Design of a laboratory scale fluidized bed reactor
NASA Astrophysics Data System (ADS)
Wikström, E.; Andersson, P.; Marklund, S.
1998-04-01
The aim of this project was to construct a laboratory scale fluidized bed reactor that simulates the behavior of full scale municipal solid waste combustors. The design of this reactor is thoroughly described. The size of the laboratory scale fluidized bed reactor is 5 kW, which corresponds to a fuel-feeding rate of approximately 1 kg/h. The reactor system consists of four parts: a bed section, a freeboard section, a convector (postcombustion zone), and an air pollution control (APC) device system. The inside diameter of the reactor is 100 mm at the bed section and it widens to 200 mm in diameter in the freeboard section; the total height of the reactor is 1760 mm. The convector part consists of five identical sections; each section is 2700 mm long and has an inside diameter of 44.3 mm. The reactor is flexible regarding the placement and number of sampling ports. At the beginning of the first convector unit and at the end of each unit there are sampling ports for organic micropollutants (OMP). This makes it possible to study the composition of the flue gases at various residence times. Sampling ports for inorganic compounds and particulate matter are also placed in the convector section. All operating parameters, reactor temperatures, concentrations of CO, CO2, O2, SO2, NO, and NO2 are continuously measured and stored at selected intervals for further evaluation. These unique features enable full control over the fuel feed, air flows, and air distribution as well as over the temperature profile. Elaborate details are provided regarding the configuration of the fuel-feeding systems, the fluidized bed, the convector section, and the APC device. This laboratory reactor enables detailed studies of the formation mechanisms of OMP, such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), poly-chlorinated biphenyls (PCBs), and polychlorinated benzenes (PCBzs). With this system formation mechanisms of OMP occurring in both the combustion and postcombustion zones can be studied. Other advantages are memory effect minimization and the reduction of experimental costs compared to full scale combustors. Comparison of the combustion parameters and emission data from this 5 kW laboratory scale reactor with full scale combustors shows good agreement regarding emission levels and PCDD/PCDF congener patterns. This indicates that the important formation and degradation reactions of OMP in the reactor are the same formation mechanisms as in full scale combustors.
Semiconductor Chemical Reactor Engineering and Photovoltaic Unit Operations.
ERIC Educational Resources Information Center
Russell, T. W. F.
1985-01-01
Discusses the nature of semiconductor chemical reactor engineering, illustrating the application of this engineering with research in physical vapor deposition of cadmium sulfide at both the laboratory and unit operations scale and chemical vapor deposition of amorphous silicon at the laboratory scale. (JN)
CALIBRATION OF FULL-SCALE OZONATION SYSTEMS WITH CONSERVATIVE AND REACTIVE TRACERS
A full-scale ozonation reactor was characterized with respect to the overall oxidation budget by coupling laboratory kinetics with reactor hydraulics. The ozone decomposition kinetics and the ratio of the OH radical to the ozone concentration were determined in laboratory batch ...
The continuous large-scale preparation of several 1-methylimidazole based ionic liquids was carried out using a Spinning Tube-in-Tube (STT) reactor (manufactured by Kreido Laboratories). This reactor, which embodies and facilitates the use of Green Chemistry principles and Proce...
BISON and MARMOT Development for Modeling Fast Reactor Fuel Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, Kyle Allan Lawrence; Williamson, Richard L.; Schwen, Daniel
2015-09-01
BISON and MARMOT are two codes under development at the Idaho National Laboratory for engineering scale and lower length scale fuel performance modeling. It is desired to add capabilities for fast reactor applications to these codes. The fast reactor fuel types under consideration are metal (U-Pu-Zr) and oxide (MOX). The cladding types of interest include 316SS, D9, and HT9. The purpose of this report is to outline the proposed plans for code development and provide an overview of the models added to the BISON and MARMOT codes for fast reactor fuel behavior. A brief overview of preliminary discussions on themore » formation of a bilateral agreement between the Idaho National Laboratory and the National Nuclear Laboratory in the United Kingdom is presented.« less
NASA Astrophysics Data System (ADS)
Bernstein, A.; Allen, M.; Bowden, N.; Brennan, J.; Carr, D. J.; Estrada, J.; Hagmann, C.; Lund, J. C.; Madden, N. W.; Winant, C. D.
2005-09-01
Our Lawrence Livermore National Laboratory/Sandia National Laboratories collaboration has deployed a cubic-meter-scale antineutrino detector to demonstrate non-intrusive and automatic monitoring of the power levels and plutonium content of a nuclear reactor. Reactor monitoring of this kind is required for all non-nuclear weapons states under the Nuclear Nonproliferation Treaty (NPT), and is implemented by the International Atomic Energy Agency (IAEA). Since the antineutrino count rate and energy spectrum depend on the relative yields of fissioning isotopes in the reactor core, changes in isotopic composition can be observed without ever directly accessing the core. Data from a cubic meter scale antineutrino detector, coupled with the well-understood principles that govern the core's evolution in time, can be used to determine whether the reactor is being operated in an illegitimate way. Our group has deployed a detector at the San Onofre reactor site in California to demonstrate this concept. This paper describes the concept and shows preliminary results from 8 months of operation.
Comparing field investigations with laboratory models to predict landfill leachate emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fellner, Johann; Doeberl, Gernot; Allgaier, Gerhard
2009-06-15
Investigations into laboratory reactors and landfills are used for simulating and predicting emissions from municipal solid waste landfills. We examined water flow and solute transport through the same waste body for different volumetric scales (laboratory experiment: 0.08 m{sup 3}, landfill: 80,000 m{sup 3}), and assessed the differences in water flow and leachate emissions of chloride, total organic carbon and Kjeldahl nitrogen. The results indicate that, due to preferential pathways, the flow of water in field-scale landfills is less uniform than in laboratory reactors. Based on tracer experiments, it can be discerned that in laboratory-scale experiments around 40% of pore watermore » participates in advective solute transport, whereas this fraction amounts to less than 0.2% in the investigated full-scale landfill. Consequences of the difference in water flow and moisture distribution are: (1) leachate emissions from full-scale landfills decrease faster than predicted by laboratory experiments, and (2) the stock of materials remaining in the landfill body, and thus the long-term emission potential, is likely to be underestimated by laboratory landfill simulations.« less
Biswas, Swarup; Mishra, Umesh
2016-01-01
The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater. PMID:26904681
Biswas, Swarup; Mishra, Umesh
2016-01-01
The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater.
van der Star, Wouter R L; Abma, Wiebe R; Blommers, Dennis; Mulder, Jan-Willem; Tokutomi, Takaaki; Strous, Marc; Picioreanu, Cristian; van Loosdrecht, Mark C M
2007-10-01
The first full-scale anammox reactor in the world was started in Rotterdam (NL). The reactor was scaled-up directly from laboratory-scale to full-scale and treats up to 750 kg-N/d. In the initial phase of the startup, anammox conversions could not be identified by traditional methods, but quantitative PCR proved to be a reliable indicator for growth of the anammox population, indicating an anammox doubling time of 10-12 days. The experience gained during this first startup in combination with the availability of seed sludge from this reactor, will lead to a faster startup of anammox reactors in the future. The anammox reactor type employed in Rotterdam was compared to other reactor types for the anammox process. Reactors with a high specific surface area like the granular sludge reactor employed in Rotterdam provide the highest volumetric loading rates. Mass transfer of nitrite into the biofilm is limiting the conversion of those reactor types that have a lower specific surface area. Now the first full-scale commercial anammox reactor is in operation, a consistent and descriptive nomenclature is suggested for reactors in which the anammox process is employed.
The paper gives results of a study to develop baseline engineering data to demonstrate the feasibility of application of plasma reactors to the destruction of various volatile organic compounds at ppm levels. Two laboratory-scale reactors, an alternating current energized ferroel...
Utilization of the Recycle Reactor in Determining Kinetics of Gas-Solid Catalytic Reactions.
ERIC Educational Resources Information Center
Paspek, Stephen C.; And Others
1980-01-01
Describes a laboratory scale reactor that determines the kinetics of a gas-solid catalytic reaction. The external recycle reactor construction is detailed with accompanying diagrams. Experimental details, application of the reactor to CO oxidation kinetics, interphase gradients, and intraphase gradients are discussed. (CS)
NASA Astrophysics Data System (ADS)
Kim, Sung-Kyu; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Lee, Sangjin
2015-11-01
High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.
Japan’s Nuclear Future: Policy Debate, Prospects, and U.S. Interests
2008-05-09
raised in particular over the construction of an industrial- scale reprocessing facility in Japan,. Additionally, fast breeder reactors also produce more...Nuclear Fuel Cycle Engineering Laboratories. 10 A fast breeder reactor is a fast neutron reactor that produces more plutonium than it consumes, which can...Japan Nuclear Fuel Limited (JNFL) has built and is currently running active testing on a large - scale commercial reprocessing plant at Rokkasho-mura
Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.
1990-01-01
Burning profiles of 35-53 ??m size fractions of an Illinois coal and three partially devolatilized coals prepared from the original coal were obtained using a thermogravimetric analyzer. The burning profile burnout temperatures were higher for lower volatile fuels and correlated well with carbon combustion efficiencies of the fuels when burned in a laboratory-scale laminar flow reactor. Fuels with higher burnout temperatures had lower carbon combustion efficiencies under various time-temperature conditions in the laboratory-scale reactor. ?? 1990.
WET OXIDATION OF MUNICIPAL SLUDGE BY THE VERTICAL TUBE REACTOR
A study was undertaken to assess the feasibility of carrying out oxidation of dilute sewage sludge by means of the vertical tube reactor (VTR) system. A pilot scale facility along with a laboratory reactor were used for this study. Dilute sewage sludge was oxidized in the laborat...
The Use of Experiments and Modeling to Evaluate ...
Symposium Paper This paper reports on a study to examine the thermal decomposition of surrogate CWAs (in this case, Malathion) in a laboratory reactor, analysis of the results using reactor design theory, and subsequent scale-up of the results to a computersimulation of a full-scale commercial hazardous waste incinerator processing ceiling tile contaminated with residual Malathion.
Ultrasound pre-treatment for anaerobic digestion improvement.
Pérez-Elvira, S; Fdz-Polanco, M; Plaza, F I; Garralón, G; Fdz-Polanco, F
2009-01-01
Prior research indicates that ultrasounds can be used in batch reactors as pre-treatment before anaerobic digestion, but the specific energy required at laboratory-scale is too high. This work evaluates both the continuous ultrasound device performance (efficiency and solubilisation) and the operation of anaerobic digesters continuously fed with sonicated sludge, and presents energy balance considerations. The results of sludge solubilisation after the sonication treatment indicate that, applying identical specific energy, it is better to increase the power than the residence time. Working with secondary sludge, batch biodegradability tests show that by applying 30 kWh/m3 of sludge, it is possible to increase biogas production by 42%. Data from continuous pilot-scale anaerobic reactors (V=100 L) indicate that operating with a conventional HRT=20 d, a reactor fed with pre-treated sludge increases the volatile solids removal and the biogas production by 25 and 37% respectively. Operating with HRT=15 d, the removal efficiency is similar to the obtained with a reactor fed with non-hydrolysed sludge at HTR=20 d, although the specific biogas productivity per volume of reactor is higher for the pretreated sludge. Regarding the energy balance, although for laboratory-scale devices it is negative, full-scale suppliers state a net generation of 3-10 kW per kW of energy used.
The toxic equivalency (TEQ) values of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) are predicted with a model based on the homologue concentrations measured from a laboratory-scale reactor (124 data points), a package boiler (61 data points), and ...
Integral Design Methodology of Photocatalytic Reactors for Air Pollution Remediation.
Passalía, Claudio; Alfano, Orlando M; Brandi, Rodolfo J
2017-06-07
An integral reactor design methodology was developed to address the optimal design of photocatalytic wall reactors to be used in air pollution control. For a target pollutant to be eliminated from an air stream, the proposed methodology is initiated with a mechanistic derived reaction rate. The determination of intrinsic kinetic parameters is associated with the use of a simple geometry laboratory scale reactor, operation under kinetic control and a uniform incident radiation flux, which allows computing the local superficial rate of photon absorption. Thus, a simple model can describe the mass balance and a solution may be obtained. The kinetic parameters may be estimated by the combination of the mathematical model and the experimental results. The validated intrinsic kinetics obtained may be directly used in the scaling-up of any reactor configuration and size. The bench scale reactor may require the use of complex computational software to obtain the fields of velocity, radiation absorption and species concentration. The complete methodology was successfully applied to the elimination of airborne formaldehyde. The kinetic parameters were determined in a flat plate reactor, whilst a bench scale corrugated wall reactor was used to illustrate the scaling-up methodology. In addition, an optimal folding angle of the corrugated reactor was found using computational fluid dynamics tools.
Bioreactor design studies for a hydrogen-producing bacterium.
Wolfrum, Edward J; Watt, Andrew S
2002-01-01
Carbon monoxide (CO) can be metabolized by a number of microorganisms along with water to produce hydrogen (H2) and carbon dioxide. National Renewable Energy Laboratory researchers have isolated a number of bacteria that perform this so-called water-gas shift reaction at ambient temperatures. We performed experiments to measure the rate of CO conversion and H2 production in a trickle-bed reactor (TBR). The liquid recirculation rate and the reactor support material both affected the mass transfer coefficient, which controls the overall performance of the reactor. A simple reactor model taken from the literature was used to quantitatively compare the performance of the TBR geometry at two different size scales. Good agreement between the two reactor scales was obtained.
Wang, Yongjiang; Pang, Li; Liu, Xinyu; Wang, Yuansheng; Zhou, Kexun; Luo, Fei
2016-04-01
A comprehensive model of thermal balance and degradation kinetics was developed to determine the optimal reactor volume and insulation material. Biological heat production and five channels of heat loss were considered in the thermal balance model for a representative reactor. Degradation kinetics was developed to make the model applicable to different types of substrates. Simulation of the model showed that the internal energy accumulation of compost was the significant heat loss channel, following by heat loss through reactor wall, and latent heat of water evaporation. Lower proportion of heat loss occurred through the reactor wall when the reactor volume was larger. Insulating materials with low densities and low conductive coefficients were more desirable for building small reactor systems. Model developed could be used to determine the optimal reactor volume and insulation material needed before the fabrication of a lab-scale composting system. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.
2015-12-01
A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.
Development of advanced strain diagnostic techniques for reactor environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.
2013-02-01
The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding.more » During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.« less
Behavior of U 3Si 2 Fuel and FeCrAl Cladding under Normal Operating and Accident Reactor Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, Kyle Allan Lawrence; Hales, Jason Dean; Barani, Tommaso
2016-09-01
As part of the Department of Energy's Nuclear Energy Advanced Modeling and Simulation program, an Accident Tolerant Fuel High Impact Problem was initiated at the beginning of fiscal year 2015 to investigate the behavior of \\usi~fuel and iron-chromium-aluminum (FeCrAl) claddings under normal operating and accident reactor conditions. The High Impact Problem was created in response to the United States Department of Energy's renewed interest in accident tolerant materials after the events that occurred at the Fukushima Daiichi Nuclear Power Plant in 2011. The High Impact Problem is a multinational laboratory and university collaborative research effort between Idaho National Laboratory, Losmore » Alamos National Laboratory, Argonne National Laboratory, and the University of Tennessee, Knoxville. This report primarily focuses on the engineering scale research in fiscal year 2016 with brief summaries of the lower length scale developments in the areas of density functional theory, cluster dynamics, rate theory, and phase field being presented.« less
Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael F. Simpson
This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.
Kim, Saewon; Cho, Hyekyung; Joo, Hyunku; Her, Namguk; Han, Jonghun; Yi, Kwangbok; Kim, Jong-Oh; Yoon, Jaekyung
2017-08-15
In this study, the performances of photocatalytic reactors of the small and scale-up rotating and flat types were evaluated to investigate the treatment of new emerging contaminants such as bisphenol A (BPA), 17α-ethynyl estradiol (EE2), and 17β-estradiol (E2) that are known as endocrine disrupting compounds (EDCs). In the laboratory tests with the small-scale rotating and flat reactors, the degradation efficiencies of the mixed EDCs were significantly influenced by the change of the hydraulic retention time (HRT). In particular, considering the effective two-dimensional reaction area with light and nanotubular TiO 2 (NTT) on a Ti substrate, the rotating reactors showed the more effective performance than the flat reactor because the degradation efficiencies are similar in the small effective area. In addition, the major parameters affecting the photocatalytic activities of the NTT were evaluated for the rotating reactors according to the effects of single and mixed EDCs, the initial concentrations of the EDCs, the UV intensity, and dissolved oxygen. In the extended outdoor tests with the scale-up photocatalytic reactors and NTT, it was confirmed from the four representative demonstrations that an excellent rotating-reactor performance is consistently shown in terms of the degradation of the target pollutants under solar irradiation. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J.; Börner, K.
2015-12-15
A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steelmore » samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.« less
Ramakrishnan, Divakar; Curtis, Wayne R
2004-10-20
Trickle-bed root culture reactors are shown to achieve tissue concentrations as high as 36 g DW/L (752 g FW/L) at a scale of 14 L. Root growth rate in a 1.6-L reactor configuration with improved operational conditions is shown to be indistinguishable from the laboratory-scale benchmark, the shaker flask (mu=0.33 day(-1)). These results demonstrate that trickle-bed reactor systems can sustain tissue concentrations, growth rates and volumetric biomass productivities substantially higher than other reported bioreactor configurations. Mass transfer and fluid dynamics are characterized in trickle-bed root reactors to identify appropriate operating conditions and scale-up criteria. Root tissue respiration goes through a minimum with increasing liquid flow, which is qualitatively consistent with traditional trickle-bed performance. However, liquid hold-up is much higher than traditional trickle-beds and alternative correlations based on liquid hold-up per unit tissue mass are required to account for large changes in biomass volume fraction. Bioreactor characterization is sufficient to carry out preliminary design calculations that indicate scale-up feasibility to at least 10,000 liters.
NASA Astrophysics Data System (ADS)
Wulan, D. R.; Cahyaningsih, S.; Djaenudin
2017-03-01
In medium capacity, electroplating industry usually treats wastewater until 5 m3 per day. Heavy metal content becomes concern that should be reduced. Previous studies performed electrocoagulation method on laboratory scale, either batch or continuous. This study was aimed to compare the influence of voltage input variation into heavy metal removal in electroplating wastewater treatment using electrocoagulation process on laboratory-scale in order to determine the optimum condition for scaling up the reactor into pilot-scale. The laboratory study was performed in 1.5 L glass reactor in batch system using wastewater from electroplating industry, the voltage input varied at 20, 30 and 40 volt. The electrode consisted of aluminium 32 cm2 as sacrifice anode and copper 32 cm2 as cathode. During 120 min electrocoagulation process, the pH value was measured using pH meter, whereas the heavy metal of chromium, copper, iron, and zinc concentration were analysed using Atomic Absorption Spectrophotometer (AAS). Result showed that removal of heavy metals from wastewater increased due to the increasing of voltage input. Different initial concentration of heavy metals on wastewater, resulted the different detention time. At pilot-scale reactor with 30 V voltage input, chromium, iron, and zinc reached removal efficiency until 89-98%, when copper reached 79% efficiency. At 40V, removal efficiencies increased on same detention time, i.e. chromium, iron, and zinc reached 89-99%, whereas copper reached 85%. These removal efficiencies have complied the government standard except for copper that had higher initial concentration in wastewater. Kinetic rate also calculated in this study as the basic factor for scaling up the process.
Ultrasonic pilot-scale reactor for enzymatic bleaching of cotton fabrics.
Gonçalves, Idalina; Herrero-Yniesta, Victor; Perales Arce, Iratxe; Escrigas Castañeda, Monica; Cavaco-Paulo, Artur; Silva, Carla
2014-07-01
The potential of ultrasound-assisted technology has been demonstrated by several laboratory scale studies. However, their successful industrial scaling-up is still a challenge due to the limited pilot and commercial sonochemical reactors. In this work, a pilot reactor for laccase-hydrogen peroxide cotton bleaching assisted by ultrasound was scaled-up. For this purpose, an existing dyeing machine was transformed and adapted by including piezoelectric ultrasonic devices. Laboratory experiments demonstrated that both low frequency, high power (22 kHz, 2100 W) and high frequency, low power ultrasounds (850 kHz, 400 W) were required to achieve satisfactory results. Standard half (4 g/L H2O2 at 90 °C for 60 min) and optical (8 g/L H2O2 at 103 °C for 40 min) cotton bleaching processes were used as references. Two sequential stages were established for cotton bleaching: (1) laccase pretreatment assisted by high frequency ultrasound (850 kHz, 400 W) and (2) bleaching using high power ultrasound (22 kHz, 2100 W). When compared with conventional methods, combined laccase-hydrogen peroxide cotton bleaching with ultrasound energy improved the whitening effectiveness. Subsequently, less energy (temperature) and chemicals (hydrogen peroxide) were needed for cotton bleaching thus resulting in costs reduction. This technology allowed the combination of enzyme and hydrogen peroxide treatment in a continuous process. The developed pilot-scale reactor offers an enhancement of the cotton bleaching process with lower environmental impact as well as a better performance of further finishing operations. Copyright © 2014 Elsevier B.V. All rights reserved.
Scale-up synthesis of zinc borate from the reaction of zinc oxide and boric acid in aqueous medium
NASA Astrophysics Data System (ADS)
Kılınç, Mert; Çakal, Gaye Ö.; Yeşil, Sertan; Bayram, Göknur; Eroğlu, İnci; Özkar, Saim
2010-11-01
Synthesis of zinc borate was conducted in a laboratory and a pilot scale batch reactor to see the influence of process variables on the reaction parameters and the final product, 2ZnO·3B 2O 3·3.5H 2O. Effects of stirring speed, presence of baffles, amount of seed, particle size and purity of zinc oxide, and mole ratio of H 3BO 3:ZnO on the zinc borate formation reaction were examined at a constant temperature of 85 °C in a laboratory (4 L) and a pilot scale (85 L) reactor. Products obtained from the reaction in both reactors were characterized by chemical analysis, X-ray diffraction, particle size distribution analysis, thermal gravimetric analysis and scanning electron microscopy. The kinetic data for the zinc borate production reaction was fit by using the logistic model. The results revealed that the specific reaction rate, a model parameter, decreases with increase in particle size of zinc oxide and the presence of baffles, but increases with increase in stirring speed and purity of zinc oxide; however, it is unaffected with the changes in the amount of seed and reactants ratio. The reaction completion time is unaffected by scaling-up.
PBF Reactor Building (PER620). In subpile room, camera faces southeast ...
PBF Reactor Building (PER-620). In sub-pile room, camera faces southeast and looks up toward bottom of reactor vessel. Upper assembly in center of view is in-pile tube as it connects to vessel. Lower lateral constraints and rotating control cable are in position. Other connections have been bolted together. Note light bulbs for scale. Photographer: John Capek. Date: August 21, 1970. INEEL negative no. 70-3494 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Gerczak, Tyler J.; Hunn, John D.; Lowden, Richard A.; ...
2016-08-15
Tristructural isotropic (TRISO) coated particle fuel is a promising fuel form for advanced reactor concepts such as high temperature gas-cooled reactors (HTGR) and is being developed domestically under the US Department of Energy’s Nuclear Reactor Technologies Initiative in support of Advanced Reactor Technologies. The fuel development and qualification plan includes a series of fuel irradiations to demonstrate fuel performance from the laboratory to commercial scale. The first irradiation campaign, AGR-1, included four separate TRISO fuel variants composed of multiple, laboratory-scale coater batches. The second irradiation campaign, AGR-2, included TRISO fuel particles fabricated by BWX Technologies with a larger coater representativemore » of an industrial-scale system. The SiC layers of as-fabricated particles from the AGR-1 and AGR-2 irradiation campaigns have been investigated by electron backscatter diffraction (EBSD) to provide key information about the microstructural features relevant to fuel performance. The results of a comprehensive study of multiple particles from all constituent batches are reported. The observations indicate that there were microstructural differences between variants and among constituent batches in a single variant. Finally, insights on the influence of microstructure on the effective diffusivity of key fission products in the SiC layer are also discussed.« less
Fluidized bed coal desulfurization
NASA Technical Reports Server (NTRS)
Ravindram, M.
1983-01-01
Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.
NASA Technical Reports Server (NTRS)
Roman, W. C.; Jaminet, J. F.
1972-01-01
Experiments were conducted to develop test configurations and technology necessary to simulate the thermal environment and fuel region expected to exist in in-reactor tests of small models of nuclear light bulb configurations. Particular emphasis was directed at rf plasma tests of approximately full-scale models of an in-reactor cell suitable for tests in Los Alamos Scientific Laboratory's Nuclear Furnace. The in-reactor tests will involve vortex-stabilized fissioning uranium plasmas of approximately 200-kW power, 500-atm pressure and equivalent black-body radiating temperatures between 3220 and 3510 K.
Kohrs, F; Heyer, R; Bissinger, T; Kottler, R; Schallert, K; Püttker, S; Behne, A; Rapp, E; Benndorf, D; Reichl, U
2017-08-01
Complex microbial communities are the functional core of anaerobic digestion processes taking place in biogas plants (BGP). So far, however, a comprehensive characterization of the microbiomes involved in methane formation is technically challenging. As an alternative, enriched communities from laboratory-scale experiments can be investigated that have a reduced number of organisms and are easier to characterize by state of the art mass spectrometric-based (MS) metaproteomic workflows. Six parallel laboratory digesters were inoculated with sludge from a full-scale BGP to study the development of enriched microbial communities under defined conditions. During the first three month of cultivation, all reactors (R1-R6) were functionally comparable regarding biogas productions (375-625 NL L reactor volume -1 d -1 ), methane yields (50-60%), pH values (7.1-7.3), and volatile fatty acids (VFA, <5 mM). Nevertheless, a clear impact of the temperature (R3, R4) and ammonia (R5, R6) shifts was observed for the respective reactors. In both reactors operated under thermophilic regime, acetic and propionic acid (10-20 mM) began to accumulate. While R4 recovered quickly from acidification, the levels of VFA remained to be high in R3 resulting in low pH values of 6.5-6.9. The digesters R5 and R6 operated under the high ammonia regime (>1 gNH 3 L -1 ) showed an increase to pH 7.5-8.0, accumulation of acetate (>10 mM), and decreasing biogas production (<125 NL L reactor volume -1 d -1 ). Tandem MS (MS/MS)-based proteotyping allowed the identification of taxonomic abundances and biological processes. Although all reactors showed similar performances, proteotyping and terminal restriction fragment length polymorphisms (T-RFLP) fingerprinting revealed significant differences in the composition of individual microbial communities, indicating multiple steady-states. Furthermore, cellulolytic enzymes and cellulosomal proteins of Clostridium thermocellum were identified to be specific markers for the thermophilic reactors (R3, R4). Metaproteins found in R3 indicated hydrogenothrophic methanogenesis, whereas metaproteins of acetoclastic methanogenesis were identified in R4. This suggests not only an individual evolution of microbial communities even for the case that BGPs are started at the same initial conditions under well controlled environmental conditions, but also a high compositional variance of microbiomes under extreme conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
FALCON reactor-pumped laser description and program overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1989-12-01
The FALCON (Fission Activated Laser CONcept) reactor-pumped laser program at Sandia National Laboratories is examining the feasibility of high-power systems pumped directly by the energy from a nuclear reactor. In this concept we use the highly energetic fission fragments from neutron induced fission to excite a large volume laser medium. This technology has the potential to scale to extremely large optical power outputs in a primarily self-powered device. A laser system of this type could also be relatively compact and capable of long run times without refueling.
1995-06-01
include leachate collection systems and some form of aeration. The reactor is set up on an impermeable liner to prevent contaminant migration. Treatment...Bioremediation Microbial Mats Phytoremediation /construc- ted wetlands White Rot Fungus Full scale commercial technology for treatment of hydro...validation Phytoremediation / Constructed Wetlands Some scaled up batch demonstrations. Primarily laboratory scale. White Rot Fungus Pilot scale
Full-scale and laboratory-scale anaerobic treatment of citric acid production wastewater.
Colleran, E; Pender, S; Philpott, U; O'Flaherty, V; Leahy, B
1998-01-01
This paper reviews the operation of a full-scale, fixed-bed digester treating a citric acid production wastewater with a COD:sulphate ratio of 3-4:1. Support matrix pieces were removed from the digester at intervals during the first 5 years of operation in order to quantify the vertical distribution of biomass within the digester. Detailed analysis of the digester biomass after 5 years of operation indicated that H2 and propionate-utilising SRB had outcompeted hydrogenophilic methanogens and propionate syntrophs. Acetoclastic methanogens were shown to play the dominant role in acetate conversion. Butyrate and ethanol-degrading syntrophs also remained active in the digester after 5 years of operation. Laboratory-scale hybrid reactor treatment at 55 degrees C of a diluted molasses influent, with and without sulphate supplementation, showed that the reactors could be operated with high stability at volumetric loading rates of 24 kgCOD.m-3.d-1 (12 h HRT). In the presence of sulphate (2 g/l-1; COD/sulphate ratio of 6:1), acetate conversion was severely inhibited, resulting in effluent acetate concentrations of up to 4000 mg.l-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, T.Y.; Bentz, J.H.; Simpson, R.B.
1995-06-01
Reactor-scale ex-vessel boiling experiments were performed in the CYBL facility at Sandia National Laboratories. The boiling flow pattern outside the RPV bottom head shows a center pulsating region and an outer steady two-phase boundary layer region. The local heat transfer data can be correlated in terms of a modified Rohsenow correlation.
Syntrophic acetate oxidation in two-phase (acid-methane) anaerobic digesters.
Shimada, T; Morgenroth, E; Tandukar, M; Pavlostathis, S G; Smith, A; Raskin, L; Kilian, R E
2011-01-01
The microbial processes involved in two-phase anaerobic digestion were investigated by operating a laboratory-scale acid-phase (AP) reactor and analyzing two full-scale, two-phase anaerobic digesters operated under mesophilic (35 °C) conditions. The digesters received a blend of primary sludge and waste activated sludge (WAS). Methane levels of 20% in the laboratory-scale reactor indicated the presence of methanogenic activity in the AP. A phylogenetic analysis of an archaeal 16S rRNA gene clone library of one of the full-scale AP digesters showed that 82% and 5% of the clones were affiliated with the orders Methanobacteriales and Methanosarcinales, respectively. These results indicate that substantial levels of aceticlastic methanogens (order Methanosarcinales) were not maintained at the low solids retention times and acidic conditions (pH 5.2-5.5) of the AP, and that methanogenesis was carried out by hydrogen-utilizing methanogens of the order Methanobacteriales. Approximately 43, 31, and 9% of the archaeal clones from the methanogenic phase (MP) digester were affiliated with the orders Methanosarcinales, Methanomicrobiales, and Methanobacteriales, respectively. A phylogenetic analysis of a bacterial 16S rRNA gene clone library suggested the presence of acetate-oxidizing bacteria (close relatives of Thermacetogenium phaeum, 'Syntrophaceticus schinkii,' and Clostridium ultunense). The high abundance of hydrogen consuming methanogens and the presence of known acetate-oxidizing bacteria suggest that acetate utilization by acetate oxidizing bacteria in syntrophic interaction with hydrogen-utilizing methanogens was an important pathway in the second-stage of the two-phase digestion, which was operated at high ammonium-N concentrations (1.0 and 1.4 g/L). A modified version of the IWA Anaerobic Digestion Model No. 1 (ADM1) with extensions for syntrophic acetate oxidation and weak-acid inhibition adequately described the dynamic profiles of volatile acid production/degradation and methane generation observed in the laboratory-scale AP reactor. The model was validated with historical data from the full-scale digesters.
PIE on Safety-Tested Loose Particles from Irradiated Compact 4-4-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunn, John D.; Gerczak, Tyler J.; Morris, Robert Noel
2016-04-01
Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High Temperature Gas-cooled Reactors (HTGRs). This work is sponsored by the Department of Energy Office of Nuclear Energy (DOE-NE) through the Advanced Reactor Technologies (ART) Office under the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program. The AGR-1 experiment was the first in a series of TRISO fuel irradiation tests initiated in 2006. The AGR-1 TRISO particles and fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 using laboratory-scale equipment and irradiated for 3 years in themore » Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. Post-irradiation examination was performed at INL and ORNL to study how the fuel behaved during irradiation, and to test fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing and post-safety testing PIE conducted at ORNL on loose particles extracted from irradiated AGR-1 Compact 4-4-2.« less
Development and Characterization of 6Li-doped Liquid Scintillator Detectors for PROSPECT
NASA Astrophysics Data System (ADS)
Gaison, Jeremy; Prospect Collaboration
2016-09-01
PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, is a phased reactor antineutrino experiment designed to search for eV-scale sterile neutrinos via short-baseline neutrino oscillations and to make a precision measurement of the 235U reactor antineutrino spectrum. A multi-ton, optically segmented detector will be deployed at Oak Ridge National Laboratory's (ORNL) High Flux Isotope Reactor (HFIR) to measure the reactor spectrum at baselines ranging from 7-12m. A two-segment detector prototype with 50 liters of active liquid scintillator target has been built to verify the detector design and to benchmark its performance. In this presentation, we will summarize the performance of this detector prototype and describe the optical and energy calibration of the segmented PROSPECT detectors.
Zhao, Baisuo; Liu, Jie; Frear, Craig; Holtzapple, Mark; Chen, Shulin
2016-12-01
This study employed mixed-culture consolidated bioprocessing (CBP) to digest microalgal biomass in an anaerobic sequencing batch reactor (ASBR). The primary objectives are to evaluate the impact of hydraulic residence time (HRT) on the productivity of carboxylic acids and to characterize the bacterial community. HRT affects the production rate and patterns of carboxylic acids. For the 5-L laboratory-scale fermentation, a 12-day HRT was selected because it offered the highest productivity of carboxylic acids and it synthesized longer chains. The variability of the bacterial community increased with longer HRT (R 2 =0.85). In the 5-L laboratory-scale fermentor, the most common phyla were Firmicutes (58.3%), Bacteroidetes (27.4%), and Proteobacteria (11.9%). The dominant bacterial classes were Clostridia (29.8%), Bacteroidia (27.4%), Tissierella (26.2%), and Betaproteobacteria (8.9%). Copyright © 2016 Elsevier Ltd. All rights reserved.
The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory
Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.; ...
2018-02-21
Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less
The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.
Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less
Moon, Ji-Won; Phelps, Tommy J.; Fitzgerald Jr, Curtis L.; ...
2016-04-27
The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale ( ≤24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of meso-scale experiments were performed using 100-l and 900-l reactors. Pasteurization and N 2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot-plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2 nm average crystallite size (ACS) and yields of ~0.5g L -1, similar to small-scale batches.more » The 900-L pilot plant reactor produced ~ 320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98% of the buffer chemical costs. In conclusion, the final NP products were characterized using XRD, ICP-OES, FTIR, DLS, and C/N analyses, which confirmed the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.« less
Moon, Ji-Won; Phelps, Tommy J; Fitzgerald, Curtis L; Lind, Randall F; Elkins, James G; Jang, Gyoung Gug; Joshi, Pooran C; Kidder, Michelle; Armstrong, Beth L; Watkins, Thomas R; Ivanov, Ilia N; Graham, David E
2016-09-01
The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale (≤ 24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of pilot-plant scale experiments were performed using 100-L and 900-L reactors. Pasteurization and N2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2-nm average crystallite size (ACS) and yields of ~0.5 g L(-1), similar to the small-scale batches. The 900-L pilot plant reactor produced ~320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width × 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic, and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98 % of the buffer chemical costs. The final NP products were characterized using XRD, ICP-OES, TEM, FTIR, PL, DLS, HPLC, and C/N analyses, which confirmed that the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lerm, S.; Kleyboecker, A.; Miethling-Graff, R.
2012-03-15
Highlights: Black-Right-Pointing-Pointer Two types of methanogens are necessary to respond successfully to perturbation. Black-Right-Pointing-Pointer Diversity of methanogens correlates with the VFA concentration and methane yield. Black-Right-Pointing-Pointer Aggregates indicate tight spatial relationship between minerals and microorganisms. - Abstract: Microbial community diversity in two thermophilic laboratory-scale and three full-scale anaerobic co-digesters was analysed by genetic profiling based on PCR-amplified partial 16S rRNA genes. In parallel operated laboratory reactors a stepwise increase of the organic loading rate (OLR) resulted in a decrease of methane production and an accumulation of volatile fatty acids (VFAs). However, almost threefold different OLRs were necessary to inhibit themore » gas production in the reactors. During stable reactor performance, no significant differences in the bacterial community structures were detected, except for in the archaeal communities. Sequencing of archaeal PCR products revealed a dominance of the acetoclastic methanogen Methanosarcina thermophila, while hydrogenotrophic methanogens were of minor importance and differed additionally in their abundance between reactors. As a consequence of the perturbation, changes in bacterial and archaeal populations were observed. After organic overload, hydrogenotrophic methanogens (Methanospirillum hungatei and Methanoculleus receptaculi) became more dominant, especially in the reactor attributed by a higher OLR capacity. In addition, aggregates composed of mineral and organic layers formed during organic overload and indicated tight spatial relationships between minerals and microbial processes that may support de-acidification processes in over-acidified sludge. Comparative analyses of mesophilic stationary phase full-scale reactors additionally indicated a correlation between the diversity of methanogens and the VFA concentration combined with the methane yield. This study demonstrates that the coexistence of two types of methanogens, i.e. hydrogenotrophic and acetoclastic methanogens is necessary to respond successfully to perturbation and leads to stable process performance.« less
Pilot scale system for the production of palm-based Monoester-OH
NASA Astrophysics Data System (ADS)
Ngah, Muhammad Syukri; Badri, Khairiah Haji
2016-11-01
A mechanically agitate reactor vessel in a moderate scale size of 500 L has been developed. This vessel was constructed to produce palm-based polyurethane polyol with a capacity of maximum 400 L. This is to accomodate the demand required for marketing trial run as part of the commercialization intention. The chemistry background of the process design was thoroughly studied. The esterification and condensation in batch process was maintained from the laboratory scale. Only RBD palm kernel oil was used in this study. This paper will describe the engineering design for the reactor vessel development beginning at the stoichiometric equations for the production process to the detail engineering including the equipment selection and fabrication in order to meet the design and objective specifications.
Photocatalytic destruction of chlorinated solvents in water with solar energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacheco, J.E.; Prairie, M.R.; Yellowhorse, L.
1993-08-01
Sandia National Laboratories and the National Renewable Energy Laboratory are developing a photocatalytic process to destroy organic contaminants in water. Tests with common water pollutants have been conducted at Sandia's Solar Thermal Facility using a near commercial scale, single-axis tracking parabolic trough system with a glass pipe reactor mounted at its focus. Experiments at this scale provide verification of laboratory studies and allow examination of design and operation issues at a real-lifescale. The catalyst, titanium dioxide (TiO[sub 2]), is a harmless material found in paint, cosmetics, and toothpaste. Experiments were conducted to determine the effects of key process parameters onmore » destruction rates of chlorinated organic compounds that are common water pollutants. This paper summarizes the engineering-scale results of these experiments and analyses.« less
Multiscale Multiphysics Developments for Accident Tolerant Fuel Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, K. A.; Hales, J. D.; Yu, J.
2015-09-01
U 3Si 2 and iron-chromium-aluminum (Fe-Cr-Al) alloys are two of many proposed accident-tolerant fuel concepts for the fuel and cladding, respectively. The behavior of these materials under normal operating and accident reactor conditions is not well known. As part of the Department of Energy’s Accident Tolerant Fuel High Impact Problem program significant work has been conducted to investigate the U 3Si 2 and FeCrAl behavior under reactor conditions. This report presents the multiscale and multiphysics effort completed in fiscal year 2015. The report is split into four major categories including Density Functional Theory Developments, Molecular Dynamics Developments, Mesoscale Developments, andmore » Engineering Scale Developments. The work shown here is a compilation of a collaborative effort between Idaho National Laboratory, Los Alamos National Laboratory, Argonne National Laboratory and Anatech Corp.« less
IAEA international studies on irradiation embrittlement of reactor pressure vessel steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumovsky, M.; Steele, L.E.
1997-02-01
In last 25 years, three phases a Co-operative Research Programme on Irradiation Embrittlement of Reactor Pressure Vessel Steels has been organized by the International Atomic Energy Agency. This programme started with eight countries in 1971 and finally 16 countries took part in phase III of the Programme in 1983. Several main efforts were put into preparation of the programme, but the principal task was concentrated on an international comparison of radiation damage characterization by different laboratories for steels of {open_quotes}old{close_quotes} (with high impurity contents) and {open_quotes}advanced{close_quotes} (with low impurity contents) types as well as on development of small scale fracturemore » mechanics procedures applicable to reactor pressure vessel surveillance programmes. This year, a new programme has been opened, concentrated mostly on small scale fracture mechanics testing.« less
Modelling deformation and fracture of Gilsocarbon graphite subject to service environments
NASA Astrophysics Data System (ADS)
Šavija, Branko; Smith, Gillian E.; Heard, Peter J.; Sarakinou, Eleni; Darnbrough, James E.; Hallam, Keith R.; Schlangen, Erik; Flewitt, Peter E. J.
2018-02-01
Commercial graphites are used for a wide range of applications. For example, Gilsocarbon graphite is used within the reactor core of advanced gas-cooled reactors (AGRs, UK) as a moderator. In service, the mechanical properties of the graphite are changed as a result of neutron irradiation induced defects and porosity arising from radiolytic oxidation. In this paper, we discuss measurements undertaken of mechanical properties at the micro-length-scale for virgin and irradiated graphite. These data provide the necessary inputs to an experimentally-informed model that predicts the deformation and fracture properties of Gilsocarbon graphite at the centimetre length-scale, which is commensurate with laboratory test specimen data. The model predictions provide an improved understanding of how the mechanical properties and fracture characteristics of this type of graphite change as a result of exposure to the reactor service environment.
Microchannel Reactor System for Catalytic Hydrogenation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adeniyi Lawal; Woo Lee; Ron Besser
2010-12-22
We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstratedmore » on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.« less
Borowski, Sebastian; Boniecki, Paweł; Kubacki, Przemysław; Czyżowska, Agata
2018-04-01
In this study, the anaerobic mesophilic co-digestion of food waste (FW) with municipal sewage sludge (MSS) and slaughterhouse waste (SHW) was undertaken in 3-dm 3 laboratory reactors as well as in 50-dm 3 reactors operated in semi-continuous conditions. The highest methane yield of around 0.63 m 3 CH 4 /kgVS fed was achieved for the mixture of FW and SHW treated in the laboratory digester operated at solids retention time (SRT) of 30 days, whereas the co-digestion of FW with MSS under similar operating conditions produced 0.46 m 3 of methane from 1 kgVS fed . No significant differences between methane yields from laboratory digesters and large-scale reactors were reported. The conditioning tests with the digestates from reactor experiments revealed the highest efficiency of inorganic coagulants among all investigated chemicals, which applied in a dose of 10 g/kg allowed to reduce capiliary suction time (CST) of the digestate below 20 s. The combined conditioning with coagulants and bentonite did not further reduce the CST value but improved the quality of the digestate supernatant. In particular, the concentrations of suspended solids, COD as well as metals in the supernatant were considerably lowered. Copyright © 2017. Published by Elsevier Ltd.
Anaerobic digestion of pressed off leachate from the organic fraction of municipal solid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nayono, Satoto E.; Institute of Biology for Engineers and Biotechnology of Wastewater, University of Karlsruhe, Am Fasanengarten, 76131 Karlsruhe; Winter, Josef, E-mail: josef.winter@iba.uka.d
2010-10-15
A highly polluted liquid ('press water') was obtained from the pressing facility for the organic fraction of municipal solid waste in a composting plant. Methane productivity of the squeezed-off leachate was investigated in batch assays. To assess the technical feasibility of 'press water' as a substrate for anaerobic digestion, a laboratory-scale glass column reactor was operated semi-continuously at 37 {sup o}C. A high methane productivity of 270 m{sup -3} CH{sub 4} ton{sup -1} COD{sub added} or 490 m{sup -3} CH{sub 4} ton{sup -1} VS{sub added} was achieved in the batch experiment. The semi-continuously run laboratory-scale reactor was initially operated atmore » an organic loading rate of 10.7 kg COD m{sup -3} d{sup -1}. The loading was increased to finally 27.7 kg COD m{sup -3} d{sup -1}, corresponding to a reduction of the hydraulic retention time from initially 20 to finally 7.7 days. During the digestion, a stable elimination of organic material (measured as COD elimination) of approximately 60% was achieved. Linearly with the increment of the OLR, the volumetric methane production of the reactor increased from 2.6 m{sup 3} m{sub reactor}{sup -3} d{sup -1} to 7.1 m{sup 3} m{sub reactor}{sup -3} d{sup -1}. The results indicated that 'press water' from the organic fraction of municipal solid waste was a suitable substrate for anaerobic digestion which gave a high biogas yield even at very high loading rates.« less
Biogasification products of water hyacinth wastewater reclamation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chynoweth, D.P.; Biljetina, R.; Srivastava, V.J.
1984-01-01
This paper describes the results of research in progress to evaluate the use of water hyacinth for wastewater treatment and subsequent conversion of hyacinth and sludge to methane by anaerobic digestion. Laboratory studies have been directed toward evaluating advanced biogasification concepts and establishing a data base for the design and operation of an experimental test unit (ETU) located at the water hyacinth wastewater treatment facility at Walt Disney World (WDW) located in Kissimmee, Florida. Laboratory-scale kinetic experiments have been conducted using continuously-stirred tank reactors (CSTR) and a novel non-mixed upflow solids reactor (USR) receiving a hyacinth/sludge blend at retention timesmore » of 15 down to 2.1 days. The data suggest that best performance is achieved in the USR which has longer solids and organism retention. A larger-scale ETU (160 cu ft) was designed and installed at WDW in 1983 and started up in 1984. The purpose of this unit is to validate laboratory experiments and to evaluate larger-scale equipment used for chopping, slurry preparation, mixing, and effluent dewatering. The ETU includes a front end designed for multiple feed processing and storage, a fully instrumented USR digester, and tanks for effluent and gas storage. The ETU is currently being operated on a 2:1 blend (dry wt basis) of water hyacinth and primary sludge. Performance is good without major operational problems. Results of laboratory studies and start-up and operation of the ETU will be presented. 7 references, 4 figures, 1 table.« less
Design of pyrolysis reactor for production of bio-oil and bio-char simultaneously
NASA Astrophysics Data System (ADS)
Aladin, Andi; Alwi, Ratna Surya; Syarif, Takdir
2017-05-01
The residues from the wood industry are the main contributors to biomass waste in Indonesia. The conventional pyrolysis process, which needs a large energy as well as to produce various toxic chemical to the environment. Therefore, a pyrolysis unit on the laboratory scale was designed that can be a good alternative to achieve zero-waste and low energy cost. In this paper attempts to discuss design and system of pyrolysis reactor to produce bio-oil and bio-char simultaneously.
ERIC Educational Resources Information Center
Ochando-Pulido, J. M.
2017-01-01
The Chemical Engineering Department at the University of Granada have endeavored to make a number of high quality experiments to familiarize our students with our latest research and also scale-up of processes. A pilot-scale wastewater treatment plant was set-up to give students a close practical view of the treatments of effluents by-produced in…
BIODEGRADATIVE ANALYSIS OF MUNICIPAL SOLID WASTE IN LABORATORY-SCALE LANDFILLS
The report gives results of research to characterize the anaerobic biodegradability of the major biodegradable components of municipal solid waste (MSW). Tests were conducted in quadruplicate in 2-L reactors operated to obtain maximum yields. Measured methane (CH4) yields for gra...
Coal desulfurization by low temperature chlorinolysis, phase 3
NASA Technical Reports Server (NTRS)
Kalvinskas, J. J.; Rohatgi, N. K.; Ernest, J.
1981-01-01
Laboratory scale, bench scale batch reactor, and minipilot plant tests were conducted on 22 bituminous, subbituminous, and lignite coals. Chemical pretreatment and post treatment of coals relative to the chlorination were tried as a means of enhancing desulfurization by the chlorinolysis process. Elevated temperature (500-700 C) hydrogen treatment of chlorinolysis-processed coal at atmospheric pressure was found to substantially increase coal desulfurization up to 90 percent. Sulfur forms, proximate and ultimate analyses of the processed coal are included. Minipilot plant operation indicates that the continuous flow reactor provides coal desulfurization results comparable to those obtained in the batch reactor. Seven runs were conducted at coal feed rates of 1.5 to 8.8 kg per hour using water and methylchloroform solvents, gaseous chlorine feed of 3 to 31.4 SCFH at 21 to 70 C, and atmospheric pressure for retention times of 20 to 120 minutes.
Nuclear Fuels & Materials Spotlight Volume 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petti, David Andrew
2016-10-01
As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • Evaluation and modeling of light water reactor accident tolerant fuel concepts • Status and results of recent TRISO-coated particle fuel irradiations, post-irradiation examinations, high-temperature safety testing to demonstrate the accident performance of this fuel system, and advanced microscopy to improve the understanding of fission product transport in this fuel system.more » • Improvements in and applications of meso and engineering scale modeling of light water reactor fuel behavior under a range of operating conditions and postulated accidents (e.g., power ramping, loss of coolant accident, and reactivity initiated accidents) using the MARMOT and BISON codes. • Novel measurements of the properties of nuclear (actinide) materials under extreme conditions, (e.g. high pressure, low/high temperatures, high magnetic field) to improve the scientific understanding of these materials. • Modeling reactor pressure vessel behavior using the GRIZZLY code. • New methods using sound to sense temperature inside a reactor core. • Improved experimental capabilities to study the response of fusion reactor materials to a tritium plasma. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at Idaho National Laboratory, and hope that you find this issue informative.« less
Tom, Asha P; Pawels, Renu; Haridas, Ajit
2016-03-01
Municipal solid waste with high moisture content is the major hindrance in the field of waste to energy conversion technologies and here comes the importance of biodrying process. Biodrying is a convective evaporation process, which utilizes the biological heat developed from the aerobic reactions of organic components. The numerous end use possibilities of the output are making the biodrying process versatile, which is possible by achieving the required moisture reduction, volume reduction and bulk density enhancement through the effective utilization of biological heat. In the present case study the detailed research and development of an innovative biodrying reactor has been carried out for the treatment of mixed municipal solid waste with high moisture content. A pilot scale biodrying reactor of capacity 565 cm(3) was designed and set up in the laboratory. The reactor dimensions consisted of an acrylic chamber of 60 cm diameter and 200 cm height, and it was enveloped by an insulation chamber. The insulation chamber was provided to minimise the heat losses through the side walls of the reactor. It simulates the actual condition in scaling up of the reactor, since in bigger scale reactors the heat losses through side walls will be negligible while comparing the volume to surface area ratio. The mixed municipal solid waste with initial moisture content of 61.25% was synthetically prepared in the laboratory and the reactor was fed with 109 kg of this substrate. Aerobic conditions were ensured inside the reactor chamber by providing the air at a constant rate of 40 litre per minute, and the direction of air flow was from the specially designed bottom air chamber to the reactor matrix top. The self heating inside reactor matrix was assumed in the range of 50-60°C during the design stage. Innovative biodrying reactor was found to be efficiently working with the temperature inside the reactor matrix rising to a peak value of 59°C by the fourth day of experiment (the peak observed at a height of 60 cm from the air supply). The process analyses results were promising with a reduction of 56.5% of volume, and an increase of 52% of bulk density of the substrate at the end of 33 days of biodrying. Also the weight of mixed MSW substrate has been reduced by 33.94% in 20 days of reaction and the average moisture reduction of the matrix was 20.81% (reduced from the initial value of 61.25% to final value of 48.5%). The moisture reduction would have been higher, if the condensation of evaporated water at the reactor matrix has been avoided. The non-homogeneous moisture reduction along the height of the reactor is evident and this needs further innovation. The leachate production has been completely eliminated in the innovative biodrying reactor and that is a major achievement in the field of municipal solid waste management technology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hahladakis, John N; Stylianos, Michailakis; Gidarakos, Evangelos
2013-04-15
In a passenger ship, the existence of EEE is obvious. In time, under shipwreck's conditions, all these materials will undergo an accelerated severe corrosion, due to salt water, releasing, consequently, heavy metals and other hazardous substances in the aquatic environment. In this study, a laboratory-scale reactor was manufactured in order to simulate the conditions under which the "Sea Diamond" shipwreck lies (14 bars of pressure and 16°C of temperature) and remotely observe and assess any heavy metal release that would occur, from part of the EEE present in the ship, into the sea. Ten metals were examined and the results showed that zinc, mercury and copper were abundant in the water samples taken from the reactor and in significantly higher concentrations compared to the US EPA CMC (criterion maximum concentration) criterion. Moreover, nickel and lead were found in concentrations higher than the CCC (criterion constant concentration) criterion set by the US EPA for clean seawater. The rest of the elements were measured in concentrations within the permissible limits. It is therefore of environmental benefit to salvage the wreck and recycle all the WEEE found in it. Copyright © 2013 Elsevier B.V. All rights reserved.
OVERVIEW OF NUCLEAR PHYSICS LABORATORY (IMMEDIATELY EAST OF SPSE REACTOR ...
OVERVIEW OF NUCLEAR PHYSICS LABORATORY (IMMEDIATELY EAST OF SP-SE REACTOR ROOM), LEVEL -15, LOOKING SOUTHWEST. NOTE SLIDING STEEL PLATE DOOR BETWEEN LABORATORY AND REACTOR ROOM - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
NASA Astrophysics Data System (ADS)
Spaccapaniccia, C.; Planquart, P.; Buchlin, J. M. AB(; ), AC(; )
2018-01-01
The Belgian nuclear research institute (SCK•CEN) is developing MYRRHA. MYRRHA is a flexible fast spectrum research reactor, conceived as an accelerator driven system (ADS). The configuration of the primary loop is pool-type: the primary coolant and all the primary system components (core and heat exchangers) are contained within the reactor vessel, while the secondary fluid is circulating in the heat exchangers. The primary coolant is Lead Bismuth Eutectic (LBE). The recent nuclear accident of Fukushima in 2011 changed the requirements for the design of new reactors, which should include the possibility to remove the residual decay heat through passive primary and secondary systems, i.e. natural convection (NC). After the reactor shut down, in the unlucky event of propeller failures, the primary and secondary loops should be able to remove the decay heat in passive way (Natural Convection). The present study analyses the flow and the temperature distribution in the upper plenum by applying laser imaging techniques in a laboratory scaled water model. A parametric study is proposed to study stratification mitigation strategies by varying the geometry of the buffer tank simulating the upper plenum.
Flow Reactor for studying Physicochemical and aging properties of SOA
NASA Astrophysics Data System (ADS)
Babar, Z. B.
2016-12-01
Secondary organic aerosols (SOA) have importance in environmental processes such as affecting earth's radiative balance and cloud formation processes. For studying SOA formation large scale environmental batch reactors and laboratory scale flow reactors have been used. In this study application of flow reactor to study physicochemical properties of SOA is also investigated after its characterization. The flow reactor is of cylindrical design (ID 15 cm x L 70 cm) equipped with UV lamps. It is coupled with various instruments such as scanning mobility particle sizer, NOx analyzer, ozone analyzer, VOC analyzer, hygrometer, and temperature sensors for gas and particle phase measurements. OH radicals were generated by custom build ozone generator and relative humidity. The following characterizations were performed: (1) residence time distribution (RTD) measurements, (2) RH and temperature control, (3) OH radical exposure range (atmospheric aging time), (4) gas phase oxidation of SOA precursors such as α-pinene by OH radical. The flow reactor yielded narrow RTDs. In particular, RH and temperature can be controlled effectively between 0-60% and 22-43oC, respectively. OH radical exposure ranges from 6.49x1010 to 3.68x1011 molecules/cm3s (0.49 to 4.91 days). Our initial efforts on OH radical generation using hydrogen peroxide and its quantification by using flourescenet technique will be also be presented.
