and typical results obtained. (JN)

  14. Scaled Eagle Nebula Experiments on NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pound, Marc W.

    We performed scaled laboratory experiments at the National Ignition Facility laser to assess models for the creation of pillar structures in star-forming clouds of molecular hydrogen, in particular the famous Pillars of the Eagle Nebula. Because pillars typically point towards nearby bright ultraviolet stars, sustained directional illumination appears to be critical to pillar formation. The experiments mock up illumination from a cluster of ultraviolet-emitting stars, using a novel long duration (30--60 ns), directional, laser-driven x-ray source consisting of multiple radiation cavities illuminated in series. Our pillar models are assessed using the morphology of the Eagle Pillars observed with the Hubblemore » Space Telescope, and measurements of column density and velocity in Eagle Pillar II obtained at the BIMA and CARMA millimeter wave facilities. In the first experiments we assess a shielding model for pillar formation. The experimental data suggest that a shielding pillar can match the observed morphology of Eagle Pillar II, and the observed Pillar II column density and velocity, if augmented by late time cometary growth.« less

  15. A comparison of refuse attenuation in laboratory and field scale lysimeters.

    PubMed

    Youcai, Zhao; Luochun, Wang; Renhua, Hua; Dimin, Xu; Guowei, Gu

    2002-01-01

    For this study, small and middle scale laboratory lysimeters, and a large scale field lysimeter in situ in Shanghai Refuse Landfill, with refuse weights of 187,600 and 10,800,000 kg, respectively, were created. These lysimeters are compared in terms of leachate quality (pH, concentrations of COD, BOD and NH3-N), refuse composition (biodegradable matter and volatile solid) and surface settlement for a monitoring period of 0-300 days. The objectives of this study were to explore both the similarities and disparities between laboratory and field scale lysimeters, and to compare degradation behaviors of refuse at the intensive reaction phase in the different scale lysimeters. Quantitative relationships of leachate quality and refuse composition with placement time show that degradation behaviors of refuse seem to depend heavily on the scales of the lysimeters and the parameters of concern, especially in the starting period of 0-6 months. However, some similarities exist between laboratory and field lysimeters after 4-6 months of placement because COD and BOD concentrations in leachate in the field lysimeter decrease regularly in a parallel pattern with those in the laboratory lysimeters. NH3-N, volatile solid (VS) and biodegradable matter (BDM) also gradually decrease in parallel in this intensive reaction phase for all scale lysimeters as refuse ages. Though the concrete data are different among the different scale lysimeters, it may be considered that laboratory lysimeters with sufficient scale are basically applicable for a rough simulation of a real landfill, especially for illustrating the degradation pattern and mechanism. Settlement of refuse surface is roughly proportional to the initial refuse height.

  16. Cross-flow turbines: progress report on physical and numerical model studies at large laboratory scale

    NASA Astrophysics Data System (ADS)

    Wosnik, Martin; Bachant, Peter

    2016-11-01

    Cross-flow turbines show potential in marine hydrokinetic (MHK) applications. A research focus is on accurately predicting device performance and wake evolution to improve turbine array layouts for maximizing overall power output, i.e., minimizing wake interference, or taking advantage of constructive wake interaction. Experiments were carried with large laboratory-scale cross-flow turbines D O (1 m) using a turbine test bed in a large cross-section tow tank, designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. Several turbines of varying solidity were employed, including the UNH Reference Vertical Axis Turbine (RVAT) and a 1:6 scale model of the DOE-Sandia Reference Model 2 (RM2) turbine. To improve parameterization in array simulations, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier-Stokes models. Results are presented for the simulation of performance and wake dynamics of cross-flow turbines and compared with experiments and body-fitted mesh, blade-resolving CFD. Supported by NSF-CBET Grant 1150797, Sandia National Laboratories.

  17. The student perspective of high school laboratory experiences

    NASA Astrophysics Data System (ADS)

    Lambert, R. Mitch

    High school science laboratory experiences are an accepted teaching practice across the nation despite a lack of research evidence to support them. The purpose of this study was to examine the perspective of students---stakeholders often ignored---on these experiences. Insight into the students' perspective was explored progressively using a grounded theory methodology. Field observations of science classrooms led to an open-ended survey of high school science students, garnering 665 responses. Twelve student interviews then focused on the data and questions evolving from the survey. The student perspective on laboratory experiences revealed varied information based on individual experience. Concurrent analysis of the data revealed that although most students like (348/665) or sometimes like (270/665) these experiences, some consistent factors yielded negative experiences and prompted suggestions for improvement. The category of responses that emerged as the core idea focused on student understanding of the experience. Students desire to understand the why do, the how to, and the what it means of laboratory experiences. Lacking any one of these, the experience loses educational value for them. This single recurring theme crossed the boundaries of age, level in school, gender, and even the student view of lab experiences as positive or negative. This study suggests reflection on the current laboratory activities in which science teachers engage their students. Is the activity appropriate (as opposed to being merely a favorite), does it encourage learning, does it fit, does it operate at the appropriate level of inquiry, and finally what can science teachers do to integrate these activities into the classroom curriculum more effectively? Simply stated, what can teachers do so that students understand what to do, what's the point, and how that point fits into what they are learning outside the laboratory?

  18. Realizing a Framework for Enhancing the Laboratory Experiences of Non-Physics Majors: From Pilot to Large-Scale Implementation

    ERIC Educational Resources Information Center

    Kirkup, Les; Pizzica, Jenny; Waite, Katrina; Srinivasan, Lakshmi

    2010-01-01

    Physics experiments for students not majoring in physics may have little meaning for those students and appear to them unconnected in any way to their majors. This affects student engagement and influences the extent to which they regard their experiences in the physics laboratory as positive. We apply a framework for the development and…

  19. Effects of Cohesive Sediment on Estuarine Morphology in Laboratory Scale Experiments

    NASA Astrophysics Data System (ADS)

    Braat, L.; Leuven, J.; Lokhorst, I.; Kleinhans, M. G.

    2017-12-01

    Mud plays a major role in forming and filling of river estuaries. River estuaries are typically build of sand and flanked by mudflats, which affect channel-shoal dynamics on time scales of centuries to millennia. In our research we aim to study the effects of mud on the shape and evolution of estuaries and where the largest effects occur. Recently a 20 m by 3 m flume (the Metronome) was developed at Utrecht University for tidal experiments. Complete estuaries are simulated in the Metronome by driving tidal flow by periodically tilting of the flume to counteract scaling problems. To simulate the effects of cohesive mud we supply nutshell grains to the system together with the river discharge. Three scenarios were tested, one with only sand, one with a low supply concentration of nutshell and one with a high concentration (left to right in figure).Estuaries that developed from an initial convergent shape are self-formed through bank erosion, continuous channel-shoal migration and bar and mud flat sedimentation (figure shows development over 15000 tilting cycles). The cohesive sediment deposits occur mainly on bars, but also on the flanks of the estuary and in abandoned channels. Due to its different erosional and depositional characteristics, the nutshell increases the elevation of the bars, which reduces storage and ebb-dominance and causes reduction of bar mobility and short cuts. These results agree with numerical model results. The large-scale effect is less widening of the estuary in the presence of mud and a decrease in channel-shoal migration, suggesting that mud confines estuary width in a similar manner as river floodplains.

  20. Making Sparklers: An Introductory Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Keeney, Allen; Walters, Christina; Cornelius, Richard D.

    1995-07-01

    A laboratory experiment consisting of the preparation of sparklers has been developed as part of a project which organizes the general chemistry sequence according to subjects with which students are familiar. This laboratory makes use of oxidation/reduction chemistry to produce a product familiar to students. The result is a mixture rather than a compound, but the composition must be carefully measured to produce a sparkler that will stay lit and produce sparks. The dramatic reaction may be the most impressive and memorable experience that students encounter in the laboratory. Sparklers are formulated from iron, magnesium, and aluminum powders, plus potassium chlorate and barium nitrate held on thick iron wire by a starch paste. At elevated temperatures metal nitrates and chlorates decompose to produces gases, providing the necessary force to eject bits of powdered, burning metal into the air.

  1. Design of a laboratory scale fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Wikström, E.; Andersson, P.; Marklund, S.

    1998-04-01

    The aim of this project was to construct a laboratory scale fluidized bed reactor that simulates the behavior of full scale municipal solid waste combustors. The design of this reactor is thoroughly described. The size of the laboratory scale fluidized bed reactor is 5 kW, which corresponds to a fuel-feeding rate of approximately 1 kg/h. The reactor system consists of four parts: a bed section, a freeboard section, a convector (postcombustion zone), and an air pollution control (APC) device system. The inside diameter of the reactor is 100 mm at the bed section and it widens to 200 mm in diameter in the freeboard section; the total height of the reactor is 1760 mm. The convector part consists of five identical sections; each section is 2700 mm long and has an inside diameter of 44.3 mm. The reactor is flexible regarding the placement and number of sampling ports. At the beginning of the first convector unit and at the end of each unit there are sampling ports for organic micropollutants (OMP). This makes it possible to study the composition of the flue gases at various residence times. Sampling ports for inorganic compounds and particulate matter are also placed in the convector section. All operating parameters, reactor temperatures, concentrations of CO, CO2, O2, SO2, NO, and NO2 are continuously measured and stored at selected intervals for further evaluation. These unique features enable full control over the fuel feed, air flows, and air distribution as well as over the temperature profile. Elaborate details are provided regarding the configuration of the fuel-feeding systems, the fluidized bed, the convector section, and the APC device. This laboratory reactor enables detailed studies of the formation mechanisms of OMP, such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), poly-chlorinated biphenyls (PCBs), and polychlorinated benzenes (PCBzs). With this system formation mechanisms of OMP occurring in both the combustion

  2. Wiki Laboratory Notebooks: Supporting Student Learning in Collaborative Inquiry-Based Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Lawrie, Gwendolyn Angela; Grøndahl, Lisbeth; Boman, Simon; Andrews, Trish

    2016-06-01

    Recent examples of high-impact teaching practices in the undergraduate chemistry laboratory that include course-based undergraduate research experiences and inquiry-based experiments require new approaches to assessing individual student learning outcomes. Instructors require tools and strategies that can provide them with insight into individual student contributions to collaborative group/teamwork throughout the processes of experimental design, data analysis, display and communication of their outcomes in relation to their research question(s). Traditional assessments in the form of laboratory notebooks or experimental reports provide limited insight into the processes of collaborative inquiry-based activities. A wiki environment offers a collaborative domain that can potentially support collaborative laboratory processes and scientific record keeping. In this study, the effectiveness of the wiki in supporting laboratory learning and assessment has been evaluated through analysis of the content and histories for three consenting, participating groups of students. The conversational framework has been applied to map the relationships between the instructor, tutor, students and laboratory activities. Analytics that have been applied to the wiki platform include: character counts, page views, edits, timelines and the extent and nature of the contribution by each student to the wiki. Student perceptions of both the role and the impact of the wiki on their experiences and processes have also been collected. Evidence has emerged from this study that the wiki environment has enhanced co-construction of understanding of both the experimental process and subsequent communication of outcomes and data. A number of features are identified to support success in the use of the wiki platform for laboratory notebooks.

  3. Laboratory Experiments On Continually Forced 2d Turbulence

    NASA Astrophysics Data System (ADS)

    Wells, M. G.; Clercx, H. J. H.; Van Heijst, G. J. F.

    There has been much recent interest in the advection of tracers by 2D turbulence in geophysical flows. While there is a large body of literature on decaying 2D turbulence or forced 2D turbulence in unbounded domains, there have been very few studies of forced turbulence in bounded domains. In this study we present new experimental results from a continuously forced quasi 2D turbulent field. The experiments are performed in a square Perspex tank filled with water. The flow is made quasi 2D by a steady background rotation. The rotation rate of the tank has a small (<8 %) sinusoidal perturbation which leads to the periodic formation of eddies in the corners of the tank. When the oscillation period of the perturbation is greater than an eddy roll-up time-scale, dipole structures are observed to form. The dipoles can migrate away from the walls, and the interior of the tank is continually filled with vortexs. From experimental visualizations the length scale of the vortexs appears to be largely controlled by the initial formation mechanism and large scale structures are not observed to form at large times. Thus the experiments provide a simple way of cre- ating a continuously forced 2D turbulent field. The resulting structures are in contrast with most previous laboratory experiments on 2D turbulence which have investigated decaying turbulence and have observed the formations of large scale structure. In these experiments, decaying turbulence had been produced by a variety of methods such as the decaying turbulence in the wake of a comb of rods (Massen et al 1999), organiza- tion of vortices in thin conducting liquids (Cardoso et al 1994) or in rotating systems where there are sudden changes in angular rotation rate (Konijnenberg et al 1998). Results of dye visualizations, particle tracking experiments and a direct numerical simulation will be presented and discussed in terms of their oceanographic application. Bibliography Cardoso,O. Marteau, D. &Tabeling, P

  4. The BDX experiment at Jefferson Laboratory

    NASA Astrophysics Data System (ADS)

    Celentano, Andrea

    2015-06-01

    The existence of MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. The Beam Dump eXperiment (BDX) at Jefferson Laboratory aims to investigate this mass range. Dark matter particles will be detected trough scattering on a segmented, plastic scintillator detector placed downstream of the beam-dump at one of the high intensity JLab experimental Halls. The experiment will collect up to 1022 electrons-on-target (EOT) in a one-year period. For these conditions, BDX is sensitive to the DM-nucleon elastic scattering at the level of a thousand counts per year, and is only limited by cosmogenic backgrounds. The experiment is also sensitive to DM-electron elastic and inelastic scattering, at the level of 10 counts/year. The foreseen signal for these channels is an high-energy (> 100 MeV) electromagnetic shower, with almost no background. The experiment, has been presented in form of a Letter of Intent to the laboratory, receiving positive feedback, and is currently being designed.

  5. Effective Laboratory Experiences for Students with Disabilities: The Role of a Student Laboratory Assistant

    NASA Astrophysics Data System (ADS)

    Pence, Laura E.; Workman, Harry J.; Riecke, Pauline

    2003-03-01

    Two separate experiences with students whose disabilities significantly limited the number of laboratory activities they could accomplish independently has given us a general experience base for determining successful strategies for accommodating students facing these situatiuons. For a student who had substantially limited physical mobility and for a student who had no visual ability, employing a student laboratory assistant allowed the students with disabilities to have a productive and positive laboratory experience. One of the priorities in these situations should be to avoid depersonalizing the student with a disability. Interactions with the instructor and with other students should focus on the disabled student rather than the student laboratory assistant who may be carrying out specific tasks. One of the most crucial aspects of a successful project is the selection of a laboratory assistant who has excellent interpersonal skills and who will add his or her creativity to that of the student with a disability to meet unforeseen challenges. Other considerations are discussed, such as the importance of advance notification that a disabled student has enrolled in a course as well as factors that should contribute to choosing an optimum laboratory station for each situation.

  6. Laboratory and pilot-scale field experiments for application of iron oxide nanoparticle-loaded chitosan composites to phosphate removal from natural water.

    PubMed

    Kim, Jae-Hyun; Kim, Song-Bae; Lee, Sang-Hyup; Choi, Jae-Woo

    2018-03-01

    The aim of this study was to apply iron oxide nanoparticle-chitosan (ION-chitosan) composites to phosphate removal from natural water collected from the Seoho Stream in Suwon, Republic of Korea. Laboratory batch experiments showed that phosphate removal by the ION-chitosan composites was not sensitive to pH changes between pH values of 5.0 and 9.0. During six cycles of adsorption-desorption, the composites could be successfully regenerated with 5 mM NaOH solution and reused for phosphate removal. Laboratory fixed-bed column experiments (column height = 10 and 20 cm, inner diameter = 2.5 cm, flow rate = 8.18 and 16.36 mL/min) demonstrated that the composites could be successfully applied for phosphate removal under dynamic flow conditions. A pilot-scale field experiment was performed in a pilot plant, which was mainly composed of chemical reactor/dissolved air flotation and an adsorption tower, built nearby the Seoho Stream. The natural water was pumped from the Seoho Stream into the pilot plant, passed through the chemical reactor/dissolved air flotation process, and then introduced into the adsorption tower (height = 100 cm, inner diameter = 45 cm, flow rate = 7.05 ± 0.18 L/min) for phosphate removal via the composites (composite volume = 80 L, composite weight = 85.74 kg). During monitoring of the adsorption tower (33 days), the influent total phosphorus (T-P) concentration was in the range of 0.020-0.046 mgP/L, whereas the effluent T-P concentration was in the range of 0.010-0.028 mgP/L. The percent removal of T-P in the adsorption tower was 52.3% with a phosphate removal capacity of 0.059 mgP/g.

  7. Formulation and development of tablets based on Ludipress and scale-up from laboratory to production scale.

    PubMed

    Heinz, R; Wolf, H; Schuchmann, H; End, L; Kolter, K

    2000-05-01

    In spite of the wealth of experience available in the pharmaceutical industry, tablet formulations are still largely developed on an empirical basis, and the scale-up from laboratory to production is a time-consuming and costly process. Using Ludipress greatly simplifies formulation development and the manufacturing process because only the active ingredient Ludipress and a lubricant need to be mixed briefly before being compressed into tablets. The studies described here were designed to investigate the scale-up of Ludipress-based formulations from laboratory to production scale, and to predict changes in tablet properties due to changes in format, compaction pressure, and the use of different tablet presses. It was found that the tensile strength of tablets made of Ludipress increased linearly with compaction pressures up to 300 MPa. It was also independent of the geometry of the tablets (diameter, thickness, shape). It is therefore possible to give an equation with which the compaction pressure required to achieve a given hardness can be calculated for a given tablet form. The equation has to be modified slightly to convert from a single-punch press to a rotary tableting machine. Tablets produced in the rotary machine at the same pressure have a slightly higher tensile strength. The rate of increase in pressure, and therefore the throughput, has no effect on the tensile strength of Ludipress tablets. It is thought that a certain minimum dwell time is responsible for this difference. The production of tablets based on Ludipress can be scaled up from one rotary press to another without problem if the powder mixtures are prepared with the same mixing energy. The tensile strength curve determined for tablets made with Ludipress alone can also be applied to tablets with a small quantity (< 10%) of an active ingredient.

  8. Experimental methods for the simulation of supercritical CO2 injection at laboratory scale aimed to investigate capillary trapping

    NASA Astrophysics Data System (ADS)

    Trevisan, L.; Illangasekare, T. H.; Rodriguez, D.; Sakaki, T.; Cihan, A.; Birkholzer, J. T.; Zhou, Q.

    2011-12-01

    Geological storage of carbon dioxide in deep geologic formations is being considered as a technical option to reduce greenhouse gas loading to the atmosphere. The processes associated with the movement and stable trapping are complex in deep naturally heterogeneous formations. Three primary mechanisms contribute to trapping; capillary entrapment due to immobilization of the supercritical fluid CO2 within soil pores, liquid CO2 dissolving in the formation water and mineralization. Natural heterogeneity in the formation is expected to affect all three mechanisms. A research project is in progress with the primary goal to improve our understanding of capillary and dissolution trapping during injection and post-injection process, focusing on formation heterogeneity. It is expected that this improved knowledge will help to develop site characterization methods targeting on obtaining the most critical parameters that capture the heterogeneity to design strategies and schemes to maximize trapping. This research combines experiments at the laboratory scale with multiphase modeling to upscale relevant trapping processes to the field scale. This paper presents the results from a set of experiments that were conducted in an intermediate scale test tanks. Intermediate scale testing provides an attractive alternative to investigate these processes under controlled conditions in the laboratory. Conducting these types of experiments is highly challenging as methods have to be developed to extrapolate the data from experiments that are conducted under ambient laboratory conditions to high temperatures and pressures settings in deep geologic formations. We explored the use of a combination of surrogate fluids that have similar density, viscosity contrasts and analogous solubility and interfacial tension as supercritical CO2-brine in deep formations. The extrapolation approach involves the use of dimensionless numbers such as Capillary number (Ca) and the Bond number (Bo). A set of

  9. MODELING HEXAVALENT CHROMIUM REDUCTION IN GROUND- WATER IN FIELD-SCALE TRANSPORT AND LABORATORY BATCH EXPERIMENTS

    EPA Science Inventory

    A plausible and consistent model is developed to obtain a quantitative description of the gradual disappearance of hexavalent chromium (Cr(VI)) from groundwater in a small-scale field tracer test and in batch kinetic experiments using aquifer sediments under similar chemical cond...

  10. A Kinetic Experiment for the Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Palmer, Richard E.

    1986-01-01

    Discusses the use of specific reactions of metabolic pathways to make measurements in the laboratory. Describes an adaptation of an experiment used in undergraduate biochemistry laboratories involving the induction of an enzyme in E. coli, as well as its partial purification and characterization. (TW)

  11. Continuous microalgal cultivation in a laboratory-scale photobioreactor under seasonal day-night irradiation: experiments and simulation.

    PubMed

    Bertucco, Alberto; Beraldi, Mariaelena; Sforza, Eleonora

    2014-08-01

    In this work, the production of Scenedesmus obliquus in a continuous flat-plate laboratory-scale photobioreactor (PBR) under alternated day-night cycles was tested both experimentally and theoretically. Variation of light intensity according to the four seasons of the year were simulated experimentally by a tunable LED lamp, and effects on microalgal growth and productivity were measured to evaluate the conversion efficiency of light energy into biomass during the different seasons. These results were used to validate a mathematical model for algae growth that can be applied to simulate a large-scale production unit, carried out in a flat-plate PBR of similar geometry. The cellular concentration in the PBR was calculated in both steady-state and transient conditions, and the value of the maintenance kinetic term was correlated to experimental profiles. The relevance of this parameter was finally outlined.

  12. Raising environmental awareness through applied biochemistry laboratory experiments.

    PubMed

    Salman Ashraf, S

    2013-01-01

    Our environment is under constant pressure and threat from various sources of pollution. Science students, in particular chemistry students, must not only be made aware of these issues, but also be taught that chemistry (and science) can provide solutions to such real-life issues. To this end, a newly developed biochemistry laboratory experiment is described that guides students to learn about the applicability of peroxidase enzymes to degrade organic dyes (as model pollutants) in simulated waste water. In addition to showing how enzymes can potentially be used for waste water remediation, various factors than can affect enzyme-based reactions such as pH, temperature, concentration of substrates/enzymes, and denaturants can also be tested. This "applied biotechnology" experiment was successfully implemented in an undergraduate biochemistry laboratory course to enhance students' learning of environmental issues as well important biochemistry concepts. Student survey confirmed that this laboratory experiment was successful in achieving the objectives of raising environmental awareness in students and illustrating the usefulness of chemistry in solving real-life problems. This experiment can be easily adopted in an introductory biochemistry laboratory course and taught as an inquiry-guided exercise. © 2013 by The International Union of Biochemistry and Molecular Biology.

  13. The Subsurface Flow and Transport Laboratory: A New Department of Energy User's Facility for Intermediate-Scale Experimentation

    NASA Astrophysics Data System (ADS)

    Wietsma, T. W.; Oostrom, M.; Foster, N. S.

    2003-12-01

    Intermediate-scale experiments (ISEs) for flow and transport are a valuable tool for simulating subsurface features and conditions encountered in the field at government and private sites. ISEs offer the ability to study, under controlled laboratory conditions, complicated processes characteristic of mixed wastes and heterogeneous subsurface environments, in multiple dimensions and at different scales. ISEs may, therefore, result in major cost savings if employed prior to field studies. A distinct advantage of ISEs is that researchers can design physical and/or chemical heterogeneities in the porous media matrix that better approximate natural field conditions and therefore address research questions that contain the additional complexity of processes often encountered in the natural environment. A new Subsurface Flow and Transport Laboratory (SFTL) has been developed for ISE users in the Environmental Spectroscopy & Biogeochemistry Facility in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The SFTL offers a variety of columns and flow cells, a new state-of-the-art dual-energy gamma system, a fully automated saturation-pressure apparatus, and analytical equipment for sample processing. The new facility, including qualified staff, is available for scientists interested in collaboration on conducting high-quality flow and transport experiments, including contaminant remediation. Close linkages exist between the SFTL and numerical modelers to aid in experimental design and interpretation. This presentation will discuss the facility and outline the procedures required to submit a proposal to use this unique facility for research purposes. The W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility, is sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  14. Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey

    NASA Astrophysics Data System (ADS)

    Barrie, Simon C.; Bucat, Robert B.; Buntine, Mark A.; Burke da Silva, Karen; Crisp, Geoffrey T.; George, Adrian V.; Jamie, Ian M.; Kable, Scott H.; Lim, Kieran F.; Pyke, Simon M.; Read, Justin R.; Sharma, Manjula D.; Yeung, Alexandra

    2015-07-01

    Student experience surveys have become increasingly popular to probe various aspects of processes and outcomes in higher education, such as measuring student perceptions of the learning environment and identifying aspects that could be improved. This paper reports on a particular survey for evaluating individual experiments that has been developed over some 15 years as part of a large national Australian study pertaining to the area of undergraduate laboratories-Advancing Science by Enhancing Learning in the Laboratory. This paper reports on the development of the survey instrument and the evaluation of the survey using student responses to experiments from different institutions in Australia, New Zealand and the USA. A total of 3153 student responses have been analysed using factor analysis. Three factors, motivation, assessment and resources, have been identified as contributing to improved student attitudes to laboratory activities. A central focus of the survey is to provide feedback to practitioners to iteratively improve experiments. Implications for practitioners and researchers are also discussed.

  15. Why do lab-scale experiments ever resemble geological scale patterning?

    NASA Astrophysics Data System (ADS)

    Ferdowsi, Behrooz; Jones, Brandon C.; Stein, Jeremy L.; Shinbrot, Troy

    2017-11-01

    The Earth and other planets are abundant with curious and poorly understood surface patterns. Examples include sand dunes, periodic and aperiodic ridges and valleys, and networks of river and submarine channels. We make the minimalist proposition that the dominant mechanism governing these varied patterns is mass conservation: notwithstanding detailed particulars, the universal rule is mass conservation and there are only a finite number of surface patterns that can result from this process. To test this minimalist proposition, we perform experiments in a vertically vibrated bed of fine grains, and we show that every one of a wide variety of patterns seen in the laboratory is also seen in recorded geomorphologies. We explore a range of experimental driving frequencies and amplitudes, and we complement these experimental results with a non-local cellular automata model that reproduces the surface patterns seen using a minimalist approach that allows a free surface to deform subject to mass conservation and simple known forces such as gravity. These results suggest a common cause for the effectiveness of lab-scale models for geological scale patterning that otherwise ought to have no reasonable correspondence.

  16. Munition Burial by Local Scour and Sandwaves: large-scale laboratory experiments

    NASA Astrophysics Data System (ADS)

    Garcia, M. H.

    2017-12-01

    Our effort has been the direct observation and monitoring of the burial process of munitions induced by the combined action of waves, currents and pure oscillatory flows. The experimental conditions have made it possible to observe the burial process due to both local scour around model munitions as well as the passage of sandwaves. One experimental facility is the Large Oscillating Water Sediment Tunnel (LOWST) constructed with DURIP support. LOWST can reproduce field-like conditions near the sea bed. The second facility is a multipurpose wave-current flume which is 4 feet (1.20 m) deep, 6 feet (1.8 m) wide, and 161 feet (49.2 m) long. More than two hundred experiments were carried out in the wave-current flume. The main task completed within this effort has been the characterization of the burial process induced by local scour as well in the presence of dynamic sandwaves with superimposed ripples. It is found that the burial of a finite-length model munition (cylinder) is determined by local scour around the cylinder and by a more global process associated with the formation and evolution of sandwaves having superimposed ripples on them. Depending on the ratio of the amplitude of these features and the body's diameter (D), a model munition can progressively get partially or totally buried as such bedforms migrate. Analysis of the experimental data indicates that existing semi-empirical formulae for prediction of equilibrium-burial-depth, geometry of the scour hole around a cylinder, and time-scales developed for pipelines are not suitable for the case of a cylinder of finite length. Relative burial depth (Bd / D) is found to be mainly a function of two parameters. One is the Keulegan-Carpenter number, KC, and the Shields parameter, θ. Munition burial under either waves or combined flow, is influenced by two different processes. One is related to the local scour around the object, which takes place within the first few hundred minutes of flow action (i.e. short

  17. CSI flight experiment projects of the Naval Research Laboratory

    NASA Technical Reports Server (NTRS)

    Fisher, Shalom

    1993-01-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  18. CSI flight experiment projects of the Naval Research Laboratory

    NASA Astrophysics Data System (ADS)

    Fisher, Shalom

    1993-02-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  19. The Play Experience Scale: development and validation of a measure of play.

    PubMed

    Pavlas, Davin; Jentsch, Florian; Salas, Eduardo; Fiore, Stephen M; Sims, Valerie

    2012-04-01

    A measure of play experience in video games was developed through literature review and two empirical validation studies. Despite the considerable attention given to games in the behavioral sciences, play experience remains empirically underexamined. One reason for this gap is the absence of a scale that measures play experience. In Study 1, the initial Play Experience Scale (PES) was tested through an online validation that featured three different games (N = 203). In Study 2, a revised PES was assessed with a serious game in the laboratory (N = 77). Through principal component analysis of the Study 1 data, the initial 20-item PES was revised, resulting in the 16-item PES-16. Study 2 showed the PES-16 to be a robust instrument with the same patterns of correlations as in Study 1 via (a) internal consistency estimates, (b) correlations with established scales of motivation, (c) distributions of PES-16 scores in different game conditions, and (d) examination of the average variance extracted of the PES and the Intrinsic Motivation Scale. We suggest that the PES is appropriate for use in further validation studies. Additional examinations of the scale are required to determine its applicability to other contexts and its relationship with other constructs. The PES is potentially relevant to human factors undertakings involving video games, including basic research into play, games, and learning; prototype testing; and exploratory learning studies.

  20. Beyond-laboratory-scale prediction for channeling flows through subsurface rock fractures with heterogeneous aperture distributions revealed by laboratory evaluation

    NASA Astrophysics Data System (ADS)

    Ishibashi, Takuya; Watanabe, Noriaki; Hirano, Nobuo; Okamoto, Atsushi; Tsuchiya, Noriyoshi

    2015-01-01

    The present study evaluates aperture distributions and fluid flow characteristics for variously sized laboratory-scale granite fractures under confining stress. As a significant result of the laboratory investigation, the contact area in fracture plane was found to be virtually independent of scale. By combining this characteristic with the self-affine fractal nature of fracture surfaces, a novel method for predicting fracture aperture distributions beyond laboratory scale is developed. Validity of this method is revealed through reproduction of the results of laboratory investigation and the maximum aperture-fracture length relations, which are reported in the literature, for natural fractures. The present study finally predicts conceivable scale dependencies of fluid flows through joints (fractures without shear displacement) and faults (fractures with shear displacement). Both joint and fault aperture distributions are characterized by a scale-independent contact area, a scale-dependent geometric mean, and a scale-independent geometric standard deviation of aperture. The contact areas for joints and faults are approximately 60% and 40%. Changes in the geometric means of joint and fault apertures (µm), em, joint and em, fault, with fracture length (m), l, are approximated by em, joint = 1 × 102 l0.1 and em, fault = 1 × 103 l0.7, whereas the geometric standard deviations of both joint and fault apertures are approximately 3. Fluid flows through both joints and faults are characterized by formations of preferential flow paths (i.e., channeling flows) with scale-independent flow areas of approximately 10%, whereas the joint and fault permeabilities (m2), kjoint and kfault, are scale dependent and are approximated as kjoint = 1 × 10-12 l0.2 and kfault = 1 × 10-8 l1.1.

  1. Wiki Laboratory Notebooks: Supporting Student Learning in Collaborative Inquiry-Based Laboratory Experiments

    ERIC Educational Resources Information Center

    Lawrie, Gwendolyn Angela; Grøndahl, Lisbeth; Boman, Simon; Andrews, Trish

    2016-01-01

    Recent examples of high-impact teaching practices in the undergraduate chemistry laboratory that include course-based undergraduate research experiences and inquiry-based experiments require new approaches to assessing individual student learning outcomes. Instructors require tools and strategies that can provide them with insight into individual…

  2. Accretion shocks in the laboratory: Design of an experiment to study star formation

    DOE PAGES

    Young, Rachel P.; Kuranz, C. C.; Drake, R. P.; ...

    2017-02-13

    Here, we present the design of a laboratory-astrophysics experiment to study magnetospheric accretion relevant to young, pre-main-sequence stars. Spectra of young stars show evidence of hotspots created when streams of accreting material impact the surface of the star and create shocks. The structures that form during this process are poorly understood, as the surfaces of young stars cannot be spatially resolved. Our experiment would create a scaled "accretion shock" at a major (several kJ) laser facility. The experiment drives a plasma jet (the "accretion stream") into a solid block (the "stellar surface"), in the presence of a parallel magnetic fieldmore » analogous to the star's local field.« less

  3. Laboratory study of sonic booms and their scaling laws. [ballistic range simulation

    NASA Technical Reports Server (NTRS)

    Toong, T. Y.

    1974-01-01

    This program undertook to seek a basic understanding of non-linear effects associated with caustics, through laboratory simulation experiments of sonic booms in a ballistic range and a coordinated theoretical study of scaling laws. Two cases of superbooms or enhanced sonic booms at caustics have been studied. The first case, referred to as acceleration superbooms, is related to the enhanced sonic booms generated during the acceleration maneuvers of supersonic aircrafts. The second case, referred to as refraction superbooms, involves the superbooms that are generated as a result of atmospheric refraction. Important theoretical and experimental results are briefly reported.

  4. Stratospheric controlled perturbation experiment: a small-scale experiment to improve understanding of the risks of solar geoengineering.

    PubMed

    Dykema, John A; Keith, David W; Anderson, James G; Weisenstein, Debra

    2014-12-28

    Although solar radiation management (SRM) through stratospheric aerosol methods has the potential to mitigate impacts of climate change, our current knowledge of stratospheric processes suggests that these methods may entail significant risks. In addition to the risks associated with current knowledge, the possibility of 'unknown unknowns' exists that could significantly alter the risk assessment relative to our current understanding. While laboratory experimentation can improve the current state of knowledge and atmospheric models can assess large-scale climate response, they cannot capture possible unknown chemistry or represent the full range of interactive atmospheric chemical physics. Small-scale, in situ experimentation under well-regulated circumstances can begin to remove some of these uncertainties. This experiment-provisionally titled the stratospheric controlled perturbation experiment-is under development and will only proceed with transparent and predominantly governmental funding and independent risk assessment. We describe the scientific and technical foundation for performing, under external oversight, small-scale experiments to quantify the risks posed by SRM to activation of halogen species and subsequent erosion of stratospheric ozone. The paper's scope includes selection of the measurement platform, relevant aspects of stratospheric meteorology, operational considerations and instrument design and engineering.

  5. A Model for Designing Adaptive Laboratory Evolution Experiments.

    PubMed

    LaCroix, Ryan A; Palsson, Bernhard O; Feist, Adam M

    2017-04-15

    The occurrence of mutations is a cornerstone of the evolutionary theory of adaptation, capitalizing on the rare chance that a mutation confers a fitness benefit. Natural selection is increasingly being leveraged in laboratory settings for industrial and basic science applications. Despite increasing deployment, there are no standardized procedures available for designing and performing adaptive laboratory evolution (ALE) experiments. Thus, there is a need to optimize the experimental design, specifically for determining when to consider an experiment complete and for balancing outcomes with available resources (i.e., laboratory supplies, personnel, and time). To design and to better understand ALE experiments, a simulator, ALEsim, was developed, validated, and applied to the optimization of ALE experiments. The effects of various passage sizes were experimentally determined and subsequently evaluated with ALEsim, to explain differences in experimental outcomes. Furthermore, a beneficial mutation rate of 10 -6.9 to 10 -8.4 mutations per cell division was derived. A retrospective analysis of ALE experiments revealed that passage sizes typically employed in serial passage batch culture ALE experiments led to inefficient production and fixation of beneficial mutations. ALEsim and the results described here will aid in the design of ALE experiments to fit the exact needs of a project while taking into account the resources required and will lower the barriers to entry for this experimental technique. IMPORTANCE ALE is a widely used scientific technique to increase scientific understanding, as well as to create industrially relevant organisms. The manner in which ALE experiments are conducted is highly manual and uniform, with little optimization for efficiency. Such inefficiencies result in suboptimal experiments that can take multiple months to complete. With the availability of automation and computer simulations, we can now perform these experiments in an optimized

  6. Laboratory and theoretical models of planetary-scale instabilities and waves

    NASA Technical Reports Server (NTRS)

    Hart, John E.; Toomre, Juri

    1991-01-01

    Meteorologists and planetary astronomers interested in large-scale planetary and solar circulations recognize the importance of rotation and stratification in determining the character of these flows. The two outstanding problems of interest are: (1) the origins and nature of chaos in baroclinically unstable flows; and (2) the physical mechanisms responsible for high speed zonal winds and banding on the giant planets. The methods used to study these problems, and the insights gained, are useful in more general atmospheric and climate dynamic settings. Because the planetary curvature or beta-effect is crucial in the large scale nonlinear dynamics, the motions of rotating convecting liquids in spherical shells were studied using electrohydrodynamic polarization forces to generate radial gravity and centrally directed buoyancy forces in the laboratory. The Geophysical Fluid Flow Cell (GFFC) experiments performed on Spacelab 3 in 1985 were analyzed. The interpretation and extension of these results have led to the construction of efficient numerical models of rotating convection with an aim to understand the possible generation of zonal banding on Jupiter and the fate of banana cells in rapidly rotating convection as the heating is made strongly supercritical. Efforts to pose baroclinic wave experiments for future space missions using a modified version of the 1985 instrument have led us to develop theoretical and numerical models of baroclinic instability. Some surprising properties of both these models were discovered.

  7. Discovery & Interaction in Astro 101 Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Maloney, Frank Patrick; Maurone, Philip; DeWarf, Laurence E.

    2016-01-01

    The availability of low-cost, high-performance computing hardware and software has transformed the manner by which astronomical concepts can be re-discovered and explored in a laboratory that accompanies an astronomy course for arts students. We report on a strategy, begun in 1992, for allowing each student to understand fundamental scientific principles by interactively confronting astronomical and physical phenomena, through direct observation and by computer simulation. These experiments have evolved as :a) the quality and speed of the hardware has greatly increasedb) the corresponding hardware costs have decreasedc) the students have become computer and Internet literated) the importance of computationally and scientifically literate arts graduates in the workplace has increased.We present the current suite of laboratory experiments, and describe the nature, procedures, and goals in this two-semester laboratory for liberal arts majors at the Astro 101 university level.

  8. Circular dichroism spectroscopy: Enhancing a traditional undergraduate biochemistry laboratory experience.

    PubMed

    Lewis, Russell L; Seal, Erin L; Lorts, Aimee R; Stewart, Amanda L

    2017-11-01

    The undergraduate biochemistry laboratory curriculum is designed to provide students with experience in protein isolation and purification protocols as well as various data analysis techniques, which enhance the biochemistry lecture course and give students a broad range of tools upon which to build in graduate level laboratories or once they begin their careers. One of the most common biochemistry protein purification experiments is the isolation and characterization of cytochrome c. Students across the country purify cytochrome c, lysozyme, or some other well-known protein to learn these common purification techniques. What this series of experiments lacks is the use of sophisticated instrumentation that is rarely available to undergraduate students. To give students a broader background in biochemical spectroscopy techniques, a new circular dichroism (CD) laboratory experiment was introduced into the biochemistry laboratory curriculum. This CD experiment provides students with a means of conceptualizing the secondary structure of their purified protein, and assessments indicate that students' understanding of the technique increased significantly. Students conducted this experiment with ease and in a short time frame, so this laboratory is conducive to merging with other data analysis techniques within a single laboratory period. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):515-520, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  9. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for a laboratory experiment, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  10. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for laboratory experiments, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  11. Comparing field investigations with laboratory models to predict landfill leachate emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fellner, Johann; Doeberl, Gernot; Allgaier, Gerhard

    2009-06-15

    Investigations into laboratory reactors and landfills are used for simulating and predicting emissions from municipal solid waste landfills. We examined water flow and solute transport through the same waste body for different volumetric scales (laboratory experiment: 0.08 m{sup 3}, landfill: 80,000 m{sup 3}), and assessed the differences in water flow and leachate emissions of chloride, total organic carbon and Kjeldahl nitrogen. The results indicate that, due to preferential pathways, the flow of water in field-scale landfills is less uniform than in laboratory reactors. Based on tracer experiments, it can be discerned that in laboratory-scale experiments around 40% of pore watermore » participates in advective solute transport, whereas this fraction amounts to less than 0.2% in the investigated full-scale landfill. Consequences of the difference in water flow and moisture distribution are: (1) leachate emissions from full-scale landfills decrease faster than predicted by laboratory experiments, and (2) the stock of materials remaining in the landfill body, and thus the long-term emission potential, is likely to be underestimated by laboratory landfill simulations.« less

  12. The Zombie Instability: Using Numerical Simulation to Design a Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Pei, Suyang; Jiang, Chung-Hsiang; Hassanzadeh, Pedram; Marcus, Philip

    2014-11-01

    A new type of finite amplitude-instability has been found in numerical simulations of stratified, rotating, shear flows. The instability occurs via baroclinic critical layers that create linearly unstable vortex layers, which roll-up into vortices. Under the right conditions, those vortices can form a new generation of vortices, resulting in ``vortex self-replication'' that fills the fluid with vortices. Creating this instability in a laboratory would provide further evidence for the existence of the instability, which we first found in numerical simulations of protoplanetary disks. To design a laboratory experiment we need to know how the flow parameters-- shear, rotation and stratification, etc. affect the instability. To build an experiment economically, we also need to know how the finite-amplitude trigger of the instability scales with viscosity and the size of the domain. In this talk, we summarize our findings. We present a map, in terms of the experimentally controllable parameters, that shows where the instability occurs and whether the instability creates a few isolated transient vortices, a few long-lived vortices, or long-lived, self-replicating vortices that fill the entire flow.

  13. Development of Accessible Laboratory Experiments for Students with Visual Impairments

    ERIC Educational Resources Information Center

    Kroes, KC; Lefler, Daniel; Schmitt, Aaron; Supalo, Cary A.

    2016-01-01

    The hands-on laboratory experiments are frequently what spark students' interest in science. Students who are blind or have low vision (BLV) typically do not get the same experience while participating in hands-on activities due to accessibility. Over the course of approximately nine months, common chemistry laboratory experiments were adapted and…

  14. Effect of Aperture Field Variability, Flow Rate, and Ionic Strength on Colloid Transport in Single Fractures: Laboratory-Scale Experiments and Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Q.; Dickson, S.; Guo, Y.

    2007-12-01

    A good understanding of the physico-chemical processes (i.e., advection, dispersion, attachment/detachment, straining, sedimentation etc.) governing colloid transport in fractured media is imperative in order to develop appropriate bioremediation and/or bioaugmentation strategies for contaminated fractured aquifers, form management plans for groundwater resources to prevent pathogen contamination, and identify suitable radioactive waste disposal sites. However, research in this field is still in its infancy due to the complex heterogeneous nature of fractured media and the resulting difficulty in characterizing this media. The goal of this research is to investigate the effects of aperture field variability, flow rate and ionic strength on colloid transport processes in well characterized single fractures. A combination of laboratory-scale experiments, numerical simulations, and imaging techniques were employed to achieve this goal. Transparent replicas were cast from natural rock fractures, and a light transmission technique was employed to measure their aperture fields directly. The surface properties of the synthetic fractures were characterized by measuring the zeta-potential under different ionic strengths. A 33 (3 increased to the power of 3) factorial experiment was implemented to investigate the influence of aperture field variability, flow rate, and ionic strength on different colloid transport processes in the laboratory-scale fractures, specifically dispersion and attachment/detachment. A fluorescent stain technique was employed to photograph the colloid transport processes, and an analytical solution to the one-dimensional transport equation was fit to the colloid breakthrough curves to calculate the average transport velocity, dispersion coefficient, and attachment/detachment coefficient. The Reynolds equation was solved to obtain the flow field in the measured aperture fields, and the random walk particle tracking technique was employed to model the

  15. SCALE TSUNAMI Analysis of Critical Experiments for Validation of 233U Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Don; Rearden, Bradley T

    2009-01-01

    Oak Ridge National Laboratory (ORNL) staff used the SCALE TSUNAMI tools to provide a demonstration evaluation of critical experiments considered for use in validation of current and anticipated operations involving {sup 233}U at the Radiochemical Development Facility (RDF). This work was reported in ORNL/TM-2008/196 issued in January 2009. This paper presents the analysis of two representative safety analysis models provided by RDF staff.

  16. Implementing a laboratory automation system: experience of a large clinical laboratory.

    PubMed

    Lam, Choong Weng; Jacob, Edward

    2012-02-01

    Laboratories today face increasing pressure to automate their operations as they are challenged by a continuing increase in workload, need to reduce expenditure, and difficulties in recruitment of experienced technical staff. Was the implementation of a laboratory automation system (LAS) in the Clinical Biochemistry Laboratory at Singapore General Hospital successful? There is no simple answer, so the following topics comparing and contrasting pre- and post-LAS have been explored: turnaround time (TAT), laboratory errors, and staff satisfaction. The benefits and limitations of LAS from the laboratory experience were also reviewed. The mean TAT for both stat and routine samples decreased post-LAS (30% and 13.4%, respectively). In the 90th percentile TAT chart, a 29% reduction was seen in the processing of stat samples on the LAS. However, no significant difference in the 90th percentile TAT was observed with routine samples. It was surprising to note that laboratory errors increased post-LAS. Considerable effort was needed to overcome the initial difficulties associated with adjusting to a new system, new software, and new working procedures. Although some of the known advantages and limitations of LAS have been validated, the claimed benefits such as improvements in TAT, laboratory errors, and staff morale were not evident in the initial months.

  17. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 4: Programmatics

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Details are provided for scheduling, cost estimates, and support research and technology requirements for a space shuttle supported manned research laboratory to conduct selected communication and navigation experiments. A summary of the candidate program and its time phasing is included, as well as photographs of the 1/20 scale model of the shuttle supported Early Comm/Nav Research Lab showing the baseline, in-bay arrangement and the out-of-bay configuration.

  18. Geophysical monitoring of solute transport in dual-domain environments through laboratory experiments, field-scale solute tracer tests, and numerical simulation

    NASA Astrophysics Data System (ADS)

    Swanson, Ryan David

    The advection-dispersion equation (ADE) fails to describe non-Fickian solute transport breakthrough curves (BTCs) in saturated porous media in both laboratory and field experiments, necessitating the use of other models. The dual-domain mass transfer (DDMT) model partitions the total porosity into mobile and less-mobile domains with an exchange of mass between the two domains, and this model can reproduce better fits to BTCs in many systems than ADE-based models. However, direct experimental estimation of DDMT model parameters remains elusive and model parameters are often calculated a posteriori by an optimization procedure. Here, we investigate the use of geophysical tools (direct-current resistivity, nuclear magnetic resonance, and complex conductivity) to estimate these model parameters directly. We use two different samples of the zeolite clinoptilolite, a material shown to demonstrate solute mass transfer due to a significant internal porosity, and provide the first evidence that direct-current electrical methods can track solute movement into and out of a less-mobile pore space in controlled laboratory experiments. We quantify the effects of assuming single-rate DDMT for multirate mass transfer systems. We analyze pore structures using material characterization methods (mercury porosimetry, scanning electron microscopy, and X-ray computer tomography), and compare these observations to geophysical measurements. Nuclear magnetic resonance in conjunction with direct-current resistivity measurements can constrain mobile and less-mobile porosities, but complex conductivity may have little value in relation to mass transfer despite the hypothesis that mass transfer and complex conductivity lengths scales are related. Finally, we conduct a geoelectrical monitored tracer test at the Macrodispersion Experiment (MADE) site in Columbus, MS. We relate hydraulic and electrical conductivity measurements to generate a 3D hydraulic conductivity field, and compare to

  19. Laboratory Experiments on Meandering Meltwater Channels

    NASA Astrophysics Data System (ADS)

    Fernandez, R.; Berens, J.; Parker, G.; Stark, C. P.

    2017-12-01

    Meandering channels of all scales and flowing over a wide variety of media have common planform patterns. Although the analogy in planform suggests there is a common underlying framework, the constitutive relations driving planform evolution through vertical incision/deposition and lateral migration differ from medium to medium. The driving processes in alluvial and mixed bedrock-alluvial meandering channels have been studied substantially over the last decades. However, this is not the case for meandering channels in other media such as ice or soluble rock. Here we present results from experiments conducted at the Ven Te Chow Hydrosystems Laboratory of the University of Illinois at Urbana-Champaign on meltwater meandering channels. A rivulet is carved into an ice block and water is allowed to flow at a constant discharge. Planform evolution is analyzed with time lapse imaging and complemented with rubber molds of the channel once the experiment is over. These molds give us the full 3D structure of the meandering, including incisional overhang. Vertical incision rates are measured throughout the run by taking elevations along the channel, and these measurements are complemented with analysis from the molds. We show examples of meandering of intense amplitude with deep overhangs. Features resembling scroll bars document cyclically punctuated melting. We report on lateral migration rates, incision rates, sinuosity, channel depths, channel widths, reach averaged velocities, bend wavelengths and amplitudes and compare them to values reported in the literature for alluvial rivers.

  20. Modeling Laboratory Astrophysics Experiments using the CRASH code

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Drake, R. P.; Grosskopf, Michael; Bauerle, Matthew; Kruanz, Carolyn; Keiter, Paul; Malamud, Guy; Crash Team

    2013-10-01

    The understanding of high energy density systems can be advanced by laboratory astrophysics experiments. Computer simulations can assist in the design and analysis of these experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport and electron heat conduction. This poster/talk will demonstrate some of the experiments the CRASH code has helped design or analyze including: Radiative shocks experiments, Kelvin-Helmholtz experiments, Rayleigh-Taylor experiments, plasma sheet, and interacting jets experiments. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.

  1. Investigating Brittle Rock Failure and Associated Seismicity Using Laboratory Experiments and Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Zhao, Qi

    Rock failure process is a complex phenomenon that involves elastic and plastic deformation, microscopic cracking, macroscopic fracturing, and frictional slipping of fractures. Understanding this complex behaviour has been the focus of a significant amount of research. In this work, the combined finite-discrete element method (FDEM) was first employed to study (1) the influence of rock discontinuities on hydraulic fracturing and associated seismicity and (2) the influence of in-situ stress on seismic behaviour. Simulated seismic events were analyzed using post-processing tools including frequency-magnitude distribution (b-value), spatial fractal dimension (D-value), seismic rate, and fracture clustering. These simulations demonstrated that at the local scale, fractures tended to propagate following the rock mass discontinuities; while at reservoir scale, they developed in the direction parallel to the maximum in-situ stress. Moreover, seismic signature (i.e., b-value, D-value, and seismic rate) can help to distinguish different phases of the failure process. The FDEM modelling technique and developed analysis tools were then coupled with laboratory experiments to further investigate the different phases of the progressive rock failure process. Firstly, a uniaxial compression experiment, monitored using a time-lapse ultrasonic tomography method, was carried out and reproduced by the numerical model. Using this combination of technologies, the entire deformation and failure processes were studied at macroscopic and microscopic scales. The results not only illustrated the rock failure and seismic behaviours at different stress levels, but also suggested several precursory behaviours indicating the catastrophic failure of the rock. Secondly, rotary shear experiments were conducted using a newly developed rock physics experimental apparatus ERDmu-T) that was paired with X-ray micro-computed tomography (muCT). This combination of technologies has significant advantages

  2. Experience with specifications applicable to certification. [of photovoltaic modules for large-scale application

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1982-01-01

    The Jet Propulsion Laboratory has developed a number of photovoltaic test and measurement specifications to guide the development of modules toward the requirements of future large-scale applications. Experience with these specifications and the extensive module measurement and testing that has accompanied their use is examined. Conclusions are drawn relative to three aspects of product certification: performance measurement, endurance testing and safety evaluation.

  3. Fate of estrone in laboratory-scale constructed wetlands

    USDA-ARS?s Scientific Manuscript database

    A horizontal, subsurface, laboratory-scale constructed wetland (CW) consisting of four cells in series was used to determine the attenuation of the steroid hormone estrone (E1) present in animal wastewater. Liquid swine manure diluted 1:80 with farm pond water and dosed with [14C]E1 flowed through ...

  4. A Simple Photochemical Experiment for the Advanced Laboratory.

    ERIC Educational Resources Information Center

    Rosenfeld, Stuart M.

    1986-01-01

    Describes an experiment to provide students with: (1) an introduction to photochemical techniques and theory; (2) an experience with semimicro techniques; (3) an application of carbon-14 nuclear magnetic resonance; and (4) a laboratory with some qualities of a genuine experiment. These criteria are met in the photooxidation of 9,…

  5. Chlor-Alkali Industry: A Laboratory Scale Approach

    ERIC Educational Resources Information Center

    Sanchez-Sanchez, C. M.; Exposito, E.; Frias-Ferrer, A.; Gonzalez-Garaia, J.; Monthiel, V.; Aldaz, A.

    2004-01-01

    A laboratory experiment for students in the last year of degree program in chemical engineering, chemistry, or industrial chemistry is presented. It models the chlor-alkali process, one of the most important industrial applications of electrochemical technology and the second largest industrial consumer of electricity after aluminium industry.

  6. A Review of Multidimensional, Multifluid Intermediate-scale Experiments: Flow Behavior, Saturation Imaging, and Tracer Detection and Quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oostrom, Mart; Dane, J. H.; Wietsma, Thomas W.

    2007-08-01

    A review is presented of original multidimensional, intermediate-scale experiments involving non-aqueous phase liquid (NAPL) flow behavior, imaging, and detection/quantification with solute tracers. In a companion paper (Oostrom, M., J.H. Dane, and T.W. Wietsma. 2006. A review of multidimensional, multifluid intermediate-scale experiments: Nonaqueous phase dissolution and enhanced remediation. Vadose Zone Journal 5:570-598) experiments related to aqueous dissolution and enhanced remediation were discussed. The experiments investigating flow behavior include infiltration and redistribution experiments with both light and dense NAPLs in homogeneous and heterogeneous porous medium systems. The techniques used for NAPL saturation mapping for intermediate-scale experiments include photon-attenuation methods such as gammamore » and X-ray techniques, and photographic methods such as the light reflection, light transmission, and multispectral image analysis techniques. Solute tracer methods used for detection and quantification of NAPL in the subsurface are primarily limited to variations of techniques comparing the behavior of conservative and partitioning tracers. Besides a discussion of the experimental efforts, recommendations for future research at this laboratory scale are provided.« less

  7. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 2: Experiment selection

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The selection and definition of candidate experiments and the associated experiment instrumentation requirements are described. Information is presented that addresses the following study objectives: (1) determine specific research and technology needs in the comm/nav field through a survey of the scientific/technical community; (2) develop manned low earth orbit space screening criteria and compile lists of potential candidate experiments; (3) in Blue Book format, define and describe selected candidate experiments in sufficient detail to develop laboratory configuration designs and layouts; and (4) develop experiment time phasing criteria and recommend a payload for sortie can/early laboratory missions.

  8. An Upper Level Laboratory Course of Integrated Experiments

    ERIC Educational Resources Information Center

    Rose, T. L.; Seyse, R. J.

    1974-01-01

    Discusses the development of a one-year laboratory course in an effort to provide a link between traditional laboratories devoted to a single area of chemistry and the total involvement of a single narrow research project. Included are outlines of 32-hour lectures and 11 experiments performed in the integrated course. (CC)

  9. Computer Based Simulation of Laboratory Experiments.

    ERIC Educational Resources Information Center

    Edward, Norrie S.

    1997-01-01

    Examines computer based simulations of practical laboratory experiments in engineering. Discusses the aims and achievements of lab work (cognitive, process, psychomotor, and affective); types of simulations (model building and behavioral); and the strengths and weaknesses of simulations. Describes the development of a centrifugal pump simulation,…

  10. The Effect of Guided-Inquiry Laboratory Experiments on Science Education Students' Chemistry Laboratory Attitudes, Anxiety and Achievement

    ERIC Educational Resources Information Center

    Ural, Evrim

    2016-01-01

    The study aims to search the effect of guided inquiry laboratory experiments on students' attitudes towards chemistry laboratory, chemistry laboratory anxiety and their academic achievement in the laboratory. The study has been carried out with 37 third-year, undergraduate science education students, as a part of their Science Education Laboratory…

  11. A Laboratory Experiment on the Statistical Theory of Nuclear Reactions

    ERIC Educational Resources Information Center

    Loveland, Walter

    1971-01-01

    Describes an undergraduate laboratory experiment on the statistical theory of nuclear reactions. The experiment involves measuring the relative cross sections for formation of a nucleus in its meta stable excited state and its ground state by applying gamma-ray spectroscopy to an irradiated sample. Involves 3-4 hours of laboratory time plus…

  12. Impact decapitation from laboratory to basin scales

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Gault, D. E.

    1991-01-01

    Although vertical hypervelocity impacts result in the annihilation (melting/vaporization) of the projectile, oblique impacts (less than 15 deg) fundamentally change the partitioning of energy with fragments as large as 10 percent of the original projectile surviving. Laboratory experiments reveal that both ductile and brittle projectiles produce very similar results where limiting disruption depends on stresses proportional to the vertical velocity component. Failure of the projectile at laboratory impact velocities (6 km/s) is largely controlled by stresses established before the projectile has penetrated a significant distance into the target. The planetary surface record exhibits numerous examples of oblique impacts with evidence fir projectile failure and downrange sibling collisions.

  13. A teaching intervention for reading laboratory experiments in college-level introductory chemistry

    NASA Astrophysics Data System (ADS)

    Kirk, Maria Kristine

    The purpose of this study was to determine the effects that a pre-laboratory guide, conceptualized as a "scientific story grammar," has on college chemistry students' learning when they read an introductory chemistry laboratory manual and perform the experiments in the chemistry laboratory. The participants (N = 56) were students enrolled in four existing general chemistry laboratory sections taught by two instructors at a women's liberal arts college. The pre-laboratory guide consisted of eight questions about the experiment, including the purpose, chemical species, variables, chemical method, procedure, and hypothesis. The effects of the intervention were compared with those of the traditional pre-laboratory assignment for the eight chemistry experiments. Measures included quizzes, tests, chemistry achievement test, science process skills test, laboratory reports, laboratory average, and semester grade. The covariates were mathematical aptitude and prior knowledge of chemistry and science processes, on which the groups differed significantly. The study captured students' perceptions of their experience in general chemistry through a survey and interviews with eight students. The only significant differences in the treatment group's performance were in some subscores on lecture items and laboratory items on the quizzes. An apparent induction period was noted, in that significant measures occurred in mid-semester. Voluntary study with the pre-laboratory guide by control students precluded significant differences on measures given later in the semester. The groups' responses to the survey were similar. Significant instructor effects on three survey items were corroborated by the interviews. The researcher's students were more positive about their pre-laboratory tasks, enjoyed the laboratory sessions more, and were more confident about doing chemistry experiments than the laboratory instructor's groups due to differences in scaffolding by the instructors.

  14. Estimation of small-scale soil erosion in laboratory experiments with Structure from Motion photogrammetry

    NASA Astrophysics Data System (ADS)

    Balaguer-Puig, Matilde; Marqués-Mateu, Ángel; Lerma, José Luis; Ibáñez-Asensio, Sara

    2017-10-01

    erosion experiments conducted in the laboratory.

  15. Digital Data Acquisition System for experiments with segmented detectors at National Superconducting Cyclotron Laboratory

    NASA Astrophysics Data System (ADS)

    Starosta, K.; Vaman, C.; Miller, D.; Voss, P.; Bazin, D.; Glasmacher, T.; Crawford, H.; Mantica, P.; Tan, H.; Hennig, W.; Walby, M.; Fallu-Labruyere, A.; Harris, J.; Breus, D.; Grudberg, P.; Warburton, W. K.

    2009-11-01

    A 624-channel Digital Data Acquisition System capable of instrumenting the Segmented Germanium Array at National Superconducting Cyclotron Laboratory has been implemented using Pixie-16 Digital Gamma Finder modules by XIA LLC. The system opens an opportunity for determination of the first interaction position of a γ ray in a SeGA detector from implementation of γ-ray tracking. This will translate into a significantly improved determination of angle of emission, and in consequence much better Doppler corrections for experiments with fast beams. For stopped-beam experiments the system provides means for zero dead time measurements of rare decays, which occur on time scales of microseconds.

  16. The Tanzania experience: clinical laboratory testing harmonization and equipment standardization at different levels of a tiered health laboratory system.

    PubMed

    Massambu, Charles; Mwangi, Christina

    2009-06-01

    The rapid scale-up of the care and treatment programs in Tanzania during the preceding 4 years has greatly increased the demand for quality laboratory services for diagnosis of HIV and monitoring patients during antiretroviral therapy. Laboratory services were not in a position to cope with this demand owing to poor infrastructure, lack of human resources, erratic and/or lack of reagent supply and commodities, and slow manual technologies. With the limited human resources in the laboratory and the need for scaling up the care and treatment program, it became necessary to install automated equipment and train personnel for the increased volume of testing and new tests across all laboratory levels. With the numerous partners procuring equipment, the possibility of a multitude of equipment platforms with attendant challenges for procurement of reagents, maintenance of equipment, and quality assurance arose. Tanzania, therefore, had to harmonize laboratory tests and standardize laboratory equipment at different levels of the laboratory network. The process of harmonization of tests and standardization of equipment included assessment of laboratories, review of guidelines, development of a national laboratory operational plan, and stakeholder advocacy. This document outlines this process.

  17. Non-destructive evaluation of laboratory scale hydraulic fracturing using acoustic emission

    NASA Astrophysics Data System (ADS)

    Hampton, Jesse Clay

    The primary objective of this research is to develop techniques to characterize hydraulic fractures and fracturing processes using acoustic emission monitoring based on laboratory scale hydraulic fracturing experiments. Individual microcrack AE source characterization is performed to understand the failure mechanisms associated with small failures along pre-existing discontinuities and grain boundaries. Individual microcrack analysis methods include moment tensor inversion techniques to elucidate the mode of failure, crack slip and crack normal direction vectors, and relative volumetric deformation of an individual microcrack. Differentiation between individual microcrack analysis and AE cloud based techniques is studied in efforts to refine discrete fracture network (DFN) creation and regional damage quantification of densely fractured media. Regional damage estimations from combinations of individual microcrack analyses and AE cloud density plotting are used to investigate the usefulness of weighting cloud based AE analysis techniques with microcrack source data. Two granite types were used in several sample configurations including multi-block systems. Laboratory hydraulic fracturing was performed with sample sizes ranging from 15 x 15 x 25 cm3 to 30 x 30 x 25 cm 3 in both unconfined and true-triaxially confined stress states using different types of materials. Hydraulic fracture testing in rock block systems containing a large natural fracture was investigated in terms of AE response throughout fracture interactions. Investigations of differing scale analyses showed the usefulness of individual microcrack characterization as well as DFN and cloud based techniques. Individual microcrack characterization weighting cloud based techniques correlated well with post-test damage evaluations.

  18. Transformation of fault slip modes in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Martynov, Vasilii; Alexey, Ostapchuk; Markov, Vadim

    2017-04-01

    Slip mode of crust fault can vary because of many reasons. It's well known that fault structure, material of fault gouge, pore fluid et al. in many ways determines slip modes from creep and slow slip events to mega-earthquakes [1-3]. Therefore, the possibility of fault slip transformation due to external action is urgent question. There is popular and developing approach of fluid injection into central part of fault. The phenomenon of earthquakes induced due to pumping of water was investigated on small and large scales [4, 5]. In this work the laboratory experiments were conducted to study the evolution of the experimental fault slip when changing the properties of the interstitial fluid. The scheme of experiments is the classical slider-model set-up, in which the block under the shear force slips along the interface. In our experiments the plexiglas block 8x8x3 cm3 in size was put on the plexiglas base. The contact of the blocks was filled with a thin layer (about 3 mm thick) of a granular material. The normal load varied from 31 to 156 kPa. The shear load was applied through a spring with stiffness 60 kN/m, and the rate of spring deformation was 20 or 5 mcm/s. Two parameters were recorded during experiments: the shear force acting on the upper block (with an accuracy of 1 N) and its displacement relatively the base (with an accuracy of 0.1 μm). The gouge was composed of quartz sand (97.5%) and clay (2.5%). As a moisturizer were used different fluids with viscosity varying from 1 to 103 mPa x s. Different slip modes were simulated during slider-experiments. In our experiments slip mode is the act of instability manifested in an increase of slip velocity and a drop of shear stress acting on a movable block. The amplitude of a shear stress drop and the peak velocity of the upper block were chosen as the characteristics of the slip mode. In the laboratory experiments, slip events of one type can be achieved either as regularly recurring (regular mode) or as random

  19. Laboratory development and testing of spacecraft diagnostics

    NASA Astrophysics Data System (ADS)

    Amatucci, William; Tejero, Erik; Blackwell, Dave; Walker, Dave; Gatling, George; Enloe, Lon; Gillman, Eric

    2017-10-01

    The Naval Research Laboratory's Space Chamber experiment is a large-scale laboratory device dedicated to the creation of large-volume plasmas with parameters scaled to realistic space plasmas. Such devices make valuable contributions to the investigation of space plasma phenomena under controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. However, in addition to investigations such as plasma wave and instability studies, such devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this talk, we will describe how the laboratory simulation of space plasmas made this development path possible. Work sponsored by the US Naval Research Laboratory Base Program.

  20. Root traits predict decomposition across a landscape-scale grazing experiment

    PubMed Central

    Smith, Stuart W; Woodin, Sarah J; Pakeman, Robin J; Johnson, David; van der Wal, René

    2014-01-01

    Root litter is the dominant soil carbon and nutrient input in many ecosystems, yet few studies have considered how root decomposition is regulated at the landscape scale and how this is mediated by land-use management practices. Large herbivores can potentially influence below-ground decomposition through changes in soil microclimate (temperature and moisture) and changes in plant species composition (root traits). To investigate such herbivore-induced changes, we quantified annual root decomposition of upland grassland species in situ across a landscape-scale livestock grazing experiment, in a common-garden experiment and in laboratory microcosms evaluating the influence of key root traits on decomposition. Livestock grazing increased soil temperatures, but this did not affect root decomposition. Grazing had no effect on soil moisture, but wetter soils retarded root decomposition. Species-specific decomposition rates were similar across all grazing treatments, and species differences were maintained in the common-garden experiment, suggesting an overriding importance of litter type. Supporting this, in microcosms, roots with lower specific root area (m2 g−1) or those with higher phosphorus concentrations decomposed faster. Our results suggest that large herbivores alter below-ground carbon and nitrogen dynamics more through their effects on plant species composition and associated root traits than through effects on the soil microclimate. PMID:24841886

  1. Bioreactor Scalability: Laboratory-Scale Bioreactor Design Influences Performance, Ecology, and Community Physiology in Expanded Granular Sludge Bed Bioreactors

    PubMed Central

    Connelly, Stephanie; Shin, Seung G.; Dillon, Robert J.; Ijaz, Umer Z.; Quince, Christopher; Sloan, William T.; Collins, Gavin

    2017-01-01

    Studies investigating the feasibility of new, or improved, biotechnologies, such as wastewater treatment digesters, inevitably start with laboratory-scale trials. However, it is rarely determined whether laboratory-scale results reflect full-scale performance or microbial ecology. The Expanded Granular Sludge Bed (EGSB) bioreactor, which is a high-rate anaerobic digester configuration, was used as a model to address that knowledge gap in this study. Two laboratory-scale idealizations of the EGSB—a one-dimensional and a three- dimensional scale-down of a full-scale design—were built and operated in triplicate under near-identical conditions to a full-scale EGSB. The laboratory-scale bioreactors were seeded using biomass obtained from the full-scale bioreactor, and, spent water from the distillation of whisky from maize was applied as substrate at both scales. Over 70 days, bioreactor performance, microbial ecology, and microbial community physiology were monitored at various depths in the sludge-beds using 16S rRNA gene sequencing (V4 region), specific methanogenic activity (SMA) assays, and a range of physical and chemical monitoring methods. SMA assays indicated dominance of the hydrogenotrophic pathway at full-scale whilst a more balanced activity profile developed during the laboratory-scale trials. At each scale, Methanobacterium was the dominant methanogenic genus present. Bioreactor performance overall was better at laboratory-scale than full-scale. We observed that bioreactor design at laboratory-scale significantly influenced spatial distribution of microbial community physiology and taxonomy in the bioreactor sludge-bed, with 1-D bioreactor types promoting stratification of each. In the 1-D laboratory bioreactors, increased abundance of Firmicutes was associated with both granule position in the sludge bed and increased activity against acetate and ethanol as substrates. We further observed that stratification in the sludge-bed in 1-D laboratory-scale

  2. Laboratory reconnection experiments

    NASA Astrophysics Data System (ADS)

    Grulke, Olaf

    Laboratory experiments dedicated for the study of magnetic reconnection have been contributed considerably to a more detailed understanding of the involved processes. Their strength is to disentangle parameter dependencies, to diagnose in detail the plasma and field response, and to form an excellent testbed for the validation of numerical simulations. In the present paper recent results obtained from the new cylindrical reconnection experiment VINETA II are presented. The experimental setup allows to independently vary plasma parameters, reconnection drive strength/timescale, and current sheet amplitude. Current research objectives focus on two major scientific issues: Guide field effects on magnetic reconnection and the evolution of electromagnetic fluctuations. The superimposed homogeneous magnetic guide field has a strong influence on the spatiotemporal evolution of the current sheet, predominantly due to magnetic pitch angle effects, which leads to a strong elongation of the sheet along the separatrices and results in axial gradients of the reconnection rates. Within the current sheet, incoherent electromagnetic fluctuations are observed. Their magnetic signature is characterized by a broad spectrum somewhat centered around the lower-hybrid frequency and extremely short spatial correlation lengths being typically smaller than the local ion sound radius. The fluctuation amplitude correlates with the local current density and, thus, for low guide fields, displays also axial gradients. Despite the quantitatively different parameter regime and geometry the basic fluctuation properties are in good agreement with studies conducted at the MRX experiment (PPPL).

  3. Numerical Investigation of Earthquake Nucleation on a Laboratory-Scale Heterogeneous Fault with Rate-and-State Friction

    NASA Astrophysics Data System (ADS)

    Higgins, N.; Lapusta, N.

    2014-12-01

    Many large earthquakes on natural faults are preceded by smaller events, often termed foreshocks, that occur close in time and space to the larger event that follows. Understanding the origin of such events is important for understanding earthquake physics. Unique laboratory experiments of earthquake nucleation in a meter-scale slab of granite (McLaskey and Kilgore, 2013; McLaskey et al., 2014) demonstrate that sample-scale nucleation processes are also accompanied by much smaller seismic events. One potential explanation for these foreshocks is that they occur on small asperities - or bumps - on the fault interface, which may also be the locations of smaller critical nucleation size. We explore this possibility through 3D numerical simulations of a heterogeneous 2D fault embedded in a homogeneous elastic half-space, in an attempt to qualitatively reproduce the laboratory observations of foreshocks. In our model, the simulated fault interface is governed by rate-and-state friction with laboratory-relevant frictional properties, fault loading, and fault size. To create favorable locations for foreshocks, the fault surface heterogeneity is represented as patches of increased normal stress, decreased characteristic slip distance L, or both. Our simulation results indicate that one can create a rate-and-state model of the experimental observations. Models with a combination of higher normal stress and lower L at the patches are closest to matching the laboratory observations of foreshocks in moment magnitude, source size, and stress drop. In particular, we find that, when the local compression is increased, foreshocks can occur on patches that are smaller than theoretical critical nucleation size estimates. The additional inclusion of lower L for these patches helps to keep stress drops within the range observed in experiments, and is compatible with the asperity model of foreshock sources, since one would expect more compressed spots to be smoother (and hence have

  4. An analysis of high school students' perceptions and academic performance in laboratory experiences

    NASA Astrophysics Data System (ADS)

    Mirchin, Robert Douglas

    This research study is an investigation of student-laboratory (i.e., lab) learning based on students' perceptions of experiences using questionnaire data and evidence of their science-laboratory performance based on paper-and-pencil assessments using Maryland-mandated criteria, Montgomery County Public Schools (MCPS) criteria, and published laboratory questions. A 20-item questionnaire consisting of 18 Likert-scale items and 2 open-ended items that addressed what students liked most and least about lab was administered to students before labs were observed. A pre-test and post-test assessing laboratory achievement were administered before and after the laboratory experiences. The three labs observed were: soda distillation, stoichiometry, and separation of a mixture. Five significant results or correlations were found. For soda distillation, there were two positive correlations. Student preference for analyzing data was positively correlated with achievement on the data analysis dimension of the lab rubric. A student preference for using numbers and graphs to analyze data was positively correlated with achievement on the analysis dimension of the lab rubric. For the separating a mixture lab data the following pairs of correlations were significant. Student preference for doing chemistry labs where numbers and graphs were used to analyze data had a positive correlation with writing a correctly worded hypothesis. Student responses that lab experiences help them learn science positively correlated with achievement on the data dimension of the lab rubric. The only negative correlation found related to the first result where students' preference for computers was inversely correlated to their performance on analyzing data on their lab report. Other findings included the following: students like actual experimental work most and the write-up and analysis of a lab the least. It is recommended that lab science instruction be inquiry-based, hands-on, and that students be

  5. A comparison of relative toxicity rankings by some small-scale laboratory tests

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Small-scale laboratory tests for fire toxicity, suitable for use in the average laboratory hood, are needed for screening and ranking materials on the basis of relative toxicity. The performance of wool, cotton, and aromatic polyamide under several test procedures is presented.

  6. Plasma physics and environmental perturbation laboratory. [magnetospheric experiments from space shuttle

    NASA Technical Reports Server (NTRS)

    Vogl, J. L.

    1973-01-01

    Current work aimed at identifying the active magnetospheric experiments that can be performed from the Space Shuttle, and designing a laboratory to carry out these experiments is described. The laboratory, known as the PPEPL (Plasma Physics and Environmental Perturbation Laboratory) consists of 35-ft pallet of instruments connected to a 25-ft pressurized control module. The systems deployed from the pallet are two 50-m booms, two subsatellites, a high-power transmitter, a multipurpose accelerator, a set of deployable canisters, and a gimbaled instrument platform. Missions are planned to last seven days, during which two scientists will carry out experiments from within the pressurized module. The type of experiments to be performed are outlined.

  7. A Virtual Rock Physics Laboratory Through Visualized and Interactive Experiments

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Di Bonito, C.; Clark, A. C.

    2014-12-01

    As new scientific challenges demand more comprehensive and multidisciplinary investigations, laboratory experiments are not expected to become simpler and/or faster. Experimental investigation is an indispensable element of scientific inquiry and must play a central role in the way current and future generations of scientist make decisions. To turn the complexity of laboratory work (and that of rocks!) into dexterity, engagement, and expanded learning opportunities, we are building an interactive, virtual laboratory reproducing in form and function the Stanford Rock Physics Laboratory, at Stanford University. The objective is to combine lectures on laboratory techniques and an online repository of visualized experiments consisting of interactive, 3-D renderings of equipment used to measure properties central to the study of rock physics (e.g., how to saturate rocks, how to measure porosity, permeability, and elastic wave velocity). We use a game creation system together with 3-D computer graphics, and a narrative voice to guide the user through the different phases of the experimental protocol. The main advantage gained in employing computer graphics over video footage is that students can virtually open the instrument, single out its components, and assemble it. Most importantly, it helps describe the processes occurring within the rock. These latter cannot be tracked while simply recording the physical experiment, but computer animation can efficiently illustrate what happens inside rock samples (e.g., describing acoustic waves, and/or fluid flow through a porous rock under pressure within an opaque core-holder - Figure 1). The repository of visualized experiments will complement lectures on laboratory techniques and constitute an on-line course offered through the EdX platform at Stanford. This will provide a virtual laboratory for anyone, anywhere to facilitate teaching/learning of introductory laboratory classes in Geophysics and expand the number of courses

  8. Experiment definition phase shuttle laboratory LDRL-10.6 experiment

    NASA Technical Reports Server (NTRS)

    1975-01-01

    This report for the Experiment Definition Phase of the Shuttle Laboratory LDRL 10.6 Micrometer Experiment covers period 27 June through 26 September 1975. Activities during the fifth quarter included: (1) reevaluation of system obscuration ratio with a subsequent reduction of this ratio from 0.417 to 0.362, (2) completion of detail drawings for the 6X pre-expander, (3) completion of detail drawings for the nine mirrors that comprise pointing and tracking optomechanical subsystem, (4) continuation of detailing of mechanical portions of CMSS and modifications to accommodate new obscuration ratio, (5) qualitative operation of the optomechanical subsystem of the 10.6 um receiver achieved under experiment measurement task; receiver fully integrated and operation demonstrated over a 10 km experimental link, and (6) data collection task initiated to begin preparation of link analysis volumes.

  9. The testing effect for mediator final test cues and related final test cues in online and laboratory experiments.

    PubMed

    Coppens, Leonora C; Verkoeijen, Peter P J L; Bouwmeester, Samantha; Rikers, Remy M J P

    2016-05-31

    The testing effect is the finding that information that is retrieved during learning is more often correctly retrieved on a final test than information that is restudied. According to the semantic mediator hypothesis the testing effect arises because retrieval practice of cue-target pairs (mother-child) activates semantically related mediators (father) more than restudying. Hence, the mediator-target (father-child) association should be stronger for retrieved than restudied pairs. Indeed, Carpenter (2011) found a larger testing effect when participants received mediators (father) than when they received target-related words (birth) as final test cues. The present study started as an attempt to test an alternative account of Carpenter's results. However, it turned into a series of conceptual (Experiment 1) and direct (Experiment 2 and 3) replications conducted with online samples. The results of these online replications were compared with those of similar existing laboratory experiments through small-scale meta-analyses. The results showed that (1) the magnitude of the raw mediator testing effect advantage is comparable for online and laboratory experiments, (2) in both online and laboratory experiments the magnitude of the raw mediator testing effect advantage is smaller than in Carpenter's original experiment, and (3) the testing effect for related cues varies considerably between online experiments. The variability in the testing effect for related cues in online experiments could point toward moderators of the related cue short-term testing effect. The raw mediator testing effect advantage is smaller than in Carpenter's original experiment.

  10. Laboratory and pilot-scale bioremediation of pentaerythritol tetranitrate (PETN) contaminated soil.

    PubMed

    Zhuang, Li; Gui, Lai; Gillham, Robert W; Landis, Richard C

    2014-01-15

    PETN (pentaerythritol tetranitrate), a munitions constituent, is commonly encountered in munitions-contaminated soils, and pose a serious threat to aquatic organisms. This study investigated anaerobic remediation of PETN-contaminated soil at a site near Denver Colorado. Both granular iron and organic carbon amendments were used in both laboratory and pilot-scale tests. The laboratory results showed that, with various organic carbon amendments, PETN at initial concentrations of between 4500 and 5000mg/kg was effectively removed within 84 days. In the field trial, after a test period of 446 days, PETN mass removal of up to 53,071mg/kg of PETN (80%) was achieved with an organic carbon amendment (DARAMEND) of 4% by weight. In previous laboratory studies, granular iron has shown to be highly effective in degrading PETN. However, for both the laboratory and pilot-scale tests, granular iron was proven to be ineffective. This was a consequence of passivation of the iron surfaces caused by the very high concentrations of nitrate in the contaminated soil. This study indicated that low concentration of organic carbon was a key factor limiting bioremediation of PETN in the contaminated soil. Furthermore, the addition of organic carbon amendments such as the DARAMEND materials or brewers grain, proved to be highly effective in stimulating the biodegradation of PETN and could provide the basis for full-scale remediation of PETN-contaminated sites. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. An Undergraduate Laboratory Experiment in Bioinorganic Chemistry: Ligation States of Myoglobin

    ERIC Educational Resources Information Center

    Bailey, James A.

    2011-01-01

    Although there are numerous inorganic model systems that are readily presented as undergraduate laboratory experiments in bioinorganic chemistry, there are few examples that explore the inorganic chemistry of actual biological molecules. We present a laboratory experiment using the oxygen-binding protein myoglobin that can be easily incorporated…

  12. Laboratory simulation of space plasma phenomena*

    NASA Astrophysics Data System (ADS)

    Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.

    2017-12-01

    Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.

  13. Radiation from particles moving in small-scale magnetic fields created in solid-density laser-plasma laboratory experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keenan, Brett D., E-mail: bdkeenan@ku.edu; Medvedev, Mikhail V.

    2015-11-15

    Plasmas created by high-intensity lasers are often subject to the formation of kinetic-streaming instabilities, such as the Weibel instability, which lead to the spontaneous generation of high-amplitude, tangled magnetic fields. These fields typically exist on small spatial scales, i.e., “sub-Larmor scales.” Radiation from charged particles moving through small-scale electromagnetic (EM) turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation, and it carries valuable information on the statistical properties of the EM field structure and evolution. Consequently, this radiation from laser-produced plasmas may offer insight into the underlying electromagnetic turbulence. Here, we investigate the prospects for, and demonstrate themore » feasibility of, such direct radiative diagnostics for mildly relativistic, solid-density laser plasmas produced in lab experiments.« less

  14. Development of sensorial experiments and their implementation into undergraduate laboratories

    NASA Astrophysics Data System (ADS)

    Bromfield Lee, Deborah Christina

    "Visualization" of chemical phenomena often has been limited in the teaching laboratories to the sense of sight. We have developed chemistry experiments that rely on senses other than eyesight to investigate chemical concepts, make quantitative determinations, and familiarize students with chemical techniques traditionally designed using only eyesight. Multi-sensory learning can benefit all students by actively engaging them in learning through stimulation or an alternative way of experiencing a concept or ideas. Perception of events or concepts usually depends on the information from the different sensory systems combined. The use of multi-sensory learning can take advantage of all the senses to reinforce learning as each sense builds toward a more complete experience of scientific data. Research has shown that multi-sensory representations of scientific phenomena is a valuable tool for enhancing understanding of chemistry as well as displacing misconceptions through experience. Multi-sensory experiences have also been shown to enrich memory performance. There are few experiments published which utilize multiple senses in the teaching laboratory. The sensorial experiments chosen were conceptually similar to experiments currently performed in undergraduate laboratories; however students collect different types of data using multi-sensory observations. The experiments themselves were developed by using chemicals that would provide different sensory changes or capitalizing on sensory observations that were typically overlooked or ignored and obtain similar and precise results as in traditional experiments. Minimizing hazards and using safe practices are especially essential in these experiments as students utilize senses traditionally not allowed to be used in the laboratories. These sensorial experiments utilize typical equipment found in the teaching laboratories as well as inexpensive chemicals in order to aid implementation. All experiments are rigorously tested

  15. Redefining Authentic Research Experiences in Introductory Biology Laboratories and Barriers to Their Implementation

    PubMed Central

    Spell, Rachelle M.; Guinan, Judith A.; Miller, Kristen R.; Beck, Christopher W.

    2014-01-01

    Incorporating authentic research experiences in introductory biology laboratory classes would greatly expand the number of students exposed to the excitement of discovery and the rigor of the scientific process. However, the essential components of an authentic research experience and the barriers to their implementation in laboratory classes are poorly defined. To guide future reform efforts in this area, we conducted a national survey of biology faculty members to determine 1) their definitions of authentic research experiences in laboratory classes, 2) the extent of authentic research experiences currently experienced in their laboratory classes, and 3) the barriers that prevent incorporation of authentic research experiences into these classes. Strikingly, the definitions of authentic research experiences differ among faculty members and tend to emphasize either the scientific process or the discovery of previously unknown data. The low level of authentic research experiences in introductory biology labs suggests that more development and support is needed to increase undergraduate exposure to research experiences. Faculty members did not cite several barriers commonly assumed to impair pedagogical reform; however, their responses suggest that expanded support for development of research experiences in laboratory classes could address the most common barrier. PMID:24591509

  16. Redefining authentic research experiences in introductory biology laboratories and barriers to their implementation.

    PubMed

    Spell, Rachelle M; Guinan, Judith A; Miller, Kristen R; Beck, Christopher W

    2014-01-01

    Incorporating authentic research experiences in introductory biology laboratory classes would greatly expand the number of students exposed to the excitement of discovery and the rigor of the scientific process. However, the essential components of an authentic research experience and the barriers to their implementation in laboratory classes are poorly defined. To guide future reform efforts in this area, we conducted a national survey of biology faculty members to determine 1) their definitions of authentic research experiences in laboratory classes, 2) the extent of authentic research experiences currently experienced in their laboratory classes, and 3) the barriers that prevent incorporation of authentic research experiences into these classes. Strikingly, the definitions of authentic research experiences differ among faculty members and tend to emphasize either the scientific process or the discovery of previously unknown data. The low level of authentic research experiences in introductory biology labs suggests that more development and support is needed to increase undergraduate exposure to research experiences. Faculty members did not cite several barriers commonly assumed to impair pedagogical reform; however, their responses suggest that expanded support for development of research experiences in laboratory classes could address the most common barrier.

  17. Fluorescence quantum yield measurements of fluorescent proteins: a laboratory experiment for a biochemistry or molecular biophysics laboratory course.

    PubMed

    Wall, Kathryn P; Dillon, Rebecca; Knowles, Michelle K

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts absorbed photons into emitted photons and it is necessary to know for assessing what fluorescent protein is the most appropriate for a particular application. In this work, we have designed an upper-level, biochemistry laboratory experiment where students measure the fluorescence quantum yields of fluorescent proteins relative to a standard organic dye. Four fluorescent protein variants, enhanced cyan fluorescent protein (ECFP), enhanced green fluorescent protein (EGFP), mCitrine, and mCherry, were used, however the methods described are useful for the characterization of any fluorescent protein or could be expanded to fluorescent quantum yield measurements of organic dye molecules. The laboratory is designed as a guided inquiry project and takes two, 4 hr laboratory periods. During the first day students design the experiment by selecting the excitation wavelength, choosing the standard, and determining the concentration needed for the quantum yield experiment that takes place in the second laboratory period. Overall, this laboratory provides students with a guided inquiry learning experience and introduces concepts of fluorescence biophysics into a biochemistry laboratory curriculum. © 2014 The International Union of Biochemistry and Molecular Biology.

  18. Argumentation in the Chemistry Laboratory: Inquiry and Confirmatory Experiments

    NASA Astrophysics Data System (ADS)

    Katchevich, Dvora; Hofstein, Avi; Mamlok-Naaman, Rachel

    2013-02-01

    One of the goals of science education is to provide students with the ability to construct arguments—reasoning and thinking critically in a scientific context. Over the years, many studies have been conducted on constructing arguments in science teaching, but only few of them have dealt with studying argumentation in the laboratory. Our research focuses on the process in which students construct arguments in the chemistry laboratory while conducting various types of experiments. It was found that inquiry experiments have the potential to serve as an effective platform for formulating arguments, owing to the features of this learning environment. The discourse during inquiry-type experiments was found to be rich in arguments, whereas that during confirmatory-type experiments was found to be sparse in arguments. The arguments, which were developed during the discourse of an open inquiry experiment, focus on the hypothesis-building stage, analysis of the results, and drawing appropriate conclusions.

  19. Experiment definition phase shuttle laboratory. LDRL-10.6 experiment

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The work completed on the experiment definition phase of the shuttle laboratory LDRL 10.6 micrometers experiment from 27 September 1975 to 26 January 1976 was reported. This work included progress in the following areas: (1) optomechanical system: completion of detail drawings, completion of the beryllium subassembly, fabrication, checking, and weighing of approximately 95% of the detailed parts, dry film lubrication of the bearings and gears, and initiation of assembly of the gimbals; (2) optics: update of the detailed optical layout, receipt of nine mirrors and the pre-expander; (3) miscellaneous: delivery of draft material for the final report, completion of optical testing of the 10.6 micrometers receiver, and receipt, assembly, and checkout of NASA test console.

  20. Microscale Experiments in the Organic Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Williamson, Kenneth L.

    1991-01-01

    Discusses the advent of microscale experiments within undergraduate organic chemistry laboratories mainly resulting from environmental safety concerns involving waste disposal. Considers the cost savings in purchasing less reagents and chemicals, the typical glassware and apparatus, the reduced hazards from elimination of open flames, and other…

  1. Freeze Drying of Fruits and Vegetables: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Noble, Richard D.

    1979-01-01

    Describes a laboratory experiment for freeze-drying fruits and vegetables which aims to expose college students to the principles of drying and simultaneous heat and mass transfer. The experimental apparatus, procedure of the experiment, and data analysis are also included. (HM)

  2. Millikan's Oil-Drop Experiment as a Remotely Controlled Laboratory

    ERIC Educational Resources Information Center

    Eckert, Bodo; Grober, Sebastian; Vetter, Martin; Jodl, Hans-Jorg

    2012-01-01

    The Millikan oil-drop experiment, to determine the elementary electrical charge e and the quantization of charge Q = n [middle dot] e, is an essential experiment in physics teaching but it is hardly performed in class for several reasons. Therefore, we offer this experiment as a remotely controlled laboratory (RCL). We describe the interactivity…

  3. A laboratory scale model of abrupt ice-shelf disintegration

    NASA Astrophysics Data System (ADS)

    Macayeal, D. R.; Boghosian, A.; Styron, D. D.; Burton, J. C.; Amundson, J. M.; Cathles, L. M.; Abbot, D. S.

    2010-12-01

    An important mode of Earth’s disappearing cryosphere is the abrupt disintegration of ice shelves along the Peninsula of Antarctica. This disintegration process may be triggered by climate change, however the work needed to produce the spectacular, explosive results witnessed with the Larsen B and Wilkins ice-shelf events of the last decade comes from the large potential energy release associated with iceberg capsize and fragmentation. To gain further insight into the underlying exchanges of energy involved in massed iceberg movements, we have constructed a laboratory-scale model designed to explore the physical and hydrodynamic interactions between icebergs in a confined channel of water. The experimental apparatus consists of a 2-meter water tank that is 30 cm wide. Within the tank, we introduce fresh water and approximately 20-100 rectangular plastic ‘icebergs’ having the appropriate density contrast with water to mimic ice. The blocks are initially deployed in a tight pack, with all blocks arranged in a manner to represent the initial state of an integrated ice shelf or ice tongue. The system is allowed to evolve through time under the driving forces associated with iceberg hydrodynamics. Digitized videography is used to quantify how the system of plastic icebergs evolves between states of quiescence to states of mobilization. Initial experiments show that, after a single ‘agitator’ iceberg begins to capsize, an ‘avalanche’ of capsizing icebergs ensues which drives horizontal expansion of the massed icebergs across the water surface, and which stimulates other icebergs to capsize. A surprise initially evident in the experiments is the fact that the kinetic energy of the expanding mass of icebergs is only a small fraction of the net potential energy released by the rearrangement of mass via capsize. Approximately 85 - 90 % of the energy released by the system goes into water motion modes, including a pervasive, easily observed seich mode of the tank

  4. High Performance Liquid Chromatography Experiments to Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Kissinger, Peter T.; And Others

    1977-01-01

    Reviews the principles of liquid chromatography with electrochemical detection (LCEC), an analytical technique that incorporates the advantages of both liquids chromatography and electrochemistry. Also suggests laboratory experiments using this technique. (MLH)

  5. Simulations of Laboratory Astrophysics Experiments using the CRASH code

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Kuranz, Carolyn; Manuel, Mario; Keiter, Paul; Drake, R. P.

    2014-10-01

    Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster/talk will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, imploding bubbles, and interacting jet experiments. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via Grant DEFC52-08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0001840, and by the National Laser User Facility Program, Grant Number DE-NA0000850.

  6. Numerical modeling of seismic anomalies at impact craters on a laboratory scale

    NASA Astrophysics Data System (ADS)

    Wuennemann, K.; Grosse, C. U.; Hiermaier, S.; Gueldemeister, N.; Moser, D.; Durr, N.

    2011-12-01

    Almost all terrestrial impact craters exhibit a typical geophysical signature. The usually observed circular negative gravity anomaly and reduced seismic velocities in the vicinity of crater structures are presumably related to an approximately hemispherical zone underneath craters where rocks have experienced intense brittle plastic deformation and fracturing during formation (see Fig.1). In the framework of the "MEMIN" (multidisciplinary experimental and modeling impact crater research network) project we carried out hypervelocity cratering experiments at the Fraunhofer Institute for High-Speed Dynamics on a decimeter scale to study the spatiotemporal evolution of the damage zone using ultrasound, acoustic emission techniques, and numerical modeling of crater formation. 2.5-10 mm iron projectiles were shot at 2-5.5 km/s on dry and water-saturated sandstone targets. The target material was characterized before, during and after the impact with high spatial resolution acoustic techniques to detect the extent of the damage zone, the state of rocks therein and to record the growth of cracks. The ultrasound measurements are applied analog to seismic surveys at natural craters but used on a different - i.e. much smaller - scale. We compare the measured data with dynamic models of crater formation, shock, plastic and elastic wave propagation, and tensile/shear failure of rocks in the impacted sandstone blocks. The presence of porosity and pore water significantly affects the propagation of waves. In particular the crushing of pores due to shock compression has to be taken into account. We present preliminary results showing good agreement between experiments and numerical model. In a next step we plan to use the numerical models to upscale the results from laboratory dimensions to the scale of natural impact craters.

  7. Laboratory experiments from the toy store

    NASA Technical Reports Server (NTRS)

    Mcclelland, H. T.

    1992-01-01

    The following is a laboratory experiment designed to further understanding of materials science. This material could be taught to a typical student of materials science or manufacturing at the high school level or above. The objectives of this experiment are as follows: (1) to qualitatively demonstrate the concepts of elasticity, plasticity, and the strain rate and temperature dependence of the mechanical properties of engineering materials; (2) to qualitatively demonstrate the basics of extrusion including material flow, strain rate dependence of defects, lubrication effects, and the making of hollow shapes by extrusion (the two parts may be two separate experiments done at different times when the respective subjects are covered); and (3) to demonstrate the importance of qualitative observations and the amount of information which can be gathered without quantitative measurements.

  8. Agreed Discoveries: Students' Negotiations in a Virtual Laboratory Experiment

    ERIC Educational Resources Information Center

    Karlsson, Goran; Ivarsson, Jonas; Lindstrom, Berner

    2013-01-01

    This paper presents an analysis of the scientific reasoning of a dyad of secondary school students about the phenomenon of dissolution of gases in water as they work on this in a simulated laboratory experiment. A web-based virtual laboratory was developed to provide learners with the opportunity to examine the influence of physical factors on gas…

  9. Scaling up Effects in the Organic Laboratory

    ERIC Educational Resources Information Center

    Persson, Anna; Lindstrom, Ulf M.

    2004-01-01

    A simple and effective way of exposing chemistry students to some of the effects of scaling up an organic reaction is described. It gives the student an experience that may encounter in an industrial setting.

  10. Experiences and prospects of nuclear astrophysics in underground laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junker, M.

    Impressive progress has been made in the course the last decades in understanding astrophysical objects. Increasing precision of nuclear physics data has contributed significantly to this success, but now a better understanding of several important findings is frequently limited by uncertainties related to the available nuclear physics data. Consequently it is desirable to improve significantly the quality of these data. An important step towards higher precision is an excellent signal to background ratio of the data. Placing an accelerator facility inside an underground laboratory reducing the cosmic ray induced background by six orders of magnitude is a powerful method tomore » reach this goal, even though careful reduction of environmental and beam induced background must still be considered. Experience in the field of underground nuclear astrophysics has been gained since 20 years due to the pioneering work of the LUNA Collaboration (Laboratory for Underground Nuclear Astrophysics) operating inside the underground laboratories of the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. Based on the success of this work presently also several other projects for underground laboratories dedicated to nuclear astrophysics are being pursued worldwide. This contribution will give a survey of the past experience in underground nuclear astrophysics as well as an outlook on future developments.« less

  11. EPOS Multi-Scale Laboratory platform: a long-term reference tool for experimental Earth Sciences

    NASA Astrophysics Data System (ADS)

    Trippanera, Daniele; Tesei, Telemaco; Funiciello, Francesca; Sagnotti, Leonardo; Scarlato, Piergiorgio; Rosenau, Matthias; Elger, Kirsten; Ulbricht, Damian; Lange, Otto; Calignano, Elisa; Spiers, Chris; Drury, Martin; Willingshofer, Ernst; Winkler, Aldo

    2017-04-01

    With continuous progress on scientific research, a large amount of datasets has been and will be produced. The data access and sharing along with their storage and homogenization within a unique and coherent framework is a new challenge for the whole scientific community. This is particularly emphasized for geo-scientific laboratories, encompassing the most diverse Earth Science disciplines and typology of data. To this aim the "Multiscale Laboratories" Work Package (WP16), operating in the framework of the European Plate Observing System (EPOS), is developing a virtual platform of geo-scientific data and services for the worldwide community of laboratories. This long-term project aims at merging the top class multidisciplinary laboratories in Geoscience into a coherent and collaborative network, facilitating the standardization of virtual access to data, data products and software. This will help our community to evolve beyond the stage in which most of data produced by the different laboratories are available only within the related scholarly publications (often as print-version only) or they remain unpublished and inaccessible on local devices. The EPOS multi-scale laboratory platform will provide the possibility to easily share and discover data by means of open access, DOI-referenced, online data publication including long-term storage, managing and curation services and to set up a cohesive community of laboratories. The WP16 is starting with three pilot cases laboratories: (1) rock physics, (2) palaeomagnetic, and (3) analogue modelling. As a proof of concept, first analogue modelling datasets have been published via GFZ Data Services (http://doidb.wdc-terra.org/search/public/ui?&sort=updated+desc&q=epos). The datasets include rock analogue material properties (e.g. friction data, rheology data, SEM imagery), as well as supplementary figures, images and movies from experiments on tectonic processes. A metadata catalogue tailored to the specific communities

  12. Location for the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This diagram shows the planned locations of the Space Experiment Research and Processing Laboratory (SERPL) and the Space Station Commerce Park at Kennedy Space Center. The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for the planned 400- acre commerce park.

  13. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Researchers perform tests at Kennedy Space Center. New facilities for such research will be provided at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  14. Stratospheric controlled perturbation experiment (SCoPEx): overview, status, and results from related laboratory experiments

    NASA Astrophysics Data System (ADS)

    Keith, D.; Dykema, J. A.; Keutsch, F. N.

    2017-12-01

    Stratospheric Controlled Perturbation Experiment (SCoPEx), is a scientific experiment to advance understanding of stratospheric aerosols. It aims to make quantitative measurements of aerosol microphysics and atmospheric chemistry to improve large-scale models used to assess the risks and benefits of solar geoengineering. A perturbative experiment requires: (a) means to create a well-mixed, small perturbed volume, and (b) observation of time evolution of chemistry and aerosols in the volume. SCoPEx will used a propelled balloon gondola containing all instruments and drive system. The propeller wake forms a well-mixed volume (roughly 1 km long and 100 meters in diameter) that serves as an experimental `beaker' into which aerosols (e.g., < 1 kg of 0.3 µm radius CaCO3 particles) at can be injected; while, the propellers allow the gondola to move at speeds up to 3 m/sec relative to the local air mass driving the gondola back forth through the volume to measure properties of the perturbed air mass. This presentation will provide an overview of the experiment including (a) a systems engineering perspective from high-level scientific questions through instrument selection, mission design, and proposed operations and data analysis; (b) instruments, include current status of integration testing; (c) payload engineering including structure, power and mass budget, etc; (d) results from CFD simulation of propeller wake and simulation of chemistry and aerosol microphysics; and finally (e) proposed concept of operations and schedule. We will also provide an overview of the plans for governance including management of health safety and environmental risks, transparency, public engagement, and larger questions about governance of solar geoengineering experiments. Finally, we will briefly present results of laboratory experiments of the interaction of chemical such as ClONO2 and HCl on particle surfaces relevant for stratospheric solar geoengineering.

  15. Impact Crater Experiments for Introductory Physics and Astronomy Laboratories

    ERIC Educational Resources Information Center

    Claycomb, J. R.

    2009-01-01

    Activity-based collisional analysis is developed for introductory physics and astronomy laboratory experiments. Crushable floral foam is used to investigate the physics of projectiles undergoing completely inelastic collisions with a low-density solid forming impact craters. Simple drop experiments enable determination of the average acceleration,…

  16. Ultrafiltration of Protein Solutions: A Laboratory Experiment

    ERIC Educational Resources Information Center

    Pansare, Vikram J.; Tien, Daniel; Prud'homme, Robert K.

    2015-01-01

    Biology is playing an increasingly important role in the chemical engineering curriculum. We describe a set of experiments we have implemented in our Undergraduate Laboratory course giving students practical insights into membrane separation processes for protein processing. The goal of the lab is to optimize the purification and concentration of…

  17. Simulating flow in karst aquifers at laboratory and sub-regional scales using MODFLOW-CFP

    NASA Astrophysics Data System (ADS)

    Gallegos, Josue Jacob; Hu, Bill X.; Davis, Hal

    2013-12-01

    Groundwater flow in a well-developed karst aquifer dominantly occurs through bedding planes, fractures, conduits, and caves created by and/or enlarged by dissolution. Conventional groundwater modeling methods assume that groundwater flow is described by Darcian principles where primary porosity (i.e. matrix porosity) and laminar flow are dominant. However, in well-developed karst aquifers, the assumption of Darcian flow can be questionable. While Darcian flow generally occurs in the matrix portion of the karst aquifer, flow through conduits can be non-laminar where the relation between specific discharge and hydraulic gradient is non-linear. MODFLOW-CFP is a relatively new modeling program that accounts for non-laminar and laminar flow in pipes, like karst caves, within an aquifer. In this study, results from MODFLOW-CFP are compared to those from MODFLOW-2000/2005, a numerical code based on Darcy's law, to evaluate the accuracy that CFP can achieve when modeling flows in karst aquifers at laboratory and sub-regional (Woodville Karst Plain, Florida, USA) scales. In comparison with laboratory experiments, simulation results by MODFLOW-CFP are more accurate than MODFLOW 2005. At the sub-regional scale, MODFLOW-CFP was more accurate than MODFLOW-2000 for simulating field measurements of peak flow at one spring and total discharges at two springs for an observed storm event.

  18. Scale-Up of GRCop: From Laboratory to Rocket Engines

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2016-01-01

    GRCop is a high temperature, high thermal conductivity copper-based series of alloys designed primarily for use in regeneratively cooled rocket engine liners. It began with laboratory-level production of a few grams of ribbon produced by chill block melt spinning and has grown to commercial-scale production of large-scale rocket engine liners. Along the way, a variety of methods of consolidating and working the alloy were examined, a database of properties was developed and a variety of commercial and government applications were considered. This talk will briefly address the basic material properties used for selection of compositions to scale up, the methods used to go from simple ribbon to rocket engines, the need to develop a suitable database, and the issues related to getting the alloy into a rocket engine or other application.

  19. Modeling Laser-Driven Laboratory Astrophysics Experiments Using the CRASH Code

    NASA Astrophysics Data System (ADS)

    Grosskopf, Michael; Keiter, P.; Kuranz, C. C.; Malamud, G.; Trantham, M.; Drake, R.