Development of Ultra-Fine Multigroup Cross Section Library of the AMPX/SCALE Code Packages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, Byoung Kyu; Sik Yang, Won; Kim, Kang Seog
The Consortium for Advanced Simulation of Light Water Reactors Virtual Environment for Reactor Applications (VERA) neutronic simulator MPACT is being developed by Oak Ridge National Laboratory and the University of Michigan for various reactor applications. The MPACT and simplified MPACT 51- and 252-group cross section libraries have been developed for the MPACT neutron transport calculations by using the AMPX and Standardized Computer Analyses for Licensing Evaluations (SCALE) code packages developed at Oak Ridge National Laboratory. It has been noted that the conventional AMPX/SCALE procedure has limited applications for fast-spectrum systems such as boiling water reactor (BWR) fuels with very highmore » void fractions and fast reactor fuels because of its poor accuracy in unresolved and fast energy regions. This lack of accuracy can introduce additional error sources to MPACT calculations, which is already limited by the Bondarenko approach for resolved resonance self-shielding calculation. To enhance the prediction accuracy of MPACT for fast-spectrum reactor analyses, the accuracy of the AMPX/SCALE code packages should be improved first. The purpose of this study is to identify the major problems of the AMPX/SCALE procedure in generating fast-spectrum cross sections and to devise ways to improve the accuracy. For this, various benchmark problems including a typical pressurized water reactor fuel, BWR fuels with various void fractions, and several fast reactor fuels were analyzed using the AMPX 252-group libraries. Isotopic reaction rates were determined by SCALE multigroup (MG) calculations and compared with continuous energy (CE) Monte Carlo calculation results. This reaction rate analysis revealed three main contributors to the observed differences in reactivity and reaction rates: (1) the limitation of the Bondarenko approach in coarse energy group structure, (2) the normalization issue of probability tables, and (3) neglect of the self-shielding effect of resonance-like cross sections at high energy range such as (n,p) cross section of Cl35. The first error source can be eliminated by an ultra-fine group (UFG) structure in which the broad scattering resonances of intermediate-weight nuclides can be represented accurately by a piecewise constant function. A UFG AMPX library was generated with modified probability tables and tested against various benchmark problems. The reactivity and reaction rates determined with the new UFG AMPX library agreed very well with respect to Monte Carlo Neutral Particle (MCNP) results. To enhance the lattice calculation accuracy without significantly increasing the computational time, performing the UFG lattice calculation in two steps was proposed. In the first step, a UFG slowing-down calculation is performed for the corresponding homogenized composition, and UFG cross sections are collapsed into an intermediate group structure. In the second step, the lattice calculation is performed for the intermediate group level using the condensed group cross sections. A preliminary test showed that the condensed library reproduces the results obtained with the UFG cross section library. This result suggests that the proposed two-step lattice calculation approach is a promising option to enhance the applicability of the AMPX/SCALE system to fast system analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boopathy, R.; Manning, J. F.; Environmental Research
2000-03-01
Soil in certain areas of the Iowa Army Ammunition Plant in Burlington, Iowa, was contaminated with hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). A laboratory treatability study was conducted to examine the ability of native soil bacteria present in the contaminated site to degrade RDX. The results indicated that RDX can be removed effectively from the soil by native soil bacteria through a co-metabolic process. Molasses, identified as an effective cosubstrate, is inexpensive, and this factor makes the treatment system cost effective. The successful operation of aerobic-anoxic soil-slurry reactors in batch mode with RDX-contaminated soil showed that the technology can be scaled up for fieldmore » demonstration. The RDX concentration in the contaminated soil was decreased by 98% after 4 months of reactor operation. The advantage of the slurry reactor is the simplicity of its operation. The method needs only mixing and the addition of molasses as cosubstrate.« less
Xu, Kangning; Wang, Chengwen; Wang, Xiaoxue; Qian, Yi
2012-06-01
The simultaneous removal of K and P from urine for nutrient recycling by crystallization of magnesium potassium phosphate hexahydrate (MPP) in a laboratory-scale draft tube and baffle reactor (DTBR) is investigated. Results show that mixing speed and hydraulic retention time are important operating factors that influence crystallization and crystal settlement. Slurry should be discharged at a crystal retention time of 11 h to maintain fluidity in the reactor. Further applications of the DTBR using real urine (pretreated by ammonia stripping and diluted five times) showed that 76% K and 68% P were recycled to multi-nutrient products. The crystals collected were characterized and confirmed mainly as a mixture of magnesium ammonium phosphate hexahydrate, MPP, and magnesium sodium phosphate heptahydrate. Results indicate that the DTBR effectively achieved the simultaneous recycling of K and P from urine to multi-nutrient products through MPP crystallization. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tu, Yunjie; Schuler, Andrew J
2013-04-16
Glycogen-accumulating organisms (GAOs) are thought to compete with polyphosphate-accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) wastewater treatment systems. A laboratory sequencing batch reactor (SBR) was operated for one year to test the hypothesis that PAOs have a competitive advantage at low acetate concentrations, with a focus on low pH conditions previously shown to favor GAOs. PAOs dominated the system under conventional SBR operation with rapid acetate addition (producing high in-reactor concentrations) and pH values of 7.4-8.4. GAOs dominated when the pH was decreased (6.4-7.0). Decreasing the acetate addition rate led to very low reactor acetate concentrations, and PAOs recovered, supporting the study hypothesis. When the acetate feed rate was increased, EBPR failed again. Dominant PAOs and GAOs were Candidatus Accumulibacter phosphatis and Defluviicoccus Cluster 2, respectively, according to fluorescent in situ hybridization and 454 pyrosequencing. Surprisingly, GAOs were not the immediate causes of PAO failures, based on functional and population measurements. Pyrosequencing results suggested Dechloromonas and Tetrasphaera spp. may have also been PAOs, and additional potential GAOs were also identified. Full-scale systems typically have lower in-reactor acetate concentrations than laboratory SBRs, and so, previous laboratory studies may have overestimated the practical importance of GAOs as causes of EBPR failure.
Jedrzejewska-Cicinska, M; Kozak, K; Krzemieniewski, M
2007-10-01
The present research was an investigation of the influence of an innovative design of reactor filled with polyethylene (PE) granulate on model dairy wastewater treatment efficiency under anaerobic conditions compared to that obtained in a typical UASB reactor. The experiment was conducted at laboratory scale. An innovative reactor was designed with the reaction chamber inclined 30 degrees in relation to the ground with upward waste flow and was filled with PE granular material. Raw model dairy wastewater was fed to two anaerobic reactors of different design at the organic loading rate of 4 kg COD m(-3)d(-1). Throughout the experiment, a higher removal efficiency of organic compounds was observed in the reactor with an innovative design and it was higher by 7.1% on average than in the UASB reactor. The total suspended solids was lower in the wastewater treated in the anaerobic reactor with the innovative design. Applying a PE granulated filling in the chamber of the innovative reactor contributed to an even distribution of sludge biomass in the reactor, reducing washout of anaerobic sludge biomass from the reaction chamber and giving a higher organic compounds removal efficiency.
CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production.
Ding, Jie; Wang, Xu; Zhou, Xue-Fei; Ren, Nan-Qi; Guo, Wan-Qian
2010-09-01
There has been little work on the optimal configuration of biohydrogen production reactors. This paper describes three-dimensional computational fluid dynamics (CFD) simulations of gas-liquid flow in a laboratory-scale continuous stirred-tank reactor used for biohydrogen production. To evaluate the role of hydrodynamics in reactor design and optimize the reactor configuration, an optimized impeller design has been constructed and validated with CFD simulations of the normal and optimized impeller over a range of speeds and the numerical results were also validated by examination of residence time distribution. By integrating the CFD simulation with an ethanol-type fermentation process experiment, it was shown that impellers with different type and speed generated different flow patterns, and hence offered different efficiencies for biohydrogen production. The hydrodynamic behavior of the optimized impeller at speeds between 50 and 70 rev/min is most suited for economical biohydrogen production. Copyright 2010 Elsevier Ltd. All rights reserved.
Anaerobic degradation of coconut husk leachate using UASB-reactor.
Neena, C; Ambily, P S; Jisha, M S
2007-07-01
Reffing of coconut husk, the majorprocess in quality coir fibre extraction, causes serious pollution with brackish water lagoons of Kerala. An attempt is made to treat the coconut husk leachate by using a laboratory scale UASB-reactor The experiment was conducted with loading of leachate from 1 kg of fresh coconut husk. The anaerobic treatment was done continuously The parameters like VFA, pH, COD and polyphenols were analysed regularly during the evaluation of the reactor performance. The polyphenol, VFA and COD were diminished gradually with time. The pH of the reactor during the study was found to be in the range of 6-8. The biogas production was increased with loading and about 82% of the total COD/kg husk could be converted to biogas. The maximum polyphenol loading in the reactor was reached to about 298.51 mg/l of husk.
NASA Astrophysics Data System (ADS)
Keiser, Dennis; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Madden, James
2017-12-01
A low-enriched uranium U-10Mo monolithic nuclear fuel is being developed by the Material Management and Minimization Program, earlier known as the Reduced Enrichment for Research and Test Reactors Program, for utilization in research and test reactors around the world that currently use high-enriched uranium fuels. As part of this program, reactor experiments are being performed in the Advanced Test Reactor. It must be demonstrated that this fuel type exhibits mechanical integrity, geometric stability, and predictable behavior to high powers and high fission densities in order for it to be a viable fuel for qualification. This paper provides an overview of the microstructures observed at different regions of interest in fuel plates before and after irradiation for fuel samples that have been tested. These fuel plates were fabricated using laboratory-scale fabrication methods. Observations regarding how microstructural changes during irradiation may impact fuel performance are discussed.
Szuhaj, Márk; Ács, Norbert; Tengölics, Roland; Bodor, Attila; Rákhely, Gábor; Kovács, Kornél L; Bagi, Zoltán
2016-01-01
Applications of the power-to-gas principle for the handling of surplus renewable electricity have been proposed. The feasibility of using hydrogenotrophic methanogens as CH4 generating catalysts has been demonstrated. Laboratory and scale-up experiments have corroborated the benefits of the CO2 mitigation via biotechnological conversion of H2 and CO2 to CH4. A major bottleneck in the process is the gas-liquid mass transfer of H2. Fed-batch reactor configuration was tested at mesophilic temperature in laboratory experiments in order to improve the contact time and H2 mass transfer between the gas and liquid phases. Effluent from an industrial biogas facility served as biocatalyst. The bicarbonate content of the effluent was depleted after some time, but the addition of stoichiometric CO2 sustained H2 conversion for an extended period of time and prevented a pH shift. The microbial community generated biogas from the added α-cellulose substrate with concomitant H2 conversion, but the organic substrate did not facilitate H2 consumption. Fed-batch operational mode allowed a fourfold increase in volumetric H2 load and a 6.5-fold augmentation of the CH4 formation rate relative to the CSTR reactor configuration. Acetate was the major by-product of the reaction. Fed-batch reactors significantly improve the efficiency of the biological power-to-gas process. Besides their storage function, biogas fermentation effluent reservoirs can serve as large-scale bio CH4 reactors. On the basis of this recognition, a novel concept is proposed, which merges biogas technology with other means of renewable electricity production for improved efficiency and sustainability.
Production of a Biopolymer at Reactor Scale: A Laboratory Experience
ERIC Educational Resources Information Center
Genc, Rukan; Rodriguez-Couto, Susana
2011-01-01
Undergraduate students of biotechnology became familiar with several aspects of bioreactor operation via the production of xanthan gum, an industrially relevant biopolymer, by "Xanthomonas campestris" bacteria. The xanthan gum was extracted from the fermentation broth and the yield coefficient and productivity were calculated. (Contains 2 figures.)
Kinetic study on the effect of temperature on biogas production using a lab scale batch reactor.
Deepanraj, B; Sivasubramanian, V; Jayaraj, S
2015-11-01
In the present study, biogas production from food waste through anaerobic digestion was carried out in a 2l laboratory-scale batch reactor operating at different temperatures with a hydraulic retention time of 30 days. The reactors were operated with a solid concentration of 7.5% of total solids and pH 7. The food wastes used in this experiment were subjected to characterization studies before and after digestion. Modified Gompertz model and Logistic model were used for kinetic study of biogas production. The kinetic parameters, biogas yield potential of the substrate (B), the maximum biogas production rate (Rb) and the duration of lag phase (λ), coefficient of determination (R(2)) and root mean square error (RMSE) were estimated in each case. The effect of temperature on biogas production was evaluated experimentally and compared with the results of kinetic study. The results demonstrated that the reactor with operating temperature of 50°C achieved maximum cumulative biogas production of 7556ml with better biodegradation efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.
FY 2017-Influence of Sodium Environment on the Tensile Properties of Advanced Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natesan, K.; Li, Meimei; Chen, Wei-Ying
This report provides an update on the understanding of the effects of sodium exposures on tensile properties of advanced alloy 709 in support of the design and operation of structural components in sodium-cooled fast reactors (SFRs). The report is a Level 3 deliverable in FY17 (M3AT-17AN1602093), under the Work Package AT-17AN160209, “Sodium Compatibility” performed by Argonne National Laboratory (ANL), as part of Advanced Reactor Technologies Program. Three laboratory-size heats of Alloy 709 austenitic steel were investigated in liquid sodium environments at 550-650°C to understand its corrosion behaviour, microstructural evolution, and tensile properties. In addition, a commercial scale heat has beenmore » produced and hot-rolled into plates.« less
Nanocrystal synthesis in microfluidic reactors: where next?
Phillips, Thomas W; Lignos, Ioannis G; Maceiczyk, Richard M; deMello, Andrew J; deMello, John C
2014-09-07
The past decade has seen a steady rise in the use of microfluidic reactors for nanocrystal synthesis, with numerous studies reporting improved reaction control relative to conventional batch chemistry. However, flow synthesis procedures continue to lag behind batch methods in terms of chemical sophistication and the range of accessible materials, with most reports having involved simple one- or two-step chemical procedures directly adapted from proven batch protocols. Here we examine the current status of microscale methods for nanocrystal synthesis, and consider what role microreactors might ultimately play in laboratory-scale research and industrial production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burhenne, Luisa; Giacomin, Caroline; Follett, Trevor
A laboratory-scale, fluidized-bed pellet reactor (BPR) was used to investigate a CaCO 3 crystallization process for the recovery of CO 2 in a Direct Air Capture (DAC) process. The BPR performance was validated against data from a pilot-scale unit. Subsequently, the pellet growth under process-relevant conditions was studied over a period of 144 h. The experimental results with the BPR, containing a bed of pellets sized between 0.65 and 0.84 mm, have shown that a calcium retention of 80% can be achieved at a fluidization velocity of 60 m h -1 and a calcium loading rate of 3 mol hmore » -1. This result is consistent with calcium retention observed at pilot scale operation and hence, results from the BPR are considered representative for the pilot scale unit. Starting with a bed of pellets sized between 0.15 and 0.5 mm, the average pellet growth rate, G, at the reactor bottom increased from 8.1E-10 to 11E–10 m s -1 at the onset and decreased to 4.9E–10 m s -1 over the course of a 144 h test. The calcium retention over the course the test showed the same trend (initial increase and final decrease) as the pellet growth rate. A theoretical bed growth model was developed and validated against data from the pilot scale and benchtop pellet reactors. The model was used to calculate the bed porosity and total pellet surface area in each control volume. Lastly, the pellet surface area growth at the bottom of the reactor reproduced the pellet growth and retention data trends.« less
Burhenne, Luisa; Giacomin, Caroline; Follett, Trevor; ...
2017-10-25
A laboratory-scale, fluidized-bed pellet reactor (BPR) was used to investigate a CaCO 3 crystallization process for the recovery of CO 2 in a Direct Air Capture (DAC) process. The BPR performance was validated against data from a pilot-scale unit. Subsequently, the pellet growth under process-relevant conditions was studied over a period of 144 h. The experimental results with the BPR, containing a bed of pellets sized between 0.65 and 0.84 mm, have shown that a calcium retention of 80% can be achieved at a fluidization velocity of 60 m h -1 and a calcium loading rate of 3 mol hmore » -1. This result is consistent with calcium retention observed at pilot scale operation and hence, results from the BPR are considered representative for the pilot scale unit. Starting with a bed of pellets sized between 0.15 and 0.5 mm, the average pellet growth rate, G, at the reactor bottom increased from 8.1E-10 to 11E–10 m s -1 at the onset and decreased to 4.9E–10 m s -1 over the course of a 144 h test. The calcium retention over the course the test showed the same trend (initial increase and final decrease) as the pellet growth rate. A theoretical bed growth model was developed and validated against data from the pilot scale and benchtop pellet reactors. The model was used to calculate the bed porosity and total pellet surface area in each control volume. Lastly, the pellet surface area growth at the bottom of the reactor reproduced the pellet growth and retention data trends.« less
Huang, Pei; Li, Liang; Kotay, Shireen Meher; Goel, Ramesh
2014-04-15
Solids reduction in activated sludge processes (ASP) at source using process manipulation has been researched widely over the last two-decades. However, the absence of nutrient removal component, lack of understanding on the organic carbon, and limited information on key microbial community in solids minimizing ASP preclude the widespread acceptance of sludge minimizing processes. In this manuscript, we report simultaneous solids reduction through anaerobiosis along with nitrogen and phosphorus removals. The manuscript also reports carbon mass balance using stable isotope of carbon, microbial ecology of nitrifiers and polyphosphate accumulating organisms (PAOs). Two laboratory scale reactors were operated in anaerobic-aerobic-anoxic (A(2)O) mode. One reactor was run in the standard mode (hereafter called the control-SBR) simulating conventional A(2)O type of activated sludge process and the second reactor was run in the sludge minimizing mode (called the modified-SBR). Unlike other research efforts where the sludge minimizing reactor was maintained at nearly infinite solids retention time (SRT). To sustain the efficient nutrient removal, the modified-SBR in this research was operated at a very small solids yield rather than at infinite SRT. Both reactors showed consistent NH3-N, phosphorus and COD removals over a period of 263 days. Both reactors also showed active denitrification during the anoxic phase even if there was no organic carbon source available during this phase, suggesting the presence of denitrifying PAOs (DNPAOs). The observed solids yield in the modified-SBR was 60% less than the observed solids yield in the control-SBR. Specific oxygen uptake rate (SOUR) for the modified-SBR was almost 44% more than the control-SBR under identical feeding conditions, but was nearly the same for both reactors under fasting conditions. The modified-SBR showed greater diversity of ammonia oxidizing bacteria and PAOs compared to the control-SBR. The diversity of PAOs in the modified-SBR was even more interesting in which case novel clades of Candidatus Accumulibacter phosphatis (CAP), an uncultured but widely found PAOs, were found. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sabzali, Ahmad; Nikaeen, Mahnaz; Bina, Bijan
2013-01-01
Bio-carriers are an important component of integrated fixed-film activated sludge (IFAS) processes. In this study, the capability of cigarette filter rods (CFRs) as a bio-carrier in IFAS processes was evaluated. Two similar laboratory-scale IFAS systems were operated over a 4-month period using Kaldnes-K3 and CFRs as IFAS media. The process performance was studied by using chemical oxygen demand (COD). The organic loading rate was in the range 0.5-2.8 kgCOD/(m(3)·d). The COD average removal efficiencies were 89.3 and 93.9% for Kaldnes-K3 (reactor A) and cigarette filters (reactor B), respectively. The results demonstrate that the performance of the IFAS reactor containing CFRs was comparable to the reactor using Kaldnes. The CFRs, which have a high porous surface area and entrapment ability for microbial cells, could be successfully used in biofilm reactors as a bio-carrier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rearden, Bradley T.; Jessee, Matthew Anderson
The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rearden, Bradley T.; Jessee, Matthew Anderson
The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less
Status of Experiment NEUTRINO-4 Search for Sterile Neutrino
NASA Astrophysics Data System (ADS)
Serebrov, A.; Ivochkin, V.; Samoilov, R.; Fomin, A.; Polyushkin, A.; Zinoviev, V.; Neustroev, P.; Golovtsov, V.; Chernyj, A.; Zherebtsov, O.; Martemyanov, V.; Tarasenkov, V.; Aleshin, V.; Petelin, A.; Izhutov, A.; Tuzov, A.; Sazontov, S.; Ryazanov, D.; Gromov, M.; Afanasiev, V.; Zaytsev, M.; Chaikovskii, M.
2017-01-01
In order to carry out research in the field of possible existence of a sterile neutrino the laboratory based on SM-3 reactor (Dimitrovgrad, Russia) was created to search for oscillations of reactor antineutrino. The prototype of a multi-section neutrino detector with liquid scintillator volume of 350 l was installed in the middle of 2015. It is a moveable inside the passive shielding detector, which can be set at distance range from 6 to 11 meters from the reactor core. Measurements of antineutrino flux at such short distances from the reactor core are carried out with moveable detector for the first time. The measurements with full-scale detector with liquid scintillator volume of 3m3 (5x10 sections) was started only in June, 2016. The today available data is presented in the article.
Yan, Shoubao; Chen, Xiangsong; Wu, Jingyong; Wang, Pingchao
2013-07-01
The aim of this study was to develop a bioprocess to produce ethanol from food waste at laboratory, semipilot and pilot scales. Laboratory tests demonstrated that ethanol fermentation with reducing sugar concentration of 200 g/L, inoculum size of 2 % (Initial cell number was 2 × 10⁶ CFU/mL) and addition of YEP (3 g/L of yeast extract and 5 g/L of peptone) was the best choice. The maximum ethanol concentration in laboratory scale (93.86 ± 1.15 g/L) was in satisfactory with semipilot scale (93.79 ± 1.11 g/L), but lower than that (96.46 ± 1.12 g/L) of pilot-scale. Similar ethanol yield and volumetric ethanol productivity of 0.47 ± 0.02 g/g, 1.56 ± 0.03 g/L/h and 0.47 ± 0.03 g/g, 1.56 ± 0.03 g/L/h after 60 h of fermentation in laboratory and semipilot fermentors, respectively, however, both were lower than that (0.48 ± 0.02 g/g, 1.79 ± 0.03 g/L/h) of pilot reactor. In addition, simple models were developed to predict the fermentation kinetics during the scale-up process and they were successfully applied to simulate experimental results.
Combustion experiments in a laboratory-scale fixed bed reactor were performed to determine the role of temperature and time in PCDD/F formation allowing a global kinetic expression to be written for PCDD/F formation due to soot oxidation in fly ash deposits. Rate constants were c...
Umaña, Oscar; Nikolaeva, Svetlana; Sánchez, Enrique; Borja, Rafael; Raposo, Francisco
2008-10-01
Two laboratory-scale anaerobic fixed bed reactors were evaluated while treating dairy manure at upflow mode and semicontinuous feeding. One reactor was packed with a combination of waste tyre rubber and zeolite (R1) while the other had only waste tyre rubber as a microorganism immobilization support (R2). Effluent quality improved when the hydraulic retention time (HRT) increased from 1.0 to 5.5 days. Higher COD, BOD5, total and volatile solids removal efficiencies were always achieved in the reactor R1. No clogging was observed during the operation period. Methane yield was also a function of the HRT and of the type of support used, and was 12.5% and 40% higher in reactor R1 than in R2 for HRTs of 5.5 and 1.0 days, respectively. The results obtained demonstrated that this type of reactor is capable of operating with dairy manure at a HRT 5 times lower than that used in a conventional reactor.
Lei, Yuqing; Sun, Dezhi; Dang, Yan; Chen, Huimin; Zhao, Zhiqiang; Zhang, Yaobin; Holmes, Dawn E
2016-12-01
Bio-methanogenic digestion of incineration leachate is hindered by high OLRs, which can lead to build-up of VFAs, drops in pH and ultimately in reactor souring. It was hypothesized that incorporation of carbon cloth into reactors treating leachate would promote DIET and enhance reactor performance. To examine this possibility, carbon cloth was added to laboratory-scale UASB reactors that were fed incineration leachate. As expected, the carbon-cloth amended reactor could operate stably with a 34.2% higher OLR than the control (49.4 vs 36.8kgCOD/(m 3 d)). Microbial community analysis showed that bacteria capable of extracellular electron transfer and methanogens known to participate in DIET were enriched on the carbon cloth surface, and conductivity of sludge from the carbon cloth amended reactor was almost twofold higher than sludge from the control (9.77 vs 5.47μS/cm), suggesting that microorganisms in the experimental reactor may have been expressing electrically conductive filaments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jia, Qianqian; Xiong, Huilei; Wang, Hui; Shi, Hanchang; Sheng, Xinying; Sun, Run; Chen, Guoqiang
2014-11-01
The generation of polyhydroxyalkanoates (PHA) from excess sludge fermentation liquid (SFL) was studied at lab and pilot scale. A PHA-accumulated bacterial consortium (S-150) was isolated from activated sludge using simulated SFL (S-SFL) contained high concentration volatile fatty acids (VFA) and nitrogen. The maximal PHA content accounted for 59.18% in S-SFL and dropped to 23.47% in actual SFL (L-SFL) of the dry cell weight (DCW) at lab scale. The pilot-scale integrated system comprised an anaerobic fermentation reactor (AFR), a ceramic membrane system (CMS) and a PHA production bio-reactor (PHAR). The PHA content from pilot-scale SFL (P-SFL) finally reached to 59.47% DCW with the maximal PHA yield coefficient (YP/S) of 0.17 g PHA/g COD. The results indicated that VFA-containing SFL was suitable for PHA production. The adverse impact of excess nitrogen and non-VFAs in SFL might be eliminated by pilot-scale domestication, which might resulted in community structure optimization and substrate selective ability improvement of S-150. Copyright © 2014 Elsevier Ltd. All rights reserved.
Oxygen Limited Bioreactors System For Nitrogen Removal Using Immobilized Mix Culture
NASA Astrophysics Data System (ADS)
Pathak, B. K.; Sumino, T.; Saiki, Y.; Kazama, F.
2005-12-01
Recently nutrients concentrations especially nitrogen in natural water is alarming in the world wide. Most of the effort is being done on the removal of high concentration of nitrogen especially from the wastewater treatment plants. The removal efficiency is targeted in all considering the effluent discharge standard set by the national environment agency. In many cases, it does not meet the required standard and receiving water is being polluted. Eutrophication in natural water bodies has been reported even if the nitrogen concentration is low and self purification of natural systems itself is not sufficient to remove the nitrogen due to complex phenomenon. In order to recover the pristine water environment, it is very essential to explore bioreactor systems for natural water systems using immobilized mix culture. Microorganism were entrapped in Polyethylene glycol (PEG) prepolymer gel and cut into 3mm cubic immobilized pellets. Four laboratory scale micro bio-reactors having 0.1 L volumes were packed with immobilized pellets with 50% compact ratio. RUN1, RUN2, RUN3 and RUN4 were packed with immobilized pellets from reservoirs sediments, activated sludge (AS), mixed of AS, AG and biodegradable plastic and anaerobic granules (AG) respectively. Water from Shiokawa Reservoirs was feed to all reactors with supplemental ammonia and nitrite nitrogen as specified in the results and discussions. The reactors were operated dark incubated room in continuous flow mode with hydraulic retention time of 12 hours under oxygen limiting condition. Ammonium, nitrate nitrite nitrogen and total organic carbon (TOC) concentrations were measured as described in APWA and AWWA (1998). Laboratory scale four bioreactors containing different combination of immobilized cell were monitored for 218 days. Influent NH4+-N and NO2--N concentration were 2.27±0.43 and 2.05±0.41 mg/l respectively. Average dissolved oxygen concentration and pH in the reactors were 0.40-2.5 mg/l and pH 6.5-7.4 respectively. The molar ratio of NO2-N and NH4+-N was varied from 0.85 to 4.1 and RUN3 has closed to Stoichiometric ratio of anaerobic ammonia oxidation process. Total nitrogen removal in all reactors was ranged from 11-79% and RUN3 showed best removal performance (Table 1). Table 1 Characteristic of N removal process Parameters RUN1 RUN2 RUN3 RUN4 Effluent TOC (mg/l) 1.22 2.08 2.33 1.97 NO2- -N/ NH4+-N converted 1.18 0.85 1.32 4.15 Average NH4+-N removal % 86 95 74 32 Average NO2- -N removal % 97 81 98 92 Average TN removal % 11 36 79 59 Four different kinds of laboratory scale nitrogen removal bio-rectors were monitored for 218 days. Comparing reactors based on observed data, the bioreactor containing mix culture (RUN3) removed the 79% of incoming total nitrogen and suggests best for nitrogen removal in the natural water systems. It is recommended that further study is required in pilot scale to understand scaling effects and other natural phenomenon.
Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials.
Dang, Yan; Holmes, Dawn E; Zhao, Zhiqiang; Woodard, Trevor L; Zhang, Yaobin; Sun, Dezhi; Wang, Li-Ying; Nevin, Kelly P; Lovley, Derek R
2016-11-01
The aim of this work was to study the methanogenic metabolism of dog food, a food waste surrogate, in laboratory-scale reactors with different carbon-based conductive materials. Carbon cloth, carbon felt, and granular activated carbon all permitted higher organic loading rates and promoted faster recovery of soured reactors than the control reactors. Microbial community analysis revealed that specific and substantial enrichments of Sporanaerobacter and Methanosarcina were present on the carbon cloth surface. These results, and the known ability of Sporanaerobacter species to transfer electrons to elemental sulfur, suggest that Sporanaerobacter species can participate in direct interspecies electron transfer with Methanosarcina species when carbon cloth is available as an electron transfer mediator. Copyright © 2016 Elsevier Ltd. All rights reserved.
He, Qiang; Zhu, Yinying; Fan, Leilei; Ai, Hainan; Huangfu, Xiaoliu; Chen, Mei
2017-03-01
Emission of nitrous oxide (N 2 O) during biological wastewater treatment is of growing concern. This paper reports findings of the effects of carbon/nitrogen (C/N) ratio on N 2 O production rates in a laboratory-scale biological aerated filter (BAF) reactor, focusing on the biofilm during nitrification. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and microelectrode technology were utilized to evaluate the mechanisms associated with N 2 O production during wastewater treatment using BAF. Results indicated that the ability of N 2 O emission in biofilm at C/N ratio of 2 was much stronger than at C/N ratios of 5 and 8. PCR-DGGE analysis showed that the microbial community structures differed completely after the acclimatization at tested C/N ratios (i.e., 2, 5, and 8). Measurements of critical parameters including dissolved oxygen, oxidation reduction potential, NH 4 + -N, NO 3 - -N, and NO 2 - -N also demonstrated that the internal micro-environment of the biofilm benefit N 2 O production. DNA analysis showed that Proteobacteria comprised the majority of the bacteria, which might mainly result in N 2 O emission. Based on these results, C/N ratio is one of the parameters that play an important role in the N 2 O emission from the BAF reactors during nitrification.
Barton, Lauren E; Auffan, Melanie; Bertrand, Marie; Barakat, Mohamed; Santaella, Catherine; Masion, Armand; Borschneck, Daniel; Olivi, Luca; Roche, Nicolas; Wiesner, Mark R; Bottero, Jean-Yves
2014-07-01
Engineered nanomaterials (ENMs) are used to enhance the properties of many manufactured products and technologies. Increased use of ENMs will inevitably lead to their release into the environment. An important route of exposure is through the waste stream, where ENMs will enter wastewater treatment plants (WWTPs), undergo transformations, and be discharged with treated effluent or biosolids. To better understand the fate of a common ENM in WWTPs, experiments with laboratory-scale activated sludge reactors and pristine and citrate-functionalized CeO2 nanoparticles (NPs) were conducted. Greater than 90% of the CeO2 introduced was observed to associate with biosolids. This association was accompanied by reduction of the Ce(IV) NPs to Ce(III). After 5 weeks in the reactor, 44 ± 4% reduction was observed for the pristine NPs and 31 ± 3% for the citrate-functionalized NPs, illustrating surface functionality dependence. Thermodynamic arguments suggest that the likely Ce(III) phase generated would be Ce2S3. This study indicates that the majority of CeO2 NPs (>90% by mass) entering WWTPs will be associated with the solid phase, and a significant portion will be present as Ce(III). At maximum, 10% of the CeO2 will remain in the effluent and be discharged as a Ce(IV) phase, governed by cerianite (CeO2).
Development of a molecular method for testing the effectiveness of UV systems on-site.
Nizri, Limor; Vaizel-Ohayon, Dalit; Ben-Amram, Hila; Sharaby, Yehonatan; Halpern, Malka; Mamane, Hadas
2017-12-15
We established a molecular method for quantifying ultraviolet (UV) disinfection efficacy using total bacterial DNA in a water sample. To evaluate UV damage to the DNA, we developed the "DNA damage" factor, which is a novel cultivation-independent approach that reveals UV-exposure efficiency by applying a simple PCR amplification method. The study's goal was to prove the feasibility of this method for demonstrating the efficiency of UV systems in the field using flow-through UV reactors. In laboratory-based experiments using seeded bacteria, the DNA damage tests demonstrated a good correlation between PCR products and UV dose. In the field, natural groundwater sampled before and after being subjected to the full-scale UV reactors was filtered, and the DNA extracted from the filtrate was subjected to PCR amplification for a 900-bp fragment of the 16S rRNA gene with initial DNA concentrations of 0.1 and 1 ng/μL. In both cases, the UV dose predicted and explained a significant proportion of the variance in the log inactivation ratio and DNA damage factor. Log inactivation ratio was very low, as expected in groundwater due to low initial bacterial counts, whereas the DNA damage factor was within the range of values obtained in the laboratory-based experiments. Consequently, the DNA damage factor reflected the true performance of the full-scale UV system during operational water flow by using the indigenous bacterial array present in a water sample. By applying this method, we were able to predict with high confidence, the UV reactor inactivation potential. For method validation, laboratory and field iterations are required to create a practical field calibration curve that can be used to determine the expected efficiency of the full-scale UV system in the field under actual operation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Iino, Fukuya; Takasuga, Takumi; Touati, Abderrahmane; Gullett, Brian K
2003-01-01
The toxic equivalency (TEQ) values of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) are predicted with a model based on the homologue concentrations measured from a laboratory-scale reactor (124 data points), a package boiler (61 data points), and operating municipal waste incinerators (114 data points). Regardless of the three scales and types of equipment, the different temperature profiles, sampling emissions and/or solids (fly ash), and the various chemical and physical properties of the fuels, all the PCDF plots showed highly linear correlations (R(2)>0.99). The fitting lines of the reactor and the boiler data were almost linear with slope of unity, whereas the slope of the municipal waste incinerator data was 0.86, which is caused by higher predicted values for samples with high measured TEQ. The strong correlation also implies that each of the 10 toxic PCDF congeners has a constant concentration relative to its respective total homologue concentration despite a wide range of facility types and combustion conditions. The PCDD plots showed significant scatter and poor linearity, which implies that the relative concentration of PCDD TEQ congeners is more sensitive to variations in reaction conditions than that of the PCDF congeners.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisowski, Darius D.; Kraus, Adam R.; Bucknor, Matthew D.
A 1/2 scale test facility has been constructed at Argonne National Laboratory to study the heat removal performance and natural circulation flow patterns in a Reactor Cavity Cooling System (RCCS). Our test facility, the Natural convection Shutdown heat removal Test Facility (NSTF), supports the broader goal of developing an inherently safe and fully passive ex-vessel decay heat removal for advanced reactor designs. The project, initiated in 2010 to support the Advanced Reactor Technologies (ART), Small Modular Reactor (SMR), and Next Generation Nuclear Plant (NGNP) programs, has been conducting experimental operations since early 2014. The following paper provides a summary ofmore » some primary design features of the 26-m tall test facility along with a description of the data acquisition suite that guides our experimental practices. Specifics of the distributed fiber optic temperature measurements will be discussed, which introduces an unparalleled level of data density that has never before been implemented in a large scale natural circulation test facility. Results from our test series will then be presented, which provide insight into the thermal hydraulic behavior at steady-state and transient conditions for varying heat flux levels and exhaust chimney configuration states. (C) 2016 Elsevier B.V. All rights reserved.« less
Jensen, T R; Lastra Milone, T; Petersen, G; Andersen, H R
2017-04-01
Anaerobic hydrolysis in activated return sludge was investigated in laboratory scale experiments to find if intermittent aeration would accelerate anaerobic hydrolysis rates compared to anaerobic hydrolysis rates under strict anaerobic conditions. The intermittent reactors were set up in a 240 h experiment with intermittent aeration (3 h:3 h) in a period of 24 h followed by a subsequent anaerobic period of 24 h in a cycle of 48 h which was repeated five times during the experiment. The anaerobic reactors were kept under strict anaerobic conditions in the same period (240 h). Two methods for calculating hydrolysis rates based on soluble chemical oxygen demand were compared. Two-way analysis of variance with the Bonferroni post-test was performed in order to register any significant difference between reactors with intermittent aeration and strictly anaerobic conditions respectively. The experiment demonstrated a statistically significant difference in favor of the reactors with intermittent aeration showing a tendency towards accelerated anaerobic hydrolysis rates due to application of intermittent aeration. The conclusion of the work is thus that intermittent aeration applied in the activated return sludge process can improve the treatment capacity further in full scale applications.
New approach to control the methanogenic reactor of a two-phase anaerobic digestion system.
von Sachs, Jürgen; Meyer, Ulrich; Rys, Paul; Feitkenhauer, Heiko
2003-03-01
A new control strategy for the methanogenic reactor of a two-phase anaerobic digestion system has been developed and successfully tested on the laboratory scale. The control strategy serves the purpose to detect inhibitory effects and to achieve good conversion. The concept is based on the idea that volatile fatty acids (VFA) can be measured in the influent of the methanogenic reactor by means of titration. Thus, information on the output (methane production) and input of the methanogenic reactor is available, and a (carbon) mass balance can be obtained. The control algorithm comprises a proportional/integral structure with the ratio of (a) the methane production rate measured online and (b) a maximum methane production rate expected (derived from the stoichiometry) as a control variable. The manipulated variable is the volumetric feed rate. Results are shown for an experiment with VFA (feed) concentration ramps and for experiments with sodium chloride as inhibitor.
Simulation of Watts Bar Unit 1 Initial Startup Tests with Continuous Energy Monte Carlo Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godfrey, Andrew T; Gehin, Jess C; Bekar, Kursat B
2014-01-01
The Consortium for Advanced Simulation of Light Water Reactors* is developing a collection of methods and software products known as VERA, the Virtual Environment for Reactor Applications. One component of the testing and validation plan for VERA is comparison of neutronics results to a set of continuous energy Monte Carlo solutions for a range of pressurized water reactor geometries using the SCALE component KENO-VI developed by Oak Ridge National Laboratory. Recent improvements in data, methods, and parallelism have enabled KENO, previously utilized predominately as a criticality safety code, to demonstrate excellent capability and performance for reactor physics applications. The highlymore » detailed and rigorous KENO solutions provide a reliable nu-meric reference for VERAneutronics and also demonstrate the most accurate predictions achievable by modeling and simulations tools for comparison to operating plant data. This paper demonstrates the performance of KENO-VI for the Watts Bar Unit 1 Cycle 1 zero power physics tests, including reactor criticality, control rod worths, and isothermal temperature coefficients.« less
The Entrance and Exit Effects in Small Electrochemical Filter-Press Reactors Used in the Laboratory
ERIC Educational Resources Information Center
Frias-Ferrer, Angel; Gonzalez-Garcia, Jose; Saez, Veronica; Exposito, Eduardo; Sanchez-Sanchez, Carlos M.; Mantiel, Vicente; Walsh, Frank C.; Aldaz, Antonio; Walsh, Frank C.
2005-01-01
A laboratory experiment designed to examine the entrance and exit effects in small electrochemical filter-press reactors used in the laboratory is presented. The single compartment of the filter-press reactor is filled with different turbulence promoters to study their influence as compared to the empty configuration.
Barreto, A B; Vasconcellos, G R; von Sperling, M; Kuschk, P; Kappelmeyer, U; Vasel, J L
2015-01-01
This study presents a novel method for investigations on undisturbed samples from full-scale horizontal subsurface-flow constructed wetlands (HSSFCW). The planted fixed bed reactor (PFR), developed at the Helmholtz Center for Environmental Research (UFZ), is a universal test unit for planted soil filters that reproduces the operational conditions of a constructed wetland (CW) system in laboratory scale. The present research proposes modifications on the PFR original configuration in order to allow its operation in field conditions. A mobile device to obtain undisturbed samples from real-scale HSSFCW was also developed. The experimental setting is presented with two possible operational configurations. The first allows the removal and replacement of undisturbed samples in the CW bed for laboratory investigations, guaranteeing sample integrity with a mobile device. The second allows the continuous operation of the PFR and undisturbed samples as a fraction of the support media, reproducing the same environmental conditions outside the real-scale system. Investigations on the hydrodynamics of the adapted PFR were carried out with saline tracer tests, validating the proposed adaptation. Six adapted PFR units were installed next to full-scale HSSFCW beds and fed with interstitial liquid pumped from two regions of planted and unplanted support media. Fourteen points were monitored along the system, covering carbon fractions, nitrogen and sulfate. The results indicate the method as a promising tool for investigations on CW support media, rhizosphere and open space for studies on CW modeling, respirometry, kinetic parameters, microbial communities, redox potential and plant influence on HSSFCW.
NASA Astrophysics Data System (ADS)
Farooqi, Izharul H.; Basheer, Farrukh; Tiwari, Pradeepika
2017-12-01
Laboratory scale experiments were carried out to access the feasibility of sequential anaerobic/aerobic biological treatment for the biodegradation of Methylene Blue (MB) dye. Anaerobic studies were performed using anaerobic hybrid reactor (consisting of UASB and Anaerobic filter) whereas submerged aerobic fixed film reactor was used as aerobic reactor. Degradation of MB dye was attempted using neutralized acetic acid (1000 mg/L) as co-substrate. MB dye concentration was stepwise increased from 10 to 70 mg/L after reaching steady state in each dye concentration. Such a gradual increase in the dye concentration helps in the proper acclimatization of the sludge to dyes thereby avoiding the possible inhibitory effects to biological activities at high dye concentrations. The overall treatment efficiency of MB through sequential anaerobic-aerobic reactor operation was 90% at maximum attempted dye concentration of 70 mg/L. The effluent from anaerobic reactor was analysed for intermediate biodegradation products through HPLC. It was observed that catechol, quinone, amino pyrine, 1,4 diamino benzene were present. However they were absent in final effluent.
Scaling up microbial fuel cells and other bioelectrochemical systems.
Logan, Bruce E
2010-02-01
Scientific research has advanced on different microbial fuel cell (MFC) technologies in the laboratory at an amazing pace, with power densities having reached over 1 kW/m(3) (reactor volume) and to 6.9 W/m(2) (anode area) under optimal conditions. The main challenge is to bring these technologies out of the laboratory and engineer practical systems for bioenergy production at larger scales. Recent advances in new types of electrodes, a better understanding of the impact of membranes and separators on performance of these systems, and results from several new pilot-scale tests are all good indicators that commercialization of the technology could be possible within a few years. Some of the newest advances and future challenges are reviewed here with respect to practical applications of these MFCs for renewable energy production and other applications.
Riedewald, Frank; Goode, Kieran; Sexton, Aidan; Sousa-Gallagher, Maria J
2016-01-01
Every year about 1.5 billion tyres are discarded worldwide representing a large amount of solid waste, but also a largely untapped source of raw materials. The objective of the method was to prove the concept of a novel scrap tyre recycling process which uses molten zinc as the direct heat transfer fluid and, simultaneously, uses this media to separate the solids products (i.e. steel and rCB) in a sink-float separation at an operating temperature of 450-470 °C. This methodology involved: •construction of the laboratory scale batch reactor,•separation of floating rCB from the zinc,•recovery of the steel from the bottom of the reactor following pyrolysis.
Bertin, Lorenzo; Berselli, Sara; Fava, Fabio; Petrangeli-Papini, Marco; Marchetti, Leonardo
2004-01-01
Anaerobic digestion is one of the most promising technologies for disposing olive mill wastewaters (OMWs). The process is generally carried out in the conventional contact bioreactors, which however are often unable to efficiently remove OMW phenolic compounds, that therefore occur in the effluents. The possibility of mitigating this problem by employing an anaerobic OMW-digesting microbial consortium passively immobilized in column reactors packed with granular activated carbon (GAC) or "Manville" silica beads (SB) was here investigated. Under batch conditions, both GAC- and SB-packed-bed biofilm reactors exhibited OMW COD and phenolic compound removal efficiencies markedly higher (from 60% to 250%) than those attained in a parallel anaerobic dispersed growth reactor developed with the same inoculum; GAC-reactor exhibited COD and phenolic compound depletion yields higher by 62% and 78%, respectively, than those achieved with the identically configured SB-biofilm reactor. Both biofilm reactors also mediated an extensive OMW remediation under continuous conditions, where GAC-reactor was much more effective than the corresponding SB-one, and showed a tolerance to high and variable organic loads along with a volumetric productivity in terms of COD and phenolic compound removal significantly higher than those averagely displayed by most of the conventional and packed-bed laboratory-scale reactors previously proposed for the OMW digestion.
NASA Astrophysics Data System (ADS)
Scarlat, Raluca O.; Peterson, Per F.
2014-01-01
The fluoride salt cooled high temperature reactor (FHR) is a class of fission reactor designs that use liquid fluoride salt coolant, TRISO coated particle fuel, and graphite moderator. Heavy ion fusion (HIF) can likewise make use of liquid fluoride salts, to create thick or thin liquid layers to protect structures in the target chamber from ablation by target X-rays and damage from fusion neutron irradiation. This presentation summarizes ongoing work in support of design development and safety analysis of FHR systems. Development work for fluoride salt systems with application to both FHR and HIF includes thermal-hydraulic modeling and experimentation, salt chemistry control, tritium management, salt corrosion of metallic alloys, and development of major components (e.g., pumps, heat exchangers) and gas-Brayton cycle power conversion systems. In support of FHR development, a thermal-hydraulic experimental test bay for separate effects (SETs) and integral effect tests (IETs) was built at UC Berkeley, and a second IET facility is under design. The experiments investigate heat transfer and fluid dynamics and they make use of oils as simulant fluids at reduced scale, temperature, and power of the prototypical salt-cooled system. With direct application to HIF, vortex tube flow was investigated in scaled experiments with mineral oil. Liquid jets response to impulse loading was likewise studied using water as a simulant fluid. A set of four workshops engaging industry and national laboratory experts were completed in 2012, with the goal of developing a technology pathway to the design and licensing of a commercial FHR. The pathway will include experimental and modeling efforts at universities and national laboratories, requirements for a component test facility for reliability testing of fluoride salt equipment at prototypical conditions, requirements for an FHR test reactor, and development of a pre-conceptual design for a commercial reactor.
The effect of impeller type on silica sol formation in laboratory scale agitated tank
NASA Astrophysics Data System (ADS)
Nurtono, Tantular; Suprana, Yayang Ade; Latif, Abdul; Dewa, Restu Mulya; Machmudah, Siti; Widiyastuti, Winardi, Sugeng
2016-02-01
The multiphase polymerization reaction of the silica sol formation produced from silicic acid and potassium hydroxide solutions in laboratory scale agitated tank was studied. The reactor is equipped with four segmental baffle and top entering impeller. The inside diameter of reactor is 9 cm, the baffle width is 0.9 cm, and the impeller position is 3 cm from tank bottom. The diameter of standard six blades Rushton and three blades marine propeller impellers are 5 cm. The silicic acid solution was made from 0.2 volume fraction of water glass (sodium silicate) solution in which the sodium ion was exchanged by hydrogen ion from cation resin. The reactor initially filled with 286 ml silicic acid solution was operated in semi batch mode and the temperature was kept constant in 60 °C. The 3 ml/minute of 1 M potassium hydroxide solution was added into stirred tank and the solution was stirred. The impeller rotational speed was varied from 100 until 700 rpm. This titration was stopped if the solution in stirred tank had reached the pH of 10-The morphology of the silica particles in the silica sol product was analyzed by Scanning Electron Microscope (SEM). The size of silica particles in silica sol was measured based on the SEM image. The silica particle obtained in this research was amorphous particle and the shape was roughly cylinder. The flow field generated by different impeller gave significant effect on particle size and shape. The smallest geometric mean of length and diameter of particle (4.92 µm and 2.42 µm, respectively) was generated in reactor with marine propeller at 600 rpm. The reactor with Rushton impeller produced particle which the geometric mean of length and diameter of particle was 4.85 µm and 2.36 µm, respectively, at 150 rpm.
The effect of impeller type on silica sol formation in laboratory scale agitated tank
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurtono, Tantular; Suprana, Yayang Ade; Latif, Abdul
2016-02-08
The multiphase polymerization reaction of the silica sol formation produced from silicic acid and potassium hydroxide solutions in laboratory scale agitated tank was studied. The reactor is equipped with four segmental baffle and top entering impeller. The inside diameter of reactor is 9 cm, the baffle width is 0.9 cm, and the impeller position is 3 cm from tank bottom. The diameter of standard six blades Rushton and three blades marine propeller impellers are 5 cm. The silicic acid solution was made from 0.2 volume fraction of water glass (sodium silicate) solution in which the sodium ion was exchanged by hydrogen ion from cationmore » resin. The reactor initially filled with 286 ml silicic acid solution was operated in semi batch mode and the temperature was kept constant in 60 °C. The 3 ml/minute of 1 M potassium hydroxide solution was added into stirred tank and the solution was stirred. The impeller rotational speed was varied from 100 until 700 rpm. This titration was stopped if the solution in stirred tank had reached the pH of 10-The morphology of the silica particles in the silica sol product was analyzed by Scanning Electron Microscope (SEM). The size of silica particles in silica sol was measured based on the SEM image. The silica particle obtained in this research was amorphous particle and the shape was roughly cylinder. The flow field generated by different impeller gave significant effect on particle size and shape. The smallest geometric mean of length and diameter of particle (4.92 µm and 2.42 µm, respectively) was generated in reactor with marine propeller at 600 rpm. The reactor with Rushton impeller produced particle which the geometric mean of length and diameter of particle was 4.85 µm and 2.36 µm, respectively, at 150 rpm.« less
Characterizing the biotransformation of sulfur-containing wastes in simulated landfill reactors.
Sun, Wenjie; Sun, Mei; Barlaz, Morton A
2016-07-01
Landfills that accept municipal solid waste (MSW) in the U.S. may also accept a number of sulfur-containing wastes including residues from coal or MSW combustion, and construction and demolition (C&D) waste. Under anaerobic conditions that dominate landfills, microbially mediated processes can convert sulfate to hydrogen sulfide (H2S). The presence of H2S in landfill gas is problematic for several reasons including its low odor threshold, human toxicity, and corrosive nature. The objective of this study was to develop and demonstrate a laboratory-scale reactor method to measure the H2S production potential of a range of sulfur-containing wastes. The H2S production potential was measured in 8-L reactors that were filled with a mixture of the target waste, newsprint as a source of organic carbon required for microbial sulfate reduction, and leachate from decomposed residential MSW as an inoculum. Reactors were operated with and without N2 sparging through the reactors, which was designed to reduce H2S accumulation and toxicity. Both H2S and CH4 yields were consistently higher in reactors that were sparged with N2 although the magnitude of the effect varied. The laboratory-measured first order decay rate constants for H2S and CH4 production were used to estimate constants that were applicable in landfills. The estimated constants ranged from 0.11yr(-1) for C&D fines to 0.38yr(-1) for a mixed fly ash and bottom ash from MSW combustion. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kováts, Péter; Thévenin, Dominique; Zähringer, Katharina
2018-02-01
Bubble column reactors are multiphase reactors that are used in many process engineering applications. In these reactors a gas phase comes into contact with a fluid phase to initiate or support reactions. The transport process from the gas to the liquid phase is often the limiting factor. Characterizing this process is therefore essential for the optimization of multiphase reactors. For a better understanding of the transfer mechanisms and subsequent chemical reactions, a laboratory-scale bubble column reactor was investigated. First, to characterize the flow field in the reactor, two different methods have been applied. The shadowgraphy technique is used for the characterisation of the bubbles (bubble diameter, velocity, shape or position) for various process conditions. This technique is based on particle recognition with backlight illumination, combined with particle tracking velocimetry (PTV). The bubble trajectories in the column can also be obtained in this manner. Secondly, the liquid phase flow has been analysed by particle image velocimetry (PIV). The combination of both methods, delivering relevant information concerning disperse (bubbles) and continuous (liquid) phases, leads to a complete fluid dynamical characterization of the reactor, which is the pre-condition for the analysis of mass transfer between both phases.
Posttest destructive examination of the steel liner in a 1:6-scale reactor containment model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, L.D.
A 1:6-scale model of a nuclear reactor containment model was built and tested at Sandia National Laboratories as part of research program sponsored by the Nuclear Regulatory Commission to investigate containment overpressure test was terminated due to leakage from a large tear in the steel liner. A limited destructive examination of the liner and anchorage system was conducted to gain information about the failure mechanism and is described. Sections of liner were removed in areas where liner distress was evident or where large strains were indicated by instrumentation during the test. The condition of the liner, anchorage system, and concretemore » for each of the regions that were investigated are described. The probable cause of the observed posttest condition of the liner is discussed.« less
Composting in small laboratory pilots: performance and reproducibility.
Lashermes, G; Barriuso, E; Le Villio-Poitrenaud, M; Houot, S
2012-02-01
Small-scale reactors (<10 l) have been employed in composting research, but few attempts have assessed the performance of composting considering the transformations of organic matter. Moreover, composting at small scales is often performed by imposing a fixed temperature, thus creating artificial conditions, and the reproducibility of composting has rarely been reported. The objectives of this study are to design an innovative small-scale composting device safeguarding self-heating to drive the composting process and to assess the performance and reproducibility of composting in small-scale pilots. The experimental setup included six 4-l reactors used for composting a mixture of sewage sludge and green wastes. The performance of the process was assessed by monitoring the temperature, O(2) consumption and CO(2) emissions, and characterising the biochemical evolution of organic matter. A good reproducibility was found for the six replicates with coefficients of variation for all parameters generally lower than 19%. An intense self-heating ensured the existence of a spontaneous thermophilic phase in all reactors. The average loss of total organic matter (TOM) was 46% of the initial content. Compared to the initial mixture, the hot water soluble fraction decreased by 62%, the hemicellulose-like fraction by 68%, the cellulose-like fraction by 50% and the lignin-like fractions by 12% in the final compost. The TOM losses, compost stabilisation and evolution of the biochemical fractions were similar to observed in large reactors or on-site experiments, excluding the lignin degradation, which was less important than in full-scale systems. The reproducibility of the process and the quality of the final compost make it possible to propose the use of this experimental device for research requiring a mass reduction of the initial composted waste mixtures. Copyright © 2011 Elsevier Ltd. All rights reserved.
Biological processing in oscillatory baffled reactors: operation, advantages and potential
Abbott, M. S. R.; Harvey, A. P.; Perez, G. Valente; Theodorou, M. K.