    2013-06-01

    Laser-driven, laboratory astrophysics experiments can provide important insight into the physical processes relevant to astrophysical systems. The radiation hydrodynamics code developed by the Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan has been used to model experimental designs for high-energy-density laboratory astrophysics campaigns on OMEGA and other high-energy laser facilities. This code is an Eulerian, block-adaptive AMR hydrodynamics code with implicit multigroup radiation transport and electron heat conduction. The CRASH model has been used on many applications including: radiative shocks, Kelvin-Helmholtz and Rayleigh-Taylor experiments on the OMEGA laser; as well as laser-driven ablative plumes in experiments by the Astrophysical Collisionless Shocks Experiments with Lasers (ACSEL) collaboration. We report a series of results with the CRASH code in support of design work for upcoming high-energy-density physics experiments, as well as comparison between existing experimental data and simulation results. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.

  20. Exploring reconnection, current sheets, and dissipation in a laboratory MHD turbulence experiment

    NASA Astrophysics Data System (ADS)

    Schaffner, D. A.

    2015-12-01

    The Swarthmore Spheromak Experiment (SSX) can serve as a testbed for studying MHD turbulence in a controllable laboratory setting, and in particular, explore the phenomena of reconnection, current sheets and dissipation in MHD turbulence. Plasma with turbulently fluctuating magnetic and velocity fields can be generated using a plasma gun source and launched into a flux-conserving cylindrical tunnel. No background magnetic field is applied so internal fields are allowed to evolve dynamically. Point measurements of magnetic and velocity fluctuations yield broadband power-law spectra with a steepening breakpoint indicative of the onset of a dissipation scale. The frequency range at which this steepening occurs can be correlated to the ion inertial scale of the plasma, a length which is characteristic of the size of current sheets in MHD plasmas and suggests a connection to dissipation. Observation of non-Gaussian intermittent jumps in magnetic field magnitude and angle along with measurements of ion temperature bursts suggests the presence of current sheets embedded within the turbulent plasma, and possibly even active reconnection sites. Additionally, structure function analysis coupled with appeals to fractal scaling models support the hypothesis that current sheets are associated with dissipation in this system.

  1. A heating experiment in the argillites in the Meuse/Haute-Marne underground research laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wileveau, Yannick; Su, Kun; Ghoreychi, Mehdi

    2007-07-01

    A heating experiment named TER is being conducted with the objectives to identify the thermal properties, as well as to enhance the knowledge on THM processes in the Callovo-Oxfordian clay at the Meuse/Haute Marne Underground Research Laboratory (France). The in situ experiment has being switched on from early 2006. The heater, 3 m length, is designed to inject the power in the undisturbed zone at 6 m from the gallery wall. A heater packer is inflated in a metallic tubing. During the experiment, numerous sensors are emplaced in the surrounding rock and are experienced to monitor the evolution in temperature,more » pore-water pressure and deformation. The models and numerical codes applied should be validated by comparing the modeling results with the measurements. In parallel, some lab testing have been achieved in order to compare the results given with two different scales (cm up to meter scale). In this paper, we present a general description of the TER experiment with installation of the heater equipment and the surrounding instrumentation. Details of the in situ measurements of temperature, pore-pressure and strain evolutions are given for the several heating and cooling phases. The thermal conductivity and some predominant parameters in THM processes (as linear thermal expansion coefficient and permeability) will be discussed. (authors)« less

  2. Laboratory-scale experiments and numerical modeling of cosolvent flushing of multi-component NAPLs in saturated porous media

    NASA Astrophysics Data System (ADS)

    Agaoglu, Berken; Scheytt, Traugott; Copty, Nadim K.

    2012-10-01

    This study examines the mechanistic processes governing multiphase flow of a water-cosolvent-NAPL system in saturated porous media. Laboratory batch and column flushing experiments were conducted to determine the equilibrium properties of pure NAPL and synthetically prepared NAPL mixtures as well as NAPL recovery mechanisms for different water-ethanol contents. The effect of contact time was investigated by considering different steady and intermittent flow velocities. A modified version of multiphase flow simulator (UTCHEM) was used to compare the multiphase model simulations with the column experiment results. The effect of employing different grid geometries (1D, 2D, 3D), heterogeneity and different initial NAPL saturation configurations was also examined in the model. It is shown that the change in velocity affects the mass transfer rate between phases as well as the ultimate NAPL recovery percentage. The experiments with low flow rate flushing of pure NAPL and the 3D UTCHEM simulations gave similar effluent concentrations and NAPL cumulative recoveries. Model simulations over-estimated NAPL recovery for high specific discharges and rate-limited mass transfer, suggesting a constant mass transfer coefficient for the entire flushing experiment may not be valid. When multi-component NAPLs are present, the dissolution rate of individual organic compounds (namely, toluene and benzene) into the ethanol-water flushing solution is found not to correlate with their equilibrium solubility values.

  3. A Laboratory Experiment for Rapid Determination of the Stability of Vitamin C

    ERIC Educational Resources Information Center

    Adem, Seid M.; Lueng, Sam H.; Elles, Lisa M. Sharpe; Shaver, Lee Alan

    2016-01-01

    Experiments in laboratory manuals intended for general, organic, and biological (GOB) chemistry laboratories include few opportunities for students to engage in instrumental methods of analysis. Many of these students seek careers in modern health-related fields where experience in spectroscopic techniques would be beneficial. A simple, rapid,…

  4. Validation of laboratory-scale recycling test method of paper PSA label products

    Treesearch

    Carl Houtman; Karen Scallon; Richard Oldack

    2008-01-01

    Starting with test methods and a specification developed by the U.S. Postal Service (USPS) Environmentally Benign Pressure Sensitive Adhesive Postage Stamp Program, a laboratory-scale test method and a specification were developed and validated for pressure-sensitive adhesive labels, By comparing results from this new test method and pilot-scale tests, which have been...

  5. Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Leung, Sam H.; Angel, Stephen A.

    2004-01-01

    Some Wittig reactions can be carried out by grinding the reactants in a mortar with a pestle for about 20 minutes, as per investigation. A laboratory experiment involving a solvent-free Wittig reaction that can be completed in a three-hour sophomore organic chemistry laboratory class period, are developed.

  6. FLARE: a New User Facility for Studies of Magnetic Reconnection Through Simultaneous, in-situ Measurements on MHD Scales, Ion Scales and Electron Scales

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Goodman, A.; Prager, S.; Daughton, W. S.; Cutler, R.; Fox, W.; Hoffmann, F.; Kalish, M.; Kozub, T.; Jara-Almonte, J.; Myers, C. E.; Ren, Y.; Sloboda, P.; Yamada, M.; Yoo, J.; Bale, S. D.; Carter, T.; Dorfman, S. E.; Drake, J. F.; Egedal, J.; Sarff, J.; Wallace, J.

    2017-12-01

    The FLARE device (Facility for Laboratory Reconnection Experiments; flare.pppl.gov) is a new laboratory experiment under construction at Princeton for the studies of magnetic reconnection in the multiple X-line regimes directly relevant to space, solar, astrophysical, and fusion plasmas, as guided by a reconnection phase diagram [Ji & Daughton, (2011)]. The whole device has been successfully assembled with rough leak check completed. The first plasmas are expected in the fall to winter. The main diagnostic is an extensive set of magnetic probe arrays to cover multiple scales from local electron scales ( ˜2 mm), to intermediate ion scales ( ˜10 cm), and global MHD scales ( ˜1 m), simultaneously providing in-situ measurements over all these relevant scales. By using these laboratory data, not only the detailed spatial profiles around each reconnecting X-line are available for direct comparisons with spacecraft data, but also the global conditions and consequences of magnetic reconnection, which are often difficult to quantify in space, can be controlled or studied systematically. The planned procedures and example topics as a user facility will be discussed in detail.

  7. Experience of maintaining laboratory educational website's sustainability

    PubMed Central

    Dimenstein, Izak B.

    2016-01-01

    Laboratory methodology websites are specialized niche websites. The visibility of a niche website transforms it into an authority site on a particular “niche of knowledge.” This article presents some ways in which a laboratory methodology website can maintain its sustainability. The optimal composition of the website includes a basic content, a blog, and an ancillary part. This article discusses experimenting with the search engine optimization query results page. Strategic placement of keywords and even phrases, as well as fragmentation of the post's material, can improve the website's visibility to search engines. Hyperlinks open a chain reaction of additional links and draw attention to the previous posts. Publications in printed periodicals are a substantial part of a niche website presence on the Internet. Although this article explores a laboratory website on the basis of our hands-on expertise maintaining “Grossing Technology in Surgical Pathology” (www.grossing-technology.com) website with a high volume of traffic for more than a decade, the recommendations presented here for developing an authority website can be applied to other professional specialized websites. The authority websites visibility and sustainability are preconditions for aggregating them in a specialized educational laboratory portal. PMID:27688928

  8. Experience of maintaining laboratory educational website's sustainability.

    PubMed

    Dimenstein, Izak B

    2016-01-01

    Laboratory methodology websites are specialized niche websites. The visibility of a niche website transforms it into an authority site on a particular "niche of knowledge." This article presents some ways in which a laboratory methodology website can maintain its sustainability. The optimal composition of the website includes a basic content, a blog, and an ancillary part. This article discusses experimenting with the search engine optimization query results page. Strategic placement of keywords and even phrases, as well as fragmentation of the post's material, can improve the website's visibility to search engines. Hyperlinks open a chain reaction of additional links and draw attention to the previous posts. Publications in printed periodicals are a substantial part of a niche website presence on the Internet. Although this article explores a laboratory website on the basis of our hands-on expertise maintaining "Grossing Technology in Surgical Pathology" (www.grossing-technology.com) website with a high volume of traffic for more than a decade, the recommendations presented here for developing an authority website can be applied to other professional specialized websites. The authority websites visibility and sustainability are preconditions for aggregating them in a specialized educational laboratory portal.

  9. The Timing of an Experiment in the Laboratory Program Is Crucial for the Student Laboratory Experience: Acylation of Ferrocene as a Case Study

    ERIC Educational Resources Information Center

    Southam, Daniel C.; Shand, Bradley; Buntine, Mark A.; Kable, Scott H.; Read, Justin R.; Morris, Jonathan C.

    2013-01-01

    An assessment of the acylation of ferrocene laboratory exercise across three successive years resulted in a significant fluctuation in student perception of the experiment. This perception was measured by collecting student responses to an instrument immediately after the experiment, which includes Likert and open-ended responses from the student.…

  10. Biobased Organic Chemistry Laboratories as Sustainable Experiment Alternatives

    ERIC Educational Resources Information Center

    Silverman, Julian R.

    2016-01-01

    As nonrenewable resources deplete and educators seek relevant interdisciplinary content for organic chemistry instruction, biobased laboratory experiments present themselves as potential alternatives to petroleum-based transformations, which offer themselves as sustainable variations on important themes. Following the principles of green chemistry…

  11. Circular Dichroism Spectroscopy: Enhancing a Traditional Undergraduate Biochemistry Laboratory Experience

    ERIC Educational Resources Information Center

    Lewis, Russell L.; Seal, Erin L.; Lorts, Aimee R.; Stewart, Amanda L.

    2017-01-01

    The undergraduate biochemistry laboratory curriculum is designed to provide students with experience in protein isolation and purification protocols as well as various data analysis techniques, which enhance the biochemistry lecture course and give students a broad range of tools upon which to build in graduate level laboratories or once they…

  12. Real-Time Internet Mediated Laboratory Experiments for Distance Education Students.

    ERIC Educational Resources Information Center

    Lemckert, Charles; Florance, John

    2002-01-01

    Discusses the demand for distance education opportunities in engineering and science and considers delivery methods for theoretical content and for laboratory work. Explains the Real-Time Internet Mediated Laboratory Experiments (RTIMLE) that use the World Wide Web, and suggests that RTIMLE may be most appropriate for students who already have…

  13. Coupled numerical modeling of gas hydrates bearing sediments from laboratory to field-scale conditions

    NASA Astrophysics Data System (ADS)

    Sanchez, M. J.; Santamarina, C.; Gai, X., Sr.; Teymouri, M., Sr.

    2017-12-01

    Stability and behavior of Hydrate Bearing Sediments (HBS) are characterized by the metastable character of the gas hydrate structure which strongly depends on thermo-hydro-chemo-mechanical (THCM) actions. Hydrate formation, dissociation and methane production from hydrate bearing sediments are coupled THCM processes that involve, amongst other, exothermic formation and endothermic dissociation of hydrate and ice phases, mixed fluid flow and large changes in fluid pressure. The analysis of available data from past field and laboratory experiments, and the optimization of future field production studies require a formal and robust numerical framework able to capture the very complex behavior of this type of soil. A comprehensive fully coupled THCM formulation has been developed and implemented into a finite element code to tackle problems involving gas hydrates sediments. Special attention is paid to the geomechanical behavior of HBS, and particularly to their response upon hydrate dissociation under loading. The numerical framework has been validated against recent experiments conducted under controlled conditions in the laboratory that challenge the proposed approach and highlight the complex interaction among THCM processes in HBS. The performance of the models in these case studies is highly satisfactory. Finally, the numerical code is applied to analyze the behavior of gas hydrate soils under field-scale conditions exploring different features of material behavior under possible reservoir conditions.

  14. Laboratory meter-scale seismic monitoring of varying water levels in granular media

    NASA Astrophysics Data System (ADS)

    Pasquet, S.; Bodet, L.; Bergamo, P.; Guérin, R.; Martin, R.; Mourgues, R.; Tournat, V.

    2016-12-01

    Laboratory physical modelling and non-contacting ultrasonic techniques are frequently proposed to tackle theoretical and methodological issues related to geophysical prospecting. Following recent developments illustrating the ability of seismic methods to image spatial and/or temporal variations of water content in the vadose zone, we developed laboratory experiments aimed at testing the sensitivity of seismic measurements (i.e., pressure-wave travel times and surface-wave phase velocities) to water saturation variations. Ultrasonic techniques were used to simulate typical seismic acquisitions on small-scale controlled granular media presenting different water levels. Travel times and phase velocity measurements obtained at the dry state were validated with both theoretical models and numerical simulations and serve as reference datasets. The increasing water level clearly affects the recorded wave field in both its phase and amplitude, but the collected data cannot yet be inverted in the absence of a comprehensive theoretical model for such partially saturated and unconsolidated granular media. The differences in travel time and phase velocity observed between the dry and wet models show patterns that are interestingly coincident with the observed water level and depth of the capillary fringe, thus offering attractive perspectives for studying soil water content variations in the field.

  15. 75 FR 15675 - Professional Research Experience Program in Chemical Science and Technology Laboratory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... in physics, chemistry, mathematics, computer science, or engineering. Institutions should have a 4..., mathematics, computer science, or engineering with work experiences in laboratories or other settings...-0141-01] Professional Research Experience Program in Chemical Science and Technology Laboratory...

  16. Laboratory Scale Experiments and Numerical Modeling of Cosolvent flushing of NAPL Mixtures in Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Agaoglu, B.; Scheytt, T. J.; Copty, N. K.

    2011-12-01

    This study examines the mechanistic processes governing multiphase flow of a water-cosolvent-NAPL system in saturated porous media. Laboratory batch and column flushing experiments were conducted to determine the equilibrium properties of pure NAPL and synthetically prepared NAPL mixtures as well as NAPL recovery mechanisms for different water-ethanol contents. The effect of contact time was investigated by considering different steady and intermittent flow velocities. A modified version of multiphase flow simulator (UTCHEM) was used to compare the multiphase model simulations with the column experiment results. The effect of employing different grid geometries (1D, 2D, 3D), heterogeneity and different initial NAPL saturation configurations were also examined in the model. It is shown that the change in velocity affects the mass transfer rate between phases as well as the ultimate NAPL recovery percentage. The experiments with slow flow rate flushing of pure NAPL and the 3D UTCHEM simulations gave similar effluent concentrations and NAPL cumulative recoveries. The results were less consistent for fast non-equilibrium flow conditions. The dissolution process from the NAPL mixture into the water-ethanol flushing solutions was found to be more complex than dissolution expressions incorporated in the numerical model. The dissolution rate of individual organic compounds (namely Toluene and Benzene) from a mixture NAPL into the ethanol-water flushing solution is found not to correlate with their equilibrium solubility values.The implications of this controlled experimental and modeling study on field cosolvent remediation applications are discussed.

  17. Laboratory-scale experiments and numerical modeling of cosolvent flushing of multi-component NAPLs in saturated porous media.

    PubMed

    Agaoglu, Berken; Scheytt, Traugott; Copty, Nadim K

    2012-10-01

    This study examines the mechanistic processes governing multiphase flow of a water-cosolvent-NAPL system in saturated porous media. Laboratory batch and column flushing experiments were conducted to determine the equilibrium properties of pure NAPL and synthetically prepared NAPL mixtures as well as NAPL recovery mechanisms for different water-ethanol contents. The effect of contact time was investigated by considering different steady and intermittent flow velocities. A modified version of multiphase flow simulator (UTCHEM) was used to compare the multiphase model simulations with the column experiment results. The effect of employing different grid geometries (1D, 2D, 3D), heterogeneity and different initial NAPL saturation configurations was also examined in the model. It is shown that the change in velocity affects the mass transfer rate between phases as well as the ultimate NAPL recovery percentage. The experiments with low flow rate flushing of pure NAPL and the 3D UTCHEM simulations gave similar effluent concentrations and NAPL cumulative recoveries. Model simulations over-estimated NAPL recovery for high specific discharges and rate-limited mass transfer, suggesting a constant mass transfer coefficient for the entire flushing experiment may not be valid. When multi-component NAPLs are present, the dissolution rate of individual organic compounds (namely, toluene and benzene) into the ethanol-water flushing solution is found not to correlate with their equilibrium solubility values. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. CFD analysis of laboratory scale phase equilibrium cell operation

    NASA Astrophysics Data System (ADS)

    Jama, Mohamed Ali; Nikiforow, Kaj; Qureshi, Muhammad Saad; Alopaeus, Ville

    2017-10-01

    For the modeling of multiphase chemical reactors or separation processes, it is essential to predict accurately chemical equilibrium data, such as vapor-liquid or liquid-liquid equilibria [M. Šoóš et al., Chem. Eng. Process.: Process Intensif. 42(4), 273-284 (2003)]. The instruments used in these experiments are typically designed based on previous experiences, and their operation verified based on known equilibria of standard components. However, mass transfer limitations with different chemical systems may be very different, potentially falsifying the measured equilibrium compositions. In this work, computational fluid dynamics is utilized to design and analyze laboratory scale experimental gas-liquid equilibrium cell for the first time to augment the traditional analysis based on plug flow assumption. Two-phase dilutor cell, used for measuring limiting activity coefficients at infinite dilution, is used as a test case for the analysis. The Lagrangian discrete model is used to track each bubble and to study the residence time distribution of the carrier gas bubbles in the dilutor cell. This analysis is necessary to assess whether the gas leaving the cell is in equilibrium with the liquid, as required in traditional analysis of such apparatus. Mass transfer for six different bio-oil compounds is calculated to determine the approach equilibrium concentration. Also, residence times assuming plug flow and ideal mixing are used as reference cases to evaluate the influence of mixing on the approach to equilibrium in the dilutor. Results show that the model can be used to predict the dilutor operating conditions for which each of the studied gas-liquid systems reaches equilibrium.

  19. CFD analysis of laboratory scale phase equilibrium cell operation.

    PubMed

    Jama, Mohamed Ali; Nikiforow, Kaj; Qureshi, Muhammad Saad; Alopaeus, Ville

    2017-10-01

    For the modeling of multiphase chemical reactors or separation processes, it is essential to predict accurately chemical equilibrium data, such as vapor-liquid or liquid-liquid equilibria [M. Šoóš et al., Chem. Eng. Process Intensif. 42(4), 273-284 (2003)]. The instruments used in these experiments are typically designed based on previous experiences, and their operation verified based on known equilibria of standard components. However, mass transfer limitations with different chemical systems may be very different, potentially falsifying the measured equilibrium compositions. In this work, computational fluid dynamics is utilized to design and analyze laboratory scale experimental gas-liquid equilibrium cell for the first time to augment the traditional analysis based on plug flow assumption. Two-phase dilutor cell, used for measuring limiting activity coefficients at infinite dilution, is used as a test case for the analysis. The Lagrangian discrete model is used to track each bubble and to study the residence time distribution of the carrier gas bubbles in the dilutor cell. This analysis is necessary to assess whether the gas leaving the cell is in equilibrium with the liquid, as required in traditional analysis of such apparatus. Mass transfer for six different bio-oil compounds is calculated to determine the approach equilibrium concentration. Also, residence times assuming plug flow and ideal mixing are used as reference cases to evaluate the influence of mixing on the approach to equilibrium in the dilutor. Results show that the model can be used to predict the dilutor operating conditions for which each of the studied gas-liquid systems reaches equilibrium.

  20. The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment

    NASA Astrophysics Data System (ADS)

    Amann, Florian; Gischig, Valentin; Evans, Keith; Doetsch, Joseph; Jalali, Reza; Valley, Benoît; Krietsch, Hannes; Dutler, Nathan; Villiger, Linus; Brixel, Bernard; Klepikova, Maria; Kittilä, Anniina; Madonna, Claudio; Wiemer, Stefan; Saar, Martin O.; Loew, Simon; Driesner, Thomas; Maurer, Hansruedi; Giardini, Domenico

    2018-02-01

    In this contribution, we present a review of scientific research results that address seismo-hydromechanically coupled processes relevant for the development of a sustainable heat exchanger in low-permeability crystalline rock and introduce the design of the In situ Stimulation and Circulation (ISC) experiment at the Grimsel Test Site dedicated to studying such processes under controlled conditions. The review shows that research on reservoir stimulation for deep geothermal energy exploitation has been largely based on laboratory observations, large-scale projects and numerical models. Observations of full-scale reservoir stimulations have yielded important results. However, the limited access to the reservoir and limitations in the control on the experimental conditions during deep reservoir stimulations is insufficient to resolve the details of the hydromechanical processes that would enhance process understanding in a way that aids future stimulation design. Small-scale laboratory experiments provide fundamental insights into various processes relevant for enhanced geothermal energy, but suffer from (1) difficulties and uncertainties in upscaling the results to the field scale and (2) relatively homogeneous material and stress conditions that lead to an oversimplistic fracture flow and/or hydraulic fracture propagation behavior that is not representative of a heterogeneous reservoir. Thus, there is a need for intermediate-scale hydraulic stimulation experiments with high experimental control that bridge the various scales and for which access to the target rock mass with a comprehensive monitoring system is possible. The ISC experiment is designed to address open research questions in a naturally fractured and faulted crystalline rock mass at the Grimsel Test Site (Switzerland). Two hydraulic injection phases were executed to enhance the permeability of the rock mass. During the injection phases the rock mass deformation across fractures and within intact rock

  1. Potential for improved radiation thermometry measurement uncertainty through implementing a primary scale in an industrial laboratory

    NASA Astrophysics Data System (ADS)

    Willmott, Jon R.; Lowe, David; Broughton, Mick; White, Ben S.; Machin, Graham

    2016-09-01

    A primary temperature scale requires realising a unit in terms of its definition. For high temperature radiation thermometry in terms of the International Temperature Scale of 1990 this means extrapolating from the signal measured at the freezing temperature of gold, silver or copper using Planck’s radiation law. The difficulty in doing this means that primary scales above 1000 °C require specialist equipment and careful characterisation in order to achieve the extrapolation with sufficient accuracy. As such, maintenance of the scale at high temperatures is usually only practicable for National Metrology Institutes, and calibration laboratories have to rely on a scale calibrated against transfer standards. At lower temperatures it is practicable for an industrial calibration laboratory to have its own primary temperature scale, which reduces the number of steps between the primary scale and end user. Proposed changes to the SI that will introduce internationally accepted high temperature reference standards might make it practicable to have a primary high temperature scale in a calibration laboratory. In this study such a scale was established by calibrating radiation thermometers directly to high temperature reference standards. The possible reduction in uncertainty to an end user as a result of the reduced calibration chain was evaluated.

  2. Artist rendition of the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The preliminary design for the Space Experiment Research and Processing Laboratory (SERPL) at Kennedy Space Center is shown in this artist's rendition. The SERPL is a planned 100,000-square- foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  3. Zero-gravity cloud physics laboratory: Candidate experiments definition and preliminary concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, R. V.; Hollinden, A. B.

    1973-01-01

    The candidate definition studies on the zero-g cloud physics laboratory are covered. This laboratory will be an independent self-contained shuttle sortie payload. Several critical technology areas have been identified and studied to assure proper consideration in terms of engineering requirements for the final design. Areas include chambers, gas and particle generators, environmental controls, motion controls, change controls, observational techniques, and composition controls. This unique laboratory will allow studies to be performed without mechanical, aerodynamics, electrical, or other type techniques to support the object under study. This report also covers the candidate experiment definitions, chambers and experiment classes, laboratory concepts and plans, special supporting studies, early flight opportunities and payload planning data for overall shuttle payload requirements assessments.

  4. Large-scale laboratory observations of wave forces on a highway bridge superstructure.

    DOT National Transportation Integrated Search

    2011-10-01

    The experimental setup and data are presented for a laboratory experiment conducted to examine realistic wave forcing on a highway bridge : superstructure. The experiments measure wave conditions along with the resulting forces, pressures, and struct...

  5. Chemistry Graduate Teaching Assistants' Experiences in Academic Laboratories and Development of a Teaching Self-image

    NASA Astrophysics Data System (ADS)

    Gatlin, Todd Adam

    Graduate teaching assistants (GTAs) play a prominent role in chemistry laboratory instruction at research based universities. They teach almost all undergraduate chemistry laboratory courses. However, their role in laboratory instruction has often been overlooked in educational research. Interest in chemistry GTAs has been placed on training and their perceived expectations, but less attention has been paid to their experiences or their potential benefits from teaching. This work was designed to investigate GTAs' experiences in and benefits from laboratory instructional environments. This dissertation includes three related studies on GTAs' experiences teaching in general chemistry laboratories. Qualitative methods were used for each study. First, phenomenological analysis was used to explore GTAs' experiences in an expository laboratory program. Post-teaching interviews were the primary data source. GTAs experiences were described in three dimensions: doing, knowing, and transferring. Gains available to GTAs revolved around general teaching skills. However, no gains specifically related to scientific development were found in this laboratory format. Case-study methods were used to explore and illustrate ways GTAs develop a GTA self-image---the way they see themselves as instructors. Two general chemistry laboratory programs that represent two very different instructional frameworks were chosen for the context of this study. The first program used a cooperative project-based approach. The second program used weekly, verification-type activities. End of the semester interviews were collected and served as the primary data source. A follow-up case study of a new cohort of GTAs in the cooperative problem-based laboratory was undertaken to investigate changes in GTAs' self-images over the course of one semester. Pre-semester and post-semester interviews served as the primary data source. Findings suggest that GTAs' construction of their self-image is shaped through the

  6. ORNL Pre-test Analyses of A Large-scale Experiment in STYLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Paul T; Yin, Shengjun; Klasky, Hilda B

    Oak Ridge National Laboratory (ORNL) is conducting a series of numerical analyses to simulate a large scale mock-up experiment planned within the European Network for Structural Integrity for Lifetime Management non-RPV Components (STYLE). STYLE is a European cooperative effort to assess the structural integrity of (non-reactor pressure vessel) reactor coolant pressure boundary components relevant to ageing and life-time management and to integrate the knowledge created in the project into mainstream nuclear industry assessment codes. ORNL contributes work-in-kind support to STYLE Work Package 2 (Numerical Analysis/Advanced Tools) and Work Package 3 (Engineering Assessment Methods/LBB Analyses). This paper summarizes the current statusmore » of ORNL analyses of the STYLE Mock-Up3 large-scale experiment to simulate and evaluate crack growth in a cladded ferritic pipe. The analyses are being performed in two parts. In the first part, advanced fracture mechanics models are being developed and performed to evaluate several experiment designs taking into account the capabilities of the test facility while satisfying the test objectives. Then these advanced fracture mechanics models will be utilized to simulate the crack growth in the large scale mock-up test. For the second part, the recently developed ORNL SIAM-PFM open-source, cross-platform, probabilistic computational tool will be used to generate an alternative assessment for comparison with the advanced fracture mechanics model results. The SIAM-PFM probabilistic analysis of the Mock-Up3 experiment will utilize fracture modules that are installed into a general probabilistic framework. The probabilistic results of the Mock-Up3 experiment obtained from SIAM-PFM will be compared to those results generated using the deterministic 3D nonlinear finite-element modeling approach. The objective of the probabilistic analysis is to provide uncertainty bounds that will assist in assessing the more detailed 3D finite

  7. Green Fluorescent Protein-Focused Bioinformatics Laboratory Experiment Suitable for Undergraduates in Biochemistry Courses

    ERIC Educational Resources Information Center

    Rowe, Laura

    2017-01-01

    An introductory bioinformatics laboratory experiment focused on protein analysis has been developed that is suitable for undergraduate students in introductory biochemistry courses. The laboratory experiment is designed to be potentially used as a "stand-alone" activity in which students are introduced to basic bioinformatics tools and…

  8. Hydrologic control on the root growth of Salix cuttings at the laboratory scale

    NASA Astrophysics Data System (ADS)

    Bau', Valentina; Calliari, Baptiste; Perona, Paolo

    2017-04-01

    Riparian plant roots contribute to the ecosystem functioning and, to a certain extent, also directly affect fluvial morphodynamics, e.g. by influencing sediment transport via mechanical stabilization and trapping. There is much both scientific and engineering interest in understanding the complex interactions among riparian vegetation and river processes. For example, to investigate plant resilience to uprooting by flow, one should quantify the probability that riparian plants may be uprooted during specific flooding event. Laboratory flume experiments are of some help to this regard, but are often limited to use grass (e.g., Avena and Medicago sativa) as vegetation replicate with a number of limitations due to fundamental scaling problems. Hence, the use of small-scale real plants grown undisturbed in the actual sediment and within a reasonable time frame would be particularly helpful to obtain more realistic flume experiments. The aim of this work is to develop and tune an experimental technique to control the growth of the root vertical density distribution of small-scale Salix cuttings of different sizes and lengths. This is obtained by controlling the position of the saturated water table in the sedimentary bed according to the sediment size distribution and the cutting length. Measurements in the rhizosphere are performed by scanning and analysing the whole below-ground biomass by means of the root analysis software WinRhizo, from which root morphology statistics and the empirical vertical density distribution are obtained. The model of Tron et al. (2015) for the vertical density distribution of the below-ground biomass is used to show that experimental conditions that allow to develop the desired root density distribution can be fairly well predicted. This augments enormously the flexibility and the applicability of the proposed methodology in view of using such plants for novel flow erosion experiments. Tron, S., Perona, P., Gorla, L., Schwarz, M., Laio, F

  9. Experimenting with Spirituality: Analyzing The God Gene in a Nonmajors Laboratory Course

    PubMed Central

    2008-01-01

    References linking genes to complex human traits, such as personality type or disease susceptibility, abound in the news media and popular culture. In his book The God Gene: How Faith is Hardwired into Our Genes, Dean Hamer argues that a variation in the VMAT2 gene plays a role in one's openness to spiritual experiences. In a nonmajors class, we read and discussed The God Gene and conducted on a small scale an extension of the study it describes. Students used polymerase chain reaction to replicate a portion of their VMAT2 genes, and they analyzed three polymorphic sites in the sequence of these products. Associations between particular VMAT2 alleles and scores on a personality test were assessed by t test. The course, of which this project was a major part, stimulated student learning; scores on a test covering basic genetic concepts, causation/correlation, and laboratory methodology improved after completion of the course. In a survey, students reported the laboratory project aided their learning, especially in the areas of statistics and the linking of genes to behaviors. They reported high levels of engagement with the project, citing in particular its personal nature as motivating their interest. PMID:18316816

  10. Reactive barrier system for nitrate removal from mine effluents in northern Sweden: Laboratory experiments

    NASA Astrophysics Data System (ADS)

    Herbert, Roger

    2010-05-01

    Laboratory column experiments have been conducted to determine nitrate removal rates from mine effluents by denitrification, with the purpose of providing initial data for the construction of a pilot scale reactive barrier system at the Malmberget iron mine, Sweden. Experiments were conducted at several different flow rates at 5C, 10C and room temperature; annual mean temperatures at the Malmberget site lie close to 0C. Columns were filled with an organic substrate consisting of sawdust mixed with sewage sludge, the source of denitrifying bacteria, supported by oven-dried clay pellets. Apparent denitrification rates, calculated from inflow and outflow nitrate concentrations and column hydraulic residence time, ranged from 5 to 13 mg N/L/d, with the lowest rates corresponding to the 5C experiments. These rates are, however, limited to a certain degree by the low flow rate and the supply of electrons acceptors (i.e. nitrate) to denitrifying bacteria. Results from the column experiment have been used to construct a barrier system in Malmberget, Sweden. Trial runs with the pilot-scale barrier will be conducted during 2010, with the purpose of determining the performance of the barrier as mean air temperatures increase from below to above 0C and saturated flow commences in the barrier. The barrier system is constructed as a rectangular container with steel sheet walls (9m length in flow direction, 1.5m deep), and the flow rate will be adjusted to a hydraulic residence time of 1 day. The pilot-scale barrier system currently lies above ground, but a permanent barrier system would be installed below the ground surface so that the system can be maintained at positive temperatures throughout the year.

  11. Tyurin with TRAC experiment in Destiny laboratory

    NASA Image and Video Library

    2007-01-02

    ISS014-E-11047 (2 Jan. 2007) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer representing Russia's Federal Space Agency, works with the Test of Reaction and Adaptation Capabilities (TRAC) experiment in the Destiny laboratory of the International Space Station. The TRAC investigation will test the theory of brain adaptation during space flight by testing hand-eye coordination before, during and after the space flight.

  12. Scientific equity: experiments in laboratory education in Ghana.

    PubMed

    Osseo-Asare, Abena Dove

    2013-12-01

    During the 1960s the Ministry of Education in Ghana created a network of school laboratories to increase scientific literacy among young citizens. The ministry stocked these "Science Centres" with imported beakers, Bunsen burners, and books. Education officials and university scientists worked with teachers to create lesson plans on water, air, plants, and other topics. The government hoped that scientifically minded schoolchildren would be better prepared to staff the industries of the future. The adoption of laboratory norms represented a desire for scientific equity, rather than a condition of cultural mimicry. Interviews with ministry officials and science educators, alongside letters and reports, indicate how students and teachers appropriated the laboratories in the small West African nation. Their experiences in mobilizing resources from across Ghana and around the world provide a metaphor for ongoing efforts to establish access to scientific goods in Africa.

  13. Characterization of blocks impacts from acoustic emissions: insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Farin, Maxime; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud; Shapiro, Nikolaï

    2014-05-01

    Rockfalls, debris flows and rock avalanches represent a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and glass and over rock blocks. The elastic energy emitted by a single bouncing bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. We obtained simple scaling laws relating the impactor characteristics (size, height of fall, material,...) to the elastic energy and spectral content. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, accelerometers (1 Hz to 56 kHz) were used to record the signals in a wide frequency range. The experiments were also monitored optically using fast cameras. Eventually, we looked at what types of features in the signal are affected by individual impacts, rolling of beads or by the large scale geometry of the avalanche.

  14. Redefining Authentic Research Experiences in Introductory Biology Laboratories and Barriers to Their Implementation

    ERIC Educational Resources Information Center

    Spell, Rachelle M.; Guinan, Judith A.; Miller, Kristen R.; Beck, Christopher W.

    2014-01-01

    Incorporating authentic research experiences in introductory biology laboratory classes would greatly expand the number of students exposed to the excitement of discovery and the rigor of the scientific process. However, the essential components of an authentic research experience and the barriers to their implementation in laboratory classes are…

  15. Glycosidation of Methanol with Ribose: An Interdisciplinary Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Simon, Erin; Cook, Katie; Pritchard, Meredith R.; Stripe, Wayne; Bruch, Martha; Bendinskas, Kestutis

    2010-01-01

    This exercise provides students hands-on experience with the topics of glycosidation, hemiacetal and acetal formation, proton nuclear magnetic resonance ([superscript 1]H NMR) spectroscopy, and kinetic and thermodynamic product formation. In this laboratory experiment, the methyl acetal of ribose is synthesized, and the kinetic and thermodynamic…

  16. In Situ Techniques for Monitoring Electrochromism: An Advanced Laboratory Experiment

    ERIC Educational Resources Information Center

    Saricayir, Hakan; Uce, Musa; Koca, Atif

    2010-01-01

    This experiment employs current technology to enhance and extend existing lab content. The basic principles of spectroscopic and electroanalytical techniques and their use in determining material properties are covered in some detail in many undergraduate chemistry programs. However, there are limited examples of laboratory experiments with in…

  17. Women's Experiences in the Engineering Laboratory in Japan

    ERIC Educational Resources Information Center

    Hosaka, Masako

    2014-01-01

    This qualitative study aims to examine Japanese women undergraduate engineering students' experiences of interacting with departmental peers of the same year in the laboratory setting by using interview data of 32 final-year students at two modestly selective national universities in Japan. Expectation state theory that explains unequal…

  18. Feasibility study of a zero-gravity (orbital) atmospheric cloud physics experiments laboratory

    NASA Technical Reports Server (NTRS)

    Hollinden, A. B.; Eaton, L. R.

    1972-01-01

    A feasibility and concepts study for a zero-gravity (orbital) atmospheric cloud physics experiment laboratory is discussed. The primary objective was to define a set of cloud physics experiments which will benefit from the near zero-gravity environment of an orbiting spacecraft, identify merits of this environment relative to those of groundbased laboratory facilities, and identify conceptual approaches for the accomplishment of the experiments in an orbiting spacecraft. Solicitation, classification and review of cloud physics experiments for which the advantages of a near zero-gravity environment are evident are described. Identification of experiments for potential early flight opportunities is provided. Several significant accomplishments achieved during the course of this study are presented.

  19. Chemical Remediation of Nickel(II) Waste: A Laboratory Experiment for General Chemistry Students

    ERIC Educational Resources Information Center

    Corcoran, K. Blake; Rood, Brian E.; Trogden, Bridget G.

    2011-01-01

    This project involved developing a method to remediate large quantities of aqueous waste from a general chemistry laboratory experiment. Aqueous Ni(II) waste from a general chemistry laboratory experiment was converted into solid nickel hydroxide hydrate with a substantial decrease in waste volume. The remediation method was developed for a…

  20. Stratospheric controlled perturbation experiment: a small-scale experiment to improve understanding of the risks of solar geoengineering

    PubMed Central

    Dykema, John A.; Keith, David W.; Anderson, James G.; Weisenstein, Debra

    2014-01-01

    Although solar radiation management (SRM) through stratospheric aerosol methods has the potential to mitigate impacts of climate change, our current knowledge of stratospheric processes suggests that these methods may entail significant risks. In addition to the risks associated with current knowledge, the possibility of ‘unknown unknowns’ exists that could significantly alter the risk assessment relative to our current understanding. While laboratory experimentation can improve the current state of knowledge and atmospheric models can assess large-scale climate response, they cannot capture possible unknown chemistry or represent the full range of interactive atmospheric chemical physics. Small-scale, in situ experimentation under well-regulated circumstances can begin to remove some of these uncertainties. This experiment—provisionally titled the stratospheric controlled perturbation experiment—is under development and will only proceed with transparent and predominantly governmental funding and independent risk assessment. We describe the scientific and technical foundation for performing, under external oversight, small-scale experiments to quantify the risks posed by SRM to activation of halogen species and subsequent erosion of stratospheric ozone. The paper's scope includes selection of the measurement platform, relevant aspects of stratospheric meteorology, operational considerations and instrument design and engineering. PMID:25404681

  1. Solar Cells in the School Physics Laboratory.

    ERIC Educational Resources Information Center

    Mikulski, Kazimeirz

    1996-01-01

    Discusses the goals of experiments which show examples of the use of solar energy on a scale suitable for a school laboratory. Highlights the history of discoveries and developments in photoelectricity. Presents investigations and experiments, that can be performed by students. (JRH)

  2. Computer Simulation of Laboratory Experiments: An Unrealized Potential.

    ERIC Educational Resources Information Center

    Magin, D. J.; Reizes, J. A.

    1990-01-01

    Discussion of the use of computer simulation for laboratory experiments in undergraduate engineering education focuses on work at the University of New South Wales in the instructional design and software development of a package simulating a heat exchange device. The importance of integrating theory, design, and experimentation is also discussed.…

  3. Accreditation experience of radioisotope metrology laboratory of Argentina.

    PubMed

    Iglicki, A; Milá, M I; Furnari, J C; Arenillas, P; Cerutti, G; Carballido, M; Guillén, V; Araya, X; Bianchini, R

    2006-01-01

    This work presents the experience developed by the Radioisotope Metrology Laboratory (LMR), of the Argentine National Atomic Energy Commission (CNEA), as result of the accreditation process of the Quality System by ISO 17025 Standard. Considering the LMR as a calibration laboratory, services of secondary activity determinations and calibration of activimeters used in Nuclear Medicine were accredited. A peer review of the (alpha/beta)-gamma coincidence system was also carried out. This work shows in detail the structure of the quality system, the results of the accrediting audit and gives the number of non-conformities detected and of observations made which have all been resolved.

  4. Laboratory Experiments of Sand Ripples with Bimodal Size Distributions Under Asymmetric Oscillatory Flows

    NASA Astrophysics Data System (ADS)

    Calantoni, J.; Landry, B. J.

    2010-12-01

    The dynamics of sand ripples are vital to understanding numerous coastal processes such as sediment transport, wave attenuation, boundary layer development, and seafloor acoustic properties. Though significant laboratory research has been conducted to elucidate oscillatory flow morphodynamics under various constant and transient forcing conditions, the majority of the previous experiments were conducted only for beds with unimodal size distributions of sediment. Recent oscillatory flow experiments as well as past laboratory observations in uniform flows suggest that the presence of heterogeneous size sand compositions may significantly impact ripple morphology, resulting in a variety of observable effects (e.g., sediment sorting, bed armoring, and altered transport rates). Experimental work was conducted in a small oscillatory flow tunnel at the Sediment Dynamics Laboratory at the Naval Research Laboratory, Stennis Space Center. Three different monochromatic oscillatory forcings having velocity asymmetry were used to study sand ripple dynamics over five bimodal and two unimodal sediment beds. The seven different mixtures were composed using two unimodal sands of different colors (blue/white) and median grain diameters (d=0.31 mm / d=0.65 mm) combined into various mixtures by mass (i.e., 0/100; 10/90; 25/75; 50/50; 75/25; 90/10; and 100/0 which denotes mass percentage of blue/white sand, respectively, within each mixture). High-definition video of the sediment bed profile was acquired in conjunction with sediment trap measurements to resolve differences in ripple geometries, migration and evolution rates due to the different sediment mixtures and flow conditions. Observational findings clearly illustrate sediment stratification within ripple crests and the depth of the active mixing layer in addition to supporting sediment sorting in previous research on symmetric oscillatory flows in which the larger grains collect on top of ripple crests and smaller grains in the

  5. Developing Large Scale Explosively Driven Flyer Experiments on Sand

    NASA Astrophysics Data System (ADS)

    Rehagen, Thomas; Kraus, Richard

    2017-06-01

    Measurements of the dynamic behavior of granular materials are of great importance to a variety of scientific and engineering applications, including planetary science, seismology, and construction and destruction. In addition, high quality data are needed to enhance our understanding of granular physics and improve the computational models used to simulate related physical processes. However, since there is a non-negligible grain size associated with these materials, experiments must be of a relatively large scale in order to capture the continuum response of the material and reduce errors associated with the finite grain size. We will present designs for explosively driven flyer experiments to make high accuracy measurements of the Hugoniot of sand (with a grain size of hundreds of microns). To achieve an accuracy of better than a few percent in density, we are developing a platform to measure the Hugoniot of samples several centimeters in thickness. We will present the target designs as well as coupled designs for the explosively launched flyer system. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  6. Ensemble urban flood simulation in comparison with laboratory-scale experiments: Impact of interaction models for manhole, sewer pipe, and surface flow

    NASA Astrophysics Data System (ADS)

    Noh, Seong Jin; Lee, Seungsoo; An, Hyunuk; Kawaike, Kenji; Nakagawa, Hajime

    2016-11-01

    An urban flood is an integrated phenomenon that is affected by various uncertainty sources such as input forcing, model parameters, complex geometry, and exchanges of flow among different domains in surfaces and subsurfaces. Despite considerable advances in urban flood modeling techniques, limited knowledge is currently available with regard to the impact of dynamic interaction among different flow domains on urban floods. In this paper, an ensemble method for urban flood modeling is presented to consider the parameter uncertainty of interaction models among a manhole, a sewer pipe, and surface flow. Laboratory-scale experiments on urban flood and inundation are performed under various flow conditions to investigate the parameter uncertainty of interaction models. The results show that ensemble simulation using interaction models based on weir and orifice formulas reproduces experimental data with high accuracy and detects the identifiability of model parameters. Among interaction-related parameters, the parameters of the sewer-manhole interaction show lower uncertainty than those of the sewer-surface interaction. Experimental data obtained under unsteady-state conditions are more informative than those obtained under steady-state conditions to assess the parameter uncertainty of interaction models. Although the optimal parameters vary according to the flow conditions, the difference is marginal. Simulation results also confirm the capability of the interaction models and the potential of the ensemble-based approaches to facilitate urban flood simulation.

  7. Laboratory and in-flight experiments to evaluate 3-D audio display technology

    NASA Technical Reports Server (NTRS)

    Ericson, Mark; Mckinley, Richard; Kibbe, Marion; Francis, Daniel

    1994-01-01

    Laboratory and in-flight experiments were conducted to evaluate 3-D audio display technology for cockpit applications. A 3-D audio display generator was developed which digitally encodes naturally occurring direction information onto any audio signal and presents the binaural sound over headphones. The acoustic image is stabilized for head movement by use of an electromagnetic head-tracking device. In the laboratory, a 3-D audio display generator was used to spatially separate competing speech messages to improve the intelligibility of each message. Up to a 25 percent improvement in intelligibility was measured for spatially separated speech at high ambient noise levels (115 dB SPL). During the in-flight experiments, pilots reported that spatial separation of speech communications provided a noticeable improvement in intelligibility. The use of 3-D audio for target acquisition was also investigated. In the laboratory, 3-D audio enabled the acquisition of visual targets in about two seconds average response time at 17 degrees accuracy. During the in-flight experiments, pilots correctly identified ground targets 50, 75, and 100 percent of the time at separation angles of 12, 20, and 35 degrees, respectively. In general, pilot performance in the field with the 3-D audio display generator was as expected, based on data from laboratory experiments.

  8. A Review of Large-Scale Fracture Experiments Relevant to Pressure Vessel Integrity Under Pressurized Thermal Shock Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugh, C.E.

    2001-01-29

    Numerous large-scale fracture experiments have been performed over the past thirty years to advance fracture mechanics methodologies applicable to thick-wall pressure vessels. This report first identifies major factors important to nuclear reactor pressure vessel (RPV) integrity under pressurized thermal shock (PTS) conditions. It then covers 20 key experiments that have contributed to identifying fracture behavior of RPVs and to validating applicable assessment methodologies. The experiments are categorized according to four types of specimens: (1) cylindrical specimens, (2) pressurized vessels, (3) large plate specimens, and (4) thick beam specimens. These experiments were performed in laboratories in six different countries. This reportmore » serves as a summary of those experiments, and provides a guide to references for detailed information.« less

  9. Experimenting with Impacts in a Conceptual Physics or Descriptive Astronomy Laboratory

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2016-01-01

    What follows is a description of the procedure for and results of a simple experiment on the formation of impact craters designed for the laboratory portions of lower mathematical-level general education science courses such as conceptual physics or descriptive astronomy. The experiment provides necessary experience with data collection and…

  10. Case-Study Investigation of Equine Maternity via PCR-RFLP: A Biochemistry Laboratory Experiment

    PubMed Central

    Millard, Julie T.; Chuang, Edward; Lucas, James S.; Nagy, Erzsebet E.; Davis, Griffin T.

    2013-01-01

    A simple and robust biochemistry laboratory experiment is described that uses restriction fragment length polymorphism (RFLP) of polymerase chain reaction (PCR) products to verify the identity of a potentially valuable horse. During the first laboratory period, students purify DNA from equine samples and amplify two loci of mitochondrial DNA. During the second laboratory period, students digest PCR products with restriction enzymes and analyze the fragment sizes through agarose gel electrophoresis. An optional step of validating DNA extracts through realtime PCR can expand the experiment to three weeks. This experiment, which has an engaging and versatile scenario, provides students with exposure to key principles and techniques of molecular biology, bioinformatics, and evolution in a forensic context. PMID:24363455

  11. Effects of cadmium on the performance and microbiology of laboratory-scale lagoons treating domestic sewage.

    PubMed

    Bonnet, J L; Bohatier, J; Pépin, D

    1999-06-01

    Two experiments were performed to assess the impact of cadmium on the sewage lagoon wastewater treatment process. For each one, three laboratory-scale pilot plants with one tank receiving the same raw effluent were used; one plant served as control and the other two were contaminated once only with cadmium. In the first study, the effects of a shock load of two concentrations of cadmium chloride (60 and 300 micrograms/l) on the plant performance, microbial populations (protists and bacteria) and enzyme activities were determined. Initially, most of the performance parameters were affected concentration-dependently. A reduction in the protist population density and some influence on the total bacterial population were observed, and the potential enzymatic activities were also modified. A second experiment with a lower cadmium concentration (30 micrograms/l), supplied as chloride or sulphate, still perturbed most of the parameters studied, and the effects of the two cadmium salts were identical.

  12. Developing the Cyber Victimization Experiences and Cyberbullying Behaviors Scales.

    PubMed

    Betts, Lucy R; Spenser, Karin A

    2017-01-01

    The reported prevalence rates of cyber victimization experiences and cyberbullying behaviors vary. Part of this variation is likely due to the diverse definitions and operationalizations of the constructs adopted in previous research and the lack of psychometrically robust measures. Through 2 studies, the authors developed (Study 1) and evaluated (Study 2) the cyber victimization experiences and cyberbullying behaviors scales. Participants in Study 1 were 393 (122 boys, 171 girls) and in Study 2 were 345 (153 boys, 192 girls) 11-15-year-olds who completed measures of cyber victimization experiences, cyberbullying behaviors, face-to-face victimization experiences, face-to-face bullying behaviors, and social desirability. The 3-factor cyber victimization experiences scale comprised threat, shared images, and personal attack. The 3-factor cyberbullying behaviors scale comprised sharing images, gossip, and personal attack. Both scales demonstrated acceptable internal consistency and convergent validity.

  13. Enabling systematic, harmonised and large-scale biofilms data computation: the Biofilms Experiment Workbench.

    PubMed

    Pérez-Rodríguez, Gael; Glez-Peña, Daniel; Azevedo, Nuno F; Pereira, Maria Olívia; Fdez-Riverola, Florentino; Lourenço, Anália

    2015-03-01

    Biofilms are receiving increasing attention from the biomedical community. Biofilm-like growth within human body is considered one of the key microbial strategies to augment resistance and persistence during infectious processes. The Biofilms Experiment Workbench is a novel software workbench for the operation and analysis of biofilms experimental data. The goal is to promote the interchange and comparison of data among laboratories, providing systematic, harmonised and large-scale data computation. The workbench was developed with AIBench, an open-source Java desktop application framework for scientific software development in the domain of translational biomedicine. Implementation favours free and open-source third-parties, such as the R statistical package, and reaches for the Web services of the BiofOmics database to enable public experiment deposition. First, we summarise the novel, free, open, XML-based interchange format for encoding biofilms experimental data. Then, we describe the execution of common scenarios of operation with the new workbench, such as the creation of new experiments, the importation of data from Excel spreadsheets, the computation of analytical results, the on-demand and highly customised construction of Web publishable reports, and the comparison of results between laboratories. A considerable and varied amount of biofilms data is being generated, and there is a critical need to develop bioinformatics tools that expedite the interchange and comparison of microbiological and clinical results among laboratories. We propose a simple, open-source software infrastructure which is effective, extensible and easy to understand. The workbench is freely available for non-commercial use at http://sing.ei.uvigo.es/bew under LGPL license. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Women's experiences in the engineering laboratory in Japan

    NASA Astrophysics Data System (ADS)

    Hosaka, Masako

    2014-07-01

    This qualitative study aims to examine Japanese women undergraduate engineering students' experiences of interacting with departmental peers of the same year in the laboratory setting by using interview data of 32 final-year students at two modestly selective national universities in Japan. Expectation state theory that explains unequal relationship between men and women is used as a framework. Findings suggest that women generally had a discouraging experience while working with their male peers. Specifically, women participated less and lost confidence by comparing with the men who appeared to be confident and competent.

  15. Multiscale Laboratory Infrastructure and Services to users: Plans within EPOS

    NASA Astrophysics Data System (ADS)

    Spiers, Chris; Willingshofer, Ernst; Drury, Martyn; Funiciello, Francesca; Rosenau, Matthias; Scarlato, Piergiorgio; Sagnotti, Leonardo; EPOS WG6, Corrado Cimarelli

    2015-04-01

    The participant countries in EPOS embody a wide range of world-class laboratory infrastructures ranging from high temperature and pressure experimental facilities, to electron microscopy, micro-beam analysis, analogue modeling and paleomagnetic laboratories. Most data produced by the various laboratory centres and networks are presently available only in limited "final form" in publications. Many data remain inaccessible and/or poorly preserved. However, the data produced at the participating laboratories are crucial to serving society's need for geo-resources exploration and for protection against geo-hazards. Indeed, to model resource formation and system behaviour during exploitation, we need an understanding from the molecular to the continental scale, based on experimental data. This contribution will describe the plans that the laboratories community in Europe is making, in the context of EPOS. The main objectives are: • To collect and harmonize available and emerging laboratory data on the properties and processes controlling rock system behaviour at multiple scales, in order to generate products accessible and interoperable through services for supporting research activities. • To co-ordinate the development, integration and trans-national usage of the major solid Earth Science laboratory centres and specialist networks. The length scales encompassed by the infrastructures included range from the nano- and micrometer levels (electron microscopy and micro-beam analysis) to the scale of experiments on centimetre sized samples, and to analogue model experiments simulating the reservoir scale, the basin scale and the plate scale. • To provide products and services supporting research into Geo-resources and Geo-storage, Geo-hazards and Earth System Evolution. If the EPOS Implementation Phase proposal presently under construction is successful, then a range of services and transnational activities will be put in place to realize these objectives.

  16. Numerical simulations of impacts involving porous bodies. II. Comparison with laboratory experiments

    NASA Astrophysics Data System (ADS)

    Jutzi, Martin; Michel, Patrick; Hiraoka, Kensuke; Nakamura, Akiko M.; Benz, Willy

    2009-06-01

    In this paper, we compare the outcome of high-velocity impact experiments on porous targets, composed of pumice, with the results of simulations by a 3D SPH hydrocode in which a porosity model has been implemented. The different populations of small bodies of our Solar System are believed to be composed, at least partially, of objects with a high degree of porosity. To describe the fragmentation of such porous objects, a different model is needed than that used for non-porous bodies. In the case of porous bodies, the impact process is not only driven by the presence of cracks which propagate when a stress threshold is reached, it is also influenced by the crushing of pores and compaction. Such processes can greatly affect the whole body's response to an impact. Therefore, another physical model is necessary to improve our understanding of the collisional process involving porous bodies. Such a model has been developed recently and introduced successfully in a 3D SPH hydrocode [Jutzi, M., Benz, W., Michel, P., 2008. Icarus 198, 242-255]. Basic tests have been performed which already showed that it is implemented in a consistent way and that theoretical solutions are well reproduced. However, its full validation requires that it is also capable of reproducing the results of real laboratory impact experiments. Here we present simulations of laboratory experiments on pumice targets for which several of the main material properties have been measured. We show that using the measured material properties and keeping the remaining free parameters fixed, our numerical model is able to reproduce the outcome of these experiments carried out under different impact conditions. This first complete validation of our model, which will be tested for other porous materials in the future, allows us to start addressing problems at larger scale related to small bodies of our Solar System, such as collisions in the Kuiper Belt or the formation of a family by the disruption of a porous

  17. Some Experiments with Biological Applications for the Elementary Laboratory

    ERIC Educational Resources Information Center

    Kammer, D. W.; Williams, J. A.

    1975-01-01

    Summarizes physics laboratory experiments with applications in the biological sciences. Includes the following topics: mechanics of the human arm, fluid flow in tubes, physics of learning, the electrocardiograph, nerve impulse conduction, and corrective lenses for eye defects. (Author/MLH)

  18. The chemistry teaching laboratory: The student perspective

    NASA Astrophysics Data System (ADS)

    Polles, John Steven

    In this study, I investigated the Student/learner's experiences in the chemistry teaching laboratory and the meaning that she or he derived from these experiences. This study sought to answer these questions: (1) What was the students experience in the teaching laboratory?, (2) What aspects of the laboratory experience did the student value?, and (3) What beliefs did the student hold concerning the role of the laboratory experience in developing her or his understanding of chemistry? Students involved in an introductory chemistry course at Purdue University were asked to complete a two-part questionnaire consisting of 16 scaled response and 5 free response items, and 685 did so. Fourteen students also participated in a semi-structured individual interview. The questionnaire and interview were designed to probe the students' perceived experience and answer the above questions. I found that students possess strong conceptions of the laboratory experience: a pre-conception that colors their experience from the outset, and a post-conception that is a mix of positive and negative reflections. I also found that the learner deeply holds an implicit value in the laboratory experience. The other major finding was that the students' lived experience is dramatically shaped or influenced by external agencies, primarily the faculty (and by extension the teaching assistants). There is much debate in the extant literature over the learning value of the science teaching laboratory, but it is all from the perspective of faculty, curriculum designers, and administrators. This study adds the students' voice to the argument.

  19. ISO 15189 accreditation: Requirements for quality and competence of medical laboratories, experience of a laboratory I.

    PubMed

    Guzel, Omer; Guner, Ebru Ilhan

    2009-03-01

    Medical laboratories are the key partners in patient safety. Laboratory results influence 70% of medical diagnoses. Quality of laboratory service is the major factor which directly affects the quality of health care. The clinical laboratory as a whole has to provide the best patient care promoting excellence. International Standard ISO 15189, based upon ISO 17025 and ISO 9001 standards, provides requirements for competence and quality of medical laboratories. Accredited medical laboratories enhance credibility and competency of their testing services. Our group of laboratories, one of the leading institutions in the area, had previous experience with ISO 9001 and ISO 17025 Accreditation at non-medical sections. We started to prepared for ISO 15189 Accreditation at the beginning of 2006 and were certified in March, 2007. We spent more than a year to prepare for accreditation. Accreditation scopes of our laboratory were as follows: clinical chemistry, hematology, immunology, allergology, microbiology, parasitology, molecular biology of infection serology and transfusion medicine. The total number of accredited tests is 531. We participate in five different PT programs. Inter Laboratory Comparison (ILC) protocols are performed with reputable laboratories. 82 different PT Program modules, 277 cycles per year for 451 tests and 72 ILC program organizations for remaining tests have been performed. Our laboratory also organizes a PT program for flow cytometry. 22 laboratories participate in this program, 2 cycles per year. Our laboratory has had its own custom made WEB based LIS system since 2001. We serve more than 500 customers on a real time basis. Our quality management system is also documented and processed electronically, Document Management System (DMS), via our intranet. Preparatory phase for accreditation, data management, external quality control programs, personnel related issues before, during and after accreditation process are presented. Every laboratory has

  20. Capillary Electrophoresis Analysis of Cations in Water Samples: An Experiment for the Introductory Laboratory

    ERIC Educational Resources Information Center

    Pursell, Christopher J.; Chandler, Bert; Bushey, Michelle M.

    2004-01-01

    Capillary electrophoresis is gradually working its way into the undergraduate laboratory curriculum. Typically, experiments utilizing this newer technology have been introduced into analytical or instrumental courses. The authors of this article have introduced an experiment into the introductory laboratory that utilizes capillary electrophoresis…

  1. Responses to Anomalous Data Obtained from Repeatable Experiments in the Laboratory

    ERIC Educational Resources Information Center

    Lin, Jer-Yann

    2007-01-01

    The purpose of this study was to investigate the possible responses to anomalous data obtained from experiments that are repeatable by carrying out additional or alternative experiments in the laboratory. Based on an analysis of responses from scientists to anomalous data taken from identification experiments on the Vinland Map, it was assumed…

  2. Laboratory Experiments on the Electrochemical Remediation of the Environment

    ERIC Educational Resources Information Center

    Ibanez, Jorge G.; Tellez-Giron, Monica; Alvarez, Diana

    2004-01-01

    Ferrate, which is a strong iron oxidant for removing pollutants from water, is developed electrochemically in the laboratory, and used for experiments simulating environmental situations. Thus, ferrate is a powerful oxidizing agent capable of destroying an immense variety of contaminants.

  3. Design of laboratory experiments to study radiation-driven implosions

    DOE PAGES

    Keiter, P. A.; Trantham, M.; Malamud, G.; ...

    2017-02-03

    The interstellar medium is heterogeneous with dense clouds amid an ambient medium. Radiation from young OB stars asymmetrically irradiate the dense clouds. Bertoldi (1989) developed analytic formulae to describe possible outcomes of these clouds when irradiated by hot, young stars. One of the critical parameters that determines the cloud’s fate is the number of photon mean free paths in the cloud. For the extreme cases where the cloud size is either much greater than or much less than one mean free path, the radiation transport should be well understood. However, as one transitions between these limits, the radiation transport ismore » much more complex and is a challenge to solve with many of the current radiation transport models implemented in codes. In this paper, we present the design of laboratory experiments that use a thermal source of x-rays to asymmetrically irradiate a low-density plastic foam sphere. The experiment will vary the density and hence the number of mean free paths of the sphere to study the radiation transport in different regimes. Finally, we have developed dimensionless parameters to relate the laboratory experiment to the astrophysical system and we show that we can perform the experiment in the same transport regime.« less

  4. An in silico DNA cloning experiment for the biochemistry laboratory.

    PubMed

    Elkins, Kelly M

    2011-01-01

    This laboratory exercise introduces students to concepts in recombinant DNA technology while accommodating a major semester project in protein purification, structure, and function in a biochemistry laboratory for junior- and senior-level undergraduate students. It is also suitable for forensic science courses focused in DNA biology and advanced high school biology classes. Students begin by examining a plasmid map with the goal of identifying which restriction enzymes may be used to clone a piece of foreign DNA containing a gene of interest into the vector. From the National Center for Biotechnology Initiative website, students are instructed to retrieve a protein sequence and use Expasy's Reverse Translate program to reverse translate the protein to cDNA. Students then use Integrated DNA Technologies' OligoAnalyzer to predict the complementary DNA strand and obtain DNA recognition sequences for the desired restriction enzymes from New England Biolabs' website. Students add the appropriate DNA restriction sequences to the double-stranded foreign DNA for cloning into the plasmid and infecting Escherichia coli cells. Students are introduced to computational biology tools, molecular biology terminology and the process of DNA cloning in this valuable single session, in silico experiment. This project develops students' understanding of the cloning process as a whole and contrasts with other laboratory and internship experiences in which the students may be involved in only a piece of the cloning process/techniques. Students interested in pursuing postgraduate study and research or employment in an academic biochemistry or molecular biology laboratory or industry will benefit most from this experience. Copyright © 2010 Wiley Periodicals, Inc.

  5. Engineering-scale experiments of solar photocatalytic oxidation of trichloroethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacheco, J.; Prairie, M.; Evans, L.

    1990-01-01

    A photocatalytic process is being developed to destroy organic contaminants in water. Tests with a common water pollutant, trichlorethylene (TCE), were conducted at the Solar Thermal Test Facility at Sandia with trough systems. Tests at this scale provide verification of laboratory studies and allow examination of design and operation issues that only arise in experiments on a realistic scale. The catalyst, titanium dioxide (TiO{sub 2}), is a harmless material found in paint, cosmetics and even toothpaste. We examined the effect of initial contaminant concentration and the effect of hydrogen peroxide on the photocatalytic decomposition of trichlorethylene (TCE). An aqueous solutionmore » of 5000 parts per billion (ppB) TCE with 0.1 weight {percent} suspended titanium dioxide catalyst required approximately 4.2 minutes of exposure to destroy the TCE to a detection limit of 5 ppB. For a 300 ppB TCE solution, the time required was only 2.5 minutes to reach the same level of destruction. Adding 250 parts per million (ppM) of hydrogen peroxide reduced the time required by about 1 minute. A two parameter Langmuir Hinshelwood model was able to describe the data. A simple flow apparatus was built to test four fixed catalyst supports and to measure their pressure drop and assess their ability to withstand flow conditions typical of a full-sized system. In this paper, we summarize the engineering-scale testing and results. 16 refs., 5 figs.« less

  6. Simulated and Virtual Science Laboratory Experiments: Improving Critical Thinking and Higher-Order Learning Skills

    NASA Astrophysics Data System (ADS)

    Simon, Nicole A.

    Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory experience, linking with educational technologies (Pyatt & Sims, 2007; 2011; Trundle & Bell, 2010). A causal-comparative quantitative study was conducted with 150 learners enrolled at a two-year community college, to determine the effects of simulation laboratory experiments on Higher-Order Learning, Critical Thinking Skills, and Cognitive Load. The treatment population used simulated experiments, while the non-treatment sections performed traditional expository experiments. A comparison was made using the Revised Two-Factor Study Process survey, Motivated Strategies for Learning Questionnaire, and the Scientific Attitude Inventory survey, using a Repeated Measures ANOVA test for treatment or non-treatment. A main effect of simulated laboratory experiments was found for both Higher-Order Learning, [F (1, 148) = 30.32,p = 0.00, eta2 = 0.12] and Critical Thinking Skills, [F (1, 148) = 14.64,p = 0.00, eta 2 = 0.17] such that simulations showed greater increases than traditional experiments. Post-lab treatment group self-reports indicated increased marginal means (+4.86) in Higher-Order Learning and Critical Thinking Skills, compared to the non-treatment group (+4.71). Simulations also improved the scientific skills and mastery of basic scientific subject matter. It is recommended that additional research recognize that learners' Critical Thinking Skills change due to different instructional methodologies that occur throughout a semester.

  7. A comparison of traditional physical laboratory and computer-simulated laboratory experiences in relation to engineering undergraduate students' conceptual understandings of a communication systems topic

    NASA Astrophysics Data System (ADS)

    Javidi, Giti

    2005-07-01

    This study was designed to investigate an alternative to the use of traditional physical laboratory activities in a communication systems course. Specifically, this study examined whether as an alternative, computer simulation is as effective as physical laboratory activities in teaching college-level electronics engineering education students about the concepts of signal transmission, modulation and demodulation. Eighty undergraduate engineering students participated in the study, which was conducted at a southeastern four-year university. The students were randomly assigned to two groups. The groups were compared on understanding the concepts, remembering the concepts, completion time of the lab experiments and perception toward the laboratory experiments. The physical group's (n = 40) treatment was to conduct laboratory experiments in a physical laboratory. The students in this group used equipment in a controlled electronics laboratory. The Simulation group's (n = 40) treatment was to conduct similar experiments in a PC laboratory. The students in this group used a simulation program in a controlled PC lab. At the completion of the treatment, scores on a validated conceptual test were collected once after the treatment and again three weeks after the treatment. Attitude surveys and qualitative study were administered at the completion of the treatment. The findings revealed significant differences, in favor of the simulation group, between the two groups on both the conceptual post-test and the follow-up test. The findings also revealed significant correlation between simulation groups' attitude toward the simulation program and their post-test scores. Moreover, there was a significant difference between the two groups on their attitude toward their laboratory experience in favor of the simulation group. In addition, there was significant difference between the two groups on their lab completion time in favor of the simulation group. At the same time, the

  8. Simulated and Virtual Science Laboratory Experiments: Improving Critical Thinking and Higher-Order Learning Skills

    ERIC Educational Resources Information Center

    Simon, Nicole A.

    2013-01-01

    Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory…

  9. An Example of a Laboratory Teaching Experience in a Professional Year (Plan B) Program

    ERIC Educational Resources Information Center

    Miller, P. J.; And Others

    1978-01-01

    A laboratory teaching experience (L.T.E.) was designed to focus on three teaching behaviors. It was recognized that a behavioral approach to teaching simplified its complexity by isolating specific teaching behaviors. Discusses the development and evaluation of the laboratory teaching experience. (Author/RK)

  10. Scaling of metabolic rate on body mass in small laboratory mammals

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.; Smith, A. H.

    1980-01-01

    The scaling of metabolic heat production rate on body mass is investigated for five species of small laboratory mammal in order to define selection of animals of metabolic rates and size range appropriate for the measurement of changes in the scaling relationship upon exposure to weightlessness in Shuttle/Spacelab experiment. Metabolic rates were measured according to oxygen consumption and carbon dioxide production for individual male and female Swiss-Webster mice, Syrian hamsters, Simonsen albino rats, Hartley guinea pigs and New Zealand white rabbits, which range in mass from 0.05 to 5 kg mature body size, at ages of 1, 2, 3, 5, 8, 12, 18 and 24 months. The metabolic intensity, defined as the heat produced per hour per kg body mass, is found to decrease dramatically with age until the animals are 6 to 8 months old, with little or no sex difference. When plotted on a logarithmic graph, the relation of metabolic rate to total body mass is found to obey a power law of index 0.676, which differs significantly from the classical value of 0.75. When the values for the mice are removed, however, an index of 0.749 is obtained. It is thus proposed that six male animals, 8 months of age, of each of the four remaining species be used to study the effects of gravitational loading on the metabolic energy requirements of terrestrial animals.

  11. Differentiating Biochemistry Course Laboratories Based on Student Experience

    ERIC Educational Resources Information Center

    Jakubowski, Henry V.

    2011-01-01

    Content and emphases in undergraduate biochemistry courses can be readily tailored to accommodate the standards of the department in which they are housed, as well as the backgrounds of the students in the courses. A more challenging issue is how to construct laboratory experiences for a class with both chemistry majors, who usually have little or…

  12. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale.

    PubMed

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  13. Laser Speckle Photography: Some Simple Experiments for the Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Bates, B.; And Others

    1986-01-01

    Describes simple speckle photography experiments which are easy to set up and require only low cost standard laboratory equipment. Included are procedures for taking single, double, and multiple exposures. (JN)

  14. Error identification in a high-volume clinical chemistry laboratory: Five-year experience.

    PubMed

    Jafri, Lena; Khan, Aysha Habib; Ghani, Farooq; Shakeel, Shahid; Raheem, Ahmed; Siddiqui, Imran

    2015-07-01

    Quality indicators for assessing the performance of a laboratory require a systematic and continuous approach in collecting and analyzing data. The aim of this study was to determine the frequency of errors utilizing the quality indicators in a clinical chemistry laboratory and to convert errors to the Sigma scale. Five-year quality indicator data of a clinical chemistry laboratory was evaluated to describe the frequency of errors. An 'error' was defined as a defect during the entire testing process from the time requisition was raised and phlebotomy was done until the result dispatch. An indicator with a Sigma value of 4 was considered good but a process for which the Sigma value was 5 (i.e. 99.977% error-free) was considered well controlled. In the five-year period, a total of 6,792,020 specimens were received in the laboratory. Among a total of 17,631,834 analyses, 15.5% were from within hospital. Total error rate was 0.45% and of all the quality indicators used in this study the average Sigma level was 5.2. Three indicators - visible hemolysis, failure of proficiency testing and delay in stat tests - were below 5 on the Sigma scale and highlight the need to rigorously monitor these processes. Using Six Sigma metrics quality in a clinical laboratory can be monitored more effectively and it can set benchmarks for improving efficiency.

  15. Improving laboratory efficiencies to scale-up HIV viral load testing.

    PubMed

    Alemnji, George; Onyebujoh, Philip; Nkengasong, John N

    2017-03-01

    Viral load measurement is a key indicator that determines patients' response to treatment and risk for disease progression. Efforts are ongoing in different countries to scale-up access to viral load testing to meet the Joint United Nations Programme on HIV and AIDS target of achieving 90% viral suppression among HIV-infected patients receiving antiretroviral therapy. However, the impact of these initiatives may be challenged by increased inefficiencies along the viral load testing spectrum. This will translate to increased costs and ineffectiveness of scale-up approaches. This review describes different parameters that could be addressed across the viral load testing spectrum aimed at improving efficiencies and utilizing test results for patient management. Though progress is being made in some countries to scale-up viral load, many others still face numerous challenges that may affect scale-up efficiencies: weak demand creation, ineffective supply chain management systems; poor specimen referral systems; inadequate data and quality management systems; and weak laboratory-clinical interface leading to diminished uptake of test results. In scaling up access to viral load testing, there should be a renewed focus to address efficiencies across the entire spectrum, including factors related to access, uptake, and impact of test results.

  16. Potential for geophysical experiments in large scale tests.

    USGS Publications Warehouse

    Dieterich, J.H.

    1981-01-01

    Potential research applications for large-specimen geophysical experiments include measurements of scale dependence of physical parameters and examination of interactions with heterogeneities, especially flaws such as cracks. In addition, increased specimen size provides opportunities for improved recording resolution and greater control of experimental variables. Large-scale experiments using a special purpose low stress (100MPa).-Author

  17. Acoustic Emission Patterns and the Transition to Ductility in Sub-Micron Scale Laboratory Earthquakes

    NASA Astrophysics Data System (ADS)

    Ghaffari, H.; Xia, K.; Young, R.

    2013-12-01

    We report observation of a transition from the brittle to ductile regime in precursor events from different rock materials (Granite, Sandstone, Basalt, and Gypsum) and Polymers (PMMA, PTFE and CR-39). Acoustic emission patterns associated with sub-micron scale laboratory earthquakes are mapped into network parameter spaces (functional damage networks). The sub-classes hold nearly constant timescales, indicating dependency of the sub-phases on the mechanism governing the previous evolutionary phase, i.e., deformation and failure of asperities. Based on our findings, we propose that the signature of the non-linear elastic zone around a crack tip is mapped into the details of the evolutionary phases, supporting the formation of a strongly weak zone in the vicinity of crack tips. Moreover, we recognize sub-micron to micron ruptures with signatures of 'stiffening' in the deformation phase of acoustic-waveforms. We propose that the latter rupture fronts carry critical rupture extensions, including possible dislocations faster than the shear wave speed. Using 'template super-shear waveforms' and their network characteristics, we show that the acoustic emission signals are possible super-shear or intersonic events. Ref. [1] Ghaffari, H. O., and R. P. Young. "Acoustic-Friction Networks and the Evolution of Precursor Rupture Fronts in Laboratory Earthquakes." Nature Scientific reports 3 (2013). [2] Xia, Kaiwen, Ares J. Rosakis, and Hiroo Kanamori. "Laboratory earthquakes: The sub-Rayleigh-to-supershear rupture transition." Science 303.5665 (2004): 1859-1861. [3] Mello, M., et al. "Identifying the unique ground motion signatures of supershear earthquakes: Theory and experiments." Tectonophysics 493.3 (2010): 297-326. [4] Gumbsch, Peter, and Huajian Gao. "Dislocations faster than the speed of sound." Science 283.5404 (1999): 965-968. [5] Livne, Ariel, et al. "The near-tip fields of fast cracks." Science 327.5971 (2010): 1359-1363. [6] Rycroft, Chris H., and Eran Bouchbinder

  18. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated June 22, 1988: 'A dwarf wheat variety known as Yecoro Rojo flourishes in KSC's Biomass Production Chamber. Researchers are gathering information on the crop's ability to produce food, water and oxygen, and then remove carbon dioxide. The confined quarters associated with space travel require researchers to focus on smaller plants that yield proportionately large amounts of biomass. This wheat crop takes about 85 days to grow before harvest.' Plant experiments such as this are the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  19. Microwave-Assisted Esterification: A Discovery-Based Microscale Laboratory Experiment

    ERIC Educational Resources Information Center

    Reilly, Maureen K.; King, Ryan P.; Wagner, Alexander J.; King, Susan M.

    2014-01-01

    An undergraduate organic chemistry laboratory experiment has been developed that features a discovery-based microscale Fischer esterification utilizing a microwave reactor. Students individually synthesize a unique ester from known sets of alcohols and carboxylic acids. Each student identifies the best reaction conditions given their particular…

  20. Summary of engineering-scale experiments for the Solar Detoxification of Water project

    NASA Astrophysics Data System (ADS)

    Pacheco, J. E.; Yellowhorse, L.

    1992-03-01

    This report contains a summary of large-scale experiments conducted at Sandia National Laboratories under the Solar Detoxification of Water project. The objectives of the work performed were to determine the potential of using solar radiation to destroy organic contaminants in water by photocatalysis and to develop the process and improve its performance. For these experiments, we used parabolic troughs to focus sunlight onto glass pipes mounted at the trough's focus. Water spiked with a contaminant and containing suspended titanium dioxide catalyst was pumped through the illuminated glass pipe, activating the catalyst with the ultraviolet portion of the solar spectrum. The activated catalyst creates oxidizers that attack and destroy the organics. Included in this report are a summary and discussion of the implications of experiments conducted to determine: the effect of process kinetics on the destruction of chlorinated solvents (such as trichloroethylene, perchloroethylene, trichloroethane, methylene chloride, chloroform and carbon tetrachloride), the enhancement due to added hydrogen peroxide, the optimal catalyst loading, the effect of light intensity, the inhibition due to bicarbonates, and catalyst issues.

  1. Spacecraft Dynamics as Related to Laboratory Experiments in Space. [conference

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H. (Editor); Antar, B. N. (Editor); Collins, F. G. (Editor)

    1981-01-01

    Proceedings are presented of a conference sponsored by the Physics and Chemistry Experiments in Space Working Group to discuss the scientific and engineering aspects involved in the design and performance of reduced to zero gravity experiments affected by spacecraft environments and dynamics. The dynamics of drops, geophysical fluids, and superfluid helium are considered as well as two phase flow, combustion, and heat transfer. Interactions between spacecraft motions and the atmospheric cloud physics laboratory experiments are also examined.

  2. Application of Stereo Vision to the Reconnection Scaling Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klarenbeek, Johnny; Sears, Jason A.; Gao, Kevin W.

    The measurement and simulation of the three-dimensional structure of magnetic reconnection in astrophysical and lab plasmas is a challenging problem. At Los Alamos National Laboratory we use the Reconnection Scaling Experiment (RSX) to model 3D magnetohydrodynamic (MHD) relaxation of plasma filled tubes. These magnetic flux tubes are called flux ropes. In RSX, the 3D structure of the flux ropes is explored with insertable probes. Stereo triangulation can be used to compute the 3D position of a probe from point correspondences in images from two calibrated cameras. While common applications of stereo triangulation include 3D scene reconstruction and robotics navigation, wemore » will investigate the novel application of stereo triangulation in plasma physics to aid reconstruction of 3D data for RSX plasmas. Several challenges will be explored and addressed, such as minimizing 3D reconstruction errors in stereo camera systems and dealing with point correspondence problems.« less

  3. Numerical modeling of laboratory-scale surface-to-crown fire transition

    NASA Astrophysics Data System (ADS)

    Castle, Drew Clayton

    Understanding the conditions leading to the transition of fire spread from a surface fuel to an elevated (crown) fuel is critical to effective fire risk assessment and management. Surface fires that successfully transition to crown fires can be very difficult to suppress, potentially leading to damages in the natural and built environments. This is relevant to chaparral shrub lands which are common throughout parts of the Southwest U.S. and represent a significant part of the wildland urban interface. The ability of the Wildland-Urban Interface Fire Dynamic Simulator (WFDS) to model surface-to-crown fire transition was evaluated through comparison to laboratory experiments. The WFDS model is being developed by the U.S. Forest Service (USFS) and the National Institute of Standards and Technology. The experiments were conducted at the USFS Forest Fire Laboratory in Riverside, California. The experiments measured the ignition of chamise (Adenostoma fasciculatum) crown fuel held above a surface fire spreading through excelsior fuel. Cases with different crown fuel bulk densities, crown fuel base heights, and imposed wind speeds were considered. Cold-flow simulations yielded wind speed profiles that closely matched the experimental measurements. Next, fire simulations with only the surface fuel were conducted to verify the rate of spread while factors such as substrate properties were varied. Finally, simulations with both a surface fuel and a crown fuel were completed. Examination of specific surface fire characteristics (rate of spread, flame angle, etc.) and the corresponding experimental surface fire behavior provided a basis for comparison of the factors most responsible for transition from a surface fire to the raised fuel ignition. The rate of spread was determined by tracking the flame in the Smokeview animations using a tool developed for tracking an actual flame in a video. WFDS simulations produced results in both surface fire spread and raised fuel bed

  4. Full-scale and laboratory-scale anaerobic treatment of citric acid production wastewater.

    PubMed

    Colleran, E; Pender, S; Philpott, U; O'Flaherty, V; Leahy, B

    1998-01-01

    This paper reviews the operation of a full-scale, fixed-bed digester treating a citric acid production wastewater with a COD:sulphate ratio of 3-4:1. Support matrix pieces were removed from the digester at intervals during the first 5 years of operation in order to quantify the vertical distribution of biomass within the digester. Detailed analysis of the digester biomass after 5 years of operation indicated that H2 and propionate-utilising SRB had outcompeted hydrogenophilic methanogens and propionate syntrophs. Acetoclastic methanogens were shown to play the dominant role in acetate conversion. Butyrate and ethanol-degrading syntrophs also remained active in the digester after 5 years of operation. Laboratory-scale hybrid reactor treatment at 55 degrees C of a diluted molasses influent, with and without sulphate supplementation, showed that the reactors could be operated with high stability at volumetric loading rates of 24 kgCOD.m-3.d-1 (12 h HRT). In the presence of sulphate (2 g/l-1; COD/sulphate ratio of 6:1), acetate conversion was severely inhibited, resulting in effluent acetate concentrations of up to 4000 mg.l-1.

  5. A review of analogue modelling of geodynamic processes: Approaches, scaling, materials and quantification, with an application to subduction experiments

    NASA Astrophysics Data System (ADS)

    Schellart, Wouter P.; Strak, Vincent

    2016-10-01

    We present a review of the analogue modelling method, which has been used for 200 years, and continues to be used, to investigate geological phenomena and geodynamic processes. We particularly focus on the following four components: (1) the different fundamental modelling approaches that exist in analogue modelling; (2) the scaling theory and scaling of topography; (3) the different materials and rheologies that are used to simulate the complex behaviour of rocks; and (4) a range of recording techniques that are used for qualitative and quantitative analyses and interpretations of analogue models. Furthermore, we apply these four components to laboratory-based subduction models and describe some of the issues at hand with modelling such systems. Over the last 200 years, a wide variety of analogue materials have been used with different rheologies, including viscous materials (e.g. syrups, silicones, water), brittle materials (e.g. granular materials such as sand, microspheres and sugar), plastic materials (e.g. plasticine), visco-plastic materials (e.g. paraffin, waxes, petrolatum) and visco-elasto-plastic materials (e.g. hydrocarbon compounds and gelatins). These materials have been used in many different set-ups to study processes from the microscale, such as porphyroclast rotation, to the mantle scale, such as subduction and mantle convection. Despite the wide variety of modelling materials and great diversity in model set-ups and processes investigated, all laboratory experiments can be classified into one of three different categories based on three fundamental modelling approaches that have been used in analogue modelling: (1) The external approach, (2) the combined (external + internal) approach, and (3) the internal approach. In the external approach and combined approach, energy is added to the experimental system through the external application of a velocity, temperature gradient or a material influx (or a combination thereof), and so the system is open

  6. Enhancing the Student Experience of Laboratory Practicals through Digital Video Guides

    ERIC Educational Resources Information Center

    Croker, Karen; Andersson, Holger; Lush, David; Prince, Rob; Gomez, Stephen

    2010-01-01

    Laboratory-based learning allows students to experience bioscience principles first hand. In our experience, practical content and equipment may have changed over time, but teaching methods largely remain the same, typically involving; whole class introduction with a demonstration, students emulating the demonstration in small groups, gathering…

  7. Advanced Undergraduate Laboratory Experiment in Inelastic Electron Tunneling Spectroscopy.

    ERIC Educational Resources Information Center

    White, H. W.; Graves, R. J.

    1982-01-01

    An advanced undergraduate laboratory experiment in inelastic electron tunneling spectroscopy is described. Tunnel junctions were fabricated, the tunneling spectra of several molecules absorbed on the surface of aluminum oxide measured, and mode assignments made for several of the prominent peaks in spectra using results obtained from optical…

  8. Laboratory and field scale bioremediation of hexachlorocyclohexane (HCH) contaminated soils by means of bioaugmentation and biostimulation.

    PubMed

    Garg, Nidhi; Lata, Pushp; Jit, Simran; Sangwan, Naseer; Singh, Amit Kumar; Dwivedi, Vatsala; Niharika, Neha; Kaur, Jasvinder; Saxena, Anjali; Dua, Ankita; Nayyar, Namita; Kohli, Puneet; Geueke, Birgit; Kunz, Petra; Rentsch, Daniel; Holliger, Christof; Kohler, Hans-Peter E; Lal, Rup

    2016-06-01

    Hexachlorocyclohexane (HCH) contaminated soils were treated for a period of up to 64 days in situ (HCH dumpsite, Lucknow) and ex situ (University of Delhi) in line with three bioremediation approaches. The first approach, biostimulation, involved addition of ammonium phosphate and molasses, while the second approach, bioaugmentation, involved addition of a microbial consortium consisting of a group of HCH-degrading sphingomonads that were isolated from HCH contaminated sites. The third approach involved a combination of biostimulation and bioaugmentation. The efficiency of the consortium was investigated in laboratory scale experiments, in a pot scale study, and in a full-scale field trial. It turned out that the approach of combining biostimulation and bioaugmentation was most effective in achieving reduction in the levels of α- and β-HCH and that the application of a bacterial consortium as compared to the action of a single HCH-degrading bacterial strain was more successful. Although further degradation of β- and δ-tetrachlorocyclohexane-1,4-diol, the terminal metabolites of β- and δ-HCH, respectively, did not occur by the strains comprising the consortium, these metabolites turned out to be less toxic than the parental HCH isomers.

  9. Test Plan for the Wake Steering Experiment at the Scaled Wind Farm Technology (SWiFT) Facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naughton, Brian Thomas

    This document is a test plan describing the objectives, configuration, procedures, reporting, roles, and responsibilities for conducting the joint Sandia National Laboratories and National Renewable Energy Laboratory Wake Steering Experiment at the Sandia Scaled Wind Farm Technology (SWiFT) facility near Lubbock, Texas in 2016 and 2017 . The purpose of this document is to ensure the test objectives and procedures are sufficiently detailed such that al l involved personnel are able to contribute to the technical success of the test. This document is not intended to address safety explicitly which is addressed in a separate document listed in the referencesmore » titled Sandia SWiFT Facility Site Operations Manual . Both documents should be reviewed by all test personnel.« less

  10. On the dominant noise components of tactical aircraft: Laboratory to full scale

    NASA Astrophysics Data System (ADS)

    Tam, Christopher K. W.; Aubert, Allan C.; Spyropoulos, John T.; Powers, Russell W.

    2018-05-01

    This paper investigates the dominant noise components of a full-scale high performance tactical aircraft. The present study uses acoustic measurements of the exhaust jet from a single General Electric F414-400 turbofan engine installed in a Boeing F/A-18E Super Hornet aircraft operating from flight idle to maximum afterburner. The full-scale measurements are to the ANSI S12.75-2012 standard employing about 200 microphones. By comparing measured noise spectra with those from hot supersonic jets observed in the laboratory, the dominant noise components specific to the F/A-18E aircraft at different operating power levels are identified. At intermediate power, it is found that the dominant noise components of an F/A-18E aircraft are essentially the same as those of high temperature supersonic laboratory jets. However, at military and afterburner powers, there are new dominant noise components. Their characteristics are then documented and analyzed. This is followed by an investigation of their origin and noise generation mechanisms.

  11. Virtualisation of Engineering Discipline Experiments for an Internet-Based Remote Laboratory

    ERIC Educational Resources Information Center

    Tiwari, Rajiv; Singh, Khilawan

    2011-01-01

    A comprehensive survey on the Internet based virtualisation of experiments is presented, covering several individual as well as collaborative efforts in various engineering disciplines. From this survey it could be concluded that there is a pressing need to develop full-fledged remote laboratory experiments for integrated directly into engineering…

  12. Human Gene Discovery Laboratory: A Problem-Based Learning Experience

    ERIC Educational Resources Information Center

    Bonds, Wesley D., Sr.; Paolella, Mary Jane

    2006-01-01

    A single-semester elective combines Mendelian and molecular genetics in a problem-solving format. Students encounter a genetic disease scenario, construct a family pedigree, and try to confirm their medical diagnoses through laboratory experiences. Encouraged to generate ideas as they test their hypotheses, students realize the importance of data…

  13. Large-scale flow experiments for managing river systems

    USGS Publications Warehouse

    Konrad, Christopher P.; Olden, Julian D.; Lytle, David A.; Melis, Theodore S.; Schmidt, John C.; Bray, Erin N.; Freeman, Mary C.; Gido, Keith B.; Hemphill, Nina P.; Kennard, Mark J.; McMullen, Laura E.; Mims, Meryl C.; Pyron, Mark; Robinson, Christopher T.; Williams, John G.

    2011-01-01

    Experimental manipulations of streamflow have been used globally in recent decades to mitigate the impacts of dam operations on river systems. Rivers are challenging subjects for experimentation, because they are open systems that cannot be isolated from their social context. We identify principles to address the challenges of conducting effective large-scale flow experiments. Flow experiments have both scientific and social value when they help to resolve specific questions about the ecological action of flow with a clear nexus to water policies and decisions. Water managers must integrate new information into operating policies for large-scale experiments to be effective. Modeling and monitoring can be integrated with experiments to analyze long-term ecological responses. Experimental design should include spatially extensive observations and well-defined, repeated treatments. Large-scale flow manipulations are only a part of dam operations that affect river systems. Scientists can ensure that experimental manipulations continue to be a valuable approach for the scientifically based management of river systems.

  14. Lopez-Alegria with TRAC experiment in Destiny laboratory

    NASA Image and Video Library

    2007-01-02

    ISS014-E-11061 (2 Jan. 2007) --- Astronaut Michael E. Lopez-Alegria, Expedition 14 commander and NASA space station science officer, works with the Test of Reaction and Adaptation Capabilities (TRAC) experiment in the Destiny laboratory of the International Space Station. The TRAC investigation will test the theory of brain adaptation during space flight by testing hand-eye coordination before, during and after the space flight.

  15. Symmetron dark energy in laboratory experiments.

    PubMed

    Upadhye, Amol

    2013-01-18

    The symmetron scalar field is a matter-coupled dark energy candidate which effectively decouples from matter in high-density regions through a symmetry restoration. We consider a previously unexplored regime, in which the vacuum mass μ~2.4×10(-3) eV of the symmetron is near the dark energy scale, and the matter coupling parameter M~1 TeV is just beyond standard model energies. Such a field will give rise to a fifth force at submillimeter distances which can be probed by short-range gravity experiments. We show that a torsion pendulum experiment such as Eöt-Wash can exclude symmetrons in this regime for all self-couplings λ is < or approximately equal to 7.5.

  16. Synthesis and Self-Assembly of the "Tennis Ball" Dimer and Subsequent Encapsulation of Methane. An Advanced Organic Chemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Hof, Fraser; Palmer, Liam C.; Rebek, Julius, Jr.

    2001-11-01

    While important to the biological and materials sciences, noncovalent interactions, self-folding, and self-assembly often receive little discussion in the undergraduate chemistry curriculum. The synthesis and NMR characterization of a molecular "tennis ball" in an advanced undergraduate organic chemistry laboratory is a simple and effective way to introduce the relevance of these concepts. In appropriate solvents, the monomer dimerizes through a seam of eight hydrogen bonds with encapsulation of a guest molecule and symmetry reminiscent of a tennis ball. The entire experiment can be completed in three lab periods, however large-scale synthetic preparation of the starting monomer by a teaching assistant would reduce the laboratory to a single lab period for NMR studies.

  17. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This study was undertaken to develop conceptual designs for a manned, space shuttle sortie mission laboratory capable of supporting a wide variety of experiments in conjunction with communications and navigation research. This space/laboratory would be one in which man may effectively increase experiment efficiency by certain observations, modifications, setup, calibration, and limited maintenance steps. In addition, man may monitor experiment progress and perform preliminary data evaluation to verify proper equipment functioning and may terminate or redirect experiments to obtain the most desirable end results. The flexibility and unique capabilities of man as an experimenter in such a laboratory will add greatly to the simplification of space experiments and this provides the basis for commonality in many of the supportive subsystems, thus reaping the benefits of reusability and reduced experiment costs. For Vol. 4, see N73-19268.

  18. Virtually-Enhanced Fluid Laboratories for Teaching Meteorology

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Illari, L.

    2015-12-01

    The Weather in a Tank (WIAT) project aims to offer instructors a repertoire of rotating tank experiments, and a curriculum in fluid dynamics, to better assist students in learning how to move between phenomena in the real world and basic principles of rotating fluid dynamics which play a central role in determining the climate of the planet. Despite the increasing use of laboratory experiments in teaching meteorology, however, we are aware that many teachers and students do not have access to suitable apparatus and so cannot benefit from them. Here we describe a 'virtually-enhanced' laboratory that we hope could be very effective in getting across a flavor of the experiments and bring them to a wider audience. In the pedagogical spirit of WIAT we focus on how simple underlying principles, illustrated through laboratory experiments, shape the observed structure of the large-scale atmospheric circulation.

  19. Evolution of Gas Cell Targets for Magnetized Liner Inertial Fusion Experiments at the Sandia National Laboratories PECOS Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paguio, R. R.; Smith, G. E.; Taylor, J. L.

    Z-Beamlet (ZBL) experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laserplasma instabilities LPI) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion (MagLIF) scheme being tested on the SNL Z-machine. The experiments aim to understand the tradeoffs between laser spot size, laser pulse shape, laser entrance hole (LEH) windowmore » thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are also described in this paper.« less

  20. Evolution of Gas Cell Targets for Magnetized Liner Inertial Fusion Experiments at the Sandia National Laboratories PECOS Test Facility

    DOE PAGES

    Paguio, R. R.; Smith, G. E.; Taylor, J. L.; ...

    2017-12-04

    Z-Beamlet (ZBL) experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laserplasma instabilities LPI) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion (MagLIF) scheme being tested on the SNL Z-machine. The experiments aim to understand the tradeoffs between laser spot size, laser pulse shape, laser entrance hole (LEH) windowmore » thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are also described in this paper.« less

  1. Analytical study of the Atmospheric Cloud Physics Laboratory (ACPL) experiments

    NASA Technical Reports Server (NTRS)

    Davis, M. H.

    1977-01-01

    The design specifications of the research laboratory as a Spacelab facility are discussed along with the types of planned experiments. These include cloud formation, freezing and scavenging, and electrical phenomena. A summary of the program conferences is included.

  2. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Neil Yorio and Lisa Ruffe prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  3. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Lisa Ruffe and Neil Yorio prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  4. Nuclear astrophysics at Gran Sasso Laboratory: the LUNA experiment

    NASA Astrophysics Data System (ADS)

    Cavanna, Francesca

    2018-05-01

    LUNA is an experimental approach for the study of nuclear fusion reactions based on an underground accelerator laboratory. Aim of the experiment is the direct measurement of the cross section of nuclear reactions relevant for stellar and primordial nucleosynthesis. In the following the latest results and the future goals will be presented.

  5. The design of dapog rice seeder model for laboratory scale

    NASA Astrophysics Data System (ADS)

    Purba, UI; Rizaldi, T.; Sumono; Sigalingging, R.

    2018-02-01

    The dapog system is seeding rice seeds using a special nursery tray. Rice seedings with dapog systems can produce seedlings in the form of higher quality and uniform seed rolls. This study aims to reduce the cost of making large-scale apparatus by designing models for small-scale and can be used for learning in the laboratory. Parameters observed were soil uniformity, seeds and fertilizers, soil looses, seeds and fertilizers, effective capacity of apparatus, and power requirements. The results showed a high uniformity in soil, seed and fertilizer respectively 92.8%, 1-3 seeds / cm2 and 82%. The scattered materials for soil, seed and fertilizer were respectively 6.23%, 2.7% and 2.23%. The effective capacity of apparatus was 360 boxes / hour with 237.5 kWh of required power.

  6. Scaling and design of landslide and debris-flow experiments

    USGS Publications Warehouse

    Iverson, Richard M.

    2015-01-01

    Scaling plays a crucial role in designing experiments aimed at understanding the behavior of landslides, debris flows, and other geomorphic phenomena involving grain-fluid mixtures. Scaling can be addressed by using dimensional analysis or – more rigorously – by normalizing differential equations that describe the evolving dynamics of the system. Both of these approaches show that, relative to full-scale natural events, miniaturized landslides and debris flows exhibit disproportionately large effects of viscous shear resistance and cohesion as well as disproportionately small effects of excess pore-fluid pressure that is generated by debris dilation or contraction. This behavioral divergence grows in proportion to H3, where H is the thickness of a moving mass. Therefore, to maximize geomorphological relevance, experiments with wet landslides and debris flows must be conducted at the largest feasible scales. Another important consideration is that, unlike stream flows, landslides and debris flows accelerate from statically balanced initial states. Thus, no characteristic macroscopic velocity exists to guide experiment scaling and design. On the other hand, macroscopic gravity-driven motion of landslides and debris flows evolves over a characteristic time scale (L/g)1/2, where g is the magnitude of gravitational acceleration and L is the characteristic length of the moving mass. Grain-scale stress generation within the mass occurs on a shorter time scale, H/(gL)1/2, which is inversely proportional to the depth-averaged material shear rate. A separation of these two time scales exists if the criterion H/L < < 1 is satisfied, as is commonly the case. This time scale separation indicates that steady-state experiments can be used to study some details of landslide and debris-flow behavior but cannot be used to study macroscopic landslide or debris-flow dynamics.

  7. Solute and heat transport model of the Henry and Hilleke laboratory experiment

    USGS Publications Warehouse

    Langevin, C.D.; Dausman, A.M.; Sukop, M.C.

    2010-01-01

    SEAWAT is a coupled version of MODFLOW and MT3DMS designed to simulate variable-density ground water flow and solute transport. The most recent version of SEAWAT, called SEAWAT Version 4, includes new capabilities to represent simultaneous multispecies solute and heat transport. To test the new features in SEAWAT, the laboratory experiment of Henry and Hilleke (1972) was simulated. Henry and Hilleke used warm fresh water to recharge a large sand-filled glass tank. A cold salt water boundary was represented on one side. Adjustable heating pads were used to heat the bottom and left sides of the tank. In the laboratory experiment, Henry and Hilleke observed both salt water and fresh water flow systems separated by a narrow transition zone. After minor tuning of several input parameters with a parameter estimation program, results from the SEAWAT simulation show good agreement with the experiment. SEAWAT results suggest that heat loss to the room was more than expected by Henry and Hilleke, and that multiple thermal convection cells are the likely cause of the widened transition zone near the hot end of the tank. Other computer programs with similar capabilities may benefit from benchmark testing with the Henry and Hilleke laboratory experiment. Journal Compilation ?? 2009 National Ground Water Association.

  8. Virtual geotechnical laboratory experiments using a simulator

    NASA Astrophysics Data System (ADS)

    Penumadu, Dayakar; Zhao, Rongda; Frost, David

    2000-04-01

    The details of a test simulator that provides a realistic environment for performing virtual laboratory experimentals in soil mechanics is presented. A computer program Geo-Sim that can be used to perform virtual experiments, and allow for real-time observations of material response is presented. The results of experiments, for a given set of input parameters, are obtained with the test simulator using well-trained artificial neural-network-based soil models for different soil types and stress paths. Multimedia capabilities are integrated in Geo-Sim, using software that links and controls a laser disc player with a real-time parallel processing ability. During the simulation of a virtual experiment, relevant portions of the video image of a previously recorded test on an actual soil specimen are dispalyed along with the graphical presentation of response from the feedforward ANN model predictions. The pilot simulator developed to date includes all aspects related to performing a triaxial test on cohesionless soil under undrained and drained conditions. The benefits of the test simulator are also presented.

  9. Guided-inquiry laboratory experiments to improve students' analytical thinking skills

    NASA Astrophysics Data System (ADS)

    Wahyuni, Tutik S.; Analita, Rizki N.

    2017-12-01

    This study aims to improve the experiment implementation quality and analytical thinking skills of undergraduate students through guided-inquiry laboratory experiments. This study was a classroom action research conducted in three cycles. The study has been carried out with 38 undergraduate students of the second semester of Biology Education Department of State Islamic Institute (SII) of Tulungagung, as a part of Chemistry for Biology course. The research instruments were lesson plans, learning observation sheets and undergraduate students' experimental procedure. Research data were analyzed using quantitative-descriptive method. The increasing of analytical thinking skills could be measured using gain score normalized and statistical paired t-test. The results showed that guided-inquiry laboratory experiments model was able to improve both the experiment implementation quality and the analytical thinking skills. N-gain score of the analytical thinking skills was increased, in spite of just 0.03 with low increase category, indicated by experimental reports. Some of undergraduate students have had the difficulties in detecting the relation of one part to another and to an overall structure. The findings suggested that giving feedback the procedural knowledge and experimental reports were important. Revising the experimental procedure that completed by some scaffolding questions were also needed.

  10. Development and Operation of a MUMPS Laboratory Information System: A Decade's Experience

    PubMed Central

    Miller, R. E.; Causey, J. P.; Moore, G. W.; Wilk, G. E.

    1988-01-01

    We describe more than a decade's experience with inhouse development and operation of a clinical laboratory computer system written in the MUMPS programming language for a 1000 bed teaching hospital. The JHLIS is a networked minicomputer system that supports accessioning, instrument monitoring, and result reporting for over 3000 specimens and 30,000 test results daily. Development and operation of the system accounts for 6% of the budget of the laboratories which have had a 70% increase in workload over the past decade. Our experience with purchased MUMPS software maintained and enhanced inhouse suggests an attractive alternative to lengthy inhouse development.

  11. Reduction of product-related species during the fermentation and purification of a recombinant IL-1 receptor antagonist at the laboratory and pilot scale.