2013-01-01
The development of efficient and commercially viable bioprocesses is essential for reducing the need for fossil-derived products. Increasingly, pharmaceuticals, fuel, health products and precursor compounds for plastics are being synthesized using bioprocessing routes as opposed to more traditional chemical technologies. Production vessels or reactors are required for synthesis of crude product before downstream processing for extraction and purification. Reactors are operated either in discrete batches or, preferably, continuously in order to reduce waste, cost and energy. This review describes the oscillatory baffled reactor (OBR), which, generally, has a niche application in performing ‘long’ processes in plug flow conditions, and so should be suitable for various bioprocesses. We report findings to suggest that OBRs could increase reaction rates for specific bioprocesses owing to low shear, good global mixing and enhanced mass transfer compared with conventional reactors. By maintaining geometrical and dynamic conditions, the technology has been proved to be easily scaled up and operated continuously, allowing laboratory-scale results to be easily transferred to industrial-sized processes. This is the first comprehensive review of bioprocessing using OBRs. The barriers facing industrial adoption of the technology are discussed alongside some suggested strategies to overcome these barriers. OBR technology could prove to be a major aid in the development of commercially viable and sustainable bioprocesses, essential for moving towards a greener future. PMID:24427509
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rearden, Bradley T.; Jessee, Matthew Anderson
The SCALE Code System is a widely used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor physics, radiation shielding, radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including 3 deterministic and 3 Monte Carlomore » radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results. SCALE 6.2 represents one of the most comprehensive revisions in the history of SCALE, providing several new capabilities and significant improvements in many existing features.« less
Hatanaka, T; Imagawa, T; Kitajima, A; Takeuchi, M
2001-12-15
Combustion experiments in a laboratory-scale fluidized-bed reactor were performed to elucidate the effects of combustion temperature on PCDD/Fs formation during incineration of model wastes with poly(vinyl chloride) or sodium chloride as a chlorine source and copper chloride as a catalyst. Each temperature of primary and secondary combustion zones in the reactor was set independently to 700, 800, and 900 degrees C using external electric heaters. The PCDD/Fs concentration is reduced as the temperature of the secondary combustion zone increases. It is effective to keep the temperature of the secondary combustion zone high enough to reduce their release during the waste incineration. On the other hand, as the temperature of the primary combustion zone rises, the PCDD/Fs concentration also increases. Lower temperature of the primary combustion zone results in less PCDD/Fs concentration in these experimental conditions. This result is probably related to the devolatilization rate of the solid waste in the primary combustion zone. The temperature decrease slows the devolatilization rate and promotes mixing of oxygen and volatile matters from the solid waste. This contributes to completing combustion reactions, resulting in reducing the PCDD/Fs concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Justin Leigh; Smith, Curtis Lee; Burns, Douglas Edward
This report describes the development plan for a new multi-partner External Hazards Experimental Group (EHEG) coordinated by Idaho National Laboratory (INL) within the Risk-Informed Safety Margin Characterization (RISMC) technical pathway of the Light Water Reactor Sustainability Program. Currently, there is limited data available for development and validation of the tools and methods being developed in the RISMC Toolkit. The EHEG is being developed to obtain high-quality, small- and large-scale experimental data validation of RISMC tools and methods in a timely and cost-effective way. The group of universities and national laboratories that will eventually form the EHEG (which is ultimately expectedmore » to include both the initial participants and other universities and national laboratories that have been identified) have the expertise and experimental capabilities needed to both obtain and compile existing data archives and perform additional seismic and flooding experiments. The data developed by EHEG will be stored in databases for use within RISMC. These databases will be used to validate the advanced external hazard tools and methods.« less
Sterile Neutrino Search with the PROSPECT Experiment
NASA Astrophysics Data System (ADS)
Surukuchi Venkata, Pranava Teja
2017-01-01
PROSPECT is a multi-phased short-baseline reactor antineutrino experiment with primary goals of performing a search for sterile neutrinos and making a precise measurement of 235U reactor antineutrino spectrum from the High Flux Isotope Reactor at Oak Ridge National Laboratory. PROSPECT will provide a model independent oscillation measurement of electron antineutrinos by performing relative spectral comparison between a wide range of baselines. By covering the baselines of 7-12 m with Phase-I and extending the coverage to 19m with Phase-II, the PROSPECT experiment will be able to address the current eV-scale sterile neutrino oscillation best-fit region within a single year of data-taking and covers a major portion of suggested parameter space within 3 years of Phase-II data-taking. Additionally, with a Phase-II detector PROSPECT will be able to distinguish between 3+1 mixing, 3+N mixing and other non-standard oscillations. In this talk, we describe the PROSPECT oscillation fitting framework and expected detector sensitivity to the oscillations arising from eV-scale sterile neutrinos. DOE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, R.L.; Brown, S.S.D.; Ferguson, S.P.
1995-12-31
The objectives of this program are to (a) develop a process for converting natural gas to methyl chloride via an oxyhydrochlorination route using highly selective, stable catalysts in a fixed-bed, (b) design a reactor capable of removing the large amount of heat generated in the process so as to control the reaction, (c) develop a recovery system capable of removing the methyl chloride from the product stream and (d) determine the economics and commercial viability of the process. The general approach has been as follows: (a) design and build a laboratory scale reactor, (b) define and synthesize suitable OHC catalystsmore » for evaluation, (c) select first generation OHC catalyst for Process Development Unit (PDU) trials, (d) design, construct and startup PDU, (e) evaluate packed bed reactor design, (f) optimize process, in particular, product recovery operations, (g) determine economics of process, (h) complete preliminary engineering design for Phase II and (i) make scale-up decision and formulate business plan for Phase II. Conclusions regarding process development and catalyst development are presented.« less
Fogarasi, Szabolcs; Imre-Lucaci, Florica; Imre-Lucaci, Arpád; Ilea, Petru
2014-05-30
The present study aims to develop an eco-friendly chemical-electrochemical process for the simultaneous recovery of copper and separation of a gold rich residue from waste printed circuit boards (WPCBs). The process was carried out by employing two different types of reactors coupled in series: a leaching reactor with a perforated rotating drum, for the dissolution of base metals and a divided electrochemical reactor for the regeneration of the leaching solution with the parallel electrowinning of copper. The process performances were evaluated on the basis of the dissolution efficiency, current efficiency and specific energy consumptions. Finally a process scale up was realized taking into consideration the optimal values of the operating parameters. The laboratory scale leaching plant allowed the recovery of a high purity copper deposit (99.04wt.%) at a current efficiency of 63.84% and specific energy consumption of 1.75kWh/kg cooper. The gold concentration in the remained solid residue was 25 times higher than the gold concentration in the initial WPCB samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Milferstedt, Kim; Santa-Catalina, Gaëlle; Godon, Jean-Jacques; Escudié, Renaud; Bernet, Nicolas
2013-01-01
Many natural and engineered biofilm systems periodically face disturbances. Here we present how the recovery time of a biofilm between disturbances (expressed as disturbance frequency) shapes the development of morphology and community structure in a multi-species biofilm at the landscape scale. It was hypothesized that a high disturbance frequency favors the development of a stable adapted biofilm system while a low disturbance frequency promotes a dynamic biofilm response. Biofilms were grown in laboratory-scale reactors over a period of 55-70 days and exposed to the biocide monochloramine at two frequencies: daily or weekly pulse injections. One untreated reactor served as control. Biofilm morphology and community structure were followed on comparably large biofilm areas at the landscape scale using automated image analysis (spatial gray level dependence matrices) and community fingerprinting (single-strand conformation polymorphisms). We demonstrated that a weekly disturbed biofilm developed a resilient morphology and community structure. Immediately after the disturbance, the biofilm simplified but recovered its initial complex morphology and community structure between two biocide pulses. In the daily treated reactor, one organism largely dominated a morphologically simple and stable biofilm. Disturbances primarily affected the abundance distribution of already present bacterial taxa but did not promote growth of previously undetected organisms. Our work indicates that disturbances can be used as lever to engineer biofilms by maintaining a biofilm between two developmental states. PMID:24303024
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belles, Randy; Jain, Prashant K.; Powers, Jeffrey J.
The Oak Ridge National Laboratory (ORNL) has a rich history of support for light water reactor (LWR) and non-LWR technologies. The ORNL history involves operation of 13 reactors at ORNL including the graphite reactor dating back to World War II, two aqueous homogeneous reactors, two molten salt reactors (MSRs), a fast-burst health physics reactor, and seven LWRs. Operation of the High Flux Isotope Reactor (HFIR) has been ongoing since 1965. Expertise exists amongst the ORNL staff to provide non-LWR training; support evaluation of non-LWR licensing and safety issues; perform modeling and simulation using advanced computational tools; run laboratory experiments usingmore » equipment such as the liquid salt component test facility; and perform in-depth fuel performance and thermal-hydraulic technology reviews using a vast suite of computer codes and tools. Summaries of this expertise are included in this paper.« less
Kundu, Pradyut; Debsarkar, Anupam; Mukherjee, Somnath
2013-01-01
Slaughterhouse wastewater contains diluted blood, protein, fat, and suspended solids, as a result the organic and nutrient concentration in this wastewater is vary high and the residues are partially solubilized, leading to a highly contaminating effect in riverbeds and other water bodies if the same is let off untreated. The performance of a laboratory-scale Sequencing Batch Reactor (SBR) has been investigated in aerobic-anoxic sequential mode for simultaneous removal of organic carbon and nitrogen from slaughterhouse wastewater. The reactor was operated under three different variations of aerobic-anoxic sequence, namely, (4+4), (5+3), and (3+5) hr. of total react period with two different sets of influent soluble COD (SCOD) and ammonia nitrogen (NH4 +-N) level 1000 ± 50 mg/L, and 90 ± 10 mg/L, 1000 ± 50 mg/L and 180 ± 10 mg/L, respectively. It was observed that from 86 to 95% of SCOD removal is accomplished at the end of 8.0 hr of total react period. In case of (4+4) aerobic-anoxic operating cycle, a reasonable degree of nitrification 90.12 and 74.75% corresponding to initial NH4 +-N value of 96.58 and 176.85 mg/L, respectively, were achieved. The biokinetic coefficients (k, K s, Y, k d) were also determined for performance evaluation of SBR for scaling full-scale reactor in future operation. PMID:24027751
REACTOR SERVICES BUILDING, TRA635, INTERIOR. ALSO KNOWN AS MATERIAL RECEIVING ...
REACTOR SERVICES BUILDING, TRA-635, INTERIOR. ALSO KNOWN AS MATERIAL RECEIVING AREA AND LABORATORY. CAMERA ON FIRST FLOOR FACING NORTH TOWARD MTR BUILDING. MOCK-UP AREA WAS TO THE RIGHT OF VIEW. INL NEGATIVE NO. HD46-10-1. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Investigation of the hydrogenation of SiCl4
NASA Technical Reports Server (NTRS)
Mui, J. Y. P.; Seyferth, D.
1981-01-01
A laboratory scale pressure reactor was constructed to study the 3 SiCl + 2H2 + Si yields 4 SiHCl3 reaction at pressures up to 500 psig. Reaction kinetic measurements were carried out as a function of reactor pressure, reaction temperature and H2/SiCl4 feed ratio. Based on the reaction kinetic data, the hydroclorination of SiCl4 and m.g. silicon metal is found to be an efficient process to produce SiHCl3 in good conversions and in high yields. Copper is an effective catalyst. Results of the corrosion study show that conventional nickel chromium alloys are suitable material of construction for the hydrochlorination reactor. The hydrochlorination reaction is relatively insensitive to external process parameters such as silicon particle size distribution and the impurities in the m.g. silicon metal.
U-PuO2, U-PuC, U-PuN cermet fuel for fast reactor
NASA Astrophysics Data System (ADS)
Mishra, Sudhir; Kaity, Santu; Banerjee, Joydipta; Nandi, Chiranjeet; Dey, G. K.; Khan, K. B.
2018-02-01
Cermet fuel combines beneficial properties of both ceramic and metal and attracts global interest for research as a candidate fuel for nuclear reactors. In the present study, U matrix PuC/PuN/PuO2 cermet for fast reactor have been fabricated on laboratory scale by the powder metallurgy route. Characterization of the fuel has been carried out using Dilatometer, Differential Thermal analysis (DTA), X-ray diffractometer and Optical microscope. X ray diffraction study of the fuel reveals presence of different phases. The PuN dispersed cermet was observed to have high solidus temperature as compared to PuC and PuO2 dispersed cermet. Swelling was observed in U matrix PuO2 cermet which also showed higher thermal expansion. Among the three cermets studied, U matrix PuC cermet showed maximum thermal conductivity.
Alternative Fuel Research in Fischer-Tropsch Synthesis
NASA Technical Reports Server (NTRS)
Surgenor, Angela D.; Klettlinger, Jennifer L.; Yen, Chia H.; Nakley, Leah M.
2011-01-01
NASA Glenn Research Center has recently constructed an Alternative Fuels Laboratory which is solely being used to perform Fischer-Tropsch (F-T) reactor studies, novel catalyst development and thermal stability experiments. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch synthesis. The purpose of this test facility is to conduct bench scale Fischer-Tropsch (F-T) catalyst screening experiments while focusing on reducing energy inputs, reducing CO2 emissions and increasing product yields within the F-T process. Fischer-Tropsch synthesis is considered a gas to liquid process which reacts syn-gas (a gaseous mixture of hydrogen and carbon monoxide), over the surface of a catalyst material which is then converted into liquids of various hydrocarbon chain length and product distributions1. These hydrocarbons can then be further processed into higher quality liquid fuels such as gasoline and diesel. The experiments performed in this laboratory will enable the investigation of F-T reaction kinetics to focus on newly formulated catalysts, improved process conditions and enhanced catalyst activation methods. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor used solely for cobalt catalyst activation.
NASA Astrophysics Data System (ADS)
Pratt, Lawrence M.; Strothers, Joel; Pinnock, Travis; Hilaire, Dickens Saint; Bacolod, Beatrice; Cai, Zhuo Biao; Sim, Yoke-Leng
2017-04-01
Brown grease is a generic term for the oily solids and semi-solids that accumulate in the sewer system and in sewage treatment plants. It has previously been shown that brown grease undergoes pyrolysis to form a homologous series of alkanes and 1-alkenes between 7 and 17 carbon atoms, with smaller amounts of higher hydrocarbons and ketones up to about 30 carbon atoms. The initial study was performed in batch mode on a scale of up to 50 grams of starting material. However, continuous processes are usually more efficient for large scale production of fuels and commodity chemicals. This work describes the research and development of a continuous process. The first step was to determine the required reactor temperature. Brown grease consists largely of saturated and unsaturated fatty acids, and they react at different rates, and produce different products and intermediates. Intermediates include ketones, alcohols, and aldehydes, and Fe(III) ion catalyzes at least some of the reactions. By monitoring the pyrolysis of brown grease, its individual components, and intermediates, it was determined that a reactor temperature of at least 340 °C is required. A small scale (1 L) continuous stirred tank reactor was built and its performance is described.
Zhang, Dongda; Dechatiwongse, Pongsathorn; Del Rio-Chanona, Ehecatl Antonio; Maitland, Geoffrey C; Hellgardt, Klaus; Vassiliadis, Vassilios S
2015-12-01
This paper investigates the scaling-up of cyanobacterial biomass cultivation and biohydrogen production from laboratory to industrial scale. Two main aspects are investigated and presented, which to the best of our knowledge have never been addressed, namely the construction of an accurate dynamic model to simulate cyanobacterial photo-heterotrophic growth and biohydrogen production and the prediction of the maximum biomass and hydrogen production in different scales of photobioreactors. To achieve the current goals, experimental data obtained from a laboratory experimental setup are fitted by a dynamic model. Based on the current model, two key original findings are made in this work. First, it is found that selecting low-chlorophyll mutants is an efficient way to increase both biomass concentration and hydrogen production particularly in a large scale photobioreactor. Second, the current work proposes that the width of industrial scale photobioreactors should not exceed 0.20 m for biomass cultivation and 0.05 m for biohydrogen production, as severe light attenuation can be induced in the reactor beyond this threshold. © 2015 Wiley Periodicals, Inc.
Thermal Destruction of TETS: Experiments and Modeling ...
Symposium Paper In the event of a contamination event involving chemical warfare agents (CWAs) or toxic industrial chemicals (TICs), large quantities of potentially contaminated materials, both indoor and outdoor, may be treated with thermal incineration during the site remediation process. Even if the CWAs or TICs of interest are not particularly thermally stable and might be expected to decompose readily in a high temperature combustion environment, the refractory nature of many materials found inside and outside buildings may present heat transfer challenges in an incineration system depending on how the materials are packaged and fed into the incinerator. This paper reports on a study to examine the thermal decomposition of a banned rodenticide, tetramethylene disulfotetramine (TETS) in a laboratory reactor, analysis of the results using classical reactor design theory, and subsequent scale-up of the results to a computer-simulation of a full-scale commercial hazardous waste incinerator processing ceiling tile contaminated with residual TETS.
Simulation of German PKL refill/reflood experiment K9A using RELAP4/MOD7. [PWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, M.T.; Davis, C.B.; Behling, S.R.
This paper describes a RELAP4/MOD7 simulation of West Germany's Kraftwerk Union (KWU) Primary Coolant Loop (PKL) refill/reflood experiment K9A. RELAP4/MOD7, a best-estimate computer program for the calculation of thermal and hydraulic phenomena in a nuclear reactor or related system, is the latest version in the RELAP4 code development series. This study was the first major simulation using RELAP4/MOD7 since its release by the Idaho National Engineering Laboratory (INEL). The PKL facility is a reduced scale (1:134) representation of a typical West German four-loop 1300 MW pressurized water reactor (PWR). A prototypical scale of the total volume to power ratio wasmore » maintained. The test facility was designed specifically for an experiment simulating the refill/reflood phase of a Loss-of-Coolant Accident (LOCA).« less
Rada, Elena Cristina; Ragazzi, Marco; Torretta, Vincenzo
2013-01-01
This work describes batch anaerobic digestion tests carried out on stillages, the residue of the distillation process on fruit, in order to contribute to the setting of design parameters for a planned plant. The experimental apparatus was characterized by three reactors, each with a useful volume of 5 L. The different phases of the work carried out were: determining the basic components of the chemical oxygen demand (COD) of the stillages; determining the specific production of biogas; and estimating the rapidly biodegradable COD contained in the stillages. In particular, the main goal of the anaerobic digestion tests on stillages was to measure the parameters of specific gas production (SGP) and gas production rate (GPR) in reactors in which stillages were being digested using ASBR (anaerobic sequencing batch reactor) technology. Runs were developed with increasing concentrations of the feed. The optimal loads for obtaining the maximum SGP and GPR values were 8-9 gCOD L(-1) and 0.9 gCOD g(-1) volatile solids.
Landfill Leachate Toxicity Removal in Combined Treatment with Municipal Wastewater
Kalka, J.
2012-01-01
Combined treatment of landfill leachate and municipal wastewater was performed in order to investigate the changes of leachate toxicity during biological treatment. Three laboratory A2O lab-scale reactors were operating under the same parameters (Q-8.5–10 L/d; HRT-1.4–1.6 d; MLSS 1.6–2.5 g/L) except for the influent characteristic and load. The influent of reactor I consisted of municipal wastewater amended with leachate from postclosure landfill; influent of reactor II consisted of leachate collected from transient landfill and municipal wastewater; reactor III served as a control and its influent consisted of municipal wastewater only. Toxicity of raw and treated wastewater was determinted by four acute toxicity tests with Daphnia magna, Thamnocephalus platyurus, Vibrio fischeri, and Raphidocelis subcapitata. Landfill leachate increased initial toxicity of wastewater. During biological treatment, significant decline of acute toxicity was observed, but still mixture of leachate and wastewater was harmful to all tested organisms. PMID:22623882
Ghangrekar, M M; Asolekar, S R; Joshi, S G
2005-03-01
Sludge characteristics available inside the reactor are of vital importance to maximize advantages of UASB reactor. The organic loading rate and sludge loading rate applied during start-up are among the important parameters to govern the sludge characteristics. Effects of these loading rates on the characteristics of the sludge developed are evaluated in six laboratory scale UASB reactors. The sludge characteristics considered are VSS/SS ratio of the sludge, sludge volume index, specific gravity, settling velocity and metal contents of the sludge developed under different loading rates. The experimental results indicate that, for developing good characteristics sludge, during primary start-up from flocculent inoculum sludge, organic loading rate and sludge loading rate should be in the range of 2.0-4.5 kg COD/m3 d and 0.1-0.25 kg COD/kg VSS d, respectively (chemical oxygen demand, COD). Proper sludge granulation and higher COD removal efficiency will be achieved by these loading rates.
Neutron-Irradiated Samples as Test Materials for MPEX
Ellis, Ronald James; Rapp, Juergen
2015-10-09
Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by fast neutron irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. This paper presents assessments of the calculated induced radioactivity and resulting radiation dose rates of a variety of potential fusion reactor plasma-facing materials (such as tungsten). The scientific code packages MCNP and SCALE were used to simulate irradiation of themore » samples in HFIR including the generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. A challenge of the MPEX project is to minimize the radioactive inventory in the preparation of the samples and the sample dose rates for inclusion in the MPEX facility.« less
NH4+ ad-/desorption in sequencing batch reactors: simulation, laboratory and full-scale studies.
Schwitalla, P; Mennerich, A; Austermann-Haun, U; Müller, A; Dorninger, C; Daims, H; Holm, N C; Rönner-Holm, S G E
2008-01-01
Significant NH4-N balance deficits were found during the measurement campaigns for the data collection for dynamic simulation studies at five full-scale sequencing batch reactor (SBR) waste water treatment plants (WWTPs), as well as during subsequent calibrations at the investigated plants. Subsequent lab scale investigations showed high evidence for dynamic, cycle-specific NH4+ ad-/desorption to the activated flocs as one reason for this balance deficit. This specific dynamic was investigated at five full-scale SBR plants for the search of the general causing mechanisms. The general mechanism found was a NH4+ desorption from the activated flocs at the end of the nitrification phase with subsequent nitrification and a chemical NH4+ adsorption at the flocs in the course of the filling phases. This NH4+ ad-/desorption corresponds to an antiparallel K+ ad/-desorption.One reasonable full-scale application was investigated at three SBR plants, a controlled filling phase at the beginning of the sedimentation phase. The results indicate that this kind of filling event must be specifically hydraulic controlled and optimised in order to prevent too high waste water break through into the clear water phase, which will subsequently be discarded. IWA Publishing 2008.
Characterization of gaseous emissions and ashes from the combustion of furniture waste.
Moreno, Ana Isabel; Font, Rafael; Conesa, Juan A
2016-12-01
Gaseous emissions and ash obtained in the combustion of furniture waste have been studied, with particular emphasis on the emissions of hazardous pollutants, such as PCDD/Fs and dl-PCBS. Two different combustion procedures were carried out, one of them in a conventional residential stove (without an automatic control of combustion air and bad mixing of combustion gases with air), and the other in a laboratory-scale reactor (operating under substoichiometric conditions). Three different experiments were carried out in the residential stove, in which the gaseous emissions and ashes obtained were analysed. The fuel burnt out in two of the experiments was furniture wood waste and in one of the experiments, the fuel burnt out was briquettes composed of a mixture of furniture wood with 10wt.% of polyurethane foam. One of the purposes of these experiments was the evaluation of the possible inhibition effect of the higher nitrogen content on the formation of PCDD/Fs. Slight inhibition of the PCDD/F formation was found although, it is noteworthy that the lowest yield of PAHs, volatile and semi-volatile compounds were obtained in the combustion of these briquettes. In all experiments, the emission factors of polychlorinated dibenzo-p-dioxins and dibenzofurans and dioxin-like polychlorinated biphenyls (PCDD/Fs and dl-PCBs) were between 29 and 74ng WHO-TEQ/kg sample burnt, lower than that obtained by other authors in the burning of pine needles and cones. PCDD/Fs and dl-PCBs emissions from furniture wood waste combustion were also analysed in the laboratory scale reactor at 850°C and the results were compared with the values obtained from the combustion of solid wood (untreated wood). The total equivalent toxicity obtained was 21.1ng WHO-TEQ/kg sample for combustion of furniture wood waste, which is low in comparison with those obtained for other waste combustion in similar conditions. In the laboratory scale reactor, PCDFs were the dominant compounds in the profiles of PCDD/Fs, by contrast, in the combustion in the residential stove, the majority compounds were PCDDs, due to the different operation conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparison of operating strategies for increased biogas production from thin stillage.
Moestedt, Jan; Nordell, Erik; Schnürer, Anna
2014-04-10
The effect of increasing organic loading rate (OLR) and simultaneously decreasing hydraulic retention time (HRT) during anaerobic digestion of sulphur- and nitrogen-rich thin stillage was investigated during operation of continuously stirred tank laboratory reactors at two different temperatures. The operating strategies and substrate were set in order to mimic an existing full-scale commercial biogas plant in Sweden. The reactors were operated for 554-570 days with a substrate mixture of thin stillage and milled grain, resulting in high ammonium concentrations (>4.5gL(-1)). Initially, one reactor was operated at 38°C, as in the full-scale plant, while in the experimental reactor the temperature was raised to 44°C. Both reactors were then subjected to increasing OLR (from 3.2 to 6.0gVSL(-1)d(-1)) and simultaneously decreasing HRT (from 45 to 24 days) to evaluate the effects of these operational strategies on process stability, hydrogen sulphide levels and microbial composition. The results showed that operation at 44°C was the most successful strategy, resulting in up to 22% higher methane yield compared with the mesophilic reactor, despite higher free ammonia concentration. Furthermore, kinetic studies revealed higher biogas production rate at 44°C compared with 38°C, while the level of hydrogen sulphide was not affected. Quantitative PCR analysis of the microbiological population showed that methanogenic archaea and syntrophic acetate-oxidising bacteria had responded to the new process temperature while sulphate-reducing bacteria were only marginally affected by the temperature-change. Copyright © 2014 Elsevier B.V. All rights reserved.
Gómez, Eddie; Martin, Jay; Michel, Frederick C
2011-11-01
In this study, the organic loading rate (OLR) of a high-solids anaerobic digestion (HSAD) system was increased from 3.4 to 5.0 gVS L(-1) day(-1) and reactor stability, performance and microbial community structure were determined. Laboratory simulations (3.5 L) of the full-scale process (500 dry ton year(-1)) were conducted using continuously stirred-tank mesophilic reactors. OLRs of 3.4 gVS L(-1)day(-1) (equal to the full-scale HSAD), 4.0, 4.5 and 5.0 gVS L(-1)day(-1) were evaluated. Biochemical parameters and archaeal community dynamics were measured over 42 days of steady state operation. Results showed that increasing OLR increased the amount of organic matter conversion and resulted in higher organic matter removal and volumetric methane (CH₄) production (VMP) rates. The highest volatile solids (VS) removal and VMP results of 54 ± 2% and 1.4 ± 0.1 L CH₄ L(-1)day(-1) were observed for 5.0 gVS L(-1) day(-1). The efficiency of reactor conversion of organic matter to CH(4) was found to be similar in all the treatments with an average value of 0.57 ± 0.07 LCH(4) gVS(-1) (removed). 16S rRNA gene terminal restriction fragment polymorphism (T-RFLP) analyses revealed that archaeal TRFs remained stable during the experiment accounting for an average relative abundance (RA) of 81 ± 1%. Archaea consistent with multiple terminal restriction fragments (TRFs) included members of the Euryarchaeota and Crenarchaeota phyla, including acetoclastic and hydrogenotrophic groups. In conclusion, this laboratory-scale study suggests that performance and stability as well as the archaeal community structure in this HSAD system was unaffected by increasing the OLR by nearly 50% and that this increase resulted in a similar increase in the amount of CH(4) gas generated.
Novel waste printed circuit board recycling process with molten salt.
Riedewald, Frank; Sousa-Gallagher, Maria
2015-01-01
The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450-470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl-KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. •The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept.•This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L.•The treated PCBs can be removed via leg B while the process is on-going.
Novel waste printed circuit board recycling process with molten salt
Riedewald, Frank; Sousa-Gallagher, Maria
2015-01-01
The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450–470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl–KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. • The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept. • This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L. • The treated PCBs can be removed via leg B while the process is on-going. PMID:26150977
Modeling a multivariable reactor and on-line model predictive control.
Yu, D W; Yu, D L
2005-10-01
A nonlinear first principle model is developed for a laboratory-scaled multivariable chemical reactor rig in this paper and the on-line model predictive control (MPC) is implemented to the rig. The reactor has three variables-temperature, pH, and dissolved oxygen with nonlinear dynamics-and is therefore used as a pilot system for the biochemical industry. A nonlinear discrete-time model is derived for each of the three output variables and their model parameters are estimated from the real data using an adaptive optimization method. The developed model is used in a nonlinear MPC scheme. An accurate multistep-ahead prediction is obtained for MPC, where the extended Kalman filter is used to estimate system unknown states. The on-line control is implemented and a satisfactory tracking performance is achieved. The MPC is compared with three decentralized PID controllers and the advantage of the nonlinear MPC over the PID is clearly shown.
TOPAZ II Anti-Criticality Device Rapid Prototype
NASA Astrophysics Data System (ADS)
Campbell, Donald R.; Otting, William D.
1994-07-01
The Ballistic Missile Defense Organization (BMDO) has been working on a Nuclear Electric Propulsion Space Test Project (NEPSTP) using an existing Russian Topaz II reactor system to power the NEPSTP satellite. Safety investigations have shown that it will be possible to safely launch the Topaz II system in the United States with some modification to preclude water flooded criticality. A ``fuel-out'' water subcriticality concept was selected by the Los Alamos National Laboratory (LANL) as the baseline concept. A fuel-out anti-criticality device (ACD) conceptual design was developed by Rockwell. The concept functions to hold the fuel from the four centermost thermionic fuel elements (TFEs) outside the reactor during launch and reliably inserts the fuel into the reactor once the operational orbit is achieved. A four-tenths scale ACD rapid prototype model, fabricated from the CATIA solids design model, clearly shows in three dimensions the relative size and spatial relationship of the ACD components.
Composting in small laboratory pilots: Performance and reproducibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lashermes, G.; Barriuso, E.; Le Villio-Poitrenaud, M.
2012-02-15
Highlights: Black-Right-Pointing-Pointer We design an innovative small-scale composting device including six 4-l reactors. Black-Right-Pointing-Pointer We investigate the performance and reproducibility of composting on a small scale. Black-Right-Pointing-Pointer Thermophilic conditions are established by self-heating in all replicates. Black-Right-Pointing-Pointer Biochemical transformations, organic matter losses and stabilisation are realistic. Black-Right-Pointing-Pointer The organic matter evolution exhibits good reproducibility for all six replicates. - Abstract: Small-scale reactors (<10 l) have been employed in composting research, but few attempts have assessed the performance of composting considering the transformations of organic matter. Moreover, composting at small scales is often performed by imposing a fixed temperature, thus creatingmore » artificial conditions, and the reproducibility of composting has rarely been reported. The objectives of this study are to design an innovative small-scale composting device safeguarding self-heating to drive the composting process and to assess the performance and reproducibility of composting in small-scale pilots. The experimental setup included six 4-l reactors used for composting a mixture of sewage sludge and green wastes. The performance of the process was assessed by monitoring the temperature, O{sub 2} consumption and CO{sub 2} emissions, and characterising the biochemical evolution of organic matter. A good reproducibility was found for the six replicates with coefficients of variation for all parameters generally lower than 19%. An intense self-heating ensured the existence of a spontaneous thermophilic phase in all reactors. The average loss of total organic matter (TOM) was 46% of the initial content. Compared to the initial mixture, the hot water soluble fraction decreased by 62%, the hemicellulose-like fraction by 68%, the cellulose-like fraction by 50% and the lignin-like fractions by 12% in the final compost. The TOM losses, compost stabilisation and evolution of the biochemical fractions were similar to observed in large reactors or on-site experiments, excluding the lignin degradation, which was less important than in full-scale systems. The reproducibility of the process and the quality of the final compost make it possible to propose the use of this experimental device for research requiring a mass reduction of the initial composted waste mixtures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luk, V.K.; Hessheimer, M.F.; Matsumoto, T.
A high pressure test of a mixed-scaled model (1:10 in geometry and 1:4 in shell thickness) of a steel containment vessel (SCV), representing an improved boiling water reactor (BWR) Mark II containment, was conducted on December 11--12, 1996 at Sandia National Laboratories. This paper describes the preliminary results of the high pressure test. In addition, the preliminary post-test measurement data and the preliminary comparison of test data with pretest analysis predictions are also presented.
A HUMAN AUTOMATION INTERACTION CONCEPT FOR A SMALL MODULAR REACTOR CONTROL ROOM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Blanc, Katya; Spielman, Zach; Hill, Rachael
Many advanced nuclear power plant (NPP) designs incorporate higher degrees of automation than the existing fleet of NPPs. Automation is being introduced or proposed in NPPs through a wide variety of systems and technologies, such as advanced displays, computer-based procedures, advanced alarm systems, and computerized operator support systems. Additionally, many new reactor concepts, both full scale and small modular reactors, are proposing increased automation and reduced staffing as part of their concept of operations. However, research consistently finds that there is a fundamental tradeoff between system performance with increased automation and reduced human performance. There is a need to addressmore » the question of how to achieve high performance and efficiency of high levels of automation without degrading human performance. One example of a new NPP concept that will utilize greater degrees of automation is the SMR concept from NuScale Power. The NuScale Power design requires 12 modular units to be operated in one single control room, which leads to a need for higher degrees of automation in the control room. Idaho National Laboratory (INL) researchers and NuScale Power human factors and operations staff are working on a collaborative project to address the human performance challenges of increased automation and to determine the principles that lead to optimal performance in highly automated systems. This paper will describe this concept in detail and will describe an experimental test of the concept. The benefits and challenges of the approach will be discussed.« less
Hung, Pao Chen; Lo, Wei Chiao; Chi, Kai Hsien; Chang, Shu Hao; Chang, Moo Been
2011-01-01
A laboratory-scale multi-layer system was developed for the adsorption of PCDD/Fs from gas streams at various operating conditions, including gas flow rate, operating temperature and water vapor content. Excellent PCDD/F removal efficiency (>99.99%) was achieved with the multi-layer design with bead-shaped activated carbons (BACs). The PCDD/F removal efficiency achieved with the first layer adsorption bed decreased as the gas flow rate was increased due to the decrease of the gas retention time. The PCDD/F concentrations measured at the outlet of the third layer adsorption bed were all lower than 0.1 ng I-TEQ Nm⁻³. The PCDD/Fs desorbed from BAC were mainly lowly chlorinated congeners and the PCDD/F outlet concentrations increased as the operating temperature was increased. In addition, the results of pilot-scale experiment (real flue gases of an iron ore sintering plant) indicated that as the gas flow rate was controlled at 15 slpm, the removal efficiencies of PCDD/F congeners achieved with the multi-layer reactor with BAC were better than that in higher gas flow rate condition (20 slpm). Overall, the lab-scale and pilot-scale experiments indicated that PCDD/F removal achieved by multi-layer reactor with BAC strongly depended on the flow rate of the gas stream to be treated. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culbert, W.H.
1985-10-01
This document describes the policies and practices of the Oak Ridge National Laboratory (ORNL) regarding the selection of and training requirements for reactor operating personnel at the Laboratory's nuclear-reactor facilities. The training programs, both for initial certification and for requalification, are described and provide the guidelines for ensuring that ORNL's research reactors are operated in a safe and reliable manner by qualified personnel. This document gives an overview of the reactor facilities and addresses the various qualifications, training, testing, and requalification requirements stipulated in DOE Order 5480.1A, Chapter VI (Safety of DOE-Owned Reactors); it is intended to be in compliancemore » with this DOE Order, as applicable to ORNL facilities. Included also are examples of the documentation maintained amenable for audit.« less
MATERIALS TESTING REACTOR (MTR) BUILDING, TRA603. CONTEXTUAL VIEW OF MTR ...
MATERIALS TESTING REACTOR (MTR) BUILDING, TRA-603. CONTEXTUAL VIEW OF MTR BUILDING SHOWING NORTH SIDES OF THE HIGH-BAY REACTOR BUILDING, ITS SECOND/THIRD FLOOR BALCONY LEVEL, AND THE ATTACHED ONE-STORY OFFICE/LABORATORY BUILDING, TRA-604. CAMERA FACING SOUTHEAST. VERTICAL CONCRETE-SHROUDED BEAMS SUPPORT PRECAST CONCRETE PANELS. CONCRETE PROJECTION FORMED AS A BUNKER AT LEFT OF VIEW IS TRA-657, PLUG STORAGE BUILDING. INL NEGATIVE NO. HD46-42-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
The use of plasma technology for the treatment of noxious waste
NASA Astrophysics Data System (ADS)
Wilman, Jonathan James
This thesis begins by describing the common types of air pollution and the main effects of these pollutants. Natural and man-made sources are discussed as well as the current types of technology used for reduction of common pollutants. The use of atmospheric pressure non-thermal plasma reactors for the control of pollutants is introduced at this stage. The second chapter describes the different types of atmospheric pressure non-thermal reactor designs and their modes of operation. The fundamental processes behind the production of plasmas are discussed and the chemistry of some simple discharges is also presented. The third chapter begins the experimental and modelling work done at Manchester on the destruction of volatile organic compounds (VOCs) using packed bed reactors and pulsed corona reactors. This chapter is concerned with the destruction of toluene and its behaviour as the oxygen content of the carrier gas, flowing through the reactor, is changed. Work using a pulsed corona reactor is also presented showing the destruction of toluene as a function of the applied specific energy. A model is constructed using mainly atmospheric reactions and the predictions are compared with experimental values. The fourth chapter discusses the destruction of dichloromethane (DCM) as a function of the oxygen content of the carrier gas. A model is constructed, again from mainly atmospheric reactions, and the predictions compared with the experimental data obtained. Methane is chosen as a molecule to study in the fifth chapter. A model is constructed and compared with experimental findings, showing that the chemistry of non-thermal plasmas can be effectively represented using neutral gas phase chemistry. Finally chapter six is concerned with the use of a large scale pulsed corona system for the reduction of NO[x] in industrial flue gas. This system has been tested on a modem incinerator, showing encouraging results. The workings of a modem incinerator are described together with those of the corona facility and any instruments used in these tests. Some experimental results are discussed. The aim of this chapter is to show that plasma reactors can be scaled up for industrial use. This section also discusses the difficulty of analysing and working with industrial gases and large scale apparatus as opposed to laboratory scale experiments.
Conceptual Design and Neutronics Analyses of a Fusion Reactor Blanket Simulation Facility
1986-01-01
Laboratory (LLL) ORNL Oak Ridge National Laboratory PPPL Princeton Plasma Physics Laboratory RSIC Reactor Shielding Information Center (at ORNL) SS...Module (LBM) to be placed in the TFTR at PPPL . Jassby et al. describe the program, including design, manufacturing techniques. neutronics analyses, and
A Reactor Development Scenario for the FUZE Shear-flow Stabilized Z-pinch
NASA Astrophysics Data System (ADS)
McLean, H. S.; Higginson, D. P.; Schmidt, A.; Tummel, K. K.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Golingo, R. P.; Weber, T. R.
2016-10-01
We present a conceptual design, scaling calculations, and a development path for a pulsed fusion reactor based on the shear-flow-stabilized Z-pinch device. Experiments performed on the ZaP device have demonstrated stable operation for 40 us at 150 kA total discharge current (with 100 kA in the pinch) for pinches that are 1cm in diameter and 100 cm long. Scaling calculations show that achieving stabilization for a pulse of 100 usec, for discharge current 1.5 MA, in a shortened pinch 50 cm, results in a pinch diameter of 200 um and a reactor plant Q 5 for reasonable assumptions of the various system efficiencies. We propose several key intermediate performance levels in order to justify further development. These include achieving operation at pinch currents of 300 kA, where Te and Ti are calculated to exceed 1 keV, 700 kA where fusion power exceeds pinch input power, and 1 MA where fusion energy per pulse exceeds input energy per pulse. This work funded by USDOE ARPAe ALPHA Program and performed under the auspices of Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-697801.
Biodegradation of endocrine disruptors in urban wastewater using Pleurotus ostreatus bioreactor.
Křesinová, Zdena; Linhartová, Lucie; Filipová, Alena; Ezechiáš, Martin; Mašín, Pavel; Cajthaml, Tomáš
2018-07-25
The white rot fungus Pleurotus ostreatus HK 35, which is also an edible industrial mushroom commonly cultivated in farms, was tested in the degradation of typical representatives of endocrine disrupters (EDCs; bisphenol A, estrone, 17β-estradiol, estriol, 17α-ethinylestradiol, triclosan and 4-n-nonylphenol); its degradation efficiency under model laboratory conditions was greater than 90% within 12 days and better than that of another published strain P. ostreatus 3004. A spent mushroom substrate from a local farm was tested for its applicability in various batch and trickle-bed reactors in degrading EDCs in model fortified and real communal wastewater. The reactors were tested under various regimes including a pilot-scale trickle-bed reactor, which was finally tested at a wastewater treatment plant. The result revealed that the spent substrate is an efficient biodegradation agent, where the fungus was usually able to remove about 95% of EDCs together with suppression of the estrogenic activity of the sample. The results showed the fungus was able to operate in the presence of bacterial microflora in wastewater without any substantial negative effects on the degradation abilities. Finally, a pilot-scale trickle-bed reactor was installed in a wastewater treatment plant and successfully operated for 10days, where the bioreactor was able to remove more than 76% of EDCs present in the wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantification of syntrophic acetate-oxidizing microbial communities in biogas processes
Westerholm, Maria; Dolfing, Jan; Sherry, Angela; Gray, Neil D; Head, Ian M; Schnürer, Anna
2011-01-01
Changes in communities of syntrophic acetate-oxidizing bacteria (SAOB) and methanogens caused by elevated ammonia levels were quantified in laboratory-scale methanogenic biogas reactors operating at moderate temperature (37°C) using quantitative polymerase chain reaction (qPCR). The experimental reactor was subjected to gradually increasing ammonia levels (0.8–6.9 g NH4+-N l−1), whereas the level of ammonia in the control reactor was kept low (0.65–0.90 g NH4+-N l−1) during the entire period of operation (660 days). Acetate oxidation in the experimental reactor, indicated by increased production of 14CO2 from acetate labelled in the methyl carbon, occurred when ammonia levels reached 5.5 and 6.9 g NH4+-N l−1. Syntrophic acetate oxidizers targeted by newly designed qPCR primers were Thermacetogenium phaeum, Clostridium ultunense, Syntrophaceticus schinkii and Tepidanaerobacter acetatoxydans. The results showed a significant increase in abundance of all these bacteria except T. phaeum in the ammonia-stressed reactor, coincident with the shift to syntrophic acetate oxidation. As the abundance of the bacteria increased, a simultaneous decrease was observed in the abundance of aceticlastic methanogens from the families Methanosaetaceae and Methanosarcinaceae. qPCR analyses of sludge from two additional high ammonia processes, in which methane production from acetate proceeded through syntrophic acetate oxidation (reactor SB) or through aceticlastic degradation (reactor DVX), demonstrated that SAOB were significantly more abundant in the SB reactor than in the DVX reactor. PMID:23761313
Study of the Influence of Key Process Parameters on Furfural Production.
Fele Žilnik, Ljudmila; Grilc, Viktor; Mirt, Ivan; Cerovečki, Željko
2016-01-01
The present work reports the influence of key process variables on the furfural formation from leached chestnut-wood chips in a pressurized reactor. Effect of temperature, pressure, type and concentration of the catalyst solution, the steam flow rate or stripping module, the moisture content of the wood particles and geometric characteristics such as size and type of the reactor, particle size and bed height were considered systematically. One stage process was only taken into consideration. Lab-scale and pilot-scale studies were performed. The results of the non-catalysed laboratory experiments were compared with an actual non-catalysed (auto-catalysed) industrial process and with experiments on the pilot scale, the latter with 28% higher furfural yield compared to the others. Application of sulphuric acid as catalyst, in an amount of 0.03-0.05 g (H2SO4 100%)/g d.m. (dry material), enables a higher production of furfural at lower temperature and pressure of steam in a shorter reaction time. Pilot scale catalysed experiments have revealed very good performance for furfural formation under less severe operating conditions, with a maximum furfural yield as much as 88% of the theoretical value.
Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1995-01-01
With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomicmore » facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor`s Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced.« less
ERIC Educational Resources Information Center
Reyer, Ronald
A project was conducted to analyze, design, develop, implement, and evaluate an instructional unit intended to improve the diagnostic skills of operating personnel in responding to abnormal and emergency conditions at the High Flux Beam Reactor at Brookhaven National Laboratory. Research was conducted on the occurrence of emergencies at similar…
The extraction of bitumen from western oil sands: Volume 2. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.
1997-11-26
The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery andmore » upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.« less
Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater.
Cusick, Roland D; Bryan, Bill; Parker, Denny S; Merrill, Matthew D; Mehanna, Maha; Kiely, Patrick D; Liu, Guangli; Logan, Bruce E
2011-03-01
A pilot-scale (1,000 L) continuous flow microbial electrolysis cell was constructed and tested for current generation and COD removal with winery wastewater. The reactor contained 144 electrode pairs in 24 modules. Enrichment of an exoelectrogenic biofilm required ~60 days, which is longer than typically needed for laboratory reactors. Current generation was enhanced by ensuring adequate organic volatile fatty acid content (VFA/SCOD ≥ 0.5) and by raising the wastewater temperature (31 ± 1°C). Once enriched, SCOD removal (62 ± 20%) was consistent at a hydraulic retention time of 1 day (applied voltage of 0.9 V). Current generation reached a maximum of 7.4 A/m(3) by the planned end of the test (after 100 days). Gas production reached a maximum of 0.19 ± 0.04 L/L/day, although most of the product gas was converted to methane (86 ± 6%). In order to increase hydrogen recovery in future tests, better methods will be needed to isolate hydrogen gas produced at the cathode. These results show that inoculation and enrichment procedures are critical to the initial success of larger-scale systems. Acetate amendments, warmer temperatures, and pH control during startup were found to be critical for proper enrichment of exoelectrogenic biofilms and improved reactor performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combs, S.K.; Foust, C.R.; Qualls, A.L.
Pellet injection systems for the next-generation fusion devices, such as the proposed International Thermonuclear Experimental Reactor (ITER), will require feed systems capable of providing a continuous supply of hydrogen ice at high throughputs. A straightforward concept in which multiple extruder units operate in tandem has been under development at the Oak Ridge National Laboratory. A prototype with three large-volume extruder units has been fabricated and tested in the laboratory. In experiments, it was found that each extruder could provide volumetric ice flow rates of up to {approximately}1.3 cm{sup 3}/s (for {approximately}10 s), which is sufficient for fueling fusion reactors atmore » the gigawatt power level. With the three extruders of the prototype operating in sequence, a steady rate of {approximately}0.33 cm{sup 3}/s was maintained for a duration of 1 h. Even steady-state rates approaching the full ITER design value ({approximately}1 cm{sup 3}/s) may be feasible with the prototype. However, additional extruder units (1{endash}3) would facilitate operations at the higher throughputs and reduce the duty cycle of each unit. The prototype can easily accommodate steady-state pellet fueling of present large tokamaks or other near-term plasma experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Rutherford, Phil; Amar, Ravnesh
2009-09-01
This Annual Site Environmental Report (ASER) for 2008 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988; allmore » subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. In May 2007, the D&D operations in Area IV were suspended by the DOE. The environmental monitoring programs were continued throughout the year. Results of the radiological monitoring program for the calendar year 2008 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less
Derabe Maobe, H; Onodera, M; Takahashi, M; Satoh, H; Fukazawa, T
2014-01-01
For decades, arid and semi-arid regions in Africa have faced issues related to water availability for drinking, irrigation and livestock purposes. To tackle these issues, a laboratory scale greywater treatment system based on high rate algal pond (HRAP) technology was investigated in order to guide the operation of the pilot plant implemented in the 2iE campus in Ouagadougou (Burkina Faso). Because of the high suspended solids concentration generally found in effluents of this system, the aim of this study is to improve the performance of HRAPs in term of algal productivity and removal. To determine the selection mechanism of self-flocculated algae, three sets of sequencing batch reactors (SBRs) and three sets of continuous flow reactors (CFRs) were operated. Despite operation with the same solids retention time and the similarity of the algal growth rate found in these reactors, the algal productivity was higher in the SBRs owing to the short hydraulic retention time of 10 days in these reactors. By using a volume of CFR with twice the volume of our experimental CFRs, the algal concentration can be controlled during operation under similar physical conditions in both reactors.
Mohora, Emilijan; Rončević, Srdjan; Dalmacija, Božo; Agbaba, Jasmina; Watson, Malcolm; Karlović, Elvira; Dalmacija, Milena
2012-10-15
The performance of the laboratory scale electrocoagulation/flotation (ECF) reactor in removing high concentrations of natural organic matter (NOM) and arsenic from groundwater was analyzed in this study. An ECF reactor with bipolar plate aluminum electrodes was operated in the horizontal continuous flow mode. Electrochemical and flow variables were optimized to examine ECF reactor contaminants removal efficiency. The optimum conditions for the process were identified as groundwater initial pH 5, flow rate=4.3 l/h, inter electrode distance=2.8 cm, current density=5.78 mA/cm(2), A/V ratio=0.248 cm(-1). The NOM removal according to UV(254) absorbance and dissolved organic matter (DOC) reached highest values of 77% and 71% respectively, relative to the raw groundwater. Arsenic removal was 85% (6.2 μg As/l) relative to raw groundwater, satisfying the drinking water standards. The specific reactor electrical energy consumption was 17.5 kWh/kg Al. The specific aluminum electrode consumption was 66 g Al/m(3). According to the obtained results, ECF in horizontal continuous flow mode is an energy efficient process to remove NOM and arsenic from groundwater. Copyright © 2012 Elsevier B.V. All rights reserved.
Treatment of corn ethanol distillery wastewater using two-stage anaerobic digestion.
Ráduly, B; Gyenge, L; Szilveszter, Sz; Kedves, A; Crognale, S
In this study the mesophilic two-stage anaerobic digestion (AD) of corn bioethanol distillery wastewater is investigated in laboratory-scale reactors. Two-stage AD technology separates the different sub-processes of the AD in two distinct reactors, enabling the use of optimal conditions for the different microbial consortia involved in the different process phases, and thus allowing for higher applicable organic loading rates (OLRs), shorter hydraulic retention times (HRTs) and better conversion rates of the organic matter, as well as higher methane content of the produced biogas. In our experiments the reactors have been operated in semi-continuous phase-separated mode. A specific methane production of 1,092 mL/(L·d) has been reached at an OLR of 6.5 g TCOD/(L·d) (TCOD: total chemical oxygen demand) and a total HRT of 21 days (5.7 days in the first-stage, and 15.3 days in the second-stage reactor). Nonetheless the methane concentration in the second-stage reactor was very high (78.9%); the two-stage AD outperformed the reference single-stage AD (conducted at the same reactor loading rate and retention time) by only a small margin in terms of volumetric methane production rate. This makes questionable whether the higher methane content of the biogas counterbalances the added complexity of the two-stage digestion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Kokkinos
2005-04-28
The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophymore » on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.« less
Usack, Joseph G; Spirito, Catherine M; Angenent, Largus T
2012-07-13
Anaerobic digestion (AD) is a bioprocess that is commonly used to convert complex organic wastes into a useful biogas with methane as the energy carrier. Increasingly, AD is being used in industrial, agricultural, and municipal waste(water) treatment applications. The use of AD technology allows plant operators to reduce waste disposal costs and offset energy utility expenses. In addition to treating organic wastes, energy crops are being converted into the energy carrier methane. As the application of AD technology broadens for the treatment of new substrates and co-substrate mixtures, so does the demand for a reliable testing methodology at the pilot- and laboratory-scale. Anaerobic digestion systems have a variety of configurations, including the continuously stirred tank reactor (CSTR), plug flow (PF), and anaerobic sequencing batch reactor (ASBR) configurations. The CSTR is frequently used in research due to its simplicity in design and operation, but also for its advantages in experimentation. Compared to other configurations, the CSTR provides greater uniformity of system parameters, such as temperature, mixing, chemical concentration, and substrate concentration. Ultimately, when designing a full-scale reactor, the optimum reactor configuration will depend on the character of a given substrate among many other nontechnical considerations. However, all configurations share fundamental design features and operating parameters that render the CSTR appropriate for most preliminary assessments. If researchers and engineers use an influent stream with relatively high concentrations of solids, then lab-scale bioreactor configurations cannot be fed continuously due to plugging problems of lab-scale pumps with solids or settling of solids in tubing. For that scenario with continuous mixing requirements, lab-scale bioreactors are fed periodically and we refer to such configurations as continuously stirred anaerobic digesters (CSADs). This article presents a general methodology for constructing, inoculating, operating, and monitoring a CSAD system for the purpose of testing the suitability of a given organic substrate for long-term anaerobic digestion. The construction section of this article will cover building the lab-scale reactor system. The inoculation section will explain how to create an anaerobic environment suitable for seeding with an active methanogenic inoculum. The operating section will cover operation, maintenance, and troubleshooting. The monitoring section will introduce testing protocols using standard analyses. The use of these measures is necessary for reliable experimental assessments of substrate suitability for AD. This protocol should provide greater protection against a common mistake made in AD studies, which is to conclude that reactor failure was caused by the substrate in use, when really it was improper user operation.
Rapid start-up of one-stage deammonification MBBR without addition of external inoculum.
Kanders, Linda; Ling, Daniel; Nehrenheim, Emma
2016-12-01
In recent years, the anammox process has emerged as a useful method for robust and efficient nitrogen removal in wastewater treatment plants (WWTPs). This paper evaluates a one-stage deammonification (nitritation and anammox) start-up using carrier material without using anammox inoculum. A continuous laboratory-scale process was followed by full-scale operation with reject water from the digesters at Bekkelaget WWTP in Oslo, Norway. A third laboratory reactor was run in operational mode to verify the suitability of reject water from thermophilic digestion for the deammonification process. The two start-ups presented were run with indigenous bacterial populations, intermittent aeration and dilution, to favour growth of the anammox bacterial branches. Evaluation was done by chemical and fluorescence in situ hybridization analyses. The results demonstrate that anammox culture can be set up in a one-stage process only using indigenous anammox bacteria and that a full-scale start-up process can be completed in less than 120 days.
Removal design report for the 108-F Biological Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-09-01
Most of the 100-F facilities were deactivated with the reactor and have since been demolished. Of the dozen or so reactor-related structures, only the 105-F Reactor Building and the 108-F Biology Laboratory remain standing today. The 108-F Biology Laboratory was intended to be used as a facility for the mixing and addition of chemicals used in the treatment of the reactor cooling water. Shortly after F Reactor began operation, it was determined that the facility was not needed for this purpose. In 1949, the building was converted for use as a biological laboratory. In 1962, the lab was expanded bymore » adding a three-story annex to the original four-story structure. The resulting lab had a floor area of approximately 2,883 m{sup 2} (main building and annex) that operated until 1973. The building contained 47 laboratories, a number of small offices, a conference room, administrative section, lunch and locker rooms, and a heavily shielded, high-energy exposure cell. The purpose of this removal design report is to establish the methods of decontamination and decommissioning and the supporting functions associated with facility removal and disposal.« less
ERIC Educational Resources Information Center
Malkawi, Salaheddin; Al-Araidah, Omar
2013-01-01
Laboratory experiments develop students' skills in dealing with laboratory instruments and physical processes with the objective of reinforcing the understanding of the investigated subject. In nuclear engineering, where research reactors play a vital role in the practical education of students, the high cost and long construction time of research…
Comparison of Leachate Quality from Aerobic and Anaerobic Municipal Solid Waste Bioreactors
NASA Astrophysics Data System (ADS)
Borglin, S. E.; Hazen, T. C.; Oldenburg, C. M.
2002-12-01
Municipal solid waste landfills are becoming a drain on the resources of local municipalities as the requirements for stabilization and containment become increasingly stringent. Current regulations limit the moisture in the landfill to minimize leachate production and lower the potential for release of leachate to the environment. Recent research has shown that addition and recycling of moisture in the waste optimizes the biodegradation of stabilization and also provides a means for leachate treatment. This study compares the characteristics of leachate produced from aerobic and anaerobic laboratory bioreactors, and leachate collected from a full-scale anaerobic bioreactor. The laboratory reactors consisted of 200-liter tanks filled with fresh waste materials with the following conditions: (a) aerobic (air injection with leachate recirculation), (b) anaerobic (leachate recirculation). The leachate from the reactors was monitored for metals, nutrients, organic carbon, and microbiological activity for up to 500 days. Leachate from the aerobic tank had significantly lower concentrations of all potential contaminants, both organic and metal, after only a few weeks of operation. Metals leaching was low throughout the test period for the aerobic tanks, and decreased over time for the anaerobic tanks. Organic carbon as measured by BOD, COD, TOC, and COD were an order of magnitude higher in the leachate from the anaerobic system. Microbiological assessment by lipid analysis, enzyme activity assays, and cell counts showed high biomass and diversity in both the aerobic and anaerobic bioreactors, with higher activity in the anaerobic leachate. Results from the full-scale anaerobic bioreactor were not significantly different from those of the laboratory anaerobic bioreactor. The reduction in noxious odors was a significant advantage of the aerobic system. These results suggest that aerobic management of landfills could reduce or eliminate the need for leachate treatment systems, reduce odor, and reduce the need for extensive containment strategies. This work was supported by Laboratory Directed Research and Development Funds at Lawrence Berkeley National Laboratory under Department of Energy Contract No. DE-AC03-76SF00098.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart Zweben; Samuel Cohen; Hantao Ji
Small ''concept exploration'' experiments have for many years been an important part of the fusion research program at the Princeton Plasma Physics Laboratory (PPPL). this paper describes some of the present and planned fusion concept exploration experiments at PPPL. These experiments are a University-scale research level, in contrast with the larger fusion devices at PPPL such as the National Spherical Torus Experiment (NSTX) and the Tokamak Fusion Test Reactor (TFTR), which are at ''proof-of-principle'' and ''proof-of-performance'' levels, respectively.
Validation of the WIMSD4M cross-section generation code with benchmark results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deen, J.R.; Woodruff, W.L.; Leal, L.E.
1995-01-01
The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment Research and Test Reactor (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the WIMSD4M cross-section librariesmore » for reactor modeling of fresh water moderated cores. The results of calculations performed with multigroup cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory (ORNL) unreflected HEU critical spheres, the TRX LEU critical experiments, and calculations of a modified Los Alamos HEU D{sub 2}O moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Federici, G.; Skinner, C.H.; Brooks, J.N.
2001-01-10
The major increase in discharge duration and plasma energy in a next-step DT [deuterium-tritium] fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of themore » important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D [Research and Development] avenues for their resolution are presented.« less
Hanford Laboratories monthly activities report, March 1964
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1964-04-15
The monthly report for the Hanford Laboratories Operation, March 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics operation, and programming operations are discussed.
Hanford Laboratories Operation monthly activities report, September 1960
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1960-10-15
This is the monthly report for the Hanford Laboratories Operation, October, 1960. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.
Hanford Laboratories monthly activities report, August 1963
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1963-09-16
This is the monthly report for the Hanford Laboratories Operation, August 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.
Hanford Laboratories Operation monthly activities report, November 1962
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1962-12-14
This is the monthly report for the Hanford Laboratories Operation, November 1962. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.
A study on the use of the BioBall® as a biofilm carrier in a sequencing batch reactor.
Masłoń, Adam; Tomaszek, Janusz A
2015-11-01
Described in this study are experiments conducted to evaluate the removal of organics and nutrients from synthetic wastewater by a moving bed sequencing batch biofilm reactor using BioBall® carriers as biofilm media. The work involving a 15L-laboratory scale MBSBBR (moving bed sequencing batch biofilm reactor) model showed that the wastewater treatment system was based on biochemical processes taking place with activated sludge and biofilm microorganisms developing on the surface of the BioBall® carriers. Classical nitrification and denitrification and the typical enhanced biological phosphorus removal process were achieved in the reactor analyzed, which operated with a volumetric organic loading of 0.84-0.978gCODL(-1)d(-1). The average removal efficiencies for COD, total nitrogen and total phosphorus were found to be 97.7±0.5%, 87.8±2.6% and 94.3±1.3%, respectively. Nitrification efficiency reached levels in the range 96.5-99.7%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Miley, Don
2017-12-21
The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored.
Hanford Laboratories monthly activities report, February 1964
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1964-03-16
This is the monthly report for the Hanford Laboratories Operation, February, 1964. Reactor fuels, chemistry, dosimetry, separation process, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, applied mathematics, programming, and radiation protection are discussed.
Biogasification of sorghum in a novel anaerobic digester
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, V.J.; Biljetina, R.; Isaacson, H.R.
1987-01-01
The Institute of Gas Technology (IGT) conducted pilot-scale anaerobic digestion experiments with ensiled sorghum in a 160 ft/sup 3/ digester at the experimental test unit (ETU) facility at the Walt Disney World Resort Complex in Florida. The study focused on improving bioconversion efficiencies and process stability by employing a novel reactor concept developed at IGT. Steady-state performance data were collected from the ETU as well as from a laboratory-scale conventional stirred tank reactor (CSTR) at loading rates of 0.25 and 0.50 lb organic matter/ft/sup 3/-day at mesophilic and thermophilic temperatures, respectively. This paper will describe the ETU facility, novel digestermore » design and operating techniques, and the results obtained during 12 months of stable and uninterrupted operation of the ETU and the CSTR which showed that methane yields anad rates from the ETU were 20% to 50% higher than those of the CSTR. 10 refs., 7 figs., 5 tabs.« less
ERIC Educational Resources Information Center
McNair, Robert C.
A Performance-Based Training (PBT) Qualification Guide/Checklist was developed that would enable a trainee to attain the skills, knowledge, and attitude required to operate the High Flux Beam Reactor at Brookhaven National Laboratory. Design of this guide/checklist was based on the Instructional System Design Model. The needs analysis identified…
Assessment of Sensor Technologies for Advanced Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korsah, Kofi; Ramuhalli, Pradeep; Vlim, R.
2016-10-01
Sensors and measurement technologies provide information on processes, support operations and provide indications of component health. They are therefore crucial to plant operations and to commercialization of advanced reactors (AdvRx). This report, developed by a three-laboratory team consisting of Argonne National Laboratory (ANL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL), provides an assessment of sensor technologies and a determination of measurement needs for AdvRx. It provides the technical basis for identifying and prioritizing research targets within the instrumentation and control (I&C) Technology Area under the Department of Energy’s (DOE’s) Advanced Reactor Technology (ART) program and contributesmore » to the design and implementation of AdvRx concepts.« less
Ryan, P; Forbes, C; McHugh, S; O'Reilly, C; Fleming, G T A; Colleran, E
2010-07-01
The objective of the current study was to expand the knowledge of the role of acetogenic Bacteria in high rate anaerobic digesters. To this end, acetogens were enriched by supplying a variety of acetogenic growth supportive substrates to two laboratory scale high rate upflow anaerobic sludge bed (UASB) reactors operated at 37 degrees C (R1) and 55 degrees C (R2). The reactors were initially fed a glucose/acetate influent. Having achieved high operational performance and granular sludge development and activity, both reactors were changed to homoacetogenic bacterial substrates on day 373 of the trial. The reactors were initially fed with sodium vanillate as a sole substrate. Although % COD removal indicated that the 55 degrees C reactor out performed the 37 degrees C reactor, effluent acetate levels from R2 were generally higher than from R1, reaching values as high as 5023 mg l(-1). Homoacetogenic activity in both reactors was confirmed on day 419 by specific acetogenic activity (SAA) measurement, with higher values obtained for R2 than R1. Sodium formate was introduced as sole substrate to both reactors on day 464. It was found that formate supported acetogenic activity at both temperatures. By the end of the trial, no specific methanogenic activity (SMA) was observed against acetate and propionate indicating that the methane produced was solely by hydrogenotrophic Archaea. Higher SMA and SAA values against H(2)/CO(2) suggested development of a formate utilising acetogenic population growing in syntrophy with hydrogenotrophic methanogens. Throughout the formate trial, the mesophilic reactor performed better overall than the thermophilic reactor. Copyright 2010 Elsevier Ltd. All rights reserved.
Cultivation of aerobic granules in a novel configuration of sequencing batch airlift reactor.
Rezaei, Laya Siroos; Ayati, Bita; Ganjidoust, Hossein
2012-01-01
Aerobic granules can be formed in sequencing batch airlift reactors (SBAR) and sequencing batch reactors (SBR). Comparing these two systems, the SBAR has excellent mixing condition, but due to a high height-to-diameter ratio (H/D), there is no performance capability at full scale at the present time. This research examined a novel configuration of SBAR at laboratory scale (with a box structure) for industrial wastewater treatment. To evaluate chemical oxygen demand (COD) removal efficiency and granule formation of the novel reactor (R1), in comparison a conventional SBAR (R2) was operated under similar conditions during the experimental period. R1 and R2 with working volumes of 3.6 L and 4.5 L, respectively, were used to cultivate aerobic granules. Both reactors were operated for 4 h per cycle. Experiments were done at different organic loading rates (OLRs) ranging from 0.6-4.5 kg COD/m3.d for R1 and from 0.72-5.4 kg COD/m3.d for R2. After 150 days of operation, large-sized black filamentous granules with diameters of 0.5-2 mm and 2-11 mm were formed in R1 and R2, respectively. In the second part of the experiment, the efficiency of removal of a toxic substance by aerobic granules was investigated using aniline as a carbon source with a concentration in the range 1.2-6.6 kg COD/m3.d and 1.44-7.92 kg COD/m3.d in R1 and R2, respectively. It was found that COD removal efficiency of the novel airlift reactor was over 97% and 94.5% using glucose and aniline as carbon sources, respectively. Sludge volume index (SVI) was also decreased to 30 mL/g by granulation in the novel airlift reactor.
Petta, Luigi; De Gisi, Sabino; Casella, Patrizia; Farina, Roberto; Notarnicola, Michele
2017-10-01
A multi-stage pilot-scale treatment cycle consisting of an Upflow Anaerobic Sludge Blanket reactor (UASB) followed by an anoxic-aerobic Ultra Filtration Membrane Bio Reactor (UF-MBR) and a post treatment based on chemical precipitation with lime or adsorption on Granular Activated Carbons (GAC), was applied in order to evaluate the treatment feasibility of a real winery distillery wastewater at laboratory and bench scale. The wastewater was classified as high strength with acidic pH (3.8), and concentrations of 44,600, 254, 604 and 660 mg/l for COD tot , total nitrogen, total phosphorous and phenols, respectively. The UASB reactor was operated at Organic Loading Rates (OLR) in the range 3.0-11.5 kgCOD tot /m 3 /d achieving treatment efficiency up to 97%, with an observed methane production of 340 L of CH 4 /kgCOD. The MBR system was operated with an organic load in the range 0.070-0.185 kgCOD/kgVSS/d, achieving a removal up to 48%, 67% and 65% of the influent COD, total nitrogen and phenols, respectively. The combination of UASB and UF-MBR treatment units was not effective in phosphate and colour removal assigning to further chemical precipitation and adsorption processes, respectively, their complete removal in order to comply with legal standards for wastewater discharge. Subsequently, the optimization of the investigated treatment chain was assessed by applying a chemical precipitation step upstream and downstream the UASB reactor, and a related treatment unit cost assessment is presented in view of a further technological scale-up. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hanford Laboratories Operation monthly activities report, August 1959
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1959-09-15
This is the monthly report for the Hanford Laboratories Operation, August, 1959. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, visits, biology operation, physics and instrumentation research, employee relations, and operations research and synthesis operation are discussed.
Hanford Laboratories Operation monthly activities report, September 1961
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1961-10-16
This is the monthly report for the Hanford Laboratories Operation September 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.
VIEW OF 77710A REACTOR WING, LOOKING NORTH, SHOWING DOOR TO ...
VIEW OF 777-10A REACTOR WING, LOOKING NORTH, SHOWING DOOR TO PROCESS DEVELOPMENT PILE ROOM AND LABORATORY WING ON RIGHT IN BACKGROUND - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
Development of flame resistant treatment for Nomex fibrous structures
NASA Technical Reports Server (NTRS)
Toy, M. S.
1977-01-01
Flame resistant fibrous materials for space shuttle application were developed through chemical modification of commercially available aromatic polyamide fibrous products. The new surface treatment was achieved in the laboratory by ultraviolet activation of the fabric in the presence of fluoroolefin monomers and a diluent gas. The monomers grafted under these conditions provide the improved properties of the fabric in flame resistance, chemical inertness, and nonwettability without the sacrifice of color or physical properties. The laboratory reaction vessel was scaled-up to a batch continuous process, which treats ten yards of the commercial width textiles. The treated commercial width Nomex (HT-10-41) from the scaled-up reactor is self-extinguishing in an oxygen-enriched environment, water-repellent, soft, silky, and improved in chemical resistance. Unlike most textile processes, the grafting unit operates under dry conditions and no chemical by-products have to be washed out of the finished product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seacrist, Michael
The objective of this project was to develop the Electrochemical Solution Growth (ESG) method conceived / patented at Sandia National Laboratory into a commercially viable bulk gallium nitride (GaN) growth process that can be scaled to low cost, high quality, and large area GaN wafer substrate manufacturing. The goal was to advance the ESG growth technology by demonstrating rotating seed growth at the lab scale and then transitioning process to prototype commercial system, while validating the GaN material and electronic / optical device quality. The desired outcome of the project is a prototype commercial process for US-based manufacturing of highmore » quality, large area, and lower cost GaN substrates that can drive widespread deployment of energy efficient GaN-based power electronic and optical devices. In year 1 of the project (Sept 2012 – Dec 2013) the overall objective was to demonstrate crystalline GaN growth > 100um on a GaN seed crystal. The development plan included tasks to demonstrate and implement a method for purifying reagent grade salts, develop the reactor 1 process for rotating seed Electrochemical Solution Growth (ESG) of GaN, grow and characterize ESG GaN films, develop a fluid flow and reaction chemistry model for GaN film growth, and design / build an improved growth reactor capable of scaling to 50mm seed diameter. The first year’s project objectives were met in some task areas including salt purification, film characterization, modeling, and reactor 2 design / fabrication. However, the key project objective of the growth of a crystalline GaN film on the seed template was not achieved. Amorphous film growth on the order of a few tenths of a micron has been detected with a film composition including Ga and N, plus several other impurities originating from the process solution and hardware. The presence of these impurities, particularly the oxygen, has inhibited the demonstration of crystalline GaN film growth on the seed template. However, the presence of both Ga and N at the growth surface indicates that the reactor hardware physics is all functioning properly; achieving film growth is a matter of controlling the chemistry at the interface. The impurities originating from the hardware are expected to be straightforward to eliminate. Activities were defined for an extension of budget period 1 to eliminate the undesired impurities originating from the reactor hardware and interfering with crystalline GaN film growth. The budget period 1 extension was negotiated during the 1st half of 2014. The budget period 1 extension spanned approximately from August 2014 to August 2015. The project objective for this extension period was to demonstrate at least 0.5um crystalline GaN film on a GaN seed in the lab scale reactor. The focus of the budget 1 extension period from August 2014 to August 2015 was to eliminate oxygen contamination interference with GaN film growth. The team procured the highest purity lowest oxygen salt for testing. Low oxygen crucible materials such as silicon carbide were installed and evaluated in the laboratory reactor. Growth experiments were performed with high purity salt, high purity hardware, and optimized oxide removal from the seed surface. Experiments were characterized with methods including UV inspection, profilometry, x-ray diffraction (XRD) to determine crystalline structure, optical and scanning electron microscopy, photoluminescence, x-ray photon spectroscopy (XPS), transmission electron microscopy (TEM), and secondary ion mass spectroscopy (SIMS). Despite successfully integrating the low oxygen materials in the laboratory reactor, the goal of depositing 0.5um of crystalline GaN on the MOCVD GaN seed was not met. Very thin (ca. 10nm) cubic phase GaN deposition was observed on the hexagonal MOCVD GaN seeds. But there was a competing etching reaction which was also observed and thought to be related to the presence of metallic lithium, a byproduct of the LiCl-KCl salt used as the process medium. The etching reaction could potentially be addressed by alternate salts not containing lithium, but would necessitate starting all over on the reactor and process design. Further, controlling the reaction of Ga and N in the bulk salt to favor deposition on the seed has proved to be very difficult and unlikely to be solved within the scope of this project in a manner consistent with the original objective for wafer or crystal scale thickness for GaN deposition on a GaN seed. Upon completion of the budget 1 extension period in August 2015 the project partners and DOE agreed to stop work on the project.« less
WORKER STACKS GRAPHITE BLOCKS AGAINST INNER SOUTH WALL OF REACTOR. ...
WORKER STACKS GRAPHITE BLOCKS AGAINST INNER SOUTH WALL OF REACTOR. INL NEGATIVE NO. 3925. Unknown Photographer, 12/14/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Cost Reductions for Wastewater Treatment Utilizing Water Management at Holston Army Ammunition Plant
1976-05-01
says that the granular carbon used is made from bituminous coal. As the waste stream pass through a bed of carbon granules, com- pounds are adsorbed to...findings of laboratory-scale reactor studies conducted at Purdue University for * Clark, Dietz and Associates. The original recommendations and cost...Pretreatment Denitrification by Submerged Anaerbbic I ilters I ~ Trickling Filters S F ,2al Clarification "•’i Pump - ~ Sludge ,Treatment Dual Media Filh:ration
MTR,TRA603. EXPERIMENTERS' SPACE ALLOCATIONS IN BASEMENT AS OF 1963. SHIELDED ...
MTR,TRA-603. EXPERIMENTERS' SPACE ALLOCATIONS IN BASEMENT AS OF 1963. SHIELDED CUBICLES WERE IDENTIFIED BY SPONSORING LABORATORY AND ITS TEST HOLE NUMBER IN THE REACTOR, IE, "KAPL HB-1" SIGNIFIED KNOLLS ATOMIC POWER LABORATORY, HORIZONTAL BEAM NO. 1. "WAPD" WAS WESTINGHOUSE ATOMIC POWER DIVISION. CATCH TANKS AND SAMPLE STATIONS FOR TEST LOOPS WERE ASSOCIATED WITH THESE CUBICLES. NOTE DESKS, STORAGE CABINETS, SWITCH GEAR, INSTRUMENT PANELS. PHILLIPS PETROLEUM COMPANY MTR-E-5205, 4/1963. INL INDEX NO. 531-0603-00-706-009757, REV. 5. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
97. ARAIII. ML1 reactor has been moved into GCRE reactor ...
97. ARA-III. ML-1 reactor has been moved into GCRE reactor building (ARA-608) for examination of corrosion on its underside and repair. May 24, 1963. Ineel photo no. 63-3485. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Koroglu, Batikan; Armstrong, Mike; Cappelli, Mark; Chernov, Alex; Crowhurst, Jonathan; Mehl, Marco; Radousky, Harry; Rose, Timothy; Zaug, Joe
2016-10-01
The high temperature chemistry of rapidly condensing matter is under investigation using a steady state inductively coupled plasma (ICP) flow reactor. The objective is to study chemical processes on cooling time scales similar to that of a low yield nuclear fireball. The reactor has a nested set of gas flow rings that provide flexibility in the control of hydrodynamic conditions and mixing of chemical components. Initial tests were run using two different aqueous solutions (ferric nitrate and uranyl nitrate). Chemical reactants passing through the plasma torch undergo non-linear cooling from 10,000K to 1,000K on time scales of <0.1 to 0.5s depending on flow conditions. Optical spectroscopy measurements were taken at different positions along the flow axis to observe the in situ spatial and temporal evolution of chemical species at different temperatures. The current data offer insights into the changes in oxide chemistry as a function of oxygen fugacity. The time resolved measurements will also serve as a validation target for the development of kinetic models that will be used to describe chemical fractionation during nuclear fireball condensation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
A Reactor Development Scenario for the FuZE Sheared-Flow Stabilized Z-pinch
NASA Astrophysics Data System (ADS)
McLean, Harry S.; Higginson, D. P.; Schmidt, A.; Tummel, K. K.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Golingo, R. P.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.
2017-10-01
We present a conceptual design, scaling calculations, and development path for a pulsed fusion reactor based on a flow-stabilized Z-pinch. Experiments performed on the ZaP and ZaP-HD devices have largely demonstrated the basic physics of sheared-flow stabilization at pinch currents up to 100 kA. Initial experiments on the FuZE device, a high-power upgrade of ZaP, have achieved 20 usec of stability at pinch current 100-200 kA and pinch diameter few mm for a pinch length of 50 cm. Scaling calculations based on a quasi-steady-state power balance show that extending stable duration to 100 usec at a pinch current of 1.5 MA and pinch length of 50 cm, results in a reactor plant Q 5. Future performance milestones are proposed for pinch currents of: 300 kA, where Te and Ti are calculated to exceed 1-2 keV; 700 kA, where DT fusion power would be expected to exceed pinch input power; and 1 MA, where fusion energy per pulse exceeds input energy per pulse. This work funded by USDOE ARPA-E and performed under the auspices of Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-734770.
Design, fabrication, and testing of an external fuel (UO2), full-length thermionic converter
NASA Technical Reports Server (NTRS)
Schock, A.; Raab, B.
1971-01-01
The development of a full-length external-fuel thermionic converter for in-pile testing is described. The development program includes out-of-pile performance testing of the fully fueled-converter, using RF-induction heating, before its installation in the in-pile test capsule. The external-fuel converter is cylindrical in shape, and consists of an inner, centrally cooled collector, and an outer emitter surrounded by nuclear fuel. The term full-length denotes that the converter is long enough to extend over the full height of the reactor core. Thus, the converter is not a scaled-down test device, but a full-scale fuel element of the thermionic reactor. The external-fuel converter concept permits a number of different design options, particularly with respect to the fuel composition and shape, and the collector cooling arrangement. The converter described was developed for the Jet Propulsion Laboratory, and is based on their concept for a thermionic reactor with uninsulated collector cooling as previously described. The converter is double-ended, with through-flow cooling, and with ceramic seals and emitter and collector power take-offs at both ends. The design uses a revolver-shaped tungsten emitter body, with the central emitter hole surrounded by six peripheral fuel holes loaded with cylindrical UO2 pellets.
Bioprocessing Data for the Production of Marine Enzymes
Sarkar, Sreyashi; Pramanik, Arnab; Mitra, Anindita; Mukherjee, Joydeep
2010-01-01
This review is a synopsis of different bioprocess engineering approaches adopted for the production of marine enzymes. Three major modes of operation: batch, fed-batch and continuous have been used for production of enzymes (such as protease, chitinase, agarase, peroxidase) mainly from marine bacteria and fungi on a laboratory bioreactor and pilot plant scales. Submerged, immobilized and solid-state processes in batch mode were widely employed. The fed-batch process was also applied in several bioprocesses. Continuous processes with suspended cells as well as with immobilized cells have been used. Investigations in shake flasks were conducted with the prospect of large-scale processing in reactors. PMID:20479981
Singh, Rajesh; Bishnoi, Narsi R; Kirrolia, Anita; Kumar, Rajender
2013-01-01
In this study Pseudomonas aeruginosa a metal tolerant strain was not only applied for heavy metal removal but also to the solublization performance of the precipitated metal ions during effluent treatment. The synergistic effect of the isolate and Fe(0) enhanced the metal removal potential to 72.97% and 87.63% for Cr(VI) and cadmium, respectively. The decrease in cadmium ion removal to 43.65% (aeration+stirring reactors), 21.33% (aerated reactors), and 18.95% (without aerated+without stirring) with an increase in incubation period not only indicate the presence of soluble less toxic complexes, but also help in exploration of the balancing potential for valuable metal recovery. A relatively best fit and significant values of the correlation coefficient 0.912, 0.959, and 0.9314 for mixed effluent (Paint Industry effluent+CETP Wazirpur, effluent), CETP, Wazirpur, and control effluents, respectively, indicating first-order formulation and provide a reasonable description of COD kinetic data. Copyright © 2012 Elsevier Ltd. All rights reserved.
Achieving ethanol-type fermentation for hydrogen production in a granular sludge system by aeration.
Zhang, Song; Liu, Min; Chen, Ying; Pan, Yu-Ting
2017-01-01
To investigate the effects of aeration on hydrogen-producing granular system, experiments were performed in two laboratory-scale anaerobic internal circulation hydrogen production (AICHP) reactors. The preliminary experiment of Reactor 1 showed that direct aeration was beneficial to enhancing hydrogen production. After the direct aeration was implied in Reactor 2, hydrogen production rate (HPR) and hydrogen content were increased by 100% and 60%, respectively. In addition, mixed-acid fermentation was transformed into typical ethanol-type fermentation (ETF). Illumina MiSeq sequencing shows that the direct aeration did not change the species of hydrogen-producing bacteria but altered their abundance. Hydrogen-producing bacteria and ethanol-type fermentative bacteria were increased by 24.5% and 146.3%, respectively. Ethanoligenens sp. sharply increased by 162.2% and turned into predominant bacteria in the system. These findings indicated that appropriate direct aeration might be a novel and promising way to obtain ETF and enhance hydrogen production in practical use. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fujihira, Takuya; Seo, Shogo; Yamaguchi, Takashi; Hatamoto, Masashi; Tanikawa, Daisuke
2018-04-27
A laboratory scale experiment was conducted to investigate the treatment of solid/lipid-rich wastewater with an anaerobic baffled reactor (ABR) and a down-flow hanging sponge (DHS) reactor. In this study, experimental periods were divided into three phases to explore efficient treatment of solids and lipids in wastewater. In ABR, >90% of the influent chemical oxygen demand (COD) was removed and >70% of the removed COD was converted to methane under steady-state conditions during each phase. During this period, >4.5 kg COD m -3 d -1 was achieved on an average in Phases 1 and 3. Biogas contributed to scum formation, and the scum was categorized into lipid-rich and sludge-containing types, which have energy potentials of 53.4 and 212 kcal/kg-wet weight, respectively. Therefore, by recovering solids and lipids, which formed persistent scum, ABR can be applied as a high-rate treatment for solid/lipid-rich wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Xuming; Xing, Lijun; Qiu, Tianlei; Han, Meilin
2013-04-01
Both nitrate and pentachlorophenol (PCP) are familiar pollutants in aqueous environment. This research is focused on the simultaneous removal of nitrate and PCP from simulated contaminated groundwater using a laboratory-scale denitrification reactor packed with corncob as both carbon source and biofilm support. The reactor could be started up readily, and the removal efficiencies of nitrate and PCP reached up to approximately 98% and 40-45% when their initial concentrations were 50 mg N/L and 5 mg/L, respectively, after 15-day continuous operation at 10 h of hydraulic retention time (HRT) and 25 °C. Approximately 91% of PCP removal efficiency was achieved, with 2.47 mg/L of chloride ion release at 24 h of HRT. Eighty-two percent of chlorine in PCP removed was ionized. The productions of 3-chlorophenol and phenol and chloride ion release indicate that the reductive dechlorination reaction is a major degradation pathway of PCP under the experimental conditions.
Two-phase anaerobic digestion within a solid waste/wastewater integrated management system
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Gioannis, G.; Diaz, L.F.; Muntoni, A.
2008-07-01
A two-phase, wet anaerobic digestion process was tested at laboratory scale using mechanically pre-treated municipal solid waste (MSW) as the substrate. The proposed process scheme differs from others due to the integration of the MSW and wastewater treatment cycles, which makes it possible to avoid the recirculation of process effluent. The results obtained show that the supplying of facultative biomass, drawn from the wastewater aeration tank, to the solid waste acidogenic reactor allows an improvement of the performance of the first phase of the process which is positively reflected on the second one. The proposed process performed successfully, adopting mesophilicmore » conditions and a relatively short hydraulic retention time in the methanogenic reactor, as well as high values of organic loading rate. Significant VS removal efficiency and biogas production were achieved. Moreover, the methanogenic reactor quickly reached optimal conditions for a stable methanogenic phase. Studies conducted elsewhere also confirm the feasibility of integrating the treatment of the organic fraction of MSW with that of wastewater.« less
151. ARAIII Reactor building (ARA608) Details of reactor pit and ...
151. ARA-III Reactor building (ARA-608) Details of reactor pit and instrument plan. Aerojet-general 880-area/GCRE-608-T-19. Date: November 1958. Ineel index code no. 063-0608-25-013-102678. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
ADVANCED REACTIVITY MEASUREMENT FACILITY, TRA660, INTERIOR. REACTOR INSIDE TANK. METAL ...
ADVANCED REACTIVITY MEASUREMENT FACILITY, TRA-660, INTERIOR. REACTOR INSIDE TANK. METAL WORK PLATFORM ABOVE. THE REACTOR WAS IN A SMALL WATER-FILLED POOL. INL NEGATIVE NO. 66-6373. Unknown Photographer, ca. 1966 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Moving bed reactor setup to study complex gas-solid reactions.
Gupta, Puneet; Velazquez-Vargas, Luis G; Valentine, Charles; Fan, Liang-Shih
2007-08-01
A moving bed scale reactor setup for studying complex gas-solid reactions has been designed in order to obtain kinetic data for scale-up purpose. In this bench scale reactor setup, gas and solid reactants can be contacted in a cocurrent and countercurrent manner at high temperatures. Gas and solid sampling can be performed through the reactor bed with their composition profiles determined at steady state. The reactor setup can be used to evaluate and corroborate model parameters accounting for intrinsic reaction rates in both simple and complex gas-solid reaction systems. The moving bed design allows experimentation over a variety of gas and solid compositions in a single experiment unlike differential bed reactors where the gas composition is usually fixed. The data obtained from the reactor can also be used for direct scale-up of designs for moving bed reactors.
Advances in cell culture: anchorage dependence
Merten, Otto-Wilhelm
2015-01-01
Anchorage-dependent cells are of great interest for various biotechnological applications. (i) They represent a formidable production means of viruses for vaccination purposes at very large scales (in 1000–6000 l reactors) using microcarriers, and in the last decade many more novel viral vaccines have been developed using this production technology. (ii) With the advent of stem cells and their use/potential use in clinics for cell therapy and regenerative medicine purposes, the development of novel culture devices and technologies for adherent cells has accelerated greatly with a view to the large-scale expansion of these cells. Presently, the really scalable systems—microcarrier/microcarrier-clump cultures using stirred-tank reactors—for the expansion of stem cells are still in their infancy. Only laboratory scale reactors of maximally 2.5 l working volume have been evaluated because thorough knowledge and basic understanding of critical issues with respect to cell expansion while retaining pluripotency and differentiation potential, and the impact of the culture environment on stem cell fate, etc., are still lacking and require further studies. This article gives an overview on critical issues common to all cell culture systems for adherent cells as well as specifics for different types of stem cells in view of small- and large-scale cell expansion and production processes. PMID:25533097
Passalía, Claudio; Nocetti, Emanuel; Alfano, Orlando; Brandi, Rodolfo
2017-03-01
An experimental comparative study of different meshes as support materials for photocatalytic applications in gas phase is presented. The photocatalytic oxidation of dichloromethane in air was addressed employing different coated meshes in a laboratory-scale, continuous reactor. Two fiberglass meshes and a stainless steel mesh were studied regarding the catalyst load, adherence, and catalytic activity. Titanium dioxide photocatalyst was immobilized on the meshes by dip-coating cycles. Results indicate the feasibility of the dichloromethane elimination in the three cases. When the number of coating cycles was doubled, the achieved conversion levels were increased twofold for stainless steel and threefold for the fiberglass meshes. One of the fiberglass meshes (FG2) showed the highest reactivity per mass of catalyst and per catalytic surface area.
Cantarella, M; Cantarella, L; Gallifuoco, A; Spera, A
2006-03-01
The biohydration of acrylonitrile, propionitrile and benzonitrile catalysed by the NHase activity contained in resting cells of Microbacterium imperiale CBS 498-74 was operated at 5, 10 and 20 degrees C in laboratory-scale batch and membrane bioreactors. The bioreactions were conducted in buffered medium (50 mM Na(2)HPO(4)/NaH(2)PO(4), pH 7.0) in the presence of distilled water or tap-water, to simulate a possible end-pipe biotreatment process. The integral bioreactor performances were studied with a cell loading (dry cell weight; DCW) varying from 0.1 mg(DCW) per reactor to 16 mg(DCW) per reactor, in order to realize near 100% bioconversion of acrylonitrile, propionitrile and benzonitrile without consistent loss of NHase activity.
Evaluation of selected chemical processes for production of low-cost silicon, phase 3
NASA Technical Reports Server (NTRS)
Blocher, J. M., Jr.; Browning, M. F.; Seifert, D. A.
1981-01-01
A Process Development Unit (PDU), which consisted of the four major units of the process, was designed, installed, and experimentally operated. The PDU was sized to 50MT/Yr. The deposition took place in a fluidized bed reactor. As a consequences of the experiments, improvements in the design an operation of these units were undertaken and their experimental limitations were partially established. A parallel program of experimental work demonstrated that Zinc can be vaporized for introduction into the fluidized bed reactor, by direct induction-coupled r.f. energy. Residual zinc in the product can be removed by heat treatment below the melting point of silicon. Current efficiencies of 94 percent and above, and power efficiencies around 40 percent are achievable in the laboratory-scale electrolysis of ZnCl2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Rutherford, Phil; Amar, Ravnesh
2010-09-01
This Annual Site Environmental Report (ASER) for 2009 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, andmore » all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2009 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Rutherford, Phil; Dassler, David
2012-09-01
This Annual Site Environmental Report (ASER) for 2011 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988,more » and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2011 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Rutherford, Phil; Amar, Ravnesh
2011-09-01
This Annual Site Environmental Report (ASER) for 2010 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, andmore » all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2010 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Rutherford, Phil; Dassler, David
2013-09-01
This Annual Site Environmental Report (ASER) for 2012 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988,more » and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2012 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less
Tanaka, Yasuo
2002-08-01
A wastewater treatment system employing a UASB reactor in temperate regions requires biogas as a heat source for the UASB reactor during low temperature seasons. In this case, removal of H2S in the biogas by means of a scrubber before burning is necessary in order to prevent the boilers from corroding. Heating of the UASB reactor is, however, unnecessary in a warm season, and the scrubber and biogas become useless. Methane-dependent water quality improvement using the scrubber and biogas would be one way to use them efficiently during the warm season. The possible dual-purpose use of a packed-bed reactor was examined, with one of its uses being the scrubbing of biogas during the cold season and the other being the methane-dependent improvement of effluent water quality during the warm season. A bench scale packed-bed filled with plastic latticed-ring media was installed in a livestock wastewater treatment plant consisting of a UASB reactor and a trickling filter for post-treatment. The packed-bed was operated with biogas flowing at a superficial velocity of 0.14-0.39 m h(-1) and the hydraulic loading of trickling filter effluent sprayed onto the media 9.4-26.1 m3 m2 day(-1). H2S in the biogas from the UASB reactor was reduced from 1,200-2,500 ppm to less than 2 ppm by the reactor. Methane-dependent water quality improvement was examined using a laboratory scale reactor to which methane and/or air was supplied from the bottom, while plant effluent was spread from the top of the reactor. When the mixture gas of methane and air (volume ratio 1:3) was added to the reactor, biofilm grew on the surface of the media. Accompanying this growth, ammonium and phosphate in the spread water decreased, probably due to assimilation by the methane-oxidizing bacteria. Though assimilation activity dropped after the accumulation of biomass, it could be reactivated by washing out the excess biomass. Periodical backwash at a rate of more than once a week seemed to efficiently maintain the removal activity. The dark brown color of the wastewater could be also reduced in concert with methane oxidation. It seemed that methane-oxidizing bacteria degraded color-causing compounds. These results suggest that the packed-bed reactor is useful for both H2S purification of biogas and methane-dependent effluent water quality improvement.
MTR WING, TRA604. A LABORATORY ROOM WITH ITS CABINETS AND ...
MTR WING, TRA-604. A LABORATORY ROOM WITH ITS CABINETS AND SERVICE STRIP DOWN CENTER OF ROOM. CARD IN LEFT CORNER OF VIEW WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON THE ORIGINAL NEGATIVE. INL NEGATIVE NO. 3817. Unknown Photographer, 11/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Graphite distortion ``C`` Reactor. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, N.H.
1962-02-08
This report covers the efforts of the Laboratory in an investigation of the graphite distortion in the ``C`` reactor at Hanford. The particular aspects of the problem to be covered by the Laboratory were possible ``fixes`` to the control rod sticking problem caused by VSR channel distortion.
Westerholm, Maria; Levén, Lotta
2012-01-01
The importance of syntrophic acetate oxidation for process stability in methanogenic systems operating at high ammonia concentrations has previously been emphasized. In this study we investigated bioaugmentation of syntrophic acetate-oxidizing (SAO) cultures as a possible method for decreasing the adaptation period of biogas reactors operating at gradually increased ammonia concentrations (1.5 to 11 g NH4+-N/liter). Whole stillage and cattle manure were codigested semicontinuously for about 460 days in four mesophilic anaerobic laboratory-scale reactors, and a fixed volume of SAO culture was added daily to two of the reactors. Reactor performance was evaluated in terms of biogas productivity, methane content, pH, alkalinity, and volatile fatty acid (VFA) content. The decomposition pathway of acetate was analyzed by isotopic tracer experiments, and population dynamics were monitored by quantitative PCR analyses. A shift in dominance from aceticlastic methanogenesis to SAO occurred simultaneously in all reactors, indicating no influence by bioaugmentation on the prevailing pathway. Higher abundances of Clostridium ultunense and Tepidanaerobacter acetatoxydans were associated with bioaugmentation, but no influence on Syntrophaceticus schinkii or the methanogenic population was distinguished. Overloading or accumulation of VFA did not cause notable dynamic effects on the population. Instead, the ammonia concentration had a substantial impact on the abundance level of the microorganisms surveyed. The addition of SAO culture did not affect process performance or stability against ammonia inhibition, and all four reactors deteriorated at high ammonia concentrations. Consequently, these findings further demonstrate the strong influence of ammonia on the methane-producing consortia and on the representative methanization pathway in mesophilic biogas reactors. PMID:22923397
Corrosion of radioactive waste tanks containing washed sludge and precipitates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bickford, D.F.; Congdon, J.W.; Oblath, S.B.
1988-05-01
At the US Department of Energy (DOE) Savannah River Plant, the corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Laboratory tests, conducted to determine minimum corrosion inhibitor levels, indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations were conducted to assess the validity of laboratory tests. The in situ results are compared to those of laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species formore » carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 M nitrite required for reactor fuel reprocessing wastes.« less
PBF Reactor Building (PER620). Camera faces north into highbay/reactor pit ...
PBF Reactor Building (PER-620). Camera faces north into high-bay/reactor pit area. Inside from for reactor enclosure is in place. Photographer: John Capek. Date: March 15, 1967. INEEL negative no. 67-1769 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
155. ARAIII Reactor building (ARA608) Details of reactor pit showing ...
155. ARA-III Reactor building (ARA-608) Details of reactor pit showing tray supports and fuel element storage rack. Aerojet-general 880-area/GCRE-608-MS-2. Date: November 1958. Ineel index code no. 063-0608-40-013-102625. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
2015-05-16
synthesis of iron magnetic nanoparticles is being investigated (Appendix A; Scheme IV). In the first step, precursor iron(III) chloride nanoparticles...and other methods. Currently, we are developing a two-step scheme for the synthesis of esters that will require distillation and/or column...recognize the link between them. We are developing for the above purpose, the microwave-assisted, two-step synthesis of high boiling point esters. The
High Efficiency Solar Thermochemical Reactor for Hydrogen Production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, Anthony H.
2017-09-30
This research and development project is focused on the advancement of a technology that produces hydrogen at a cost that is competitive with fossil-based fuels for transportation. A twostep, solar-driven WS thermochemical cycle is theoretically capable of achieving an STH conversion ratio that exceeds the DOE target of 26% at a scale large enough to support an industrialized economy [1]. The challenge is to transition this technology from the laboratory to the marketplace and produce hydrogen at a cost that meets or exceeds DOE targets.
The use of moving bed bio-reactor to laundry wastewater treatment
NASA Astrophysics Data System (ADS)
Bering, Sławomira; Mazur, Jacek; Tarnowski, Krzysztof; Janus, Magdalena; Mozia, Sylwia; Waldemar Morawski, Antoni
2017-11-01
Large laboratory scale biological treatment test of industrial real wastewater, generated in industrial big laundry, has been conducted in the period of May 2016-August 2016. The research aimed at selection of laundry wastewater treatment technology included tests of two-stage Moving Bed Bio Reactor (MBBR), with two reactors filled with carriers Kaldnes K5 (specific area - 800 m2/m3), have been realized in aerobic condition. Operating on site, in the laundry, reactors have been fed real wastewater from laundry retention tank. To the laundry wastewater, contained mainly surfactants and impurities originating from washed fabrics, a solution of urea to supplement nitrogen content and a solution of acid to correct pH have been added. Daily flow of raw wastewater Qd was equal to 0.6-0.8 m3/d. The values of determined wastewater quality indicators showed that substantial decrease of pollutants content have been reached: BOD5 by 94.7-98.1%, COD by 86.9-93.5%, the sum of anionic and nonionic surfactants by 98.7-99.8%. The quality of the purified wastewater, after star-up period, meets the legal requirements regarding the standards for wastewater discharged to the environment.
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Robertson, G. A.; Hawk, C. W.; Turner, M. W.; Koelfgen, S.; Litchford, Ron J. (Technical Monitor)
2001-01-01
This technical publication (TP) examines performance and design issues associated with magnetic flux compression reactor concepts for nuclear/chemical pulse propulsion and power. Assuming that low-yield microfusion detonations or chemical detonations using high-energy density matter can eventually be realized in practice, various magnetic flux compression concepts are conceivable. In particular, reactors in which a magnetic field would be compressed between an expanding detonation-driven plasma cloud and a stationary structure formed from a high-temperature superconductor are envisioned. Primary interest is accomplishing two important functions: (1) Collimation and reflection of a hot diamagnetic plasma for direct thrust production, and (2) electric power generation for fusion standoff drivers and/or dense plasma formation. In this TP, performance potential is examined, major technical uncertainties related to this concept accessed, and a simple performance model for a radial-mode reactor developed. Flux trapping effectiveness is analyzed using a skin layer methodology, which accounts for magnetic diffusion losses into the plasma armature and the stationary stator. The results of laboratory-scale experiments on magnetic diffusion in bulk-processed type II superconductors are also presented.
The application of moving bed bio-reactor (MBBR) in commercial laundry wastewater treatment.
Bering, Sławomira; Mazur, Jacek; Tarnowski, Krzysztof; Janus, Magdalena; Mozia, Sylwia; Morawski, Antoni Waldemar
2018-06-15
Large, laboratory scale biological treatment tests of real industrial wastewater, generated in a large industrial laundry facility, was conducted from October 2014 to January 2015. This research sought to develop laundry wastewater treatment technology which included tests of a two-stage Moving Bed Bio Reactor (MBBR); this had two reactors, was filled with carriers Kaldnes K5 (specific area - 800 m 2 /m 3 ) and were realized in aerobic condition. Operating on site, in the laundry, reactors were fed actual wastewater from the laundry retention tank. The laundry wastewater contained mainly surfactants and impurities originating from washed fabrics; a solution of urea to supplement nitrogen content and a solution of acid to correct pH were added. The daily flow of raw wastewater Qd varied from 0.6-1.0 m 3 /d. Wastewater quality indicators showed that the reduction of pollutants was obtained: BOD 5 by 95-98%, COD by 89-94%, the sum of anionic and nonionic surfactants by 85-96%. The quality of the purified wastewater after the start-up period met legal requirements regarding the standards for wastewater discharged into the environment. Copyright © 2018 Elsevier B.V. All rights reserved.
Modifications to the NRAD Reactor, 1977 to present
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weeks, A.A.; Pruett, D.P.; Heidel, C.C.
1986-01-01
Argonne National Laboratory-West, operated by the University of Chicago, is located near Idaho Falls, ID, on the Idaho National Engineering laboratory Site. ANL-West performs work in support of the Liquid Metal Fast Breeder Reactor Program (LMFBR) sponsored by the United States Department of Energy. The NRAD reactor is located at the Argonne Site within the Hot Fuel Examination Facility/North, a large hot cell facility where both non-destructive and destructive examinations are performed on highly irradiated reactor fuels and materials in support of the LMFBR program. The NRAD facility utilizes a 250-kW TRIGA reactor and is completely dedicated to neutron radiographymore » and the development of radiography techniques. Criticality was first achieved at the NRAD reactor in October of 1977. Since that time, a number of modifications have been implemented to improve operational efficiency and radiography production. This paper describes the modifications and changes that significantly improved operational efficiency and reliability of the reactor and the essential auxiliary reactor systems.« less
TRITIUM LABORATORY, TRA666, INTERIOR. MAIN FLOOR. CONTROL ROOM ENCLOSURE AT ...
TRITIUM LABORATORY, TRA-666, INTERIOR. MAIN FLOOR. CONTROL ROOM ENCLOSURE AT CENTER OF VIEW. SIGN ABOVE DOOR SAYS "HYDRAULIC TEST FACILITY CONTROL ROOM." SIGN IN WINDOW SAYS "EATING AREA." "EVACUATION AND EMERGENCY INFORMATION" IS POSTED ON CABINET AT LEFT OF VIEW. INL NEGATIVE NO. HD30-2-3. Mike Crane, Photographer, 6/2001 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teymouri, Farzaneh
MBI, a 501c(3) company focusing on de-risking and scaling up bio-based technologies, has teamed with Michigan State University and the Idaho National Laboratory to develop and demonstrate process improvements to the ammonia fiber expansion (AFEX) pretreatment process. The logistical hurdles of biomass handling are well known, and the regional depot concept - in which small, distributed bioprocessing operations collect, preprocess, and densify biomass before shipping to a centralized refinery - is a promising alternative to centralized collection. AFEXTM (AFEX is a trademark of MBI) has unique features among pretreatments that would make it desirable as a pretreatment prior to densificationmore » at the depot scale. MBI has developed a novel design, using a packed bed reactor for the AFEX process that can be scaled down economically to the depot scale at a lower capital cost as compared to the traditional design (Pandia type reactor). Thus, the purpose of this project was to develop, scale-up, demonstrate, and improve this novel design The key challenges are the recovery of ammonia, consistent and complete pretreatment performance, and the overall throughput of the reactor. In this project an engineering scale packed bed AFEX system with 1-ton per day capacity was installed at MBI’s building. The system has been operational since mid-2013. During that time, MBI has demonstrated the robustness, reliability, and consistency of the process. To date, nearly 500 runs have been performed in the reactors. There have been no incidences of plugging (i.e., inability to remove ammonia from biomass after the treatment), nor has there been any instance of a major ammonia release into the atmosphere. Likewise, the sugar released via enzyme hydrolysis has remained consistent throughout these runs. Our economic model shows a 46% reduction in AFEX capital cost at the 100 ton/day scale compared to the traditional design of AFEX (Pandia type reactor). The key performance factors were demonstrated; >94% ammonia recovery, >75% sugar yields at high solid loading, and complete utilization of the sugars for ethanol production at the 2500 liter scale. Fermentation tests were performed using Zymomonas mobilis 8b and densified AFEX-treated corn stover at >20% solid loading. The obtained titer (~60g/l), productivity (2.5 g/L-h), and yield (330 L/tonne of biomass) exceeded the performance targets set out by NREL. The key findings from these efforts are: no contamination was observed, no cleanup of the sugar stream was required, and no major nutrient addition was required. Our economic model shows that using a packed bed design for the AFEX process and pelleted AFEX-treated biomass reduces the ethanol production cost by 24% when compared to using the traditional AFEX design.« less
Nwankwoala, A U; Egiebor, N O; Nyavor, K
2001-01-01
The aerobic biodegradation of National Aeronautics and Space Administration (NASA) wastewater that contains mixtures of highly concentrated methylhydrazine/hydrazine, citric acid and their reaction product was studied on a laboratory-scale fixed film trickle-bed reactor. The degrading organisms, Achromobacter sp., Rhodococcus B30 and Rhodococcus J10, were immobilized on coarse sand grains used as support-media in the columns. Under continuous flow operation, Rhodococcus sp. degraded the methylhydrazine content of the wastewater from a concentration of 10 to 2.5 mg/mL within 12 days and the hydrazine from approximately 0.8 to 0.1 mg/mL in 7 days. The Achromobacter sp. was equally efficient in degrading the organics present in the wastewater, reducing the concentration of the methylhydrazine from 10 to approximately 5 mg/mL within 12 days and that of the hydrazine from approximately 0.8 to 0.2 mg/mL in 7 days. The pseudo first-order rate constants of 0.137 day(-1) and 0.232 day(-1) were obtained for the removal of methylhydrazine and hydrazine, respectively, in wastewater in the reactor column. In the batch cultures, rate constants for the degradation were 0.046 and 0.079 day(-1) for methylhydrazine and hydrazine respectively. These results demonstrate that the continuous flow bioreactor afford greater degradation efficiencies than those obtained when the wastewater was incubated with the microbes in growth-limited batch experiments. They also show that wastewater containing hydrazine is more amenable to microbial degradation than one that is predominant in methylhydrazine, in spite of the longer lag period observed for hydrazine containing wastewater. The influence of substrate concentration and recycle rate on the degradation efficiency is reported. The major advantages of the trickle-bed reactor over the batch system include very high substrate volumetric rate of turnover, higher rates of degradation and tolerance of the 100% concentrated NASA wastewater. The results of the present laboratory scale study will be of great importance in the design and operation of an industrial immobilized biofilm reactor for the treatment of methylhydrazine and hydrazine contaminated NASA wastewater.
Lopez-Alvarez, Blady; Torres-Palma, Ricardo A; Ferraro, Franklin; Peñuela, Gustavo
2012-01-01
The degradation of the pesticide carbofuran (CBF) using solar photo-Fenton treatment, at both the laboratory and the pilot scale, was evaluated. At the laboratory scale, in a suntest reactor, the Fe(2+) concentration and H(2)O(2) concentration were evaluated and optimized using the surface response methodology and the Pareto diagram. Under optimal conditions experiments were performed to evaluate the evolution of the substrate removal, oxidation, subsequent mineralization, toxicity and the formation of chloride ions during the treatment. The analysis and evolution of five CBF by-products as well as several control and reactivity tests at the density functional theory level were used to depict a general scheme of the main degradation pathway of CBF via the photo-Fenton system. Finally, at the pilot scale, a sample of the commercial CBF product Furadan was eliminated after 420 min by the photo-Fenton system using direct sunlight. Under these conditions, after 900 min 89% of toxicity (1/E(50) on Vibrio fischeri bacteria), 97% of chemical oxygen demand, and 90% of dissolved organic carbon were removed.
Surveillance application using patten recognition software at the EBR-II Reactor Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, D.L.
1992-05-01
The System State Analyzer (SSA) is a software based pattern recognition system. For the past several year this system has been used at Argonne National Laboratory`s Experimental Breeder Reactor 2 (EBR-2) reactor for detection of degradation and other abnormalities in plant systems. Currently there are two versions of the SSA being used at EBR-2. One version of SSA is used for daily surveillance and trending of the reactor delta-T and startups of the reactor. Another version of the SSA is the QSSA which is used to monitor individual systems of the reactor such as the Secondary Sodium System, Secondary Sodiummore » Pumps, and Steam Generator. This system has been able to detect problems such as signals being affected by temperature variations due to a failing temperature controller.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Mark; Sridharan, Kumar; Morgan, Dane
2015-01-22
The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsinmore » had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re-evaluate thermophysical properties of flibe and flinak. Pacific Northwest National Laboratories has focused on evaluating the fluorinating gas nitrogen trifluoride as a potential salt purification agent. Work there was performed on removing hydroxides and oxides from flinak salt under controlled conditions. Lastly, the University of California Berkeley has spent considerable time designing and simulating reactor components with fluoride salts at high temperatures. Despite the hurdles presented by the innate chemical hazards, considerable progress has been made. The stage has been set to perform new research on salt chemical control which could advance the fluoride salt cooled reactor concept towards commercialization. What were previously thought of as chemical undesirable, but nuclear certified, alloys have been shown to be theoretically compatible with fluoride salts at high temperatures. This preliminary report has been prepared to communicate the construction of the basic infrastructure required for flibe, as well as suggest original research to performed at the University of Wisconsin. Simultaneously, the contents of this report can serve as a detailed, but introductory guide to allow anyone to learn the fundamentals of chemistry, engineering, and safety required to work with flibe salt.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangwal, Santosh K; McCabe, Kevin
Coal to liquids (CTL) and coal-biomass to liquids (CBTL) processes were advanced by testing and demonstrating Southern Research’s sulfur tolerant nickel-based reforming catalyst and Chevron’s highly selective and active cobalt-zeolite hybrid Fischer-Tropsch (FT) catalyst to clean, upgrade and convert syngas predominantly to jet fuel range hydrocarbon liquids, thereby minimizing expensive cleanup and wax upgrading operations. The National Carbon Capture Center (NCCC) operated by Southern Company (SC) at Wilsonville, Alabama served as the host site for the gasifier slip-stream and simulated syngas testing/demonstration. Reformer testing was performed to (1) reform tar and light hydrocarbons, (2) decompose ammonia in the presence H2S,more » and (3) deliver the required H2 to CO ratio for FT synthesis. FT Testing was performed to produce a product primarily containing C5-C20 liquid hydrocarbons and no C21+ waxy hydrocarbons with productivity greater than 0.7 gC5+/g catalyst/h, and at least 70% diesel and jet fuel range (C8-C20) hydrocarbon selectivity in the liquid product. A novel heat-exchange reactor system was employed to enable the use of the highly active FT catalyst and larger diameter reactors that results in cost reduction for commercial systems. Following laboratory development and testing, SR’s laboratory reformer was modified to operate in a Class 1 Div. 2 environment, installed at NCCC, and successfully tested for 125 hours using raw syngas. The catalyst demonstrated near equilibrium reforming (~90%) of methane and complete reforming/decomposition of tar and ammonia in the presence of up to 380 ppm H2S. For FT synthesis, SR modified and utilized a bench scale skid mounted FT reactor system (SR-CBTL test rig) that was fully integrated with a slip stream from SC/NCCC’s transport gasifier (TRIG). The test-rig developed in a previous project (DE-FE0010231) was modified to receive up to 7.5 lb/h raw syngas augmented with bottled syngas to adjust the H2/CO molar ratio to 2, clean it to cobalt FT catalyst specifications, and produce liquid FT products at the design capacity of up to 6 L/day. Promising Chevron catalyst candidates in the size range from 70-200 μm were loaded onto SR’s 2-inch ID and 4-inch ID bench-scale reactors utilizing IntraMicron’s micro-fiber entrapped catalyst (MFEC) heat exchange reactor technology. During 2 test campaigns, the FT reactors were successfully demonstrated at NCCC using syngas for ~420 hours. The catalyst did not experience deactivation during the tests. SR’s thermo-syphon heat removal system maintained reactor operating temperature along the axis to within ±4 °C. The experiments gave a steady catalyst productivity of 0.7-0.8 g/g catalyst/h, liquid hydrocarbon selectivity of ~75%, and diesel and jet fuel range hydrocarbon selectivity in the liquid product as high as 85% depending on process conditions. A preliminary techno-economic evaluation showed that the SR technology-based 50,000 bpd plant had a 10 % lower total plant cost compared to a conventional slurry reactor based plant. Furthermore, because of the modular nature of the SR technology, it was shown that the total plant cost advantage increases to >35 % as the plant is scaled down to 1000 bpd.« less
Low Energy Neutrino Physics at the Kuo-Sheng Reactor Laboratory in Taiwan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, S.-T.