    PubMed

    Schirmer, Emily B; Golden, Kathryn; Xu, Jin; Milling, Jesse; Murillo, Alec; Lowden, Patricia; Mulagapati, Srihariraju; Hou, Jinzhao; Kovalchin, Joseph T; Masci, Allyson; Collins, Kathryn; Zarbis-Papastoitsis, Gregory

    2013-08-01

    Through a parallel approach of tracking product quality through fermentation and purification development, a robust process was designed to reduce the levels of product-related species. Three biochemically similar product-related species were identified as byproducts of host-cell enzymatic activity. To modulate intracellular proteolytic activity, key fermentation parameters (temperature, pH, trace metals, EDTA levels, and carbon source) were evaluated through bioreactor optimization, while balancing negative effects on growth, productivity, and oxygen demand. The purification process was based on three non-affinity steps and resolved product-related species by exploiting small charge differences. Using statistical design of experiments for elution conditions, a high-resolution cation exchange capture column was optimized for resolution and recovery. Further reduction of product-related species was achieved by evaluating a matrix of conditions for a ceramic hydroxyapatite column. The optimized fermentation process was transferred from the 2-L laboratory scale to the 100-L pilot scale and the purification process was scaled accordingly to process the fermentation harvest. The laboratory- and pilot-scale processes resulted in similar process recoveries of 60 and 65%, respectively, and in a product that was of equal quality and purity to that of small-scale development preparations. The parallel approach for up- and downstream development was paramount in achieving a robust and scalable clinical process. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Simulations of Laboratory Astrophysics Experiments using the CRASH code

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Kuranz, Carolyn; Fein, Jeff; Wan, Willow; Young, Rachel; Keiter, Paul; Drake, R. Paul

    2015-11-01

    Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, magnetized flows, jets, and laser-produced plasmas. This work is funded by the following grants: DEFC52-08NA28616, DE-NA0001840, and DE-NA0002032.

  13. Laboratory plasma physics experiments using merging supersonic plasma jets

    DOE PAGES

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; ...

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: n e ≈ n i ~ 10¹⁶ cm⁻³, T e ≈ T i ≈ 1.4 eV, V jet ≈ 30–100 km/s, mean chargemore » $$\\bar{Z}$$ ≈ 1, sonic Mach number M s ≡ V jet/C s > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.« less

  14. Laboratory plasma physics experiments using merging supersonic plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: n e ≈ n i ~ 10¹⁶ cm⁻³, T e ≈ T i ≈ 1.4 eV, V jet ≈ 30–100 km/s, mean chargemore » $$\\bar{Z}$$ ≈ 1, sonic Mach number M s ≡ V jet/C s > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.« less

  15. 3D mapping of turbulence: a laboratory experiment

    NASA Astrophysics Data System (ADS)

    Le Louarn, Miska; Dainty, Christopher; Paterson, Carl; Tallon, Michel

    2000-07-01

    In this paper, we present the first experimental results of the 3D mapping method. 3D mapping of turbulence is a method to remove the cone effect with multiple laser guide stars and multiple deformable mirrors. A laboratory experiment was realized to verify the theoretical predictions. The setup consisted of two turbulent phase screens (made with liquid crystal devices) and a Shack-Hartmann wavefront sensor. We describe the interaction matrix involved in reconstructing Zernike commands for multiple deformable mirror from the slope measurements made from laser guide stars. It is shown that mirror commands can indeed be reconstructed with the 3D mapping method. Limiting factors of the method, brought to light by this experiment are discussed.

  16. Supplementing the Braden scale for pressure ulcer risk among medical inpatients: the contribution of self-reported symptoms and standard laboratory tests.

    PubMed

    Skogestad, Ingrid Johansen; Martinsen, Liv; Børsting, Tove Elisabet; Granheim, Tove Irene; Ludvigsen, Eirin Sigurdssøn; Gay, Caryl L; Lerdal, Anners

    2017-01-01

    To evaluate medical inpatients' symptom experience and selected laboratory blood results as indicators of their pressure ulcer risk as measured by the Braden scale. Pressure ulcers reduce quality of life and increase treatment costs. The prevalence of pressure ulcers is 6-23% in hospital populations, but literature suggests that most pressure ulcers are avoidable. Prospective, cross-sectional survey. Three hundred and twenty-eight patients admitted to medical wards in an acute hospital in Oslo, Norway consented to participate. Data were collected on 10 days between 2012-2014 by registered nurses and nursing students. Pressure ulcer risk was assessed using the Braden scale, and scores <19 indicated pressure ulcer risk. Skin examinations were categorised as normal or stages I-IV using established definitions. Comorbidities were collected by self-report. Self-reported symptom occurrence and distress were measured with 15 items from the Memorial Symptom Assessment Scale, and pain was assessed using two numeric rating scales. Admission laboratory data were collected from medical records. Prevalence of pressure ulcers was 11·9, and 20·4% of patients were identified as being at risk for developing pressure ulcers. Multivariable analysis showed that pressure ulcer risk was positively associated with age ≥80 years, vomiting, severe pain at rest, urination problems, shortness of breath and low albumin and was negatively associated with nervousness. Our study indicates that using patient-reported symptoms and standard laboratory results as supplemental indicators of pressure ulcer risk may improve identification of vulnerable patients, but replication of these findings in other study samples is needed. Nurses play a key role in preventing pressure ulcers during hospitalisation. A better understanding of the underlying mechanisms may improve the quality of care. Knowledge about symptoms associated with pressure ulcer risk may contribute to a faster clinical judgment of

  17. On the potential for using immersive virtual environments to support laboratory experiment contextualisation

    NASA Astrophysics Data System (ADS)

    Machet, Tania; Lowe, David; Gütl, Christian

    2012-12-01

    This paper explores the hypothesis that embedding a laboratory activity into a virtual environment can provide a richer experimental context and hence improve the understanding of the relationship between a theoretical model and the real world, particularly in terms of the model's strengths and weaknesses. While an identified learning objective of laboratories is to support the understanding of the relationship between models and reality, the paper illustrates that this understanding is hindered by inherently limited experiments and that there is scope for improvement. Despite the contextualisation of learning activities having been shown to support learning objectives in many fields, there is traditionally little contextual information presented during laboratory experimentation. The paper argues that the enhancing laboratory activity with contextual information affords an opportunity to improve students' understanding of the relationship between the theoretical model and the experiment (which is effectively a proxy for the complex real world), thereby improving their understanding of the relationship between the model and reality. The authors propose that these improvements can be achieved by setting remote laboratories within context-rich virtual worlds.

  18. Laboratory Modelling of Volcano Plumbing Systems: a review

    NASA Astrophysics Data System (ADS)

    Galland, Olivier; Holohan, Eoghan P.; van Wyk de Vries, Benjamin; Burchardt, Steffi

    2015-04-01

    Earth scientists have, since the XIX century, tried to replicate or model geological processes in controlled laboratory experiments. In particular, laboratory modelling has been used study the development of volcanic plumbing systems, which sets the stage for volcanic eruptions. Volcanic plumbing systems involve complex processes that act at length scales of microns to thousands of kilometres and at time scales from milliseconds to billions of years, and laboratory models appear very suitable to address them. This contribution reviews laboratory models dedicated to study the dynamics of volcano plumbing systems (Galland et al., Accepted). The foundation of laboratory models is the choice of relevant model materials, both for rock and magma. We outline a broad range of suitable model materials used in the literature. These materials exhibit very diverse rheological behaviours, so their careful choice is a crucial first step for the proper experiment design. The second step is model scaling, which successively calls upon: (1) the principle of dimensional analysis, and (2) the principle of similarity. The dimensional analysis aims to identify the dimensionless physical parameters that govern the underlying processes. The principle of similarity states that "a laboratory model is equivalent to his geological analogue if the dimensionless parameters identified in the dimensional analysis are identical, even if the values of the governing dimensional parameters differ greatly" (Barenblatt, 2003). The application of these two steps ensures a solid understanding and geological relevance of the laboratory models. In addition, this procedure shows that laboratory models are not designed to exactly mimic a given geological system, but to understand underlying generic processes, either individually or in combination, and to identify or demonstrate physical laws that govern these processes. From this perspective, we review the numerous applications of laboratory models to

  19. Transitioning EEG experiments away from the laboratory using a Raspberry Pi 2.

    PubMed

    Kuziek, Jonathan W P; Shienh, Axita; Mathewson, Kyle E

    2017-02-01

    Electroencephalography (EEG) experiments are typically performed in controlled laboratory settings to minimise noise and produce reliable measurements. These controlled conditions also reduce the applicability of the obtained results to more varied environments and may limit their relevance to everyday situations. Advances in computer portability may increase the mobility and applicability of EEG results while decreasing costs. In this experiment we show that stimulus presentation using a Raspberry Pi 2 computer provides a low cost, reliable alternative to a traditional desktop PC in the administration of EEG experimental tasks. Significant and reliable MMN and P3 activity, typical event-related potentials (ERPs) associated with an auditory oddball paradigm, were measured while experiments were administered using the Raspberry Pi 2. While latency differences in ERP triggering were observed between systems, these differences reduced power only marginally, likely due to the reduced processing power of the Raspberry Pi 2. An auditory oddball task administered using the Raspberry Pi 2 produced similar ERPs to those derived from a desktop PC in a laboratory setting. Despite temporal differences and slight increases in trials needed for similar statistical power, the Raspberry Pi 2 can be used to design and present auditory experiments comparable to a PC. Our results show that the Raspberry Pi 2 is a low cost alternative to the desktop PC when administering EEG experiments and, due to its small size and low power consumption, will enable mobile EEG experiments unconstrained by a traditional laboratory setting. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Experience of quality management system in a clinical laboratory in Nigeria

    PubMed Central

    Sylvester-Ikondu, Ugochukwu; Onwuamah, Chika K.; Salu, Olumuyiwa B.; Ige, Fehintola A.; Meshack, Emily; Aniedobe, Maureen; Amoo, Olufemi S.; Okwuraiwe, Azuka P.; Okhiku, Florence; Okoli, Chika L.; Fasela, Emmanuel O.; Odewale, Ebenezer. O.; Aleshinloye, Roseline O.; Olatunji, Micheal; Idigbe, Emmanuel O.

    2012-01-01

    Issues Quality-management systems (QMS) are uncommon in clinical laboratories in Nigeria, and until recently, none of the nation’s 5 349 clinical laboratories have been able to attain the certifications necessary to begin the process of attaining international accreditation. Nigeria’s Human Virology Laboratory (HVL), however, began implementation of a QMS in 2006, and in 2008 it was determined that the laboratory conformed to the requirements of ISO 9001:2000 (now 2008), making it the first diagnostic laboratory to be certified in Nigeria. The HVL has now applied for the World Health Organization (WHO) accreditation preparedness scheme. The experience of the QMS implementation process and the lessons learned therein are shared here. Description In 2005, two personnel from the HVL spent time studying quality systems in a certified clinical laboratory in Dakar, Senegal. Following this peer-to-peer technical assistance, several training sessions were undertaken by HVL staff, a baseline assessment was conducted, and processes were established. The HVL has monitored its quality indicators and conducted internal and external audits; these analyses (from 2007 to 2009) are presented herein. Lessons learned Although there was improvement in the pre-analytical and analytical indicators analysed and although data-entry errors decreased in the post-analytical process, the delay in returning laboratory test results increased significantly. There were several factors identified as causes for this delay and all of these have now been addressed except for an identified need for automation of some high-volume assays (currently being negotiated). Internal and external audits showed a trend of increasing non-conformities which could be the result of personnel simply becoming lax over time. Application for laboratory accreditation, however, could provide the renewed vigour needed to correct these non-conformities. Recommendation This experience shows that sustainability of the QMS

  1. Closing the loop on improvement: Packaging experience in the Software Engineering Laboratory

    NASA Technical Reports Server (NTRS)

    Waligora, Sharon R.; Landis, Linda C.; Doland, Jerry T.

    1994-01-01

    As part of its award-winning software process improvement program, the Software Engineering Laboratory (SEL) has developed an effective method for packaging organizational best practices based on real project experience into useful handbooks and training courses. This paper shares the SEL's experience over the past 12 years creating and updating software process handbooks and training courses. It provides cost models and guidelines for successful experience packaging derived from SEL experience.

  2. The digital computer as a metaphor for the perfect laboratory experiment: Loophole-free Bell experiments

    NASA Astrophysics Data System (ADS)

    De Raedt, Hans; Michielsen, Kristel; Hess, Karl

    2016-12-01

    Using Einstein-Podolsky-Rosen-Bohm experiments as an example, we demonstrate that the combination of a digital computer and algorithms, as a metaphor for a perfect laboratory experiment, provides solutions to problems of the foundations of physics. Employing discrete-event simulation, we present a counterexample to John Bell's remarkable "proof" that any theory of physics, which is both Einstein-local and "realistic" (counterfactually definite), results in a strong upper bound to the correlations that are being measured in Einstein-Podolsky-Rosen-Bohm experiments. Our counterexample, which is free of the so-called detection-, coincidence-, memory-, and contextuality loophole, violates this upper bound and fully agrees with the predictions of quantum theory for Einstein-Podolsky-Rosen-Bohm experiments.

  3. Persistence in soil of Miscanthus biochar in laboratory and field conditions

    PubMed Central

    Budai, Alice; O’Toole, Adam; Ma, Xingzhu; Rumpel, Cornelia; Abiven, Samuel

    2017-01-01

    Evaluating biochars for their persistence in soil under field conditions is an important step towards their implementation for carbon sequestration. Current evaluations might be biased because the vast majority of studies are short-term laboratory incubations of biochars produced in laboratory-scale pyrolyzers. Here our objective was to investigate the stability of a biochar produced with a medium-scale pyrolyzer, first through laboratory characterization and stability tests and then through field experiment. We also aimed at relating properties of this medium-scale biochar to that of a laboratory-made biochar with the same feedstock. Biochars were made of Miscanthus biomass for isotopic C-tracing purposes and produced at temperatures between 600 and 700°C. The aromaticity and degree of condensation of aromatic rings of the medium-scale biochar was high, as was its resistance to chemical oxidation. In a 90-day laboratory incubation, cumulative mineralization was 0.1% for the medium-scale biochar vs. 45% for the Miscanthus feedstock, pointing to the absence of labile C pool in the biochar. These stability results were very close to those obtained for biochar produced at laboratory-scale, suggesting that upscaling from laboratory to medium-scale pyrolyzers had little effect on biochar stability. In the field, the medium-scale biochar applied at up to 25 t C ha-1 decomposed at an estimated 0.8% per year. In conclusion, our biochar scored high on stability indices in the laboratory and displayed a mean residence time > 100 years in the field, which is the threshold for permanent removal in C sequestration projects. PMID:28873471

  4. Design of laboratory experiments to study photoionization fronts driven by thermal sources

    DOE PAGES

    Drake, R. P.; Hazak, G.; Keiter, P. A.; ...

    2016-12-20

    This study analyzes the requirements of a photoionization-front experiment that could be driven in the laboratory, using thermal sources to produce the necessary flux of ionizing photons. It reports several associated conclusions. Such experiments will need to employ the largest available facilities, capable of delivering many kJ to MJ of energy to an x-ray source. They will use this source to irradiate a volume of neutral gas, likely of N, on a scale of a few mm to a few cm, increasing with source energy. For a gas pressure of several to ten atmospheres at room temperature, and a sourcemore » temperature near 100 eV, one will be able to drive a photoionization front through a system of tens to hundreds of photon mean free paths. The front should make the familiar transition from the so-called R-Type to D-Type as the radiation flux diminishes with distance. The N is likely to reach the He-like state. Preheating from the energetic photons appears unlikely to become large enough to alter the essential dynamics of the front beyond some layer near the surface. For well-chosen experimental conditions, competing energy transport mechanisms are small.« less

  5. DESIGN OF LABORATORY EXPERIMENTS TO STUDY PHOTOIONIZATION FRONTS DRIVEN BY THERMAL SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, R. P.; Keiter, P. A.; Davis, J. S.

    2016-12-20

    This paper analyzes the requirements of a photoionization-front experiment that could be driven in the laboratory, using thermal sources to produce the necessary flux of ionizing photons. It reports several associated conclusions. Such experiments will need to employ the largest available facilities, capable of delivering many kJ to MJ of energy to an X-ray source. They will use this source to irradiate a volume of neutral gas, likely of N, on a scale of a few mm to a few cm, increasing with source energy. For a gas pressure of several to ten atmospheres at room temperature, and a sourcemore » temperature near 100 eV, one will be able to drive a photoionization front through a system of tens to hundreds of photon mean free paths. The front should make the familiar transition from the so-called R-Type to D-Type as the radiation flux diminishes with distance. The N is likely to reach the He-like state. Preheating from the energetic photons appears unlikely to become large enough to alter the essential dynamics of the front beyond some layer near the surface. For well-chosen experimental conditions, competing energy transport mechanisms are small.« less

  6. Dynamic and impact contact mechanics of geologic materials: Grain-scale experiments and modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, David M.; Hopkins, Mark A.; Ketcham, Stephen A.

    2013-06-18

    High fidelity treatments of the generation and propagation of seismic waves in naturally occurring granular materials is becoming more practical given recent advancements in our ability to model complex particle shapes and their mechanical interaction. Of particular interest are the grain-scale processes that are activated by impact events and the characteristics of force transmission through grain contacts. To address this issue, we have developed a physics based approach that involves laboratory experiments to quantify the dynamic contact and impact behavior of granular materials and incorporation of the observed behavior indiscrete element models. The dynamic experiments do not involve particle damagemore » and emphasis is placed on measured values of contact stiffness and frictional loss. The normal stiffness observed in dynamic contact experiments at low frequencies (e.g., 10 Hz) are shown to be in good agreement with quasistatic experiments on quartz sand. The results of impact experiments - which involve moderate to extensive levels of particle damage - are presented for several types of naturally occurring granular materials (several quartz sands, magnesite and calcium carbonate ooids). Implementation of the experimental findings in discrete element models is discussed and the results of impact simulations involving up to 5 Multiplication-Sign 105 grains are presented.« less

  7. Lidocaine Metabolism and Toxicity: A Laboratory Experiment for Dental Students.

    ERIC Educational Resources Information Center

    Kusek, J. C.

    1980-01-01

    A laboratory exercise for dental students is presented using a toxic dose of lidocaine in place of an anesthetic dose of pentobarbital. The use of lidocaine demonstrates its toxic and lethal actions and increases the relevance of the experience for dental students. (Author/MLW)

  8. Nano iron particles transport in fractured rocks: laboratory and field scale

    NASA Astrophysics Data System (ADS)

    Cohen, Meirav; Weisbrod, Noam

    2017-04-01

    Our study deals with the transport potential of nano iron particles (NIPs) in fractured media. Two different systemswere used to investigate transport on two scales: (1 )a laboratory flow system of a naturally discrete fractured chalk core, 0.43 and 0.18 m in length and diamater, respectively; and (2) a field system of hydraulically connected boreholes located 47 m apart which penetrate a fractured chalk aquifer. We started by testing the transport potential of various NIPs under different conditions. Particle stability experiments were conducted using various NIPs and different stabilizersat two ionic strengths. Overall, four different NIPs and three stabilizers were tested. Particles and solution properties (stability, aggregate/particle size, viscosity and density) were tested in batch experiments, and transport experiments (breakthrough curves (BTCs) and recovery) were conduted in the fractured chalk core. We have learned that the key parameters controlling particle transport are the particle/aggregate size and stability, which govern NIP settling rates and ultimately their migration distance. The governing mechanism controlling NIP transport was found to be sedimentation, and to a much lesser extent, processes such as diffusion, straining or interception. On the basis of these experiments, Carbo-Iron® particles ( 800 nm activated carbon particles doped with nano zero valent iron particles) and Carboxymethyl cellulose (CMC) stabilizer were selected for the field test injection. In the field, Carbo-Iron particles were initially injected into the fractured aquifer using an excess of stabilizer in order to ensure maximum recovery. This resulted in high particle recovery and fast arrival time, similar to the ideal tracer (iodide). The high recovery of the stable particle solution emphasized the importance of particle stability for transport in fractures. To test mobility manipulation potential of the particles and simulate more realistic scenarios, a second field

  9. An Analysis of High School Students' Perceptions and Academic Performance in Laboratory Experiences

    ERIC Educational Resources Information Center

    Mirchin, Robert Douglas

    2012-01-01

    This research study is an investigation of student-laboratory (i.e., lab) learning based on students' perceptions of experiences using questionnaire data and evidence of their science-laboratory performance based on paper-and-pencil assessments using Maryland-mandated criteria, Montgomery County Public Schools (MCPS) criteria, and published…

  10. Real-time laboratory exercises to test contingency plans for classical swine fever: experiences from two national laboratories.

    PubMed

    Koenen, F; Uttenthal, A; Meindl-Böhmer, A

    2007-12-01

    In order to adequately and efficiently handle outbreaks of contagious diseases such as classical swine fever (CSF), foot and mouth disease or highly pathogenic avian influenza, competent authorities and the laboratories involved have to be well prepared and must be in possession of functioning contingency plans. These plans should ensure that in the event of an outbreak access to facilities, equipment, resources, trained personnel, and all other facilities needed for the rapid and efficient eradication of the outbreak is guaranteed, and that the procedures to follow are well rehearsed. It is essential that these plans are established during 'peace-time' and are reviewed regularly. This paper provides suggestions on how to perform laboratory exercises to test preparedness and describes the experiences of two national reference laboratories for CSF. The major lesson learnt was the importance of a well-documented laboratory contingency plan. The major pitfalls encountered were shortage of space, difficulties in guaranteeing biosecurity and sufficient supplies of sterile equipment and consumables. The need for a standardised laboratory information management system, that is used by all those involved in order to reduce the administrative load, is also discussed.

  11. Organic Laboratory Experiments.

    ERIC Educational Resources Information Center

    Smith, Sherrel

    1990-01-01

    Detailed is a method in which short pieces of teflon tubing may be used for collection tubes for collecting preparative fractions from gas chromatographs. Material preparation, laboratory procedures, and results of this method are discussed. (CW)

  12. Development of Sensorial Experiments and Their Implementation into Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Bromfield Lee, Deborah Christina

    2009-01-01

    "Visualization" of chemical phenomena often has been limited in the teaching laboratories to the sense of sight. We have developed chemistry experiments that rely on senses other than eyesight to investigate chemical concepts, make quantitative determinations, and familiarize students with chemical techniques traditionally designed using only…

  13. Synthesis of Methyl Cyclopentanecarboxylate: A Laboratory Experience in Carbon Rearrangement

    ERIC Educational Resources Information Center

    Orchard, Alexandra; Maniquis, Roxanne V.; Salzameda, Nicholas T.

    2016-01-01

    We present a novel guided inquiry second semester organic chemistry laboratory rearrangement experiment. Students performed the Favorskii Rearrangement to obtain methyl cyclopentanecarboxylate in good yields. The students learned about the individual steps of the Favorskii mechanism and were required to propose a complete reaction mechanism and…

  14. The physics of musical scales: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Durfee, Dallin S.; Colton, John S.

    2015-10-01

    The theory of musical scales involves mathematical ratios, harmonic resonators, beats, and human perception and provides an interesting application of the physics of waves and sound. We first review the history and physics of musical scales, with an emphasis on four historically important scales: twelve-tone equal temperament, Pythagorean, quarter-comma meantone, and Ptolemaic just intonation. We then present an easy way for students and teachers to directly experience the qualities of different scales using MIDI synthesis.

  15. Environmental fate of naproxen, carbamazepine and triclosan in wastewater, surface water and wastewater irrigated soil - Results of laboratory scale experiments.

    PubMed

    Durán-Álvarez, J C; Prado, B; González, D; Sánchez, Y; Jiménez-Cisneros, B

    2015-12-15

    Lab-scale photolysis, biodegradation and transport experiments were carried out for naproxen, carbamazepine and triclosan in soil, wastewater and surface water from a region where untreated wastewater is used for agricultural irrigation. Results showed that both photolysis and biodegradation occurred for the three emerging pollutants in the tested matrices as follows: triclosan>naproxen>carbamazepine. The highest photolysis rate for the three pollutants was obtained in experiments using surface water, while biodegradation rates were higher in wastewater and soil than in surface water. Carbamazepine showed to be recalcitrant to biodegradation both in soil and water; although photolysis occurred at a higher level than biodegradation, this compound was poorly degraded by natural processes. Transport experiments showed that naproxen was the most mobile compound through the first 30cm of the soil profile; conversely, the mobility of carbamazepine and triclosan through the soil was delayed. Biodegradation of target pollutants occurred within soil columns during transport experiments. Triclosan was not detected either in leachates or the soil in columns, suggesting its complete biodegradation. Data of these experiments can be used to develop more reliable fate-on-the-field and environmental risk assessment studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Laboratory experiments in the study of the chemistry of the outer planets.

    PubMed

    Scattergood, T W

    1987-01-01

    The investigation of chemical evolution of bodies in our solar system has, in the past, included observations, theoretical modeling, and laboratory simulations. Of these programs, the last one has been the most criticized due to the inherent difficulties in accurately recreating alien environments in the laboratory. Processes such as wall reactions and changes in chemistry due to difficulties in achieving realistic conditions of temperature, pressure, composition, and energy flux may yield results which are not truly representative of the systems being modeled. However, many laboratory studies have been done which have yielded data useful in planetary science. Gross simulations of atmospheric chemistry have placed constraints on the nature of complex molecules expected in planetary atmospheres. More precise studies of specific chemical processes have provided information about the sources and properties of product gases and aerosols. Determinations of basic properties such as spectral features and reaction rate constants yield data useful in the interpretation of observations and in computational modeling. Alone, and in conjunction with modeling, laboratory experiments will continue to be used to further our understanding of the outer solar system, and some experiments that need to be done are listed.

  17. Zero-Gravity Atmospheric Cloud Physics Experiment Laboratory engineering concepts/design tradeoffs. Volume 1: Study results

    NASA Technical Reports Server (NTRS)

    Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.

    1974-01-01

    The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.

  18. A Unit Cell Laboratory Experiment: Marbles, Magnets, and Stacking Arrangements

    ERIC Educational Resources Information Center

    Collins, David C.

    2011-01-01

    An undergraduate first-semester general chemistry laboratory experiment introducing face-centered, body-centered, and simple cubic unit cells is presented. Emphasis is placed on the stacking arrangement of solid spheres used to produce a particular unit cell. Marbles and spherical magnets are employed to prepare each stacking arrangement. Packing…

  19. Weighing Photons Using Bathroom Scales: A Thought Experiment

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2010-01-01

    Jay Orear, in his introductory physics text, defined the weight of a person as the reading one gets when standing on a (properly calibrated) bathroom scale. Here we will use Jay's definition of weight in a thought experiment to measure the weight of a photon. The thought experiment uses the results of the Pound-Rebka-Snider experiments, Compton…

  20. Eight year experience in open ended instrumentation laboratory

    NASA Astrophysics Data System (ADS)

    Marques, Manuel B.; Rosa, Carla C.; Marques, Paulo V. S.

    2015-10-01

    When designing laboratory courses in a Physics Major we consider a range of objectives: teaching Physics; developing lab competencies; instrument control and data acquisition; learning about measurement errors and error propagation; an introduction to project management; team work skills and scientific writing. But nowadays we face pressure to decrease laboratory hours due to the cost involved. Many universities are replacing lab classes for simulation activities, hiring PhD. and master students to give first year lab classes, and reducing lab hours. This leads to formatted lab scripts and poor autonomy of the students, and failure to enhance creativity and autonomy. In this paper we present our eight year experience with a laboratory course that is mandatory in the third year of Physics and Physical Engineering degrees. Since the students had previously two standard laboratory courses, we focused on teaching instrumentation and giving students autonomy. The course is divided in two parts: one third is dedicated to learn computer controlled instrumentation and data acquisition (based in LabView); the final 2/3 is dedicated to a group project. In this project, the team (2 or 3 students) must develop a project and present it in a typical conference format at the end of the semester. The project assignments are usually not very detailed (about two or three lines long), giving only general guidelines pointing to a successful project (students often recycle objectives putting forward a very personal project); all of them require assembling some hardware. Due to our background, about one third of the projects are related to Optics.

  1. Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kneafsey, T.; Pruess, K.

    2009-09-01

    Injection of carbon dioxide (CO{sub 2}) into saline aquifers confined by low-permeability cap rock will result in a layer of CO{sub 2} overlying the brine. Dissolution of CO{sub 2} into the brine increases the brine density, resulting in an unstable situation in which more-dense brine overlies less-dense brine. This gravitational instability could give rise to density-driven convection of the fluid, which is a favorable process of practical interest for CO{sub 2} storage security because it accelerates the transfer of buoyant CO{sub 2} into the aqueous phase, where it is no longer subject to an upward buoyant drive. Laboratory flow visualizationmore » tests in transparent Hele-Shaw cells have been performed to elucidate the processes and rates of this CO{sub 2} solute-driven convection (CSC). Upon introduction of CO{sub 2} into the system, a layer of CO{sub 2}-laden brine forms at the CO{sub 2}-water interface. Subsequently, small convective fingers form, which coalesce, broaden, and penetrate into the test cell. Images and time-series data of finger lengths and wavelengths are presented. Observed CO{sub 2} uptake of the convection system indicates that the CO{sub 2} dissolution rate is approximately constant for each test and is far greater than expected for a diffusion-only scenario. Numerical simulations of our system show good agreement with the experiments for onset time of convection and advancement of convective fingers. There are differences as well, the most prominent being the absence of cell-scale convection in the numerical simulations. This cell-scale convection observed in the experiments is probably initiated by a small temperature gradient induced by the cell illumination.« less

  2. Georgia Teachers in Academic Laboratories: Research Experiences in the Geosciences

    NASA Astrophysics Data System (ADS)

    Barrett, D.

    2005-12-01

    The Georgia Intern-Fellowships for Teachers (GIFT) is a collaborative effort designed to enhance mathematics and science experiences of Georgia teachers and their students through summer research internships for teachers. By offering business, industry, public science institute and research summer fellowships to teachers, GIFT provides educators with first-hand exposure to the skills and knowledge necessary for the preparation of our future workforce. Since 1991, GIFT has placed middle and high school mathematics, science and technology teachers in over 1000 positions throughout the state. In these fellowships, teachers are involved in cutting edge scientific and engineering research, data analysis, curriculum development and real-world inquiry and problem solving, and create Action Plans to assist them in translating the experience into changed classroom practice. Since 2004, an increasing number of high school students have worked with their teachers in research laboratories. The GIFT program places an average of 75 teachers per summer into internship positions. In the summer of 2005, 83 teachers worked in corporate and research environments throughout the state of Georgia and six of these positions involved authentic research in geoscience related departments at the Georgia Institute of Technology, including aerospace engineering and the earth and atmospheric sciences laboratories. This presentation will review the history and the structure of the program including the support system for teachers and mentors as well as the emphasis on inquiry based learning strategies. The focus of the presentation will be a comparison of two placement models of the teachers placed in geoscience research laboratories: middle school earth science teachers placed in a 6 week research experience and high school teachers placed in 7 week internships with teams of 3 high school students. The presentation will include interviews with faculty to determine the value of these experiences

  3. Does the Lack of Hands-On Experience in a Remotely Delivered Laboratory Course Affect Student Learning?

    ERIC Educational Resources Information Center

    Abdel-Salam, Tarek; Kauffman, Paul J.; Crossman, Gary

    2006-01-01

    Educators question whether performing a laboratory experiment as an observer (non-hands-on), such as conducted in a distance education context, can be as effective a learning tool as personally performing the experiment in a laboratory environment. The present paper investigates this issue by comparing the performance of distance education…

  4. Benchmarking in a differentially heated rotating annulus experiment: Multiple equilibria in the light of laboratory experiments and simulations

    NASA Astrophysics Data System (ADS)

    Vincze, Miklos; Harlander, Uwe; Borchert, Sebastian; Achatz, Ulrich; Baumann, Martin; Egbers, Christoph; Fröhlich, Jochen; Hertel, Claudia; Heuveline, Vincent; Hickel, Stefan; von Larcher, Thomas; Remmler, Sebastian

    2014-05-01

    In the framework of the German Science Foundation's (DFG) priority program 'MetStröm' various laboratory experiments have been carried out in a differentially heated rotating annulus configuration in order to test, validate and tune numerical methods to be used for modeling large-scale atmospheric processes. This classic experimental set-up is well known since the late 1940s and is a widely studied minimal model of the general mid-latitude atmospheric circulation. The two most relevant factors of cyclogenesis, namely rotation and meridional temperature gradient are quite well captured in this simple arrangement. The tabletop-size rotating tank is divided into three sections by coaxial cylindrical sidewalls. The innermost section is cooled whereas the outermost annular cavity is heated, therefore the working fluid (de-ionized water) in the middle annular section experiences differential heat flow, which imposes thermal (density) stratification on the fluid. At high enough rotation rates the isothermal surfaces tilt, leading to baroclinic instability. The extra potential energy stored in this unstable configuration is then converted into kinetic energy, exciting drifting wave patterns of temperature and momentum anomalies. The signatures of these baroclinic waves at the free water surface have been analysed via infrared thermography in a wide range of rotation rates (keeping the radial temperature difference constant) and under different initial conditions (namely, initial spin-up and "spin-down"). Paralelly to the laboratory simulations of BTU Cottbus-Senftenberg, five other groups from the MetStröm collaboration have conducted simulations in the same parameter regime using different numerical approaches and solvers, and applying different initial conditions and perturbations for stability analysis. The obtained baroclinic wave patterns have been evaluated via determining and comparing their Empirical Orthogonal Functions (EOFs), drift rates and dominant wave

  5. An Undergraduate Biochemistry Laboratory Course with an Emphasis on a Research Experience

    ERIC Educational Resources Information Center

    Caspers, Mary Lou; Roberts-Kirchhoff, Elizabeth S.

    2003-01-01

    In their junior or senior year, biochemistry majors at the University of Detroit Mercy are required to take a two-credit biochemistry laboratory course. Five years ago, the format of this course was changed from structured experiments to a more project-based approach. Several structured experiments were included at the beginning of the course…

  6. Small-Scale Experiments.10-gallon drum experiment summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, David M.

    2015-02-05

    A series of sub-scale (10-gallon) drum experiments were conducted to characterize the reactivity, heat generation, and gas generation of mixtures of chemicals believed to be present in the drum (68660) known to have breached in association with the radiation release event at the Waste Isolation Pilot Plant (WIPP) on February 14, 2014, at a scale expected to be large enough to replicate the environment in that drum but small enough to be practical, safe, and cost effective. These tests were not intended to replicate all the properties of drum 68660 or the event that led to its breach, or tomore » validate a particular hypothesis of the release event. They were intended to observe, in a controlled environment and with suitable diagnostics, the behavior of simple mixtures of chemicals in order to determine if they could support reactivity that could result in ignition or if some other ingredient or event would be necessary. There is a significant amount of uncertainty into the exact composition of the barrel; a limited sub-set of known components was identified, reviewed with Technical Assessment Team (TAT) members, and used in these tests. This set of experiments was intended to provide a framework to postulate realistic, data-supported hypotheses for processes that occur in a “68660-like” configuration, not definitively prove what actually occurred in 68660.« less

  7. An Experiment Using Sucrose Density Gradients in the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Turchi, Sandra L.; Weiss, Monica

    1988-01-01

    Describes an experiment to be performed in an undergraduate biochemistry laboratory that is based on a gradient centrifugation system employing a simple bench top centrifuge, a freezer, and frozen surcose gradient solution to separate macromolecules and subcellular components. (CW)

  8. Development and Use of Online Prelaboratory Activities in Organic Chemistry to Improve Students' Laboratory Experience

    ERIC Educational Resources Information Center

    Chaytor, Jennifer L.; Al Mughalaq, Mohammad; Butler, Hailee

    2017-01-01

    Online prelaboratory videos and quizzes were prepared for all experiments in CHEM 231, Organic Chemistry I Laboratory. It was anticipated that watching the videos would help students be better prepared for the laboratory, decrease their anxiety surrounding the laboratory, and increase their understanding of the theories and concepts presented.…

  9. Students' motivation toward laboratory work in physiology teaching.

    PubMed

    Dohn, Niels Bonderup; Fago, Angela; Overgaard, Johannes; Madsen, Peter Teglberg; Malte, Hans

    2016-09-01

    The laboratory has been given a central role in physiology education, and teachers report that it is motivating for students to undertake experimental work on live animals or measuring physiological responses on the students themselves. Since motivation is a critical variable for academic learning and achievement, then we must concern ourselves with questions that examine how students engage in laboratory work and persist at such activities. The purpose of the present study was to investigate how laboratory work influences student motivation in physiology. We administered the Lab Motivation Scale to assess our students' levels of interest, willingness to engage (effort), and confidence in understanding (self-efficacy). We also asked students about the role of laboratory work for their own learning and their experience in the physiology laboratory. Our results documented high levels of interest, effort, and self-efficacy among the students. Correlation analyses were performed on the three motivation scales and exam results, yet a significant correlation was only found between self-efficacy in laboratory work and academic performance at the final exam. However, almost all students reported that laboratory work was very important for learning difficult concepts and physiological processes (e.g., action potential), as the hands-on experiences gave a more concrete idea of the learning content and made the content easier to remember. These results have implications for classroom practice as biology students find laboratory exercises highly motivating, despite their different personal interests and subject preferences. This highlights the importance of not replacing laboratory work by other nonpractical approaches, for example, video demonstrations or computer simulations. Copyright © 2016 The American Physiological Society.

  10. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte harvests a potato grown in the Biomass Production Chamber of the Controlled environment Life Support system (CELSS) in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' His work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  11. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte (right) and Cheryl Mackowiak harvest potatoes grown in the Biomass Production Chamber of the Controlled Enviornment Life Support System (CELSS in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  12. A small-scale experiment using microwave interferometry to investigate detonation and shock-to-detonation transition in pressed TATB

    NASA Astrophysics Data System (ADS)

    Renslow, Peter John

    A small-scale characterization test utilizing microwave interferometry was developed to dynamically measure detonation and run to detonation distance in explosives. The technique was demonstrated by conducting two experimental series on the well-characterized explosive triaminotrinitrobenzene (TATB). In the first experiment series, the detonation velocity was observed at varying porosity. The velocity during TATB detonation matched well with predictions made using CHEETAH and an empirical relation from the Los Alamos National Laboratory (LANL). The microwave interferometer also captured unsteady propagation of the reaction when a low density charge was near the failure diameter. In the second experiment series, Pop-plots were produced using data obtained from shock initiation of the TATB through a polymethyl methacrylate (PMMA) attenuator. The results compared well to wedge test data from LANL despite the microwave interferometer test being of substantially smaller scale. The results showed the test method is attractive for rapid characterization of new and improvised explosive materials.

  13. Acoustic Emission Detected by Matched Filter Technique in Laboratory Earthquake Experiment

    NASA Astrophysics Data System (ADS)

    Wang, B.; Hou, J.; Xie, F.; Ren, Y.

    2017-12-01

    Acoustic Emission in laboratory earthquake experiment is a fundamental measures to study the mechanics of the earthquake for instance to characterize the aseismic, nucleation, as well as post seismic phase or in stick slip experiment. Compared to field earthquake, AEs are generally recorded when they are beyond threshold, so some weak signals may be missing. Here we conducted an experiment on a 1.1m×1.1m granite with a 1.5m fault and 13 receivers with the same sample rate of 3MHz are placed on the surface. We adopt continues record and a matched filter technique to detect low-SNR signals. We found there are too many signals around the stick-slip and the P- arrival picked by manual may be time-consuming. So, we combined the short-term average to long-tem-average ratio (STA/LTA) technique with Autoregressive-Akaike information criterion (AR-AIC) technique to pick the arrival automatically and found mostly of the P- arrival accuracy can satisfy our demand to locate signals. Furthermore, we will locate the signals and apply a matched filter technique to detect low-SNR signals. Then, we can see if there is something interesting in laboratory earthquake experiment. Detailed and updated results will be present in the meeting.

  14. Sampling Participants’ Experience in Laboratory Experiments: Complementary Challenges for More Complete Data Collection

    PubMed Central

    McAuliffe, Alan; McGann, Marek

    2016-01-01

    Speelman and McGann’s (2013) examination of the uncritical way in which the mean is often used in psychological research raises questions both about the average’s reliability and its validity. In the present paper, we argue that interrogating the validity of the mean involves, amongst other things, a better understanding of the person’s experiences, the meaning of their actions, at the time that the behavior of interest is carried out. Recently emerging approaches within Psychology and Cognitive Science have argued strongly that experience should play a more central role in our examination of behavioral data, but the relationship between experience and behavior remains very poorly understood. We outline some of the history of the science on this fraught relationship, as well as arguing that contemporary methods for studying experience fall into one of two categories. “Wide” approaches tend to incorporate naturalistic behavior settings, but sacrifice accuracy and reliability in behavioral measurement. “Narrow” approaches maintain controlled measurement of behavior, but involve too specific a sampling of experience, which obscures crucial temporal characteristics. We therefore argue for a novel, mid-range sampling technique, that extends Hurlburt’s descriptive experience sampling, and adapts it for the controlled setting of the laboratory. This controlled descriptive experience sampling may be an appropriate tool to help calibrate both the mean and the meaning of an experimental situation with one another. PMID:27242588

  15. An Advanced Undergraduate Chemistry Laboratory Experiment Exploring NIR Spectroscopy and Chemometrics

    ERIC Educational Resources Information Center

    Wanke, Randall; Stauffer, Jennifer

    2007-01-01

    An advanced undergraduate chemistry laboratory experiment to study the advantages and hazards of the coupling of NIR spectroscopy and chemometrics is described. The combination is commonly used for analysis and process control of various ingredients used in agriculture, petroleum and food products.

  16. Laboratory Experiment Investigating the Impact of Ocean Acidification on Calcareous Organisms

    ERIC Educational Resources Information Center

    Perera, Alokya P.; Bopegedera, A. M. R. P.

    2014-01-01

    The increase in ocean acidity since preindustrial times may have deleterious consequences for marine organisms, particularly those with calcareous structures. We present a laboratory experiment to investigate this impact with general, introductory, environmental, and nonmajors chemistry students. For simplicity and homogeneity, calcite was…

  17. Kinetics of Carboxylesterase: An Experiment for Biochemistry and Physical Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Nichols, C. S.; Cromartie, T. H.

    1979-01-01

    Describes a convenient, inexpensive experiment in enzyme kinetics developed for the undergraduate biochemistry laboratory at the University of Virginia. Required are a single beam visible spectrophotometer with output to a recorder, a constant temperature, a commercially available enzyme, substrates, and buffers. (BT)

  18. HalX: an open-source LIMS (Laboratory Information Management System) for small- to large-scale laboratories.

    PubMed

    Prilusky, Jaime; Oueillet, Eric; Ulryck, Nathalie; Pajon, Anne; Bernauer, Julie; Krimm, Isabelle; Quevillon-Cheruel, Sophie; Leulliot, Nicolas; Graille, Marc; Liger, Dominique; Trésaugues, Lionel; Sussman, Joel L; Janin, Joël; van Tilbeurgh, Herman; Poupon, Anne

    2005-06-01

    Structural genomics aims at the establishment of a universal protein-fold dictionary through systematic structure determination either by NMR or X-ray crystallography. In order to catch up with the explosive amount of protein sequence data, the structural biology laboratories are spurred to increase the speed of the structure-determination process. To achieve this goal, high-throughput robotic approaches are increasingly used in all the steps leading from cloning to data collection and even structure interpretation is becoming more and more automatic. The progress made in these areas has begun to have a significant impact on the more 'classical' structural biology laboratories, dramatically increasing the number of individual experiments. This automation creates the need for efficient data management. Here, a new piece of software, HalX, designed as an 'electronic lab book' that aims at (i) storage and (ii) easy access and use of all experimental data is presented. This should lead to much improved management and tracking of structural genomics experimental data.

  19. Laboratory Scale Coal And Biomass To Drop-In Fuels (CBDF) Production And Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lux, Kenneth; Imam, Tahmina; Chevanan, Nehru

    This Final Technical Report describes the work and accomplishments of the project entitled, “Laboratory Scale Coal and Biomass to Drop-In Fuels (CBDF) Production and Assessment.” The main objective of the project was to fabricate and test a lab-scale liquid-fuel production system using coal containing different percentages of biomass such as corn stover and switchgrass at a rate of 2 liters per day. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. The system was designed, fabricated, tested, and assessed for economic and environmental feasibility relative to competing technologies.

  20. Strain Localization and Weakening Processes in Viscously Deforming Rocks: Numerical Modeling Based on Laboratory Torsion Experiments

    NASA Astrophysics Data System (ADS)

    Doehmann, M.; Brune, S.; Nardini, L.; Rybacki, E.; Dresen, G.

    2017-12-01

    Strain localization is an ubiquitous process in earth materials observed over a broad range of scales in space and time. Localized deformation and the formation of shear zones and faults typically involves material softening by various processes, like shear heating and grain size reduction. Numerical modeling enables us to study the complex physical and chemical weakening processes by separating the effect of individual parameters and boundary conditions. Using simple piece-wise linear functions for the parametrization of weakening processes allows studying a system at a chosen (lower) level of complexity (e.g. Cyprych et al., 2016). In this study, we utilize a finite element model to test two weakening laws that reduce the strength of the material depending on either the I) amount of accumulated strain or II) deformational work. Our 2D Cartesian models are benchmarked to single inclusion torsion experiments performed at elevated temperatures of 900 °C and pressures of up to 400 MPa (Rybacki et al., 2014). The experiments were performed on Carrara marble samples containing a weak Solnhofen limestone inclusion at a maximum strain rate of 2.0*10-4 s-1. Our models are designed to reproduce shear deformation of a hollow cylinder equivalent to the laboratory setup, such that material leaving one side of the model in shear direction enters again on the opposite side using periodic boundary conditions. Similar to the laboratory tests, we applied constant strain rate and constant stress boundary conditions.We use our model to investigate the time-dependent distribution of stress and strain and the effect of different parameters. For instance, inclusion rotation is shown to be strongly dependent on the viscosity ratio between matrix and inclusion and stronger ductile weakening increases the localization rate while decreasing shear zone width. The most suitable weakening law for representation of ductile rock is determined by combining the results of parameter tests with

  1. Particle size reduction in debris flows: Laboratory experiments compared with field data from Inyo Creek, California

    NASA Astrophysics Data System (ADS)

    Arabnia, O.; Sklar, L. S.; Mclaughlin, M. K.

    2014-12-01

    Rock particles in debris flows are reduced in size through abrasion and fracture. Wear of coarse sediments results in production of finer particles, which alter the bulk material rheology and influence flow dynamics and runout distance. Particle wear also affects the size distribution of coarse particles, transforming the initial sediment size distribution produced on hillslopes into that delivered to the fluvial channel network. A better understanding of the controls on particle wear in debris flows would aid in the inferring flow conditions from debris flow deposits, in estimating the initial size of sediments entrained in the flow, and in modeling debris flow dynamics and mapping hazards. The rate of particle size reduction with distance traveled should depend on the intensity of particle interactions with other particles and the flow boundary, and on rock resistance to wear. We seek a geomorphic transport law to predict rate of particle wear with debris flow travel distance as a function of particle size distribution, flow depth, channel slope, fluid composition and rock strength. Here we use four rotating drums to create laboratory debris flows across a range of scales. Drum diameters range from 0.2 to 4.0 m, with the largest drum able to accommodate up to 2 Mg of material, including boulders. Each drum has vanes along the boundary to prevent sliding. Initial experiments use angular clasts of durable granodiorite; later experiments will use less resistant rock types. Shear rate is varied by changing drum rotational velocity. We begin experiments with well-sorted coarse particle size distributions, which are allowed to evolve through particle wear. The fluid is initially clear water, which rapidly acquires fine-grained wear products. After each travel increment all coarse particles (mass > 0.4 g) are weighed individually. We quantify particle wear rates using statistics of size and mass distributions, and by fitting various comminution functions to the data

  2. EDITORIAL: Interrelationship between plasma phenomena in the laboratory and in space

    NASA Astrophysics Data System (ADS)

    Koepke, Mark

    2008-07-01

    The premise of investigating basic plasma phenomena relevant to space is that an alliance exists between both basic plasma physicists, using theory, computer modelling and laboratory experiments, and space science experimenters, using different instruments, either flown on different spacecraft in various orbits or stationed on the ground. The intent of this special issue on interrelated phenomena in laboratory and space plasmas is to promote the interpretation of scientific results in a broader context by sharing data, methods, knowledge, perspectives, and reasoning within this alliance. The desired outcomes are practical theories, predictive models, and credible interpretations based on the findings and expertise available. Laboratory-experiment papers that explicitly address a specific space mission or a specific manifestation of a space-plasma phenomenon, space-observation papers that explicitly address a specific laboratory experiment or a specific laboratory result, and theory or modelling papers that explicitly address a connection between both laboratory and space investigations were encouraged. Attention was given to the utility of the references for readers who seek further background, examples, and details. With the advent of instrumented spacecraft, the observation of waves (fluctuations), wind (flows), and weather (dynamics) in space plasmas was approached within the framework provided by theory with intuition provided by the laboratory experiments. Ideas on parallel electric field, magnetic topology, inhomogeneity, and anisotropy have been refined substantially by laboratory experiments. Satellite and rocket observations, theory and simulations, and laboratory experiments have contributed to the revelation of a complex set of processes affecting the accelerations of electrons and ions in the geospace plasma. The processes range from meso-scale of several thousands of kilometers to micro-scale of a few meters to kilometers. Papers included in this

  3. An Enzyme Kinetics Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Olsen, Robert J.; Olsen, Julie A.; Giles, Greta A.

    2010-01-01

    An experiment using [superscript 1]H NMR spectroscopy to observe the kinetics of the acylase 1-catalyzed hydrolysis of "N"-acetyl-DL-methionine has been developed for the organic laboratory. The L-enantiomer of the reactant is hydrolyzed completely in less than 2 h, and [superscript 1]H NMR spectroscopic data from a single sample can be worked up…

  4. Simulating the volatilization of solvents in unsaturated soils during laboratory and field infiltration experiments

    USGS Publications Warehouse

    Cho, H. Jean; Jaffe, Peter R.; Smith, James A.

    1993-01-01

    This paper describes laboratory and field experiments which were conducted to study the dynamics of trichloroethylene (TCE) as it volatilized from contaminated groundwater and diffused in the presence of infiltrating water through the unsaturated soil zone to the land surface. The field experiments were conducted at the Picatinny Arsenal, which is part of the United States Geological Survey Toxic Substances Hydrology Program. In both laboratory and field settings the gas and water phase concentrations of TCE were not in equilibrium during infiltration. Gas-water mass transfer rate constants were calibrated to the experimental data using a model in which the water phase was treated as two phases: a mobile water phase and an immobile water phase. The mass transfer limitations of a volatile organic compound between the gas and liquid phases were described explicitly in the model. In the laboratory experiment the porous medium was nonsorbing, and water infiltration rates ranged from 0.076 to 0.28 cm h−1. In the field experiment the water infiltration rate was 0.34 cm h−1, and sorption onto the soil matrix was significant. The laboratory-calibrated gas-water mass transfer rate constant is 3.3×10−4 h−1 for an infiltration rate of 0.076 cm h−1 and 1.4×10−3 h−1 for an infiltration rate of 0.28 cm h−1. The overall mass transfer rate coefficients, incorporating the contribution of mass transfer between mobile and immobile water phases and the variation of interfacial area with moisture content, range from 3×10−4 h−1 to 1×10−2 h−1. A power law model relates the gas-water mass transfer rate constant to the infiltration rate and the fraction of the water phase which is mobile. It was found that the results from the laboratory experiments could not be extrapolated to the field. In order to simulate the field experiment the very slow desorption of TCE from the soil matrix was incorporated into the mathematical model. When desorption from the

  5. Data Services and Transnational Access for European Geosciences Multi-Scale Laboratories

    NASA Astrophysics Data System (ADS)

    Funiciello, Francesca; Rosenau, Matthias; Sagnotti, Leonardo; Scarlato, Piergiorgio; Tesei, Telemaco; Trippanera, Daniele; Spires, Chris; Drury, Martyn; Kan-Parker, Mirjam; Lange, Otto; Willingshofer, Ernst

    2016-04-01

    The EC policy for research in the new millennium supports the development of european-scale research infrastructures. In this perspective, the existing research infrastructures are going to be integrated with the objective to increase their accessibility and to enhance the usability of their multidisciplinary data. Building up integrating Earth Sciences infrastructures in Europe is the mission of the Implementation Phase (IP) of the European Plate Observing System (EPOS) project (2015-2019). The integration of european multiscale laboratories - analytical, experimental petrology and volcanology, magnetic and analogue laboratories - plays a key role in this context and represents a specific task of EPOS IP. In the frame of the WP16 of EPOS IP working package 16, European geosciences multiscale laboratories aims to be linked, merging local infrastructures into a coherent and collaborative network. In particular, the EPOS IP WP16-task 4 "Data services" aims at standardize data and data products, already existing and newly produced by the participating laboratories, and made them available through a new digital platform. The following data and repositories have been selected for the purpose: 1) analytical and properties data a) on volcanic ash from explosive eruptions, of interest to the aviation industry, meteorological and government institutes, b) on magmas in the context of eruption and lava flow hazard evaluation, and c) on rock systems of key importance in mineral exploration and mining operations; 2) experimental data describing: a) rock and fault properties of importance for modelling and forecasting natural and induced subsidence, seismicity and associated hazards, b) rock and fault properties relevant for modelling the containment capacity of rock systems for CO2, energy sources and wastes, c) crustal and upper mantle rheology as needed for modelling sedimentary basin formation and crustal stress distributions, d) the composition, porosity, permeability, and

  6. Investigating Affective Experiences in the Undergraduate Chemistry Laboratory: Students' Perceptions of Control and Responsibility

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Malakpa, Zoebedeh; Bretz, Stacey Lowery

    2016-01-01

    Meaningful learning requires the integration of cognitive and affective learning with the psychomotor, i.e., hands-on learning. The undergraduate chemistry laboratory is an ideal place for meaningful learning to occur. However, accurately characterizing students' affective experiences in the chemistry laboratory can be a very difficult task. While…

  7. The Quartz-Crystal Microbalance in an Undergraduate Laboratory Experiment: Measuring Mass

    ERIC Educational Resources Information Center

    Tsionsky, Vladimir

    2007-01-01

    The study explains the quartz-crystal microbalance (QCM) technique, which is often used as an undergraduate laboratory experiment for measuring the mass of a system. QCM can be used as a mass sensor only when the measured mass is rigidly attached to the surface.

  8. Plate-rate laboratory friction experiments reveal potential slip instability on weak faults

    NASA Astrophysics Data System (ADS)

    Ikari, M.; Kopf, A.

    2016-12-01

    In earthquake science, it is commonly assumed that earthquakes nucleate on strong patches or "asperities", and data from laboratory friction experiments indicate a tendency for unstable slip (exhibited as velocity-weakening frictional behavior) in strong geologic materials. However, an overwhelming amount of these experiments were conducted at driving velocities ranging from 0.1 µm/s to over 1 m/s. Less data exists for shearing experiments driven at slow velocities on the order of cm/yr (nm/s), approximating plate tectonic rates which represent the natural driving condition on plate boundary faults. Recent laboratory work using samples recovered from the Tohoku region at the Japan Trench, within the high coseismic slip region of the 2011 M9 Tohoku earthquake, showed that the fault is extremely weak with a friction coefficient < 0.2. At sliding velocities of at least 0.1 µm/s mostly velocity-strengthening friction is observed, which is favorable for stable creep, consistent with earlier work. However, shearing at an imposed rate of 8.5 cm/yr produced both velocity-weakening friction and discrete slow slip events, which are likely instances of frictional instabilities or quasi-instabilities. Here, we expand on the Tohoku experiment by conducting cm/yr friction experiments on natural gouges obtained from a variety of other major fault zones obtained by scientific drilling; these include the San Andreas Fault, Costa Rica subduction zone, Nankai Trough (Japan), Barbados subduction zone, Alpine Fault (New Zealand), southern Cascadia, and Woodlark Basin (Papua New Guinea). We focus here on weak fault materials having a friction coefficient of < 0.5. At conventional laboratory driving rates of 0.1-30 µm/s, velocity strengthening is common. However, at cm/yr driving rates we commonly observe velocity-weakening friction and slow slip events, with most samples exhibit both behaviors. These results demonstrate when fault samples are sheared at plate tectonic rates in the

  9. Validation of mathematical model for CZ process using small-scale laboratory crystal growth furnace

    NASA Astrophysics Data System (ADS)

    Bergfelds, Kristaps; Sabanskis, Andrejs; Virbulis, Janis

    2018-05-01

    The present material is focused on the modelling of small-scale laboratory NaCl-RbCl crystal growth furnace. First steps towards fully transient simulations are taken in the form of stationary simulations that deal with the optimization of material properties to match the model to experimental conditions. For this purpose, simulation software primarily used for the modelling of industrial-scale silicon crystal growth process was successfully applied. Finally, transient simulations of the crystal growth are presented, giving a sufficient agreement to experimental results.

  10. Discovering Inexpensive, Effective Catalysts for Solar Energy Conversion: An Authentic Research Laboratory Experience

    ERIC Educational Resources Information Center

    Shaner, Sarah E.; Hooker, Paul D.; Nickel, Anne-Marie; Leichtfuss, Amanda R.; Adams, Carissa S.; de la Cerda, Dionisia; She, Yuqi; Gerken, James B.; Pokhrel, Ravi; Ambrose, Nicholas J.; Khaliqi, David; Stahl, Shannon S.; Schuttlefield Christus, Jennifer D.

    2016-01-01

    Electrochemical water oxidation is a major focus of solar energy conversion efforts. A new laboratory experiment has been developed that utilizes real-time, hands-on research to discover catalysts for solar energy conversion. The HARPOON, or Heterogeneous Anodes Rapidly Perused for Oxygen Overpotential Neutralization, experiment allows an array of…

  11. Release and fate of fluorocarbons in a shredder residue landfill cell: 1. Laboratory experiments.

    PubMed

    Scheutz, Charlotte; Fredenslund, Anders M; Nedenskov, Jonas; Kjeldsen, Peter

    2010-11-01

    The shredder residues from automobiles, home appliances and other metal-containing products are often disposed in landfills, as recycling technologies for these materials are not common in many countries. Shredder waste contains rigid and soft foams from cushions and insulation panels blown with fluorocarbons. The objective of this study was to use laboratory experiments to estimate fluorocarbon release and attenuation processes in a monofill shredder residue (SR) landfill cell. Waste from the open SR landfill cell at the AV Miljø landfill in Denmark was sampled at three locations. The waste contained 1-3% metal and a relatively low fraction of rigid polyurethane (PUR) foam particles. The PUR waste contained less blowing agent (CFC-11) than predicted from a release model. However, CFC-11 was steadily released in an aerobic bench scale experiment. Anaerobic waste incubation bench tests showed that SRSR produced significant methane (CH(4)), but at rates that were in the low end of the range observed for municipal solid waste. Aerobic and anaerobic batch experiments showed that processes in SRSR potentially can attenuate the fluorocarbons released from the SRSR itself: CFC-11 is degraded under anaerobic conditions with the formation of degradation products, which are being degraded under CH(4) oxidation conditions prevailing in the upper layers of the SR. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Reconnection Scaling Experiment (RSX): Magnetic Reconnection in Linear Geometry

    NASA Astrophysics Data System (ADS)

    Intrator, T.; Sovinec, C.; Begay, D.; Wurden, G.; Furno, I.; Werley, C.; Fisher, M.; Vermare, L.; Fienup, W.

    2001-10-01

    The linear Reconnection Scaling Experiment (RSX) at LANL is a new experiment that can create MHD relevant plasmas to look at the physics of magnetic reconnection. This experiment can scale many relevant parameters because the guns that generate the plasma and current channels do not depend on equilibrium or force balance for startup. We describe the experiment and initial electrostatic and magnetic probe data. Two parallel current channels sweep down a long plasma column and probe data accumulated over many shots gives 3D movies of magnetic reconnection. Our first data tries to define an operating regime free from kink instabilities that might otherwise confuse the data and shot repeatability. We compare this with MHD 2 fluid NIMROD simulations of the single current channel kink stability boundary for a variety of experimental conditions.

  13. The GEOFLOW experiment missions in the Fluid Science Laboratory on ISS

    NASA Astrophysics Data System (ADS)

    Picker, Gerold; Carpy, Rodrigo; Fabritius, Gerd; Dettmann, Jan; Minster, Olivier; Winter, Josef; Ranebo, Hans; Dewandre, Thierry; Castiglione, Luigi; Mazzoni, Stefano; Egbers, Christoph; Futterer, Birgit

    The GEOFLOW I experiment has been successfully performed on the International Space Sta-tion (ISS) in 2008 in the Columbus module in order to study the stability, pattern formation and transition to turbulence in a viscous incompressible fluid layer enclosed in two concentric co-rotating spheres subject to a radial temperature gradient and a radial volumetric force field. The objective of the study is the experimental investigation of large scale astrophysical and geophysical phenomena in spherical geometry stipulated by rotation, thermal convections and radial gravity fields. These systems include earth outer core or mantle convection, differen-tial rotation effects in the sun, atmosphere of gas planets as well as a variety of engineering applications. The GEOFLOW I experimental instrument consists of an experiment insert for operation in the Fluid Science Laboratory, which is part of the Columbus Module of the ISS. It was first launched in February 2008 together with Columbus Module on STS 122, operated periodically for 9 month and returned to ground after 14 month on orbit with STS 119. The primary objective was the experimental modelling of outer earth core convection flow. In order to allow for variations of the characteristic scaling for different physical phenomena, the experiment was designed and qualified for a total of nine flights to the ISS, with ground refurbishment and geometrical or fluid modification after each mission. The second mission of GEOFLOW (II) is currently under preparation in terms of hardware refurbishment and modification, as well as science parameter development in order to allow use of a new experimental model fluid with a strongly temperature dependent viscosity, a adaptation of the experimental thermal parameter range in order to provide a representative model for earth mantle convection. The GEOFLOW II instrument is foreseen to be launched with the second mission of the Eu-ropean Automated Transfer Vehicle (ATV). The flight to ISS

  14. Scale-up of ecological experiments: Density variation in the mobile bivalve Macomona liliana

    USGS Publications Warehouse

    Schneider, Davod C.; Walters, R.; Thrush, S.; Dayton, P.

    1997-01-01

    At present the problem of scaling up from controlled experiments (necessarily at a small spatial scale) to questions of regional or global importance is perhaps the most pressing issue in ecology. Most of the proposed techniques recommend iterative cycling between theory and experiment. We present a graphical technique that facilitates this cycling by allowing the scope of experiments, surveys, and natural history observations to be compared to the scope of models and theory. We apply the scope analysis to the problem of understanding the population dynamics of a bivalve exposed to environmental stress at the scale of a harbour. Previous lab and field experiments were found not to be 1:1 scale models of harbour-wide processes. Scope analysis allowed small scale experiments to be linked to larger scale surveys and to a spatially explicit model of population dynamics.

  15. Bacterial Production of Poly(3-hydroxybutyrate): An Undergraduate Student Laboratory Experiment

    ERIC Educational Resources Information Center

    Burns, Kristi L.; Oldham, Charlie D.; May, Sheldon W.

    2009-01-01

    As part of a multidisciplinary course that is cross-listed between five departments, we developed an undergraduate student laboratory experiment for culturing, isolating, and purifying the biopolymer, poly(3-hydroxybutyrate), PHB. This biopolyester accumulates in the cytoplasm of bacterial cells under specific growth conditions, and it has…

  16. Thermodynamics of Sodium Dodecyl Sulfate (SDS) Micellization: An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Marcolongo, Juan P.; Mirenda, Martin

    2011-01-01

    An undergraduate laboratory experiment is presented that allows a thermodynamic characterization of micelle formation of sodium dodecyl sulfate (SDS) in aqueous solutions. The critical micelle concentration (CMC) and the degree of micelle ionization (alpha) are obtained at different temperatures by conductimetry. The molar standard free energy…

  17. Smoothing analysis of slug tests data for aquifer characterization at laboratory scale

    NASA Astrophysics Data System (ADS)

    Aristodemo, Francesco; Ianchello, Mario; Fallico, Carmine

    2018-07-01

    The present paper proposes a smoothing analysis of hydraulic head data sets obtained by means of different slug tests introduced in a confined aquifer. Laboratory experiments were performed through a 3D large-scale physical model built at the University of Calabria. The hydraulic head data were obtained by a pressure transducer placed in the injection well and subjected to a processing operation to smooth out the high-frequency noise occurring in the recorded signals. The adopted smoothing techniques working in time, frequency and time-frequency domain are the Savitzky-Golay filter modeled by third-order polynomial, the Fourier Transform and two types of Wavelet Transform (Mexican hat and Morlet). The performances of the filtered time series of the hydraulic heads for different slug volumes and measurement frequencies were statistically analyzed in terms of optimal fitting of the classical Cooper's equation. For practical purposes, the hydraulic heads smoothed by the involved techniques were used to determine the hydraulic conductivity of the aquifer. The energy contents and the frequency oscillations of the hydraulic head variations in the aquifer were exploited in the time-frequency domain by means of Wavelet Transform as well as the non-linear features of the observed hydraulic head oscillations around the theoretical Cooper's equation.

  18. The Equilibrium Constant for Bromothymol Blue: A General Chemistry Laboratory Experiment Using Spectroscopy

    ERIC Educational Resources Information Center

    Klotz, Elsbeth; Doyle, Robert; Gross, Erin; Mattson, Bruce

    2011-01-01

    A simple, inexpensive, and environmentally friendly undergraduate laboratory experiment is described in which students use visible spectroscopy to determine a numerical value for an equilibrium constant, K[subscript c]. The experiment correlates well with the lecture topic of equilibrium even though the subject of the study is an acid-base…

  19. Cognitive Responses to Mass Communication: Results from Laboratory Studies and a Field Experiment.

    ERIC Educational Resources Information Center

    Ward, Scott; Ray, Michael L.

    This paper examines some of the cognitive responses people experience while attending to messages. Two laboratory studies and a field experiment were conducted. In the lab studies, three different audience groups (junior and senior high school students and parents) were shown three different anti-drug abuse messages. Various levels of audio…

  20. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam.

    PubMed

    van der Star, Wouter R L; Abma, Wiebe R; Blommers, Dennis; Mulder, Jan-Willem; Tokutomi, Takaaki; Strous, Marc; Picioreanu, Cristian; van Loosdrecht, Mark C M

    2007-10-01

    The first full-scale anammox reactor in the world was started in Rotterdam (NL). The reactor was scaled-up directly from laboratory-scale to full-scale and treats up to 750 kg-N/d. In the initial phase of the startup, anammox conversions could not be identified by traditional methods, but quantitative PCR proved to be a reliable indicator for growth of the anammox population, indicating an anammox doubling time of 10-12 days. The experience gained during this first startup in combination with the availability of seed sludge from this reactor, will lead to a faster startup of anammox reactors in the future. The anammox reactor type employed in Rotterdam was compared to other reactor types for the anammox process. Reactors with a high specific surface area like the granular sludge reactor employed in Rotterdam provide the highest volumetric loading rates. Mass transfer of nitrite into the biofilm is limiting the conversion of those reactor types that have a lower specific surface area. Now the first full-scale commercial anammox reactor is in operation, a consistent and descriptive nomenclature is suggested for reactors in which the anammox process is employed.

  1. Cross-disciplinary thermoregulation and sweat analysis laboratory experiences for undergraduate Chemistry and Exercise Science students.

    PubMed

    Mulligan, Gregory; Taylor, Nichole; Glen, Mary; Tomlin, Dona; Gaul, Catherine A

    2011-06-01

    Cross-disciplinary (CD) learning experiences benefit student understanding of concepts and curriculum by offering opportunities to explore topics from the perspectives of alternate fields of study. This report involves a qualitative evaluation of CD health sciences undergraduate laboratory experiences in which concepts and students from two distinct disciplines [chemistry (CHEM) and exercise physiology (EPHE)] combined to study exercise thermoregulation and sweat analysis. Twenty-eight senior BSc Kinesiology (EPHE) students and 42 senior BSc CHEM students participated as part of their mutually exclusive, respective courses. The effectiveness of this laboratory environment was evaluated qualitatively using written comments collected from all students as well as from formal focus groups conducted after the CD laboratory with a representative cohort from each class (n = 16 CHEM students and 9 EPHE students). An open coding strategy was used to analyze the data from written feedback and focus group transcripts. Coding topics were generated and used to develop five themes found to be consistent for both groups of students. These themes reflected the common student perceptions that the CD experience was valuable and that students enjoyed being able to apply academic concepts to practical situations as well as the opportunity to interact with students from another discipline of study. However, students also reported some challenges throughout this experience that stemmed from the combination of laboratory groups from different disciplines with limited modification to the design of the original, pre-CD, learning environments. The results indicate that this laboratory created an effective learning opportunity that fostered student interest and enthusiasm for learning. The findings also provide information that could inform subsequent design and implementation of similar CD experiences to enhance engagement of all students and improve instructor efficacy.

  2. Clogging of an Alpine streambed by silt-sized particles - Insights from laboratory and field experiments.

    PubMed

    Fetzer, Jasmin; Holzner, Markus; Plötze, Michael; Furrer, Gerhard

    2017-12-01

    Clogging of streambeds by suspended particles (SP) can cause environmental problems, as it can negatively influence, e.g., habitats for macrozoobenthos, fish reproduction and groundwater recharge. This especially applies in the case of silt-sized SP. Until now, most research has dealt with coarse SP and was carried out in laboratory systems. The aims of this study are to examine (1) whether physical clogging by silt-sized SP exhibits the same dynamics and patterns as by sand-sized SP, and (2) the comparability of results between laboratory and field experiments. We carried out vertical column experiments with sand-sized bed material and silt-sized SP, which are rich in mica minerals. In laboratory experiments, we investigated the degree of clogging quantified by the reduction of porosity and hydraulic conductivity and the maximum clogging depth as a function of size and shape of bed material, size of SP, pore water flow velocity, and concentration of calcium cations. The SP were collected from an Alpine sedimentation basin, where our field experiments were carried out. To investigate the clogging process in the field, we buried columns filled with sand-sized quartz in the stream bed. We found that the maximal bed-to-grain ratio where clogging still occurs is larger for silt-sized SP than for sand-sized SP. The observed clogging depths and the reduction of flow rate through the column from our laboratory experiments were comparable to those from the field. However, our field results showed that the extent of clogging strongly depends on the naturally-occurring hydrological dynamics. The field location was characterized by a more polydisperse suspension, a strongly fluctuating water regime, and high SP concentrations at times, leading to more heterogeneous and more pronounced clogging when compared to laboratory results. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Laboratory-scale bioremediation of oil-contaminated soil of Kuwait with soil amendment materials.

    PubMed

    Cho, B H; Chino, H; Tsuji, H; Kunito, T; Nagaoka, K; Otsuka, S; Yamashita, K; Matsumoto, S; Oyaizu, H

    1997-10-01

    A huge amount of oil-contaminated soil remains unremediated in the Kuwait desert. The contaminated oil has the potentiality to cause pollution of underground water and to effect the health of people in the neighborhood. In this study, laboratory scale bioremediation experiments were carried out. Hyponex (Hyponex, Inc.) and bark manure were added as basic nutrients for microorganisms, and twelve kinds of materials (baked diatomite, microporous glass, coconut charcoal, an oil-decomposing bacterial mixture (Formula X from Oppenheimer, Inc.), and eight kinds of surfactants) were applied to accelerate the biodegradation of oil hydrocarbons. 15% to 33% of the contaminated oil was decomposed during 43 weeks' incubation. Among the materials tested, coconut charcoal enhanced the biodegradation. On the contrary, the addition of an oil-decomposing bacterial mixture impeded the biodegradation. The effects of the other materials were very slight. The toxicity of the biodegraded compounds was estimated by the Ames test and the tea pollen tube growth test. Both of the hydrophobic (dichloromethane extracts) and hydrophilic (methanol extracts) fractions showed a very slight toxicity in the Ames test. In the tea pollen tube growth test, the hydrophobic fraction was not toxic and enhanced the growth of pollen tubes.

  4. Sensitivity studies and laboratory measurements for the laser heterodyne spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Allario, F.; Katzberg, S. J.; Larsen, J. C.

    1980-01-01

    Several experiments involving spectral scanning interferometers and gas filter correlation radiometers (ref. 2) using limb scanning solar occultation techniques under development for measurements of stratospheric trace gases from Spacelab and satellite platforms are described. An experiment to measure stratospheric trace constituents by Laser Heterodyne Spectroscopy, a summary of sensitivity analyses, and supporting laboratory measurements are presented for O3, ClO, and H2O2 in which the instrument transfer function is modeled using a detailed optical receiver design.

  5. Thermodynamic Exploration of Eosin-Lysozyme Binding: A Physical Chemistry and Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Huisman, Andrew J.; Hartsell, Lydia R.; Krueger, Brent P.; Pikaart, Michael J.

    2010-01-01

    We developed a modular pair of experiments for use in the undergraduate physical chemistry and biochemistry laboratories. Both experiments examine the thermodynamics of the binding of a small molecule, eosin Y, to the protein lysozyme. The assay for binding is the quenching of lysozyme fluorescence by eosin through resonant energy transfer. In…

  6. Implementation of a laboratory quality assurance program: the Louisville experience.

    PubMed

    Metz, Michael J; Abdel-Azim, Tamer; Miller, Cynthia J; Lin, Wei-Shao; ZandiNejad, Amirali; Oliveira, Gustavo M; Morton, Dean

    2014-02-01

    Remakes, or the refabrication of dental prostheses, can occur as a result of inherent inaccuracies in both clinical and laboratory procedures. Because dental schools manage large numbers of predoctoral dental students with limited familiarity and expertise as related to clinical prosthodontic techniques, it is likely these schools will experience an elevated incidence of laboratory remakes and their ramifications. The University of Louisville School of Dentistry, not unlike other dental schools, has experienced remakes associated with both fixed and removable prosthodontic procedures. Limitations in faculty standardization and variable enforcement of established preclinical protocols have been identified as variables associated with the high percentage of remakes documented. The purpose of this study was to introduce the implementation of a new multidepartmental quality assurance program designed to increase consistency and quality in both information provided to commercial dental laboratories and the prostheses returned. The program has shown to be advantageous in terms of cost-effectiveness and treatment outcomes. A statistically significant decrease in remake percentages has been recorded from inception of this program in December 2010 until December 2012. Furthermore, this program has resulted in more consistent communication between the dental school and commercial dental laboratories, among faculty members, and between faculty and students.

  7. Direct geoelectrical evidence of mass transfer at the laboratory scale

    NASA Astrophysics Data System (ADS)

    Swanson, Ryan D.; Singha, Kamini; Day-Lewis, Frederick D.; Binley, Andrew; Keating, Kristina; Haggerty, Roy

    2012-10-01

    Previous field-scale experimental data and numerical modeling suggest that the dual-domain mass transfer (DDMT) of electrolytic tracers has an observable geoelectrical signature. Here we present controlled laboratory experiments confirming the electrical signature of DDMT and demonstrate the use of time-lapse electrical measurements in conjunction with concentration measurements to estimate the parameters controlling DDMT, i.e., the mobile and immobile porosity and rate at which solute exchanges between mobile and immobile domains. We conducted column tracer tests on unconsolidated quartz sand and a material with a high secondary porosity: the zeolite clinoptilolite. During NaCl tracer tests we collected nearly colocated bulk direct-current electrical conductivity (σb) and fluid conductivity (σf) measurements. Our results for the zeolite show (1) extensive tailing and (2) a hysteretic relation between σf and σb, thus providing evidence of mass transfer not observed within the quartz sand. To identify best-fit parameters and evaluate parameter sensitivity, we performed over 2700 simulations of σf, varying the immobile and mobile domain and mass transfer rate. We emphasized the fit to late-time tailing by minimizing the Box-Cox power transformed root-mean square error between the observed and simulated σf. Low-field proton nuclear magnetic resonance (NMR) measurements provide an independent quantification of the volumes of the mobile and immobile domains. The best-fit parameters based on σf match the NMR measurements of the immobile and mobile domain porosities and provide the first direct electrical evidence for DDMT. Our results underscore the potential of using electrical measurements for DDMT parameter inference.

  8. Direct geoelectrical evidence of mass transfer at the laboratory scale

    USGS Publications Warehouse

    Swanson, Ryan D.; Singha, Kamini; Day-Lewis, Frederick D.; Binley, Andrew; Keating, Kristina; Haggerty, Roy

    2012-01-01

    Previous field-scale experimental data and numerical modeling suggest that the dual-domain mass transfer (DDMT) of electrolytic tracers has an observable geoelectrical signature. Here we present controlled laboratory experiments confirming the electrical signature of DDMT and demonstrate the use of time-lapse electrical measurements in conjunction with concentration measurements to estimate the parameters controlling DDMT, i.e., the mobile and immobile porosity and rate at which solute exchanges between mobile and immobile domains. We conducted column tracer tests on unconsolidated quartz sand and a material with a high secondary porosity: the zeolite clinoptilolite. During NaCl tracer tests we collected nearly colocated bulk direct-current electrical conductivity (σb) and fluid conductivity (σf) measurements. Our results for the zeolite show (1) extensive tailing and (2) a hysteretic relation between σf and σb, thus providing evidence of mass transfer not observed within the quartz sand. To identify best-fit parameters and evaluate parameter sensitivity, we performed over 2700 simulations of σf, varying the immobile and mobile domain and mass transfer rate. We emphasized the fit to late-time tailing by minimizing the Box-Cox power transformed root-mean square error between the observed and simulated σf. Low-field proton nuclear magnetic resonance (NMR) measurements provide an independent quantification of the volumes of the mobile and immobile domains. The best-fit parameters based on σf match the NMR measurements of the immobile and mobile domain porosities and provide the first direct electrical evidence for DDMT. Our results underscore the potential of using electrical measurements for DDMT parameter inference.

  9. Pore-scale and continuum simulations of solute transport micromodel benchmark experiments

    DOE PAGES

    Oostrom, M.; Mehmani, Y.; Romero-Gomez, P.; ...

    2014-06-18

    Four sets of nonreactive solute transport experiments were conducted with micromodels. Three experiments with one variable, i.e., flow velocity, grain diameter, pore-aspect ratio, and flow-focusing heterogeneity were in each set. The data sets were offered to pore-scale modeling groups to test their numerical simulators. Each set consisted of two learning experiments, for which our results were made available, and one challenge experiment, for which only the experimental description and base input parameters were provided. The experimental results showed a nonlinear dependence of the transverse dispersion coefficient on the Peclet number, a negligible effect of the pore-aspect ratio on transverse mixing,more » and considerably enhanced mixing due to flow focusing. Five pore-scale models and one continuum-scale model were used to simulate the experiments. Of the pore-scale models, two used a pore-network (PN) method, two others are based on a lattice Boltzmann (LB) approach, and one used a computational fluid dynamics (CFD) technique. Furthermore, we used the learning experiments, by the PN models, to modify the standard perfect mixing approach in pore bodies into approaches to simulate the observed incomplete mixing. The LB and CFD models used the learning experiments to appropriately discretize the spatial grid representations. For the continuum modeling, the required dispersivity input values were estimated based on published nonlinear relations between transverse dispersion coefficients and Peclet number. Comparisons between experimental and numerical results for the four challenge experiments show that all pore-scale models were all able to satisfactorily simulate the experiments. The continuum model underestimated the required dispersivity values, resulting in reduced dispersion. The PN models were able to complete the simulations in a few minutes, whereas the direct models, which account for the micromodel geometry and underlying flow and transport physics

  10. Screening for Saponins Using the Blood Hemolysis Test. An Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Sotheeswaran, Subramaniam

    1988-01-01

    Describes an experiment for undergraduate chemistry laboratories involving a chemical found in plants and some sea animals. Discusses collection and identification of material, a hemolysis test, preparation of blood-coated agar plates, and application of samples. (CW)

  11. Salt dissolution and sinkhole formation: Results of laboratory experiments

    NASA Astrophysics Data System (ADS)

    Oz, Imri; Eyal, Shalev; Yoseph, Yechieli; Ittai, Gavrieli; Elad, Levanon; Haim, Gvirtzman

    2016-10-01

    The accepted mechanism for the formation of thousands of sinkholes along the coast of the Dead Sea suggests that their primary cause is dissolution of a salt layer by groundwater undersaturated with respect to halite. This is related to the drop in the Dead Sea level, which caused a corresponding drop of the freshwater-saltwater interface, resulting in fresher groundwater replacing the brines that were in contact with the salt layer. In this study we used physical laboratory experiments to examine the validity of this mechanism by reproducing the full dynamic natural process and to examine the impact of different hydrogeological characteristics on this process. The experimental results show surface subsidence and sinkhole formation. The stratigraphic configurations of the aquifer, together with the mechanical properties of the salt layer, determine the dynamic patterns of the sinkhole formation (instantaneous versus gradual formation). Laboratory experiments were also used to study the potential impact of future stratification in the Dead Sea, if and when the "Red Sea-Dead Sea Canal" project is carried out, and the Dead Sea level remains stable. The results show that the dissolution rates are slower by 1 order of magnitude in comparison with a nonstratified saltwater body, and therefore, the processes of salt dissolution and sinkhole formation will be relatively restrained under these conditions.

  12. Inter-laboratory consistency and variability in the buccal micronucleus cytome assay depends on biomarker scored and laboratory experience: results from the HUMNxl international inter-laboratory scoring exercise.

    PubMed

    Bolognesi, Claudia; Knasmueller, Siegfried; Nersesyan, Armen; Roggieri, Paola; Ceppi, Marcello; Bruzzone, Marco; Blaszczyk, Ewa; Mielzynska-Svach, Danuta; Milic, Mirta; Bonassi, Stefano; Benedetti, Danieli; Da Silva, Juliana; Toledo, Raphael; Salvadori, Daisy Maria Fávero; Groot de Restrepo, Helena; Filipic, Metka; Hercog, Klara; Aktas, Ayça; Burgaz, Sema; Kundi, Michael; Grummt, Tamara; Thomas, Philip; Hor, Maryam; Escudero-Fung, Maria; Holland, Nina; Fenech, Michael

    2017-03-01

    The buccal micronucleus cytome (BMNcyt) assay in uncultured exfoliated epithelial cells from oral mucosa is widely applied in biomonitoring human exposures to genotoxic agents and is also proposed as a suitable test for prescreening and follow-up of precancerous oral lesions. The main limitation of the assay is the large variability observed in the baseline values of micronuclei (MNi) and other nuclear anomalies mainly related to different scoring criteria. The aim of this international collaborative study, involving laboratories with different level of experience, was to evaluate the inter- and intra-laboratory variations in the BMNcyt parameters, using recently implemented guidelines, in scoring cells from the same pooled samples obtained from healthy subjects (control group) and from cancer patients undergoing radiotherapy (treated group). The results indicate that all laboratories correctly discriminated samples from the two groups by a significant increase of micronucleus (MN) and nuclear bud (NBUD) frequencies and differentiated binucleated (BN) cells, associated with the exposure to ionizing radiation. The experience of the laboratories was shown to play an important role in the identification of the different cell types and nuclear anomalies. MN frequency in differentiated mononucleated (MONO) and BN cells showed the greatest consistency among the laboratories and low variability was also detected in the frequencies of MONO and BN cells. A larger variability was observed in classifying the different cell types, indicating the subjectivity in the interpretation of some of the scoring criteria while reproducibility of the results between scoring sessions was very good. An inter-laboratory calibration exercise is strongly recommended before starting studies with BMNcyt assay involving multiple research centers. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions

  13. Estimation and uncertainty analysis of dose response in an inter-laboratory experiment

    NASA Astrophysics Data System (ADS)

    Toman, Blaza; Rösslein, Matthias; Elliott, John T.; Petersen, Elijah J.

    2016-02-01

    An inter-laboratory experiment for the evaluation of toxic effects of NH2-polystyrene nanoparticles on living human cancer cells was performed with five participating laboratories. Previously published results from nanocytoxicity assays are often contradictory, mostly due to challenges related to producing a reliable cytotoxicity assay protocol for use with nanomaterials. Specific challenges include reproducibility preparing nanoparticle dispersions, biological variability from testing living cell lines, and the potential for nano-related interference effects. In this experiment, such challenges were addressed by developing a detailed experimental protocol and using a specially designed 96-well plate layout which incorporated a range of control measurements to assess multiple factors such as nanomaterial interference, pipetting accuracy, cell seeding density, and instrument performance. Detailed data analysis of these control measurements showed that good control of the experiments was attained by all participants in most cases. The main measurement objective of the study was the estimation of a dose response relationship between concentration of the nanoparticles and metabolic activity of the living cells, under several experimental conditions. The dose curve estimation was achieved by imbedding a three parameter logistic curve in a three level Bayesian hierarchical model, accounting for uncertainty due to all known experimental conditions as well as between laboratory variability in a top-down manner. Computation was performed using Markov Chain Monte Carlo methods. The fit of the model was evaluated using Bayesian posterior predictive probabilities and found to be satisfactory.

  14. Two types of foreshock activities observed on meter-scale laboratory faults: Slow-slip-driven and cascade-up

    NASA Astrophysics Data System (ADS)

    Yamashita, F.; Fukuyama, E.; Xu, S.; Kawakata, H.; Mizoguchi, K.; Takizawa, S.

    2017-12-01

    We report two types of foreshock activities observed on meter-scale laboratory experiments: slow-slip-driven type and cascade-up type. We used two rectangular metagabbro blocks as experimental specimens, whose nominal contacting area was 1.5 m long and 0.1 m wide. To monitor stress changes and seismic activities on the fault, we installed dense arrays of 32 triaxial rosette strain gauges and 64 PZT seismic sensors along the fault. We repeatedly conducted experiments with the same pair of rock specimens, causing the evolution of damage on the fault. We focus on two experiments successively conducted under the same loading condition (normal stress of 6.7 MPa and loading rate of 0.01 mm/s) but different initial fault surface conditions; the first experiment preserved the gouge generated from the previous experiment while the second experiment started with all gouge removed. Note that the distribution of gouge was heterogeneous, because we did not make the gouge layer uniform. We observed many foreshocks in both experiments, but found that the b-value of foreshocks was smaller in the first experiment with pre-existing gouge (PEG). In the second experiment without PEG, we observed premonitory slow slip associated with nucleation process preceding most main events by the strain measurements. We also found that foreshocks were triggered by the slow slip at the end of the nucleation process. In the experiment with PEG, on the contrary, no clear premonitory slow slips were found. Instead, foreshock activity accelerated towards the main event, as confirmed by a decreasing b-value. Spatiotemporal distribution of foreshock hypocenters suggests that foreshocks migrated and cascaded up to the main event. We infer that heterogeneous gouge distribution caused stress-concentrated and unstable patches, which impeded stable slow slip but promoted foreshocks on the fault. Further, our results suggest that b-value is a useful parameter for characterizing these observations.

  15. Laboratory Experiments Lead to a New Understanding of Wildland Fire Spread

    NASA Astrophysics Data System (ADS)

    Cohen, J. D.; Finney, M.; McAllister, S.

    2015-12-01

    Wildfire flame spread results from a sequence of ignitions where adjacent fuel particles heat from radiation and convection leading to their ignition. Surprisingly, after decades of fire behavior research an experimentally based, fundamental understanding of wildland fire spread processes has not been established. Modelers have commonly assumed radiation to be the dominant heating mechanism; that is, radiation heat transfer primarily determines wildland fire spread. We tested this assumption by focusing on how fuel ignition occurs with a renewed emphasis on experimental research. Our experiments show that fuel particle size can non-linearly influence a fuel particle's convective heat transfer. Fine fuels (less than 1 mm) can convectively cool in ambient air such that radiation heating is insufficient for ignition and thus fire spread. Given fire spread with insufficient radiant heating, fuel particle ignition must occur convectively from flame contact. Further experimentation reveals that convective heating and particle ignition occur when buoyancy-induced instabilities and vorticity force flames down and forward to produce intermittent contact with the adjacent fuel bed. Experimental results suggest these intermittent forward flame extensions are buoyancy driven with predictable average frequencies for flame zones ranging from laboratory (10-2 m) to field scales (101m). Measured fuel particle temperatures and boundary conditions during spreading laboratory fires reveal that convection heat transfer from intermittent flame contact is the principal mechanism responsible for heating fine fuel particles to ignition. Our experimental results describe how fine fuel particles convectively heat to ignition from flame contact related to the buoyant dynamics of spreading flame fronts. This research has caused a rethinking of some of the most basic concepts in wildland fuel particle ignition and flame spread.

  16. Varying Iron Release from Transferrin and Lactoferrin Proteins. A Laboratory Experiment

    ERIC Educational Resources Information Center

    Carmona, Fernando; González, Ana; Sánchez, Manu; Gálvez, Natividad; Cuesta, Rafael; Capdevila, Mercè; Dominguez-Vera, Jose M.

    2017-01-01

    Iron metabolism is an important subject of study for undergraduate students of chemistry and biochemistry. Relevant laboratory exercises are scarce in the literature but would be very helpful in assisting students grasp key concepts. The experiment described here deals with different iron release mechanisms of two protagonists in iron metabolism:…

  17. Ideas in Practice (3): A Simulated Laboratory Experience in Digital Design.

    ERIC Educational Resources Information Center

    Cleaver, Thomas G.

    1988-01-01

    Gives an example of the use of a simplified logic simulator in a logic design course. Discusses some problems in logic design classes, commercially available software, and software problems. Describes computer-aided engineering (CAE) software. Lists 14 experiments in the simulated laboratory and presents students' evaluation of the course. (YP)

  18. The 5th Annual NASA Spacecraft Control Laboratory Experiment (SCOLE) Workshop, part 2

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr. (Compiler)

    1990-01-01

    A collection of papers from the workshop are presented. The topics addressed include: the modeling, systems identification, and control synthesis for the Spacecraft Control Laboratory Experiment (SCOLE) configuration.

  19. High-temperature Y267 epdm elastomer - field and laboratory experiences, August 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirasuna, A.R.; Friese, G.J.; Stephens, G.A.

    1982-01-01

    During the period 1976 to 1979 L'Garde, Inc. developed geothermal elastomer compounds under a U.S. Department of Energy - Division of Geothermal Energy (DOE-DGE) contract. The resulting developments yielded compounds from 4 polymer systems which successfully exceeded the contract requirements. Since completion of the compound development, significant laboratory and down-hole experience occurred, primarily on the Y267 EPDM compound. This work summarizes those experiences. 11 references.

  20. Social setting, intuition and experience in laboratory experiments interact to shape cooperative decision-making

    PubMed Central

    Capraro, Valerio; Cococcioni, Giorgia

    2015-01-01

    Recent studies suggest that cooperative decision-making in one-shot interactions is a history-dependent dynamic process: promoting intuition versus deliberation typically has a positive effect on cooperation (dynamism) among people living in a cooperative setting and with no previous experience in economic games on cooperation (history dependence). Here, we report on a laboratory experiment exploring how these findings transfer to a non-cooperative setting. We find two major results: (i) promoting intuition versus deliberation has no effect on cooperative behaviour among inexperienced subjects living in a non-cooperative setting; (ii) experienced subjects cooperate more than inexperienced subjects, but only under time pressure. These results suggest that cooperation is a learning process, rather than an instinctive impulse or a self-controlled choice, and that experience operates primarily via the channel of intuition. Our findings shed further light on the cognitive basis of human cooperative decision-making and provide further support for the recently proposed social heuristics hypothesis. PMID:26156762

  1. Anaerobic treatment of animal byproducts from slaughterhouses at laboratory and pilot scale.

    PubMed

    Edström, Mats; Nordberg, Ake; Thyselius, Lennart

    2003-01-01

    Different mixtures of animal byproducts, other slaughterhouse waste (i.e., rumen, stomach and intestinal content), food waste, and liquid manure were codigested at mesophilic conditions (37 degrees C) at laboratory and pilot scale. Animal byproducts, including blood, represent 70-80% of the total biogas potential from waste generated during slaughter of animals. The total biogas potential from waste generated during slaughter is about 1300 MJ/cattle and about 140 MJ/pig. Fed-batch digestion of pasteurized (70 degrees C, 1 h) animal byproducts resulted in a fourfold increase in biogas yield (1.14 L/g of volatile solids [VS]) compared with nonpasteurized animal byproducts (0.31 L/g of VS). Mixtures with animal byproducts representing 19-38% of the total dry matter were digested in continuous-flow stirred tank reactors at laboratory and pilot scale. Stable processes at organic loading rates (OLRs) exceeding 2.5 g of VS/(L.d) and hydraulic retention times (HRTs) less than 40 d could be obtained with total ammonia nitrogen concentrations (NH4-N + NH3-N) in the range of 4.0-5.0 g/L. After operating one process for more than 1.5 yr at total ammonia nitrogen concentrations >4 g/L, an increase in OLR to 5 g of VS/(L.d) and a decrease in HRT to 22 d was possible without accumulation of volatile fatty acids.

  2. Waste Disposal in the Laboratory: Teaching Responsibility and Safety.

    ERIC Educational Resources Information Center

    Allen, Ralph O.

    1983-01-01

    Discusses the generation, collection, and disposal of hazardous and other wastes in the chemistry laboratory. Offers suggestions related to these three areas to provide a safe teaching environment, including minimizing amounts of reagents used (and potentially wasted) by scaling down experiments. (JN)

  3. UV Radiation: a new first year physics/life sciences laboratory experiment

    NASA Astrophysics Data System (ADS)

    Petelina, S. V.; Siddaway, J. M.

    2010-12-01

    Unfortunately, Australia leads the world in the number of skin cancer cases per capita. Three major factors that contribute to this are: 1) the level of damaging ultraviolet (UV) radiation in Australia is higher than in many other countries. This is caused, among other factors, by the stratospheric ozone depletion and Antarctic ozone hole; 2) many people in Australia are of Irish-Scottish origin and their skin can not repair the damage caused by the UV radiation as effectively as the skin of people of other origins; 3) Australia is one of the world’s leaders in the outdoor activities where people tend to spend more time outside. As our experience has shown, most Australian University students, high school students, and even high school teachers were largely unaware of the UV damage details and effective safety measures. Therefore, a need for new ways to educate people became apparent. The general aim of this new 1st year laboratory experiment, developed and first offered at La Trobe University (Melbourne, Australia) in 2009, is to investigate how UV-B radiation levels change under various solar illumination conditions and how effective different types of protection are. After pre-lab readings on physical concepts and biological effects of UV radiation, and after solving all pre-lab problems, the students go outside and measure the actual change in UV-B and UV-A radiation levels under various conditions. Some of these conditions are: direct sun, shade from a building, shade under the roof, reflection from various surfaces, direct sun through cheap and expensive sunglasses and eyeglasses, direct sun through various types of cloth and hair. The equipment used is the UV-Probe manufactured by sglux SolGel Technologies GmbH. The students’ feedback on this new laboratory experiment was very positive. It was ranked top among all physics experiments offered as part of that subject (Physics for Life Sciences) in 2009 and top among all physics experiments presented for

  4. Pore-scale and Continuum Simulations of Solute Transport Micromodel Benchmark Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oostrom, Martinus; Mehmani, Yashar; Romero Gomez, Pedro DJ

    Four sets of micromodel nonreactive solute transport experiments were conducted with flow velocity, grain diameter, pore-aspect ratio, and flow focusing heterogeneity as the variables. The data sets were offered to pore-scale modeling groups to test their simulators. Each set consisted of two learning experiments, for which all results was made available, and a challenge experiment, for which only the experimental description and base input parameters were provided. The experimental results showed a nonlinear dependence of the dispersion coefficient on the Peclet number, a negligible effect of the pore-aspect ratio on transverse mixing, and considerably enhanced mixing due to flow focusing.more » Five pore-scale models and one continuum-scale model were used to simulate the experiments. Of the pore-scale models, two used a pore-network (PN) method, two others are based on a lattice-Boltzmann (LB) approach, and one employed a computational fluid dynamics (CFD) technique. The learning experiments were used by the PN models to modify the standard perfect mixing approach in pore bodies into approaches to simulate the observed incomplete mixing. The LB and CFD models used these experiments to appropriately discretize the grid representations. The continuum model use published non-linear relations between transverse dispersion coefficients and Peclet numbers to compute the required dispersivity input values. Comparisons between experimental and numerical results for the four challenge experiments show that all pore-scale models were all able to satisfactorily simulate the experiments. The continuum model underestimated the required dispersivity values and, resulting in less dispersion. The PN models were able to complete the simulations in a few minutes, whereas the direct models needed up to several days on supercomputers to resolve the more complex problems.« less

  5. A Student Laboratory Experiment Based on the Vitamin C Clock Reaction

    ERIC Educational Resources Information Center

    Vitz, Ed

    2007-01-01

    The Vitamin C Clock Reaction has now been adapted to serve as a student laboratory experiment in the education process of high-school and college-level general chemistry. Despite of imparting valuable knowledge, it also may be hazardous, as the tincture of iodine contains inflammable substances that may cause burning on prolonged exposure.

  6. Kinetics of Papain: An Introductory Biochemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Cornely, Kathleen; Crespo, Eric; Earley, Michael; Kloter, Rachel; Levesque, Aime; Pickering, Mary

    1999-05-01

    Enzyme kinetics experiments are popular in the undergraduate laboratory. These experiments have pedagogic value because they reinforce the concepts of Michaelis-Menten kinetics covered in the lecture portion of the course and give students the experience of calculating kinetic constants from data they themselves have generated. In this experiment, we investigate the kinetics of the thiol protease papain. The source of the papain is commercially available papaya latex. A specific substrate, Na-benzoyl-arginine-p-nitroanilide (BAPNA), is used, which takes advantage of the fact that papain interacts with a phenylalanine residue two amino acids away from the peptide bond cleaved. Upon hydrolysis by papain, a bright yellow product is released, p-nitroaniline. This allows the reaction to be monitored spectrophotometrically by measuring the rate of formation of the p-nitroaniline product as a function of the increase in absorbance of the solution at the lmax of p-nitroaniline (400 nm) over time at various substrate concentrations. These data are used to plot a Lineweaver-Burk plot from which the vmax and KM are obtained. If time permits, students carry out additional investigations in which e of p-nitroaniline is measured, the enzyme solution protein concentration is measured, the enzyme purity is evaluated by SDS-PAGE, and a pH-rate profile is constructed from experimental data.

  7. The spacecraft control laboratory experiment optical attitude measurement system

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Montgomery, Raymond C.; Barsky, Michael F.

    1991-01-01

    A stereo camera tracking system was developed to provide a near real-time measure of the position and attitude of the Spacecraft COntrol Laboratory Experiment (SCOLE). The SCOLE is a mockup of the shuttle-like vehicle with an attached flexible mast and (simulated) antenna, and was designed to provide a laboratory environment for the verification and testing of control laws for large flexible spacecraft. Actuators and sensors located on the shuttle and antenna sense the states of the spacecraft and allow the position and attitude to be controlled. The stereo camera tracking system which was developed consists of two position sensitive detector cameras which sense the locations of small infrared LEDs attached to the surface of the shuttle. Information on shuttle position and attitude is provided in six degrees-of-freedom. The design of this optical system, calibration, and tracking algorithm are described. The performance of the system is evaluated for yaw only.

  8. Collisionless plasma interpenetration in a strong magnetic field for laboratory astrophysics experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korneev, Ph., E-mail: korneev@theor.mephi.ru; National Research Nuclear University “MEPhI”, 115409, Moscow; D'Humières, E.

    A theoretical analysis for astrophysics-oriented laser-matter interaction experiments in the presence of a strong ambient magnetic field is presented. It is shown that the plasma collision in the ambient magnetic field implies significant perturbations in the electron density and magnetic field distribution. This transient stage is difficult to observe in astrophysical phenomena, but it could be investigated in laboratory experiments. Analytic models are presented, which are supported by particles-in-cell simulations.

  9. Computation of Chemical Shifts for Paramagnetic Molecules: A Laboratory Experiment for the Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Pritchard, Benjamin P.; Simpson, Scott; Zurek, Eva; Autschbach, Jochen

    2014-01-01

    A computational experiment investigating the [superscript 1]H and [superscript 13]C nuclear magnetic resonance (NMR) chemical shifts of molecules with unpaired electrons has been developed and implemented. This experiment is appropriate for an upper-level undergraduate laboratory course in computational, physical, or inorganic chemistry. The…

  10. An Enzymatic Clinical Chemistry Laboratory Experiment Incorporating an Introduction to Mathematical Method Comparison Techniques

    ERIC Educational Resources Information Center

    Duxbury, Mark

    2004-01-01

    An enzymatic laboratory experiment based on the analysis of serum is described that is suitable for students of clinical chemistry. The experiment incorporates an introduction to mathematical method-comparison techniques in which three different clinical glucose analysis methods are compared using linear regression and Bland-Altman difference…

  11. Evaluating Experience-Based Geologic Field Instruction: Lessons Learned from A Large-Scale Eye-Tracking Experiment

    NASA Astrophysics Data System (ADS)

    Tarduno, J. A.; Walders, K.; Bono, R. K.; Pelz, J.; Jacobs, R.

    2015-12-01

    A course centered on experience-based learning in field geology has been offered ten times at the University of Rochester. The centerpiece of the course is a 10-day field excursion to California featuring a broad cross-section of the geology of the state, from the San Andreas Fault to Death Valley. Here we describe results from a large-scale eye-tracking experiment aimed at understanding how experts and novices acquire visual geologic information. One ultimate goal of the project is to determine whether expert gaze patterns can be quantified to improve the instruction of beginning geology students. Another goal is to determine if aspects of the field experience can be transferred to the classroom/laboratory. Accordingly, ultra-high resolution segmented panoramic images have been collected at key sites visited during the field excursion. We have found that strict controls are needed in the field to obtain meaningful data; this often involves behavior atypical of geologists (e.g. limiting the field of view prior to data collection and placing time limits on scene viewing). Nevertheless some general conclusions can be made from a select data set. After an initial quick search, experts tend to exhibit scanning behavior that appears to support hypothesis testing. Novice fixations appear to define a scattered search pattern and/or one distracted by geologic noise in a scene. Noise sources include modern erosion features and vegetation. One way to quantify noise is through the use of saliency maps. With the caveat that our expert data set is small, our preliminary analysis suggests that experts tend to exhibit top-down behavior (indicating hypothesis driven responses) whereas novices show bottom-up gaze patterns, influenced by more salient features in a scene. We will present examples and discuss how these observations might be used to improve instruction.

  12. Using Laboratory Experiments and Circuit Simulation IT Tools in an Undergraduate Course in Analog Electronics

    ERIC Educational Resources Information Center

    Baltzis, Konstantinos B.; Koukias, Konstantinos D.

    2009-01-01

    Laboratory-based courses play a significant role in engineering education. Given the role of electronics in engineering and technology, laboratory experiments and circuit simulation IT tools are used in their teaching in several academic institutions. This paper discusses the characteristics and benefits of both methods. The content and structure…

  13. Incrementally Approaching an Inquiry Lab Curriculum: Can Changing a Single Laboratory Experiment Improve Student Performance in General Chemistry?

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.; Sevian, Hannah

    2009-01-01

    Many institutions are responding to current research about how students learn science by transforming their general chemistry laboratory curricula to be inquiry-oriented. We present a comparison study of student performance after completing either a traditional or an inquiry stoichiometry experiment. This single laboratory experience was the only…

  14. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    PubMed

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  15. Organic Laboratory Experiments: Micro vs. Conventional.

    ERIC Educational Resources Information Center

    Chloupek-McGough, Marge

    1989-01-01

    Presents relevant statistics accumulated in a fall organic laboratory course. Discusses laboratory equipment setup to lower the amount of waste. Notes decreased solid wastes were produced compared to the previous semester. (MVL)

  16. Probing free-space quantum channels with laboratory-based experiments

    NASA Astrophysics Data System (ADS)

    Bohmann, M.; Kruse, R.; Sperling, J.; Silberhorn, C.; Vogel, W.

    2017-06-01

    Atmospheric channels are a promising candidate to establish secure quantum communication on a global scale. However, due to their turbulent nature, it is crucial to understand the impact of the atmosphere on the quantum properties of light and examine it experimentally. In this paper, we introduce a method to probe atmospheric free-space links with quantum light on a laboratory scale. In contrast to previous works, our method models arbitrary intensity losses caused by turbulence to emulate general atmospheric conditions. This allows us to characterize turbulent quantum channels in a well-controlled manner. To implement this technique, we perform a series of measurements with different constant attenuations and simulate the fluctuating losses by combining the obtained data. We directly test the proposed method with an on-chip source of nonclassical light and a time-bin-multiplexed detection system. With the obtained data, we characterize the nonclassicality of the generated states for different atmospheric noise models and analyze a postselection protocol. This general technique in atmospheric quantum optics allows for studying turbulent quantum channels and predicting their properties for future applications.

  17. Laboratory Experiments on the Electrochemical Remediation of the Environment. Part 8. Microscale Simultaneous Photocatalysis

    ERIC Educational Resources Information Center

    Ibanez, Jorge G.; Mena-Brito, Rodrigo; Fregoso-Infante, Arturo

    2005-01-01

    A microscale experiment in which the simultaneous oxidation of an organic compound and the reduction of a metal ion are photocatalytically performed in an aqueous slurry containing TiO[subscript 2] irradiated with UV light. This experiment can be performed in the laboratory session with simple chemicals and equipments.

  18. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  19. Experiences of mentors training underrepresented undergraduates in the research laboratory.

    PubMed

    Prunuske, Amy J; Wilson, Janelle; Walls, Melissa; Clarke, Benjamin

    2013-01-01

    Successfully recruiting students from underrepresented groups to pursue biomedical science research careers continues to be a challenge. Early exposure to scientific research is often cited as a powerful means to attract research scholars with the research mentor being critical in facilitating the development of an individual's science identity and career; however, most mentors in the biological sciences have had little formal training in working with research mentees. To better understand mentors' experiences working with undergraduates in the laboratory, we conducted semistructured interviews with 15 research mentors at a public university in the Midwest. The interviewed mentors were part of a program designed to increase the number of American Indians pursuing biomedical/biobehavioral research careers and represented a broad array of perspectives, including equal representation of male and female mentors, mentors from underrepresented groups, mentors at different levels of their careers, and mentors from undergraduate and professional school departments. The mentors identified benefits and challenges in being an effective mentor. We also explored what the term underrepresented means to the mentors and discovered that most of the mentors had an incomplete understanding about how differences in culture could contribute to underrepresented students' experience in the laboratory. Our interviews identify issues relevant to designing programs and courses focused on undergraduate student research.

  20. Experiences of Mentors Training Underrepresented Undergraduates in the Research Laboratory

    PubMed Central

    Prunuske, Amy J.; Wilson, Janelle; Walls, Melissa; Clarke, Benjamin

    2013-01-01

    Successfully recruiting students from underrepresented groups to pursue biomedical science research careers continues to be a challenge. Early exposure to scientific research is often cited as a powerful means to attract research scholars with the research mentor being critical in facilitating the development of an individual's science identity and career; however, most mentors in the biological sciences have had little formal training in working with research mentees. To better understand mentors’ experiences working with undergraduates in the laboratory, we conducted semistructured interviews with 15 research mentors at a public university in the Midwest. The interviewed mentors were part of a program designed to increase the number of American Indians pursuing biomedical/biobehavioral research careers and represented a broad array of perspectives, including equal representation of male and female mentors, mentors from underrepresented groups, mentors at different levels of their careers, and mentors from undergraduate and professional school departments. The mentors identified benefits and challenges in being an effective mentor. We also explored what the term underrepresented means to the mentors and discovered that most of the mentors had an incomplete understanding about how differences in culture could contribute to underrepresented students’ experience in the laboratory. Our interviews identify issues relevant to designing programs and courses focused on undergraduate student research. PMID:24006389

  1. Whitson looks at the ADVASC Soybean plant growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-07-10

    ISS005-E-07212 (10 July 2002) --- NASA Astronaut Peggy Whitson, Expedition 5 International Space Station (ISS) science officer, looks at the Advanced Astroculture (ADVASC) Soybean plant growth experiment as part of Expediting the Process of Experiments to the Space Station (EXPRESS) Rack 4 located in the U.S. Laboratory Destiny.

  2. AV Instructional Materials Manual; A Sslf-Instructional Guide to AV Laboratory Experiences. Third Edition.

    ERIC Educational Resources Information Center

    Brown, James W., Ed.; Lewis, Richard B., Ed.

    This self-instructional guide to audiovisual laboratory experiences contains 50 exercises designed to give the user active experiences in the practical problems of choosing, using, and inventing instructional materials and in operating and audiovisual equipment. With the exception of the first four exercises (which introduce the user to the manual…

  3. Trajectory Reconstruction and Uncertainty Analysis Using Mars Science Laboratory Pre-Flight Scale Model Aeroballistic Testing

    NASA Technical Reports Server (NTRS)

    Lugo, Rafael A.; Tolson, Robert H.; Schoenenberger, Mark

    2013-01-01

    As part of the Mars Science Laboratory (MSL) trajectory reconstruction effort at NASA Langley Research Center, free-flight aeroballistic experiments of instrumented MSL scale models was conducted at Aberdeen Proving Ground in Maryland. The models carried an inertial measurement unit (IMU) and a flush air data system (FADS) similar to the MSL Entry Atmospheric Data System (MEADS) that provided data types similar to those from the MSL entry. Multiple sources of redundant data were available, including tracking radar and on-board magnetometers. These experimental data enabled the testing and validation of the various tools and methodologies that will be used for MSL trajectory reconstruction. The aerodynamic parameters Mach number, angle of attack, and sideslip angle were estimated using minimum variance with a priori to combine the pressure data and pre-flight computational fluid dynamics (CFD) data. Both linear and non-linear pressure model terms were also estimated for each pressure transducer as a measure of the errors introduced by CFD and transducer calibration. Parameter uncertainties were estimated using a "consider parameters" approach.

  4. Laboratory Scale X-ray Fluorescence Tomography: Instrument Characterization and Application in Earth and Environmental Science.

    PubMed

    Laforce, Brecht; Vermeulen, Bram; Garrevoet, Jan; Vekemans, Bart; Van Hoorebeke, Luc; Janssen, Colin; Vincze, Laszlo

    2016-03-15

    A new laboratory scale X-ray fluorescence (XRF) imaging instrument, based on an X-ray microfocus tube equipped with a monocapillary optic, has been developed to perform XRF computed tomography experiments with both higher spatial resolution (20 μm) and a better energy resolution (130 eV @Mn-K(α)) than has been achieved up-to-now. This instrument opens a new range of possible applications for XRF-CT. Next to the analytical characterization of the setup by using well-defined model/reference samples, demonstrating its capabilities for tomographic imaging, the XRF-CT microprobe has been used to image the interior of an ecotoxicological model organism, Americamysis bahia. This had been exposed to elevated metal (Cu and Ni) concentrations. The technique allowed the visualization of the accumulation sites of copper, clearly indicating the affected organs, i.e. either the gastric system or the hepatopancreas. As another illustrative application, the scanner has been employed to investigate goethite spherules from the Cretaceous-Paleogene boundary, revealing the internal elemental distribution of these valuable distal ejecta layer particles.

  5. Analyzing Inquiry Questions of High-School Students in a Gas Chromatography Open-Ended Laboratory Experiment

    ERIC Educational Resources Information Center

    Blonder, Ron; Mamlock-Naaman, Rachel; Hofstein, Avi

    2008-01-01

    This paper describes the implementation of an open-ended inquiry experiment for high-school students, based on gas chromatography (GC). The research focuses on identifying the level of questions that students ask during the GC open inquiry laboratory, and it examines whether implementing the advanced inquiry laboratory opens up new directions for…

  6. The Synthesis of a Cockroach Pheromone: An Experiment for the Second-Year Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Feist, Patty L.

    2008-01-01

    This experiment describes the synthesis of gentisyl quinone isovalerate, or blattellaquinone, a sex pheromone of the German cockroach that was isolated and identified in 2005. The synthesis is appropriate for the second semester of a second-year organic chemistry laboratory course. It can be completed in two, three-hour laboratory periods and uses…

  7. Whitson holds the ADVASC Soybean plant growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-07-10

    ISS005-E-07209 (10 July 2002) --- Astronaut Peggy A. Whitson, Expedition Five NASA ISS science officer, holds the Advanced Astroculture soybean plant growth experiment in the Destiny laboratory on the International Space Station (ISS).

  8. Insight into subdecimeter fracturing processes during hydraulic fracture experiment in Äspö hard rock laboratory, Sweden

    NASA Astrophysics Data System (ADS)

    Kwiatek, Grzegorz; Martínez-Garzón, Patricia; Plenkers, Katrin; Leonhardt, Maria; Zang, Arno; Dresen, Georg; Bohnhoff, Marco

    2017-04-01

    We analyze the nano- and picoseismicity recorded during a hydraulic fracturing in-situ experiment performed in Äspö Hard Rock Laboratory, Sweden. The fracturing experiment included six fracture stages driven by three different water injection schemes (continuous, progressive and pulse pressurization) and was performed inside a 28 m long, horizontal borehole located at 410 m depth. The fracturing process was monitored with two different seismic networks covering a wide frequency band between 0.01 Hz and 100000 Hz and included broadband seismometers, geophones, high-frequency accelerometers and acoustic emission sensors. The combined seismic network allowed for detection and detailed analysis of seismicity with moment magnitudes MW<-4 (source sizes approx. on cm scale) that occurred solely during the hydraulic fracturing and refracturing stages. We relocated the seismicity catalog using the double-difference technique and calculated the source parameters (seismic moment, source size, stress drop, focal mechanism and seismic moment tensors). The physical characteristics of induced seismicity are compared to the stimulation parameters and to the formation parameters of the site. The seismic activity varies significantly depending on stimulation strategy with conventional, continuous stimulation being the most seismogenic. We find a systematic spatio-temporal migration of microseismic events (propagation away and towards wellbore injection interval) and temporal transitions in source mechanisms (opening - shearing - collapse) both being controlled by changes in fluid injection pressure. The derived focal mechanism parameters are in accordance with the local stress field orientation, and signify the reactivation of pre-existing rock flaws. The seismicity follows statistical and source scaling relations observed at different scales elsewhere, however, at an extremely low level of seismic efficiency.

  9. Pyranometer offsets triggered by ambient meteorology: insights from laboratory and field experiments

    NASA Astrophysics Data System (ADS)

    Oswald, Sandro M.; Pietsch, Helga; Baumgartner, Dietmar J.; Weihs, Philipp; Rieder, Harald E.

    2017-03-01

    This study investigates the effects of ambient meteorology on the accuracy of radiation (R) measurements performed with pyranometers contained in various heating and ventilation systems (HV-systems). It focuses particularly on instrument offsets observed following precipitation events. To quantify pyranometer responses to precipitation, a series of controlled laboratory experiments as well as two targeted field campaigns were performed in 2016. The results indicate that precipitation (as simulated by spray tests or observed under ambient conditions) significantly affects the thermal environment of the instruments and thus their stability. Statistical analyses of laboratory experiments showed that precipitation triggers zero offsets of -4 W m-2 or more, independent of the HV-system. Similar offsets were observed in field experiments under ambient environmental conditions, indicating a clear exceedance of BSRN (Baseline Surface Radiation Network) targets following precipitation events. All pyranometers required substantial time to return to their initial signal states after the simulated precipitation events. Therefore, for BSRN-class measurements, the recommendation would be to flag the radiation measurements during a natural precipitation event and 90 min after it in nighttime conditions. Further daytime experiments show pyranometer offsets of 50 W m-2 or more in comparison to the reference system. As they show a substantially faster recovery, the recommendation would be to flag the radiation measurements within a natural precipitation event and 10 min after it in daytime conditions.

  10. Making sense from space-time data in laboratory experiments on space plasma processes

    NASA Technical Reports Server (NTRS)

    Gekelman, Walter; Bamber, James; Leneman, David; Vincena, Steve; Maggs, James; Rosenberg, Steve

    1995-01-01

    A number of visualization techniques are discussed in a laboratory experiment designed to study phenomena that occur in space. Visualization tools are used to design the apparatus, collect data, and make one-, two-, and three-dimensional plots of the results. These tools are an indispensable part of the experiment because the data sets are hundreds of megabytes in size and rapid turnaround is required.

  11. Thermal/structural modeling of a large scale in situ overtest experiment for defense high level waste at the Waste Isolation Pilot Plant Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, H.S.; Stone, C.M.; Krieg, R.D.

    Several large scale in situ experiments in bedded salt formations are currently underway at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, USA. In these experiments, the thermal and creep responses of salt around several different underground room configurations are being measured. Data from the tests are to be compared to thermal and structural responses predicted in pretest reference calculations. The purpose of these comparisons is to evaluate computational models developed from laboratory data prior to fielding of the in situ experiments. In this paper, the computational models used in the pretest reference calculation for one of themore » large scale tests, The Overtest for Defense High Level Waste, are described; and the pretest computed thermal and structural responses are compared to early data from the experiment. The comparisons indicate that computed and measured temperatures for the test agree to within ten percent but that measured deformation rates are between two and three times greater than corresponsing computed rates. 10 figs., 3 tabs.« less

  12. Effects of combustion temperature on PCDD/Fs formation in laboratory-scale fluidized-bed incineration.

    PubMed

    Hatanaka, T; Imagawa, T; Kitajima, A; Takeuchi, M

    2001-12-15

    Combustion experiments in a laboratory-scale fluidized-bed reactor were performed to elucidate the effects of combustion temperature on PCDD/Fs formation during incineration of model wastes with poly(vinyl chloride) or sodium chloride as a chlorine source and copper chloride as a catalyst. Each temperature of primary and secondary combustion zones in the reactor was set independently to 700, 800, and 900 degrees C using external electric heaters. The PCDD/Fs concentration is reduced as the temperature of the secondary combustion zone increases. It is effective to keep the temperature of the secondary combustion zone high enough to reduce their release during the waste incineration. On the other hand, as the temperature of the primary combustion zone rises, the PCDD/Fs concentration also increases. Lower temperature of the primary combustion zone results in less PCDD/Fs concentration in these experimental conditions. This result is probably related to the devolatilization rate of the solid waste in the primary combustion zone. The temperature decrease slows the devolatilization rate and promotes mixing of oxygen and volatile matters from the solid waste. This contributes to completing combustion reactions, resulting in reducing the PCDD/Fs concentration.

  13. Application of simultaneous saccharification and fermentation (SSF) from viscosity reducing of raw sweet potato for bioethanol production at laboratory, pilot and industrial scales.

    PubMed

    Zhang, Liang; Zhao, Hai; Gan, Mingzhe; Jin, Yanlin; Gao, Xiaofeng; Chen, Qian; Guan, Jiafa; Wang, Zhongyan

    2011-03-01

    The aim of this work was to research a bioprocess for bioethanol production from raw sweet potato by Saccharomyces cerevisiae at laboratory, pilot and industrial scales. The fermentation mode, inoculum size and pressure from different gases were determined in laboratory. The maximum ethanol concentration, average ethanol productivity rate and yield of ethanol after fermentation in laboratory scale (128.51 g/L, 4.76 g/L/h and 91.4%) were satisfactory with small decrease at pilot scale (109.06 g/L, 4.89 g/L/h and 91.24%) and industrial scale (97.94 g/L, 4.19 g/L/h and 91.27%). When scaled up, the viscosity caused resistance to fermentation parameters, 1.56 AUG/g (sweet potato mash) of xylanase decreased the viscosity from approximately 30000 to 500 cp. Overall, sweet potato is a attractive feedstock for be bioethanol production from both the economic standpoints and environmentally friendly. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Field versus laboratory experiments to evaluate the fate of azoxystrobin in an amended vineyard soil.

    PubMed

    Herrero-Hernández, E; Marín-Benito, J M; Andrades, M S; Sánchez-Martín, M J; Rodríguez-Cruz, M S

    2015-11-01

    This study reports the effect that adding spent mushroom substrate (SMS) to a representative vineyard soil from La Rioja region (Spain) has on the behaviour of azoxystrobin in two different environmental scenarios. Field dissipation experiments were conducted on experimental plots amended at rates of 50 and 150 t ha(-1), and similar dissipation experiments were simultaneously conducted in the laboratory to identify differences under controlled conditions. Azoxystrobin dissipation followed biphasic kinetics in both scenarios, although the initial dissipation phase was much faster in the field than in the laboratory experiments, and the half-life (DT50) values obtained in the two experiments were 0.34-46.3 days and 89.2-148 days, respectively. Fungicide residues in the soil profile increased in the SMS amended soil and they were much higher in the top two layers (0-20 cm) than in deeper layers. The persistence of fungicide in the soil profile is consistent with changes in azoxystrobin adsorption by unamended and amended soils over time. Changes in the dehydrogenase activity (DHA) of soils under different treatments assayed in the field and in the laboratory indicated that SMS and the fungicide had a stimulatory effect on soil DHA. The results reveal that the laboratory studies usually reported in the literature to explain the fate of pesticides in amended soils are insufficient to explain azoxystrobin behaviour under real conditions. Field studies are necessary to set up efficient applications of SMS and fungicide, with a view to preventing the possible risk of water contamination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Experimenting in a constructivist high school physics laboratory

    NASA Astrophysics Data System (ADS)

    Roth, Wolff-Michael

    Although laboratory activities have long been recognized for their potential to facilitate the learning of science concepts and skills, this potential has yet to be realized. To remediate this problem, researchers have called for constructivist learning environments in which students can pursue open inquiry and frame their own research problems. The present study was designed to describe and understand students' experimenting and problem solving in such an environment. An interpretive research methodology was adopted for the construction of meaning from the data. The data sources included videotapes, their transcripts, student laboratory reports and reflections, interviews with the students, and the teacher's course outline and reflective notes. Forty-six students from three sections of an introductory physics course taught at a private school for boys participated in the study. This article shows the students' remarkable ability and willingness to generate research questions and to design and develop apparatus for data collection. In their effort to frame research questions, students often used narrative explanations to explore and think about the phenomena to be studied. In some cases, blind alleys, students framed research questions and planned experiments that did not lead to the expected results. We observed a remarkable flexibility to deal with problems that arose during the implementation of their plans in the context of the inquiry. These problems, as well as their solutions and the necessary decision-making processes, were characterized by their situated nature. Finally, students pursued meaningful learning during the interpretation of data and graphs to arrive at reasonable answers of their research questions. We concluded that students should be provided with problem-rich learning environments in which they learn to investigate phenomena of their own interest and in which they can develop complex problem-solving skills.

  16. Linking Laboratory Experiences to the Real World: The Extraction of Octylphenoxyacetic Acid from Water

    ERIC Educational Resources Information Center

    Loyo-Rosales, Jorge E.; Torrents, Alba; Rosales-Rivera, Georgina C.; Rice, Clifford C.

    2006-01-01

    Several chemical concepts to the extraction of a water pollutant OPC (octylphenoxyacetic acid) is presented. As an introduction to the laboratory experiment, a discussion on endocrine disrupters is conducted to familiarize the student with the background of the experiment and to explain the need for the extraction and quantitation of the OPC which…

  17. Student Reciprocal Peer Teaching as a Method for Active Learning: An Experience in an Electrotechnical Laboratory

    NASA Astrophysics Data System (ADS)

    Muñoz-García, Miguel A.; Moreda, Guillermo P.; Hernández-Sánchez, Natalia; Valiño, Vanesa

    2013-10-01

    Active learning is one of the most efficient mechanisms for learning, according to the psychology of learning. When students act as teachers for other students, the communication is more fluent and knowledge is transferred easier than in a traditional classroom. This teaching method is referred to in the literature as reciprocal peer teaching. In this study, the method is applied to laboratory sessions of a higher education institution course, and the students who act as teachers are referred to as "laboratory monitors." A particular way to select the monitors and its impact in the final marks is proposed. A total of 181 students participated in the experiment, experiences with laboratory monitors are discussed, and methods for motivating and training laboratory monitors and regular students are proposed. The types of laboratory sessions that can be led by classmates are discussed. This work is related to the changes in teaching methods in the Spanish higher education system, prompted by the Bologna Process for the construction of the European Higher Education Area

  18. Intermediate Scale Laboratory Testing to Understand Mechanisms of Capillary and Dissolution Trapping during Injection and Post-Injection of CO 2 in Heterogeneous Geological Formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Illangasekare, Tissa; Trevisan, Luca; Agartan, Elif

    2015-03-31

    Carbon Capture and Storage (CCS) represents a technology aimed to reduce atmospheric loading of CO 2 from power plants and heavy industries by injecting it into deep geological formations, such as saline aquifers. A number of trapping mechanisms contribute to effective and secure storage of the injected CO 2 in supercritical fluid phase (scCO 2) in the formation over the long term. The primary trapping mechanisms are structural, residual, dissolution and mineralization. Knowledge gaps exist on how the heterogeneity of the formation manifested at all scales from the pore to the site scales affects trapping and parameterization of contributing mechanismsmore » in models. An experimental and modeling study was conducted to fill these knowledge gaps. Experimental investigation of fundamental processes and mechanisms in field settings is not possible as it is not feasible to fully characterize the geologic heterogeneity at all relevant scales and gathering data on migration, trapping and dissolution of scCO 2. Laboratory experiments using scCO 2 under ambient conditions are also not feasible as it is technically challenging and cost prohibitive to develop large, two- or three-dimensional test systems with controlled high pressures to keep the scCO 2 as a liquid. Hence, an innovative approach that used surrogate fluids in place of scCO 2 and formation brine in multi-scale, synthetic aquifers test systems ranging in scales from centimeter to meter scale developed used. New modeling algorithms were developed to capture the processes controlled by the formation heterogeneity, and they were tested using the data from the laboratory test systems. The results and findings are expected to contribute toward better conceptual models, future improvements to DOE numerical codes, more accurate assessment of storage capacities, and optimized placement strategies. This report presents the experimental and modeling methods and research results.« less

  19. Synthesis of Meso-Octamethylporphyrinogen: An Undergraduate Laboratory Mini-Scale Experiment in Organic Heterocyclic Chemistry

    ERIC Educational Resources Information Center

    Sobral, Abilio J. F. N.

    2005-01-01

    The synthesis of meso-octamethylporphyrinogen that involves a mini-scale preparation and uses acetone as reactant and also as solvent is presented. It results in a product of almost analytical grade directly from the reaction medium.

  20. Social setting, intuition and experience in laboratory experiments interact to shape cooperative decision-making.

    PubMed

    Capraro, Valerio; Cococcioni, Giorgia

    2015-07-22

    Recent studies suggest that cooperative decision-making in one-shot interactions is a history-dependent dynamic process: promoting intuition versus deliberation typically has a positive effect on cooperation (dynamism) among people living in a cooperative setting and with no previous experience in economic games on cooperation (history dependence). Here, we report on a laboratory experiment exploring how these findings transfer to a non-cooperative setting. We find two major results: (i) promoting intuition versus deliberation has no effect on cooperative behaviour among inexperienced subjects living in a non-cooperative setting; (ii) experienced subjects cooperate more than inexperienced subjects, but only under time pressure. These results suggest that cooperation is a learning process, rather than an instinctive impulse or a self-controlled choice, and that experience operates primarily via the channel of intuition. Our findings shed further light on the cognitive basis of human cooperative decision-making and provide further support for the recently proposed social heuristics hypothesis. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. Characterization of blocks impacts from elastic waves: insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Farin, M.; Mangeney, A.; Toussaint, R.; De Rosny, J.; Shapiro, N.

    2013-12-01

    Rockfalls, debris flows and rock avalanches constitute a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and rock blocks. The elastic energy emitted by a single bouncing steel bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, two types of acoustic sensors were used to record the signals in a wide frequency range: accelerometers (1 Hz to 56 kHz) and piezoelectric sensors (100 kHz to 1 MHz). The experiments were also monitored optically using fast cameras. We developed a technique to use quantitatively both types of sensors to evaluate the elastic energy emitted by the sources. Eventually, we looked at what types of features in the signal are affected by individual shocks or by the large scale geometry of

  2. Summer Research Experiences with a Laboratory Tokamak

    NASA Astrophysics Data System (ADS)

    Farley, N.; Mauel, M.; Navratil, G.; Cates, C.; Maurer, D.; Mukherjee, S.; Shilov, M.; Taylor, E.

    1998-11-01

    Columbia University's Summer Research Program for Secondary School Science Teachers seeks to improve middle and high school student understanding of science. The Program enhances science teachers' understanding of the practice of science by having them participate for two consecutive summers as members of laboratory research teams led by Columbia University faculty. In this poster, we report the research and educational activities of two summer internships with the HBT-EP research tokamak. Research activities have included (1) computer data acquisition and the representation of complex plasma wave phenomena as audible sounds, and (2) the design and construction of pulsed microwave systems to experience the design and testing of special-purpose equipment in order to achieve a specific technical goal. We also present an overview of the positive impact this type of plasma research involvement has had on high school science teaching.

  3. The Synthetic Experiment: E. B. Titchener's Cornell Psychological Laboratory and the Test of Introspective Analysis.

    PubMed

    Evans, Rand B

    2017-01-01

    Beginning in 1 9a0, a major thread of research was added to E. B. Titchener's Cornell laboratory: the synthetic experiment. Titchener and his graduate students used introspective analysis to reduce a perception, a complex experience, into its simple sensory constituents. To test the validity of that analysis, stimulus patterns were selected to reprodiuce the patterns of sensations found in the introspective analyses. If the original perception can be reconstructed in this way, then the analysis was considered validated. This article reviews development of the synthetic method in E. B. Titchener's laboratory at Cornell University and examines its impact on psychological research.

  4. Engines for experiment: laboratory revolution and industrial labor in the nineteenth-century city.

    PubMed

    Dierig, Sven

    2003-01-01

    This article brings together what until now have been separate fields of nineteenth-century history: the development of experimental physiology, the growth of mechanized industry, and the city, where their threads intertwined. The main argument is that the laboratory in the city employed the same technological and organizational approaches to modernize that the city used to industrialize. To bring the adoption of technology into focus, the article discusses laboratory research as it developed after the introduction of small-scale power engines. With its machines, the industrialized city provided not only the key metaphor of the nineteenth-century life sciences but also a key technology that shifted experimental practices in animal research from a kind of preindustrial craft to a more mechanized production of knowledge. With its "factory-laboratories," the late-nineteenth-century city became the birthplace for the first living, data-producing hybird---part animal and part machine.

  5. Proteotyping of laboratory-scale biogas plants reveals multiple steady-states in community composition.

    PubMed

    Kohrs, F; Heyer, R; Bissinger, T; Kottler, R; Schallert, K; Püttker, S; Behne, A; Rapp, E; Benndorf, D; Reichl, U

    2017-08-01

    Complex microbial communities are the functional core of anaerobic digestion processes taking place in biogas plants (BGP). So far, however, a comprehensive characterization of the microbiomes involved in methane formation is technically challenging. As an alternative, enriched communities from laboratory-scale experiments can be investigated that have a reduced number of organisms and are easier to characterize by state of the art mass spectrometric-based (MS) metaproteomic workflows. Six parallel laboratory digesters were inoculated with sludge from a full-scale BGP to study the development of enriched microbial communities under defined conditions. During the first three month of cultivation, all reactors (R1-R6) were functionally comparable regarding biogas productions (375-625 NL L reactor volume -1 d -1 ), methane yields (50-60%), pH values (7.1-7.3), and volatile fatty acids (VFA, <5 mM). Nevertheless, a clear impact of the temperature (R3, R4) and ammonia (R5, R6) shifts was observed for the respective reactors. In both reactors operated under thermophilic regime, acetic and propionic acid (10-20 mM) began to accumulate. While R4 recovered quickly from acidification, the levels of VFA remained to be high in R3 resulting in low pH values of 6.5-6.9. The digesters R5 and R6 operated under the high ammonia regime (>1 gNH 3 L -1 ) showed an increase to pH 7.5-8.0, accumulation of acetate (>10 mM), and decreasing biogas production (<125 NL L reactor volume -1 d -1 ). Tandem MS (MS/MS)-based proteotyping allowed the identification of taxonomic abundances and biological processes. Although all reactors showed similar performances, proteotyping and terminal restriction fragment length polymorphisms (T-RFLP) fingerprinting revealed significant differences in the composition of individual microbial communities, indicating multiple steady-states. Furthermore, cellulolytic enzymes and cellulosomal proteins of Clostridium thermocellum were identified to be specific

  6. The Kinetics and Inhibition of Gamma-Glutamyl Transpeptidase: A Biochemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Splittgerber, A. G.; Sohl, Julie

    1988-01-01

    Discusses an enzyme kinetics laboratory experiment involving a two substrate system for undergraduate biochemistry. Uses the enzyme gamma-glutamyl transpeptidase as this enzyme in blood serum is of clinical significance. Notes elevated levels are seen in liver disease, alcoholism, and epilepsy. Uses a spectrophotometer for the analysis. (MVL)

  7. Expression, Purification, and Characterization of a Carbohydrate-Active Enzyme: A Research-Inspired Methods Optimization Experiment for the Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Willbur, Jaime F.; Vail, Justin D.; Mitchell, Lindsey N.; Jakeman, David L.; Timmons, Shannon C.

    2016-01-01

    The development and implementation of research-inspired, discovery-based experiences into science laboratory curricula is a proven strategy for increasing student engagement and ownership of experiments. In the novel laboratory module described herein, students learn to express, purify, and characterize a carbohydrate-active enzyme using modern…

  8. Nursing students' experiences of and satisfaction with the clinical learning environment: the role of educational models in the simulation laboratory and in clinical practice.

    PubMed

    Cremonini, Valeria; Ferri, Paola; Artioli, Giovanna; Sarli, Leopoldo; Piccioni, Enrico; Rubbi, Ivan

    2015-01-01

    Student satisfaction is an important element of the effectiveness of clinical placement, but there is little consensus in the literature as to the preferred model of clinical experience for undergraduate nursing students. The aim of this study was assess, for each academic year, students' perception of the roles of nurse teachers (NT) and clinical nurse supervisors (CNS) who perform tutoring in both apprenticeship and laboratories and to identify and evaluate students' satisfaction with the environment of clinical learning. This analytic cross-sectional study was conducted in a sample of 173 nursing students in the Northern Italy. The research instrument used is the Clinical learning environment, supervision and nurse teacher (CLES+T) evaluation scale. Data were statistically analysed. 94% of our sample answered questionnaires. Students expressed a higher level of satisfaction with their training experiences. The highest mean value was in the sub-dimension "Pedagogical atmosphere on the ward". Third year students expressed higher satisfaction levels in their relationship with the CNS and lower satisfaction levels in their relationship with the NT. This result may be due to the educational model that is adopted in the course, in which the simulation laboratory didactic activities of the third year are conducted by CNS, who also supervises experiences of clinical learning in the clinical practice. The main finding in this study was that the students' satisfaction with the supervisory relationship and the role of NT depend on how supervision in the clinical practice and in the simulation laboratory is organized.

  9. Fabrication Method for Laboratory-Scale High-Performance Membrane Electrode Assemblies for Fuel Cells.

    PubMed

    Sassin, Megan B; Garsany, Yannick; Gould, Benjamin D; Swider-Lyons, Karen E

    2017-01-03

    Custom catalyst-coated membranes (CCMs) and membrane electrode assemblies (MEAs) are necessary for the evaluation of advanced electrocatalysts, gas diffusion media (GDM), ionomers, polymer electrolyte membranes (PEMs), and electrode structures designed for use in next-generation fuel cells, electrolyzers, or flow batteries. This Feature provides a reliable and reproducible fabrication protocol for laboratory scale (10 cm 2 ) fuel cells based on ultrasonic spray deposition of a standard Pt/carbon electrocatalyst directly onto a perfluorosulfonic acid PEM.

  10. Feasibility of Autonomous Monitoring of CO2 Leakage in Aquifers: Results From Controlled Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Versteeg, R.; Leger, E.; Dafflon, B.

    2016-12-01

    Geologic sequestration of CO2 is one of the primary proposed approaches for reducing total atmospheric CO2 concentrations. MVAA (Monitoring, Verification, Accounting and Assessment) of CO2 sequestration is an essential part of the geologic CO2 sequestration cycle. MVAA activities need to meet multiple operational, regulatory and environmental objectives, including ensuring the protection of underground sources of drinking water. Anticipated negative consequences of CO2 leakage into groundwater, besides possible brine contamination and release of gaseous CO2, include a significant increase of dissolved CO2 into shallow groundwater systems, which will decrease groundwater pH and can potentially mobilize naturally occurring trace metals and ions that are commonly absorbed to or contained in sediments. Autonomous electrical geophysical monitoring in aquifers has the potential of allowing for rapid and automated detection of CO2 leakage. However, while the feasibility of such monitoring has been demonstrated by a number of different field experiments, automated interpretation of complex electrical resistivity data requires the development of quantitative relationships between complex electrical resistivity signatures and dissolved CO2 in the aquifer resulting from leakage Under a DOE SBIR funded effort we performed multiple tank scale experiments in which we investigated complex electrical resistivity signatures associated with dissolved CO2 plumes in saturated sediments. We also investigated the feasibility of distinguishing CO2 leakage signatures from signatures associated with other processes such as salt water movement, temperature variations and other variations in chemical or physical conditions. In addition to these experiments we also numerically modeled the tank experiments. These experiments showed that (a) we can distinguish CO2 leakage signatures from other signatures, (b) CO2 leakage signatures have a consistent characteristic, (c) laboratory experiments

  11. Laboratory-Scale Internal Wave Apparatus for Studying Copepod Behavior

    NASA Astrophysics Data System (ADS)

    Jung, S.; Webster, D. R.; Haas, K. A.; Yen, J.

    2016-02-01

    Internal waves are ubiquitous features in coastal marine environments and have been observed to mediate vertical distributions of zooplankton in situ. Internal waves create fine-scale hydrodynamic cues that copepods and other zooplankton are known to sense, such as fluid density gradients and velocity gradients (quantified as shear deformation rate). The role of copepod behavior in response to cues associated with internal waves is largely unknown. The objective is to provide insight to the bio-physical interaction and the role of biological versus physical forcing in mediating organism distributions. We constructed a laboratory-scale internal wave apparatus to facilitate fine-scale observations of copepod behavior in flows that replicate in situ conditions of internal waves in two-layer stratification. Two cases were chosen with density jump of 1 and 1.5 sigma-t units. Analytical analysis of the two-layer system provided guidance to the target forcing frequency needed to generate a standing internal wave with a single dominate frequency of oscillation. Flow visualization and signal processing of the interface location were used to quantify the wave characteristics. The results show a close match to the target wave parameters. Marine copepod (mixed population of Acartia tonsa, Temora longicornis, and Eurytemora affinis) behavior assays were conducted for three different physical arrangements: (1) no density stratification, (2) stagnant two-layer density stratification, and (3) two-layer density stratification with internal wave motion. Digitized trajectories of copepod swimming behavior indicate that in the control (case 1) the animals showed no preferential motion in terms of direction. In the stagnant density jump treatment (case 2) copepods preferentially moved horizontally, parallel to the density interface. In the internal wave treatment (case 3) copepods demonstrated orbital trajectories near the density interface.

  12. Laboratory experiments on stability and entrainment of oceanic stratocumulus. Part 1: Instability experiment

    NASA Technical Reports Server (NTRS)

    Shy, Shenqyang S.

    1990-01-01

    The existence and persistence of marine stratocumulus play a significant role in the overall energy budget of the earth. Their stability and entrainment process are important in global climate studies, as well as for local weather forecasting. The purposes of the experimental simulations are to study this process and to address this paradox. The effects of buoyancy reversal is investigated, followed by two types of experiments. An instability experiment involves the behavior of a fully turbulent wake near the inversion generated by a sliding plate. Due to buoyancy reversal, the heavy, mixed fluid starts to sink, turning the potential energy created by the mixing process into kinetic energy, thereby increasing the entrainment rate. An entrainment experiment, using a vertically oscillating grid driven by a controllable speed motor, produces many eddy-induced entrainments at a surface region on scales much less than the depth of the layer.

  13. Combustion and Energy Transfer Experiments: A Laboratory Model for Linking Core Concepts across the Science Curriculum

    ERIC Educational Resources Information Center

    Barreto, Jose C.; Dubetz, Terry A.; Schmidt, Diane L.; Isern, Sharon; Beatty, Thomas; Brown, David W.; Gillman, Edward; Alberte, Randall S.; Egiebor, Nosa O.

    2007-01-01

    Core concepts can be integrated throughout lower-division science and engineering courses by using a series of related, cross-referenced laboratory experiments. Starting with butane combustion in chemistry, the authors expanded the underlying core concepts of energy transfer into laboratories designed for biology, physics, and engineering. This…

  14. Measurement of the Compressibility Factor of Gases: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Bendelsmith, Andrew J.; Kuwata, Keith T.

    2011-01-01

    In this article, we describe an experiment for the undergraduate physical chemistry laboratory in which students measure the compressibility factor of two gases, helium and carbon dioxide, as a function of pressure at constant temperature. The experimental apparatus is relatively inexpensive to construct and is described and diagrammed in detail.…

  15. Liquid-Liquid Extraction of Insecticides from Juice: An Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Radford, Samantha A.; Hunter, Ronald E., Jr.; Barr, Dana Boyd; Ryan, P. Barry

    2013-01-01

    A laboratory experiment was developed to target analytical chemistry students and to teach them about insecticides in food, sample extraction, and cleanup. Micro concentrations (sub-microgram/mL levels) of 12 insecticides spiked into apple juice samples are extracted using liquid-liquid extraction and cleaned up using either a primary-secondary…

  16. The Quartz-Crystal Microbalance in an Undergraduate Laboratory Experiment: I. Fundamentals and Instrumentation

    ERIC Educational Resources Information Center

    Tsionsky, Vladimir

    2007-01-01

    The fundamentals, as well as the instrumentation of the quartz-crystal microbalance (QCM) technique that is used in an undergraduate laboratory experiment are being described. The QCM response can be easily used to change the properties of any system.

  17. Transitioning glass-ceramic scintillators for diagnostic x-ray imaging from the laboratory to commercial scale

    NASA Astrophysics Data System (ADS)

    Beckert, M. Brooke; Gallego, Sabrina; Elder, Eric; Nadler, Jason

    2016-10-01

    This study sought to mitigate risk in transitioning newly developed glass-ceramic scintillator technology from a laboratory concept to commercial product by identifying the most significant hurdles to increased scale. These included selection of cost effective raw material sources, investigation of process parameters with the most significant impact on performance, and synthesis steps that could see the greatest benefit from participation of an industry partner that specializes in glass or optical component manufacturing. Efforts focused on enhancing the performance of glass-ceramic nanocomposite scintillators developed specifically for medical imaging via composition and process modifications that ensured efficient capture of incident X-ray energy and emission of scintillation light. The use of cost effective raw materials and existing manufacturing methods demonstrated proof-of-concept for economical viable alternatives to existing benchmark materials, as well as possible disruptive applications afforded by novel geometries and comparatively lower cost per volume. The authors now seek the expertise of industry to effectively navigate the transition from laboratory demonstrations to pilot scale production and testing to evince the industry of the viability and usefulness of composite-based scintillators.

  18. 10. MOVABLE BED SEDIMENTATION MODELS. DOGTOOTH BEND MODEL (MODEL SCALE: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. MOVABLE BED SEDIMENTATION MODELS. DOGTOOTH BEND MODEL (MODEL SCALE: 1' = 400' HORIZONTAL, 1' = 100' VERTICAL), AND GREENVILLE BRIDGE MODEL (MODEL SCALE: 1' = 360' HORIZONTAL, 1' = 100' VERTICAL). - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  19. Constraining the Volatility Distributions and Possible Diffusion Limitations of Secondary Organic Aerosols Using Laboratory Dilution Experiments

    NASA Astrophysics Data System (ADS)

    Ye, Q.; Robinson, E. S.; Mahfouz, N.; Sullivan, R. C.; Donahue, N. M.

    2016-12-01

    Secondary organic aerosols (SOA) dominate the mass of fine particles in the atmosphere. Their formation involves both oxidation of volatile organics from various sources that produce products with uncertain volatilities, and diffusion of these products into the condensed phase. Therefore, constraining volatility distribution and diffusion timescales of the constituents in SOA are important in predicting size, concentration and composition of SOA, as well as how these properties of SOA evolve in the atmosphere. In this work, we demonstrate how carefully designed laboratory isothermal dilution experiments in smog chambers can shed light into the volatility distribution and any diffusion barriers of common types of SOA over time scales relevant to atmospheric transport and diurnal cycling. We choose SOA made from mono-terpenes (alpha-pinene and limonene) and toluene to represent biogenic and anthropogenic SOA. We look into how moisture content can alter any evaporation behaviors of SOA by varying relative humidity during SOA generation and during dilution process. This provides insight into whether diffusion in the condensed phase is rate limiting in reaching gas/particle equilibrium of semi-volatile organic compounds. Our preliminary results show that SOA from alpha-pinene evaporates continuously over several hours of experiments, and there is no substantial discernible differences over wide ranges of the chamber humidity. SOA from toluene oxidation shows slower evaporation. We fit these experimental data using absorptive partitioning theory and a particle dynamic model to obtain volatility distributions and to predict particle size evolution. This in the end will help us to improve representation of SOA in large scale chemical transport models.

  20. Seismic and aseismic fault slip in response to fluid injection observed during field experiments at meter scale

    NASA Astrophysics Data System (ADS)

    Cappa, F.; Guglielmi, Y.; De Barros, L.; Wynants-Morel, N.; Duboeuf, L.

    2017-12-01

    During fluid injection, the observations of an enlarging cloud of seismicity are generally explained by a direct response to the pore pressure diffusion in a permeable fractured rock. However, fluid injection can also induce large aseismic deformations which provide an alternative mechanism for triggering and driving seismicity. Despite the importance of these two mechanisms during fluid injection, there are few studies on the effects of fluid pressure on the partitioning between seismic and aseismic motions under controlled field experiments. Here, we describe in-situ meter-scale experiments measuring synchronously the fluid pressure, the fault motions and the seismicity directly in a fault zone stimulated by controlled fluid injection at 280 m depth in carbonate rocks. The experiments were conducted in a gallery of an underground laboratory in south of France (LSBB, http://lsbb.eu). Thanks to the proximal monitoring at high-frequency, our data show that the fluid overpressure mainly induces a dilatant aseismic slip (several tens of microns up to a millimeter) at the injection. A sparse seismicity (-4 < Mw < -3) is observed several meters away from the injection, in a part of the fault zone where the fluid overpressure is null or very low. Using hydromechanical modeling with friction laws, we simulated an experiment and investigated the relative contribution of the fluid pressure diffusion and stress transfer on the seismic and aseismic fault behavior. The model reproduces the hydromechanical data measured at injection, and show that the aseismic slip induced by fluid injection propagates outside the pressurized zone where accumulated shear stress develops, and potentially triggers seismicity. Our models also show that the permeability enhancement and friction evolution are essential to explain the fault slip behavior. Our experimental results are consistent with large-scale observations of fault motions at geothermal sites (Wei et al., 2015; Cornet, 2016), and

  1. Scaling Study of Reconnection Heating in Torus Plasma Merging Experiments

    NASA Astrophysics Data System (ADS)

    Ono, Yasushi; Akimitsu, Moe; Sawada, Asuka; Cao, Qinghong; Koike, Hideya; Hatano, Hironori; Kaneda, Taishi; Tanabe, Hiroshi

    2017-10-01

    We have been investigating toroidal plasma merging and reconnection for high-power heating of spherical tokamak (ST) and field-reversed configuration (FRC), using TS-3 (ST, FRC: R =0.2m, 1985-), TS-4 (ST, FRC: R =0.5m, 2000-), UTST (ST: R =0.45m, 2008-) and MAST (ST: R =0.9m, 2000-) devices. The series of merging experiments made clear the promising scaling and characteristics of reconnection heating: (i) its ion heating energy that scales with square of the reconnecting magnetic field Brec, (ii) its energy loss lower than 10%, (iii) its ion heating energy (in the downstream) 10 time larger than its electron heating energy (at around X-point) and (iv) low dependence of ion heating on the guide (toroidal) field Bg. The Brec2-scalingwas obtained when the current sheet was compressed to the order of ion gyrodadius. When the sheet was insufficiently compressed, the measured ion temperature was lower than the scaling prediction. Based on this scaling, we realized significant ion heating up to 1.2keV in MAST after 2D elucidation of ion heating up to 250eV in TS-3 [3,4]. This promising scaling leads us to new high Brec reconnection heating experiments for future direct access to burning plasma: TS-U (2017-) in Univ. Tokyo and ST-40 in Tokamak Energy Inc. (2017-). This presentation reviews major progresses in those toroidal plasma merging experiments for physics and fusion applications of magnetic reconnection.

  2. Development of the Bullying and Health Experiences Scale

    PubMed Central

    2012-01-01

    Background Until recently, researchers have studied forms of bullying separately. For 40 years, research has looked at the traditional forms of bullying, including physical (eg, hitting), verbal (eg, threats), and social (eg, exclusion). Attention focused on cyberbullying in the early 2000s. Although accumulating research suggests that bullying has multiple negative effects for children who are targeted, these effects excluded cyberbullying from the definition of bullying. Objective This paper responds to the need for a multidimensional measure of the impact of various forms of bullying. We used a comprehensive definition of bullying, which includes all of its forms, to identify children who had been targeted or who had participated in bullying. We then examined various ways in which they were impacted. Methods We used an online method to administer 37 impact items to 377 (277 female, 100 male) children and youth, to develop and test the Bullying and Health Experience Scale. Results A principal components analysis of the bullying impact items with varimax rotation resulted in 8 factors with eigenvalues greater than one, explaining 68.0% of the variance. These scales include risk, relationships, anger, physical injury, drug use, anxiety, self-esteem, and eating problems, which represent many of the cognitive, psychological, and behavioral consequences of bullying. The Cronbach alpha coefficients for the 8 scales range from .73 to .90, indicating good inter-item consistency. Comparisons between the groups showed that children involved in bullying had significantly higher negative outcomes on all scales than children not involved in bullying. Conclusions The high Cronbach alpha values indicate that the 8 impact scales provide reliable scores. In addition, comparisons between the groups indicate that the 8 scales provide accurate scores, with more negative outcomes reported by children involved in bullying compared to those who are not involved in bullying. This

  3. Development of the bullying and health experiences scale.

    PubMed

    Beran, Tanya; Stanton, Lauren; Hetherington, Ross; Mishna, Faye; Shariff, Shaheen

    2012-11-09

    Until recently, researchers have studied forms of bullying separately. For 40 years, research has looked at the traditional forms of bullying, including physical (eg, hitting), verbal (eg, threats), and social (eg, exclusion). Attention focused on cyberbullying in the early 2000s. Although accumulating research suggests that bullying has multiple negative effects for children who are targeted, these effects excluded cyberbullying from the definition of bullying. This paper responds to the need for a multidimensional measure of the impact of various forms of bullying. We used a comprehensive definition of bullying, which includes all of its forms, to identify children who had been targeted or who had participated in bullying. We then examined various ways in which they were impacted. We used an online method to administer 37 impact items to 377 (277 female, 100 male) children and youth, to develop and test the Bullying and Health Experience Scale. A principal components analysis of the bullying impact items with varimax rotation resulted in 8 factors with eigenvalues greater than one, explaining 68.0% of the variance. These scales include risk, relationships, anger, physical injury, drug use, anxiety, self-esteem, and eating problems, which represent many of the cognitive, psychological, and behavioral consequences of bullying. The Cronbach alpha coefficients for the 8 scales range from .73 to .90, indicating good inter-item consistency. Comparisons between the groups showed that children involved in bullying had significantly higher negative outcomes on all scales than children not involved in bullying. The high Cronbach alpha values indicate that the 8 impact scales provide reliable scores. In addition, comparisons between the groups indicate that the 8 scales provide accurate scores, with more negative outcomes reported by children involved in bullying compared to those who are not involved in bullying. This evidence of reliability and validity indicates that

  4. Hardwood log grading scale stick improved

    Treesearch

    M. D. Ostrander; G. H. Englerth

    1953-01-01

    In February 1952 the Northeastern Forest Experiment Station described ( Research Note 13) a new log-grading scale stick developed by the Station for use as a visual aid in grading hardwood factory logs. It was based on the U. S. Forest Products Laboratory's log-grade specifications.

  5. Streamlining workflow and automation to accelerate laboratory scale protein production.

    PubMed

    Konczal, Jennifer; Gray, Christopher H

    2017-05-01

    Protein production facilities are often required to produce diverse arrays of proteins for demanding methodologies including crystallography, NMR, ITC and other reagent intensive techniques. It is common for these teams to find themselves a bottleneck in the pipeline of ambitious projects. This pressure to deliver has resulted in the evolution of many novel methods to increase capacity and throughput at all stages in the pipeline for generation of recombinant proteins. This review aims to describe current and emerging options to accelerate the success of protein production in Escherichia coli. We emphasize technologies that have been evaluated and implemented in our laboratory, including innovative molecular biology and expression vectors, small-scale expression screening strategies and the automation of parallel and multidimensional chromatography. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Effect of Biochar on Greenhouse Gas Emissions and Nitrogen Cycling in Laboratory and Field Experiments

    NASA Astrophysics Data System (ADS)

    Hagemann, Nikolas; Harter, Johannes; Kaldamukova, Radina; Ruser, Reiner; Graeff-Hönninger, Simone; Kappler, Andreas; Behrens, Sebastian

    2014-05-01

    The extensive use of nitrogen (N) fertilizers in agriculture is a major source of anthropogenic N2O emissions contributing 8% to global greenhouse gas emissions. Soil biochar amendment has been suggested as a means to reduce both CO2 and non-CO2 greenhouse gas emissions. The reduction of N2O emissions by biochar has been demonstrated repeatedly in field and laboratory experiments. However, the mechanisms of the reduction remain unclear. Further it is not known how biochar field-weathering affects GHG emissions and how agro-chemicals, such as the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP), that is often simultaneously applied together with commercial N-fertilizers, impact nitrogen transformation and N2O emissions from biochar amended soils. In order investigate the duration of the biochar effect on soil N2O emissions and its susceptibility to DMPP application we performed a microcosm and field study with a high-temperature (400 ° C) beech wood derived biochar (60 t ha-1 and 5 % (w/w) biochar in the field and microcosms, respectively). While the field site contained the biochar already for three years, soil and biochar were freshly mixed for the laboratory microcosm experiments. In both studies we quantified GHG emissions and soil nitrogen speciation (nitrate, nitrite, ammonium). While the field study was carried out over the whole vegetation period of the sunflower Helianthus annuus L., soil microcosm experiments were performed for up to 9 days at 28° C. In both experiments a N-fertilizer containing DMPP was applied either before planting of the sunflowers or at the beginning of soil microcosms incubation. Laboratory microcosm experiments were performed at 60% water filled pore space reflecting average field conditions. Our results show that biochar effectively reduced soil N2O emissions by up to 60 % in the field and in the soil microcosm experiments. No significant differences in N2O emission mitigation potential between field-aged and fresh

  7. Cross-Disciplinary Thermoregulation and Sweat Analysis Laboratory Experiences for Undergraduate Chemistry and Exercise Science Students

    ERIC Educational Resources Information Center

    Mulligan, Gregory; Taylor, Nichole; Glen, Mary; Tomlin, Dona; Gaul, Catherine A.

    2011-01-01

    Cross-disciplinary (CD) learning experiences benefit student understanding of concepts and curriculum by offering opportunities to explore topics from the perspectives of alternate fields of study. This report involves a qualitative evaluation of CD health sciences undergraduate laboratory experiences in which concepts and students from two…

  8. Solvent-free microwave extraction of essential oil from aromatic herbs: from laboratory to pilot and industrial scale.

    PubMed

    Filly, Aurore; Fernandez, Xavier; Minuti, Matteo; Visinoni, Francesco; Cravotto, Giancarlo; Chemat, Farid

    2014-05-01

    Solvent-free microwave extraction (SFME) has been proposed as a green method for the extraction of essential oil from aromatic herbs that are extensively used in the food industry. This technique is a combination of microwave heating and dry distillation performed at atmospheric pressure without any added solvent or water. The isolation and concentration of volatile compounds is performed in a single stage. In this work, SFME and a conventional technique, hydro-distillation HD (Clevenger apparatus), are used for the extraction of essential oil from rosemary (Rosmarinus officinalis L.) and are compared. This preliminary laboratory study shows that essential oils extracted by SFME in 30min were quantitatively (yield and kinetics profile) and qualitatively (aromatic profile) similar to those obtained using conventional hydro-distillation in 2h. Experiments performed in a 75L pilot microwave reactor prove the feasibility of SFME up scaling and potential industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. In-house experiments in large space structures at the Air Force Wright Aeronautical Laboratories Flight Dynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Gordon, Robert W.; Ozguner, Umit; Yurkovich, Steven

    1989-01-01

    The Flight Dynamics Laboratory is committed to an in-house, experimental investigation of several technical areas critical to the dynamic performance of future Air Force large space structures. The advanced beam experiment was successfully completed and provided much experience in the implementation of active control approaches on real hardware. A series of experiments is under way in evaluating ground test methods on the 12 meter trusses with significant passive damping. Ground simulated zero-g response data from the undamped truss will be compared directly with true zero-g flight test data. The performance of several leading active control approaches will be measured and compared on one of the trusses in the presence of significant passive damping. In the future, the PACOSS dynamic test article will be set up as a test bed for the evaluation of system identification and control techniques on a complex, representative structure with high modal density and significant passive damping.

  10. Ring-Closing Metathesis: An Advanced Guided-Inquiry Experiment for the Organic Laboratory

    ERIC Educational Resources Information Center

    Schepmann, Hala G.; Mynderse, Michelle

    2010-01-01

    The design and implementation of an advanced guided-inquiry experiment for the organic laboratory is described. Grubbs's second-generation catalyst is used to effect the ring-closing metathesis of diethyl diallylmalonate. The reaction is carried out under an inert atmosphere at room temperature and monitored by argentic TLC. The crude reaction is…

  11. Analyzing Exonuclease-Induced Hyperchromicity by Uv Spectroscopy: An Undergraduate Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Ackerman, Megan M.; Ricciardi, Christopher; Weiss, David; Chant, Alan; Kraemer-Chant, Christina M.

    2016-01-01

    An undergraduate biochemistry laboratory experiment is described that utilizes free online bioinformatics tools along with readily available exonucleases to study the effects of base stacking and hydrogen bonding on the UV absorbance of DNA samples. UV absorbance of double-stranded DNA at the ?[subscript max] is decreased when the DNA bases are…

  12. Experiments with an ESOL Reading Laboratory.

    ERIC Educational Resources Information Center

    Ahrens, Patricia

    The reading laboratory has been developed to supplement intensive reading work for adult foreign students developing English-as-a-second-language skills at the American Language Institute. The laboratory is designed to suggest to students that there is a variety of reading tasks and a variety of reading strategies related to the tasks, to offer…

  13. Dissociation in the laboratory: a comparison of strategies.

    PubMed

    Leonard, K N; Telch, M J; Harrington, P J

    1999-01-01

    Several methods for inducing dissociation in the laboratory were examined in a sample of 78 undergraduate students. Participants scoring high or low on the Dissociative Experiences Scale participated in three dissociation challenge conditions: (a) dot-staring task, (b) administration of pulsed photic and audio stimulation and (c) stimulus deprivation. Participants recorded their dissociative experiences both before and after each of the three challenge conditions. Across conditions, high DES participants reported significantly more dissociative sensations than low DES participants, even after controlling for pre-challenge dissociation. Moreover, regardless of DES status, pulsed photo and audio stimulation produced the greatest level of dissociative symptoms. The findings suggest that the induction of dissociative symptoms in a nonclinical sample is easily accomplished in the laboratory and that those who report more dissociative symptoms in their day-to-day life exhibit more pronounced dissociative symptoms when undergoing dissociative challenge in the laboratory. Implications for the study and treatment of dissociative symptoms are discussed.

  14. A Rasch scaling validation of a 'core' near-death experience.

    PubMed

    Lange, Rense; Greyson, Bruce; Houran, James

    2004-05-01

    For those with true near-death experiences (NDEs), Greyson's (1983, 1990) NDE Scale satisfactorily fits the Rasch rating scale model, thus yielding a unidimensional measure with interval-level scaling properties. With increasing intensity, NDEs reflect peace, joy and harmony, followed by insight and mystical or religious experiences, while the most intense NDEs involve an awareness of things occurring in a different place or time. The semantics of this variable are invariant across True-NDErs' gender, current age, age at time of NDE, and latency and intensity of the NDE, thus identifying NDEs as 'core' experiences whose meaning is unaffected by external variables, regardless of variations in NDEs' intensity. Significant qualitative and quantitative differences were observed between True-NDErs and other respondent groups, mostly revolving around the differential emphasis on paranormal/mystical/religious experiences vs. standard reactions to threat. The findings further suggest that False-Positive respondents reinterpret other profound psychological states as NDEs. Accordingly, the Rasch validation of the typology proposed by Greyson (1983) also provides new insights into previous research, including the possibility of embellishment over time (as indicated by the finding of positive, as well as negative, latency effects) and the potential roles of religious affiliation and religiosity (as indicated by the qualitative differences surrounding paranormal/mystical/religious issues).

  15. Scaled Lunar Module Jet Erosion Experiments

    NASA Technical Reports Server (NTRS)

    Land, Norman S.; Scholl, Harland F.

    1966-01-01

    An experimental research program was conducted on the erosion of particulate surfaces by a jet exhaust. These experiments were scaled to represent the lunar module (LM) during landing. A conical cold-gas nozzle simulating the lunar module nozzle was utilized. The investigation was conducted within a large vacuum chamber by using gravel or glass beads as a simulated soil. The effects of thrust, descent speed, nozzle terminal height, particle size on crater size, and visibility during jet erosion were determined.

  16. The Software Engineering Laboratory: An operational software experience factory

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Caldiera, Gianluigi; Mcgarry, Frank; Pajerski, Rose; Page, Gerald; Waligora, Sharon

    1992-01-01

    For 15 years, the Software Engineering Laboratory (SEL) has been carrying out studies and experiments for the purpose of understanding, assessing, and improving software and software processes within a production software development environment at NASA/GSFC. The SEL comprises three major organizations: (1) NASA/GSFC, Flight Dynamics Division; (2) University of Maryland, Department of Computer Science; and (3) Computer Sciences Corporation, Flight Dynamics Technology Group. These organizations have jointly carried out several hundred software studies, producing hundreds of reports, papers, and documents, all of which describe some aspect of the software engineering technology that was analyzed in the flight dynamics environment at NASA. The studies range from small, controlled experiments (such as analyzing the effectiveness of code reading versus that of functional testing) to large, multiple project studies (such as assessing the impacts of Ada on a production environment). The organization's driving goal is to improve the software process continually, so that sustained improvement may be observed in the resulting products. This paper discusses the SEL as a functioning example of an operational software experience factory and summarizes the characteristics of and major lessons learned from 15 years of SEL operations.

  17. Laboratory Experiment of Magnetic Reconnection between Merging Flux Tubes with Strong Guide FIeld

    NASA Astrophysics Data System (ADS)

    Inomoto, M.; Kamio, S.; Kuwahata, A.; Ono, Y.

    2013-12-01

    Magnetic reconnection governs variety of energy release events in the universe, such as solar flares, geomagnetic substorms, and sawtooth crash in laboratory nuclear fusion experiments. Differently from the classical steady reconnection models, non-steady behavior of magnetic reconnection is often observed. In solar flares, intermittent enhancement of HXR emission is observed synchronously with multiple ejection of plammoids [1]. In laboratory reconnection experiments, the existence of the guide field, that is perpendicular to the reconnection field, makes significant changes on reconnection process. Generally the guide field will slow down the reconnection rate due to the increased magnetic pressure inside the current sheet. It also brings about asymmetric structure of the separatrices or effective particle acceleration in collisionless conditions. We have conducted laboratory experiments to study the behavior of the guide-field magnetic reconnection using plasma merging technique (push reconnection). Under substantial guide field even larger than the reconnection field, the reconnection generally exhibits non-steady feature which involves intermittent detachment of X-point and reconnection current center[2]. Transient enhancement of reconnection rate is observed simultaneously with the X-point motion[3]. We found two distinct phenomena associated with the guide-field non-steady reconnection. The one is the temporal and localized He II emission from X-point region, suggesting the production of energetic electrons which could excite the He ions in the vicinity of the X-point. The other is the excitation of large-amplitude electromagnetic waves which have similar properties with kinetic Alfven waves, whose amplitude show positive correlation with the enhancement of the reconnection electric field[4]. Electron beam instability caused by the energetic electrons accelerated to more than twice of the electron thermal velocity could be a potential driver of the

  18. Using laboratory flow experiments and reactive chemical transport modeling for designing waterflooding of the Agua Fria Reservoir, Poza Rica-Altamira Field, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkle, P.; Pruess, K.; Xu, T.

    Waterflooding for enhanced oil recovery requires that injected waters must be chemically compatible with connate reservoir waters, in order to avoid mineral dissolution-and-precipitation cycles that could seriously degrade formation permeability and injectivity. Formation plugging is a concern especially in reservoirs with a large content of carbonates, such as calcite and dolomite, as such minerals typically react rapidly with an aqueous phase, and have strongly temperature-dependent solubility. Clay swelling can also pose problems. During a preliminary waterflooding pilot project, the Poza Rica-Altamira oil field, bordering the Gulf coast in the eastern part of Mexico, experienced injectivity loss after five months ofmore » reinjection of formation waters into well AF-847 in 1999. Acidizing with HCl restored injectivity. We report on laboratory experiments and reactive chemistry modeling studies that were undertaken in preparation for long-term waterflooding at Agua Frma. Using analogous core plugs obtained from the same reservoir interval, laboratory coreflood experiments were conducted to examine sensitivity of mineral dissolution and precipitation effects to water composition. Native reservoir water, chemically altered waters, and distilled water were used, and temporal changes in core permeability, mineral abundances and aqueous concentrations of solutes were monitored. The experiments were simulated with the multi-phase, nonisothermal reactive transport code TOUGHREACT, and reasonable to good agreement was obtained for changes in solute concentrations. Clay swelling caused an additional impact on permeability behavior during coreflood experiments, whereas the modeled permeability depends exclusively on chemical processes. TOUGHREACT was then used for reservoir-scale simulation of injecting ambient-temperature water (30 C, 86 F) into a reservoir with initial temperature of 80 C (176 F). Untreated native reservoir water was found to cause serious porosity

  19. The LUNA experiment at Gran Sasso Laboratory: Studying stars by going underground

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guglielmetti, Alessandra

    2015-10-15

    Accurate knowledge of thermonuclear reaction rates is a key issue in nuclear astrophysics: it is important for understanding the energy generation, neutrino production and the synthesis of the elements in stars and during primordial nucleosynthesis. Cross-section measurements are mainly hampered by the very low counting rate and cosmic background. An underground location is extremely advantageous for such studies, as demonstrated by the LUNA experiment in the Gran Sasso Laboratory (Italy). This paper reports on the results recently obtained by this experiment and on the future perspectives in the field.

  20. Novel method to construct large-scale design space in lubrication process utilizing Bayesian estimation based on a small-scale design-of-experiment and small sets of large-scale manufacturing data.

    PubMed

    Maeda, Jin; Suzuki, Tatsuya; Takayama, Kozo

    2012-12-01

    A large-scale design space was constructed using a Bayesian estimation method with a small-scale design of experiments (DoE) and small sets of large-scale manufacturing data without enforcing a large-scale DoE. The small-scale DoE was conducted using various Froude numbers (X(1)) and blending times (X(2)) in the lubricant blending process for theophylline tablets. The response surfaces, design space, and their reliability of the compression rate of the powder mixture (Y(1)), tablet hardness (Y(2)), and dissolution rate (Y(3)) on a small scale were calculated using multivariate spline interpolation, a bootstrap resampling technique, and self-organizing map clustering. The constant Froude number was applied as a scale-up rule. Three experiments under an optimal condition and two experiments under other conditions were performed on a large scale. The response surfaces on the small scale were corrected to those on a large scale by Bayesian estimation using the large-scale results. Large-scale experiments under three additional sets of conditions showed that the corrected design space was more reliable than that on the small scale, even if there was some discrepancy in the pharmaceutical quality between the manufacturing scales. This approach is useful for setting up a design space in pharmaceutical development when a DoE cannot be performed at a commercial large manufacturing scale.

  1. Connecting Solubility, Equilibrium, and Periodicity in a Green, Inquiry Experiment for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.; Amado, Jose; Evans, Jason J.; Sevian, Hannah

    2008-01-01

    We present a novel first-year chemistry laboratory experiment that connects solubility, equilibrium, and chemical periodicity concepts. It employs a unique format that asks students to replicate experiments described in different sample lab reports, each lacking some essential information, rather than follow a scripted procedure. This structure is…

  2. Sex differences in virtual navigation influenced by scale and navigation experience.

    PubMed

    Padilla, Lace M; Creem-Regehr, Sarah H; Stefanucci, Jeanine K; Cashdan, Elizabeth A

    2017-04-01

    The Morris water maze is a spatial abilities test adapted from the animal spatial cognition literature and has been studied in the context of sex differences in humans. This is because its standard design, which manipulates proximal (close) and distal (far) cues, applies to human navigation. However, virtual Morris water mazes test navigation skills on a scale that is vastly smaller than natural human navigation. Many researchers have argued that navigating in large and small scales is fundamentally different, and small-scale navigation might not simulate natural human navigation. Other work has suggested that navigation experience could influence spatial skills. To address the question of how individual differences influence navigational abilities in differently scaled environments, we employed both a large- (146.4 m in diameter) and a traditional- (36.6 m in diameter) scaled virtual Morris water maze along with a novel measure of navigation experience (lifetime mobility). We found sex differences on the small maze in the distal cue condition only, but in both cue-conditions on the large maze. Also, individual differences in navigation experience modulated navigation performance on the virtual water maze, showing that higher mobility was related to better performance with proximal cues for only females on the small maze, but for both males and females on the large maze.

  3. Lighting up Protons with MorphFl, a Fluorescein-Morpholine Dyad: An Experiment for the Organic Laboratory

    ERIC Educational Resources Information Center

    Miller, Tyson A.; Spangler, Michael; Burdette, Shawn C.

    2011-01-01

    A two-period organic laboratory experiment that includes fluorescence sensing is presented. The pH-sensitive sensor MorphFl is prepared using a Mannich reaction between a fluorescein derivative and the iminium ion of morpholine. During the first laboratory, students prepare MorphFl. The second session begins with characterizing the sensor using…

  4. Predictive modelling of flow in a two-dimensional intermediate-scale, heterogeneous porous media

    USGS Publications Warehouse

    Barth, Gilbert R.; Hill, M.C.; Illangasekare, T.H.; Rajaram, H.

    2000-01-01

    To better understand the role of sedimentary structures in flow through porous media, and to determine how small-scale laboratory-measured values of hydraulic conductivity relate to in situ values this work deterministically examines flow through simple, artificial structures constructed for a series of intermediate-scale (10 m long), two-dimensional, heterogeneous, laboratory experiments. Nonlinear regression was used to determine optimal values of in situ hydraulic conductivity, which were compared to laboratory-measured values. Despite explicit numerical representation of the heterogeneity, the optimized values were generally greater than the laboratory-measured values. Discrepancies between measured and optimal values varied depending on the sand sieve size, but their contribution to error in the predicted flow was fairly consistent for all sands. Results indicate that, even under these controlled circumstances, laboratory-measured values of hydraulic conductivity need to be applied to models cautiously.To better understand the role of sedimentary structures in flow through porous media, and to determine how small-scale laboratory-measured values of hydraulic conductivity relate to in situ values this work deterministically examines flow through simple, artificial structures constructed for a series of intermediate-scale (10 m long), two-dimensional, heterogeneous, laboratory experiments. Nonlinear regression was used to determine optimal values of in situ hydraulic conductivity, which were compared to laboratory-measured values. Despite explicit numerical representation of the heterogeneity, the optimized values were generally greater than the laboratory-measured values. Discrepancies between measured and optimal values varied depending on the sand sieve size, but their contribution to error in the predicted flow was fairly consistent for all sands. Results indicate that, even under these controlled circumstances, laboratory-measured values of hydraulic

  5. Emulation-Based Virtual Laboratories: A Low-Cost Alternative to Physical Experiments in Control Engineering Education

    ERIC Educational Resources Information Center

    Goodwin, G. C.; Medioli, A. M.; Sher, W.; Vlacic, L. B.; Welsh, J. S.

    2011-01-01

    This paper argues the case for emulation-based virtual laboratories in control engineering education. It demonstrates that such emulation experiments can give students an industrially relevant educational experience at relatively low cost. The paper also describes a particular emulation-based system that has been developed with the aim of giving…

  6. Lysozyme Thermal Denaturation and Self-Interaction: Four Integrated Thermodynamic Experiments for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Schwinefus, Jeffrey J.; Schaefle, Nathaniel J.; Muth, Gregory W.; Miessler, Gary L.; Clark, Christopher A.

    2008-01-01

    As part of an effort to infuse our physical chemistry laboratory with biologically relevant, investigative experiments, we detail four integrated thermodynamic experiments that characterize the denaturation (or unfolding) and self-interaction of hen egg white lysozyme as a function of pH and ionic strength. Students first use Protein Explorer to…

  7. Transitioning from Expository Laboratory Experiments to Course-Based Undergraduate Research in General Chemistry

    ERIC Educational Resources Information Center

    Clark, Ted M.; Ricciardo, Rebecca; Weaver, Tyler

    2016-01-01

    General chemistry courses predominantly use expository experiments that shape student expectations of what a laboratory activity entails. Shifting within a semester to course-based undergraduate research activities that include greater decision-making, collaborative work, and "messy" real-world data necessitates a change in student…

  8. Whitson looks at the ADVASC Soybean plant growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-07-18

    ISS005-E-08001 (18 July 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, works with the Advanced Astroculture soybean plant growth experiment in the Destiny laboratory on the International Space Station (ISS).

  9. A Cryogenic Detector Characterization Facility in the Shallow Underground Laboratory at the Technical University of Munich

    NASA Astrophysics Data System (ADS)

    Langenkämper, A.; Defay, X.; Ferreiro Iachellini, N.; Kinast, A.; Lanfranchi, J.-C.; Lindner, E.; Mancuso, M.; Mondragón, E.; Münster, A.; Ortmann, T.; Potzel, W.; Schönert, S.; Strauss, R.; Ulrich, A.; Wawoczny, S.; Willers, M.

    2018-04-01

    The Physics Department of the Technical University of Munich operates a shallow underground detector laboratory in Garching, Germany. It provides ˜ 160 {m^2} of laboratory space which is shielded from cosmic radiation by ˜ 6 m of gravel and soil, corresponding to a shielding of ˜ 15 {m.w.e.} . The laboratory also houses a cleanroom equipped with work- and wetbenches, a chemical fumehood as well as a spin-coater and a mask-aligner for photolithographic processing of semiconductor detectors. Furthermore, the shallow underground laboratory runs two high-purity germanium detector screening stations, a liquid argon cryostat and a ^3 He-^4 He dilution refrigerator with a base temperature of ≤ 12-14 mK . The infrastructure provided by the shallow laboratory is particularly relevant for the characterization of CaWO_4 target crystals for the CRESST-III experiment, detector fabrication and assembly for rare event searches. Future applications of the laboratory include detector development in the framework of coherent neutrino nucleus scattering experiments (ν -cleus) and studying its potential as a site to search for MeV-scale dark matter with gram-scale cryogenic detectors.

  10. Recirculation System for Geothermal Energy Recovery in Sedimentary Formations: Laboratory Experiments and Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Elkhoury, J. E.; Detwiler, R. L.; Serajian, V.; Bruno, M. S.

    2012-12-01

    Geothermal energy resources are more widespread than previously thought and have the potential for providing a significant amount of sustainable clean energy worldwide. In particular, hot permeable sedimentary formations provide many advantages over traditional geothermal recovery and enhanced geothermal systems in low permeability crystalline formations. These include: (1) eliminating the need for hydraulic fracturing, (2) significant reduction in risk for induced seismicity, (3) reducing the need for surface wastewater disposal, (4) contributing to decreases in greenhouse gases, and (5) potential use for CO2 sequestration. Advances in horizontal drilling, completion, and production technology from the oil and gas industry can now be applied to unlock these geothermal resources. Here, we present experimental results from a laboratory scale circulation system and numerical simulations aimed at quantifying the heat transfer capacity of sedimentary rocks. Our experiments consist of fluid flow through a saturated and pressurized sedimentary disc of 23-cm diameter and 3.8-cm thickness heated along its circumference at a constant temperature. Injection and production ports are 7.6-cm apart in the center of the disc. We used DI de-aired water and mineral oil as working fluids and explored temperatures from 20 to 150 oC and flow rates from 2 to 30 ml/min. We performed experiments on sandstone samples (Castlegate and Kirby) with different porosity, permeability and thermal conductivity to evaluate the effect of hydraulic and thermal properties on the heat transfer capacity of sediments. The producing fluid temperature followed an exponential form with time scale transients between 15 and 45 min. Steady state outflow temperatures varied between 60% and 95% of the set boundary temperature, higher percentages were observed for lower temperatures and flow rates. We used the flow and heat transport simulator TOUGH2 to develop a numerical model of our laboratory setting. Given

  11. Multiple-Scale Physics During Magnetic Reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jara-Almonte, Jonathan

    Magnetic reconnection is a key fundamental process in magnetized plasmas wherein the global magnetic topology is modified and stored energy is transferred from fields to particles. Reconnection is an inherently local process, and mechanisms to couple global-scale dynamics are not well understood. This dissertation explores two different mechanisms for cross-scale coupling during magnetic reconnection. As one example, we theoretically examine reconnection in a collisionless plasma using particle-in-cell simulations and demonstrate that large scale reconnection physics can couple to and drive microscopic instabilities, even in two-dimensional systems if significant scale separation exists between the Debye length and the electron skin depth.more » The physics underlying these instabilities is explained using simple theoretical models, and their potential connection to existing discrepancies between laboratory experiments and numerical simulations is explored. In three-dimensional systems, these instabilities are shown to generate anomalous resistivity that balances a substantial fraction of the electric field. In contrast, we also use experiments to investigate cross-scale couplings during reconnection in a collisional plasma. A leading candidate for coupling global and local scales is the hierarchical breakdown of elongated, reconnecting current sheets into numerous smaller current sheets -– the plasmoid instability. In the Magnetic Reconnection Experiment (MRX), recent hardware improvements have extended the accessible parameter space allowing for the study of long-lived, elongated current sheets. Moreover, by using Argon, reproducible and collisional plasmas are produced, which allow for a detailed statistical study of collisional reconnection. As a result, we have conclusively measured the onset of sub-ion-scale plasmoids during resistive, anti-parallel reconnection for the first time. The current sheet thickness is intermediate between ion and electron

  12. Indomethacin nanocrystals prepared by different laboratory scale methods: effect on crystalline form and dissolution behavior

    NASA Astrophysics Data System (ADS)

    Martena, Valentina; Censi, Roberta; Hoti, Ela; Malaj, Ledjan; Di Martino, Piera

    2012-12-01

    The objective of this study is to select very simple and well-known laboratory scale methods able to reduce particle size of indomethacin until the nanometric scale. The effect on the crystalline form and the dissolution behavior of the different samples was deliberately evaluated in absence of any surfactants as stabilizers. Nanocrystals of indomethacin (native crystals are in the γ form) (IDM) were obtained by three laboratory scale methods: A (Batch A: crystallization by solvent evaporation in a nano-spray dryer), B (Batch B-15 and B-30: wet milling and lyophilization), and C (Batch C-20-N and C-40-N: Cryo-milling in the presence of liquid nitrogen). Nanocrystals obtained by the method A (Batch A) crystallized into a mixture of α and γ polymorphic forms. IDM obtained by the two other methods remained in the γ form and a different attitude to the crystallinity decrease were observed, with a more considerable decrease in crystalline degree for IDM milled for 40 min in the presence of liquid nitrogen. The intrinsic dissolution rate (IDR) revealed a higher dissolution rate for Batches A and C-40-N, due to the higher IDR of α form than γ form for the Batch A, and the lower crystallinity degree for both the Batches A and C-40-N. These factors, as well as the decrease in particle size, influenced the IDM dissolution rate from the particle samples. Modifications in the solid physical state that may occur using different particle size reduction treatments have to be taken into consideration during the scale up and industrial development of new solid dosage forms.

  13. Laboratory Scale Electrodeposition. Practice and Applications.

    ERIC Educational Resources Information Center

    Bruno, Thomas J.

    1986-01-01

    Discusses some aspects of electrodeposition and electroplating. Emphasizes the materials, techniques, and safety precautions necessary to make electrodeposition work reliably in the chemistry laboratory. Describes some problem-solving applications of this process. (TW)

  14. Imaging and quantification of spreading and trapping of carbon dioxide in saline aquifers using meter-scale laboratory experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trevisan, Luca; Pini, Ronny; Cihan, Abdullah

    The role of capillary forces during buoyant migration of CO 2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO 2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44more » m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO 2 -surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. Finally, while these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1–10 m).« less

  15. Imaging and quantification of spreading and trapping of carbon dioxide in saline aquifers using meter-scale laboratory experiments

    DOE PAGES

    Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; ...

    2016-12-27

    The role of capillary forces during buoyant migration of CO 2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO 2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44more » m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO 2 -surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. Finally, while these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1–10 m).« less

  16. Imaging and quantification of spreading and trapping of carbon dioxide in saline aquifers using meter-scale laboratory experiments

    NASA Astrophysics Data System (ADS)

    Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; Birkholzer, Jens T.; Zhou, Quanlin; González-Nicolás, Ana; Illangasekare, Tissa H.

    2017-01-01

    The role of capillary forces during buoyant migration of CO2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44 m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO2-surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. While these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1-10 m).

  17. Large Scale Experiments on Spacecraft Fire Safety

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier; Toth, Balazs; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Legros, Guillaume; Eigenbrod, Christian; hide

    2012-01-01

    Full scale fire testing complemented by computer modelling has provided significant know how about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal-gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being

  18. Large Scale Experiments on Spacecraft Fire Safety

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Minster, Olivier; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; hide

    2012-01-01

    Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being

  19. Solid deuterated water in space: detection constraints from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Urso, R. G.; Palumbo, M. E.; Baratta, G. A.; Scirè, C.; Strazzulla, G.

    2018-06-01

    The comparison between astronomical spectra and laboratory experiments is fundamental to spread light on the structure and composition of ices found in interstellar dense molecular clouds and in Solar System bodies. Water is among the most abundant solid-phase species observed in these environments, and several attempts have been made to investigate the presence of its solid-phase isotopologues. In particular, the detection of the O-D stretching mode band at 4.1 μm due to both D2O and HDO within icy grain mantles is still under debate, and no detection have been reported about the presence of these species within icy bodies in the Solar System yet. In the near future, an important contribution could derive from the data acquired in the O-D stretching mode spectral range by the sensitive instruments on board the James Webb Space Telescope. With this in mind, we performed several laboratory experiments to study the O-D stretching mode band in solid mixtures containing water and deuterated water deposited in the temperature range between 17 and 155 K, in order to simulate astrophysical relevant conditions. Furthermore, samples have been studied at various temperature and irradiated with energetic ions (200 keV H+) in order to study the effects induced by both thermal and energetic processing. Our results provide some constraints on the detection of the 4.1 μm band in astronomical environments.

  20. Variety of Sedimentary Process and Distribution of Tsunami Deposits in Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Yamaguchi, N.; Sekiguchi, T.

    2017-12-01

    As an indicator of the history and magnitude of paleotsunami events, tsunami deposits have received considerable attention. To improve the identification and interpretation of paleotsunami deposits, an understanding of sedimentary process and distribution of tsunami deposits is crucial. Recent detailed surveys of onshore tsunami deposits including the 2004 Indian Ocean tsunami and the 2011 Tohoku-oki tsunami have revealed that terrestrial topography causes a variety of their features and distributions. Therefore, a better understanding of possible sedimentary process and distribution on such influential topographies is required. Flume experiments, in which sedimentary conditions can be easily controlled, can provide insights into the effects of terrestrial topography as well as tsunami magnitude on the feature of tsunami deposits. In this presentation, we report laboratory experiments that focused on terrestrial topography including a water body (e.g. coastal lake) on a coastal lowland and a cliff. In both cases, the results suggested relationship between the distribution of tsunami deposits and the hydraulic condition of the tsunami flow associated with the terrestrial topography. These experiments suggest that influential topography would enhance the variability in thickness of tsunami deposits, and thus, in reconstructions of paleotsunami events using sedimentary records, we should take into account such anomalous distribution of tsunami deposits. Further examination of the temporal sequence of sedimentary process in laboratory tsunamis may improve interpretation and estimation of paleotsunami events.

  1. Colonization by aerobic bacteria in karst: Laboratory and in situ experiments

    USGS Publications Warehouse

    Personne, J.-C.; Poty, F.; Mahler, B.J.; Drogue, C.

    2004-01-01

    Experiments were carried out to investigate the potential for bacterial colonization of different substrates in karst aquifers and the nature of the colonizing bacteria. Laboratory batch experiments were performed using limestone and PVC as substrates, a natural bacterial isolate and a known laboratory strain (Escherichia coli [E. coli]) as inocula, and karst ground water and a synthetic formula as growth media. In parallel, fragments of limestone and granite were submerged in boreholes penetrating two karst aquifers for more than one year; the boreholes are periodically contaminated by enteric bacteria from waste water. Once a month, rock samples were removed and the colonizing bacteria quantified and identified. The batch experiments demonstrated that the natural isolate and E. coli both readily colonized limestone surfaces using karst ground water as the growth medium. In contrast, bacterial colonization of both the limestone and granite substrates, when submerged in the karst, was less intense. More than 300 bacterial strains were isolated over the period sampled, but no temporal pattern in colonization was seen as far as strain, and colonization by E. coli was notably absent, although strains of Salmonella and Citrobacter were each observed once. Samples suspended in boreholes penetrating highly fractured zones were less densely colonized than those in the borehole penetrating a less fractured zone. The results suggest that contamination of karst aquifers by enteric bacteria is unlikely to be persistent. We hypothesize that this may be a result of the high flow velocities found in karst conduits, and of predation of colonizing bacteria by autochthonous zooplankton.

  2. Scale for positive aspects of caregiving experience: development, reliability, and factor structure.

    PubMed

    Kate, N; Grover, S; Kulhara, P; Nehra, R

    2012-06-01

    OBJECTIVE. To develop an instrument (Scale for Positive Aspects of Caregiving Experience [SPACE]) that evaluates positive caregiving experience and assess its psychometric properties. METHODS. Available scales which assess some aspects of positive caregiving experience were reviewed and a 50-item questionnaire with a 5-point rating was constructed. In all, 203 primary caregivers of patients with severe mental disorders were asked to complete the questionnaire. Internal consistency, test-retest reliability, cross-language reliability, split-half reliability, and face validity were evaluated. Principal component factor analysis was run to assess the factorial validity of the scale. RESULTS. The scale developed as part of the study was found to have good internal consistency, test-retest reliability, cross-language reliability, split-half reliability, and face validity. Principal component factor analysis yielded a 4-factor structure, which also had good test-retest reliability and cross-language reliability. There was a strong correlation between the 4 factors obtained. CONCLUSION. The SPACE developed as part of this study has good psychometric properties.

  3. The differences in analysing strategy of viscosity experiment between freshmen and laboratory assistant

    NASA Astrophysics Data System (ADS)

    Anggrayni, S.; Mubarok, H.; Putri, N. P.; Suprapto, N.; Kholiq, A.

    2018-03-01

    The viscosity is defined by dimension of a fluid that resists the force tending to motive the fluid to flow. The aim of viscosity experiment is to determine the fluid viscosity coefficient value. By using graphical analysis, the result of oil viscosity coefficient value which performed by laboratory assistant showed: (1) 0.20 Pa.s using solid ball with accuracy 99.64% and (2) 0.21 Pa.s using smaller solid ball with accuracy 99.17%. Meanwhile, the result of oil viscosity coefficient value which performed by freshmen showed: (1) 0.44 Pa.s using solid ball with accuracy 87.85% and (2) 0.32 Pa.s using smaller solid ball with accuracy 89.84%. The differences result of the freshmen and assistant laboratory viscosity experiment are caused by the freshmen calculated the coefficient viscosity value without velocity correction factor and they used small range fluid so the times are not identified well.

  4. Constraints on the rheology of the partially molten mantle from numerical models of laboratory experiments

    NASA Astrophysics Data System (ADS)

    Rudge, J. F.; Alisic Jewell, L.; Rhebergen, S.; Katz, R. F.; Wells, G. N.

    2015-12-01

    One of the fundamental components in any dynamical model of melt transport is the rheology of partially molten rock. This rheology is poorly understood, and one way in which a better understanding can be obtained is by comparing the results of laboratory deformation experiments to numerical models. Here we present a comparison between numerical models and the laboratory setup of Qi et al. 2013 (EPSL), where a cylinder of partially molten rock containing rigid spherical inclusions was placed under torsion. We have replicated this setup in a finite element model which solves the partial differential equations describing the mechanical process of compaction. These computationally-demanding 3D simulations are only possible due to the recent development of a new preconditioning method for the equations of magma dynamics. The experiments show a distinct pattern of melt-rich and melt-depleted regions around the inclusions. In our numerical models, the pattern of melt varies with key rheological parameters, such as the ratio of bulk to shear viscosity, and the porosity- and strain-rate-dependence of the shear viscosity. These observed melt patterns therefore have the potential to constrain rheological properties. While there are many similarities between the experiments and the numerical models, there are also important differences, which highlight the need for better models of the physics of two-phase mantle/magma dynamics. In particular, the laboratory experiments display more pervasive melt-rich bands than is seen in our numerics.

  5. Enhancing the Student Experiment Experience: Visible Scientific Inquiry Through a Virtual Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Donnelly, Dermot; O'Reilly, John; McGarr, Oliver

    2013-08-01

    Practical work is often noted as a core reason many students take on science in secondary schools (high schools). However, there are inherent difficulties associated with classroom practical work that militate against scientific inquiry, an approach espoused by many science educators. The use of interactive simulations to facilitate student inquiry has emerged as a complement to practical work. This study presents case studies of four science teachers using a virtual chemistry laboratory (VCL) with their students in an explicitly guided inquiry manner. Research tools included the use of the Inquiry Science Implementation Scale in a `talk-aloud' manner, Reformed Teaching Observation Protocol for video observations, and teacher interviews. The findings suggest key aspects of practical work that hinder teachers in adequately supporting inquiry and highlight where a VCL can overcome many of these difficulties. The findings also indicate considerations in using the VCL in its own right.

  6. An investigation into the effectiveness of problem-based learning in a physical chemistry laboratory course

    NASA Astrophysics Data System (ADS)

    Gürses, Ahmet; Açıkyıldız, Metin; Doğar, Çetin; Sözbilir, Mustafa

    2007-04-01

    The aim of this study was to investigate the effectiveness of a problem-based learning (PBL) approach in a physical chemistry laboratory course. The parameters investigated were students’ attitudes towards a chemistry laboratory course, scientific process skills of students and their academic achievement. The design of the study was one group pre-test post-test. Four experiments, covering the topics adsorption, viscosity, surface tension and conductivity were performed using a PBL approach in the fall semester of the 2003/04 academic year at Kazim Karabekir Education Faculty of Atatürk University. Each experiment was done over a three week period. A total of 40 students, 18 male and 22 female, participated in the study. Students took the Physical Chemistry Laboratory Concept Test (PCLCT), Attitudes towards Chemistry Laboratory (ATCL) questionnaire and Science Process Skills Test (SPST) as pre and post-tests. In addition, the effectiveness of the PBL approach was also determined through four different scales; Scales Specific to Students’ Views of PBL. A statistically significant difference between the students’ academic achievement and scientific process skills at p

  7. Biodegradation modelling of a dissolved gasoline plume applying independent laboratory and field parameters

    NASA Astrophysics Data System (ADS)

    Schirmer, Mario; Molson, John W.; Frind, Emil O.; Barker, James F.

    2000-12-01

    Biodegradation of organic contaminants in groundwater is a microscale process which is often observed on scales of 100s of metres or larger. Unfortunately, there are no known equivalent parameters for characterizing the biodegradation process at the macroscale as there are, for example, in the case of hydrodynamic dispersion. Zero- and first-order degradation rates estimated at the laboratory scale by model fitting generally overpredict the rate of biodegradation when applied to the field scale because limited electron acceptor availability and microbial growth are not considered. On the other hand, field-estimated zero- and first-order rates are often not suitable for predicting plume development because they may oversimplify or neglect several key field scale processes, phenomena and characteristics. This study uses the numerical model BIO3D to link the laboratory and field scales by applying laboratory-derived Monod kinetic degradation parameters to simulate a dissolved gasoline field experiment at the Canadian Forces Base (CFB) Borden. All input parameters were derived from independent laboratory and field measurements or taken from the literature a priori to the simulations. The simulated results match the experimental results reasonably well without model calibration. A sensitivity analysis on the most uncertain input parameters showed only a minor influence on the simulation results. Furthermore, it is shown that the flow field, the amount of electron acceptor (oxygen) available, and the Monod kinetic parameters have a significant influence on the simulated results. It is concluded that laboratory-derived Monod kinetic parameters can adequately describe field scale degradation, provided all controlling factors are incorporated in the field scale model. These factors include advective-dispersive transport of multiple contaminants and electron acceptors and large-scale spatial heterogeneities.

  8. Low-cost nonlinear optics experiment for undergraduate instructional laboratory and lecture demonstration

    NASA Astrophysics Data System (ADS)

    Turchiello, Rozane de F.; Pereira, Luiz A. A.; Gómez, Sergio L.

    2017-07-01

    This paper presents a simple and affordable experiment on the thermal lens effect, suitable for an undergraduate educational laboratory or as a tabletop demonstration in a lecture on nonlinear optics. Such an experiment exploits the formation of a lens in an absorbing medium illuminated by a laser beam with a Gaussian intensity profile. As an absorber, we use a commercial soy sauce, which exhibits a strong thermal lensing effect. Additionally, we show how to measure the radius of a Gaussian beam using the knife-edge method, and how to estimate the focal length of the induced thermal lens.

  9. A wideband magnetoresistive sensor for monitoring dynamic fault slip in laboratory fault friction experiments

    USGS Publications Warehouse

    Kilgore, Brian D.

    2017-01-01

    A non-contact, wideband method of sensing dynamic fault slip in laboratory geophysical experiments employs an inexpensive magnetoresistive sensor, a small neodymium rare earth magnet, and user built application-specific wideband signal conditioning. The magnetoresistive sensor generates a voltage proportional to the changing angles of magnetic flux lines, generated by differential motion or rotation of the near-by magnet, through the sensor. The performance of an array of these sensors compares favorably to other conventional position sensing methods employed at multiple locations along a 2 m long × 0.4 m deep laboratory strike-slip fault. For these magnetoresistive sensors, the lack of resonance signals commonly encountered with cantilever-type position sensor mounting, the wide band response (DC to ≈ 100 kHz) that exceeds the capabilities of many traditional position sensors, and the small space required on the sample, make them attractive options for capturing high speed fault slip measurements in these laboratory experiments. An unanticipated observation of this study is the apparent sensitivity of this sensor to high frequency electomagnetic signals associated with fault rupture and (or) rupture propagation, which may offer new insights into the physics of earthquake faulting.

  10. A three-dimensional stratigraphic model for aggrading submarine channels based on laboratory experiments, numerical modeling, and sediment cores

    NASA Astrophysics Data System (ADS)

    Limaye, A. B.; Komatsu, Y.; Suzuki, K.; Paola, C.

    2017-12-01

    Turbidity currents deliver clastic sediment from continental margins to the deep ocean, and are the main driver of landscape and stratigraphic evolution in many low-relief, submarine environments. The sedimentary architecture of turbidites—including the spatial organization of coarse and fine sediments—is closely related to the aggradation, scour, and lateral shifting of channels. Seismic stratigraphy indicates that submarine, meandering channels often aggrade rapidly relative to lateral shifting, and develop channel sand bodies with high vertical connectivity. In comparison, the stratigraphic architecture developed by submarine, braided is relatively uncertain. We present a new stratigraphic model for submarine braided channels that integrates predictions from laboratory experiments and flow modeling with constraints from sediment cores. In the laboratory experiments, a saline density current developed subaqueous channels in plastic sediment. The channels aggraded to form a deposit with a vertical scale of approximately five channel depths. We collected topography data during aggradation to (1) establish relative stratigraphic age, and (2) estimate the sorting patterns of a hypothetical grain size distribution. We applied a numerical flow model to each topographic surface and used modeled flow depth as a proxy for relative grain size. We then conditioned the resulting stratigraphic model to observed grain size distributions using sediment core data from the Nankai Trough, offshore Japan. Using this stratigraphic model, we establish new, quantitative predictions for the two- and three-dimensional connectivity of coarse sediment as a function of fine-sediment fraction. Using this case study as an example, we will highlight outstanding challenges in relating the evolution of low-relief landscapes to the stratigraphic record.

  11. A Stopped-Flow Kinetics Experiment for the Physical Chemistry Laboratory Using Noncorrosive Reagents

    ERIC Educational Resources Information Center

    Prigodich, Richard V.

    2014-01-01

    Stopped-flow kinetics techniques are important to the study of rapid chemical and biochemical reactions. Incorporation of a stopped-flow kinetics experiment into the physical chemistry laboratory curriculum would therefore be an instructive addition. However, the usual reactions studied in such exercises employ a corrosive reagent that can over…

  12. Developing School Laboratories To Promote the Establishment of Individual Experience Programs. Final Report.

    ERIC Educational Resources Information Center

    Valley Springs School District 2, AR.

    A project was conducted to promote and develop individual Supervised Agricultural Experience (SAE) programs in Arkansas through the development of laboratories. It was felt that strong SAE programs enhance the instructional portion of agriculture education, serve as a motivational tool, and improve the relations between the local school and…

  13. Particle image velocimetry experiments for the IML-I spaceflight. [International Microgravity Laboratory

    NASA Technical Reports Server (NTRS)

    Trolinger, J. D.; Lal, R. B.; Batra, A. K.; Mcintosh, D.

    1991-01-01

    The first International Microgravity Laboratory (IML-1), scheduled for spaceflight in early 1992 includes a crystal-growth-from-solution experiment which is equipped with an array of optical diagnostics instrumentation which includes transmission and reflection holography, tomography, schlieren, and particle image displacement velocimetry. During the course of preparation for this spaceflight experiment we have performed both experimentation and analysis for each of these diagnostics. In this paper we describe the work performed in the development of holographic particle image displacement velocimetry for microgravity application which will be employed primarily to observe and quantify minute convective currents in the Spacelab environment and also to measure the value of g. Additionally, the experiment offers a unique opportunity to examine physical phenomena which are normally negligible and not observable. A preliminary analysis of the motion of particles in fluid was performed and supporting experiments were carried out. The results of the analysis and the experiments are reported.

  14. Ground-Laboratory to In-Space Atomic Oxygen Correlation for the Polymer Erosion and Contamination Experiment (PEACE) Polymers

    NASA Technical Reports Server (NTRS)

    Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; deGroh, Kim K.; Banks, Bruce A.

    2011-01-01

    The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were 41 different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although spaceflight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground laboratory erosion yield values. Using the PEACE polymers asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.

  15. Analyses of 1/15 scale Creare bypass transient experiments. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kmetyk, L.N.; Buxton, L.D.; Cole, R.K. Jr.

    1982-09-01

    RELAP4 analyses of several 1/15 scale Creare H-series bypass transient experiments have been done to investigate the effect of using different downcomer nodalizations, physical scales, slip models, and vapor fraction donoring methods. Most of the analyses were thermal equilibrium calculations performed with RELAP4/MOD5, but a few such calculations were done with RELAP4/MOD6 and RELAP4/MOD7, which contain improved slip models. In order to estimate the importance of nonequilibrium effects, additional analyses were performed with TRAC-PD2, RELAP5 and the nonequilibrium option of RELAP4/MOD7. The purpose of these studies was to determine whether results from Westinghouse's calculation of the Creare experiments, which weremore » done with a UHI-modified version of SATAN, were sufficient to guarantee SATAN would be conservative with respect to ECC bypass in full-scale plant analyses.« less

  16. Development and examination of the psychometric properties of the Learning Experience Scale in nursing.

    PubMed

    Takase, Miyuki; Imai, Takiko; Uemura, Chizuru

    2016-06-01

    This paper examines the psychometric properties of the Learning Experience Scale. A survey method was used to collect data from a total of 502 nurses. Data were analyzed by factor analysis and the known-groups technique to examine the construct validity of the scale. In addition, internal consistency was evaluated by Cronbach's alpha, and stability was examined by test-retest correlation. Factor analysis showed that the Learning Experience Scale consisted of five factors: learning from practice, others, training, feedback, and reflection. The scale also had the power to discriminate between nurses with high and low levels of nursing competence. The internal consistency and the stability of the scale were also acceptable. The Learning Experience Scale is a valid and reliable instrument, and helps organizations to effectively design learning interventions for nurses. © 2015 Wiley Publishing Asia Pty Ltd.

  17. Do you kiss your mother with that mouth? An authentic large-scale undergraduate research experience in mapping the human oral microbiome.

    PubMed

    Wang, Jack T H; Daly, Joshua N; Willner, Dana L; Patil, Jayee; Hall, Roy A; Schembri, Mark A; Tyson, Gene W; Hugenholtz, Philip

    2015-05-01

    Clinical microbiology testing is crucial for the diagnosis and treatment of community and hospital-acquired infections. Laboratory scientists need to utilize technical and problem-solving skills to select from a wide array of microbial identification techniques. The inquiry-driven laboratory training required to prepare microbiology graduates for this professional environment can be difficult to replicate within undergraduate curricula, especially in courses that accommodate large student cohorts. We aimed to improve undergraduate scientific training by engaging hundreds of introductory microbiology students in an Authentic Large-Scale Undergraduate Research Experience (ALURE). The ALURE aimed to characterize the microorganisms that reside in the healthy human oral cavity-the oral microbiome-by analyzing hundreds of samples obtained from student volunteers within the course. Students were able to choose from selective and differential culture media, Gram-staining, microscopy, as well as polymerase chain reaction (PCR) and 16S rRNA gene sequencing techniques, in order to collect, analyze, and interpret novel data to determine the collective oral microbiome of the student cohort. Pre- and postsurvey analysis of student learning gains across two iterations of the course (2012-2013) revealed significantly higher student confidence in laboratory skills following the completion of the ALURE (p < 0.05 using the Mann-Whitney U-test). Learning objectives on effective scientific communication were also met through effective student performance in laboratory reports describing the research outcomes of the project. The integration of undergraduate research in clinical microbiology has the capacity to deliver authentic research experiences and improve scientific training for large cohorts of undergraduate students.

  18. Environmental fate and behavior of acesulfame in laboratory experiments.

    PubMed

    Storck, Florian R; Skark, Christian; Remmler, Frank; Brauch, Heinz-Jürgen

    2016-12-01

    Acesulfame is a widely used artificial sweetener. It can be discharged into surface water by domestic wastewater due to its incomplete retention during wastewater treatment. Concentrations may reach up to 10 μg/L for smaller rivers. State-of-the-art analysis allows the determination of acesulfame traces (0.01 μg/L) and thus a potential tracking of the presence of wastewater in riverbank filtrate. To evaluate the behavior of acesulfame in the aquatic environment, biodegradation and sorption of acesulfame were tested. Batch experiments yielded low sorption for several soils (estimated solid-water distribution coefficient of acesulfame <0.1 L/kg). Biodegradation in a fixed-bed reactor was not observed at environmental concentrations of 9 μg/L in aqueous compost and soil extract (observation period 56 days). Only in diluted effluent of a wastewater treatment plant did biodegradation start, after 17 days of operation, and acesulfame completely fade, within 28 days. Flow-through column experiments indicated conservative behavior of acesulfame (recovery >83%) and long-term observations at different concentration levels yielded no biodegradation. Overall, laboratory experiments demonstrated a conservative behavior of acesulfame under conditions typical for riverbank filtration. However, there are hints for certain settings which favor an adaptation of the microbial community and facilitate a rapid biodegradation of acesulfame.

  19. Laboratory experiment of seismic cycles using compliant viscoelastic materials

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.

    2016-12-01

    It is well known that surface asperities at fault interfaces play an essential role in stick-slip friction. There have been many laboratory experiments conducted using rocks and some analogue materials to understand the effects of asperities and the underlying mechanisms. Among such materials, soft polymer gels have great advantages of slowing down propagating rupture front speed as well as shear wave speed: it facilitates observation of the dynamic rupture behavior. However, most experiments were done with bimaterial interfaces (combination of soft and hard materials) and there are few experiments with an identical (gel on gel) setup. Furthermore, there have been also few studies mentioning the link between local asperity contact and macroscopic dynamic rupture behavior. In this talk, we report our experimental studies on stick-slip friction between gels having controlled artificial asperities. We show that, depending on number density and configuration randomness of the asperities, the rupture behavior greatly changes: when the asperities are located periodically with optimum number densities, fast rupture propagation occurs, while slow and heterogeneous slip behavior is observed for samples having randomly located asperities. We discuss the importance of low frequency (large wavelength) excitation of the normal displacement contributing to weakening the fault interface. We also discuss the observed regular to slow slip transition with a simple model.

  20. Simulating Extraterrestrial Ices in the Laboratory

    NASA Astrophysics Data System (ADS)

    Berisford, D. F.; Carey, E. M.; Hand, K. P.; Choukroun, M.

    2017-12-01

    Several ongoing experiments at JPL attempt to simulate the ice environment for various regimes associated with icy moons. The Europa Penitent Ice Experiment (EPIX) simulates the surface environment of an icy moon, to investigate the physics of ice surface morphology growth. This experiment features half-meter-scale cryogenic ice samples, cryogenic radiative sink environment, vacuum conditions, and diurnal cycling solar simulation. The experiment also includes several smaller fixed-geometry vacuum chambers for ice simulation at Earth-like and intermediate temperature and vacuum conditions for development of surface morphology growth scaling relations. Additionally, an ice cutting facility built on a similar platform provides qualitative data on the mechanical behavior of cryogenic ice with impurities under vacuum, and allows testing of ice cutting/sampling tools relevant for landing spacecraft. A larger cutting facility is under construction at JPL, which will provide more quantitative data and allow full-scale sampling tool tests. Another facility, the JPL Ice Physics Laboratory, features icy analog simulant preparation abilities that range icy solar system objects such as Mars, Ceres and the icy satellites of Saturn and Jupiter. In addition, the Ice Physics Lab has unique facilities for Icy Analog Tidal Simulation and Rheological Studies of Cryogenic Icy Slurries, as well as equipment to perform thermal and mechanical properties testing on icy analog materials and their response to sinusoidal tidal stresses.