2006-11-17
A laboratory has been constructed by the TEXONO Collaboration at the Kuo-Sheng Reactor Power Plant in Taiwan to study low energy neutrino physics. A limit on the neutrino magnetic moment of {mu}{nu}({nu}-bare) < 7.2 x 10-11 {mu}B at 90% confidence level has been achieved from measurements with a high-purity germanium detector, as well as the electron neutrinos ({nu}{sub e}) produced from nuclear power reactors has been studied. Other research program at Kuo-Sheng are surveyed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Link, B.W.; Miller, R.L.
1983-07-01
This document summarizes the available information concerning the decommissioning of the Ames Laboratory Research Reactor (ALRR), a five-megawatt heavy water moderated and cooled research reactor. The data were placed in a computerized information retrieval/manipulation system which permits its future utilization for purposes of comparative analysis. This information is presented both in detail in its computer output form and also as a manually assembled summarization which highlights the more important aspects of the decommissioning program. Some comparative information with reference to generic decommissioning data extracted from NUREG/CR 1756, Technology, Safety and Costs of Decommissioning Nuclear Research and Test Reactors, is included.
Integrated low emissions cleanup system for direct coal-fueled turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippert, T.E.; Newby, R.A.; Alvin, M.A.
1992-01-01
The Westinghouse Electric Corporation, Science Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850[degrees]F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phase 2more » - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less
Integrated low emissions cleanup system for direct coal-fueled turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippert, T.E.; Newby, R.A.; Alvin, M.A.
1992-12-31
The Westinghouse Electric Corporation, Science & Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850{degrees}F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phasemore » 2 - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less
Bobek, Michael M.; Stehle, Richard C.; Hahn, David W.
2012-01-01
A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM) and electron dispersive X-ray spectroscopy (EDS), the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction.
157. ARAIII Reactor building (ARA608) Main gas loop mechanical flow ...
157. ARA-III Reactor building (ARA-608) Main gas loop mechanical flow sheet. This drawing was selected as a typical example of mechanical arrangements within reactor building. Aerojet-general 880-area/GCRE-0608-50-013-102634. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
A Semi-Batch Reactor Experiment for the Undergraduate Laboratory
ERIC Educational Resources Information Center
Derevjanik, Mario; Badri, Solmaz; Barat, Robert
2011-01-01
This experiment and analysis offer an economic yet challenging semi-batch reactor experience. Household bleach is pumped at a controlled rate into a batch reactor containing pharmaceutical hydrogen peroxide solution. Batch temperature, product molecular oxygen, and the overall change in solution conductivity are metered. The reactor simulation…
Validation of the WIMSD4M cross-section generation code with benchmark results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leal, L.C.; Deen, J.R.; Woodruff, W.L.
1995-02-01
The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment for Research and Test (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the procedure to generatemore » cross-section libraries for reactor analyses and calculations utilizing the WIMSD4M code. To do so, the results of calculations performed with group cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory(ORNL) unreflected critical spheres, the TRX critical experiments, and calculations of a modified Los Alamos highly-enriched heavy-water moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented.« less
Nitrate reduction in a simulated free-water surface wetland system.
Misiti, Teresa M; Hajaya, Malek G; Pavlostathis, Spyros G
2011-11-01
The feasibility of using a constructed wetland for treatment of nitrate-contaminated groundwater resulting from the land application of biosolids was investigated for a site in the southeastern United States. Biosolids degradation led to the release of ammonia, which upon oxidation resulted in nitrate concentrations in the upper aquifer in the range of 65-400 mg N/L. A laboratory-scale system was constructed in support of a pilot-scale project to investigate the effect of temperature, hydraulic retention time (HRT) and nitrate and carbon loading on denitrification using soil and groundwater from the biosolids application site. The maximum specific reduction rates (MSRR), measured in batch assays conducted with an open to the atmosphere reactor at four initial nitrate concentrations from 70 to 400 mg N/L, showed that the nitrate reduction rate was not affected by the initial nitrate concentration. The MSRR values at 22 °C for nitrate and nitrite were 1.2 ± 0.2 and 0.7 ± 0.1 mg N/mg VSS(COD)-day, respectively. MSRR values were also measured at 5, 10, 15 and 22 °C and the temperature coefficient for nitrate reduction was estimated at 1.13. Based on the performance of laboratory-scale continuous-flow reactors and model simulations, wetland performance can be maintained at high nitrogen removal efficiency (>90%) with an HRT of 3 days or higher and at temperature values as low as 5 °C, as long as there is sufficient biodegradable carbon available to achieve complete denitrification. The results of this study show that based on the climate in the southeastern United States, a constructed wetland can be used for the treatment of nitrate-contaminated groundwater to low, acceptable nitrate levels. Copyright © 2011 Elsevier Ltd. All rights reserved.
SEPARATION OF Cs$sup 137$ FROM HIGH-ACTIVITY RADIOACTIVE WASTE (in Dutch)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-01-01
A process was developed on a laboratory scale to separate Cs/sup 137/ from waste fuels of atomic reactors. The recovery of this powerful and industrially important gamma emitter of 30 years half life is said to be so simple as to make it possible on an industrial scale. It is based on the preferential absorption of Cs by ammonium phosphor-molybdate from the nitric acid solution of the waste material and the subsequent extraction of Cs from its absorber. This method is more practical than other processes which are based upon precipitation and recrystallization of cesium salts. It was successfully testedmore » on waste solutions of very different compositions. (OID)« less
Operation and reactivity measurements of an accelerator driven subcritical TRIGA reactor
NASA Astrophysics Data System (ADS)
O'Kelly, David Sean
Experiments were performed at the Nuclear Engineering Teaching Laboratory (NETL) in 2005 and 2006 in which a 20 MeV linear electron accelerator operating as a photoneutron source was coupled to the TRIGA (Training, Research, Isotope production, General Atomics) Mark II research reactor at the University of Texas at Austin (UT) to simulate the operation and characteristics of a full-scale accelerator driven subcritical system (ADSS). The experimental program provided a relatively low-cost substitute for the higher power and complexity of internationally proposed systems utilizing proton accelerators and spallation neutron sources for an advanced ADSS that may be used for the burning of high-level radioactive waste. Various instrumentation methods that permitted ADSS neutron flux monitoring in high gamma radiation fields were successfully explored and the data was used to evaluate the Stochastic Pulsed Feynman method for reactivity monitoring.
Khalil, Ahmed M E; Eljamal, Osama; Saha, Bidyut Baran; Matsunaga, Nobuhiro
2018-04-01
Nanoscale zero-valent iron (nZVI) is a versatile treatment reagent that should be utilized in an effective application for nitrate remediation in water. For this purpose, a laboratory-scale continuous-flow system (LSCFS) was developed to evaluate nZVI performance in removal of nitrate in different contaminated-water bodies. The equipment design (reactor, settler, and polisher) and operational parameters of the LSCFS were determined based on nZVI characterization and nitrate reduction kinetics. Ten experimental runs were conducted at different dosages (6, 10 and 20 g) of nZVI-based reagents (nZVI, bimetallic nZVI-Cu, CuCl 2 -added nZVI). Effluent concentrations of nitrogen and iron compounds were measured, and pH and ORP values were monitored. The major role exhibited by the recirculation process of unreacted nZVI from the settler to the reactor succeeded in achieving overall nitrate removal efficiency (RE) of >90%. The similar performance of both nZVI and copper-ions-modified nZVI in contaminated distilled water was an indication of LSCFS reliability in completely utilizing iron nanoparticles. In case of treating contaminated river water and simulated groundwater, the nitrate reduction process was sensitive towards the presence of interfering substances that dropped the overall RE drastically. However, the addition of copper ions during the treatment counteracted the retardation effect and greatly enhanced the nitrate RE. Copyright © 2018 Elsevier Ltd. All rights reserved.
Inamdar, Shrirang Appasaheb; Surwase, Shripad Nagnath; Jadhav, Shekhar Bhagwan; Bapat, Vishwas Anant; Jadhav, Jyoti Prafull
2013-01-01
L-DOPA (3,4-dihydroxyphenyl-L-alanine), a modified amino acid, is an expansively used drug for the Parkinson's disease treatment. In the present study, optimization of nutritional parameters influencing L-DOPA production was attempted using the response surface methodology (RSM) from Mucuna monosperma callus. Optimization of the four factors was carried out using the Box-Behnken design. The optimized levels of factors predicted by the model include tyrosine 0.894 g l(-1), pH 4.99, ascorbic acid 31.62 mg l(-1)and copper sulphate 23.92 mg l(-1), which resulted in highest L-DOPA yield of 0.309 g l(-1). The optimization of medium using RSM resulted in a 3.45-fold increase in the yield of L-DOPA. The ANOVA analysis showed a significant R (2) value (0.9912), model F-value (112.465) and probability (0.0001), with insignificant lack of fit. Optimized medium was used in the laboratory scale column reactor for continuous production of L-DOPA. Uninterrupted flow column exhibited maximum L-DOPA production rate of 200 mg L(-1) h(-1) which is one of the highest values ever reported using plant as a biotransformation source. L-DOPA production was confirmed by HPTLC and HPLC analysis. This study demonstrates the synthesis of L- DOPA using Mucuna monosperma callus using a laboratory scale column reactor.
Student-Fabricated Microfluidic Devices as Flow Reactors for Organic and Inorganic Synthesis
ERIC Educational Resources Information Center
Feng, Z. Vivian; Edelman, Kate R.; Swanson, Benjamin P.
2015-01-01
Flow synthesis in microfluidic devices has been rapidly adapted in the pharmaceutical industry and in many research laboratories. Yet, the cost of commercial flow reactors is a major factor limiting the dissemination of this technology in the undergraduate curriculum. Here, we present a laboratory activity where students design and fabricate…
MTR WING A, TRA604, INTERIOR. MAIN FLOOR. DETAIL VIEW INSIDE ...
MTR WING A, TRA-604, INTERIOR. MAIN FLOOR. DETAIL VIEW INSIDE LABORATORY 114. CAMERA FACING NORTH. DISPOSAL OF RADIOACTIVE MATERIALS IS UNDERWAY. INL NEGATIVE NO. HD46-12-4. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
52. ARAII. Support piers for SL1 reactor building. September 5, ...
52. ARA-II. Support piers for SL-1 reactor building. September 5, 1957. Ineel photo no. 57-4398. Photographer: Ken Mansfield. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
Sewage treatment in integrated system of UASB reactor and duckweed pond and reuse for aquaculture.
Mohapatra, D P; Ghangrekar, M M; Mitra, A; Brar, S K
2012-06-01
The performance of a laboratory-scale upflow anaerobic sludge blanket (UASB) reactor and a duckweed pond containing Lemna gibba was investigated for suitability for treating effluent for use in aquaculture. While treating low-strength sewage having a chemical oxygen demand (COD) of typically less than 200 mg/L, with an increase in hydraulic retention time (HRT) from 10.04 to 33.49 h, COD removal efficiency of the UASB reactor decreased owing to a decrease in organic loading rate (OLR) causing poor mixing in the reactor. However, even at the lower OLR (0.475 kg COD/(m3 x d)), the UASB reactor gave a removal efficiency of 68% for COD and 74% for biochemical oxygen demand (BOD). The maximum COD, BOD, ammonia-nitrogen and phosphate removal efficiencies of the duckweed pond were 40.77%, 38.01%, 61.87% and 88.57%, respectively. Decreasing the OLR by increasing the HRT resulted in an increase in efficiency of the duckweed pond for removal of ammonia-nitrogen and phosphate. The OLR of 0.005 kg COD/(m2 x d) and HRT of 108 h in the duckweed pond satisfied aquaculture quality requirements. A specific growth rate of 0.23% was observed for tilapia fish fed with duckweed harvested from the duckweed pond. The economic analysis proved that it was beneficial to use the integrated system of a UASB reactor and a duckweed pond for treatment of sewage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisowski, D. D.; Farmer, M. T.; Lomperski, S.
The Natural convection Shutdown heat removal Test Facility (NSTF) is a large scale thermal hydraulics test facility that has been built at Argonne National Laboratory (ANL). The facility was constructed in order to carry out highly instrumented experiments that can be used to validate the performance of passive safety systems for advanced reactor designs. The facility has principally been designed for testing of Reactor Cavity Cooling System (RCCS) concepts that rely on natural convection cooling for either air or water-based systems. Standing 25-m in height, the facility is able to supply up to 220 kW at 21 kW/m 2 tomore » accurately simulate the heat fluxes at the walls of a reactor pressure vessel. A suite of nearly 400 data acquisition channels, including a sophisticated fiber optic system for high density temperature measurements, guides test operations and provides data to support scaling analysis and modeling efforts. Measurements of system mass flow rate, air and surface temperatures, heat flux, humidity, and pressure differentials, among others; are part of this total generated data set. The following report provides an introduction to the top level-objectives of the program related to passively safe decay heat removal, a detailed description of the engineering specifications, design features, and dimensions of the test facility at Argonne. Specifications of the sensors and their placement on the test facility will be provided, along with a complete channel listing of the data acquisition system.« less
Fux, C; Huang, D; Monti, A; Siegrist, H
2004-01-01
Nitrogen can be eliminated effectively from sludge digester effluents by anaerobic ammonium oxidation (anammox), but 55-60% of the ammonium must first be oxidized to nitrite. Although a continuous flow stirred tank reactor (CSTR) with suspended biomass could be used, its hydraulic dilution rate is limited to 0.8-1 d(-1) (30 degrees C). Higher specific nitrite production rates can be achieved by sludge retention, as shown here for a moving-bed biofilm reactor (MBBR) with Kaldnes carriers on laboratory and pilot scales. The maximum nitrite production rate amounted to 2.7 gNO2-Nm(-2)d(-1) (3 gO2m(-3)d(-1), 30.5 degrees C), thus doubling the dilution rate compared to CSTR operation with suspended biomass for a supernatant with 700 gNH4-Nm(-3). Whenever the available alkalinity was fully consumed, an optimal amount of nitrite was produced. However, a significant amount of nitrate was produced after 11 months of operation, making the effluent unsuitable for anaerobic ammonium oxidation. Because the sludge retention time (SRT) is relatively long in biofilm systems, slow growth of nitrite oxidizers occurs. None of the selection criteria applied - a high ammonium loading rate, high free ammonia or low oxygen concentration - led to selective suppression of nitrite oxidation. A CSTR or SBR with suspended biomass is consequently recommended for full-scale operation.
Benchmark Simulation of Natural Circulation Cooling System with Salt Working Fluid Using SAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, K. K.; Scarlat, R. O.; Hu, R.
Liquid salt-cooled reactors, such as the Fluoride Salt-Cooled High-Temperature Reactor (FHR), offer passive decay heat removal through natural circulation using Direct Reactor Auxiliary Cooling System (DRACS) loops. The behavior of such systems should be well-understood through performance analysis. The advanced system thermal-hydraulics tool System Analysis Module (SAM) from Argonne National Laboratory has been selected for this purpose. The work presented here is part of a larger study in which SAM modeling capabilities are being enhanced for the system analyses of FHR or Molten Salt Reactors (MSR). Liquid salt thermophysical properties have been implemented in SAM, as well as properties ofmore » Dowtherm A, which is used as a simulant fluid for scaled experiments, for future code validation studies. Additional physics modules to represent phenomena specific to salt-cooled reactors, such as freezing of coolant, are being implemented in SAM. This study presents a useful first benchmark for the applicability of SAM to liquid salt-cooled reactors: it provides steady-state and transient comparisons for a salt reactor system. A RELAP5-3D model of the Mark-1 Pebble-Bed FHR (Mk1 PB-FHR), and in particular its DRACS loop for emergency heat removal, provides steady state and transient results for flow rates and temperatures in the system that are used here for code-to-code comparison with SAM. The transient studied is a loss of forced circulation with SCRAM event. To the knowledge of the authors, this is the first application of SAM to FHR or any other molten salt reactors. While building these models in SAM, any gaps in the code’s capability to simulate such systems are identified and addressed immediately, or listed as future improvements to the code.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, K. J.; Capson, D. D.
2004-03-29
Argonne National Laboratory (ANL) has developed a process to immobilize waste salt containing fission products, uranium, and transuranic elements as chlorides in a glass-bonded ceramic waste form. This salt was generated in the electrorefining operation used in the electrometallurgical treatment of spent Experimental Breeder Reactor-II (EBR-II) fuel. The ceramic waste process culminates with an elevated temperature operation. The processing conditions used by the furnace, for demonstration scale and production scale operations, are to be developed at Argonne National Laboratory-West (ANL-West). To assist in selecting the processing conditions of the furnace and to reduce the number of costly experiments, a finitemore » difference model was developed to predict the consolidation of the ceramic waste. The model accurately predicted the heating as well as the bulk density of the ceramic waste form. The methodology used to develop the computer model and a comparison of the analysis to experimental data is presented.« less
Filly, Aurore; Fernandez, Xavier; Minuti, Matteo; Visinoni, Francesco; Cravotto, Giancarlo; Chemat, Farid
2014-05-01
Solvent-free microwave extraction (SFME) has been proposed as a green method for the extraction of essential oil from aromatic herbs that are extensively used in the food industry. This technique is a combination of microwave heating and dry distillation performed at atmospheric pressure without any added solvent or water. The isolation and concentration of volatile compounds is performed in a single stage. In this work, SFME and a conventional technique, hydro-distillation HD (Clevenger apparatus), are used for the extraction of essential oil from rosemary (Rosmarinus officinalis L.) and are compared. This preliminary laboratory study shows that essential oils extracted by SFME in 30min were quantitatively (yield and kinetics profile) and qualitatively (aromatic profile) similar to those obtained using conventional hydro-distillation in 2h. Experiments performed in a 75L pilot microwave reactor prove the feasibility of SFME up scaling and potential industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gupta, Pragya; Ahammad, S Z; Sreekrishnan, T R
2016-09-05
Anaerobic biological treatment of high organics containing wastewater is amongst the preferred treatment options but poor tolerance to toxins makes its use prohibitive. In this study, efforts have been made to understand the key parameters for developing anaerobic reactor, resilient to cyanide toxicity. A laboratory scale anaerobic batch reactor was set up to treat cyanide containing wastewater. The reactor was inoculated with anaerobic sludge obtained from a wastewater treatment plant and fresh cow dung in the ratio of 3:1. The focus was on acclimatization and development of cyanide-degrading biomass and to understand the toxic effects of cyanide on the dynamic equilibrium between various microbial groups. The sludge exposed to cyanide was found to have higher bacterial diversity than the control. It was observed that certain hydrogenotrophic methanogens and bacterial groups were able to grow and produce methane in the presence of cyanide. Also, it was found that hydrogen utilizing methanogens were more cyanide tolerant than acetate utilizing methanogens. So, effluents from various industries like electroplating, coke oven plant, petroleum refining, explosive manufacturing, and pesticides industries which are having high concentrations of cyanide can be treated by favoring the growth of the tolerant microbes in the reactors. It will provide much better treatment efficiency by overcoming the inhibitory effects of cyanide to certain extent. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, J; Garny, K; Neu, T; He, M; Lindenblatt, C; Horn, H
2007-01-01
Physical, chemical and biological characteristics were investigated for aerobic granules and sludge flocs from three laboratory-scale sequencing batch reactors (SBRs). One reactor was operated as normal SBR (N-SBR) and two reactors were operated as granular SBRs (G-SBR1 and G-SBR2). G-SBR1 was inoculated with activated sludge and G-SBR2 with granules from the municipal wastewater plant in Garching (Germany). The following major parameters and functions were measured and compared between the three reactors: morphology, settling velocity, specific gravity (SG), sludge volume index (SVI), specific oxygen uptake rate (SOUR), distribution of the volume fraction of extracellular polymeric substances (EPS) and bacteria, organic carbon and nitrogen removal. Compared with sludge flocs, granular sludge had excellent settling properties, good solid-liquid separation, high biomass concentration, simultaneous nitrification and denitrification. Aerobic granular sludge does not have a higher microbial activity and there are some problems including higher effluent suspended solids, lower ratio of VSS/SS and no nitrification at the beginning of cultivation. Measurement with CLSM and additional image analysis showed that EPS glycoconjugates build one main fraction inside the granules. The aerobic granules from G-SBR1 prove to be heavier, smaller and have a higher microbial activity compared with G-SBR2. Furthermore, the granules were more compact, with lower SVI and less filamentous bacteria.
Farré, Maria José; Maldonado, Manuel Ignacio; Gernjak, Wolfgang; Oller, Isabel; Malato, Sixto; Domènech, Xavier; Peral, José
2008-06-01
A coupled solar photo-Fenton (chemical) and biological treatment has been used to remove biorecalcitrant diuron (42 mg l(-1)) and linuron (75 mg l(-1)) herbicides from water at pilot plant scale. The chemical process has been carried out in a 82 l solar pilot plant made up by four compound parabolic collector units, and it was followed by a biological treatment performed in a 40 l sequencing batch reactor. Two Fe(II) doses (2 and 5 mg l(-1)) and sequential additions of H2O2 (20 mg l(-1)) have been used to chemically degrade the initially polluted effluent. Next, biodegradability at different oxidation states has been assessed by means of BOD/COD ratio. A reagent dose of Fe=5 mg l(-1) and H2O2=100 mg l(-1) has been required to obtain a biodegradable effluent after 100 min of irradiation time. Finally, the organic content of the photo-treated solution has been completely assimilated by a biomass consortium in the sequencing batch reactor using a total suspended solids concentration of 0.2 g l(-1) and a hydraulic retention time of 24h. Comparison between the data obtained at pilot plant scale (specially the one corresponding to the chemical step) and previously published data from a similar system performing at laboratory scale, has been carried out.
GRAPHITE BLOCKS ARE ARRAYED IN "THERMAL COLUMN" ON NORTH SIDE ...
GRAPHITE BLOCKS ARE ARRAYED IN "THERMAL COLUMN" ON NORTH SIDE OF REACTOR. INL NEGATIVE NO. 4000. Unknown Photographer, 12/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
156. ARAIII Reactor building (ARA608) Electrical and control details of ...
156. ARA-III Reactor building (ARA-608) Electrical and control details of mobile work bridge over reactor and pipiing pits. Aerojet-general 880-area/GCRE-608-E-6. Date: November 1958. Ineel index code no. 063-0608-10-013-102621. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
PBF Reactor Building (PER620). Reactor vessel arrives from gate city ...
PBF Reactor Building (PER-620). Reactor vessel arrives from gate city steel at door of PBF. On flatbed, it is too high to fit under door. Photographer: Larry Page. Date: February 13, 1970. INEEL negative no. 70-737 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
ETRCF, TRA654, INTERIOR. REACTOR OPERATED IN WATERFILLED TANK. CAMERA LOOKS ...
ETR-CF, TRA-654, INTERIOR. REACTOR OPERATED IN WATER-FILLED TANK. CAMERA LOOKS DOWN FROM ABOVE UPON LATER (NON-NUCLEAR) EXPERIMENTAL GEAR. INL NEGATIVE NO. HD24-1-1. Mike Crane, Photographer, ca. 2003 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
MTR, SOUTH FACE OF REACTOR. SPECIAL SUPPLEMENTAL SHIELDING WAS REQUIRED ...
MTR, SOUTH FACE OF REACTOR. SPECIAL SUPPLEMENTAL SHIELDING WAS REQUIRED OUTSIDE OF MTR FOR EXPERIMENTS. THE AIRCRAFT NUCLEAR PROPULSION PROJECT DOMINATED THE USE OF THIS PART OF THE MTR. INL NEGATIVE NO. 7225. Unknown Photographer, 11/28/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Issues relating to spent nuclear fuel storage on the Oak Ridge Reservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J.A.; Turner, D.W.
1994-12-31
Currently, about 2,800 metric tons of spent nuclear fuel (SNF) is stored in the US, 1,000 kg of SNF (or about 0.03% of the nation`s total) are stored at the US Department of Energy (DOE) complex in Oak Ridge, Tennessee. However small the total quantity of material stored at Oak Ridge, some of the material is quite singular in character and, thus, poses unique management concerns. The various types of SNF stored at Oak Ridge will be discussed including: (1) High-Flux Isotope Reactor (HFIR) and future Advanced Neutron Source (ANS) fuels; (2) Material Testing Reactor (MTR) fuels, including Bulk Shieldingmore » Reactor (BSR) and Oak Ridge Research Reactor (ORR) fuels; (3) Molten Salt Reactor Experiment (MSRE) fuel; (4) Homogeneous Reactor Experiment (HRE) fuel; (5) Miscellaneous SNF stored in Oak Ridge National Laboratory`s (ORNL`s) Solid Waste Storage Areas (SWSAs); (6) SNF stored in the Y-12 Plant 9720-5 Warehouse including Health. Physics Reactor (HPRR), Space Nuclear Auxiliary Power (SNAP-) 10A, and DOE Demonstration Reactor fuels.« less
A Review of Gas-Cooled Reactor Concepts for SDI Applications
1989-08-01
710 program .) Wire- Core Reactor (proposed by Rockwell). The wire- core reactor utilizes thin fuel wires woven between spacer wires to form an open...reactor is based on results of developmental studies of nuclear rocket propulsion systems. The reactor core is made up of annular fuel assemblies of...XE Addendum to Volume II. NERVA Fuel Development , Westinghouse Astronuclear Laboratory, TNR-230, July 15’ 1972. J I8- Rover Program Reactor Tests
An Update on the Status of the Supply of Plutonium-238 for Future NASA Missions
NASA Astrophysics Data System (ADS)
Wham, R. M.
2016-12-01
For more than five decades, Radioisotope Power Systems (RPSs) have enabled space missions to operate in locations where the Sun's intensity is too weak, obscured, or otherwise inadequate for solar power or other conventional power‒generation technologies. The natural decay heat (0.57 W/g) from the radioisotope, plutonium-238 (238Pu), provides the thermal energy source used by an RPS to generate electricity for operation of instrumentation, as well as heat to keep key subsystems warm for missions such as Voyagers 1 and 2, the Cassini mission to Saturn, the New Horizons flyby of Pluto, and the Mars Curiosity rover which were sponsored by the National Aeronautics and Space Administration (NASA). Plutonium-238 is produced by irradiation of neptunium-237 in a nuclear reactor a relatively high neutron flux. The United States has not produced new quantities of 238Pu since the early 1990s. RPS‒powered missions have continued since then using existing 238Pu inventory managed by the U.S. Department of Energy (DOE), including material purchased from Russia. A new domestic supply is needed to ensure the continued availability of RPSs for future NASA missions. NASA and DOE are currently executing a project to reestablish a 238Pu supply capability using its existing facilities and reactors, which are much smaller than the large-scale production reactors and processing canyon equipment used previously. The project is led by the Oak Ridge National Laboratory (ORNL). Target rods, containing NpO2, will be fabricated at ORNL and irradiated in the ORNL High Flux Isotope Reactor and the Advanced Test Reactor at Idaho National Laboratory. Irradiated targets will be processed in chemical separations at the ORNL Radiochemical Engineering Center to recover the plutonium product and unconverted neptunium for recycle. The 238PuO2 product will be shipped to Los Alamos National Laboratory for fabrication of heat source pellets. Key activities, such as transport of the neptunium to ORNL, irradiation of neptunium, and chemical processing to recover the newly generated 238Pu, have begun and have been demonstrated with the initial amounts (50-100 g) produced. Product samples have been shipped to LANL for evaluation, including chemical impurity analysis. This paper will provide an overview of the approach to the project and its progress to date.
Application of gas sensor arrays in assessment of wastewater purification effects.
Guz, Łukasz; Łagód, Grzegorz; Jaromin-Gleń, Katarzyna; Suchorab, Zbigniew; Sobczuk, Henryk; Bieganowski, Andrzej
2014-12-23
A gas sensor array consisting of eight metal oxide semiconductor (MOS) type gas sensors was evaluated for its ability for assessment of the selected wastewater parameters. Municipal wastewater was collected in a wastewater treatment plant (WWTP) in a primary sedimentation tank and was treated in a laboratory-scale sequential batch reactor (SBR). A comparison of the gas sensor array (electronic nose) response to the standard physical-chemical parameters of treated wastewater was performed. To analyze the measurement results, artificial neural networks were used. E-nose-gas sensors array and artificial neural networks proved to be a suitable method for the monitoring of treated wastewater quality. Neural networks used for data validation showed high correlation between the electronic nose readouts and: (I) chemical oxygen demand (COD) (r = 0.988); (II) total suspended solids (TSS) (r = 0.938); (III) turbidity (r = 0.940); (IV) pH (r = 0.554); (V) nitrogen compounds: N-NO3 (r = 0.958), N-NO2 (r = 0.869) and N-NH3 (r = 0.978); (VI) and volatile organic compounds (VOC) (r = 0.987). Good correlation of the abovementioned parameters are observed under stable treatment conditions in a laboratory batch reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Rutherford, Phil; Lee, Majelle
2005-09-01
This Annual Site Environmental Report (ASER) for 2004 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated inmore » 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2004 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Rutherford, Phil
2007-09-01
This Annual Site Environmental Report (ASER) for 2006 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated inmore » 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2006 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less
Analysis and Down Select of Flow Passages for Thermal Hydraulic Testing of a SNAP Derived Reactor
NASA Technical Reports Server (NTRS)
Godfroy, T. J.; Sadasivan, P.; Masterson, S.
2007-01-01
As past of the Vision for Space Exploration, man will return to the moon. To enable safe and productive time on the lunar surface will require adequate power resources. To provide the needed power and to give mission planners all landing site possibilities, including a permanently dark crater, a nuclear reactor provides the most options. Designed to be l00kWt providing approx. 25kWe this power plants would be very effective in delivering dependable, site non-specific power to crews or robotic missions on the lunar surface. An affordable reference reactor based upon the successful SNAP program of the 1960's and early 1970's has been designed by Los Alamos National Laboratory that will meet such a requirement. Considering current funding, environmental, and schedule limitations this lunar surface power reactor will be tested using non-nuclear simulators to simulate the heat from fission reactions. Currently a 25kWe surface power SNAP derivative reactor is in the early process of design and testing with collaboration between Los Alamos National Laboratory, Idaho National Laboratory, Glenn Research Center, Marshall Space Flight Center, and Sandia National Laboratory to ensure that this new design is affordable and can be tested using non-nuclear methods as have proven so effective in the past. This paper will discuss the study and down selection of a flow passage concept for a approx. 25kWe lunar surface power reactor. Several different flow passages designs were evaluated using computational fluid dynamics to determine pressure drop and a structural assessment to consider thermal and stress of the passage walls. The reactor design basis conditions are discussed followed by passage problem setup and results for each concept. A recommendation for passage design is made with rationale for selection.
NASA Astrophysics Data System (ADS)
Mendoza Gonzalez, Norma Yadira
This work presents a mathematical modeling study of the synthesis of nanoparticles in radio frequency (RF) inductively coupled plasma (ICP) reactors. The purpose is to further investigate the influence of process parameters on the final size and morphology of produced particles. The proposed model involves the calculation of flow and temperature fields of the plasma gas. Evaporation of raw particles is also accounted with the particle trajectory and temperature history calculated with a Lagrangian approach. The nanoparticle formation is considered by homogeneous nucleation and the growth is caused by condensation and Brownian coagulation. The growth of fractal aggregates is considered by introducing a power law exponent Df. Transport of nanoparticles occurs by convection, thermophoresis and Brownian diffusion. The method of moments is used to solve the particle dynamics equation. The model is validated using experimental results from plasma reactors at laboratory scale. The results are presented in the following manner. First, use is made of the computational fluid dynamics software (CFD), Fluent 6.1 with a commercial companion package specifically developped for aerosols named: Fine Particle Model (FPM). This package is used to study the relationship between the operating parameters effect and the properties of the end products at the laboratory scale. Secondly, a coupled hybrid model for the synthesis of spherical particles and fractal aggregates is developped in place of the FPM package. Results obtained from this model will allow to identify the importance of each parameter in defining the morphology of spherical primary particles and fractal aggregates of nanoparticles. The solution of the model was made using the geometries and operating conditions of existing reactors at the Centre de Recherche en Energie, Plasma et Electrochimie (CREPE) of the Universite de Sherbrooke, for which experimental results were obtained experimentally. Additionally, this study demonstrates the importance of the flow and temperature fields on the growth of fractal particles; namely the aggregates.
Large-scale modular biofiltration system for effective odor removal in a composting facility.
Lin, Yueh-Hsien; Chen, Yu-Pei; Ho, Kuo-Ling; Lee, Tsung-Yih; Tseng, Ching-Ping
2013-01-01
Several different foul odors such as nitrogen-containing groups, sulfur-containing groups, and short-chain fatty-acids commonly emitted from composting facilities. In this study, an experimental laboratory-scale bioreactor was scaled up to build a large-scale modular biofiltration system that can process 34 m(3)min(-1)waste gases. This modular reactor system was proven effective in eliminating odors, with a 97% removal efficiency for 96 ppm ammonia, a 98% removal efficiency for 220 ppm amines, and a 100% removal efficiency of other odorous substances. The results of operational parameters indicate that this modular biofiltration system offers long-term operational stability. Specifically, a low pressure drop (<45 mmH2O m(-1)) was observed, indicating that the packing carrier in bioreactor units does not require frequent replacement. Thus, this modular biofiltration system can be used in field applications to eliminate various odors with compact working volume.
Isazadeh, Siavash; Feng, Min; Urbina Rivas, Luis Enrique; Frigon, Dominic
2014-04-15
Two pilot-scale activated sludge reactors were operated for 98 days to provide the necessary data to develop and validate a new mathematical model predicting the reduction of biosolids production by ozonation of the return activated sludge (RAS). Three ozone doses were tested during the study. In addition to the pilot-scale study, laboratory-scale experiments were conducted with mixed liquor suspended solids and with pure cultures to parameterize the biomass inactivation process during exposure to ozone. The experiments revealed that biomass inactivation occurred even at the lowest doses, but that it was not associated with extensive COD solubilization. For validation, the model was used to simulate the temporal dynamics of the pilot-scale operational data. Increasing the description accuracy of the inactivation process improved the precision of the model in predicting the operational data. Copyright © 2014 Elsevier B.V. All rights reserved.
Effective, Safe, and Inexpensive Microscale Ultrasonic Setup for Teaching and Research Laboratories.
ERIC Educational Resources Information Center
Montana, Angel M.; Grima, Pedro M.
2000-01-01
Presents a homemade, safe, effective, and inexpensive reactor vessel for ultrasonic horns with applications in microscale experiments in teaching and research laboratories. The reactor vessel is designed for an ultrasonic probe that allows reactions to be run at the microscale level at a wide range of temperatures and under inert atmosphere.…
Scaling the Shear-flow Stabilized Z-pinch to Reactor Conditions
NASA Astrophysics Data System (ADS)
McLean, H. S.; Schmidt, A.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Cleveau, E.
2015-11-01
We present a conceptual design along with scaling calculations for a pulsed fusion reactor based on the shear-flow-stabilized Z-pinch device. Experiments performed on the ZaP device, at the University of Washington, have demonstrated stable operation for durations of 20 usec at ~100kA discharge current for pinches that are ~1 cm in diameter and 100 cm long. The inverse of the pinch diameter and plasma energy density scale strongly with pinch current and calculations show that maintaining stabilization durations of ~7 usec for increased discharge current (~15x) in a shortened pinch (10 cm) results in a pinch diameter of ~200 um and plasma conditions that approach those needed to support significant fusion burn and energy gain (Ti ~ 30keV, density ~ 3e26/m3, ntau ~1.4e20 sec/m3). Compelling features of the concept include operation at modest discharge current (1.5 MA) and voltage (40kV) along with direct adoption of liquid metals for at least one electrode--technological capabilities that have been proven in existing, commercial, pulse power devices such as large ignitrons. LLNL-ABS-674920. This work performed under the auspices of the U.S. Department of Energy ARPAe ALPHA Program by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Pilot-scale study of powdered activated carbon recirculation for micropollutant removal.
Meinel, F; Sperlich, A; Jekel, M
Adsorption onto powdered activated carbon (PAC) is a promising technique for the removal of organic micropollutants (OMPs) from treated wastewater. To enhance the adsorption efficiency, PAC is recycled back into the adsorption stage. This technique was examined in pilot scale in comparison to a reference without recirculation. Coagulation with Fe(3+) was carried out simultaneously to adsorption. Extensive OMP measurements showed that recirculation significantly increased OMP eliminations. Thus, significant PAC savings were feasible. The PAC concentration in the contact reactor proved to be an important operating parameter that can be surrogated by the easily measurable total suspended solids (TSS) concentration. OMP eliminations increased with increasing TSS concentrations. At 20 mg PAC L(-1) and 2.8 g TSS L(-1) in the contact reactor, well-adsorbable carbamazepine was eliminated by 97%, moderately adsorbable diclofenac was eliminated by 92% and poorly-adsorbable acesulfame was eliminated by 54% in comparison to 49%, 35% and 18%, respectively, without recirculation. The recirculation system represents an efficient technique, as the PAC's adsorption capacity is practically completely used. Small PAC dosages yield high OMP eliminations. Poorly-adsorbable gabapentin was eliminated to an unexpectedly high degree. A laboratory-scale biomass inhibition study showed that aerobic biodegradation removed gabapentin in addition to adsorption.
IET. Typical detail during Snaptran reactor experiments. Shielding bricks protect ...
IET. Typical detail during Snaptran reactor experiments. Shielding bricks protect ion chamber beneath reactor on dolly. Photographer: Page Comiskey. Date: August 11, 1965. INEEL negative no. 65-4039 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Development of a selective oxidation CO removal reactor for methanol reformate gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, Shunji; Takatani, Yoshiaki; Terada, Seijo
1996-12-31
This report forms part of a joint study on a PEFC propulsion system for surface ships, summarized in a presentation to this Seminar, entitled {open_quotes}Study on a Polymer Electrolyte Fuel Cell (PEFC) Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The aspect treated here concerns laboratory-scale tests aimed at reducing by selective oxidation to a level below 10 ppm the carbon monoxide (CO) contained to a concentration of around 1% in reformate gas.
Pyrolysis of Woody Residues: Impact of Mineral Content
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iisa, Kristiina; Zacher, Alan; Sykes, Robert
2014-11-21
Woody residues represent a lower cost option for feedstocks for the production of biofuels. In this study, the pyrolysis of woody residues was investigated as part of Clean Energy Dialogue between the U.S. and Canada. Three pine-based hog fuels from saw mills and wood from pine beetle killed trees were chosen as the woody residue feedstocks and pine and birch as the reference clean feedstocks. The yields and quality of the oil were evaluated in a bubbling fluidized bed reactor and a laboratory-scale pyrolyzer connected to a molecular beam mass spectrometer.
Uranium nitride fuel fabrication for SP-100 reactors
NASA Technical Reports Server (NTRS)
Mason, Richard E.; Chidester, Kenneth M.; Hoth, Carl W.; Matthews, Bruce R.
1987-01-01
Fuel pins of uranium mononitride clad in Nb-1 percent Zr were fabricated for irradiation tests in EBR-II. Laboratory scale process parameters to synthesize UN powders and fabricate UN pellets were developed. Uranium mononitride was prepared by converting UO2 to UN. Fuel pellets were prepared by communition of UN briquettes, uniaxial pressing, and high temperature sintering. Techniques for machining, cleaning, and welding Nb-1 percent Zr cladding components were developed. End caps were electron beam welded to the tubing. Helium back-fill holes were sealed with a laser weld.
Uranium nitride fuel fabrication for SP-100 reactors
NASA Astrophysics Data System (ADS)
Mason, Richard E.; Chidester, Kenneth M.; Hoth, Carl W.; Matthews, Bruce R.
Fuel pins of uranium mononitride clad in Nb-1 percent Zr were fabricated for irradiation tests in EBR-II. Laboratory scale process parameters to synthesize UN powders and fabricate UN pellets were developed. Uranium mononitride was prepared by converting UO2 to UN. Fuel pellets were prepared by communition of UN briquettes, uniaxial pressing, and high temperature sintering. Techniques for machining, cleaning, and welding Nb-1 percent Zr cladding components were developed. End caps were electron beam welded to the tubing. Helium back-fill holes were sealed with a laser weld.
REACTOR SERVICE BUILDING, TRA635. CROWDED MOCKUP AREA. CAMERA FACES EAST. ...
REACTOR SERVICE BUILDING, TRA-635. CROWDED MOCK-UP AREA. CAMERA FACES EAST. PHOTOGRAPHER'S NOTE SAYS "PICTURE REQUESTED BY IDO IN SUPPORT OF FY '58 BUILDING PROJECTS." INL NEGATIVE NO. 56-3025. R.G. Larsen, Photographer, 9/13/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
150. ARAIII Reactor building (ARA608) Sections. Show highbay section, heater ...
150. ARA-III Reactor building (ARA-608) Sections. Show high-bay section, heater stack, and depth of reactor, piping, and heater pits. Aerojet-general 880-area/GCRE-608-A-3. Date: February 1958. Ineel index code no. 063-0608-00-013-102613. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
79. ARAIII. Early construction view of GCRE reactor building (ARA608) ...
79. ARA-III. Early construction view of GCRE reactor building (ARA-608) showing deep excavation, reinforcing steel, and forms for concrete placement for reactor and other pits. Camera facing southeast. July 22, 1958. Ineel photo no. 58-3466. Photographer: Ken Mansfield. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
PBF Reactor Building (PER620). PBF crane holds fuel test assembly ...
PBF Reactor Building (PER-620). PBF crane holds fuel test assembly aloft prior to lowering into reactor for test. Date: 1982. INEEL negative no. 82-4909 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
80. ARAIII. Forming of the mechanical equipment pit in reactor ...
80. ARA-III. Forming of the mechanical equipment pit in reactor building (ARA-608). Camera facing northwest. September 22, 1958. Ineel photo no. 58-4675. Photographer: Jack L. Anderson. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
24. ARAIII Reactor building ARA608 interior. Camera facing south. Chalk ...
24. ARA-III Reactor building ARA-608 interior. Camera facing south. Chalk marks on wall indicate presence or absence of spot contamination. Ineel photo no. 3-2. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
Kantor, Rose S; van Zyl, A Wynand; van Hille, Robert P; Thomas, Brian C; Harrison, Susan T L; Banfield, Jillian F
2015-12-01
Gold ore processing uses cyanide (CN(-) ), which often results in large volumes of thiocyanate- (SCN(-) ) contaminated wastewater requiring treatment. Microbial communities can degrade SCN(-) and CN(-) , but little is known about their membership and metabolic potential. Microbial-based remediation strategies will benefit from an ecological understanding of organisms involved in the breakdown of SCN(-) and CN(-) into sulfur, carbon and nitrogen compounds. We performed metagenomic analysis of samples from two laboratory-scale bioreactors used to study SCN(-) and CN(-) degradation. Community analysis revealed the dominance of Thiobacillus spp., whose genomes harbour a previously unreported operon for SCN(-) degradation. Genome-based metabolic predictions suggest that a large portion of each bioreactor community is autotrophic, relying not on molasses in reactor feed but using energy gained from oxidation of sulfur compounds produced during SCN(-) degradation. Heterotrophs, including a bacterium from a previously uncharacterized phylum, compose a smaller portion of the reactor community. Predation by phage and eukaryotes is predicted to affect community dynamics. Genes for ammonium oxidation and denitrification were detected, indicating the potential for nitrogen removal, as required for complete remediation of wastewater. These findings suggest optimization strategies for reactor design, such as improved aerobic/anaerobic partitioning and elimination of organic carbon from reactor feed. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Anaerobic treatment of animal byproducts from slaughterhouses at laboratory and pilot scale.
Edström, Mats; Nordberg, Ake; Thyselius, Lennart
2003-01-01
Different mixtures of animal byproducts, other slaughterhouse waste (i.e., rumen, stomach and intestinal content), food waste, and liquid manure were codigested at mesophilic conditions (37 degrees C) at laboratory and pilot scale. Animal byproducts, including blood, represent 70-80% of the total biogas potential from waste generated during slaughter of animals. The total biogas potential from waste generated during slaughter is about 1300 MJ/cattle and about 140 MJ/pig. Fed-batch digestion of pasteurized (70 degrees C, 1 h) animal byproducts resulted in a fourfold increase in biogas yield (1.14 L/g of volatile solids [VS]) compared with nonpasteurized animal byproducts (0.31 L/g of VS). Mixtures with animal byproducts representing 19-38% of the total dry matter were digested in continuous-flow stirred tank reactors at laboratory and pilot scale. Stable processes at organic loading rates (OLRs) exceeding 2.5 g of VS/(L.d) and hydraulic retention times (HRTs) less than 40 d could be obtained with total ammonia nitrogen concentrations (NH4-N + NH3-N) in the range of 4.0-5.0 g/L. After operating one process for more than 1.5 yr at total ammonia nitrogen concentrations >4 g/L, an increase in OLR to 5 g of VS/(L.d) and a decrease in HRT to 22 d was possible without accumulation of volatile fatty acids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfrum, E.J.; Weaver, P.F.
Researchers at the National Renewable Energy Laboratory (NREL) have been investigating the use of model photosynthetic microorganisms that use sunlight and two-carbon organic substrates (e.g., ethanol, acetate) to produce biodegradable polyhydroxyalkanoate (PHA) copolymers as carbon storage compounds. Use of these biological PHAs in single-use plastics applications, followed by their post-consumer composting or anaerobic digestion, could impact petroleum consumption as well as the overloading of landfills. The large-scale production of PHA polymers by photosynthetic bacteria will require large-scale reactor systems utilizing either sunlight or artificial illumination. The first step in the scale-up process is to quantify the microbial growth rates andmore » the PHA production rates as a function of reaction conditions such as nutrient concentration, temperature, and light quality and intensity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohr, C.L.; Pankaskie, P.J.; Heasler, P.G.
Reactor fuel failure data sets in the form of initial power (P/sub i/), final power (P/sub f/), transient increase in power (..delta..P), and burnup (Bu) were obtained for pressurized heavy water reactors (PHWRs), boiling water reactors (BWRs), and pressurized water reactors (PWRs). These data sets were evaluated and used as the basis for developing two predictive fuel failure models, a graphical concept called the PCI-OGRAM, and a nonlinear regression based model called PROFIT. The PCI-OGRAM is an extension of the FUELOGRAM developed by AECL. It is based on a critical threshold concept for stress dependent stress corrosion cracking. The PROFITmore » model, developed at Pacific Northwest Laboratory, is the result of applying standard statistical regression methods to the available PCI fuel failure data and an analysis of the environmental and strain rate dependent stress-strain properties of the Zircaloy cladding.« less
Reduced enrichment for research and test reactors: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-07-01
The 15th annual Reduced Enrichment for Research and Test Reactors (RERTR) international meeting was organized by Ris{o} National Laboratory in cooperation with the International Atomic Energy Agency and Argonne National Laboratory. The topics of the meeting were the following: National Programs, Fuel Fabrication, Licensing Aspects, States of Conversion, Fuel Testing, and Fuel Cycle. Individual papers have been cataloged separately.
Liu, Ke; Zhang, Jian; Bao, Jie
2015-11-01
A two stage hydrolysis of corn stover was designed to solve the difficulties between sufficient mixing at high solids content and high power input encountered in large scale bioreactors. The process starts with the quick liquefaction to convert solid cellulose to liquid slurry with strong mixing in small reactors, then followed the comprehensive hydrolysis to complete saccharification into fermentable sugars in large reactors without agitation apparatus. 60% of the mixing energy consumption was saved by removing the mixing apparatus in large scale vessels. Scale-up ratio was small for the first step hydrolysis reactors because of the reduced reactor volume. For large saccharification reactors in the second step, the scale-up was easy because of no mixing mechanism was involved. This two stage hydrolysis is applicable for either simple hydrolysis or combined fermentation processes. The method provided a practical process option for industrial scale biorefinery processing of lignocellulose biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.
Biotransformation and biodegradation of selected nitroaromatics under anaerobic conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Razo-Flores, E.; Lettinga, G.; Field, J.A.
The fate of four nitroaromatic compounds (5-nitrosalicylate, 5NSA; 4-nitrobenzoate, 4NBc; 2,4-dinitrotoluene, 2,4DNT; nitrobenzene, NB) was studied in 160 mL laboratory-scale upward-flow anaerobic sludge bed reactors supplied with a mixture of volatile fatty acids and/or glucose as electron donors. All the nitroaromatics were transformed stoichiometrically to their corresponding aromatic amines. After prolonged reactor operation, 5NSA and 4NBc were completely mineralized to CH[sub 4] and CO[sub 2], whereas 2,4DNT was partially transformed to a nonidentified and nondegradable metabolite. Batch nitro-reduction experiments indicated that the position of the nitro group in relation to the other substituents in the aromatic ring plays a keymore » role in the rate of the nitro-group reduction. The results obtained indicate that certain nitroaromatic compounds can be completely mineralized and serve as a carbon and energy source for anaerobic bacteria.« less
Steel Containment Vessel Model Test: Results and Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costello, J.F.; Hashimote, T.; Hessheimer, M.F.
A high pressure test of the steel containment vessel (SCV) model was conducted on December 11-12, 1996 at Sandia National Laboratories, Albuquerque, NM, USA. The test model is a mixed-scaled model (1:10 in geometry and 1:4 in shell thickness) of an improved Mark II boiling water reactor (BWR) containment. A concentric steel contact structure (CS), installed over the SCV model and separated at a nominally uniform distance from it, provided a simplified representation of a reactor shield building in the actual plant. The SCV model and contact structure were instrumented with strain gages and displacement transducers to record the deformationmore » behavior of the SCV model during the high pressure test. This paper summarizes the conduct and the results of the high pressure test and discusses the posttest metallurgical evaluation results on specimens removed from the SCV model.« less
Lee, Jongkeun; Kim, Joonrae Roger; Jeong, Seulki; Cho, Jinwoo; Kim, Jae Young
2017-01-01
In order to investigate the long-term stability on the performance of the anaerobic digestion process, a laboratory-scale continuous stirred-tank reactor (CSTR) was operated for 1100 days with sunflower harvested in a heavy metal contaminated site. Changes of microbial communities during digestion were identified using pyrosequencing. According to the results, soluble heavy metal concentrations were lower than the reported inhibitory level and the reactor performance remained stable up to OLR of 2.0g-VS/L/day at HRT of 20days. Microbial communities commonly found in anaerobic digestion for cellulosic biomass were observed and stably established with respect to the substrate. Thus, the balance of microbial metabolism was maintained appropriately and anaerobic digestion seems to be feasible for disposal of heavy metal-containing crop residues from phytoremediation sites. Copyright © 2016 Elsevier Ltd. All rights reserved.
Electrochemical processing of carbon dioxide.
Oloman, Colin; Li, Hui
2008-01-01
With respect to the negative role of carbon dioxide on our climate, it is clear that the time is ripe for the development of processes that convert CO(2) into useful products. The electroreduction of CO(2) is a prime candidate here, as the reaction at near-ambient conditions can yield organics such as formic acid, methanol, and methane. Recent laboratory work on the 100 A scale has shown that reduction of CO(2) to formate (HCO(2)(-)) may be carried out in a trickle-bed continuous electrochemical reactor under industrially viable conditions. Presuming the problems of cathode stability and formate crossover can be overcome, this type of reactor is proposed as the basis for a commercial operation. The viability of corresponding processes for electrosynthesis of formate salts and/or formic acid from CO(2) is examined here through conceptual flowsheets for two process options, each converting CO(2) at the rate of 100 tonnes per day.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capodaglio, Andrea G., E-mail: capo@unipv.it; Molognoni, Daniele; Pons, Anna Vilajeliu
Microbial Fuel Cells (MFCs) represent a still novel technology for the recovery of energy and resources through wastewater treatment. Although the technology is quite appealing, due its potential benefits, its practical application is still hampered by several drawbacks, such as systems instability (especially when attempting to scale-up reactors from laboratory prototype), internally competing microbial reactions, and limited power generation. This paper is an attempt to address several of the operational issues related to MFCs application to wastewater treatment, in particular when dealing with simultaneous organic matter and nitrogen pollution control. Reactor configuration, operational schemes, electrochemical and microbiological characterization, optimization methodsmore » and modelling strategies are reviewed and discussed with a multidisciplinary, multi-perspective approach. The conclusions drawn herein can be of practical interest for all MFC researchers dealing with domestic or industrial wastewater treatment..« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
BLanc, Katya Le; Powers, David; Joe, Jeffrey
2015-08-01
Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologiesmore » that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.« less
Monitoring pH and electric conductivity in an EBPR sequencing batch reactor.
Serralta, J; Borrás, L; Blanco, C; Barat, R; Seco, A
2004-01-01
This paper presents laboratory-scale experimentation carried out to study enhanced biological phosphorus removal. Two anaerobic aerobic (A/O) sequencing batch reactors (SBR) have been operated during more than one year to investigate the information provided by monitoring pH and electric conductivity under stationary and transient conditions. Continuous measurements of these parameters allow detecting the end of anaerobic phosphorus release, of aerobic phosphorus uptake and of initial denitrification, as well as incomplete acetic acid uptake. These results suggest the possibility of using pH and electric conductivity as control parameters to determine the length of both anaerobic and aerobic phases in an A/O SBR. More valuable information provided by monitoring pH and electric conductivity is the relation between the amount of phosphorus released and the conductivity increase observed during the anaerobic stages and which group of bacteria (heterotrophic or polyphosphate accumulating) is carrying out the denitrification process.
PROSPECT - A Precision Oscillation and Spectrum Experiment
NASA Astrophysics Data System (ADS)
Zhang, Xianyi; Prospect Collaboration
2017-01-01
PROSPECT, the PRecision Oscillation and SPECTrum Experiment, is a multi-phased short baseline reactor antineutrino experiment that aims to precisely measure the U-235 antineutrino spectrum and prob for oscillation effects involving a possible Δm2 1 eV2 scale sterile neutrino. In PROSPECT Phase-I, an optically segmented Li-6 loaded liquid scintillator detector will be deployed at at the baseline of 7-12m from the High Flux Isotope Reactor at the Oak Ridge National Laboratory. PROSPECT will measure the spectrum of U-235 to aid in resolving the unexplained inconsistency between predictive spectral models and recent experimental measurements using LEU cores, while the oscillation measurement will probe the best fit region suggested by global fitting studies within 1-year data taking. This talk will introduce the design of PROSPECT Phase-I, the discovery potential of the experiment, and the progress the collaboration has made toward realizing PROSPECT Phase-I. Department of Energy
Zimmermann, Saskia G; Wittenwiler, Mathias; Hollender, Juliane; Krauss, Martin; Ort, Christoph; Siegrist, Hansruedi; von Gunten, Urs
2011-01-01
The kinetics of oxidation and disinfection processes during ozonation in a full-scale reactor treating secondary wastewater effluent were investigated for seven ozone doses ranging from 0.21 to 1.24 g O(3) g(-1) dissolved organic carbon (DOC). Substances reacting fast with ozone, such as diclofenac or carbamazepine (k(P, O3) > 10(4) M(-1) s(-1)), were eliminated within the gas bubble column, except for the lowest ozone dose of 0.21 g O(3) g(-1) DOC. For this low dose, this could be attributed to short-circuiting within the reactor. Substances with lower ozone reactivity (k(P, O3) < 10(4) M(-1) s(-1)) were only fully eliminated for higher ozone doses. The predictions of micropollutant oxidation based on coupling reactor hydraulics with ozone chemistry and reaction kinetics were up to a factor of 2.5 higher than full-scale measurements. Monte Carlo simulations showed that the observed differences were higher than model uncertainties. The overestimation of micropollutant oxidation was attributed to a protection of micropollutants from ozone attack by the interaction with aquatic colloids. Laboratory-scale batch experiments using wastewater from the same full-scale treatment plant could predict the oxidation of slowly-reacting micropollutants on the full-scale level within a factor of 1.5. The Rct value, the experimentally determined ratio of the concentrations of hydroxyl radicals and ozone, was identified as a major contribution to this difference. An increase in the formation of bromate, a potential human carcinogen, was observed with increasing ozone doses. The final concentration for the highest ozone dose of 1.24 g O(3) g(-1) DOC was 7.5 μg L(-1), which is below the drinking water standard of 10 μg L(-1). N-Nitrosodimethylamine (NDMA) formation of up to 15 ng L(-1) was observed in the first compartment of the reactor, followed by a slight elimination during sand filtration. Assimilable organic carbon (AOC) increased up to 740 μg AOC L(-1), with no clear trend when correlated to the ozone dose, and decreased by up to 50% during post-sand filtration. The disinfection capacity of the ozone reactor was assessed to be 1-4.5 log units in terms of total cell counts (TCC) and 0.5 to 2.5 log units for Escherichia coli (E. coli). Regrowth of up to 2.5 log units during sand filtration was observed for TCC while no regrowth occurred for E. coli. E. coli inactivation could not be accurately predicted by the model approach, most likely due to shielding of E. coli by flocs. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boing, L.E.; Henley, D.R.; Manion, W.J.
1989-12-01
Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document inmore » their evaluation process. 73 refs., 26 figs., 69 tabs.« less
139. ARAIII Index of drwaings of gascooled reactor experiment buildings. ...
139. ARA-III Index of drwaings of gas-cooled reactor experiment buildings. Aerojet-general 880-area/GCRE-100. Date: February 1958. Ineel index code no. 063-9999-80-013-102505. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
NACA Zero Power Reactor Facility Hazards Summary
NASA Technical Reports Server (NTRS)
1957-01-01
The Lewis Flight Propulsion Laboratory of the National Advisory Committee for Aeronautics proposes to build a zero power research reactor facility which will be located in the laboratory grounds near Clevelaurd, Ohio. The purpose of this report is to inform the Advisory Commit tee on Reactor Safeguards of the U. S. Atomic Energy Commission in re gard to the design of the reactor facility, the cha,acteristics of th e site, and the hazards of operation at this location, The purpose o f this reactor is to perform critical experiments, to measure reactiv ity effects, to serve as a neutron source, and to serve as a training tool. The reactor facility is described. This is followed by a discu ssion of the nuclear characteristics and the control system. Site cha racteristics are then discussed followed by a discussion of the exper iments which may be conducted in the facility. The potential hazards of the facility are then considered, particularly, the maximum credib le accident. Finally, the administrative procedure is discussed.
DOE-GO-14154-1 OHIO FINAL report Velocys 30Sept08
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terry J. Mazanec
2008-09-30
The overall goal of the OHIO project was to develop a commercially viable high intensity process to produce ethylene by controlled catalytic reaction of ethane with oxygen in a microchannel reactor. Microchannel technology provides a breakthrough solution to the challenges identified in earlier development work on catalytic ethane oxidation. Heat and mass transfer limitations at the catalyst surface create destructively high temperatures that are responsible for increased production of waste products (CO, CO2, and CH4). The OHIO project focused on microscale energy and mass transfer management, designed to alleviate these transport limitations, thereby improving catalyst selectivity and saving energy-rich feedstock.more » The OHIO project evaluated ethane oxidation in small scale microchannel laboratory reactors including catalyst test units, and full commercial length single- and multi-channel reactors. Small scale catalyst and single channel results met target values for ethylene yields, demonstrating that the microchannel concept improves mass and heat transport compared to conventional reactors and results in improved ethylene yield. Earlier economic sensitivity studies of ethane oxidation processes suggested that only modest improvements were necessary to provide a system that provides significant feedstock, energy, and capital benefits compared to conventional steam ethane cracking. The key benefit derived from the OHIO process is energy savings. Ethylene production consumes more energy than any other U.S. chemical process.1 The OHIO process offers improved feedstock utilization and substantial energy savings due to a novel reaction pathway and the unique abilities of microchannel process technology to control the reaction temperature and other critical process parameters. Based on projected economic benefits of the process, the potential energy savings could reach 150 trillion Btu/yr by the year 2020, which is the equivalent of over 25 million barrels of oil.« less
Characterization of fast neutron spectrum in the TRIGA for hardness testing of electronic components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, George W.
1986-07-01
Argonne National Laboratory-West, operated by the University of Chicago, is located near Idaho Falls, ID, on the Idaho National Engineering Laboratory Site. ANL-West performs work in support of the Liquid Metal Fast Breeder Reactor Program (LMFBR) sponsored by the United States Department of Energy. The NRAD reactor is located at the Argonne Site within the Hot Fuel Examination Facility/North, a large hot cell facility where both non-destructive and destructive examinations are performed on highly irradiated reactor fuels and materials in support of the LMFBR program. The NRAD facility utilizes a 250-kW TRIGA reactor and is completely dedicated to neutron radiographymore » and the development of radiography techniques. Criticality was first achieved at the NRAD reactor in October of 1977. Since that time, a number of modifications have been implemented to improve operational efficiency and radiography production. This paper describes the modifications and changes that significantly improved operational efficiency and reliability of the reactor and the essential auxiliary reactor systems. (author)« less
ETR BUILDING, TRA642, INTERIOR. FIRST FLOOR. REACTOR IS IN CENTER ...
ETR BUILDING, TRA-642, INTERIOR. FIRST FLOOR. REACTOR IS IN CENTER OF VIEW. CAMERA FACES NORTHWEST. NOTE CRANE RAILS AND DANGLING ELECTRICAL CABLE AT UPPER PART OF VIEW FOR "MOFFETT 2 TON" CRANE. INL NEGATIVE NO. HD46-14-4. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
ETR, TRA642. ON BASEMENT FLOOR. REACTOR VESSEL WILL BE PLACED ...
ETR, TRA-642. ON BASEMENT FLOOR. REACTOR VESSEL WILL BE PLACED WITHIN THE INNER METAL FORM. WHEN CONCRETE IS POURED OUTSIDE THIS FORM, CONDUIT HOLES WILL BE PRESERVE SPACE THROUGH HOLES. INL NEGATIVE NO. 56-1507. Jack L. Anderson, Photographer, 5/8/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
REACTIVITY MEASUREMENT FACILITY. CAMERA LOOKS DOWN INTO MTR CANAL. REACTOR ...
REACTIVITY MEASUREMENT FACILITY. CAMERA LOOKS DOWN INTO MTR CANAL. REACTOR IS FUELED AS AN ETR MOCK-UP. LIGHTS DANGLE BELOW WATER LEVEL. CONTROL RODS AND OTHER APPARATUS DESCEND FROM ABOVE WATER LEVEL. INL NEGATIVE NO. 56-900. Jack L. Anderson, Photographer, 3/26/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
148. ARAIII Reactor building (ARA608) Floor plan. Shows location of ...
148. ARA-III Reactor building (ARA-608) Floor plan. Shows location of reactor, heater, and mechanical loop pits; mechanical and electrical equipment rooms; and other work areas. Aerojet-general 880-area/GCRE-608-A-1. Date: February 1958. Ineel index code no. 063-0608-00-013-102612. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
158. ARAIII Reactor building (ARA608) Secondary cooling loop and piping ...
158. ARA-III Reactor building (ARA-608) Secondary cooling loop and piping plan. This drawing was selected as a typical example of piping arrangements within reactor building. Aerojet/general 880-area/GCRE-608-P-16. Date: February 1958. INeel index code no. 063-0608-50-013-102641. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
The Ongoing Impact of the U.S. Fast Reactor Integral Experiments Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; Michael A. Pope; Harold F. McFarlane
2012-11-01
The creation of a large database of integral fast reactor physics experiments advanced nuclear science and technology in ways that were unachievable by less capital intensive and operationally challenging approaches. They enabled the compilation of integral physics benchmark data, validated (or not) analytical methods, and provided assurance of future rector designs The integral experiments performed at Argonne National Laboratory (ANL) represent decades of research performed to support fast reactor design and our understanding of neutronics behavior and reactor physics measurements. Experiments began in 1955 with the Zero Power Reactor No. 3 (ZPR-3) and terminated with the Zero Power Physics Reactormore » (ZPPR, originally the Zero Power Plutonium Reactor) in 1990 at the former ANL-West site in Idaho, which is now part of the Idaho National Laboratory (INL). Two additional critical assemblies, ZPR-6 and ZPR-9, operated at the ANL-East site in Illinois. A total of 128 fast reactor assemblies were constructed with these facilities [1]. The infrastructure and measurement capabilities are too expensive to be replicated in the modern era, making the integral database invaluable as the world pushes ahead with development of liquid metal cooled reactors.« less
Assessing pretreatment reactor scaling through empirical analysis
Lischeske, James J.; Crawford, Nathan C.; Kuhn, Erik; ...
2016-10-10
Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pretreatment effectiveness under nominally similar reaction conditions is influenced by pretreatment reactor design and scale using four different pretreatment reaction systems ranging from a 3 g batch reactor to a 10 dry-ton/d continuous reactor. The reactor systems examined were an Automated Solvent Extractor (ASE), Steam Explosion Reactor (SER), ZipperClave(R) reactor (ZCR), and Large Continuous Horizontal-Screw Reactor (LHR). To our knowledge, thismore » is the first such study performed on pretreatment reactors across a range of reaction conditions (time and temperature) and at different reactor scales. The comparative pretreatment performance results obtained for each reactor system were used to develop response surface models for total xylose yield after pretreatment and total sugar yield after pretreatment followed by enzymatic hydrolysis. Near- and very-near-optimal regions were defined as the set of conditions that the model identified as producing yields within one and two standard deviations of the optimum yield. Optimal conditions identified in the smallest-scale system (the ASE) were within the near-optimal region of the largest scale reactor system evaluated. A reaction severity factor modeling approach was shown to inadequately describe the optimal conditions in the ASE, incorrectly identifying a large set of sub-optimal conditions (as defined by the RSM) as optimal. The maximum total sugar yields for the ASE and LHR were 95%, while 89% was the optimum observed in the ZipperClave. The optimum condition identified using the automated and less costly to operate ASE system was within the very-near-optimal space for the total xylose yield of both the ZCR and the LHR, and was within the near-optimal space for total sugar yield for the LHR. This indicates that the ASE is a good tool for cost effectively finding near-optimal conditions for operating pilot-scale systems, which may be used as starting points for further optimization. Additionally, using a severity-factor approach to optimization was found to be inadequate compared to a multivariate optimization method. As a result, the ASE and the LHR were able to enable significantly higher total sugar yields after enzymatic hydrolysis relative to the ZCR, despite having similar optimal conditions and total xylose yields. This underscores the importance of incorporating mechanical disruption into pretreatment reactor designs to achieve high enzymatic digestibilities.« less
Assessing pretreatment reactor scaling through empirical analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lischeske, James J.; Crawford, Nathan C.; Kuhn, Erik
Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pretreatment effectiveness under nominally similar reaction conditions is influenced by pretreatment reactor design and scale using four different pretreatment reaction systems ranging from a 3 g batch reactor to a 10 dry-ton/d continuous reactor. The reactor systems examined were an Automated Solvent Extractor (ASE), Steam Explosion Reactor (SER), ZipperClave(R) reactor (ZCR), and Large Continuous Horizontal-Screw Reactor (LHR). To our knowledge, thismore » is the first such study performed on pretreatment reactors across a range of reaction conditions (time and temperature) and at different reactor scales. The comparative pretreatment performance results obtained for each reactor system were used to develop response surface models for total xylose yield after pretreatment and total sugar yield after pretreatment followed by enzymatic hydrolysis. Near- and very-near-optimal regions were defined as the set of conditions that the model identified as producing yields within one and two standard deviations of the optimum yield. Optimal conditions identified in the smallest-scale system (the ASE) were within the near-optimal region of the largest scale reactor system evaluated. A reaction severity factor modeling approach was shown to inadequately describe the optimal conditions in the ASE, incorrectly identifying a large set of sub-optimal conditions (as defined by the RSM) as optimal. The maximum total sugar yields for the ASE and LHR were 95%, while 89% was the optimum observed in the ZipperClave. The optimum condition identified using the automated and less costly to operate ASE system was within the very-near-optimal space for the total xylose yield of both the ZCR and the LHR, and was within the near-optimal space for total sugar yield for the LHR. This indicates that the ASE is a good tool for cost effectively finding near-optimal conditions for operating pilot-scale systems, which may be used as starting points for further optimization. Additionally, using a severity-factor approach to optimization was found to be inadequate compared to a multivariate optimization method. As a result, the ASE and the LHR were able to enable significantly higher total sugar yields after enzymatic hydrolysis relative to the ZCR, despite having similar optimal conditions and total xylose yields. This underscores the importance of incorporating mechanical disruption into pretreatment reactor designs to achieve high enzymatic digestibilities.« less
PBF Reactor Building (PER620). After lowering reactor vessel onto blocks, ...
PBF Reactor Building (PER-620). After lowering reactor vessel onto blocks, it is rolled on logs into PBF. Metal framework under vessel is handling device. Various penetrations in reactor bottom were for instrumentation, poison injection, drains. Large one, below center "manhole" was for primary coolant. Photographer: Larry Page. Date: February 13, 1970. INEEL negative no. 70-736 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
In-reactor performance of LWR-type tritium target rods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanning, D.D.; Paxton, M.M.; Crumbaugh, L.
Pacific Northwest Laboratory has conducted several 1-yr irradiation tests of light water reactor-type tritium target rods. These tests have been sponsored by the U.S. Department of Energy's Office of New Production Reactors. The first test, designated water capsule-1 (WC-1), was conducted in the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory from November 1989 to December 1990. The test vehicle contained a single 4-ft target rod within a pressurized water capsule. The capsule maintained the rod at pressurized water reactor (PWR)-type water temperature and pressure conditions. Posttest nondestructive examinations of the WC-1 rod involved visual examinations, dimensional checks,more » gamma scanning, and neutron radiography. The results indicate that the rod maintained the integrity of its pressure seal and was otherwise unaltered both mechanically and dimensionally by its irradiation and posttest handling.« less
Bond, Philip L.; Erhart, Robert; Wagner, Michael; Keller, Jürg; Blackall, Linda L.
1999-01-01
To investigate the bacteria that are important to phosphorus (P) removal in activated sludge, microbial populations were analyzed during the operation of a laboratory-scale reactor with various P removal performances. The bacterial population structure, analyzed by fluorescence in situ hybridization (FISH) with oligonucleotides probes complementary to regions of the 16S and 23S rRNAs, was associated with the P removal performance of the reactor. At one stage of the reactor operation, chemical characterization revealed that extremely poor P removal was occurring. However, like in typical P-removing sludges, complete anaerobic uptake of the carbon substrate occurred. Bacteria inhibiting P removal overwhelmed the reactor, and according to FISH, bacteria of the β subclass of the class Proteobacteria other than β-1 or β-2 were dominant in the sludge (58% of the population). Changes made to the operation of the reactor led to the development of a biomass population with an extremely good P removal capacity. The biochemical transformations observed in this sludge were characteristic of typical P-removing activated sludge. The microbial population analysis of the P-removing sludge indicated that bacteria of the β-2 subclass of the class Proteobacteria and actinobacteria were dominant (55 and 35%, respectively), therefore implicating bacteria from these groups in high-performance P removal. The changes in operation that led to the improved performance of the reactor included allowing the pH to rise during the anaerobic period, which promoted anaerobic phosphate release and possibly caused selection against non-phosphate-removing bacteria. PMID:10473419
Coal Technology Program progress report, March 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Shakedown tests of the bench-scale hydrocarbonization system were successfully completed. Wyodak coal was fed to the reactor at a rate of 9.9 lb/hr where it was hydrocarbonized at 1050/sup 0/F under 20-atm hydrogen pressure. Laboratory results including settling tests, bench-scale settling tests, and sample ageing tests were continued. Two of ten compounds tested with the laboratory-scale apparatus were effective in increasing settling rates of solids in Solvent Refined Coal unfiltered oil, but bench-scale tests failed to show any improvements in the settling rate over the untreated SRC-UFO. Analytical chemistry efforts involved the removal and concentration of organic components in by-productmore » waters from fossil fuel conversion processes. A sephadex gel is being used to achieve hydrophilic-lipophilic separations in organic mixtures as a step in the analysis of fossil fuel related materials. Engineering Evaluations of the Synthiol and Hydrocarbonization Processes continued with the Synthiol process flow diagrams, heat and material balances, and utilities requirements being completed. Inspection techniques were developed for wear- and process-resistant coatings. Orders were placed for the Incoloy 800 tubing and a smaller quantity of Inconel 600 tubing for the tube matrix in the coal-fueled MIUS fluidized bed. An engineering feasibility review of General Atomic's proposal to ERDA for a bench-scale test program on thermochemical water splitting for hydrogen production was completed. (auth)« less
VIEW OF STEEL PLATE DOOR IN NUCLEAR PHYSICS LABORATORY, BETWEEN ...
VIEW OF STEEL PLATE DOOR IN NUCLEAR PHYSICS LABORATORY, BETWEEN LABORATORY AND SP-SE REACTOR ROOM,LEVEL -15, LOOKING NORTHWEST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
ERIC Educational Resources Information Center
Taipa, M. A^ngela; Azevedo, Ana M.; Grilo, Anto´nio L.; Couto, Pedro T.; Ferreira, Filipe A. G.; Fortuna, Ana R. M.; Pinto, Ine^s F.; Santos, Rafael M.; Santos, Susana B.
2015-01-01
An integrative laboratory study addressing fundamentals of enzyme catalysis and their application to reactors operation and modeling is presented. Invertase, a ß-fructofuranosidase that catalyses the hydrolysis of sucrose, is used as the model enzyme at optimal conditions (pH 4.5 and 45 °C). The experimental work involves 3 h of laboratory time…
ETR, TRA642. BASEMENT SPACE ALLOCATION FOR EXPERIMENTERS CA. 1966, SOUTHEAST ...
ETR, TRA-642. BASEMENT SPACE ALLOCATION FOR EXPERIMENTERS CA. 1966, SOUTHEAST QUADRANT OF FLOOR. WESTINGHOUSE ATOMIC POWER DIVISION (WAPD) AND BETTIS ATOMIC POWER LABORATORY (BAPL) CONSUME MOST OF THE QUADRANT. PHILLIPS PETROLEUM COMPANY ETR-E-2256, 12/1966. INL INDEX NO. 532-0642-00-706-021256, REV. F. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Improved Pyrolysis Micro reactor Design via Computational Fluid Dynamics Simulations
2017-05-23
Dynamics Simulations Ghanshyam L. Vaghjiani Air Force Research Laboratory (AFMC) AFRL/RQRS 1 Ara Drive Edwards AFB, CA 93524-7013 Air Force...Aerospace Systems Directorate Air Force Research Laboratory AFRL/RQRS 1 Ara Road Edwards AFB, CA 93524 *Email: ghanshyam.vaghjiani@us.af.mil IMPROVED...PYROLYSIS MICRO-REACTOR DESIGN VIA COMPUTATIONAL FLUID DYNAMICS SIMULATIONS Ghanshyam L. Vaghjiani* DISTRIBUTION A: Approved for public release
Post-irradiation examination of prototype Al-64 wt% U{sub 3}Si{sub 2} fuel rods from NRU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sears, D.F.; Primeau, M.F.; Buchanan, C.
1997-08-01
Three prototype fuel rods containing Al-64 wt% U{sub 3}Si{sub 2} (3.15 gU/cm{sup 3}) have been irradiated to their design burnup in the NRU reactor without incident. The fuel was fabricated using production-scale equipment and processes previously developed for Al-U{sub 3}Si fuel fabrication at Chalk River Laboratories, and special equipment developed for U{sub 3}Si{sub 2} powder production and handling. The rods were irradiated in NRU up to 87 at% U-235 burnup under typical driver fuel conditions; i.e., nominal coolant inlet temperature 37{degrees}C, inlet pressure 654 kPa, mass flow 12.4 L/s, and element linear power ratings up to 73 kW/m. Post-irradiation examinationsmore » showed that the fuel elements survived the irradiation without defects. Fuel core diametral increases and volumetric swelling were significantly lower than that of Al-61 wt% U{sub 3}Si fuel irradiated under similar conditions. This irradiation demonstrated that the fabrication techniques are adequate for full-scale fuel manufacture, and qualified the fuel for use in AECL`s research reactors.« less
87. ARAIII. GCRE reactor building (ARA608) Mechanical equipment room. Utility ...
87. ARA-III. GCRE reactor building (ARA-608) Mechanical equipment room. Utility air receiver, dryer, and compressor sit on their foundations prior to grouting. December 22, 1958. Ineel photo no. 58-6429. Photographer: Ken Mansfield. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
65. ARAII. Interior view of SL1 reactor building control piping ...
65. ARA-II. Interior view of SL-1 reactor building control piping for water purification system. On operating floor of building. March 21, 1958. Ineel photo no. 58-1360. Photographer: Jack L. Anderson. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
154. ARAIII Reactor building (ARA608) Foundation sections and details. Shows ...
154. ARA-III Reactor building (ARA-608) Foundation sections and details. Shows profiles of pits. Aerojet-general 888-area/GCRE-608-S-2. Date: February 1958. Ineel index code no. 062-0608-60-013-102654. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
153. ARAIII Reactor building (ARA608) Foundation plan. Aerojetgeneral 880area/GCRE608S1. Date: ...
153. ARA-III Reactor building (ARA-608) Foundation plan. Aerojet-general 880-area/GCRE-608-S-1. Date: February 1958. Ineel index code no. 063-0608-60-013-102653. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
152. ARAIII Reactor building (ARA608) Details of heater and piping ...
152. ARA-III Reactor building (ARA-608) Details of heater and piping pits, including instrumentation plan. Aerojet-general 880-area/GCRE-608-T-18. Date: November 1958. Ineel index code no. 063-0608-25-013-102677. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
149. ARAIII Reactor building (ARA608) Exterior elevations, showing north, south, ...
149. ARA-III Reactor building (ARA-608) Exterior elevations, showing north, south, east, and west. Aerojet-general 880-area/GCRE-608-A-6. Date: February 1958. Ineel index code no. 063-0608-00-013-102615. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. L. Davis; D. L. Knudson; J. L. Rempe
New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. Such materials can undergo significant dimensional and physical changes during high temperature irradiations. In order to accurately predict these changes, real-time data must be obtained under prototypic irradiation conditions for model development and validation. To provide such data, researchers at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL) are developing several instrumented test rigs to obtain data real-time from specimens irradiated in well-controlled pressurized water reactor (PWR) coolant conditions in the Advanced Test Reactor (ATR). This paper reports the status ofmore » INL efforts to develop and evaluate prototype test rigs that rely on Linear Variable Differential Transformers (LVDTs) in laboratory settings. Although similar LVDT-based test rigs have been deployed in lower flux Materials Testing Reactors (MTRs), this effort is unique because it relies on robust LVDTs that can withstand higher temperatures and higher fluxes than often found in other MTR irradiations. Specifically, the test rigs are designed for detecting changes in length and diameter of specimens irradiated in ATR PWR loops. Once implemented, these test rigs will provide ATR users with unique capabilities that are sorely needed to obtain measurements such as elongation caused by thermal expansion and/or creep loading and diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.« less
PBF Reactor Building (PER620). Camera faces south toward verticallift door, ...
PBF Reactor Building (PER-620). Camera faces south toward vertical-lift door, which is closed. Note crane and its trolley positioned near door; its rails along side walls. Reactor vessel and lifting beams are positioned above reactor pit. Photographer: John Capek. Date: January 9, 1970. INEEL negative no. 70-132 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
SPERTI. Detail view of Reactor Pit Building (PER605) and Instrument ...
SPERT-I. Detail view of Reactor Pit Building (PER-605) and Instrument Cell (PER-606). Earth shielding covers side of Cell Building next to reactor. Instrumentation required protection from radiation emitted during reactor operation. Photographer: R.G. Larsen. Date: May 20, 1955. INEEL negative no. 55-1290 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven R. Sherman
Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/ormore » to comply with decommissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidified carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, U.S.A. This report is Part 1 of a two-part report. It is divided into three sections. The first section describes the chemistry of carbon dioxide-water-sodium reactions. The second section covers the laboratory experiments that were conducted in order to develop the residual sodium deactivation process. The third section discusses the application of the deactivation process to the treatment of residual sodium within the EBR-II secondary sodium cooling system. Part 2 of the report, under separate cover, describes the application of the technique to residual sodium treatment within the EBR-II primary sodium cooling system and related systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinclair, Michael B.; Caldwell, Sara; Jones, Howland D. T.
2005-12-01
Basic research is needed to better understand the potential risk of dangerous biological agents that are unintentionally or intentionally introduced into a water distribution system. We report on our capabilities to conduct such studies and our preliminary investigations. In 2004, the Biofilms Laboratory was initiated for the purpose of conducting applied research related to biofilms with a focus on application, application testing and system-scale research. Capabilities within the laboratory are the ability to grow biofilms formed from known bacteria or biofilms from drinking water. Biofilms can be grown quickly in drip-flow reactors or under conditions more analogous to drinking-water distributionmore » systems in annular reactors. Biofilms can be assessed through standard microbiological techniques (i .e, aerobic plate counts) or with various visualization techniques including epifluorescent and confocal laser scanning microscopy and confocal fluorescence hyperspectral imaging with multivariate analysis. We have demonstrated the ability to grow reproducible Pseudomonas fluorescens biofilms in the annular reactor with plate counts on the order of 10{sup 5} and 10{sup 6} CFU/cm{sup 2}. Stationary phase growth is typically reached 5 to 10 days after inoculation. We have also conducted a series of pathogen-introduction experiments, where we have observed that both polystyrene microspheres and Bacillus cereus (as a surrogate for B. anthracis) stay incorporated in the biofilms for the duration of our experiments, which lasted as long as 36 days. These results indicated that biofilms may act as a safe harbor for bio-pathogens in drinking water systems, making it difficult to decontaminate the systems.« less
Alternative Fuels Research Laboratory
NASA Technical Reports Server (NTRS)
Surgenor, Angela D.; Klettlinger, Jennifer L.; Nakley, Leah M.; Yen, Chia H.
2012-01-01
NASA Glenn has invested over $1.5 million in engineering, and infrastructure upgrades to renovate an existing test facility at the NASA Glenn Research Center (GRC), which is now being used as an Alternative Fuels Laboratory. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch (F-T) synthesis and thermal stability testing. This effort is supported by the NASA Fundamental Aeronautics Subsonic Fixed Wing project. The purpose of this test facility is to conduct bench scale F-T catalyst screening experiments. These experiments require the use of a synthesis gas feedstock, which will enable the investigation of F-T reaction kinetics, product yields and hydrocarbon distributions. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor for catalyst activation studies. Product gas composition and performance data can be continuously obtained with an automated gas sampling system, which directly connects the reactors to a micro-gas chromatograph (micro GC). Liquid and molten product samples are collected intermittently and are analyzed by injecting as a diluted sample into designated gas chromatograph units. The test facility also has the capability of performing thermal stability experiments of alternative aviation fuels with the use of a Hot Liquid Process Simulator (HLPS) (Ref. 1) in accordance to ASTM D 3241 "Thermal Oxidation Stability of Aviation Fuels" (JFTOT method) (Ref. 2). An Ellipsometer will be used to study fuel fouling thicknesses on heated tubes from the HLPS experiments. A detailed overview of the test facility systems and capabilities are described in this paper.
Kim, Jae-Hyun; Kim, Song-Bae; Lee, Sang-Hyup; Choi, Jae-Woo
2018-03-01
The aim of this study was to apply iron oxide nanoparticle-chitosan (ION-chitosan) composites to phosphate removal from natural water collected from the Seoho Stream in Suwon, Republic of Korea. Laboratory batch experiments showed that phosphate removal by the ION-chitosan composites was not sensitive to pH changes between pH values of 5.0 and 9.0. During six cycles of adsorption-desorption, the composites could be successfully regenerated with 5 mM NaOH solution and reused for phosphate removal. Laboratory fixed-bed column experiments (column height = 10 and 20 cm, inner diameter = 2.5 cm, flow rate = 8.18 and 16.36 mL/min) demonstrated that the composites could be successfully applied for phosphate removal under dynamic flow conditions. A pilot-scale field experiment was performed in a pilot plant, which was mainly composed of chemical reactor/dissolved air flotation and an adsorption tower, built nearby the Seoho Stream. The natural water was pumped from the Seoho Stream into the pilot plant, passed through the chemical reactor/dissolved air flotation process, and then introduced into the adsorption tower (height = 100 cm, inner diameter = 45 cm, flow rate = 7.05 ± 0.18 L/min) for phosphate removal via the composites (composite volume = 80 L, composite weight = 85.74 kg). During monitoring of the adsorption tower (33 days), the influent total phosphorus (T-P) concentration was in the range of 0.020-0.046 mgP/L, whereas the effluent T-P concentration was in the range of 0.010-0.028 mgP/L. The percent removal of T-P in the adsorption tower was 52.3% with a phosphate removal capacity of 0.059 mgP/g.
Conversion of municipal solid waste to hydrogen
NASA Astrophysics Data System (ADS)
Richardson, J. H.; Rogers, R. S.; Thorsness, C. B.
1995-04-01
LLNL and Texaco are cooperatively developing a physical and chemical treatment method for the conversion of municipal solid waste (MSW) to hydrogen via the steps of hydrothermal pretreatment, gasification and purification. LLNL's focus has been on hydrothermal pretreatment of MSW in order to prepare a slurry of suitable viscosity and heating value to allow efficient and economical gasification and hydrogen production. The project has evolved along 3 parallel paths: laboratory scale experiments, pilot scale processing, and process modeling. Initial laboratory-scale MSW treatment results (e.g., viscosity, slurry solids content) over a range of temperatures and times with newspaper and plastics will be presented. Viscosity measurements have been correlated with results obtained at MRL. A hydrothermal treatment pilot facility has been rented from Texaco and is being reconfigured at LLNL; the status of that facility and plans for initial runs will be described. Several different operational scenarios have been modeled. Steady state processes have been modeled with ASPEN PLUS; consideration of steam injection in a batch mode was handled using continuous process modules. A transient model derived from a general purpose packed bed model is being developed which can examine the aspects of steam heating inside the hydrothermal reactor vessel. These models have been applied to pilot and commercial scale scenarios as a function of MSW input parameters and have been used to outline initial overall economic trends. Part of the modeling, an overview of the MSW gasification process and the modeling of the MSW as a process material, was completed by a DOE SERS (Science and Engineering Research Semester) student. The ultimate programmatic goal is the technical demonstration of the gasification of MSW to hydrogen at the laboratory and pilot scale and the economic analysis of the commercial feasibility of such a process.
Remmas, Nikolaos; Ntougias, Spyridon; Chatzopoulou, Marianna; Melidis, Paraschos
2018-03-29
Despite the fact that biological nitrogen removal (BNR) process has been studied in detail in laboratory- and pilot-scale sequencing batch reactor (SBR) systems treating landfill leachate, a limited number of research works have been performed in full-scale SBR plants regarding nitrification and denitrification. In the current study, a full-scale twin SBR system in series of 700 m 3 (350 m 3 each) treating medium-age landfill leachate was evaluated in terms of its carbon and nitrogen removal efficiency in the absence and presence of external carbon source, i.e., glycerol from biodiesel production. Both biodegradable organic carbon and ammonia were highly oxidized [biochemical oxygen demand (BOD 5 ) and total Kjehldahl nitrogen (TKN) removal efficiencies above 90%], whereas chemical oxygen demand (COD) removal efficiency was slightly above 40%, which is within the range reported in the literature for pilot-scale SBRs. As the consequence of the high recalcitrant organic fraction of the landfill leachate, dissimilatory nitrate reduction was restricted in the absence of crude glycerol, although denitrification was improved by electron donor addition, resulting in TN removal efficiencies above 70%. Experimental data revealed that the second SBR negligibly contributed to BNR process, since carbon and ammonia oxidation completion was achieved in the first SBR. On the other hand, the low VSS/SS ratio, due to the lack of primary sedimentation, highly improved sludge settleability, resulting in sludge volume indices (SVI) below 30 mL g -1 .
Paul S Wills, PhD; Pfeiffer, Timothy; Baptiste, Richard; Watten, Barnaby J.
2016-01-01
Control of alkalinity, dissolved carbon dioxide (dCO2), and pH are critical in marine recirculating aquaculture systems (RAS) in order to maintain health and maximize growth. A small-scale prototype aragonite sand filled fluidized bed reactor was tested under varying conditions of alkalinity and dCO2 to develop and model the response of dCO2 across the reactor. A large-scale reactor was then incorporated into an operating marine recirculating aquaculture system to observe the reactor as the system moved toward equilibrium. The relationship between alkalinity dCO2, and pH across the reactor are described by multiple regression equations. The change in dCO2 across the small-scale reactor indicated a strong likelihood that an equilibrium alkalinity would be maintained by using a fluidized bed aragonite reactor. The large-scale reactor verified this observation and established equilibrium at an alkalinity of approximately 135 mg/L as CaCO3, dCO2 of 9 mg/L, and a pH of 7.0 within 4 days that was stable during a 14 day test period. The fluidized bed aragonite reactor has the potential to simplify alkalinity and pH control, and aid in dCO2 control in RAS design and operation. Aragonite sand, purchased in bulk, is less expensive than sodium bicarbonate and could reduce overall operating production costs.
Blatchley, E R; Shen, C; Scheible, O K; Robinson, J P; Ragheb, K; Bergstrom, D E; Rokjer, D
2008-02-01
Dyed microspheres have been developed as a new method for validation of ultraviolet (UV) reactor systems. When properly applied, dyed microspheres allow measurement of the UV dose distribution delivered by a photochemical reactor for a given operating condition. Prior to this research, dyed microspheres had only been applied to a bench-scale UV reactor. The goal of this research was to extend the application of dyed microspheres to large-scale reactors. Dyed microsphere tests were conducted on two prototype large-scale UV reactors at the UV Validation and Research Center of New York (UV Center) in Johnstown, NY. All microsphere tests were conducted under conditions that had been used previously in biodosimetry experiments involving two challenge bacteriophage: MS2 and Qbeta. Numerical simulations based on computational fluid dynamics and irradiance field modeling were also performed for the same set of operating conditions used in the microspheres assays. Microsphere tests on the first reactor illustrated difficulties in sample collection and discrimination of microspheres against ambient particles. Changes in sample collection and work-up were implemented in tests conducted on the second reactor that allowed for improvements in microsphere capture and discrimination against the background. Under these conditions, estimates of the UV dose distribution from the microspheres assay were consistent with numerical simulations and the results of biodosimetry, using both challenge organisms. The combined application of dyed microspheres, biodosimetry, and numerical simulation offers the potential to provide a more in-depth description of reactor performance than any of these methods individually, or in combination. This approach also has the potential to substantially reduce uncertainties in reactor validation, thereby leading to better understanding of reactor performance, improvements in reactor design, and decreases in reactor capital and operating costs.
NASA Astrophysics Data System (ADS)
Balooch, Mehdi; Olander, Donald R.; Terrani, Kurt A.; Hosemann, Peter; Casella, Andrew M.; Senor, David J.; Buck, Edgar C.
2017-04-01
A novel light water reactor fuel has been designed and fabricated at the University of California, Berkeley; irradiated at the Massachusetts Institute of Technology Reactor; and examined within the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. This fuel consists of U0.17ZrH1.6 fuel pellets core-drilled from TRIGA reactor fuel elements that are clad in Zircaloy-2 and bonded with lead-bismuth eutectic. The performance evaluation and post irradiation examination of this fuel are presented here.
PBF Reactor Building (PER620). Camera on main floor faces south ...
PBF Reactor Building (PER-620). Camera on main floor faces south (open) doorway. In foreground is canal gate, lined with stainless steel and painted with protective coatings. Reactor pit is round with protective coatings. Reactor put is round form discernible beyond. Lifting beams and rigging are in place for a load test before reactor vessel arrives. Photographer: John Capek. Date: January 26, 1970. INEEL negative no. 70-347 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Aluminum Carbothermic Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruno, Marshall J.
2005-03-31
This report documents the non-proprietary research and development conducted on the Aluminum Carbothermic Technology (ACT) project from contract inception on July 01, 2000 to termination on December 31, 2004. The objectives of the program were to demonstrate the technical and economic feasibility of a new carbothermic process for producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). The scope of the program ranged from fundamental research through small scale laboratory experiments (65 kW power input) to larger scale test modules at up to 1600 kW power input. The tasks included work on four components of the process, Stagesmore » 1 and 2 of the reactor, vapor recovery and metal alloy decarbonization; development of computer models; and economic analyses of capital and operating costs. Justification for developing a new, carbothermic route to aluminum production is defined by the potential benefits in reduced energy, lower costs and more favorable environmental characteristics than the conventional Hall-Heroult process presently used by the industry. The estimated metrics for these advantages include energy rates at approximately 10 kWh/kg Al (versus over 13 kWh/kg Al for Hall-Heroult), capital costs as low as $1250 per MTY (versus 4,000 per MTY for Hall-Heroult), operating cost reductions of over 10%, and up to 37% reduction in CO2 emissions for fossil-fuel power plants. Realization of these benefits would be critical to sustaining the US aluminum industries position as a global leader in primary aluminum production. One very attractive incentive for ARP is its perceived ability to cost effectively produce metal over a range of smelter sizes, not feasible for Hall-Heroult plants which must be large, 240,000 TPY or more, to be economical. Lower capacity stand alone carbothermic smelters could be utilized to supply molten metal at fabrication facilities similar to the mini-mill concept employed by the steel industry. Major accomplishments for the program include definition of the system thermo-chemistry, demonstration of reactor stage 1, development of reactor stage 2 critical components in a 500 kW module, experimental determination of the vapor recovery reactor fundamentals, detailed design and installation of an advanced stage 1/vapor recovery reactor, feasibility of efficient separation of Al-C metal alloy product, updated capital and operating cost estimates, and development of computer models for all steps of the Advanced Reactor Process.« less
NASA Astrophysics Data System (ADS)
Cole, Jonathan; Zhang, Yao; Liu, Tianqi; Liu, Chang-jun; Mohan Sankaran, R.
2017-08-01
Scale-up of non-thermal atmospheric-pressure plasma reactors for the synthesis of nanoparticles by homogeneous nucleation is challenging because the active volume is typically reduced to facilitate gas breakdown, enhance discharge stability, and limit particle size and agglomeration, but thus limits throughput. Here, we introduce a dielectric barrier discharge reactor consisting of a coaxial electrode geometry for nanoparticle production that enables a simple scale-up strategy whereby increasing the outer and inner electrode diameters, the plasma volume is increased approximately linearly, while maintaining a sufficiently small electrode gap to maintain the electric field strength. We show with two test reactors that for a given residence time, the nanoparticle production rate increases linearly with volume over a range of precursor concentrations, while having minimal effect on the shape of the particle size distribution. However, our study also reveals that increasing the total gas flow rate in a smaller volume reactor leads to an enhancement of precursor conversion and a comparable production rate to a larger volume reactor. These results suggest that scale-up requires better understanding of the influence of reactor geometry on particle growth dynamics and may not always be a simple function of reactor volume.
PBF Reactor Building (PER620). Camera is in cab of electricpowered ...
PBF Reactor Building (PER-620). Camera is in cab of electric-powered rail crane and facing east. Reactor pit and storage canal have been shaped. Floors for wings on east and west side are above and below reactor in view. Photographer: Larry Page. Date: August 23, 1967. INEEL negative no. 67-4403 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
ENGINEERING TEST REACTOR (ETR) BUILDING, TRA642. CONTEXTUAL VIEW, CAMERA FACING ...
ENGINEERING TEST REACTOR (ETR) BUILDING, TRA-642. CONTEXTUAL VIEW, CAMERA FACING EAST. VERTICAL METAL SIDING. ROOF IS SLIGHTLY ELEVATED AT CENTER LINE FOR DRAINAGE. WEST SIDE OF ETR COMPRESSOR BUILDING, TRA-643, PROJECTS TOWARD LEFT AT FAR END OF ETR BUILDING. INL NEGATIVE NO. HD46-37-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
PBF Reactor Building (PER620). Camera in second basement near subpile ...
PBF Reactor Building (PER-620). Camera in second basement near sub-pile room (directly below reactor vessel). Door and penetrations lead to sub-pile room. Date: August 15, 1969. Photographer: Larry Page. INEEL negative no. 69-4310 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
90. ARAIII. GCRE reactor building (ARA608) mechanical loop pit. Shows ...
90. ARA-III. GCRE reactor building (ARA-608) mechanical loop pit. Shows nitrogen gas compressor in foreground, piping installations on walls of pit, and other details. February 24, 1959. Ineel photo no. 59-880. Photographer: Ken Mansfield. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
LOFT. Reactor arrives at containment building (TAN650), now being pushed ...
LOFT. Reactor arrives at containment building (TAN-650), now being pushed by locomotive. Camera facing northerly. Note "Hello Dolly" and "PWR MTA No. 1" (pressurized water reactor mobile test assembly) signs. Date: 1973. INEEL negative no. 73-3710 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
77 FR 42771 - License Renewal for the Dow Chemical TRIGA Research Reactor
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-20
... Chemical Company in Midland, MI and is a part of the Analytical Sciences Laboratory. The reactor is housed...-Radiological Impacts The Dow TRIGA Research Reactor core is cooled by a light water primary system consisting... provided by the volume of primary coolant allows several hours of full-power operation without any...
ETR BUILDING, TRA642, INTERIOR. CONSOLE FLOOR, SOUTH HALF. SOUTH SIDE ...
ETR BUILDING, TRA-642, INTERIOR. CONSOLE FLOOR, SOUTH HALF. SOUTH SIDE OF ETR REACTOR, CAMERA FACING NORTH. CABINET CONTAINING "NUCLEAR INSTRUMENT SYSTEMS" IS RESTRICTED. INL NEGATIVE NO. HD46-18-4. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
LOFT. Reactor apparatus leaves A&M building (TAN607). Shielded locomotive has ...
LOFT. Reactor apparatus leaves A&M building (TAN-607). Shielded locomotive has aerojet logo, which replaced old general electric logo, pulls reactor from assembly shop on dolly. Camera facing easterly. Date: 1973. INEEL negative no. 73-3700 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
FAST CHOPPER BUILDING, TRA665. CONTEXTUAL VIEW: CHOPPER BUILDING IN CENTER. ...
FAST CHOPPER BUILDING, TRA-665. CONTEXTUAL VIEW: CHOPPER BUILDING IN CENTER. MTR REACTOR SERVICES BUILDING,TRA-635, TO LEFT; MTR BUILDING TO RIGHT. CAMERA FACING WEST. INL NEGATIVE NO. HD42-1. Mike Crane, Photographer, 3/2004 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
REACTOR PHYSICS QUARTERLY REPORT JANUARY, FEBRUARY, MARCH 1970
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmid, L. C.; Clayton, E. D.; Heineman, R. E.
1970-05-01
The objective of the Reactor Physics Quarterly Report is to inform the scientific community in a timely manner of the technical progress made on the many phases of reactor physics work within the laboratory. The report contains brief technical discussions of accomplishments in all areas where significant progress has been made during the quarter.
Hu, Shihu; Zeng, Raymond J.; Haroon, Mohamed F.; Keller, Jurg; Lant, Paul A.; Tyson, Gene W.; Yuan, Zhiguo
2015-01-01
This study investigates interactions between recently identified denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (anammox) processes in controlled anoxic laboratory reactors. Two reactors were seeded with the same inocula containing DAMO organisms Candidatus Methanoperedens nitroreducens and Candidatus Methylomirabilis oxyfera, and anammox organism Candidatus Kuenenia stuttgartiensis. Both were fed with ammonium and methane, but one was also fed with nitrate and the other with nitrite, providing anoxic environments with different electron acceptors. After steady state reached in several months, the DAMO process became solely/primarily responsible for nitrate reduction while the anammox process became solely responsible for nitrite reduction in both reactors. 16S rRNA gene amplicon sequencing showed that the nitrate-driven DAMO organism M. nitroreducens dominated both the nitrate-fed (~70%) and the nitrite-fed (~26%) reactors, while the nitrite-driven DAMO organism M. oxyfera disappeared in both communities. The elimination of M. oxyfera from both reactors was likely the results of this organism being outcompeted by anammox bacteria for nitrite. K. stuttgartiensis was detected at relatively low levels (1–3%) in both reactors. PMID:25732131
Xiong, Qingang; Ramirez, Emilio; Pannala, Sreekanth; ...
2015-10-09
The impact of bubbling bed hydrodynamics on temporal variations in the exit tar yield for biomass fast pyrolysis was investigated using computational simulations of an experimental laboratory-scale reactor. A multi-fluid computational fluid dynamics model was employed to simulate the differential conservation equations in the reactor, and this was combined with a multi-component, multi-step pyrolysis kinetics scheme for biomass to account for chemical reactions. The predicted mean tar yields at the reactor exit appear to match corresponding experimental observations. Parametric studies predicted that increasing the fluidization velocity should improve the mean tar yield but increase its temporal variations. Increases in themore » mean tar yield coincide with reducing the diameter of sand particles or increasing the initial sand bed height. However, trends in tar yield variability are more complex than the trends in mean yield. The standard deviation in tar yield reaches a maximum with changes in sand particle size. As a result, the standard deviation in tar yield increases with the increases in initial bed height in freely bubbling state, while reaches a maximum in slugging state.« less
Treatment of spent wash in anaerobic mesophilic suspended growth reactor (AMSGR).
Banu, J Rajesh; Kaliappan, S; Rajkumar, M; Beck, Dieter
2006-01-01
Approximately 400 KL of spent wash or vinasse per annum is generated at an average COD concentration of 100,000 mg/l, by over 250 distilleries in India. There is an urgent need to develop, assess and use ecofriendly methods for the disposal of this high strength wastewater. Therefore, an attempt was made to investigate a few aspects of anaerobic digestion of spent wash collected from a distillery. The study was carried out in a 4 L laboratory scale anaerobic mesophilic suspended growth reactor. After the successful startup, the organic loading was increased stepwise to assess the performance of the reactor. During the study period, biogas generated was recorded and the maximum gas generated was found to be 16.9 L at an Organic Loading Rate (OLR) of 38 g COD/L. A 500% increase in the Volatile Fatty Acid (VFA) concentration (2150 mg/L) was observed, when the OLR was increased from 38 to 39 g COD/L. During the souring phase the removal of COD, Total Solids (TS) and Volatile Solids (VS) were in the order of 52%, 40% and 46% respectively. The methane content in the biogas varied from 65% to 75%.
Decommissioning of the High Flux Beam Reactor at Brookhaven National Laboratory.
Hu, Jih-Perng; Reciniello, Richard N; Holden, Norman E
2012-08-01
The High Flux Beam Reactor (HFBR) at the Brookhaven National Laboratory was a heavy-water cooled and moderated reactor that achieved criticality on 31 October 1965. It operated at a power level of 40 mega-watts. An equipment upgrade in 1982 allowed operations at 60 mega-watts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 mega-watts. The HFBR was shut down in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of ground water from wells located adjacent to the reactor's spent fuel pool. The reactor remained shut down for almost 3 y for safety and environmental reviews. In November 1999, the United States Department of Energy decided to permanently shut down the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome, which still contains the irradiated reactor vessel is presently under 24/7 surveillance for safety. Details of the HFBR's cleanup performed during 1999-2009, to allow the BNL facilities to be re-accessed by the public, will be described in the paper.
MTR WING, TRA604. ONE OF THE LABORATORY UNITS ALONG THE ...
MTR WING, TRA-604. ONE OF THE LABORATORY UNITS ALONG THE SOUTH SIDE WALL. NOTE SINK, CABINET, TABLE, AND HOOD UNITS. DUCT ABOVE RECEIVES CONTAMINATED AIR AND SENDS IT TO FAN HOUSE AND STACK. NOTE PARTITION WALL BEHIND WORK UNITS. THE HEALTH PHYSICS LAB WAS SIMILARLY EQUIPPED. WINDOW AT LEFT EDGE OF VIEW. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON ORIGINAL NEGATIVE. INL NEGATIVE NO. 4225. Unknown Photographer, 2/13/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugh, C.E.
2001-01-29
Numerous large-scale fracture experiments have been performed over the past thirty years to advance fracture mechanics methodologies applicable to thick-wall pressure vessels. This report first identifies major factors important to nuclear reactor pressure vessel (RPV) integrity under pressurized thermal shock (PTS) conditions. It then covers 20 key experiments that have contributed to identifying fracture behavior of RPVs and to validating applicable assessment methodologies. The experiments are categorized according to four types of specimens: (1) cylindrical specimens, (2) pressurized vessels, (3) large plate specimens, and (4) thick beam specimens. These experiments were performed in laboratories in six different countries. This reportmore » serves as a summary of those experiments, and provides a guide to references for detailed information.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew; Hu, Rui; Lisowski, Darius
2016-04-17
The Reactor Cavity Cooling System (RCCS) is an important passive safety system being incorporated into the overall safety strategy for high temperature advanced reactor concepts such as the High Temperature Gas- Cooled Reactors (HTGR). The Natural Convection Shutdown Heat Removal Test Facility (NSTF) at Argonne National Laboratory (Argonne) reflects a 1/2-scale model of the primary features of one conceptual air-cooled RCCS design. The project conducts ex-vessel, passive heat removal experiments in support of Department of Energy Office of Nuclear Energy’s Advanced Reactor Technology (ART) program, while also generating data for code validation purposes. While experiments are being conducted at themore » NSTF to evaluate the feasibility of the passive RCCS, parallel modeling and simulation efforts are ongoing to support the design, fabrication, and operation of these natural convection systems. Both system-level and high fidelity computational fluid dynamics (CFD) analyses were performed to gain a complete understanding of the complex flow and heat transfer phenomena in natural convection systems. This paper provides a summary of the RELAP5-3D NSTF model development efforts and provides comparisons between simulation results and experimental data from the NSTF. Overall, the simulation results compared favorably to the experimental data, however, further analyses need to be conducted to investigate any identified differences.« less
Treating domestic effluent wastewater treatment by aerobic biofilter with bioballs medium
NASA Astrophysics Data System (ADS)
Permatasari, R.; Rinanti, A.; Ratnaningsih, R.
2018-01-01
This laboratory scale research aimed to treat wastewater effluent with advanced treatment utilizing aerobic biofilter with bio-balls medium to obtain effluent quality in accordance with DKI Jakarta Governor Regulation No. 122 of 2005. The seeding and acclimatization were conducted in 4 weeks. The effluent were accommodated in a 150 L water barrel supported by a submersible pump. The effluent were treated in two boxes shaped reactors made of glasses with 36 L of each capacity. These reactors were equipped with aquarium aerators, sampling tap is 10 cm from the base of reactors, and bio-balls with 3 cm diameter are made of PVC. Reactors operated continuously with variations of retention time of 4 hours, 8 hours, 12 hours, 18 hours, and 24 hours and also variations of Carbon: Nitrogen: Phosphor = C: N: P ratio were, 100:5:1, 100:8:1, 100:10:1, 100:12:1, 100:15:1. The results showed that the optimum variance of retention time was 24 hours and the ratio of C:N:P was 100:10:1 yielded the largest removal efficiency for 83,33% of COD, 87,33% of BOD, 82,5% of Ammonia, 79,1% of Nitrate, 92% of Nitrite, 84,82% of Oil and Grease. The concentration parameter resulted from outlet biofilter has met the domestic wastewater quality standard of DKI Jakarta.
Du, Fuyi; Xie, Qingjie; Fang, Longxiang; Su, Hang
2016-08-01
Nutrients (nitrogen and phosphorus) from agricultural non-point source (NPS) pollution have been increasingly recognized as a major contributor to the deterioration of water quality in recent years. The purpose of this article is to investigate the discrepancies in interception of nutrients in agricultural NPS pollution for eco-soil reactors using different filling schemes. Parallel eco-soil reactors of laboratory scale were created and filled with filter media, such as grit, zeolite, limestone, and gravel. Three filling schemes were adopted: increasing-sized filling (I-filling), decreasing-sized filling (D-filling), and blend-sized filling (B-filling). The systems were intermittent operations via simulated rainstorm runoff. The nutrient removal efficiency, biomass accumulation and vertical dissolved oxygen (DO) distribution were defined to assess the performance of eco-soil. The results showed that B-filling reactor presented an ideal DO for partial nitrification-denitrification across the eco-soil, and B-filling was the most stable in the change of bio-film accumulation trends with depth in the three fillings. Simultaneous and highest removals of NH4(+)-N (57.74-70.52%), total nitrogen (43.69-54.50%), and total phosphorus (42.50-55.00%) were obtained in the B-filling, demonstrating the efficiency of the blend filling schemes of eco-soil for oxygen transfer and biomass accumulation to cope with agricultural NPS pollution.
Mesophilic and thermophilic anaerobic digestion of sulphate-containing wastewaters.
Colleran, E; Pender, S
2002-01-01
The effect of sulphate at an influent chemical oxygen demand (COD):sulphate ratio of 4 on the operational performance of anaerobic hybrid reactors treating molasses wastewater was investigated under mesophilic and thermophilic conditions in a long-term laboratory-scale study over a 1,081 day period. The presence of sulphate reduced the COD removal efficiency under both mesophilic and thermophilic conditions. At 55 degrees C, effluent acetate levels were consistently greater than 4000 mg l(-1) indicating that thermophilic acetate-utilising methane-producing bacteria (MPB) or sulphate-reducing bacteria (SRB) had not developed in the reactor under the conditions applied. At 37 degrees C, acetate was exclusively utilised by acetoclastic methanogens, whereas H2-utilising SRB predominated over H2-utilising MPB in the competition for hydrogen. By contrast, hydrogenotrophic MPB were shown to outcompete H2-utilising SRB during long-term thermophilic operation. 16SrDNA analysis of the seed sludge and reactor biomass on conclusion of the 37 degrees C and 55 degrees C trials illustrated that the dominant methanogen present on conclusion of the thermophilic trial in the absence of influent sulphate was related to Methanocorpusculum parvuum, and was capable of growth on both acetate and hydrogen. By contrast, an organism closely related to Methanobacterium thermoautotrophicum was the dominant methanogen present in the sulphate-fed reactor on completion of the thermophilic trial.
RERTR 2009 (Reduced Enrichment for Research and Test Reactors)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Totev, T.; Stevens, J.; Kim, Y. S.
2010-03-01
The U.S. Department of Energy/National Nuclear Security Administration's Office of Global Threat Reduction in cooperation with the China Atomic Energy Authority and International Atomic Energy Agency hosted the 'RERTR 2009 International Meeting on Reduced Enrichment for Research and Test Reactors.' The meeting was organized by Argonne National Laboratory, China Institute of Atomic Energy and Idaho National Laboratory and was held in Beijing, China from November 1-5, 2009. This was the 31st annual meeting in a series on the same general subject regarding the conversion of reactors within the Global Threat Reduction Initiative (GTRI). The Reduced Enrichment for Research and Testmore » Reactors (RERTR) Program develops technology necessary to enable the conversion of civilian facilities using high enriched uranium (HEU) to low enriched uranium (LEU) fuels and targets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Michael George
This report describes conditions and information, as required by the state of Idaho, Department of Environmental Quality Reuse Permit I-161-02, for the Advanced Test Reactor Complex Cold Waste Ponds located at Idaho National Laboratory from November 1, 2014–October 31, 2015. The effective date of Reuse Permit I-161-02 is November 20, 2014 with an expiration date of November 19, 2019.
Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetiner, Sacit M.; Greenwood, Michael Scott; Harrison, Thomas J.
A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to themore » nuclear system. Similarly, an area near oil refineries may have a need for emission-free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.« less
EVALUATION OF SOLID SORBENTS AS A RETROFIT TECHNOLOGY FOR CO2 CAPTURE FROM COAL-FIRED POWER PLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holly Krutka; Sharon Sjostrom
2011-07-31
Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process/equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designedmore » and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines; 31 carbon based materials; 6 zeolites; 7 supported carbonates (evaluated under separate funding); and 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different field sites. ADA designed and fabricated a slipstream pilot to allow an evaluation of the kinetic behavior of sorbents and provide some flexibility for the physical characteristics of the materials. The design incorporated a transport reactor for the adsorber (co-current reactor) and a fluidized-bed in the regenerator. This combination achieved the sorbent characterization goals and provided an opportunity to evaluate whether the potential cost savings associated with a relatively simple process design could overcome the sacrifices inherent in a co-current separation process. The system was installed at two field sites during the project, Luminant's Martin Lake Steam Electric Station and Xcel Energy's Sherburne County Generating Station (Sherco). Although the system could not maintain continuous 90% CO{sub 2} removal with the sorbents evaluated under this program, it was useful to compare the CO{sub 2} removal properties of several different sorbents on actual flue gas. One of the supported amine materials, sorbent R, was evaluated at both Martin Lake and Sherco. The 1 kWe pilot was operated in continuous mode as well as batch mode. In continuous mode, the sorbent performance could not overcome the limitations of the cocurrent adsorbent design. In batch mode, sorbent R was able to remove up to 90% CO{sub 2} for several cycles. Approximately 50% of the total removal occurred in the first three feet of the adsorption reactor, which was a transport reactor. During continuous testing at Sherco, CO{sub 2} removal decreased to approximately 20% at steady state. The lack of continuous removal was due primarily to the combination of a co-current adsorption system with a fluidized bed for regeneration, a combination which did not provide an adequate driving force to maintain an acceptable working CO{sub 2} capacity. In addition, because sorbent R consisted of a polymeric amine coated on a silica substrate, it was believed that the 50% amine loaded resulted in mass diffusion limitations related to the CO{sub 2} uptake rate. Three additional supported amine materials, sorbents AX, F, and BN, were selected for evaluation using the 1 kW pilot at Sherco. Sorbent AX was operated in batch mode and performed similarly to sorbent R (i.e. could achieve up to 90% removal when given adequate regeneration time). Sorbent BN was not expected to be subject to the same mass diffusion limitations as experienced with sorbent R. When sorbent BN was used in continuous mode the steady state CO{sub 2} removal was approximately double that of sorbent R, which highlighted the importance of sorbents without kinetic limitations.« less
Development of a Reactor Model for Chemical Conversion of Lunar Regolith
NASA Technical Reports Server (NTRS)
Hegde, U.; Balasubramaniam, R.; Gokoglu, S.
2009-01-01
Lunar regolith will be used for a variety of purposes such as oxygen and propellant production and manufacture of various materials. The design and development of chemical conversion reactors for processing lunar regolith will require an understanding of the coupling among the chemical, mass and energy transport processes occurring at the length and time scales of the overall reactor with those occurring at the corresponding scales of the regolith particles. To this end, a coupled transport model is developed using, as an example, the reduction of ilmenite-containing regolith by a continuous flow of hydrogen in a flow-through reactor. The ilmenite conversion occurs on the surface and within the regolith particles. As the ilmenite reduction proceeds, the hydrogen in the reactor is consumed, and this, in turn, affects the conversion rate of the ilmenite in the particles. Several important quantities are identified as a result of the analysis. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the time for hydrogen to diffuse into the pores of the regolith particles and the chemical reaction time. The paper investigates the relationships between these quantities and their impact on the regolith conversion. Application of the model to various chemical reactor types, such as fluidized-bed, packed-bed, and rotary-bed configurations, are discussed.
Development of a Reactor Model for Chemical Conversion of Lunar Regolith
NASA Technical Reports Server (NTRS)
Hedge, uday; Balasubramaniam, R.; Gokoglu, S.
2007-01-01
Lunar regolith will be used for a variety of purposes such as oxygen and propellant production and manufacture of various materials. The design and development of chemical conversion reactors for processing lunar regolith will require an understanding of the coupling among the chemical, mass and energy transport processes occurring at the length and time scales of the overall reactor with those occurring at the corresponding scales of the regolith particles. To this end, a coupled transport model is developed using, as an example, the reduction of ilmenite-containing regolith by a continuous flow of hydrogen in a flow-through reactor. The ilmenite conversion occurs on the surface and within the regolith particles. As the ilmenite reduction proceeds, the hydrogen in the reactor is consumed, and this, in turn, affects the conversion rate of the ilmenite in the particles. Several important quantities are identified as a result of the analysis. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the time for hydrogen to diffuse into the pores of the regolith particles and the chemical reaction time. The paper investigates the relationships between these quantities and their impact on the regolith conversion. Application of the model to various chemical reactor types, such as fluidized-bed, packed-bed, and rotary-bed configurations, are discussed.
Chen, Zhihua; Chen, Shucheng; Siahrostami, Samira; ...
2017-03-01
The development of small-scale, decentralized reactors for H 2O 2 production that can couple to renewable energy sources would be of great benefit, particularly for water purification in the developing world. Herein, we describe our efforts to develop electrochemical reactors for H 2O 2 generation with high Faradaic efficiencies of >90%, requiring cell voltages of only ~1.6 V. The reactor employs a carbon-based catalyst that demonstrates excellent performance for H 2O 2 production under alkaline conditions, as demonstrated by fundamental studies involving rotating-ring disk electrode methods. Finally, the low-cost, membrane-free reactor design represents a step towards a continuous, modular-scale, de-centralizedmore » production of H 2O 2.« less
REACTOR SERVICE BUILDING, TRA635, CONTEXTUAL VIEW DURING CONSTRUCTION. CAMERA IS ...
REACTOR SERVICE BUILDING, TRA-635, CONTEXTUAL VIEW DURING CONSTRUCTION. CAMERA IS ATOP MTR BUILDING AND LOOKING SOUTHERLY. FOUNDATION AND DRAINS ARE UNDER CONSTRUCTION. THE BUILDING WILL BUTT AGAINST CHARGING FACE OF PLUG STORAGE BUILDING. HOT CELL BUILDING, TRA-632, IS UNDER CONSTRUCTION AT TOP CENTER OF VIEW. INL NEGATIVE NO. 8518. Unknown Photographer, 8/25/1953 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Nges, Ivo Achu; Escobar, Federico; Fu, Xinmei; Björnsson, Lovisa
2012-01-01
Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester. Copyright © 2011 Elsevier Ltd. All rights reserved.
86. ARAIII. GCRE reactor building (ARA608) showing mechanical loop pit ...
86. ARA-III. GCRE reactor building (ARA-608) showing mechanical loop pit after building shell had been erected. Beyond pit are demineralized water surge tank and heat exchanger. Camera facing northeast. December 22, 1958. Ineel photo no. 58-6427. Photographer: Ken Mansfield. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
PBF (PER620) interior. Detail view across top of reactor tank. ...
PBF (PER-620) interior. Detail view across top of reactor tank. Camera facing northeast. Ait tubing is cleanup equipment. Note projections from reactor structure above water level in tank. Date: May 2004. INEEL negative no. HD-41-5-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
ETR, TRA642. ON GROUND FLOOR. WITH OUTER THERMAL RING IN ...
ETR, TRA-642. ON GROUND FLOOR. WITH OUTER THERMAL RING IN PLACE AND CONDUIT PRESERVED, HIGH-DENSITY CONCRETE IS PLACED BETWEEN THE THERMAL RING AND THE OUTER REACTOR FORM. INL NEGATIVE NO. 56-2400. Jack L. Anderson, Photographer, 6/10/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Operation of an aquatic worm reactor suitable for sludge reduction at large scale.
Hendrickx, Tim L G; Elissen, Hellen H J; Temmink, Hardy; Buisman, Cees J N
2011-10-15
Treatment of domestic waste water results in the production of waste sludge, which requires costly further processing. A biological method to reduce the amount of waste sludge and its volume is treatment in an aquatic worm reactor. The potential of such a worm reactor with the oligochaete Lumbriculus variegatus has been shown at small scale. For scaling up purposes, a new configuration of the reactor was designed, in which the worms were positioned horizontally in the carrier material. This was tested in a continuous experiment of 8 weeks where it treated all the waste sludge from a lab-scale activated sludge process. The results showed a higher worm growth rate compared to previous experiments with the old configuration, whilst nutrient release was similar. The new configuration has a low footprint and allows for easy aeration and faeces collection, thereby making it suitable for full scale application. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hanford Atomic Products Operation monthly report for February 1956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1956-02-21
This is the monthly report for the Hanford Laboratories Operation, February, 1956. Metallurgy, reactors fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, visits, biology operation, physics and instrumentation research, employee relations are discussed.
Catalytic Production of Ethanol from Biomass-Derived Synthesis Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trewyn, Brian G.; Smith, Ryan G.
2016-06-01
Heterogeneous catalysts have been developed for the conversion of biomass-derived synthetic gas (syngas) to ethanol. The objectives of this project were to develop a clean synthesis gas from biomass and develop robust catalysts with high selectivity and lifetime for C 2 oxygenate production from biomass-derived syngas and surrogate syngas. During the timeframe for this project, we have made research progress on the four tasks: (1) Produce clean bio-oil generated from biomass, such as corn stover or switchgrass, by using fast pyrolysis system, (2) Produce clean, high pressure synthetic gas (syngas: carbon monoxide, CO, and hydrogen, H 2) from bio-oil generatedmore » from biomass by gasification, (3) Develop and characterize mesoporous mixed oxide-supported metal catalysts for the selective production of ethanol and other alcohols, such as butanol, from synthesis gas, and (4) Design and build a laboratory scale synthesis gas to ethanol reactor system evaluation of the process. In this final report, detailed explanations of the research challenges associated with this project are given. Progress of the syngas production from various biomass feedstocks and catalyst synthesis for upgrading the syngas to C 2-oxygenates is included. Reaction properties of the catalyst systems under different reaction conditions and different reactor set-ups are also presented and discussed. Specifically, the development and application of mesoporous silica and mesoporous carbon supports with rhodium nanoparticle catalysts and rhodium nanoparticle with manganese catalysts are described along with the significant material characterizations we completed. In addition to the synthesis and characterization, we described the activity and selectivity of catalysts in our micro-tubular reactor (small scale) and fixed bed reactor (larger scale). After years of hard work, we are proud of the work done on this project, and do believe that this work will provide a solid foundation for the future production of syngas from biomass and the development of heterogeneous catalysts for the syngas to C 2-oxygenate process and for the commercialization of this process. Potential future directions for this research are also discussed within the report.« less
Computational Modeling in Plasma Processing for 300 mm Wafers
NASA Technical Reports Server (NTRS)
Meyyappan, Meyya; Arnold, James O. (Technical Monitor)
1997-01-01
Migration toward 300 mm wafer size has been initiated recently due to process economics and to meet future demands for integrated circuits. A major issue facing the semiconductor community at this juncture is development of suitable processing equipment, for example, plasma processing reactors that can accomodate 300 mm wafers. In this Invited Talk, scaling of reactors will be discussed with the aid of computational fluid dynamics results. We have undertaken reactor simulations using CFD with reactor geometry, pressure, and precursor flow rates as parameters in a systematic investigation. These simulations provide guidelines for scaling up in reactor design.
NASA Astrophysics Data System (ADS)
Rai, Durgesh K.; Wu, Huarui; Abir, Muhammad; Giglio, Jeffrey; Khaykovich, Boris
Post irradiation examination (PIE) of samples irradiated in nuclear reactors is a challenging but necessary task for the development on novel nuclear power reactors. Idaho National Laboratory (INL) has neutron radiography capabilities, which are especially useful for the PIE of irradiated nuclear fuel. These capabilities are limited due to the extremely high gamma-ray radiation from the irradiated fuel, which precludes the use of standard digital detectors, in turn limiting the ability to do tomography and driving the cost of the measurements. In addition, the small 250 kW Neutron Radiography Reactor (NRAD) provides a relatively weak neutron flux, which leads to low signal-to-noise ratio. In this work, we develop neutron focusing optics suitable for the installation at NRAD. The optics would separate the sample and the detector, potentially allowing for the use of digital radiography detectors, and would provide significant intensity enhancement as well. The optics consist of several coaxial nested Wolter mirrors and is suited for polychromatic thermal neutron radiation. Laboratory Directed Research and Development program of Idaho National Laboratory.
TEST REACTOR AREA PLOT PLAN CA. 1968. MTR AND ETR ...
TEST REACTOR AREA PLOT PLAN CA. 1968. MTR AND ETR AREAS SOUTH OF PERCH AVENUE. "COLD" SERVICES NORTH OF PERCH. ADVANCED TEST REACTOR IN NEW SECTION WEST OF COLD SERVICES SECTION. NEW PERIMETER FENCE ENCLOSES BETA RAY SPECTROMETER, TRA-669, AN ATR SUPPORT FACILITY, AND ATR STACK. UTM LOCATORS HAVE BEEN DELETED. IDAHO NUCLEAR CORPORATION, FROM A BLAW-KNOX DRAWING, 3/1968. INL INDEX NO. 530-0100-00-400-011646, REV. 0. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Manu, D S; Kumar Thalla, Arun
2018-01-01
The current trend in sustainable development deals mainly with environmental management. There is a need for economically affordable, advanced treatment methods for the proper treatment and management of domestic wastewater containing excess nutrients (such as nitrogen and phosphorus) which can cause eutrophication. The reduction of the excess nutrient content of wastewater by appropriate technology is of much concern to the environmentalist. In the current study, a novel integrated anaerobic-anoxic-oxic activated sludge biofilm (A 2 O-AS-biofilm) reactor was designed and operated to improve the biological nutrient removal by varying reactor operating conditions such as carbon to nitrogen (C/N) ratio, suspended biomass, hydraulic retention time (HRT) and dissolved oxygen (DO). Based on various trials, it was seen that the A 2 O-AS-biofilm reactor achieved good removal efficiencies with regard to chemical oxygen demand (95.5%), total phosphorus (93.1%), ammonia nitrogen concentration (NH 4 + -N) (98%) and total nitrogen (80%) when the reactor was maintained at C/N ratio of 4, suspended biomass of 3 to 3.5 g/L, HRT of 10 h, and DO of 1.5 to 2.5 mg/L. Scanning electron microscopy (SEM) of suspended and attached biofilm showed a dense structure of coccus and bacillus bacteria with the diameter ranging from 0.3 to 1.2 μm. The Fourier transform infrared (FTIR) spectroscopy results indicated phosphorylated macromolecules and carbohydrates mix or bind with extracellular proteins in exopolysaccharides.
NASA Astrophysics Data System (ADS)
Leju Celestino Ladu, John; Lü, Xi-wu; Zhong, Zhaoping
2017-08-01
The biogas production from anaerobic filter (AF) reactor was experimented in Taihu Lake Environmental Engineering Research Center of Southeast University, Wuxi, China. Two rounds of experimental operations were conducted in a laboratory scale at different Hydraulic retention time (HRT) and wastewater temperature. The biogas production rate during the experimentation was in the range of 4.63 to 11.78 L/d. In the first experimentation, the average gas production rate was 10.08 L/d, and in the second experimentation, the average gas production rate was 4.97 L/d. The experimentation observed the favorable Hydraulic Retention Time and wastewater temperature in AF was three days and 30.95°C which produced the gas concentration of 11.78 L/d. The HRT and wastewater temperature affected the efficiency of the AF process on the organic matter removal and nutrients removal as well. It can be deduced from the obtained results that HRT and wastewater temperature directly affects the efficiency of the AF reactor in biogas production. In conclusion, anaerobic filter treatment of organic matter substrates from the rural domestic wastewater increases the efficiency of the AF reactor on biogas production and gives a number of benefits for the management of organic wastes as well as reduction in water pollution. Hence, the operation of the AF reactor in rural domestic wastewater treatment can play an important element for corporate economy of the biogas plant, socio-economic aspects and in the development of effective and feasible concepts for wastewater management, especially for people in rural low-income areas.
VIEW OF BUILDING NO. 77710A, LOOKING WEST. LABORATORY WING AND ...
VIEW OF BUILDING NO. 777-10A, LOOKING WEST. LABORATORY WING AND MAIN ENTRANCE ON RIGHT; MULTISTORY REACTOR WING IN LEFT BACKGROUND - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
Granule Formation Mechanisms within an Aerobic Wastewater System for Phosphorus Removal▿ †
Barr, Jeremy J.; Cook, Andrew E.; Bond, Phillip L.
2010-01-01
Granular sludge is a novel alternative for the treatment of wastewater and offers numerous operational and economic advantages over conventional floccular-sludge systems. The majority of research on granular sludge has focused on optimization of engineering aspects relating to reactor operation with little emphasis on the fundamental microbiology. In this study, we hypothesize two novel mechanisms for granule formation as observed in three laboratory scale sequencing batch reactors operating for biological phosphorus removal and treating two different types of wastewater. During the initial stages of granulation, two distinct granule types (white and yellow) were distinguished within the mixed microbial population. White granules appeared as compact, smooth, dense aggregates dominated by 97.5% “Candidatus Accumulibacter phosphatis,” and yellow granules appeared as loose, rough, irregular aggregates with a mixed microbial population of 12.3% “Candidatus Accumulibacter phosphatis” and 57.9% “Candidatus Competibacter phosphatis,” among other bacteria. Microscopy showed white granules as homogeneous microbial aggregates and yellow granules as segregated, microcolony-like aggregates, with phylogenetic analysis suggesting that the granule types are likely not a result of strain-associated differences. The microbial community composition and arrangement suggest different formation mechanisms occur for each granule type. White granules are hypothesized to form by outgrowth from a single microcolony into a granule dominated by one bacterial type, while yellow granules are hypothesized to form via multiple microcolony aggregation into a microcolony-segregated granule with a mixed microbial population. Further understanding and application of these mechanisms and the associated microbial ecology may provide conceptual information benefiting start-up procedures for full-scale granular-sludge reactors. PMID:20851963
Trojanowicz, K; Plaza, E; Trela, J
2017-11-09
In the paper, the extension of mathematical model of partial nitritation-anammox process in a moving bed biofilm reactor (MBBR) is presented. The model was calibrated with a set of kinetic, stoichiometric and biofilm parameters, whose values were taken from the literature and batch tests. The model was validated with data obtained from: laboratory batch experiments, pilot-scale MBBR for a reject water deammonification operated at Himmerfjärden wastewater treatment and pilot-scale MBBR for mainstream wastewater deammonification at Hammarby Sjöstadsverk research facility, Sweden. Simulations were conducted in AQUASIM software. The proposed, extended model proved to be useful for simulating of partial nitritation/anammox process in biofilm reactor both for reject water and mainstream wastewater at variable substrate concentrations (influent total ammonium-nitrogen concentration of 530 ± 68; 45 ± 2.6 and 38 ± 3 gN/m 3 - for reject water - and two cases of mainstream wastewater treatment, respectively), temperature (24 ± 2.8; 15 ± 1.1 and 18 ± 0.5°C), pH (7.8 ± 0.2; 7.3 ± 0.1 and 7.4 ± 0.1) and aeration patterns (continuous aeration and intermittent aeration with variable dissolved oxygen concentrations and length of aerated and anoxic phases). The model can be utilized for optimizing and testing different operational strategies of deammonification process in biofilm systems.
Estevez, Maria M; Sapci, Zehra; Linjordet, Roar; Schnürer, Anna; Morken, John
2014-04-01
The effects of recirculating the liquid fraction of the digestate during mesophilic anaerobic co-digestion of steam-exploded Salix and cow manure were investigated in laboratory-scale continuously stirred tank reactors. An average organic loading rate of 2.6 g VS L(-1) d(-1) and a hydraulic retention time (HRT) of 30 days were employed. Co-digestion of Salix and manure gave better methane yields than digestion of manure alone. Also, a 16% increase in the methane yield was achieved when digestate was recirculated and used instead of water to dilute the feedstock (1:1 dilution ratio). The reactor in which the larger fraction of digestate was recirculated (1:3 dilution ratio) gave the highest methane yields. Ammonia and volatile fatty acids did not reach inhibitory levels, and some potentially inhibitory compounds released during steam explosion (i.e., furfural and 5-hydroxy methyl furfural) were only detected at trace levels throughout the entire study period. However, accumulation of solids, which was more pronounced in the recycling reactors, led to decreased methane yields in those systems after three HRTs. Refraining from the use of fresh water to dilute biomass with a high-solids content and obtaining a final digestate with increased dry matter content might offer important economic benefits in full-scale processes. To ensure long-term stability in such an approach, it would be necessary to optimize separation of the fraction of digestate to be recirculated and also perform proper monitoring to avoid accumulation of solids. Copyright © 2014 Elsevier Ltd. All rights reserved.
EAST FACE OF REACTOR BASE. COMING TOWARD CAMERA IS EXCAVATION ...
EAST FACE OF REACTOR BASE. COMING TOWARD CAMERA IS EXCAVATION FOR MTR CANAL. CAISSONS FLANK EACH SIDE. COUNTERFORT (SUPPORT PERPENDICULAR TO WHAT WILL BE THE LONG WALL OF THE CANAL) RESTS ATOP LEFT CAISSON. IN LOWER PART OF VIEW, DRILLERS PREPARE TRENCHES FOR SUPPORT BEAMS THAT WILL LIE BENEATH CANAL FLOOR. INL NEGATIVE NO. 739. Unknown Photographer, 10/6/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
A brief History of Neutron Scattering at the Oak Ridge High Flux Isotope Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagler, Stephen E; Mook Jr, Herbert A
2008-01-01
Neutron scattering at the Oak Ridge National Laboratory dates back to 1945 when Ernest Wollan installed a modified x-ray diffractometer on a beam port of the original graphite reactor. Subsequently, Wollan and Clifford Shull pioneered neutron diffraction and laid the foundation for an active neutron scattering effort that continued through the 1950s, using the Oak Ridge Research reactor after 1958, and, starting in 1966, the High Flux Isotope Reactor, or HFIR.
ETR, TRA642. ON GROUND FLOOR. THE 60TON ETR REACTOR VESSEL ...
ETR, TRA-642. ON GROUND FLOOR. THE 60-TON ETR REACTOR VESSEL IS DROPPED INTO PLACE OVER PIT. KAISER USED TWO MULTI-BLOCK DRUM PULLEYS WITH A COMBINED CAPACITY OF 100 TONS AND A 100-TON DRUM HOIST. THE VESSEL WAS 35 1/2 FEET LONG. INL NEGATIVE NO. 56-4149. R.G. Larsen, Photographer, 12/18/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
ETR ELECTRICAL BUILDING, TRA648, INTERIOR. SWITCHGEAR. INL NEGATIVE NO. 563794. ...
ETR ELECTRICAL BUILDING, TRA-648, INTERIOR. SWITCHGEAR. INL NEGATIVE NO. 56-3794. Jack L. Anderson, Photographer, 11/26/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
ETR ELECTRICAL BUILDING, TRA648. BATTERY ROOM. INL NEGATIVE NO. 563785. ...
ETR ELECTRICAL BUILDING, TRA-648. BATTERY ROOM. INL NEGATIVE NO. 56-3785. Jack L. Anderson, Photographer, 11/26/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Hanford Atomic Products Operation monthly report, January 1956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1956-02-24
This is the monthly report for the Hanford Atomic Laboratories Products Operation, February, 1956. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.
PROCESS WATER BUILDING, TRA605. INSIDE A FLASH EVAPORATOR. INL NEGATIVE ...
PROCESS WATER BUILDING, TRA-605. INSIDE A FLASH EVAPORATOR. INL NEGATIVE NO. 3323. Unknown Photographer, 9/12/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Fitzgerald, Colin M.; Camejo, Pamela; Oshlag, J. Zachary; Noguera, Daniel R.
2015-01-01
Ammonia-oxidizing microbial communities involved in ammonia oxidation under low dissolved oxygen (DO) conditions (<0.3 mg/L) were investigated using chemostat reactors. One lab-scale reactor (NS_LowDO) was seeded with sludge from a full-scale wastewater treatment plant (WWTP) not adapted to low-DO nitrification, while a second reactor (JP_LowDO) was seeded with sludge from a full-scale WWTP already achieving low-DO nitrifiaction. The experimental evidence from quantitative PCR, rDNA tag pyrosequencing, and fluorescence in situ hybridization (FISH) suggested that ammonia-oxidizing bacteria (AOB) in the Nitrosomonas genus were responsible for low-DO nitrification in the NS_LowDO reactor, whereas in the JP_LowDO reactor nitrification was not associated with any known ammonia-oxidizing prokaryote. Neither reactor had a significant population of ammonia-oxidizing archaea (AOA) or anaerobic ammonium oxidation (anammox) organisms. Organisms isolated from JP_LowDO were capable of autotrophic and heterotrophic ammonia utilization, albeit without stoichiometric accumulation of nitrite or nitrate. Based on the experimental evidence we propose that Pseudomonas, Xanthomonadaceae, Rhodococcus, and Sphingomonas are involved in nitrification under low-DO conditions. PMID:25506762
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arcilesi, David J.; Ham, Tae Kyu; Kim, In Hun
2015-07-01
A critical event in the safety analysis of the very high-temperature gas-cooled reactor (VHTR) is an air-ingress accident. This accident is initiated, in its worst case scenario, by a double-ended guillotine break of the coaxial cross vessel, which leads to a rapid reactor vessel depressurization. In a VHTR, the reactor vessel is located within a reactor cavity that is filled with air during normal operating conditions. Following the vessel depressurization, the dominant mode of ingress of an air–helium mixture into the reactor vessel will either be molecular diffusion or density-driven stratified flow. The mode of ingress is hypothesized to dependmore » largely on the break conditions of the cross vessel. Since the time scales of these two ingress phenomena differ by orders of magnitude, it is imperative to understand under which conditions each of these mechanisms will dominate in the air ingress process. Computer models have been developed to analyze this type of accident scenario. There are, however, limited experimental data available to understand the phenomenology of the air-ingress accident and to validate these models. Therefore, there is a need to design and construct a scaled-down experimental test facility to simulate the air-ingress accident scenarios and to collect experimental data. The current paper focuses on the analyses performed for the design and operation of a 1/8th geometric scale (by height and diameter), high-temperature test facility. A geometric scaling analysis for the VHTR, a time scale analysis of the air-ingress phenomenon, a transient depressurization analysis of the reactor vessel, a hydraulic similarity analysis of the test facility, a heat transfer characterization of the hot plenum, a power scaling analysis for the reactor system, and a design analysis of the containment vessel are discussed.« less
Evaluation of Fe(II) oxidation at an acid mine drainage site using laboratory-scale reactors
NASA Astrophysics Data System (ADS)
Brown, Juliana; Burgos, William
2010-05-01
Acid mine drainage (AMD) is a severe environmental threat to the Appalachian region of the Eastern United States. The Susquehanna and Potomac River basins of Pennsylvania drain to the Chesapeake Bay, which is heavily polluted by acidity and metals from AMD. This study attempted to unravel the complex relationships between AMD geochemistry, microbial communities, hydrodynamic conditions, and the mineral precipitates for low-pH Fe mounds formed downstream of deep mine discharges, such as Lower Red Eyes in Somerset County, PA, USA. This site is contaminated with high concentrations of Fe (550 mg/L), Mn (115 mg/L), and other trace metals. At the site 95% of dissolved Fe(II) and 56% of total dissolved Fe is removed without treatment, across the mound, but there is no change in the concentration of trace metals. Fe(III) oxides were collected across the Red Eyes Fe mound and precipitates were analyzed by X-ray diffraction, electron microscopy and elemental analysis. Schwertmannite was the dominant mineral phase with traces of goethite. The precipitates also contained minor amounts of Al2O3, MgO,and P2O5. Laboratory flow-through reactors were constructed to quantify Fe(II) oxidation and Fe removal over time at terrace and pool depositional facies. Conditions such as residence time, number of reactors in sequence and water column height were varied to determine optimal conditions for Fe removal. Reactors with sediments collected from an upstream terrace oxidized more than 50% of dissolved Fe(II) at a ten hour residence time, while upstream pool sediments only oxidized 40% of dissolved Fe(II). Downstream terrace and pool sediments were only capable of oxidizing 25% and 20% of Fe(II), respectively. Fe(II) oxidation rates measured in the reactors were determined to be between 3.99 x 10-8and 1.94 x 10-7mol L-1s-1. The sediments were not as efficient for total dissolved Fe removal and only 25% was removed under optimal conditions. The removal efficiency for all sediments decreased as residence time decreased and as water column depth increased. Control reactors with Co-60 irradiated sediments showed an increase in Fe concentration as a result of dissolution of the sediments; thus, it was concluded that Fe(II) oxidation in the reactors was a result of biological processes and not abiotic oxidation. It was also concluded that Fe(II) oxidation and removal rates were dependent upon geochemical gradients (pH, Fe(II) concentration) rather than depositional facies. Fluorescent in situ hybridization was also performed on field and reactor samples to determine which microbial communities were responsible for the highest Fe(II) oxidation rates.
Experiment for search for sterile neutrino at SM-3 reactor
NASA Astrophysics Data System (ADS)
Serebrov, A. P.; Ivochkin, V. G.; Samoylov, R. M.; Fomin, A. K.; Zinoviev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Gruzinsky, N. V.; Solovey, V. A.; Cherniy, A. V.; Zherebtsov, O. M.; Martemyanov, V. P.; Zinoev, V. G.; Tarasenkov, V. G.; Aleshin, V. I.; Petelin, A. L.; Pavlov, S. V.; Izhutov, A. L.; Sazontov, S. A.; Ryazanov, D. K.; Gromov, M. O.; Afanasiev, V. V.; Matrosov, L. N.; Matrosova, M. Yu.
2016-11-01
In connection with the question of possible existence of sterile neutrino the laboratory on the basis of SM-3 reactor was created to search for oscillations of reactor antineutrino. A prototype of a neutrino detector with scintillator volume of 400 l can be moved at the distance of 6-11 m from the reactor core. The measurements of background conditions have been made. It is shown that the main experimental problem is associated with cosmic radiation background. Test measurements of dependence of a reactor antineutrino flux on the distance from a reactor core have been made. The prospects of search for oscillations of reactor antineutrino at short distances are discussed.
A document review to characterize Atomic International SNAP fuels shipped to INEL 1966--1973
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahnschaffe, S.D.; Lords, R.E.; Kneff, D.W.
1995-09-01
This report provides the results of a document search and review study to obtain information on the spent fuels for the following six Nuclear Auxiliary Power (SNAP) reactor cores now stored at the Idaho National Engineering Laboratory (INEL): SNAP-2 Experimental Reactor, SNAP-2 Development Reactor, SNAP-10A Ground Test Reactor, SNAP-8 Experimental Reactor, SNAP-8 Development Reactor, and Shield Test Reactor. The report also covers documentation on SNAP fuel materials from four in-pile materials tests: NAA-82-1, NAA-115-2, NAA-117-1, and NAA-121. Pieces of these fuel materials are also stored at INEL as part of the SNAP fuel shipments.
Mei, Ran; Narihiro, Takashi; Bocher, Benjamin T. W.; Yamaguchi, Takashi; Liu, Wen-Tso
2016-01-01
Upflow anaerobic sludge blanket (UASB) reactor has served as an effective process to treat industrial wastewater such as purified terephthalic acid (PTA) wastewater. For optimal UASB performance, balanced ecological interactions between syntrophs, methanogens, and fermenters are critical. However, much of the interactions remain unclear because UASB have been studied at a “macro”-level perspective of the reactor ecosystem. In reality, such reactors are composed of a suite of granules, each forming individual micro-ecosystems treating wastewater. Thus, typical approaches may be oversimplifying the complexity of the microbial ecology and granular development. To identify critical microbial interactions at both macro- and micro- level ecosystem ecology, we perform community and network analyses on 300 PTA–degrading granules from a lab-scale UASB reactor and two full-scale reactors. Based on MiSeq-based 16S rRNA gene sequencing of individual granules, different granule-types co-exist in both full-scale reactors regardless of granule size and reactor sampling depth, suggesting that distinct microbial interactions occur in different granules throughout the reactor. In addition, we identify novel networks of syntrophic metabolic interactions in different granules, perhaps caused by distinct thermodynamic conditions. Moreover, unseen methanogenic relationships (e.g. “Candidatus Aminicenantes” and Methanosaeta) are observed in UASB reactors. In total, we discover unexpected microbial interactions in granular micro-ecosystems supporting UASB ecology and treatment through a unique single-granule level approach. PMID:27936088
Human Factors and Technical Considerations for a Computerized Operator Support System Prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulrich, Thomas Anthony; Lew, Roger Thomas; Medema, Heather Dawne
2015-09-01
A prototype computerized operator support system (COSS) has been developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based on four underlying elements consisting of a digital alarm system, computer-based procedures, PI&D system representations, and a recommender module for mitigation actions. At this point, the prototype simulates an interface to a sensor validation module and a fault diagnosis module. These two modules will be fully integrated in the next version of the prototype. The initial version of the prototype is now operational at the Idaho National Laboratory using the U.S. Departmentmore » of Energy’s Light Water Reactor Sustainability (LWRS) Human Systems Simulation Laboratory (HSSL). The HSSL is a full-scope, full-scale glass top simulator capable of simulating existing and future nuclear power plant main control rooms. The COSS is interfaced to the Generic Pressurized Water Reactor (gPWR) simulator with industry-typical control board layouts. The glass top panels display realistic images of the control boards that can be operated by touch gestures. A section of the simulated control board was dedicated to the COSS human-system interface (HSI), which resulted in a seamless integration of the COSS into the normal control room environment. A COSS demonstration scenario has been developed for the prototype involving the Chemical & Volume Control System (CVCS) of the PWR simulator. It involves a primary coolant leak outside of containment that would require tripping the reactor if not mitigated in a very short timeframe. The COSS prototype presents a series of operator screens that provide the needed information and soft controls to successfully mitigate the event.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven R. Sherman; Collin J. Knight
Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/ormore » to comply with decontamination and decomissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidifed carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, USA. This report is Part 2 of a two-part report. This second report provides a supplement to the first report and describes the application of the humdidified carbon dioxide technique ("carbonation") to the EBR-II primary tank, primary cover gas systems, and the intermediate heat exchanger. Future treatment plans are also provided.« less
Model Studies on the Effectiveness of MBBR Reactors for the Restoration of Small Water Reservoirs
NASA Astrophysics Data System (ADS)
Nowak, Agata; Mazur, Robert; Panek, Ewa; Chmist, Joanna
2018-02-01
The authors present the Moving Bed Biofilm Reactor (MBBR) model with a quasi-continuous flow for small water reservoir restoration, characterized by high concentrations of organic pollutants. To determine the efficiency of wastewater treatment the laboratory analysis of physic-chemical parameters were conducted for the model on a semi-technical scale of 1:3. Wastewater treatment process was carried out in 24 h for 1 m3 for raw sewage. The startup period was 2 weeks for all biofilters (biological beds). Approximately 50% reduction in COD and BOD5 was obtained on average for the studied bioreactors. Significant improvements were achieved in theclarity of the treated wastewater, with the reduction of suspension by 60%. The oxygen profile has improved significantly in 7 to 9 hours of the process, and a diametric reduction in the oxidative reduction potential was recorded. A preliminary model of biological treatment effectiveness was determined based on the conducted studies. In final stages, the operation mode was set in real conditions of polluted water reservoirs.
Organic removal activity in biofilm and suspended biomass fractions of MBBR systems.
Piculell, Maria; Welander, Thomas; Jönsson, Karin
2014-01-01
The moving bed biofilm reactor (MBBR) wastewater treatment process is usually designed based on the assumption that all activity in the process occurs in the biofilm on the MBBR carriers, although there is always some active biomass in the bulk liquid due to biofilm sloughing and, sometimes, free-growing bacteria. In this study the removal of organic matter is evaluated in laboratory-scale MBBR reactors under varying load, hydraulic retention time (HRT), oxygen concentration and volumetric filling degree of carriers in order to determine the heterotrophic activity in the different fractions of the MBBR biomass. The results showed that the heterotrophic conversions in an MBBR can show the same type of diffusion limited dependency on oxygen as nitrification, even for easily degradable substrates such as acetate. The contribution to the removal from the suspended biomass is shown to vary depending on HRT, as the amount of suspended solids changes. The developed method in this report is a useful tool for determining heterotrophic activity in the separate fractions of biomass in MBBRs.
Aerobic granular sludge: a promising technology for decentralised wastewater treatment.
Li, Z H; Kuba, T; Kusuda, T
2006-01-01
In order to evaluate the characteristics of aerobic granular sludge, a sequencing batch reactor, feeding with synthetic wastewater at the organic loading rate of 8 kg COD/m3 d, was employed on the laboratory scale. Granules occurred in the reactor within 1 week after the inoculation from conventional flocculent sludge. Aerobic granular sludge was characterised by the outstanding settling properties and considerable contaminates removal efficiencies. The SVI30 values were in the range of 20 to 40 ml g(-1). However, the sludge volume index of short settling time (e.g. SVI10--10 min) is suggested to describe the fast settling properties of aerobic granular sludge. The potential application in the decentralised system is evaluated from the point view of footprint and high bioactivity. The occurrence of sloughing, resulting from the outgrowth of filamentous organisms, would be responsible for the instability of aerobic granules. The starvation phase should therefore be carefully controlled for the maintenance and stability of aerobic granular sludge system.
Laboratory-scale uranium RF plasma confinement experiments
NASA Technical Reports Server (NTRS)
Roman, W. C.
1976-01-01
An experimental investigation was conducted using 80 kW and 1.2 MW RF induction heater facilities to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor. Pure uranium hexafluoride (UF6) was injected into argon-confined, steady-state, RF-heated plasmas in different uranium plasma confinement tests to investigate the characteristics of plamas core nuclear reactors. The objectives were: (1) to confine as high a density of uranium vapor as possible within the plasma while simultaneously minimizing the uranium compound wall deposition; (2) to develop and test materials and handling techniques suitable for use with high-temperature, high-pressure gaseous UF6; and (3) to develop complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma and residue deposited on the test chamber components. In all tests, the plasma was a fluid-mechanically-confined vortex-type contained within a fused-silica cylindrical test chamber. The test chamber peripheral wall was 5.7 cm ID by 10 cm long.
An Overview of INEL Fusion Safety R&D Facilities
NASA Astrophysics Data System (ADS)
McCarthy, K. A.; Smolik, G. R.; Anderl, R. A.; Carmack, W. J.; Longhurst, G. R.
1997-06-01
The Fusion Safety Program at the Idaho National Engineering Laboratory has the lead for fusion safety work in the United States. Over the years, we have developed several experimental facilities to provide data for fusion reactor safety analyses. We now have four major experimental facilities that provide data for use in safety assessments. The Steam-Reactivity Measurement System measures hydrogen generation rates and tritium mobilization rates in high-temperature (up to 1200°C) fusion relevant materials exposed to steam. The Volatilization of Activation Product Oxides Reactor Facility provides information on mobilization and transport and chemical reactivity of fusion relevant materials at high temperature (up to 1200°C) in an oxidizing environment (air or steam). The Fusion Aerosol Source Test Facility is a scaled-up version of VAPOR. The ion-implanta-tion/thermal-desorption system is dedicated to research into processes and phenomena associated with the interaction of hydrogen isotopes with fusion materials. In this paper we describe the capabilities of these facilities.
Ohmic Heating: An Emerging Concept in Organic Synthesis.
Silva, Vera L M; Santos, Luis M N B F; Silva, Artur M S
2017-06-12
The ohmic heating also known as direct Joule heating, is an advanced thermal processing method, mainly used in the food industry to rapidly increase the temperature for either cooking or sterilization purposes. Its use in organic synthesis, in the heating of chemical reactors, is an emerging method that shows great potential, the development of which has started recently. This Concept article focuses on the use of ohmic heating as a new tool for organic synthesis. It presents the fundamentals of ohmic heating and makes a qualitative and quantitative comparison with other common heating methods. A brief description of the ohmic reactor prototype in operation is presented as well as recent examples of its use in organic synthesis at laboratory scale, thus showing the current state of the research. The advantages and limitations of this heating method, as well as its main current applications are also discussed. Finally, the prospects and potential implications of ohmic heating in future research in chemical synthesis are proposed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cermet-fueled reactors for advanced space applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowan, C.L.; Palmer, R.S.; Taylor, I.N.
Cermet-fueled nuclear reactors are attractive candidates for high-performance advanced space power systems. The cermet consists of a hexagonal matrix of a refractory metal and a ceramic fuel, with multiple tubular flow channels. The high performance characteristics of the fuel matrix come from its high strength at elevated temperatures and its high thermal conductivity. The cermet fuel concept evolved in the 1960s with the objective of developing a reactor design that could be used for a wide range of mobile power generating sytems, including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests for the cermet fuel weremore » carried out by General Electric as part of the 710 Project (General Electric 1966), and by Argonne National Laboratory in the Direct Nuclear Rocket Program (1965). Development programs for cermet fuel are currently under way at Argonne National Laboratory and Pacific Northwest Laboratory. The high temperature qualification tests from the 1960s have provided a base for the incorporation of cermet fuel in advanced space applications. The status of the cermet fuel development activities and descriptions of the key features of the cermet-fueled reactor design are summarized in this paper.« less
Dissolution of Material and Test reactor Fuel in an H-Canyon Dissolver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, W. E.; Rudisill, T. S.; O'Rourke, P. E.
2017-01-26
In an amended record of decision for the management of spent nuclear fuel (SNF) at the Savannah River Site, the US Department of Energy has authorized the dissolution and recovery of U from 1000 bundles of Al-clad SNF. The SNF is fuel from domestic and foreign research reactors and is typically referred to as Material Test Reactor (MTR) fuel. Bundles of MTR fuel containing assemblies fabricated from U-Al alloys (or other U compounds) are currently dissolved using a Hg-catalyzed HNO3 flowsheet. Since the development of the existing flowsheet, improved experimental methods have been developed to more accurately characterize the offgasmore » composition and generation rate during laboratory dissolutions. Recently, these new techniques were successfully used to develop a flowsheet for the dissolution of High Flux Isotope Reactor (HFIR) fuel. Using the data from the HFIR dissolution flowsheet development and necessary laboratory experiments, the Savannah River National Laboratory (SRNL) was requested to define flowsheet conditions for the dissolution of MTR fuels. With improved offgas characterization techniques, SRNL will be able define the number of bundles of fuel which can be charged to an H-Canyon dissolver with much less conservatism.« less
Ikeda-Ohtsubo, Wakako; Miyahara, Morio; Kim, Sang-Wan; Yamada, Takeshi; Matsuoka, Masaki; Watanabe, Akira; Fushinobu, Shinya; Wakagi, Takayoshi; Shoun, Hirofumi; Miyauchi, Keisuke; Endo, Ginro
2013-01-01
In bioaugmentation technology, survival of inoculant in the treatment system is prerequisite but remains to be a crucial hurdle. In this study, we bioaugmented the denitrification tank of a piggery wastewater treatment system with the denitrifying bacterium Pseudomonas stutzeri strain TR2 in two pilot-scale experiments, with the aim of reducing nitrous oxide (N(2)O), a gas of environmental concern. In the laboratory, strain TR2 grew well and survived with high concentrations of nitrite (5-10 mM) at a wide range of temperatures (28-40°C). In the first augmentation of the pilot-scale experiment, strain TR2 inoculated into the denitrification tank with conditions (30°C, ~0.1 mM nitrite) survived only 2-5 days. In contrast, in the second augmentation with conditions determined to be favorable for the growth of the bacterium in the laboratory (40-45°C, 2-5 mM nitrite), strain TR2 survived longer than 32 days. During the time when the presence of strain TR2 was confirmed by quantitative real-time PCR, N(2)O emission was maintained at a low level even under nitrite-accumulating conditions in the denitrification and nitrification tanks, which provided indirect evidence that strain TR2 can reduce N(2)O in the pilot-scale system. Our results documented the effective application of growth conditions favorable for strain TR2 determined in the laboratory to maintain growth and performance of this strain in the pilot-scale reactor system and the decrease of N(2)O emission as the consequence. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Thermal oxidation of nuclear graphite: A large scale waste treatment option.
Theodosiou, Alex; Jones, Abbie N; Marsden, Barry J
2017-01-01
This study has investigated the laboratory scale thermal oxidation of nuclear graphite, as a proof-of-concept for the treatment and decommissioning of reactor cores on a larger industrial scale. If showed to be effective, this technology could have promising international significance with a considerable impact on the nuclear waste management problem currently facing many countries worldwide. The use of thermal treatment of such graphite waste is seen as advantageous since it will decouple the need for an operational Geological Disposal Facility (GDF). Particulate samples of Magnox Reactor Pile Grade-A (PGA) graphite, were oxidised in both air and 60% O2, over the temperature range 400-1200°C. Oxidation rates were found to increase with temperature, with a particular rise between 700-800°C, suggesting a change in oxidation mechanism. A second increase in oxidation rate was observed between 1000-1200°C and was found to correspond to a large increase in the CO/CO2 ratio, as confirmed through gas analysis. Increasing the oxidant flow rate gave a linear increase in oxidation rate, up to a certain point, and maximum rates of 23.3 and 69.6 mg / min for air and 60% O2 respectively were achieved at a flow of 250 ml / min and temperature of 1000°C. These promising results show that large-scale thermal treatment could be a potential option for the decommissioning of graphite cores, although the design of the plant would need careful consideration in order to achieve optimum efficiency and throughput.
Thermal oxidation of nuclear graphite: A large scale waste treatment option
Jones, Abbie N.; Marsden, Barry J.
2017-01-01
This study has investigated the laboratory scale thermal oxidation of nuclear graphite, as a proof-of-concept for the treatment and decommissioning of reactor cores on a larger industrial scale. If showed to be effective, this technology could have promising international significance with a considerable impact on the nuclear waste management problem currently facing many countries worldwide. The use of thermal treatment of such graphite waste is seen as advantageous since it will decouple the need for an operational Geological Disposal Facility (GDF). Particulate samples of Magnox Reactor Pile Grade-A (PGA) graphite, were oxidised in both air and 60% O2, over the temperature range 400–1200°C. Oxidation rates were found to increase with temperature, with a particular rise between 700–800°C, suggesting a change in oxidation mechanism. A second increase in oxidation rate was observed between 1000–1200°C and was found to correspond to a large increase in the CO/CO2 ratio, as confirmed through gas analysis. Increasing the oxidant flow rate gave a linear increase in oxidation rate, up to a certain point, and maximum rates of 23.3 and 69.6 mg / min for air and 60% O2 respectively were achieved at a flow of 250 ml / min and temperature of 1000°C. These promising results show that large-scale thermal treatment could be a potential option for the decommissioning of graphite cores, although the design of the plant would need careful consideration in order to achieve optimum efficiency and throughput. PMID:28793326
ETRCF, TRA654, INTERIOR. CAMERA IS ON MAIN FLOOR. NOTE CRANE ...
ETR-CF, TRA-654, INTERIOR. CAMERA IS ON MAIN FLOOR. NOTE CRANE HOOKS. ELECTRICAL EQUIPMENT IS PART OF PAST EXPERIMENT. DOOR AT LEFT EDGE OF VIEW LEADS TO REACTOR SERVICE BUILDING, TRA-635. INL NEGATIVE NO. HD24-1-2. Mike Crane, Photographer, ca. 2003 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
89. ARAIII. Petrochem oilfired gas heater installed in reactor building ...
89. ARA-III. Petro-chem oil-fired gas heater installed in reactor building (ARA-608). View is at floor level. Shows hand rails around heater pit and top of pit extending upwards through ceiling. January 20, 1959. Ineel photo no. 59-321. Photographer: Jack L. Anderson. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
Thorium and Molten Salt Reactors: "Essential Questions for Classroom Discussions"
ERIC Educational Resources Information Center
DiLisi, Gregory A.; Hirsch, Allison; Murray, Meredith; Rarick, Richard
2018-01-01
A little-known type of nuclear reactor called the "molten salt reactor" (MSR), in which nuclear fuel is dissolved in a liquid carrier salt, was proposed in the 1940s and developed at the Oak Ridge National Laboratory in the 1960s. Recently, the MSR has generated renewed interest as a remedy for the drawbacks associated with conventional…
Ranganathan, Panneerselvam; Savithri, Sivaraman
2018-06-01
Computational Fluid Dynamics (CFD) technique is used in this work to simulate the hydrothermal liquefaction of Nannochloropsis sp. microalgae in a lab-scale continuous plug-flow reactor to understand the fluid dynamics, heat transfer, and reaction kinetics in a HTL reactor under hydrothermal condition. The temperature profile in the reactor and the yield of HTL products from the present simulation are obtained and they are validated with the experimental data available in the literature. Furthermore, the parametric study is carried out to study the effect of slurry flow rate, reactor temperature, and external heat transfer coefficient on the yield of products. Though the model predictions are satisfactory in comparison with the experimental results, it still needs to be improved for better prediction of the product yields. This improved model will be considered as a baseline for design and scale-up of large-scale HTL reactor. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betzler, Benjamin R; Mays, Gary T
2016-01-01
A workshop on Molten Salt Reactor (MSR) technologies commemorating the 50th anniversary of the Molten Salt Reactor Experiment (MSRE) was held at Oak Ridge National Laboratory on October 15 16, 2015. The MSRE represented a pioneering experiment that demonstrated an advanced reactor technology: the molten salt eutectic-fueled reactor. A multinational group of more than 130 individuals representing a diverse set of stakeholders gathered to discuss the historical, current, and future technical challenges and paths to deployment of MSR technology. This paper provides a summary of the key messages from this workshop.
10. Floor Layout of Thermal Hydraulics Laboratory, from The Thermal ...
10. Floor Layout of Thermal Hydraulics Laboratory, from The Thermal Hydraulics Laboratory at Hanford. General Electric Company, Hanford Atomic Products Operation, Richland, Washington, 1961. - D-Reactor Complex, Deaeration Plant-Refrigeration Buildings, Area 100-D, Richland, Benton County, WA
Li, Xu; Upadhyaya, Giridhar; Yuen, Wangki; Brown, Jess; Morgenroth, Eberhard; Raskin, Lutgarde
2010-01-01
Phosphorus was added as a nutrient to bench-scale and pilot-scale biologically active carbon (BAC) reactors operated for perchlorate and nitrate removal from contaminated groundwater. The two bioreactors responded similarly to phosphorus addition in terms of microbial community function (i.e., reactor performance), while drastically different responses in microbial community structure were detected. Improvement in reactor performance with respect to perchlorate and nitrate removal started within a few days after phosphorus addition for both reactors. Microbial community structures were evaluated using molecular techniques targeting 16S rRNA genes. Clone library results showed that the relative abundance of perchlorate-reducing bacteria (PRB) Dechloromonas and Azospira in the bench-scale reactor increased from 15.2% and 0.6% to 54.2% and 11.7% after phosphorus addition, respectively. Real-time quantitative PCR (qPCR) experiments revealed that these increases started within a few days after phosphorus addition. In contrast, after phosphorus addition, the relative abundance of Dechloromonas in the pilot-scale reactor decreased from 7.1 to 0.6%, while Zoogloea increased from 17.9 to 52.0%. The results of this study demonstrated that similar operating conditions for bench-scale and pilot-scale reactors resulted in similar contaminant removal performances, despite dramatically different responses from microbial communities. These findings suggest that it is important to evaluate the microbial community compositions inside bioreactors used for drinking water treatment, as they determine the microbial composition in the effluent and impact downstream treatment requirements for drinking water production. This information could be particularly relevant to drinking water safety, if pathogens or disinfectant-resistant bacteria are detected in the bioreactors. PMID:20889793
Pawar, Sudhanshu S; Vongkumpeang, Thitiwut; Grey, Carl; van Niel, Ed Wj
2015-01-01
Caldicellulosiruptor species have gained a reputation as being among the best microorganisms to produce hydrogen (H2) due to possession of a combination of appropriate features. However, due to their low volumetric H2 productivities (Q H2), Caldicellulosiruptor species cannot be considered for any viable biohydrogen production process yet. In this study, we evaluate biofilm forming potential of pure and co-cultures of Caldicellulosiruptor saccharolyticus and Caldicellulosiruptor owensensis in continuously stirred tank reactors (CSTR) and up-flow anaerobic (UA) reactors. We also evaluate biofilms as a means to retain biomass in the reactor and its influence on Q H2. Moreover, we explore the factors influencing the formation of biofilm. Co-cultures of C. saccharolyticus and C. owensensis form substantially more biofilm than formed by C. owensensis alone. Biofilms improved substrate conversion in both of the reactor systems, but improved the Q H2 only in the UA reactor. When grown in the presence of each other's culture supernatant, both C. saccharolyticus and C. owensensis were positively influenced on their individual growth and H2 production. Unlike the CSTR, UA reactors allowed retention of C. saccharolyticus and C. owensensis when subjected to very high substrate loading rates. In the UA reactor, maximum Q H2 (approximately 20 mmol · L(-1) · h(-1)) was obtained only with granular sludge as the carrier material. In the CSTR, stirring negatively affected biofilm formation. Whereas, a clear correlation was observed between elevated (>40 μM) intracellular levels of the secondary messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) and biofilm formation. In co-cultures C. saccharolyticus fortified the trade of biofilm formation by C. owensensis, which was mediated by elevated levels of c-di-GMP in C. owensensis. These biofilms were effective in retaining biomass of both species in the reactor and improving Q H2 in a UA reactor using granular sludge as the carrier material. This concept forms a basis for further optimizing the Q H2 at laboratory scale and beyond.
PBF Reactor Building (PER620). Fuel rod test assembly is on ...
PBF Reactor Building (PER-620). Fuel rod test assembly is on display at PBF. Date: 1982. INEEL negative no. 82-4893 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION ...
MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION EXPERIMENT NO. 1. INL NEGATIVE NO. 6510. Unknown Photographer, 9/29/1959 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
PRECAST CONCRETE WALL PANELS ARE LIFTED INTO PLACE ON MTR ...
PRECAST CONCRETE WALL PANELS ARE LIFTED INTO PLACE ON MTR STEEL FRAME STRUCTURE. INL NEGATIVE NO. 1330. Unknown Photographer, 1/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
FAST CHOPPER BUILDING, TRA665, INTERIOR. UPPER LEVEL. CONCRETE WALLS. INL ...
FAST CHOPPER BUILDING, TRA-665, INTERIOR. UPPER LEVEL. CONCRETE WALLS. INL NEGATIVE NO. HD42-2. Mike Crane, Photographer, 3/2004 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Formation of carbon allotrope aerosol by colliding plasmas in an inertial fusion reactor
NASA Astrophysics Data System (ADS)
Hirooka, Y.; Sato, H.; Ishihara, K.; Yabuuchi, T.; Tanaka, K. A.
2014-02-01
Along with repeated implosions, the interior of an inertial fusion target chamber is exposed to short pulses of high-energy x-ray, unburned DT-fuel particles, He-ash and pellet debris. As a result, chamber wall materials are subjected to ablation, emitting particles in the plasma state. Ablated particles will either be re-deposited elsewhere or collide with each other, perhaps in the centre-of-symmetry region of the chamber volume. Colliding ablation plasma particles can lead to the formation of clusters to grow into aerosol, possibly floating thereafter, which can deteriorate the subsequent implosion performance via laser scattering, etc. In a laboratory-scale YAG laser setup, the formation of nano-scale aerosol has been demonstrated in vacuum at irradiation power densities of the orders of 108-10 W cm-2 at 10 Hz, each 6 ns long, simulating the high-repetition rate inertial fusion reactor situation. Interestingly, carbon aerosol formation has been observed in the form of fullerene onion, nano- and micro-tubes when laser-ablated plasma plumes of carbon collide with each other. In contrast, colliding plasma plumes of metals tend to generate aerosol in the form of droplets under identical laser irradiation conditions. An atomic and molecular reaction model is proposed to interpret the process of carbon allotrope aerosol formation.
Site Environmental Report for Calendar Year 1999. DOE Operations at The Boeing Company, Rocketdyne
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2000-09-01
OAK A271 Site Environmental Report for Calendar Year 1999. DOE Operations at The Boeing Company, Rocketdyne. This Annual Site Environmental Report (ASER) for 1999 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Rocketdyne Santa Susana Field Laboratory (SSFL). In the past, these operations included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials under the former Atomics International Division. Other activities included the operation of large-scale liquid metal facilities for testing of liquid metal fast breeder components at the Energy Technology Engineering Center (ETEC), amore » government-owned, company-operated test facility within Area IV. All nuclear work was terminated in 1988, and subsequently, all radiological work has been directed toward decontamination and decommissioning (D&D) of the previously used nuclear facilities and associated site areas. Large-scale D&D activities of the sodium test facilities began in 1996. This Annual Site Environmental Report provides information showing that there are no indications of any potential impact on public health and safety due to the operations conducted at the SSFL. All measures and calculations of off-site conditions demonstrate compliance with applicable regulations, which provide for protection of human health and the environment.« less
Limitations for heavy metal release during thermo-chemical treatment of sewage sludge ash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowak, Benedikt, E-mail: benedikt.nowak@tuwien.ac.at; Perutka, Libor; Aschenbrenner, Philipp
2011-06-15
Phosphate recycling from sewage sludge can be achieved by heavy metal removal from sewage sludge ash (SSA) producing a fertilizer product: mixing SSA with chloride and treating this mixture (eventually after granulation) in a rotary kiln at 1000 {+-} 100 deg. C leads to the formation of volatile heavy metal compounds that evaporate and to P-phases with high bio-availability. Due to economical and ecological reasons, it is necessary to reduce the energy consumption of this technology. Generally, fluidized bed reactors are characterized by high heat and mass transfer and thus promise the saving of energy. Therefore, a rotary reactor andmore » a fluidized bed reactor (both laboratory-scale and operated in batch mode) are used for the treatment of granulates containing SSA and CaCl{sub 2}. Treatment temperature, residence time and - in case of the fluidized bed reactor - superficial velocity are varied between 800 and 900 deg. C, 10 and 30 min and 3.4 and 4.6 m s{sup -1}. Cd and Pb can be removed well (>95 %) in all experiments. Cu removal ranges from 25% to 84%, for Zn 75-90% are realized. The amount of heavy metals removed increases with increasing temperature and residence time which is most pronounced for Cu. In the pellet, three major reactions occur: formation of HCl and Cl{sub 2} from CaCl{sub 2}; diffusion and reaction of these gases with heavy metal compounds; side reactions from heavy metal compounds with matrix material. Although, heat and mass transfer are higher in the fluidized bed reactor, Pb and Zn removal is slightly better in the rotary reactor. This is due the accelerated migration of formed HCl and Cl{sub 2} out of the pellets into the reactor atmosphere. Cu is apparently limited by the diffusion of its chloride thus the removal is higher in the fluidized bed unit.« less
INL Experimental Program Roadmap for Thermal Hydraulic Code Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glenn McCreery; Hugh McIlroy
2007-09-01
Advanced computer modeling and simulation tools and protocols will be heavily relied on for a wide variety of system studies, engineering design activities, and other aspects of the Next Generation Nuclear Power (NGNP) Very High Temperature Reactor (VHTR), the DOE Global Nuclear Energy Partnership (GNEP), and light-water reactors. The goal is for all modeling and simulation tools to be demonstrated accurate and reliable through a formal Verification and Validation (V&V) process, especially where such tools are to be used to establish safety margins and support regulatory compliance, or to design a system in a manner that reduces the role ofmore » expensive mockups and prototypes. Recent literature identifies specific experimental principles that must be followed in order to insure that experimental data meet the standards required for a “benchmark” database. Even for well conducted experiments, missing experimental details, such as geometrical definition, data reduction procedures, and manufacturing tolerances have led to poor Benchmark calculations. The INL has a long and deep history of research in thermal hydraulics, especially in the 1960s through 1980s when many programs such as LOFT and Semiscle were devoted to light-water reactor safety research, the EBRII fast reactor was in operation, and a strong geothermal energy program was established. The past can serve as a partial guide for reinvigorating thermal hydraulic research at the laboratory. However, new research programs need to fully incorporate modern experimental methods such as measurement techniques using the latest instrumentation, computerized data reduction, and scaling methodology. The path forward for establishing experimental research for code model validation will require benchmark experiments conducted in suitable facilities located at the INL. This document describes thermal hydraulic facility requirements and candidate buildings and presents examples of suitable validation experiments related to VHTRs, sodium-cooled fast reactors, and light-water reactors. These experiments range from relatively low-cost benchtop experiments for investigating individual phenomena to large electrically-heated integral facilities for investigating reactor accidents and transients.« less
Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave
Gershman, Daniel J.; F-Viñas, Adolfo; Dorelli, John C.; Boardsen, Scott A.; Avanov, Levon A.; Bellan, Paul M.; Schwartz, Steven J.; Lavraud, Benoit; Coffey, Victoria N.; Chandler, Michael O.; Saito, Yoshifumi; Paterson, William R.; Fuselier, Stephen A.; Ergun, Robert E.; Strangeway, Robert J.; Russell, Christopher T.; Giles, Barbara L.; Pollock, Craig J.; Torbert, Roy B.; Burch, James L.
2017-01-01
Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA's Magnetospheric Multiscale (MMS) mission, we utilize Earth's magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations. PMID:28361881
Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave.
Gershman, Daniel J; F-Viñas, Adolfo; Dorelli, John C; Boardsen, Scott A; Avanov, Levon A; Bellan, Paul M; Schwartz, Steven J; Lavraud, Benoit; Coffey, Victoria N; Chandler, Michael O; Saito, Yoshifumi; Paterson, William R; Fuselier, Stephen A; Ergun, Robert E; Strangeway, Robert J; Russell, Christopher T; Giles, Barbara L; Pollock, Craig J; Torbert, Roy B; Burch, James L
2017-03-31
Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA's Magnetospheric Multiscale (MMS) mission, we utilize Earth's magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.
Wave-Particle Energy Exchange Directly Observed in a Kinetic Alfven-Branch Wave
NASA Technical Reports Server (NTRS)
Gershman, Daniel J.; F-Vinas, Adolfo; Dorelli, John C.; Boardsen, Scott A. (Inventor); Avanov, Levon A.; Bellan, Paul M.; Schwartz, Steven J.; Lavraud, Benoit; Coffey, Victoria N.; Chandler, Michael O.;
2017-01-01
Alfven waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres, and astrophysical systems, but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASAs Magnetospheric Multiscale (MMS) mission, we utilize Earths magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfven wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via non-linear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.
Test simulation of neutron damage to electronic components using accelerator facilities
NASA Astrophysics Data System (ADS)
King, D. B.; Fleming, R. M.; Bielejec, E. S.; McDonald, J. K.; Vizkelethy, G.
2015-12-01
The purpose of this work is to demonstrate equivalent bipolar transistor damage response to neutrons and silicon ions. We report on irradiation tests performed at the White Sands Missile Range Fast Burst Reactor, the Sandia National Laboratories (SNL) Annular Core Research Reactor, the SNL SPHINX accelerator, and the SNL Ion Beam Laboratory using commercial silicon npn bipolar junction transistors (BJTs) and III-V Npn heterojunction bipolar transistors (HBTs). Late time and early time gain metrics as well as defect spectra measurements are reported.
Methane production from kitchen waste using Escherichia coli.
Jayalakshmi, S; Joseph, Kurian; Sukumaran, V
2007-04-01
Escherichia coli (E. coli) strain isolated from biogas plant sludge was examined for its ability to enhance biogas from kitchen waste during solid phase anaerobic digestion. The laboratory experiments were conducted for total solid concentrations of 20% and 22%. Kitchen waste was characterized for physico-chemical parameters and laboratory experiments were conducted with and without E. coli strain. It was found that the reactor with E. coli produced 17% more biogas than the reactors that are operated without E. coli strain.
The use of ethanol to remove sulfur from coal. Final report, September 1991--December 1992; Revision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, R.L.; Lazarov, L.K.; Prudich, M.E.
1994-03-10
The initial technical goal in the project was to develop a chemical method for the cost effective removal of both inorganic and organic sulfur from Ohio coals. Verifying and using a process of reacting ethanol vapors with coal under conditions disclosed in U.S. Patent 4,888,029, the immediate technical objectives were to convert a small scale laborative batch process to a larger scale continuous process which can serve as the basis for commercial development of the technology. This involved getting as much information as possible from small scale batch autoclave or fluid bed laboratory reactors for use in pilot plant studies.more » The laboratory data included material balances on the coal and sulfur, temperature and pressure ranges for the reaction, minimum reaction times at different conditions, the effectiveness of different activators such as oxygen and nitric oxide, the amount and nature of by-products such as sulfur dioxide, hydrogen sulfide and acetaldehyde, the effect of coal particle size on the speed and completeness of the reaction, and the effectiveness of the reaction on different Ohio coals. Because the laboratory experiments using the method disclosed in U.S. 4,888,029 were not successful, the objective for the project was changed to develop a new laboratory process to use ethanol to remove sulfur from coal. Using copper as a catalyst and as an H{sub 2}S scavenger, a new laboratory procedure to use ethanol to remove sulfur from coal has been developed at Ohio University and a patent application covering this process was filed in March, 1993. The process is based on the use of copper as a catalyst for the dehydrogenation of ethanol to produce nascent hydrogen to remove sulfur from the coal and the use of copper as a scavenger to capture the hydrogen sulfide formed from the sulfur removed from coal.« less
MTR, TRA603. FIRST FLOOR PLAN. REACTOR AT CENTER. TWENTYMETER CHOPPER ...
MTR, TRA-603. FIRST FLOOR PLAN. REACTOR AT CENTER. TWENTY-METER CHOPPER HOUSE. COFFIN TURNING ROLLS. REMOVABLE PANEL OVER CANAL ON EAST SIDE. NEW PLUG STORAGE ACCESS. DOOR SCHEDULE INDICATES STEEL (FOR VAULT), WIRE MESH, AND HOLLOW METAL TYPES. STORAGE AND ISSUE ROOM. SAFETY SHOWERS. DOORWAY TO WING, TRA-604. BLAW-KNOX 3150-803-2, 7/1950. INL INDEX NO. 531-0603-00-098-100561, REV. 10. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.
1983-06-01
During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.
ERIC Educational Resources Information Center
Aloise, Gene
2008-01-01
There are 37 research reactors in the United States, mostly located on college campuses. Of these, 33 reactors are licensed and regulated by the Nuclear Regulatory Commission (NRC). Four are operated by the Department of Energy (DOE) and are located at three national laboratories. Although less powerful than commercial nuclear power reactors,…
REACTOR SERVICE BUILDING, TRA635, INTERIOR. CAMERA FACES NORTHWEST TOWARDS INTERIOR ...
REACTOR SERVICE BUILDING, TRA-635, INTERIOR. CAMERA FACES NORTHWEST TOWARDS INTERIOR WALL ENCLOSING STORAGE AND OFFICE SPACE ALONG THE WEST SIDE. AT RIGHT EDGE IS DOOR TO MTR BUILDING. FROM RIGHT TO LEFT, SPACE WAS PLANNED FOR A LOCKER ROOM, MTR ISSUE ROOM, AND STORAGE AREAS AND RELATED OFFICES. NOTE SECOND "MEZZANINE" FLOOR ABOVE. INL NEGATIVE NO. 10227. Unknown Photographer, 3/23/1954 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Evaluation of activated sludge for biodegradation of propylene glycol as an aircraft deicing fluid.
Delorit, Justin D; Racz, LeeAnn
2014-04-01
Aircraft deicing fluid used at airport facilities is often collected for treatment or disposal in order to prevent serious ecological threats to nearby surface waters. This study investigated lab scale degradation of propylene glycol, the active ingredient in a common aircraft deicing fluid, by way of a laboratory-scale sequencing batch reactor containing municipal waste water treatment facility activated sludge performing simultaneous organic carbon oxidation and nitrification. The ability of activated sludge to remove propylene glycol was evaluated by studying the biodegradation and sorption characteristics of propylene glycol in an activated sludge medium. The results indicate sorption may play a role in the fate of propylene glycol in AS, and the heterotrophic bacteria readily degrade this compound. Therefore, a field deployable bioreactor may be appropriate for use in flight line applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The laboratory impacts at Idaho National Lab consist of neutron radiography reactor doubles throughput; electric vehicle wireless charging; assessing chemical weapons in Panama; hot cell window replacement; developing better batteries and other impacts.
Novel process windows for enabling, accelerating, and uplifting flow chemistry.
Hessel, Volker; Kralisch, Dana; Kockmann, Norbert; Noël, Timothy; Wang, Qi
2013-05-01
Novel Process Windows make use of process conditions that are far from conventional practices. This involves the use of high temperatures, high pressures, high concentrations (solvent-free), new chemical transformations, explosive conditions, and process simplification and integration to boost synthetic chemistry on both the laboratory and production scale. Such harsh reaction conditions can be safely reached in microstructured reactors due to their excellent transport intensification properties. This Review discusses the different routes towards Novel Process Windows and provides several examples for each route grouped into different classes of chemical and process-design intensification. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Szabó, Enikö; Liébana, Raquel; Hermansson, Malte; Modin, Oskar; Persson, Frank; Wilén, Britt-Marie
2017-01-01
The granular sludge process is an effective, low-footprint alternative to conventional activated sludge wastewater treatment. The architecture of the microbial granules allows the co-existence of different functional groups, e.g., nitrifying and denitrifying communities, which permits compact reactor design. However, little is known about the factors influencing community assembly in granular sludge, such as the effects of reactor operation strategies and influent wastewater composition. Here, we analyze the development of the microbiomes in parallel laboratory-scale anoxic/aerobic granular sludge reactors operated at low (0.9 kg m-3d-1), moderate (1.9 kg m-3d-1) and high (3.7 kg m-3d-1) organic loading rates (OLRs) and the same ammonium loading rate (0.2 kg NH4-N m-3d-1) for 84 days. Complete removal of organic carbon and ammonium was achieved in all three reactors after start-up, while the nitrogen removal (denitrification) efficiency increased with the OLR: 0% at low, 38% at moderate, and 66% at high loading rate. The bacterial communities at different loading rates diverged rapidly after start-up and showed less than 50% similarity after 6 days, and below 40% similarity after 84 days. The three reactor microbiomes were dominated by different genera (mainly Meganema, Thauera, Paracoccus, and Zoogloea), but these genera have similar ecosystem functions of EPS production, denitrification and polyhydroxyalkanoate (PHA) storage. Many less abundant but persistent taxa were also detected within these functional groups. The bacterial communities were functionally redundant irrespective of the loading rate applied. At steady-state reactor operation, the identity of the core community members was rather stable, but their relative abundances changed considerably over time. Furthermore, nitrifying bacteria were low in relative abundance and diversity in all reactors, despite their large contribution to nitrogen turnover. The results suggest that the OLR has considerable impact on the composition of the granular sludge communities, but also that the granule communities can be dynamic even at steady-state reactor operation due to high functional redundancy of several key guilds. Knowledge about microbial diversity with specific functional guilds under different operating conditions can be important for engineers to predict the stability of reactor functions during the start-up and continued reactor operation. PMID:28507540
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humbird, David; Sitaraman, Hariswaran; Stickel, Jonathan
If advanced biofuels are to measurably displace fossil fuels in the near term, they will have to operate at levels of scale, efficiency, and margin unprecedented in the current biotech industry. For aerobically-grown products in particular, scale-up is complex and the practical size, cost, and operability of extremely large reactors is not well understood. Put simply, the problem of how to attain fuel-class production scales comes down to cost-effective delivery of oxygen at high mass transfer rates and low capital and operating costs. To that end, very large reactor vessels (>500 m3) are proposed in order to achieve favorable economiesmore » of scale. Additionally, techno-economic evaluation indicates that bubble-column reactors are more cost-effective than stirred-tank reactors in many low-viscosity cultures. In order to advance the design of extremely large aerobic bioreactors, we have performed computational fluid dynamics (CFD) simulations of bubble-column reactors. A multiphase Euler-Euler model is used to explicitly account for the spatial distribution of air (i.e., gas bubbles) in the reactor. Expanding on the existing bioreactor CFD literature (typically focused on the hydrodynamics of bubbly flows), our simulations include interphase mass transfer of oxygen and a simple phenomenological reaction representing the uptake and consumption of dissolved oxygen by submerged cells. The simulations reproduce the expected flow profiles, with net upward flow in the center of column and downward flow near the wall. At high simulated oxygen uptake rates (OUR), oxygen-depleted regions can be observed in the reactor. By increasing the gas flow to enhance mixing and eliminate depleted areas, a maximum oxygen transfer (OTR) rate is obtained as a function of superficial velocity. These insights regarding minimum superficial velocity and maximum reactor size are incorporated into NREL's larger techno-economic models to supplement standard reactor design equations.« less
Removal of Pharmaceutical Products in a Constructed Wetland
Özengin, Nihan; Elmaci, Ayse
2016-01-01
Background There is growing interest in the natural and constructed wetlands for wastewater treatment. While nutrient removal in wetlands has been extensively investigated, information regarding the degradation of the pharmaceuticals and personal care products (PPCPs) has only recently been emerging. PPCPs are widely distributed in urban wastewaters and can be removed to some extent by the constructed wetlands. The medium-term (3-5 years) behavior of these systems regarding PPCP removal is still unknown. Objectives The efficiency of a Leca-based laboratory-scale constructed wetland planted with Phragmites australis (Cav.) Trin. Ex. Steudel in treating an aqueous solution of the pharmaceuticals, namely, carbamazepine, ibuprofen, and sulfadiazine, was to investigate. Materials and Methods The two pilot-scale constructed wetlands (CW) were operated in parallel; one as an experimental unit (a planted reactor with P. australis) and the other as a control (an unplanted reactor with Leca). Pretreatment and analyses of the carbamazepine, ibuprofen, sulfadiazine, and tissue samples (Leca, P. australis body and P.australis leaf) were conducted using HPLC. Results The carbamazepine, ibuprofen, and sulfadiazine removal efficiencies for the planted and unplanted reactors were 89.23% and 95.94%, 89.50% and 94.73%, and 67.20% and 93.68%, respectively. The Leca bed permitted an efficient removal. Leca has a high sorption capacity for these pharmaceuticals, with removal efficiencies of 93.68-95.94% in the unplanted reactors. Conclusions Sorption processes might be of a major importance in achieving efficient treatment of wastewater, particularly in the removal of organic material that are resistant to biodegradation, in which case the materials composing the support matrix may play an important role. The results obtained in the present study indicate that a constructed wetland with Leca as a substrate and planted with P. australis is effective in the treatment of wastewater contaminated with carbamazepine, ibuprofen, and sulfadiazine. PMID:28959339
NASA Astrophysics Data System (ADS)
Maddison, R. J.
1985-02-01
The investigation of certain areas of nuclear reactor safety involves the study of high speed phenomena with timescales ranging from microseconds to a few hundreds of milliseconds. Examples which have been extensively studied at Winfrith are firstly, the thermal interaction of molten fuel and reactor coolant which can generate high pressures on the 100 msec timescale, and which involves phenomena such as vapour film collapse which takes place on the microsecond timescale. Secondly, there is the response of reactor structures to such pressures, and finally there is the response of structural materials such as metals and concrete to the impulsive loading arising from the impact of heavy, high velocity missiles. A wide range of experimental techniques is used in these studies, many of which have been developed specially for this type of work which ranges from small laboratory scale to large field scale experiments. There are two important features which characterise many of these experiments:- i) a long period of meticulous preparation of very heavily instrumented, short duration experiments and; ii) the destructive nature of the experiments. Various forms of High Speed photography are included in the inventory of experimental techniques. These include the use of single and double exposure, short duration, spark photography; the use of an Image Convertor Camera (IMACON 790); and a number of rotating prism cine cameras. High Speed Photography is used both in a primary experimental role in the studies, and in a supportive role for other instrumentation. Because of the sometimes violent nature of these experiments, cameras are often heavily protected and operated remotely; lighting systems are sometimes destroyed. This has led to the development of unconventional techniques for camera operation and subject lighting. This paper will describe some of the experiments and the way in which High Speed Photography has been applied as an essential experimental tool. It will be illustrated with cine film taken during the experiments.
Implementation of in-line infrared monitor in full-scale anaerobic digestion process.
Spanjers, H; Bouvier, J C; Steenweg, P; Bisschops, I; van Gils, W; Versprille, B
2006-01-01
During start up but also during normal operation, anaerobic reactor systems should be run and monitored carefully to secure trouble-free operation, because the process is vulnerable to disturbances such as temporary overloading, biomass wash out and influent toxicity. The present method of monitoring is usually by manual sampling and subsequent laboratory analysis. Data collection, processing and feedback to system operation is manual and ad hoc, and involves high-level operator skills and attention. As a result, systems tend to be designed at relatively conservative design loading rates resulting in significant over-sizing of reactors and thus increased systems cost. It is therefore desirable to have on-line and continuous access to performance data on influent and effluent quality. Relevant variables to indicate process performance include VFA, COD, alkalinity, sulphate, and, if aerobic post-treatment is considered, total nitrogen, ammonia and nitrate. Recently, mid-IR spectrometry was demonstrated on a pilot scale to be suitable for in-line simultaneous measurement of these variables. This paper describes a full-scale application of the technique to test its ability to monitor continuously and without human intervention the above variables simultaneously in two process streams. For VFA, COD, sulphate, ammonium and TKN good agreement was obtained between in-line and manual measurements. During a period of six months the in-line measurements had to be interrupted several times because of clogging. It appeared that the sample pre-treatment unit was not able to cope with high solids concentrations all the time.
ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis
2001-07-25
This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/03/2001 through 7/02/2001. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. Note that this version of the quarterly technical report is a revision to add the reports from subcontractors Montana State and Oak Ridge National Laboratories The significant accomplishments for this quarter include: Development of an experimental plan and initiation of experiments to create a calibration curve that correlates algal chlorophyll levels with carbon levels (to simplify future experimentalmore » procedures); Completion of debugging of the slug flow reactor system, and development of a plan for testing the pressure drop of the slug flow reactor; Design and development of a new bioreactor screen design which integrates the nutrient delivery drip system and the harvesting system; Development of an experimental setup for testing the new integrated drip system/harvesting system; Completion of model-scale bioreactor tests examining the effects of CO{sub 2} concentration levels and lighting levels on Nostoc 86-3 growth rates; Completion of the construction of a larger model-scale bioreactor to improve and expand testing capabilities and initiation of tests; Substantial progress on construction of a pilot-scale bioreactor; and Preliminary economic analysis of photobioreactor deployment. Plans for next quarter's work are included in the conclusions. A preliminary economic analysis is included as an appendix.« less
Hanford Atomic Products Operation monthly report for March 1956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1956-04-20
This is the monthly report for the Hanford Laboratories Operation, March, 1956. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology; financial activities, visits, biology operation, physics and instrumentation research, employee relations, pile technology, safety and radiological sciences are discussed.
A National Natural Laboratory.
ERIC Educational Resources Information Center
Cohn, Jeffrey P.
1994-01-01
Describes the Savannah River Site, a national environmental research park that shelters wild animals and idle nuclear reactors. Outlines research conducted at the site that focuses on the recovery of ecosystems after disturbance related to the operation of nuclear reactors and other land uses. (LZ)
LOFT. Interior view of entry to reactor building, TAN650. Camera ...
LOFT. Interior view of entry to reactor building, TAN-650. Camera is inside entry (TAN-624) and facing north. At far end of domed chamber are penetrations in wall for electrical and other connections. Reactor and other equipment has been removed. Date: March 2004. INEEL negative no. HD-39-5-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
ETR HEAT EXCHANGER BUILDING, TRA644. FLOOR PLAN AND SECTIONS. PUMP ...
ETR HEAT EXCHANGER BUILDING, TRA-644. FLOOR PLAN AND SECTIONS. PUMP CUBICLES WITH PUMP MOTORS OUTSIDE CUBICLES. HEAT EXCHANGER EQUIPMENT. COOLANT PIPE TUNNEL ENTERS FROM REACTOR BUILDING. KAISER ETR-5582-MTR-644-A-3, 2/1956. INL INDEX NO. 532-0644-00-486-101294, REV. 6. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
ETR, TRA642. NORTHSOUTH SECTION, LOOKING WEST. STEELFRAME ROOF, CRANE RAIL, ...
ETR, TRA-642. NORTH-SOUTH SECTION, LOOKING WEST. STEEL-FRAME ROOF, CRANE RAIL, AND CRANES. COOLANT PIPE TUNNEL LEADING TO REACTOR FROM EAST. (THIS WAS A PRELIMINARY CONCEPT DRAWING.) KAISER ETR-5528-MTR-642-A-4, 11/1955. INL INDEX NO. 532-0642-00-486-100912, REV. 1. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Flow Induced Vibration Program at Argonne National Laboratory
NASA Astrophysics Data System (ADS)
1984-01-01
The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.
The performance of pilot-scale bioslurry treatment on creosote-contaminated soil was evaluated. Five reactors containing 66 L of slurry (30% soil by weight), were operated in parallel. The soil was a sandy soil with minor gravel content. The pilot-scale phase utilized an inoculum...
Taylor, P H; Yamada, T; Striebich, R C; Graham, J L; Giraud, R J
2014-09-01
In light of the widespread presence of perfluorooctanoic acid (PFOA) in the environment, a comprehensive laboratory-scale study has developed data requested by the U.S. Environmental Protection Agency (EPA) to determine whether municipal and/or medical waste incineration of commercial fluorotelomer-based polymers (FTBPs) at end of life is a potential source of PFOA that may contribute to environmental and human exposures. The study was divided into two phases (I and II) and conducted in accordance with EPA Good Laboratory Practices (GLPs) as described in the quality assurance project plan (QAPP) for each phase. Phase I testing determined that the PFOA transport efficiency across the thermal reactor system to be used in Phase II was greater than 90%. Operating at 1000°C over 2s residence time with 3.2-6.6mgdscm(-1) hydrogen fluoride (HF), corrected to 7% oxygen (O2), and continuously monitored exhaust oxygen of 13%, Phase II testing of the FTBP composites in this thermal reactor system yielded results demonstrating that waste incineration of fluorotelomer-based polymers does not result in the formation of detectable levels of PFOA under conditions representative of typical municipal waste combustor (MWC) and medical waste incinerator (MWI) operations in the U.S. Therefore, waste incineration of these polymers is not expected to be a source of PFOA in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
An efficient laboratory workflow for environmental risk assessment of organic chemicals.
Zhu, Linyan; Santiago-Schübel, Beatrix; Xiao, Hongxia; Thiele, Björn; Zhu, Zhiliang; Qiu, Yanling; Hollert, Henner; Küppers, Stephan
2015-07-01
In this study, we demonstrate a fast and efficient workflow to investigate the transformation mechanism of organic chemicals and evaluate the toxicity of their transformation products (TPs) in laboratory scale. The transformation process of organic chemicals was first simulated by electrochemistry coupled online to mass spectrometry (EC-MS). The simulated reactions were scaled up in a batch EC reactor to receive larger amounts of a reaction mixture. The mixture sample was purified and concentrated by solid phase extraction (SPE) for the further ecotoxicological testing. The combined toxicity of the reaction mixture was evaluated in fish egg test (FET) (Danio rerio) compared to the parent compound. The workflow was verified with carbamazepine (CBZ). By using EC-MS seven primary TPs of CBZ were identified; the degradation mechanism was elucidated and confirmed by comparison to literature. The reaction mixture and one primary product (acridine) showed higher ecotoxicity in fish egg assay with 96 h EC50 values of 1.6 and 1.0 mg L(-1) than CBZ with the value of 60.8 mg L(-1). The results highlight the importance of transformation mechanism study and toxicological effect evaluation for organic chemicals brought into the environment since transformation of them may increase the toxicity. The developed process contributes a fast and efficient laboratory method for the risk assessment of organic chemicals and their TPs. Copyright © 2015 Elsevier Ltd. All rights reserved.
DESIGN CHARACTERISTICS OF THE IDAHO NATIONAL LABORATORY HIGH-TEMPERATURE GAS-COOLED TEST REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterbentz, James; Bayless, Paul; Strydom, Gerhard
2016-11-01
Uncertainty and sensitivity analysis is an indispensable element of any substantial attempt in reactor simulation validation. The quantification of uncertainties in nuclear engineering has grown more important and the IAEA Coordinated Research Program (CRP) on High-Temperature Gas Cooled Reactor (HTGR) initiated in 2012 aims to investigate the various uncertainty quantification methodologies for this type of reactors. The first phase of the CRP is dedicated to the estimation of cell and lattice model uncertainties due to the neutron cross sections co-variances. Phase II is oriented towards the investigation of propagated uncertainties from the lattice to the coupled neutronics/thermal hydraulics core calculations.more » Nominal results for the prismatic single block (Ex.I-2a) and super cell models (Ex.I-2c) have been obtained using the SCALE 6.1.3 two-dimensional lattice code NEWT coupled to the TRITON sequence for cross section generation. In this work, the TRITON/NEWT-flux-weighted cross sections obtained for Ex.I-2a and various models of Ex.I-2c is utilized to perform a sensitivity analysis of the MHTGR-350 core power densities and eigenvalues. The core solutions are obtained with the INL coupled code PHISICS/RELAP5-3D, utilizing a fixed-temperature feedback for Ex. II-1a.. It is observed that the core power density does not vary significantly in shape, but the magnitude of these variations increases as the moderator-to-fuel ratio increases in the super cell lattice models.« less
SMR Re-Scaling and Modeling for Load Following Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoover, K.; Wu, Q.; Bragg-Sitton, S.
2016-11-01
This study investigates the creation of a new set of scaling parameters for the Oregon State University Multi-Application Small Light Water Reactor (MASLWR) scaled thermal hydraulic test facility. As part of a study being undertaken by Idaho National Lab involving nuclear reactor load following characteristics, full power operations need to be simulated, and therefore properly scaled. Presented here is the scaling analysis and plans for RELAP5-3D simulation.
Farmer, M. T.; Gerardi, C.; Bremer, N.; ...
2016-10-31
The reactor accidents at Fukushima-Dai-ichi have rekindled interest in late phase severe accident behavior involving reactor pressure vessel breach and discharge of molten core melt into the containment. Two technical issues of interest in this area include core-concrete interaction and the extent to which the core debris may be quenched and rendered coolable by top flooding. The OECD-sponsored Melt Coolability and Concrete Interaction (MCCI) programs at Argonne National Laboratory included the conduct of large scale reactor material experiments and associated analysis with the objectives of resolving the ex-vessel debris coolability issue, and to address remaining uncertainties related to long-term two-dimensionalmore » molten core-concrete interactions under both wet and dry cavity conditions. These tests provided a broad database to support accident management planning, as well as the development and validation of models and codes that can be used to extrapolate the experiment results to plant conditions. This paper provides a high level overview of the key experiment results obtained during the program. Finally, a discussion is also provided that describes technical gaps that remain in this area, several of which have arisen based on the sequence of events and operator actions during Fukushima.« less
Leyva-Díaz, J C; Poyatos, J M
2015-01-01
A hybrid moving bed biofilm reactor-membrane bioreactor (hybrid MBBR-MBR) system was studied as an alternative solution to conventional activated sludge processes and membrane bioreactors. This paper shows the results obtained from three laboratory-scale wastewater treatment plants working in parallel in the start-up and steady states. The first wastewater treatment plant was a MBR, the second one was a hybrid MBBR-MBR system containing carriers both in anoxic and aerobic zones of the bioreactor (hybrid MBBR-MBRa), and the last one was a hybrid MBBR-MBR system which contained carriers only in the aerobic zone (hybrid MBBR-MBRb). The reactors operated with a hydraulic retention time of 30.40 h. A kinetic study for characterizing heterotrophic biomass was carried out and organic matter and nutrients removals were evaluated. The heterotrophic biomass of the hybrid MBBR-MBRb showed the best kinetic performance in the steady state, with yield coefficient for heterotrophic biomass=0.30246 mg volatile suspended solids per mg chemical oxygen demand, maximum specific growth rate for heterotrophic biomass=0.00308 h(-1) and half-saturation coefficient for organic matter=3.54908 mg O2 L(-1). The removal of organic matter was supported by the kinetic study of heterotrophic biomass.
Combustion of a Pb(II)-loaded olive tree pruning used as biosorbent.
Ronda, A; Della Zassa, M; Martín-Lara, M A; Calero, M; Canu, P
2016-05-05
The olive tree pruning is a specific agroindustrial waste that can be successfully used as adsorbent, to remove Pb(II) from contaminated wastewater. Its final incineration has been studied in a thermobalance and in a laboratory flow reactor. The study aims at evaluating the fate of Pb during combustion, at two different scales of investigation. The flow reactor can treat samples approximately 10(2) larger than the conventional TGA. A detailed characterization of the raw and Pb(II)-loaded waste, before and after combustion is presented, including analysis of gas and solids products. The Pb(II)-loaded olive tree pruning has been prepared by a previous biosorption step in a lead solution, reaching a concentration of lead of 2.3 wt%. Several characterizations of the ashes and the mass balances proved that after the combustion, all the lead presents in the waste remained in ashes. Combustion in a flow reactor produced results consistent with those obtained in the thermobalance. It is thus confirmed that the combustion of Pb(II)-loaded olive tree pruning is a viable option to use it after the biosorption process. The Pb contained in the solid remained in the ashes, preventing possible environmental hazards. Copyright © 2016 Elsevier B.V. All rights reserved.
Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang
2015-01-01
Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3−-N could be removed or reduced, some amount of NO2−-N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy. PMID:26257096
Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang
2015-08-10
Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3(-)-N could be removed or reduced, some amount of NO2(-)-N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy.
Holzem, R M; Gardner, C M; Gunsch, C K
2018-01-01
Triclosan (TCS) is a broad range antimicrobial agent used in many personal care products, which is commonly discharged to wastewater treatment facilities (WWTFs). This study examined the impact of TCS on wastewater treatment performance using laboratory bench-scale sequencing batch reactors (SBRs) coupled with anaerobic digesters. The SBRs were continuously fed synthetic wastewater amended with or without 0.68 μM TCS, with the aim of determining the effect of chronic TCS exposure as opposed to a pulse TCS addition as previously studied. Overall, the present study suggests inhibition of nitrogen removal during reactor startup. However, NH 4 + removal fully rebounded after 63 days, suggesting acclimation of the associated microbial communities to TCS. An initial decrease in microbial community diversity was observed in the SBRs fed TCS as compared to the control SBRs, followed by an increase in community diversity, which coincided with the increase in NH 4 + removal. Elevated levels of NO 3 - and NO 2 - were found in the reactor effluent after day 58, however, suggesting ammonia oxidizing bacteria rebounding more rapidly than nitrogen oxidizing bacteria. Similar effects on treatment efficiencies at actual WWTFs have not been widely observed, suggesting that continuous addition of TCS in their influent may have selected for TCS-resistant nitrogen oxidizing bacteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, M. T.; Gerardi, C.; Bremer, N.
The reactor accidents at Fukushima-Dai-ichi have rekindled interest in late phase severe accident behavior involving reactor pressure vessel breach and discharge of molten core melt into the containment. Two technical issues of interest in this area include core-concrete interaction and the extent to which the core debris may be quenched and rendered coolable by top flooding. The OECD-sponsored Melt Coolability and Concrete Interaction (MCCI) programs at Argonne National Laboratory included the conduct of large scale reactor material experiments and associated analysis with the objectives of resolving the ex-vessel debris coolability issue, and to address remaining uncertainties related to long-term two-dimensionalmore » molten core-concrete interactions under both wet and dry cavity conditions. These tests provided a broad database to support accident management planning, as well as the development and validation of models and codes that can be used to extrapolate the experiment results to plant conditions. This paper provides a high level overview of the key experiment results obtained during the program. Finally, a discussion is also provided that describes technical gaps that remain in this area, several of which have arisen based on the sequence of events and operator actions during Fukushima.« less
NASA Astrophysics Data System (ADS)
Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang
2015-08-01
Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3--N could be removed or reduced, some amount of NO2--N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy.
MTR CONTROL ROOM WITH CONTROL CONSOLE AND STATUS READOUTS ALONG ...
MTR CONTROL ROOM WITH CONTROL CONSOLE AND STATUS READOUTS ALONG WALL. WORKERS MAKE ELECTRICAL AND OTHER CONNECTIONS. INL NEGATIVE NO. 4289. Unknown Photographer, 2/26/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
SOUTH WING, TRA661. SOUTH SIDE. CAMERA FACING NORTH. MTR HIGH ...
SOUTH WING, TRA-661. SOUTH SIDE. CAMERA FACING NORTH. MTR HIGH BAY BEYOND. INL NEGATIVE NO. HD46-45-3. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
A Simple Tubular Reactor Experiment.
ERIC Educational Resources Information Center
Hudgins, Robert R.; Cayrol, Bertrand
1981-01-01
Using the hydrolysis of crystal violet dye by sodium hydroxide as an example, the theory, apparatus, and procedure for a laboratory demonstration of tubular reactor behavior are described. The reaction presented can occur at room temperature and features a color change to reinforce measured results. (WB)
ETR HEAT EXCHANGER BUILDING, TRA644. WORKERS ARE INSTALLING HEAT EXCHANGER ...
ETR HEAT EXCHANGER BUILDING, TRA-644. WORKERS ARE INSTALLING HEAT EXCHANGER PIPING. INL NEGATIVE NO. 56-3122. Jack L. Anderson, Photographer, 9/21/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
PBF Reactor Building (PER620). Canal takes shape, with rebar and ...
PBF Reactor Building (PER-620). Canal takes shape, with rebar and concrete placement underway. Photographer: John Capek. Date: August 16, 1967. INEEL negative no. 67-4370 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
MTR AND ETR COMPLEXES. CAMERA FACING EASTERLY TOWARD CHEMICAL PROCESSING ...
MTR AND ETR COMPLEXES. CAMERA FACING EASTERLY TOWARD CHEMICAL PROCESSING PLANT. MTR AND ITS ATTACHMENTS IN FOREGROUND. ETR BEYOND TO RIGHT. INL NEGATIVE NO. 56-4100. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
VIEW OF 77710A REACTOR WING, LOOKING NORTHEAST,SHOWING LOADING DOOR TO ...
VIEW OF 777-10A REACTOR WING, LOOKING NORTHEAST,SHOWING LOADING DOOR TO THE PROCESS DEVELOPMENT PILE ROOM. BUILDING 305-A IN BACKGROUND ON LEFT - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
51. ARAII. Camera looking southeast at foundation piers for SL1 ...
51. ARA-II. Camera looking southeast at foundation piers for SL-1 reactor building support. August 22, 1957. Ineel photo no. 57-4212. Photographer: Jack L. Anderson. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
ETR COMPRESSOR BUILDING, TRA643. COMPRESSORS AND OTHER EQUIPMENT INSTALLED. METAL ...
ETR COMPRESSOR BUILDING, TRA-643. COMPRESSORS AND OTHER EQUIPMENT INSTALLED. METAL ROOF AND CONCRETE BLOCK WALLS. INL NEGATIVE NO. 61-4536. Unknown Photographer, ca. 1961. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
ORNL Named as Part of IAES Research Reactor Hub
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The International Atomic Energy Agency (IAEA) has named ORNL and Idaho National Laboratory part of an International Centre based on Research Reactors. The designation makes the United States one of only three countries identified for unique capabilities and excellence in nuclear research.
Scaling analysis for the direct reactor auxiliary cooling system for FHRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Q.; Kim, I. H.; Sun, X.
2015-04-01
The Direct Reactor Auxiliary Cooling System (DRACS) is a passive residual heat removal system proposed for the Fluoride-salt-cooled High-temperature Reactor (FHR) that combines the coated particle fuel and graphite moderator with a liquid fluoride salt as the coolant. The DRACS features three natural circulation/convection loops that rely on buoyancy as the driving force and are coupled via two heat exchangers, namely, the DRACS heat exchanger and the natural draft heat exchanger. A fluidic diode is employed to minimize the parasitic flow into the DRACS primary loop and correspondingly the heat loss to the DRACS during reactor normal operation, and tomore » activate the DRACS in accidents when the reactor is shut down. While the DRACS concept has been proposed, there are no actual prototypic DRACS systems for FHRs built or tested in the literature. In this paper, a detailed scaling analysis for the DRACS is performed, which will provide guidance for the design of scaled-down DRACS test facilities. Based on the Boussinesq assumption and one-dimensional flow formulation, the governing equations are non-dimensionalized by introducing appropriate dimensionless parameters. The key dimensionless numbers that characterize the DRACS system are obtained from the non-dimensional governing equations. Based on the dimensionless numbers and non-dimensional governing equations, similarity laws are proposed. In addition, a scaling methodology has been developed, which consists of a core scaling and a loop scaling. The consistency between the core and loop scaling is examined via the reference volume ratio, which can be obtained from both the core and loop scaling processes. The scaling methodology and similarity laws have been applied to obtain a scientific design of a scaled-down high-temperature DRACS test facility.« less
Investigation related to hydrogen isotopes separation by cryogenic distillation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bornea, A.; Zamfirache, M.; Stefanescu, I.
2008-07-15
Research conducted in the last fifty years has shown that one of the most efficient techniques of removing tritium from the heavy water used as moderator and coolant in CANDU reactors (as that operated at Cernavoda (Romania)) is hydrogen cryogenic distillation. Designing and implementing the concept of cryogenic distillation columns require experiments to be conducted as well as computer simulations. Particularly, computer simulations are of great importance when designing and evaluating the performances of a column or a series of columns. Experimental data collected from laboratory work will be used as input for computer simulations run at larger scale (formore » The Pilot Plant for Tritium and Deuterium Separation) in order to increase the confidence in the simulated results. Studies carried out were focused on the following: - Quantitative analyses of important parameters such as the number of theoretical plates, inlet area, reflux flow, flow-rates extraction, working pressure, etc. - Columns connected in series in such a way to fulfil the separation requirements. Experiments were carried out on a laboratory-scale installation to investigate the performance of contact elements with continuous packing. The packing was manufactured in our institute. (authors)« less
Decomposition and carbon storage of selected paper products in laboratory-scale landfills.
Wang, Xiaoming; De la Cruz, Florentino B; Ximenes, Fabiano; Barlaz, Morton A
2015-11-01
The objective of this study was to measure the anaerobic biodegradation of different types of paper products in laboratory-scale landfill reactors. The study included (a) measurement of the loss of cellulose, hemicellulose, organic carbon, and (b) measurement of the methane yields for each paper product. The test materials included two samples each of newsprint (NP), copy paper (CP), and magazine paper (MG), and one sample of diaper (DP). The methane yields, carbon storage factors and the extent of cellulose and hemicellulose decomposition all consistently show that papers made from mechanical pulps (e.g., NPs) are less degradable than those made from chemical pulps where essentially all lignin was chemically removed (e.g., CPs). The diaper, which is not only made from chemical pulp but also contains some gel and plastic, exhibited limited biodegradability. The extent of biogenic carbon conversion varied from 21 to 96% among papers, which contrasts with the uniform assumption of 50% by the Intergovernmental Panel on Climate Change (IPCC) for all degradable materials discarded in landfills. Biochemical methane potential tests also showed that the solids to liquid ratio used in the test can influence the results. Copyright © 2015 Elsevier B.V. All rights reserved.
Anaerobic co-digestion of high-strength organic wastes pretreated by thermal hydrolysis.
Choi, Gyucheol; Kim, Jaai; Lee, Seungyong; Lee, Changsoo
2018-06-01
Thermal hydrolysis (TH) pretreatment was investigated for the anaerobic digestion (AD) of a mixture of high-strength organic wastes (i.e., dewatered human feces, dewatered sewage sludge, and food wastewater) at laboratory scale to simulate a full-scale plant and evaluate its feasibility. The reactors maintained efficient and stable performance at a hydraulic retention time of 20 days, which may be not sufficient for the mesophilic AD of high-suspended-solid wastes, despite the temporal variations in organic load. The addition of FeCl 3 was effective in controlling H 2 S and resulted in significant changes in the microbial community structure, particularly the methanogens. The temporary interruption in feeding or temperature control led to immediate performance deterioration, but it recovered rapidly when normal operations were resumed. The overall results suggest that the AD process coupled with TH pretreatment can provide an efficient, robust, and resilient system to manage high-suspended-solid wastes, supporting the feasibility of its full-scale implementation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor
2012-01-01
Background A modified laboratory-scale upflow anaerobic sludge blanket (UASB) reactor was used to obtain methane by treating hydrous ethanol vinasse. Vinasses or stillage are waste materials with high organic loads, and a complex composition resulting from the process of alcohol distillation. They must initially be treated with anaerobic processes due to their high organic loads. Vinasses can be considered multipurpose waste for energy recovery and once treated they can be used in agriculture without the risk of polluting soil, underground water or crops. In this sense, treatment of vinasse combines the elimination of organic waste with the formation of methane. Biogas is considered as a promising renewable energy source. The aim of this study was to determine the optimum organic loading rate for operating a modified UASB reactor to treat vinasse generated in the production of hydrous ethanol from sugar cane molasses. Results The study showed that chemical oxygen demand (COD) removal efficiency was 69% at an optimum organic loading rate (OLR) of 17.05 kg COD/m3-day, achieving a methane yield of 0.263 m3/kg CODadded and a biogas methane content of 84%. During this stage, effluent characterization presented lower values than the vinasse, except for potassium, sulfide and ammonia nitrogen. On the other hand, primers used to amplify the 16S-rDNA genes for the domains Archaea and Bacteria showed the presence of microorganisms which favor methane production at the optimum organic loading rate. Conclusions The modified UASB reactor proposed in this study provided a successful treatment of the vinasse obtained from hydrous ethanol production. Methanogen groups (Methanobacteriales and Methanosarcinales) detected by PCR during operational optimum OLR of the modified UASB reactor, favored methane production. PMID:23167984
Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor.
España-Gamboa, Elda I; Mijangos-Cortés, Javier O; Hernández-Zárate, Galdy; Maldonado, Jorge A Domínguez; Alzate-Gaviria, Liliana M
2012-11-21
A modified laboratory-scale upflow anaerobic sludge blanket (UASB) reactor was used to obtain methane by treating hydrous ethanol vinasse. Vinasses or stillage are waste materials with high organic loads, and a complex composition resulting from the process of alcohol distillation. They must initially be treated with anaerobic processes due to their high organic loads. Vinasses can be considered multipurpose waste for energy recovery and once treated they can be used in agriculture without the risk of polluting soil, underground water or crops. In this sense, treatment of vinasse combines the elimination of organic waste with the formation of methane. Biogas is considered as a promising renewable energy source. The aim of this study was to determine the optimum organic loading rate for operating a modified UASB reactor to treat vinasse generated in the production of hydrous ethanol from sugar cane molasses. The study showed that chemical oxygen demand (COD) removal efficiency was 69% at an optimum organic loading rate (OLR) of 17.05 kg COD/m3-day, achieving a methane yield of 0.263 m3/kg CODadded and a biogas methane content of 84%. During this stage, effluent characterization presented lower values than the vinasse, except for potassium, sulfide and ammonia nitrogen. On the other hand, primers used to amplify the 16S-rDNA genes for the domains Archaea and Bacteria showed the presence of microorganisms which favor methane production at the optimum organic loading rate. The modified UASB reactor proposed in this study provided a successful treatment of the vinasse obtained from hydrous ethanol production.Methanogen groups (Methanobacteriales and Methanosarcinales) detected by PCR during operational optimum OLR of the modified UASB reactor, favored methane production.
Dismantling the nuclear research reactor Thetis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michiels, P.
The research reactor Thetis, in service since 1967 and stopped in 2003, is part of the laboratories of the institution of nuclear science of the University of Ghent. The reactor, of the pool-type, was used as a neutron-source for the production of radio-isotopes and for activation analyses. The reactor is situated in a water pool with inner diameter of 3 m. and a depth of 7.5 m. The reactor core is situated 5.3 m under water level. Besides the reactor, the pool contains pneumatic loops, handling tools, graphite blocks for neutron moderation and other experimental equipment. The building houses storagemore » rooms for fissile material and sources, a pneumatic circuit for transportation of samples, primary and secondary cooling circuits, water cleaning resin circuits, a ventilation system and other necessary devices. Because of the experimental character of the reactor, laboratories with glove boxes and other tools were needed and are included in the dismantling program. The building is in 3 levels with a crawl-space. The ground-floor contains the ventilation installation, the purification circuits with tanks, cooling circuits and pneumatic transport system. On the first floor, around the reactor hall, the control-room, visiting area, end-station for pneumatic transport, waste-storage room, fuel storage room and the labs are located. The second floor contains a few laboratories and end stations of the two high speed transfer tubes. The lowest level of the pool is situated under ground level. The reactor has been operated at a power of 150 kW and had a max operating power of 250 kW. Belgoprocess has been selected to decommission the reactor, the labs, storage halls and associated circuits to free release the building for conventional reuse and for the removal of all its internals as legal defined. Besides the dose-rate risk and contamination risk, there is also an asbestos risk of contamination. During construction of the installation, asbestos-containing materials were used, which must be removed in controlled conditions. The ventilation system is considered free from nuclear contamination but it contains asbestos. This paper covers the organization of the dismantling work, the technical execution aspect and conclusions already known (dismantling is ongoing as this is written). (authors)« less
ETR, TRA642. CONSOLE FLOOR. CAMERA IS ON WEST SIDE OF ...
ETR, TRA-642. CONSOLE FLOOR. CAMERA IS ON WEST SIDE OF FLOOR AND FACES NORTH. OUTER WALL OF STORAGE CANAL IS AT RIGHT. SHIELDING IS THICKER AT LOWER LEVEL, WHERE SPENT FUEL ELEMENTS WILL COOL AFTER REMOVAL FROM REACTOR. INL NEGATIVE NO. 56-1401. Jack L. Anderson, Photographer, 5/1/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
ETR CRITICAL FACILITY, TRA654. SCIENTISTS STAND AT EDGE OF TANK ...
ETR CRITICAL FACILITY, TRA-654. SCIENTISTS STAND AT EDGE OF TANK AND LIFT REMOVABLE BRIDGE ABOVE THE REACTOR. CONTROL RODS AND FUEL RODS ARE BELOW ENOUGH WATER TO SHIELD WORKERS ABOVE. NOTE CRANE RAILS ALONG WALLS, PUMICE BLOCK WALLS. INL NEGATIVE NO. 57-3690. R.G. Larsen, Photographer, 7/29/1957 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
ETR CONTROL BUILDING, TRA647, INTERIOR. CONTROL ROOM, CONTEXTUAL VIEW. INSTRUMENT ...
ETR CONTROL BUILDING, TRA-647, INTERIOR. CONTROL ROOM, CONTEXTUAL VIEW. INSTRUMENT PANELS AT REAR OF OPERATOR'S CONSOLE GAVE OPERATOR STATUS OF REACTOR PERFORMANCE, COOLANT-WATER CHARACTERISTICS AND OTHER INDICATORS. WINDOWS AT RIGHT LOOKED INTO ETR BUILDING FIRST FLOOR. CAMERA FACING EAST. INL NEGATIVE NO. HD42-6. Mike Crane, Photographer, 3/2004 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corradin, Michael; Anderson, M.; Muci, M.
This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintainmore » similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.« less
NASA Astrophysics Data System (ADS)
Aziz, Mohammad Abdul; Al-khulaidi, Rami Ali; Rashid, MM; Islam, M. R.; Rashid, MAN
2017-03-01
In this research, a development and performance test of a fixed-bed batch type pyrolysis reactor for pilot scale pyrolysis oil production was successfully completed. The characteristics of the pyrolysis oil were compared to other experimental results. A solid horizontal condenser, a burner for furnace heating and a reactor shield were designed. Due to the pilot scale pyrolytic oil production encountered numerous problems during the plant’s operation. This fixed-bed batch type pyrolysis reactor method will demonstrate the energy saving concept of solid waste tire by creating energy stability. From this experiment, product yields (wt. %) for liquid or pyrolytic oil were 49%, char 38.3 % and pyrolytic gas 12.7% with an operation running time of 185 minutes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, Subhasish; Barua, Bipul; Listwan, Joseph
In financial year 2017, we are focusing on developing a mechanistic fatigue model of surge line pipes for pressurized water reactors (PWRs). To that end, we plan to perform the following tasks: (1) conduct stress- and strain-controlled fatigue testing of surge-line base metal such as 316 stainless steel (SS) under constant, variable, and random fatigue loading, (2) develop cyclic plasticity material models of 316 SS, (3) develop one-dimensional (1D) analytical or closed-form model to validate the material models and to understand the mechanics associated with 316 SS cyclic hardening and/or softening, (4) develop three-dimensional (3D) finite element (FE) models withmore » implementation of evolutionary cyclic plasticity, and (5) develop computational fluid dynamics (CFD) model for thermal stratification, thermal-mechanical stress, and fatigue of example reactor components, such as a PWR surge line under plant heat-up, cool-down, and normal operation with/without grid-load-following. This semi-annual progress report presents the work completed on the above tasks for a 316 SS laboratory-scale specimen subjected to strain-controlled cyclic loading with constant, variable, and random amplitude. This is the first time that the accurate 3D-FE modeling of the specimen for its entire fatigue life, including the hardening and softening behavior, has been achieved. We anticipate that this work will pave the way for the development of a fully mechanistic-computer model that can be used for fatigue evaluation of safety-critical metallic components, which are traditionally evaluated by heavy reliance on time-consuming and costly test-based approaches. This basic research will not only help the nuclear reactor industry for fatigue evaluation of reactor components in a cost effective and less time-consuming way, but will also help other safety-related industries, such as aerospace, which is heavily dependent on test-based approaches, where a single full-scale fatigue test can cost millions of dollars and require years of effort to conduct. Toward our goal of demonstration of fully mechanistic fatigue evaluation of reactor components, we also started work on developing a component-level computer model of reactor components, such as 316 SS surge line pipe. This requires developing a thermal-mechanical stress analysis model of the reactor surge line, which, in turn, requires time-dependent temperature and stratification information along the boundary of the pipe. Toward that goal, CFD models of surge lines are being developed. In this report, we also present some preliminary results showing the temperature conditions along the surge line wall under reactor heat-up, cool-down, and steady-state power operation.« less
PBF Reactor Building (PER620). Floor at left of view is ...
PBF Reactor Building (PER-620). Floor at left of view is floor of first basement. Photographer: Farmer/Capek. Date: March 17, 1967. INEEL negative no. 67-1753 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
ETRMTR MECHANICAL SERVICES BUILDING, TRA653. CAMERA FACING NORTHWEST AS BUILDING ...
ETR-MTR MECHANICAL SERVICES BUILDING, TRA-653. CAMERA FACING NORTHWEST AS BUILDING WAS NEARLY COMPLETE. INL NEGATIVE NO. 57-3653. K. Mansfield, Photographer, 7/22/1957 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID