Sample records for laboratory sediment toxicity

  1. A field assessment of long-term laboratory sediment toxicity tests with the amphipod Hyalella azteca

    USGS Publications Warehouse

    Ingersoll, Christopher G.; Wang, Ning; Hayward, Jeannie M. R.; Jones, John R.; Jones, Susan B.; Ireland, D. Scott

    2005-01-01

    Response of the amphipod Hyalella azteca exposed to contaminated sediments for 10 to 42 d in laboratory toxicity tests was compared to responses observed in controlled three-month invertebrate colonization exposures conducted in a pond. Sediments evaluated included a sediment spiked with dichlorodiphenyldichloroethane (DDD) or dilutions of a field sediment collected from the Grand Calumet River (GCR) in Indiana (USA) (contaminated with organic compounds and metals). Consistent effects were observed at the highest exposure concentrations (400 ??g DDD/goc [DDD concentrations normalized to grams of organic carbon (goc) in sedimentl or 4% GCR sediment) on survival, length, and reproduction of amphipods in the laboratory and on abundance of invertebrates colonizing sediments in the field. Effect concentrations for DDD observed for 10-d length and 42-d reproduction of amphipods (e.g., chronic value [ChV] of 66 ??g DDD/goc and 25% inhibition concentration [IC25] of 68 ??g DDD/goc for reproduction) were similar to the lowest effect concentrations for DDD measured on invertebrates colonizing sediment the field. Effect concentrations for GCR sediment on 28-d survival and length and 42-d reproduction and length of amphipods (i.e., ChVs of 0.20-0.66% GCR sediment) provided more conservative effect concentrations compared to 10-d survival or length of amphipods in the laboratory or the response of invertebrates colonizing sediment in the field (e.g., ChVs of 2.2% GCR sediment). Results of this study indicate that use of chronic laboratory toxicity tests with H. azteca and benthic colonization studies should be used to provide conservative estimates of impacts on benthic communities exposed to contaminated sediments. Bioaccumulation of DDD by oligochaetes colonizing the DDD-spiked sediment was similar to results of laboratory sediment tests previously conducted with the oligochaete Lumbriculus variegates, confirming that laboratory exposures can be used to estimate

  2. Regional Models for Sediment Toxicity Assessment

    EPA Science Inventory

    This paper investigates the use of empirical models to predict the toxicity of sediment samples within a region to laboratory test organisms based on sediment chemistry. In earlier work, we used a large nationwide database of matching sediment chemistry and marine amphipod sedim...

  3. In situ and laboratory bioassays with Chironomus riparius larvae to assess toxicity of metal contamination in rivers: the relative toxic effect of sediment versus water contamination.

    PubMed

    Faria, Mafalda S; Lopes, Ricardo J; Nogueira, António J A; Soares, Amadeu M V M

    2007-09-01

    We used bioassays employing head capsule width and body length increase of Chironomus riparius larvae as end points to evaluate metal contamination in streams. Bioassays were performed in situ near an abandoned Portuguese goldmine in the spring of 2003 and 2004. Bioassays also were performed under laboratory conditions with water and sediment collected from each stream to verify if laboratory bioassays could detect in situ toxicity and to evaluate the relative contribution of sediment and water to overall toxicity. We used field sediments with control water and control sediments with field water to discriminate between metal contamination in water and sediment. Field water with dry and sieved, organic matter-free, and nontreated sediments was used to determine the toxicity of heavy metals that enter the organism through ingested material. In both in situ and laboratory bioassays, body length increase was significantly inhibited by metal contamination, whereas head capsule width was not affected. Body length increase was more affected by contaminated sediment compared to contaminated water. The lowest-effect level of heavy metals was observed in the dry and sieved sediment that prevented ingestion of sediment particles by larvae. These results suggest that body length increase of C. riparius larvae can be used to indicate the impact of metal contamination in rivers. Chironomus riparius larvae are more affected by heavy metals that enter the organism through ingested sediment than by heavy metals dissolved in the water column. Nevertheless, several factors, such as the particle size and organic matter of sediment, must be taken into account.

  4. Laboratory toxicity and benthic invertebrate field colonization of Upper Columbia River sediments: finding adverse effects using multiple lines of evidence.

    PubMed

    Fairchild, J F; Kemble, N E; Allert, A L; Brumbaugh, W G; Ingersoll, C G; Dowling, B; Gruenenfelder, C; Roland, J L

    2012-07-01

    From 1930 to 1995, the Upper Columbia River (UCR) of northeast Washington State received approximately 12 million metric tons of smelter slag and associated effluents from a large smelter facility located in Trail, British Columbia, approximately 10 km north of the United States-Canadian border. Studies conducted during the past two decades have demonstrated the presence of toxic concentrations of heavy metals in slag-based sandy sediments, including cadmium, copper, zinc, and lead in the UCR area as well as the downstream reservoir portion of Lake Roosevelt. We conducted standardized whole-sediment toxicity tests with the amphipod Hyalella azteca (28-day) and the midge Chironomus dilutus (10-day) on 11 samples, including both UCR and study-specific reference sediments. Metal concentrations in sediments were modeled for potential toxicity using three approaches: (1) probable effects quotients (PEQs) based on total recoverable metals (TRMs) and simultaneously extracted metals (SEMs); (2) SEMs corrected for acid-volatile sulfides (AVS; i.e., ∑SEM - AVS); and (3) ∑SEM - AVS normalized to the fractional organic carbon (f(oc)) (i.e., ∑SEM - AVS/f(oc)). The most highly metal-contaminated sample (∑PEQ(TRM) = 132; ∑PEQ(SEM) = 54; ∑SEM - AVS = 323; and ∑SEM - AVS/(foc) = 64,600 umol/g) from the UCR was dominated by weathered slag sediment particles and resulted in 80% mortality and 94% decrease in biomass of amphipods; in addition, this sample significantly decreased growth of midge by 10%. The traditional ∑AVS - SEM, uncorrected for organic carbon, was the most accurate approach for estimating the effects of metals in the UCR. Treatment of the toxic slag sediment with 20% Resinex SIR-300 metal-chelating resin significantly decreased the toxicity of the sample. Samples ∑SEM - AVS > 244 was not toxic to amphipods or midge in laboratory testing, indicating that this value may be an approximate threshold for effects in the UCR. In situ benthic invertebrate

  5. Laboratory toxicity and benthic invertebrate field colonization of Upper Columbia River sediments: Finding adverse effects using multiple lines of evidence

    USGS Publications Warehouse

    Fairchild, J.F.; Kemble, N.E.; Allert, A.L.; Brumbaugh, W.G.; Ingersoll, C.G.; Dowling, B.; Gruenenfelder, C.; Roland, J.L.

    2012-01-01

    From 1930 to 1995, the Upper Columbia River (UCR) of northeast Washington State received approximately 12 million metric tons of smelter slag and associated effluents from a large smelter facility located in Trail, British Columbia, approximately 10 km north of the United States–Canadian border. Studies conducted during the past two decades have demonstrated the presence of toxic concentrations of heavy metals in slag-based sandy sediments, including cadmium, copper, zinc, and lead in the UCR area as well as the downstream reservoir portion of Lake Roosevelt. We conducted standardized whole-sediment toxicity tests with the amphipod Hyalella azteca (28-day) and the midge Chironomus dilutus (10-day) on 11 samples, including both UCR and study-specific reference sediments. Metal concentrations in sediments were modeled for potential toxicity using three approaches: (1) probable effects quotients (PEQs) based on total recoverable metals (TRMs) and simultaneously extracted metals (SEMs); (2) SEMs corrected for acid-volatile sulfides (AVS; i.e., ∑SEM − AVS); and (3) ∑SEM − AVS normalized to the fractional organic carbon (foc) (i.e., ∑SEM − AVS/foc). The most highly metal-contaminated sample (∑PEQTRM = 132; ∑PEQSEM = 54; ∑SEM − AVS = 323; and ∑SEM − AVS/foc = 64,600 umol/g) from the UCR was dominated by weathered slag sediment particles and resulted in 80% mortality and 94% decrease in biomass of amphipods; in addition, this sample significantly decreased growth of midge by 10%. The traditional ∑AVS – SEM, uncorrected for organic carbon, was the most accurate approach for estimating the effects of metals in the UCR. Treatment of the toxic slag sediment with 20% Resinex SIR-300 metal-chelating resin significantly decreased the toxicity of the sample. Samples ∑SEM − AVS > 244 was not toxic to amphipods or midge in laboratory testing, indicating that this value may be an approximate threshold for effects in the UCR

  6. Characterizing toxicity of metal-contaminated sediments from mining areas

    USGS Publications Warehouse

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2015-01-01

    This paper reviews methods for testing the toxicity of metals associated with freshwater sediments, linking toxic effects with metal exposure and bioavailability, and developing sediment quality guidelines. The most broadly applicable approach for characterizing metal toxicity is whole-sediment toxicity testing, which attempts to simulate natural exposure conditions in the laboratory. Standard methods for whole-sediment testing can be adapted to test a wide variety of taxa. Chronic sediment tests that characterize effects on multiple endpoints (e.g., survival, growth, and reproduction) can be highly sensitive indicators of adverse effects on resident invertebrate taxa. Methods for testing of aqueous phases (pore water, overlying water, or elutriates) are used less frequently. Analysis of sediment toxicity data focuses on statistical comparisons between responses in sediments from the study area and responses in one or more uncontaminated reference sediments. For large or complex study areas, a greater number of reference sediments is recommended to reliably define the normal range of responses in uncontaminated sediments – the ‘reference envelope’. Data on metal concentrations and effects on test organisms across a gradient of contamination may allow development of concentration-response models, which estimate metal concentrations associated with specified levels of toxic effects (e.g. 20% effect concentration or EC20). Comparisons of toxic effects in laboratory tests with measures of impacts on resident benthic invertebrate communities can help document causal relationships between metal contamination and biological effects. Total or total-recoverable metal concentrations in sediments are the most common measure of metal contamination in sediments, but metal concentrations in labile sediment fractions (e.g., determined as part of selective sediment extraction protocols) may better represent metal bioavailability. Metals released by the weak-acid extraction

  7. Sediment Toxicity Testing

    EPA Science Inventory

    Sediment toxicity testing has become a fundamental component of regulatory frameworks for assessing the risks posed by contaminated sediments and for development of chemical sediment quality guidelines. Over the past two decades, sediment toxicity testing methods have advanced co...

  8. Do Toxicity Identification and Evaluation Laboratory-Based Methods Reflect Causes of Field Impairment?

    EPA Science Inventory

    Sediment Toxicity Identification and Evaluation (TIE) methods have been developed for both interstitial waters and whole sediments. These relatively simple laboratory methods are designed to identify specific toxicants or classes of toxicants in sediments; however, the question ...

  9. Comparisons of Sediment Test Volumes for Freshwater Solid Phase Sediment Toxicity Tests

    EPA Science Inventory

    Laboratory tests with benthic macroinvertebrates are commonly used to assess the potential toxicity of contaminated sediments, and detailed standard test procedures have been developed for various species. For freshwater, two benthic organisms, Hyalella azteca and Chironomus dil...

  10. Sediment Toxicity Identification Evaluation

    EPA Science Inventory

    Approach combining chemical manipulations and aquatic toxicity testing, generally with whole organisms, to systematically characterize, identify and confirm toxic substances causing toxicity in whole sediments and sediment interstitial waters. The approach is divided into thre...

  11. SEDIMENT TOXICITY IDENTIFICATION EVALUATION (TIE) ...

    EPA Pesticide Factsheets

    Sediment contamination in the United States has been amply documented and, in order to comply with the 1972 Clean Water Act, the U.S. Environmental Protection Agency must address the issue of toxic sediments. Contaminated sediments from a number of freshwater and marine sites have demonstrated acute and/or chronic toxicity to a variety of test species, as well as adverse ecological effects such as population declines and changes in community structure. However, simply knowing that a sediment is toxic has limited use. This document provides guidance on the performance of sediment Toxicity Identification and Evaluation (TIE). TIE methods allow for the identification of toxic chemicals or chemical classes causing observed toxicity. The identification of pollutants responsible for toxicity of contaminated sediments has broad application in a number of EPA programs as the methods can be used within the total maximum daily load (TMDL) framework, to link sediment toxicity to specific dischargers, to design cost-effective remediation programs, and to identify environmentally protective options for dredged material disposal. In addition, the identification of specific problem contaminants in sediments could prove to be very useful to EPA programs involved in the development of water or sediment quality guidelines, and the registration of new products such as pesticides. Finally, knowledge of the causes of toxicity that influence ecological changes such as community struc

  12. EFFECT OF NITRATE-BASED BIOREMEDIATION ON CONTAMINANT DISTRIBUTION AND SEDIMENT TOXICITY-COLUMN STUDY

    EPA Science Inventory

    A laboratory column study was set up to evaluate changes in contaminant distribution and sediment toxicity following nitrate-based bioremediation and to correlate toxicity reduction with loss of fuel components. Glass columns were packed with sediment from an aquifer that had be...

  13. Estimating aquatic toxicity as determined through laboratory tests of great lakes sediments containing complex mixtures of environmental contaminants

    USGS Publications Warehouse

    1996-01-01

    We developed and evaluated a total toxic units modeling approach for predicting mean toxicity as measured in laboratory tests for Great Lakes sediments containing complex mixtures of environmental contaminants (e.g., polychlorinated biphenyls, polycyclic aromatic hydrocarbons, pesticides, chlorinated dioxins, and metals). The approach incorporates equilibrium partitioning and organic carbon control of bioavailability for organic contaminants and acid volatile sulfide (AVS) control for metals, and includes toxic equivalency for planar organic chemicals. A toxic unit is defined as the ratio of the estimated pore-water concentration of a contaminant to the chronic toxicity of that contaminant, as estimated by U.S. Environmental Protection Agency Ambient Water Quality Criteria (AWQC). The toxic unit models we developed assume complete additivity of contaminant effects, are completely mechanistic in form, and were evaluated without any a posteriori modification of either the models or the data from which the models were developed and against which they were tested. A linear relationship between total toxic units, which included toxicity attributable to both iron and un-ionized ammonia, accounted for about 88% of observed variability in mean toxicity; a quadratic relationship accounted for almost 94%. Exclusion of either bioavailability components (i.e., equilibrium partitioning control of organic contaminants and AVS control of metals) or iron from the model substantially decreased its ability to predict mean toxicity. A model based solely on un-ionized ammonia accounted for about 47% of the variability in mean toxicity. We found the toxic unit approach to be a viable method for assessing and ranking the relative potential toxicity of contaminated sediments.

  14. Indices of benthic community tolerance in contaminated Great Lakes sediments: Relations with sediment contaminant concentrations, sediment toxicity, and the sediment quality triad

    USGS Publications Warehouse

    Wildhaber, M.L.; Schmitt, C.J.

    1998-01-01

    We evaluated the toxic-units model developed by Wildhaber and Schmitt (1996) as a predictor of indices of mean tolerance to pollution (i.e., Lenat, 1993; Hilsenhoff, 1987) and other benthic community indices from Great Lakes sediments containing complex mixtures of environmental contaminants (e.g., polychlorinated biphenyls – PCBs, polycyclic aromatic hydrocarbons – PAHs, pesticides, chlorinated dioxins, and metals). Sediment toxic units were defined as the ratio of the estimated pore-water concentration of a contaminant to its chronic toxicity as estimated by U.S. Environmental Protection Agency Ambient Water Quality Criteria (AWQC) or other applicable standard. The total hazard of a sediment to aquatic life was assessed by summing toxic units for all contaminants quantified. Among the benthic community metrics evaluated, total toxic units were most closely correlated with Lenat's (1993) and Hilsenhoff's (1987) indices of community tolerance (TL and TH, respectively); toxic units accounted for 42% TL and 53% TH of variability in community tolerance as measured by Ponar grabs. In contrast, taxonomic richness and Shannon-Wiener diversity were not correlated (P > 0.05) with toxic units. Substitution of order- or family-level identifications for lowest possible (mostly genus- or species-) level identifications in the calculation of TL and TH indices weakened the relationships with toxic units. Tolerance values based on order- and family-level identifications of benthos for artificial substrate samples were more strongly correlated with toxic units than tolerance values for benthos from Ponar grabs. The ability of the toxic-units model to predict the other two components (i.e., laboratory-measured sediment toxicity and benthic community composition) of the Sediment Quality Triad (SQT) may obviate the need for the SQT in some situations.

  15. Toxicity of contaminated sediments in dilution series with control sediments

    USGS Publications Warehouse

    Nelson, M.K.; Landrum, P.F.; Burton, G.A.; Klaine, S.J.; Crecelius, E.A.; Byl, T.D.; Gossiaux, Duane C.; Tsymbal, V.N.; Cleveland, L.; Ingersoll, Christopher G.; Sasson-Brickson, G.

    1993-01-01

    The use of dilutions has been the foundation of our approach for assessing contaminated water, and accordingly, it may be important to establish similar or parallel approaches for sediment dilutions. Test organism responses to dilution gradients can identify the degree of necessary sediment alteration to reduce the toxicity. Using whole sediment dilutions to represent the complex interactions of in situ sediments can identify the toxicity, but the selection of the appropriate diluent for the contaminated sediment may affect the results and conclusions drawn. Contaminated whole sediments were examined to evaluate the toxicity of dilutions of sediments with a diversity of test organisms. Dilutions of the contaminated sediments were prepared with differing diluents that varied in organic carbon content, particle size distribution, and volatile solids. Studies were conducted using four macroinvertebrates and a vascular, rooted plant. Responses by some test organisms followed a sigmoidal dose-response curve, but others followed a U-shaped curve. Initial dilutions reduced toxicity as expected, but further dilution resulted in an increase in toxicity. The type of diluent used was an important factor in assessing the sediment toxicity, because the control soil reduced toxicity more effectively than sand as a diluent of the same sediment. Using sediment chemical and physical characteristics as an indicator of sediment dilution may not be as useful as chemical analysis of contaminants, but warrants further investigation.

  16. Interlaboratory evaluation of Hyalella azteca and Chironomus tentans short-term and long-term sediment toxicity tests

    USGS Publications Warehouse

    Norberg-King, T. J.; Sibley, P.K.; Burton, G.A.; Ingersoll, C.G.; Kemble, N.E.; Ireland, S.; Mount, D.R.; Rowland, C.D.

    2006-01-01

    Methods for assessing the long-term toxicity of sediments to Hyalella azteca and Chironomus tentans can significantly enhance the capacity to assess sublethal effects of contaminated sediments through multiple endpoints. Sublethal tests allow us to begin to understand the relationship between short-term and long-term effects for toxic sediments. We present an interlaboratory evaluation with long-term and 10-d tests using control and contaminated sediments in which we assess whether proposed and existing performance criteria (test acceptability criteria [TAC]) could be achieved. Laboratories became familiar with newly developed, long-term protocols by testing two control sediments in phase 1. In phase 2, the 10-d and long-term tests were examined with several sediments. Laboratories met the TACs, but results varied depending on the test organism, test duration, and endpoints. For the long-term tests in phase 1, 66 to 100% of the laboratories consistently met the TACs for survival, growth, or reproduction using H. azteca, and 70 to 100% of the laboratories met the TACs for survival and growth, emergence, reproduction, and hatchability using C. tentans. In phase 2, fewer laboratories participated in long-term tests: 71 to 88% of the laboratories met the TAC for H. azteca, whereas 50 to 67% met the TAC for C. tentans. In the 10-d tests with H. azteca, and C. tentans, 82 and 88% of the laboratories met the TAC for survival, respectively, and 80% met the TAC for C. tentans growth. For the 10-d and long-term tests, laboratories predicted similar toxicity. Overall, the interlaboratory evaluation showed good precision of the methods, appropriate endpoints were incorporated into the test protocols, and tests effectively predicted the toxicity of sediments.

  17. Sediment toxicity in Savannah Harbor

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.

    1995-01-01

    Savannah Harbor, located near the mouth of the Savannah River, Georgia and South Carolina, is impacted by industrial and municipal effluents. Potential release of contaminants stored in harbor sediments through dredging and shipping operations requires that contaminated areas be identified for proper management of the system and protection of wildlife resources. During 1991, Hyalella azteca were exposed in 10-d static-renewal toxicity tests to pore-water and solid-phase sediment samples collected from 26 sites within Savannah Harbor. Pore-water toxicity was more pronounced than that for solidphase sediment. Toxicity and reduced leaf consumption demonstrated impaired sediment quality at specific sites within Savannah Harbor and Back River. Factors responsible for the decreased sediment quality were ammonia, alkalinity, and metal concentrations (cadmium, chromium, lead, molybdenum, and nickel). Elevated concentrations of metals and toxicities in Back River sediments indicated impacts from adjacent dredge-spoil areas.

  18. Effects of temperature and oxygen concentration in sediment toxicity testing.

    PubMed

    Airas, Sari; Leppänen, Matti; Kukkonen, Jussi V K

    2008-07-01

    Joint effects of temperature and oxygen concentrations for the results of sediment toxicity tests were studied at 10 and 20 degrees C with 40% and 80% dissolved oxygen (DO) saturation. Growth, feeding rate, and reproduction of Lumbriculus variegatus (Oligochaete) and growth, emergence, and survival of Chironomus riparius (Diptera) were tested in a polluted and in a reference sediment. Both the feeding of L. variegatus and the emergence of C. riparius were significantly retarded at low temperature. Additionally, differences in the sex ratio of the emerged adults of C. riparius were observed. The oxygen concentration alone did not have any significant effect on the endpoints, but significant combined effects of polluted sediment and low DO were observed on the biomass of L. variegatus. The standard sediment toxicity tests might offer only limited data for risk assessment of contaminated sediments at sites where the actual conditions largely differ from the laboratory conditions.

  19. Evaluating porewater polycyclic aromatic hydrocarbon-related toxicity at a contaminated sediment site using a spiked field-sediment approach.

    PubMed

    Hartzell, Sharon E; Unger, Michael A; Vadas, George G; Yonkos, Lance T

    2018-03-01

    Although the complexity of contaminant mixtures in sediments can confound the identification of causative agents of adverse biological response, understanding the contaminant(s) of primary concern at impacted sites is critical to sound environmental management and remediation. In the present study, a stock mixture of 18 polycyclic aromatic hydrocarbon (PAH) compounds was prepared to reflect the variety and relative proportions of PAHs measured in surface sediment samples collected from discrete areas of a historically contaminated industrial estuary. This site-specific PAH stock mixture was spiked into nontoxic in-system and out-of-system field-collected reference sediments in dilution series spanning the range of previously measured total PAH concentrations from the region. Spiked sediments were evaluated in 10-d Leptocheirus plumulosus tests to determine whether toxicity in laboratory-created PAH concentrations was similar to the toxicity found in field-collected samples with equivalent PAH concentrations. The results show that toxicity of contaminated sediments was not explained by PAH exposure, while indicating that toxicity in spiked in-system (fine grain, high total organic carbon [TOC]) and out-of-system (course grain, low TOC) sediments was better explained by porewater PAH concentrations, measured using an antibody-based biosensor that quantified 3- to 5-ring PAHs, than total sediment PAH concentrations. The study demonstrates the application of site-specific spiking experiments to evaluate sediment toxicity at sites with complex mixtures of multiple contaminant classes and the utility of the PAH biosensor for rapid sediment-independent porewater PAH analysis. Environ Toxicol Chem 2018;37:893-902. © 2017 SETAC. © 2017 SETAC.

  20. USEFULNESS OF CURRENT SEDIMENT TOXICITY TESTS TO INDICATE CONTAMINATION IN GULF OF MEXICO ESTUARIES.

    EPA Science Inventory

    Sediment toxicity evaluations were conducted during a three-year period in several Gulf of Mexico near-coastal areas using a variety of laboratory and field methods. The sediments were collected adjacent to Superfund sites, urban runoff discharges, treated municipal and industria...

  1. A COMPARISON OF BULK SEDIMENT TOXICITY TESTING METHODS AND SEDIMENT ELUTRIATE TOXICITY

    EPA Science Inventory

    Bulk sediment toxicity tests are routinely used to assess the level and extent of contamination in natural sediments. While reliable, these tests can be resource intensive, requiring significant outlays of time and materials. The purpose of this study was to compare the results ...

  2. Identifying the causes of sediment-associated toxicity in urban waterways in South China: incorporating bioavailabillity-based measurements into whole-sediment toxicity identification evaluation.

    PubMed

    Yi, Xiaoyi; Li, Huizhen; Ma, Ping; You, Jing

    2015-08-01

    Sediments in urban waterways of Guangzhou, China, were contaminated by a variety of chemicals and showed prevalent toxicity to benthic organisms. A combination of whole-sediment toxicity identification evaluation (TIE) and bioavailability-based extraction was used to identify the causes of sediment toxicity. Of the 6 sediment samples collected, 4 caused 100% mortality to Chironomus dilutus in 10-d bioassays, and the potential toxicants were assessed using TIE in these sediments after dilution. The results of phase I characterization showed that organic contaminants were the principal contributors to the mortality of the midges in 2 sediments and that metals and organics jointly caused the mortality in the other 2 sediments. Ammonia played no role in the mortality for any samples. Conventional toxic unit analysis in phase II testing identified Cr, Cu, Ni, Pb, and Zn as the toxic metals, with cypermethrin, lambda-cyhalothrin, deltamethrin, and fipronils being the toxic organics. To improve the accuracy of identifying the toxicants, 4-step sequential extraction and Tenax extraction were conducted to analyze the bioavailability of the metals and organics, respectively. Bioavailable toxic unit analysis narrowed the list of toxic contributors, and the putative toxicants included 3 metals (Zn, Ni, and Pb) and 3 pesticides (cypermethrin, lambda-cyhalothrin, and fipronils). Metals contributed to the mortality in all sediments, but sediment dilution reduced the toxicity and confounded the characterization of toxicity contribution from metals in 2 sediments in phase I. Incorporating bioavailability-based measurements into whole-sediment TIE improved the accuracy of identifying the causative toxicants in urban waterways where multiple stressors occurred and contributed to sediment toxicity jointly. © 2015 SETAC.

  3. Toxicity and bioaccumulation of sediment-associated contaminants using freshwater invertebrates: A review of methods and applications

    USGS Publications Warehouse

    Ingersoll, C.G.; Ankley, G.T.; Benoit, D.A.; Brunson, E.L.; Burton, G.A.; Dwyer, F.J.; Hoke, R.A.; Landrum, P.F.; Norberg-King, T. J.; Winger, P.V.

    1995-01-01

    This paper reviews recent developments in methods for evaluating the toxicity and bioaccumulation of contaminants associated with freshwater sediments and summarizes example case studies demonstrating the application of these methods. Over the past decade, research has emphasized development of more specific testing procedures for conducting 10-d toxicity tests with the amphipod Hyalella azteca and the midge Chironomus tentans. Toxicity endpoints measured in these tests are survival for H. azteca and survival and growth for C. tentans. Guidance has also been developed for conducting 28-d bioaccumulation tests with the oligochaete Lumbriculus variegatus, including determination of bioaccumulation kinetics for different compound classes. These methods have been applied to a variety of sediments to address issues ranging from site assessments to bioavailability of organic and inorganic contaminants using field-collected and laboratory-spiked samples. Survival and growth of controls routinely meet or exceed test acceptability criteria. Results of laboratory bioaccumulation studies with L. variegatus have been confirmed with comparisons to residues (PCBs, PAHs, DDT) present from synoptically collected field populations of oligochaetes. Additional method development is currently underway to develop chronic toxicity tests and to provide additional data-confirming responses observed in laboratory sediment tests with natural benthic populations.

  4. Impacts of toxic thresholds of sediment-associated contaminants to robust redhorse (Moxostoma robustum) in the Lower Oconee River

    USGS Publications Warehouse

    Lasier, P.; Winger, P.; Bogenrieder, K.; Shelton, J.

    2000-01-01

    The robust redhorse is a ?Species-at-Risk? in the lower Oconee River, GA. The population is composed of aging adults with little natural recruitment. Factors contributing to the loss of early-life stages are unknown, but contaminants associated with fine sediments may play a role. The objectives of this study were to determine toxicities of sediments and pore waters from the Oconee River to early-life stages of robust redhorse and to establish toxic thresholds of metals (Cd, Cu, Mn, Zn) and ammonia, elements potentially threatening this species. Depositional sediments were collected from the only known spawning site and three sites downstream of major tributaries. Sediment pore waters were extracted in the laboratory from all sites and in situ at two sites. Toxicity tests with sediments, pore waters and metal solutions were initiated with eggs, yolk-sac fry and swim-up fry to determine effects on the life stage initially exposed as well as effects manifested in later developmental stages. Survival and growth were test endpoints, and toxicity was observed in both sediments and pore waters. Although the yolk- sac stage was the most sensitive across all tests, sediment toxicity was elicited only in tests initiated with eggs that developed through the yolk-sac stage. Toxicity appeared to be due to Mn in sediment and pore water exposures, but was more prevalent in pore waters. Sediment handling and the associated effects on redox potential contributed to the elevated concentrations of Mn in pore waters. Pore waters extracted in situ had significantly less Mn and were less toxic than laboratory-extracted pore waters. These data suggest that sediment-associated Mn may impact early-life stages of robust redhorse in the Oconee River.

  5. What food and feeding rates are optimum for the Chironomus dilutus sediment toxicity test method?

    EPA Science Inventory

    Laboratory tests with benthic macroinvertebrates conducted using standard toxicity test procedures are used to assess the potential toxicity of contaminated sediments. Results are compared across sites or for batches of samples, and the performance of organisms in control treatme...

  6. Chronic toxicity of nickel-spiked freshwater sediments: variation in toxicity among eight invertebrate taxa and eight sediments

    USGS Publications Warehouse

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.; Ivey, Chris D.; Kunz, James L.; Kemble, Nile E.; Schlekat, Christian E.; Garman, Emily R.

    2013-01-01

    This study evaluated the chronic toxicity of Ni-spiked freshwater sediments to benthic invertebrates. A 2-step spiking procedure (spiking and sediment dilution) and a 2-stage equilibration period (10 wk anaerobic and 1 wk aerobic) were used to spike 8 freshwater sediments with wide ranges of acid-volatile sulfide (AVS; 0.94–38 µmol/g) and total organic carbon (TOC; 0.42–10%). Chronic sediment toxicity tests were conducted with 8 invertebrates (Hyalella azteca, Gammarus pseudolimnaeus, Chironomus riparius, Chironomus dilutus, Hexagenia sp., Lumbriculus variegatus, Tubifex tubifex, and Lampsilis siliquoidea) in 2 spiked sediments. Nickel toxicity thresholds estimated from species-sensitivity distributions were 97 µg/g and 752 µg/g (total recoverable Ni; dry wt basis) for sediments with low and high concentrations of AVS and TOC, respectively. Sensitive species were tested with 6 additional sediments. The 20% effect concentrations (EC20s) for Hyalella and Gammarus, but not Hexagenia, were consistent with US Environmental Protection Agency benchmarks based on Ni in porewater and in simultaneously extracted metals (SEM) normalized to AVS and TOC. For Hexagenia, sediment EC20s increased at less than an equimolar basis with increased AVS, and toxicity occurred in several sediments with Ni concentrations in SEM less than AVS. The authors hypothesize that circulation of oxygenated water by Hexagenia led to oxidation of AVS in burrows, creating microenvironments with high Ni exposure. Despite these unexpected results, a strong relationship between Hexagenia EC20s and AVS could provide a basis for conservative site-specific sediment quality guidelines for Ni.

  7. Chronic toxicity of nickel-spiked freshwater sediments: variation in toxicity among eight invertebrate taxa and eight sediments.

    PubMed

    Besser, John M; Brumbaugh, William G; Ingersoll, Christopher G; Ivey, Chris D; Kunz, James L; Kemble, Nile E; Schlekat, Christian E; Garman, Emily Rogevich

    2013-11-01

    This study evaluated the chronic toxicity of Ni-spiked freshwater sediments to benthic invertebrates. A 2-step spiking procedure (spiking and sediment dilution) and a 2-stage equilibration period (10 wk anaerobic and 1 wk aerobic) were used to spike 8 freshwater sediments with wide ranges of acid-volatile sulfide (AVS; 0.94-38 µmol/g) and total organic carbon (TOC; 0.42-10%). Chronic sediment toxicity tests were conducted with 8 invertebrates (Hyalella azteca, Gammarus pseudolimnaeus, Chironomus riparius, Chironomus dilutus, Hexagenia sp., Lumbriculus variegatus, Tubifex tubifex, and Lampsilis siliquoidea) in 2 spiked sediments. Nickel toxicity thresholds estimated from species-sensitivity distributions were 97 µg/g and 752 µg/g (total recoverable Ni; dry wt basis) for sediments with low and high concentrations of AVS and TOC, respectively. Sensitive species were tested with 6 additional sediments. The 20% effect concentrations (EC20s) for Hyalella and Gammarus, but not Hexagenia, were consistent with US Environmental Protection Agency benchmarks based on Ni in porewater and in simultaneously extracted metals (SEM) normalized to AVS and TOC. For Hexagenia, sediment EC20s increased at less than an equimolar basis with increased AVS, and toxicity occurred in several sediments with Ni concentrations in SEM less than AVS. The authors hypothesize that circulation of oxygenated water by Hexagenia led to oxidation of AVS in burrows, creating microenvironments with high Ni exposure. Despite these unexpected results, a strong relationship between Hexagenia EC20s and AVS could provide a basis for conservative site-specific sediment quality guidelines for Ni. © 2013 SETAC.

  8. Hyalella IQ Toxicity Test{trademark} as a predictor of whole sediment toxicity with diversely contaminated sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, W.S.; Hayes, K.R.

    1994-12-31

    The IQ TOXICITY TEST{trademark} is a toxicity screening test that evaluates the organism`s galactosidase enzyme system functionality as a predictor of acute toxicity. Organisms are exposed to a potentially toxic solution for approximately one hour. Following the exposure, the organisms are exposed to a slurry of a galactoside sugar tagged with a fluorescent marker (methylumbelliferyl galactoside) for 15--20 minutes. A black light can then be used to examine whether the hemolymph of the organism contains free umbelliferone, which brightly fluoresces. The organisms are then scored as ``on`` or ``off`` with respect to free umbelliferone. This endpoint can then be usedmore » to calculate an EC50, which is comparable to a whole effluent, pure compound, or sediment toxicity test. Slightly different methodologies are used for different toxicity test organisms. The objective of this presentation is to discuss the use of the IQ{trademark} methodology with porewater extract exposures of the amphipod Hyalella azteca as a predictor of results of whole sediment toxicity tests. The results of over thirty 10 and 28-day whole sediment toxicity tests and the concurrent Hyalella azteca 10 TOXICITY TESTS{trademark} are compared and discussed. The use of screening tests as a reduced cost method for initial site assessment will be discussed.« less

  9. Chronic toxicity of copper to five benthic invertebrates in laboratory-formulated sediment: sensitivity comparison and preliminary risk assessment.

    PubMed

    Roman, Yblin E; De Schamphelaere, Karel A C; Nguyen, Lien T H; Janssen, Colin R

    2007-11-15

    Five benthic organisms commonly used for sediment toxicity testing were chronically (28 to 35 days) exposed to copper in standard laboratory-formulated sediment (following Organization for Economic Cooperation and Development guidelines) and lethal and sub-lethal toxicities were evaluated. Sub-lethal endpoints considered were reproduction and biomass production for Lumbriculus variegatus, growth and reproduction for Tubifex tubifex, growth and emergence for Chironomus riparius, and growth for Gammarus pulex and Hyalella azteca. Expressed on whole-sediment basis the observed lethal sensitivity ranking (from most to least sensitive) was: G. pulex>L. variegatus>H. azteca=C. riparius=T. tubifex, with median chronic lethal concentrations (LC50) between 151 and 327 mg/kg dry wt. The sub-lethal sensitivity ranking (from most to least sensitive, with the most sensitive endpoint between parentheses): C. riparius (emergence)>T. tubifex (reproduction)=L. variegatus (reproduction)>G. pulex (growth)>H. azteca (growth), with median effective concentrations (EC50) between 59.2 and 194 mg/kg dry wt. No observed effect concentrations (NOEC) or 10% effective concentrations (EC10) for the five benthic invertebrates were used to perform a preliminary risk assessment for copper in freshwater sediment by means of (a) the "assessment factor approach" or (b) the statistical extrapolation approach (species sensitivity distribution). Depending on the data (NOEC or EC10) and the methodology used, we calculated a Predicted No Effect Concentration (PNEC) for sediment between 3.3 and 47.1 mg Cu/dry wt. This range is similar to the range of natural (geochemical) background concentrations of copper in sediments in Europe, i.e. 90% of sediments have a concentration between 5 and 49 mg Cu/kg dry wt. A detailed analysis of the outcome of this preliminary exercise highlighted that multiple issues need to be explored for achieving a scientifically more sound risk assessment and for the development of

  10. Flow-through bioassay for measuring bioaccumulation of toxic substances from sediment

    USGS Publications Warehouse

    Mac, Michael J.; Edsall, Carol C.; Hesselberg, Robert J.; Sayers, Richard E.

    1984-01-01

    , bioaccumulation observed in this bioassay by organisms exposed to test sediments (sediments to be dredged) would be compared to bioaccumulation observed from sediments collected from a reference site (e.g. a disposal site or open lake), and also from control sediments (relatively clean sediment). Decisions could then be based on a comparison of results between tests and reference sediments to determine if disposal would cause dehydration to the habitat, and between reference and control sediment to determine if even the reference material is seriously contaminated. Although the test is not intended to be a toxicity test per se, use of test, reference, and control sediments enables interpretation of any mortality of organisms that may occur during the bioassays. High mortality in bioassays with test or reference sediment would indicate acute toxicity of sediments in the project area. However if high mortality occurs in all three sediments, it can be assumed that the organisms were not in a healthy state at the time of testing. We describe the results of 10-day sediment bioassays in which both mortality and bioaccumulation were measured in four aquatic organisms. We exposed two infaunal organisms and two species of fish to test and control sediments in the laboratory.

  11. Development of a toxicity identification evaluation procedure for characterizing metal toxicity in marine sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, R.M.; Cantwell, M.G.; Pelletier, M.C.

    2000-04-01

    A multiagency effort is underway to develop whole sediment toxicity identification evaluation (TIE) methods. Whole sediment TIE methods will be critical tools for characterizing toxicity at hazardous waste sites and in the conduct of environmental risk assessments. The research approach is based on the predominance of three classes of toxicants in sediments: ammonia, nonpolar organic chemicals, and metals. Here the authors describe a procedure for characterizing acute toxicity caused by metals in whole marine sediments. The procedure involves adding a chelating resin to sediments, resulting in the sequestration of bioavailable metal while not stressing testing organisms. Within the testing chambers,more » the presence of resin resulted in statistically significant reductions in the overlying and interstitial water concentrations of five metals (cadmium, copper, nickel, lead, and zinc) generally by factors of 40 and 200. Toxicity to both the amphipod Ampelisca abdita and mysid Americamysis bahia (formerly Mysidopsis bahia) of sediments spiked with the five metals was decreased by approximately a factor of four when resin was present. While very effective at reducing the concentrations and toxicity of metals, the resin has only minor ameliorative effects on the toxicity of ammonia and a representative nonpolar toxicant (Endosulfan). Resin and accumulated metal were easily isolated from the testing system following exposures allowing for the initiation of phase II TIE (identification) procedures. This procedure using the addition of a chelating resin provides an approach for determining the importance of metals to the toxicity of marine sediments. Work is continuing to validate the method with environmentally contaminated sediments.« less

  12. APPLYING TOXICITY IDENTIFICATION PROCEDURES TO FIELD COLLECTED SEDIMENTS

    EPA Science Inventory

    Identification of specific causes of sediment toxicity can allow for much more focused risk assessment and management decision making. We have been developing toxicity identification evaluation (TIE) methods for contaminated sediments and focusing on three toxicant groups (ammoni...

  13. Effect of zeolite on toxicity of ammonia in freshwater sediments: Implications for toxicity identification evaluation procedures

    USGS Publications Warehouse

    Besser, J.M.; Ingersoll, C.G.; Leonard, E.N.; Mount, D.R.

    1998-01-01

    Techniques for reducing ammonia toxicity in freshwater sediments were investigated as part of a project to develop toxicity identification and evaluation (TIE) procedures for whole sediments. Although ammonia is a natural constituent of freshwater sediments, pollution can lead to ammonia concentrations that are toxic to benthic invertebrates, and ammonia can also contribute to the toxicity of sediments that contain more persistent contaminants. We investigated the use of amendments of a natural zeolite mineral, clinoptilolite, to reduce concentrations of ammonia in sediment pore water. Zeolites have been widely used for removal of ammonia in water treatment and in aqueous TIE procedures. The addition of granulated zeolite to ammonia-spiked sediments reduced pore-water ammonia concentrations and reduced ammonia toxicity to invertebrates. Amendments of 20% zeolite (v/v) reduced ammonia concentrations in pore water by ???70% in spiked sediments with ammonia concentrations typical of contaminated freshwater sediments. Zeolite amendments reduced toxicity of ammonia-spiked sediments to three taxa of benthic invertebrates (Hyalella azteca, Lumbriculus variegatus, and Chironomus tentans), despite their widely differing sensitivity to ammonia toxicity. In contrast, zeolite amendments did not reduce acute toxicity of sediments containing high concentrations of cadmium or copper or reduce concentrations of these metals in pore waters. These studies suggest that zeolite amendments, used in conjunction with toxicity tests with sensitive taxa such as H. azteca, may be an effective technique for selective reduction of ammonia toxicity in freshwater sediments.

  14. TOXICITY TESTS FOR SEDIMENT QUALITY ASSESSMENTS

    EPA Science Inventory

    Toxic sediments have contributed to a wide-variety of environmental problems around the world. The observed effects include direct toxic effects to aquatic life, bio-magnification of toxicants in the food chain, and economic impacts. This chapter discusses the use of toxicity...

  15. An evaluation of benthic community measures using laboratory-derived sediment effect concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwyer, F.J.; Canfield, T.J.; Ingersoll, C.G.

    1995-12-31

    Sediment effect concentrations (SECs) are contaminant sediment concentrations which are frequently associated with sediment toxicity. Recently, a number of different SECs have been calculated from laboratory toxicity tests with field collected sediments using Chironomus tentans, Chironomus riparius, and Hyalella azteca. Toxicity endpoints included (depending upon species) lethality, growth and sexual maturation. The authors selected the Effect Range Median (ERM) calculated for 28-d Hyalella azteca as an SEC for evaluating six different benthic community measures as indicators of contaminated sediment. The benthic measures included: taxa richness, chironomid genera richness, percent chironomid deformity, chironomid biotic index, ratio of chironomids/oligochaetes, and oligochaete bioticmore » index. Benthic measures were obtained for 31 stations from the Great Lakes and 13 stations from Milltown Reservoir and Clark Fork River, MT. Each benthic measure was ranked from 1 to 100 and individual ranks and various combinations of ranks were plotted against the ratio of chemical concentration at the site/ERM calculated for that chemical (similar to a toxic unit approach) and the sum of the ERM ratios (sum of toxic units). Preliminary analysis indicates that, in general, benthic measures varied widely in relatively uncontaminated stations, confounding any underlying relationship that may have existed. The absence of chironomids, in areas with suitable habitat, seems to be indicative of grossly contaminated stations, but not an endpoint useful for discriminating stations with contaminant concentrations closer to the SEC. The usefulness of benthic measures as diagnostic tools for contaminated sediments and potential ways to improve these measures will be discussed.« less

  16. Diffusive gradients in thin films technique provide robust prediction of metal bioavailability and toxicity in estuarine sediments.

    PubMed

    Amato, Elvio D; Simpson, Stuart L; Jarolimek, Chad V; Jolley, Dianne F

    2014-04-15

    Many sediment quality assessment frameworks incorporate contaminant bioavailability as a critical factor regulating toxicity in aquatic ecosystems. However, current approaches do not always adequately predict metal bioavailability to organisms living in the oxidized sediment surface layers. The deployment of the diffusive gradients in thin films (DGT) probes in sediments allows labile metals present in pore waters and weakly bound to the particulate phase to be assessed in a time-integrated manner in situ. In this study, relationships between DGT-labile metal fluxes within 5 mm of the sediment-water interface and lethal and sublethal effects to the amphipod Melita plumulosa were assessed in a range of contaminated estuarine sediments during 10-day laboratory-based bioassays. To account for differing toxicities of metals, DGT fluxes were normalized to water (WQG) or sediment quality guidelines or toxicity thresholds specific for the amphipod. The better dose-response relationship appeared to be the one based on WQG-normalized DGT fluxes, which successfully predicted toxicity despite the wide range of metals and large variations in sediment properties. The study indicated that the labile fraction of metals measured by DGT is useful for predicting metal toxicity to benthic invertebrates, supporting the applicability of this technique as a rapid monitoring tool for sediments quality assessments.

  17. Patterns and trends in sediment toxicity in the San Francisco Estuary

    USGS Publications Warehouse

    Anderson, B.; Hunt, J.; Phillips, B.; Thompson, B.; Lowe, S.; Taberski, K.; Scott, Carr R.

    2007-01-01

    Widespread sediment toxicity has been documented throughout the San Francisco Estuary since the mid-1980s. Studies conducted in the early 1990s as part of the Bay Protection and Toxic Cleanup Program (BPTCP), and more recently as part of the Regional Monitoring Program (RMP) have continued to find sediment toxicity in the Estuary. Results of these studies have shown a number of sediment toxic hotspots located at selected sites in the margins of the Estuary. Recent RMP monitoring has indicated that the magnitude and frequency of sediment toxicity is greater in the winter wet season than in the summer dry season, which suggests stormwater inputs are associated with sediment toxicity. Additionally, spatial trends in sediment toxicity data indicate that toxic sediments are associated with inputs from urban creeks surrounding the Estuary, and from Central Valley rivers entering the northern Estuary via the Delta. Sediment toxicity has been correlated with a number of contaminants, including selected metals, PAHs and organochlorine pesticides. While toxicity identification evaluations (TIEs) suggest that metals are the primary cause of sediment toxicity to bivalve embryos; TIEs conducted with amphipods have been inconclusive. ?? 2006 Elsevier Inc. All rights reserved.

  18. Primary sources and toxicity of PAHs in Milwaukee-area streambed sediment

    USGS Publications Warehouse

    Baldwin, Austin K.; Corsi, Steven R.; Lutz, Michelle A.; Ingersoll, Christopher G.; Dorman, Rebecca A.; Magruder, Christopher; Magruder, Matthew

    2017-01-01

    High concentrations of polycyclic aromatic hydrocarbons (PAHs) in streams can be a significant stressor to aquatic organisms. To understand the likely sources and toxicity of PAHs in Milwaukee-area streams, streambed sediment samples from 40 sites and parking lot dust samples from 6 sites were analyzed for 38 parent PAHs and 25 alkylated PAHs. Diagnostic ratios, profile correlations, principal components analysis, source-receptor modeling, and mass fractions analysis were used to identify potential PAH sources to streambed sediment samples, and land-use analysis was used to relate streambed sediment PAH concentrations to different urban-related land uses. On the basis of this multiple lines-of-evidence approach, coal-tar pavement sealant was indicated as the primary source of PAHs in a majority of streambed sediment samples, contributing an estimated 77% of total PAHs to samples, on average. Comparison to the Probable Effect Concentrations and (or) the Equilibrium Partitioning Sediment Benchmark indicates that 78% of stream sediment samples are likely to cause adverse effects to benthic organisms. Laboratory toxicity tests on a 16-sample subset of the streambed sites using the amphipod Hyalella azteca (28-day) and the midge Chironomus dilutus (10-day) measured significant reductions in one or more biological endpoints, including survival, in 75% of samples, with H. azteca more responsive than C. dilutus.

  19. Toxicity assessment of sediments collected upstream and downstream from the White Dam in Clarke County, Georgia

    USGS Publications Warehouse

    Lasier, Peter J.

    2018-06-06

    The White Dam in Clarke County, Georgia, has been proposed for breaching. Efforts to determine potential risks to downstream biota included assessments of sediment collected in the vicinity of the dam. Sediments collected from sites upstream and downstream from the dam were evaluated for toxicity in 42-day exposures using the freshwater amphipod Hyalella azteca. Endpoints of the study were survival, growth, and reproduction of H. azteca. Results indicated no significant differences between the collected sediments and the water-only treatment used for comparison of the test endpoints. Therefore, based on the laboratory experiments in this study, sediment migration downstream from a breach of the Dam may not pose a toxicity risk to downstream biota.

  20. CHARACTERIZATION AND ISOLATION OF ORGANIC TOXICANTS IN WHOLE SEDIMENT TOXICITY INDENTIFICATION EVALUATIONS (TIES)

    EPA Science Inventory

    Development of whole sediment toxicity identification and evaluation (TIEs) methods has been under way for approximately four years. These methods are necessary to define cause and effect relationships in toxic sediments during ecological risk assessments, remediation and disposa...

  1. TOXICITY CHARACTERIZATION PROCEDURES FOR ORGANIC TOXICANTS IN BULK SEDIMENTS

    EPA Science Inventory

    We have been pursuing development of toxicant characterization, isolation, and identification procedures for organic toxicants that can be applied in the context of 10-d solid-phase sediment tests measuring survival and growth of freshwater in the context of 10-d solid-phase sedi...

  2. Evaluation of the toxicity of sediments from the Anniston PCB Site to the mussel Lampsilis siliquoidea

    USGS Publications Warehouse

    Schein, Allison; Sinclair, Jesse A.; MacDonald, Donald D.; Ingersoll, Christopher G.; Kemble, Nile E.; Kunz, James L.

    2015-01-01

    The Anniston Polychlorinated Biphenyl (PCB) Site is located in the vicinity of the municipality of Anniston in Calhoun County, in the north-eastern portion of Alabama. Although there are a variety of land-use activities within the Choccolocco Creek watershed, environmental concerns in the area have focused mainly on releases of PCBs to aquatic and riparian habitats. PCBs were manufactured by Monsanto, Inc. at the Anniston facility from 1935 to 1971. The chemicals of potential concern (COPCs) in sediments at the Anniston PCB Site include: PCBs, mercury, metals, polycyclic aromatic hydrocarbons (PAHs), organochlorine and organophosphorous pesticides, volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs). The purpose of this study was to evaluate the toxicity of PCB-contaminated sediments to the juvenile fatmucket mussel (Lampsilis siliquoidea) and to characterize relationships between sediment chemistry and the toxicity of sediment samples collected from the Anniston PCB Site using laboratory sediment testing. Samples were collected in August 2010 from OU-4 of the Anniston PCB Site, as well as from selected reference locations. A total of 32 samples were initially collected from six test sites and one reference site within the watershed. A total of 23 of these 32 samples were evaluated in 28-day whole-sediment toxicity tests conducted with juvenile mussels (L. siliquoidea). Physical and chemical characterization of whole sediment included grain size, total organic carbon (TOC), nutrients, PCBs, parent and alkylated PAHs, organochlorine pesticides, PCDD/PCDFs, total metals, simultaneously extracted metals (SEM), and acid volatile sulfide (AVS). Sediment collected from Snow Creek and Choccolocco Creek contained a variety of COPCs. Organic contaminants detected in sediment included PCBs, organochlorine pesticides, PCDDs/PCDFs, and PAHs. In general, the highest

  3. Comparison of bulk sediment and sediment elutriate toxicity testing methods

    EPA Science Inventory

    Elutriate bioassays are among numerous methods that exist for assessing the potential toxicity of sediments in aquatic systems. In this study, interlaboratory results were compared from 96-hour Ceriodaphnia dubia and Pimephales promelas static-renewal acute toxicity tests conduct...

  4. WHAT’S CAUSING TOXICITY IN SEDIMENTS? RESULTS OF 20 YEARS OF TOXICITY IDENTIFICATION AND EVALUATIONS

    EPA Science Inventory

    Sediment toxicity identification and evaluation (TIE) methods have been used for 20 yr to identify the causes of toxicity in sediments around the world. In the present study, the authors summarize and categorize results of 36 peer-reviewed TIE studies (67 sediments) into nonioni...

  5. Toxicity of sediments from lead-zinc mining areas to juvenile freshwater mussels (Lampsilis siliquoidea) compared to standard test organisms

    USGS Publications Warehouse

    Besser, John M.; Ingersoll, Christopher G.; Brumbaugh, William G.; Kemble, Nile E.; May, Thomas W.; Wang, Ning; MacDonald, Donald D.; Roberts, Andrew D.

    2015-01-01

    Sediment toxicity tests compared chronic effects on survival, growth, and biomass of juvenile freshwater mussels (28-d exposures with Lampsilis siliquoidea) to the responses of standard test organisms—amphipods (28-d exposures with Hyalella azteca) and midges (10-d exposures with Chironomus dilutus)—in sediments from 2 lead–zinc mining areas: the Tri-State Mining District and Southeast Missouri Mining District. Mussel tests were conducted in sediments sieved to <0.25 mm to facilitate recovery of juvenile mussels (2–4 mo old). Sediments were contaminated primarily with lead, zinc, and cadmium, with greater zinc and cadmium concentrations in Tri-State sediments and greater lead concentrations in southeast Missouri sediments. The frequency of highly toxic responses (reduced 10% or more relative to reference sites) in Tri-State sediments was greatest for amphipod survival (25% of samples), midge biomass (20%), and mussel survival (14%). In southeast Missouri sediments, the frequency of highly toxic samples was greatest for mussel biomass (25%) and amphipod biomass (13%). Thresholds for metal toxicity to mussels, expressed as hazard quotients based on probable effect concentrations, were lower for southeast Missouri sediments than for Tri-State sediments. Southeast Missouri sites with toxic sediments had 2 or fewer live mussel taxa in a concurrent mussel population survey, compared with 7 to 26 taxa at reference sites. These results demonstrate that sediment toxicity tests with juvenile mussels can be conducted reliably by modifying existing standard methods; that the sensitivity of mussels to metals can be similar to or greater than standard test organisms; and that responses of mussels in laboratory toxicity tests are consistent with effects on wild mussel populations.

  6. An overview of the refinements and improvements to the USEPA’s sediment toxicity methods for freshwater sediment

    EPA Science Inventory

    Sediment toxicity tests are used for contaminated sediments, chemical registration, and water quality criteria evaluations and can be a core component of ecological risk assessments at contaminated sediments sites. Standard methods for conducting sediment toxicity tests have been...

  7. Predictions of sediment toxicity using consensus-based freshwater sediment quality guidelines

    USGS Publications Warehouse

    Ingersoll, C.G.; MacDonald, D.D.; Wang, N.; Crane, J.L.; Field, L.J.; Haverland, P.S.; Kemble, N.E.; Lindskoog, R.A.; Severn, C.; Smorong, D.E.

    2001-01-01

    The objectives of this study were to compare approaches for evaluating the combined effects of chemical mixtures on the toxicity in field-collected sediments and to evaluate the ability of consensus-based probable effect concentrations (PECs) to predict toxicity in a freshwater database on both a national and regional geographic basis. A database was developed from 92 published reports, which included a total of 1,657 samples with high-quality matching sediment toxicity and chemistry data from across North America. The database was comprised primarily of 10- to 14-day or 28- to 42-day toxicity tests with the amphipod Hyalella azteca (designated as the HA10 or HA28 tests) and 10- to 14-day toxicity tests with the midges Chironomus tentans or C. riparius (designated as the CS10 test). Mean PEC quotients were calculated to provide an overall measure of chemical contamination and to support an evaluation of the combined effects of multiple contaminants in sediments. There was an overall increase in the incidence of toxicity with an increase in the mean quotients in all three tests. A consistent increase in the toxicity in all three tests occurred at a mean quotient > 0.5, however, the overall incidence of toxicity was greater in the HA28 test compared to the short-term tests. The longer-term tests, in which survival and growth are measured, tend to be more sensitive than the shorter-term tests, with acute to chronic ratios on the order of six indicated for H. azteca. Different patterns were observed among the various procedures used to calculate mean quotients. For example, in the HA28 test, a relatively abrupt increase in toxicity was associated with elevated polychlorinated biphenyls (PCBs) alone or with elevated polycyclic aromatic hydrocarbons (PAHs) alone, compared to the pattern of a gradual increase in toxicity observed with quotients calculated using a combination of metals, PAHs, and PCBs. These analyses indicate that the different patterns in toxicity may be

  8. Toxicity of bed sediments from the Niagara River Area of Concern and tributaries, New York, to Chironomus dilutus and Hyalella azteca, 2014-15

    USGS Publications Warehouse

    George, Scott D.; Baldigo, Barry P.; Duffy, Brian T.

    2016-09-20

    The Niagara River was designated as an Area of Concern in 1987 on both the United States and Canadian sides of the international boundary line because past industrial discharges and hazardous waste sites had caused extensive degradation of aquatic habitats. The degradation of the “benthos”, or the benthic macroinvertebrate community, was identified as one of seven beneficial use impairments caused by contaminated bed sediments. The U.S. Geological Survey and the New York State Department of Environmental Conservation, in cooperation with the U.S. Environmental Protection Agency, conducted a study in 2014 and 2015 to gather more extensive data on (a) the toxicity of bed sediments and (b) the status of macroinvertebrate communities on the main stem and tributaries of the Niagara River. This report addresses the first component of that study (toxicity of bed sediments), and summarizes results from laboratory toxicity tests that compare the survival and growth of two macroinvertebrate species between bed sediments from study sites and laboratory controls. Sediment toxicity was negligible at most sites, however poor performance of one or both test species in bed sediments from several tributary sites suggests that the quality of sediments may be adversely affecting benthic macroinvertebrate communities in some tributaries to the Niagara River.

  9. What Food and Feeding Rates are Optimum for the Chironomus dilutus Sediment Toxicity Test Method?

    EPA Science Inventory

    Laboratory tests with benthic macroinvertebrates are commonly used to assess the toxicity of both contaminated sediments and individual chemicals. Among the standard procedures for benthic macroinvertebrates are 10-d, 20-d, and life cycle exposures using the midge, Chironomus ...

  10. Copper speciation in variably toxic sediments at the Ely Copper Mine, Vermont, United States

    USGS Publications Warehouse

    Kimball, Bryn E.; Foster, Andrea L.; Seal, Robert R.; Piatak, Nadine M.; Webb, Samuel M.; Hammarstrom, Jane M.

    2016-01-01

    At the Ely Copper Mine Superfund site, Cu concentrations exceed background values in both streamwater (160–1200 times) and sediments (15–79 times). Previously, these sediment samples were incubated with laboratory test organisms, and they exhibited variable toxicity for different stream sites. In this study we combined bulk- and microscale techniques to determine Cu speciation and distribution in these contaminated sediments on the basis of evidence from previous work that Cu was the most important stressor in this environment and that variable observed toxicity could have resulted from differences in Cu speciation. Copper speciation results were similar at microscopic and bulk scales. The major Cu species in the more toxic samples were sorbed or coprecipitated with secondary Mn (birnessite) and Fe minerals (jarosite and goethite), which together accounted for nearly 80% of the total Cu. The major Cu species in the less toxic samples were Cu sulfides (chalcopyrite and a covellite-like phase), making up about 80–95% of the total Cu, with minor amounts of Cu associated with jarosite or goethite. These Cu speciation results are consistent with the toxicity results, considering that Cu sorbed or coprecipitated with secondary phases at near-neutral pH is relatively less stable than Cu bound to sulfide at lower pH. The more toxic stream sediment sites were those that contained fewer detrital sulfides and were upstream of the major mine waste pile, suggesting that removal and consolidation of sulfide-bearing waste piles on site may not eliminate all sources of bioaccessible Cu.

  11. RESULTS OF APPLYING TOXICITY IDENTIFICATION PROCEDURES TO FIELD COLLECTED SEDIMENTS

    EPA Science Inventory

    Identification of specific causes of sediment toxicity can allow for much more focused risk assessment and management decision making. We have been developing toxicity identification evaluation TIE) methods for contaminated sediments and are focusing on three toxicant groups (amm...

  12. Estimated sediment thickness, quality, and toxicity to benthic organisms in selected impoundments in Massachusetts

    USGS Publications Warehouse

    Breault, Robert F.; Sorenson, Jason R.; Weiskel, Peter K.

    2013-01-01

    The U.S. Geological Survey and the Massachusetts Department of Fish and Game, Division of Ecological Restoration, collaborated to collect baseline information on the quantity and quality of sediment impounded behind selected dams in Massachusetts, including sediment thickness and the occurrence of contaminants potentially toxic to benthic organisms. The thicknesses of impounded sediments were measured, and cores of sediment were collected from 32 impoundments in 2004 and 2005. Cores were chemically analyzed, and concentrations of 32 inorganic elements and 108 organic compounds were quantified. Sediment thicknesses varied considerably among the 32 impoundments, with an average thickness of 3.7 feet. Estimated volumes also varied greatly, ranging from 100,000 cubic feet to 81 million cubic feet. Concentrations of toxic contaminants as well as the number of contaminants detected above analytical quantification levels (also known as laboratory reporting levels) varied greatly among sampling locations. Based on measured contaminant concentrations and comparison to published screening thresholds, bottom sediments were predicted to be toxic to bottom-dwelling (benthic) organisms in slightly under 30 percent of the impoundments sampled. Statistically significant relations were found between several of the contaminants and individual indicators of urban land use and industrial activity in the upstream drainage areas of the impoundments. However, models developed to estimate contaminant concentrations at unsampled sites from upstream landscape characteristics had low predictive power, consistent with the long and complex land-use history that is typical of many drainage areas in Massachusetts.

  13. Toxicity of sediments and pore water from Brunswick Estuary, Georgia

    USGS Publications Warehouse

    Winger, Parley V.; Lasier, Peter J.; Geitner, Harvey

    1993-01-01

    A chlor-alkali plant in Brunswick, Georgia, USA, discharged >2 kg mercury/d into a tributary of the Turtle River-Brunswick Estuary from 1966 to 1971. Mercury concentrations in sediments collected in 1989 along the tributary near the chlor-alkali plant ranged from 1 to 27 μg/g (dry weight), with the highest concentrations found in surface (0–8 cm) sediments of subtidal zones in the vicinity of the discharge site. Toxicity screening in 1990 using Microtox® bioassays on pore water extracted on site from sediments collected at six stations distributed along the tributary indicated that pore water was highly toxic near the plant discharge. Ten-day toxicity tests on pore water from subsequent sediment samples collected near the plant discharge confirmed high toxicity to Hyalella azteca, and feeding activity was significantly reduced in whole-sediment tests. In addition to mercury in the sediments, other metals (chromium, lead, and zinc) exceeded 50 μg/g, and polychlorobiphenyl (PCB) concentrations ranged from 67 to 95 μg/g. On a molar basis, acid-volatile sulfide concentrations (20–45 μmol/g) in the sediments exceeded the metal concentrations. Because acid-volatile sulfides bind with cationic metals and form metal sulfides, which are generally not bioavailable, toxicities shown by these sediments were attributed to the high concentrations of PCBs and possibly methylmercury.

  14. Toxicity and photoactivation of PAH mixtures in marine sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartz, R.; Ferraro, S.; Lamberson, J.

    1995-12-31

    The toxicity and toxicological photoactivation of mixtures of sediment-associated fluoranthene, phenanthrene, pyrene, and acenaphthene were determined using standard 10 d sediment toxicity tests with the marine amphipod, Rhepoxynius abronius. The four PAHs were spiked into sediment in a concentration series of either single compounds or an equitoxic mixture. Spiked sediment was stored at 4 C for 28 d before testing. Toxicity tests were conducted under fluorescent lighting. Survivors after 10 d in PAH-contaminated sediment were exposed for 1 h to UV light in the absence of sediment and then tested for their ability to bury in clean sediment. The 10more » d LC50s for single PAHs were 3.3, 2.2, 2.8, and 2.3 mg/g oc for fluoranthene, phenanthrene, pyrene, and acenaphthene, respectively. These LC50s were used to calculate the sum of toxic units ({Sigma}TU) of the four PAHs in the equitoxic mixture treatments. The {Sigma}TU LC50 was then calculated for the mixture treatments. If the toxicological interaction of the four PAHs in the mixture was additive, the {Sigma}TU LC50 should equal 1.0. The observed {Sigma}TU LC50 in the mixture was 1.55, indicating the interaction was slightly less than additive. UV enhancement of toxic effects of individual PAHs was correctly predicted by photophysical properties, i.e. pyrene and fluoranthene were photoactivated and phenanthrene and acenaphthene were not. UV effects in the mixture of four PAHs can be explained by the photoactivation of pyrene and fluoranthene alone.« less

  15. A SEDIMENT TOXICITY METHOD USING LEMNA MINOR, DUCKWEED

    EPA Science Inventory

    We developed a Lemna minor sediment toxicity test method to assess sediment contaminants which may affect plants. This 96-hour test used 15 ml of sediment and 2 ml of overlying water which was renewed after 48 hours. Sand was used as the control sediment and also to dilute test ...

  16. MEASURING THE ACUTE TOXICITY OF ESTUARINE SEDIMENTS

    EPA Science Inventory

    Estuarine sediments frequently are repositories and sources of anthropogenic contaminants. Toxicity is one method of assessing the environmental quality of sediments, yet because of the extreme range of salinities that characterize estuaries few infaunal organisms have both the p...

  17. Linkages between the spatial toxicity of sediments and sediment dynamics in the Yangtze River Estuary and neighboring East China Sea.

    PubMed

    Gao, Jinjuan; Shi, Huahong; Dai, Zhijun; Mei, Xuefei; Zong, Haibo; Yang, Hongwei; Hu, Lingling; Li, Shushi

    2018-02-01

    Anthropogenic activities are driving an increase in sediment contamination in coastal areas. This poses significant challenges for the management of estuarine ecosystems and their adjacent seas worldwide. However, few studies have been conducted on how dynamic mechanisms affect the sediment toxicity in the estuarine environment. This study was designed to investigate the linkages between sediment toxicity and hydrodynamics in the Yangtze River Estuary (YRE) area. High sediment toxicity was found in the Yangtze River mouth (Region I), the depocenter of the Yangtze River Delta (Region II), and the southeastern area of the adjacent sea (Region III), while low sediment toxicity was found in the northeastern offshore region (Region IV). A spatial comparison analysis and regression model indicated that the distributed pattern of sediment toxicity was likely related to hydrodynamics and circumfluence in the East China Sea (ECS) shelf. Specifically, high sediment toxicity in Region I may be affected by the Yangtze River Pump (YRP) and the low hydrodynamics there, and high toxicity in Region II can be influenced by the low sediment dynamics and fine sediment in the depocenter. The high sediment toxicity in Region III might be related to the combination of the YRP and Taiwan Warm Current, while the low toxicity in Region IV may be influenced by the local coarse-grained relict sand with strong sediment dynamics there. The present research results further suggest that it is necessary to link hydrodynamics and the spatial behavior of sediment and sediment-derived pollutants when assessing the pollution status of estuarine environments, especially for those mega-estuaries and their neighboring ocean environments with complex waves, tides and ocean currents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides

    USGS Publications Warehouse

    Nowell, Lisa H.; Norman, Julia E.; Ingersoll, Christopher G.; Moran, Patrick W.

    2016-01-01

    Sediment-toxicity benchmarks are needed to interpret the biological significance of currently used pesticides detected in whole sediments. Two types of freshwater sediment benchmarks for pesticides were developed using spiked-sediment bioassay (SSB) data from the literature. These benchmarks can be used to interpret sediment-toxicity data or to assess the potential toxicity of pesticides in whole sediment. The Likely Effect Benchmark (LEB) defines a pesticide concentration in whole sediment above which there is a high probability of adverse effects on benthic invertebrates, and the Threshold Effect Benchmark (TEB) defines a concentration below which adverse effects are unlikely. For compounds without available SSBs, benchmarks were estimated using equilibrium partitioning (EqP). When a sediment sample contains a pesticide mixture, benchmark quotients can be summed for all detected pesticides to produce an indicator of potential toxicity for that mixture. Benchmarks were developed for 48 pesticide compounds using SSB data and 81 compounds using the EqP approach. In an example application, data for pesticides measured in sediment from 197 streams across the United States were evaluated using these benchmarks, and compared to measured toxicity from whole-sediment toxicity tests conducted with the amphipod Hyalella azteca (28-d exposures) and the midge Chironomus dilutus (10-d exposures). Amphipod survival, weight, and biomass were significantly and inversely related to summed benchmark quotients, whereas midge survival, weight, and biomass showed no relationship to benchmarks. Samples with LEB exceedances were rare (n = 3), but all were toxic to amphipods (i.e., significantly different from control). Significant toxicity to amphipods was observed for 72% of samples exceeding one or more TEBs, compared to 18% of samples below all TEBs. Factors affecting toxicity below TEBs may include the presence of contaminants other than pesticides, physical

  19. Resolving the false-negative issues of the nonpolar organic amendment in whole-sediment toxicity identification evaluations.

    PubMed

    Mehler, W Tyler; Keough, Michael J; Pettigrove, Vincent

    2018-04-01

    Three common false-negative scenarios have been encountered with amendment addition in whole-sediment toxicity identification evaluations (TIEs): dilution of toxicity by amendment addition (i.e., not toxic enough), not enough amendment present to reduce toxicity (i.e., too toxic), and the amendment itself elicits a toxic response (i.e., secondary amendment effect). One such amendment in which all 3 types of false-negatives have been observed is with the nonpolar organic amendment (activated carbon or powdered coconut charcoal). The objective of the present study was to reduce the likelihood of encountering false-negatives with this amendment and to increase the value of the whole-sediment TIE bioassay. To do this, the present study evaluated the effects of various activated carbon additions to survival, growth, emergence, and mean development rate of Chironomus tepperi. Using this information, an alternative method for this amendment was developed which utilized a combination of multiple amendment addition ratios based on wet weight (1%, lower likelihood of the secondary amendment effect; 5%, higher reduction of contaminant) and nonconventional endpoints (emergence, mean development rate). This alternative method was then validated in the laboratory (using spiked sediments) and with contaminated field sediments. Using these multiple activated carbon ratios in combination with additional endpoints (namely, emergence) reduced the likelihood of all 3 types of false-negatives and provided a more sensitive evaluation of risk. Environ Toxicol Chem 2018;37:1219-1230. © 2017 SETAC. © 2017 SETAC.

  20. Effects of sediment-spiked lufenuron on benthic macroinvertebrates in outdoor microcosms and single-species toxicity tests.

    PubMed

    Brock, T C M; Bas, D A; Belgers, J D M; Bibbe, L; Boerwinkel, M-C; Crum, S J H; Diepens, N J; Kraak, M H S; Vonk, J A; Roessink, I

    2016-08-01

    Sediment ecotoxicity studies were conducted with lufenuron to (i) complement the results of a water-spiked mesocosm experiment with this lipophilic benzoylurea insecticide, (ii) to explore the predictive value of laboratory single-species tests for population and community-level responses of benthic macroinvertebrates, and (iii) to calibrate the tier-1 effect assessment procedure for sediment organisms. For this purpose the concentration-response relationships for macroinvertebrates between sediment-spiked microcosms and those of 28-d sediment-spiked single-species toxicity tests with Chironomus riparius, Hyalella azteca and Lumbriculus variegatus were compared. Lufenuron persisted in the sediment of the microcosms. On average, 87.7% of the initial lufenuron concentration could still be detected in the sediment after 12 weeks. Overall, benthic insects and crustaceans showed treatment-related declines and oligochaetes treatment-related increases. The lowest population-level NOEC in the microcosms was 0.79μg lufenuron/g organic carbon in dry sediment (μg a.s./g OC) for Tanytarsini, Chironomini and Dero sp. Multivariate analysis of the responses of benthic macroinvertebrates revealed a community-level NOEC of 0.79μg a.s./g OC. The treatment-related responses observed in the microcosms are in accordance with the results of the 28-d laboratory toxicity tests. These tests showed that the insect C. riparius and the crustacean H. azteca were approximately two orders of magnitude more sensitive than the oligochaete L. variegatus. In our laboratory tests, using field-collected sediment, the lowest 28-d EC10 (0.49μg a.s./g OC) was observed for C. riparius (endpoint survival), while for the standard OECD test with this species, using artificial sediment, a NOEC of 2.35μg a.s./g OC (endpoint emergence) is reported. In this particular case, the sediment tier-1 effect assessment using the chronic EC10 (field-collected sediment) or chronic NOEC (artificial sediment) of C

  1. Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines.

    PubMed

    Zhang, Yanfeng; Han, Yuwei; Yang, Jinxi; Zhu, Lingyan; Zhong, Wenjue

    2017-12-01

    The occurrence, toxicities, and ecological risks of five heavy metals (Pb, Cu, Cd, Zn and Ni) in the sediment of Taihu Lake were investigated in this study. To evaluate the toxicities caused by the heavy metals, the toxicities induced by organic contaminants and ammonia in the sediments were screened out with activated carbon and zeolite. The toxicities of heavy metals in sediments were tested with benthic invertebrates (tubificid and chironomid). The correlations between toxicity of sediment and the sediment quality guidelines (SQGs) derived previously were evaluated. There were significant correlations (p<0.0001) between the observed toxicities and the total risk quotients of the heavy metals based on SQGs, indicating that threshold effect level (TEL) and probable effect level (PEL) were reliable to predict the toxicities of heavy metals in the sediments of Taihu Lake. By contrast, the method based on acid volatile sulfides (AVS) and simultaneously extracted metals (SEM), such as ∑SEM/AVS and ∑SEM-AVS, did not show correlations with the toxicities. Moreover, the predictive ability of SQGs was confirmed by a total predicting accuracy of 77%. Ecological risk assessment based on TELs and PELs showed that the contaminations of Pb, Cu, Cd and Zn in the sediments of Taihu Lake were at relatively low or medium levels. The risks caused by heavy metals in the sediments of northern bay of the lake, which received more wastewater discharge from upper stream, were higher than other area of the lake. Copyright © 2017. Published by Elsevier B.V.

  2. Ecological impacts of lead mining on Ozark streams: toxicity of sediment and pore water.

    PubMed

    Besser, John M; Brumbaugh, William G; Allert, Ann L; Poulton, Barry C; Schmitt, Christopher J; Ingersoll, Christopher G

    2009-02-01

    We studied the toxicity of sediments downstream of lead-zinc mining areas in southeast Missouri, using chronic sediment toxicity tests with the amphipod, Hyalella azteca, and pore-water toxicity tests with the daphnid, Ceriodaphnia dubia. Tests conducted in 2002 documented reduced survival of amphipods in stream sediments collected near mining areas and reduced survival and reproduction of daphnids in most pore waters tested. Additional amphipod tests conducted in 2004 documented significant toxic effects of sediments from three streams downstream of mining areas: Strother Creek, West Fork Black River, and Bee Fork. Greatest toxicity occurred in sediments from a 6-km reach of upper Strother Creek, but significant toxic effects occurred in sediments collected at least 14 km downstream of mining in all three watersheds. Toxic effects were significantly correlated with metal concentrations (nickel, zinc, cadmium, and lead) in sediments and pore waters and were generally consistent with predictions of metal toxicity risks based on sediment quality guidelines, although ammonia and manganese may also have contributed to toxicity at a few sites. Responses of amphipods in sediment toxicity tests were significantly correlated with characteristics of benthic invertebrate communities in study streams. These results indicate that toxicity of metals associated with sediments contributes to adverse ecological effects in streams draining the Viburnum Trend mining district.

  3. Ecological impacts of lead mining on Ozark streams: Toxicity of sediment and pore water

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; Allert, A.L.; Poulton, B.C.; Schmitt, C.J.; Ingersoll, C.G.

    2009-01-01

    We studied the toxicity of sediments downstream of lead-zinc mining areas in southeast Missouri, using chronic sediment toxicity tests with the amphipod, Hyalella azteca, and pore-water toxicity tests with the daphnid, Ceriodaphnia dubia. Tests conducted in 2002 documented reduced survival of amphipods in stream sediments collected near mining areas and reduced survival and reproduction of daphnids in most pore waters tested. Additional amphipod tests conducted in 2004 documented significant toxic effects of sediments from three streams downstream of mining areas: Strother Creek, West Fork Black River, and Bee Fork. Greatest toxicity occurred in sediments from a 6-km reach of upper Strother Creek, but significant toxic effects occurred in sediments collected at least 14 km downstream of mining in all three watersheds. Toxic effects were significantly correlated with metal concentrations (nickel, zinc, cadmium, and lead) in sediments and pore waters and were generally consistent with predictions of metal toxicity risks based on sediment quality guidelines, although ammonia and manganese may also have contributed to toxicity at a few sites. Responses of amphipods in sediment toxicity tests were significantly correlated with characteristics of benthic invertebrate communities in study streams. These results indicate that toxicity of metals associated with sediments contributes to adverse ecological effects in streams draining the Viburnum Trend mining district.

  4. Sediment toxicity testing with the amphipod Ampelisca abdita in Calcasieu Estuary, Louisiana

    USGS Publications Warehouse

    Redmond, M.S.; Crocker, P.A.; McKenna, K.M.; Petrocelli, E.A.; Scott, K.J.; Demas, C.R.

    1996-01-01

    Discharges from chemical and petrochemical manufacturing facilities have contaminated portions of Louisiana's Calcasieu River estuary with a variety of organic and inorganic contaminants. As part of a special study, sediment toxicity testing was conducted to assess potential impact to the benthic community. Ten-day flow-through sediment toxicity tests with the amphipod Ampelisca abdita revealed significant toxicity at 68% (26 of 38) of the stations tested. A. abdita mortality was highest in the effluent-dominated bayous, which are tributaries to the Calcasieu River. Mortality was correlated with total heavy metal and total organic compound concentrations in the sediments. Ancillary experiments showed that sediment interstitial water salinity as low as 2.5 o/o-o did not significantly affect A. abdita's, response in the flow-through system; sediment storage for 7 weeks at 4??C did not significantly affect toxicity. Sediment toxicity to A. abdita was more prevalent than receiving water toxicity using three short-term chronic bioassays. Results suggest that toxicity testing using this amphipod is a valuable tool when assessing sediments containing complex contaminant mixtures and for assessing effects of pollutant loading over time. In conjunction with chemical analyses, the testing indicated that the effluent-dominated, brackish bayous (Bayou d'Inde and Bayou Verdine) were the portions of the estuary most impacted by toxicity.

  5. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks.

    PubMed

    Karlsson, Kristin; Viklander, Maria; Scholes, Lian; Revitt, Mike

    2010-06-15

    Sedimentation is a widely used technique in structural best management practices to remove pollutants from stormwater. However, concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants. This study has concentrated on stormwater ponds and sedimentation tanks and reports on the accumulated metal concentrations (Cd, Cr, Ni, Pb, and Zn) and the associated toxicity to the bacteria Vibrio fischeri. The metal concentrations are compared with guidelines and the toxicity results are assessed in relation to samples for which metal concentrations either exceed or conform to these values. The water phase metal concentrations were highest in the ponds whereas the sedimentation tanks exhibited a distinct decrease towards the outlet. However, none of the water samples demonstrated toxicity even though the concentrations of Cu, Pb, and Zn exceeded the threshold values for the compared guidelines. The facilities with higher traffic intensities had elevated sediment concentrations of Cr, Cu, Ni, and Zn which increased towards the outlet for the sedimentation tanks in agreement with the highest percentage of fine particles. The sediments in both treatment facilities exhibited the expected toxic responses in line with their affinity for heavy metals but the role of organic carbon content is highlighted. Copyright 2010 Elsevier B.V. All rights reserved.

  6. SEDIMENT TOXICITY AS AN INDICATOR OF CONTAMINANT STRESS IN EMAP-ESTUARIES

    EPA Science Inventory

    Toxicity of sediments is widely used in EPA, ACOE, and NOAA monitoring and regulatory programs as a complement to measuring of chemical concentrations as it provides an indication of the bioavailability of sediment contaminants. Sediment toxicity was included as an abiotic condit...

  7. PREDICTING THE TOXICITY OF CHROMIUM IN SEDIMENTS

    EPA Science Inventory

    Chromium exists in sediments in two oxidation states: Cr(III), which is relatively insoluble and nontoxic, and Cr(VI), which is much more soluble and toxic. Chromium(VI) is thermodynamically unstable in anoxic sediments, and acid-volatile sulfide (AVS) is formed only in anoxic se...

  8. Evaluation of surficial sediment toxicity and sediment physico-chemical characteristics of representative sites in the Lagoon of Venice (Italy)

    NASA Astrophysics Data System (ADS)

    Losso, C.; Arizzi Novelli, A.; Picone, M.; Marchetto, D.; Pessa, G.; Molinaroli, E.; Ghetti, P. F.; Volpi Ghirardini, A.

    2004-11-01

    Toxic hazard in sites with varying types and levels of contamination in the Lagoon of Venice was estimated by means of toxicity bioassays based on the early life-stages of the autochthonous sea urchin Paracentrotus lividus. Elutriate was chosen as the test matrix, due to its ability to highlight potential toxic effects towards sensitive biological components of the water column caused by sediment resuspension phenomena affecting the Lagoon. Surficial sediments (core-top 5 cm deep), directly influenced by resuspension/redeposition processes, and core sediments (core 20 cm deep), recording time-mediated contamination, were sampled in some sites located in the lagoonal area most greatly influenced by anthropogenic activities. Particle size, organic matter and water content were also analysed. In two sites, the results of physical parameters showed that the core-top sediments were coarser than the 20-cm core sediments. Sperm cell toxicity test results showed the negligible acute toxicity of elutriates from all investigated sites. The embryo toxicity test demonstrated a short-term chronic toxicity gradient for elutriates from the 20-cm core sediments, in general agreement both with the expected contamination gradient and with results of the Microtox® solid-phase test. Elutriates of the core-top 5-cm sediments revealed a totally inverted gradient, in comparison with that for the 20-cm core sediments, and the presence of a "hot spot" of contamination in the site chosen as a possible reference. Investigations on ammonia and sulphides as possible confounding factors excluded their contribution to this "hot spot". Integrated physico-chemical and toxicity results on sediments at various depths demonstrated the presence of disturbed sediments in the central basin of the Lagoon of Venice.

  9. Bioavailability of metals and toxicity identification of the sediment pore waters from Plow Shop Pond, Fort Devens, Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jop, K.; Putt, A.; Shepherd, S.

    1995-12-31

    Plow Shop Pond is a shallow, 30-acre pond located at Fort Devens, Massachusetts. An ecological risk assessment was conducted at Plow Shop Pond as part of a remedial investigation. Preliminary analysis revealed high concentrations of arsenic, copper, chromium, lead, and mercury in the sediment. Therefore, a laboratory testing program was incorporated into this investigation to assess the toxicity of sediments to aquatic organisms. The screening testing program included short-term chronic exposure of Ceriodaphnia dubia to pore waters, 10-day exposures of Chironomus tentans and Hyalella azteca to bulk sediments and a bioaccumulation study with Lumbriculus variegatus. Survival and reproduction of C.more » dubia, growth of amphipods and reproduction of oligochaetes appeared to indicate sediment toxicity at some sites within the pond. Although high concentrations of arsenic, copper, mercury and lead were detected in the whole sediments and pore waters, the response could not be correlated to a particular element. Also, relatively low bioaccumulation of methyl mercury and high uptake of inorganic mercury was established for three sediment samples. To characterize and identify the source of toxicity, a toxicity identification evaluation program using sediments collected at several locations was performed. The pore water from these samples was used for fractionation coupled with a 10-day test using H. azteca. Survival and growth were evaluated as endpoints during the exposures. Partitioning of metals and their bioavailability was influenced primarily by organic carbon and AVS concentration. At least two constituents were responsible for the toxicity.« less

  10. TIE METHODS FOR TOXICITY EVALUATION OF FRESHWATER SEDIMENTS

    EPA Science Inventory

    Three toxicity identification evaluation (TIE) methods, AVS spiking, zero-valent metal and cation exchange resin, have been used with metal contaminated and enriched sediments to remove the toxicity...

  11. AN OVERVIEW OF TOXICANT IDENTIFICATION IN SEDIMENTS AND DREDGED MATERIALS

    EPA Science Inventory

    The identification of toxicants affecting aquatic benthic systems is critical to sound assessment and management of our nation?s waterways. Identification of toxicants can be useful in designing effective sediment remediation plans and reasonable options for sediment disposal. K...

  12. Influence of sediment chemistry and sediment toxicity on macroinvertebrate communities across 99 wadable streams of the Midwestern USA

    USGS Publications Warehouse

    Moran, Patrick W.; Nowell, Lisa H.; Kemble, Nile E.; Mahler, Barbara J.; Waite, Ian R.; Van Metre, Peter C.

    2017-01-01

    Simultaneous assessment of sediment chemistry, sediment toxicity, and macroinvertebrate communities can provide multiple lines of evidence when investigating relations between sediment contaminants and ecological degradation. These three measures were evaluated at 99 wadable stream sites across 11 states in the Midwestern United States during the summer of 2013 to assess sediment pollution across a large agricultural landscape. This evaluation considers an extensive suite of sediment chemistry totaling 274 analytes (polycyclic aromatic hydrocarbons, organochlorine compounds, polychlorinated biphenyls, polybrominated diphenyl ethers, trace elements, and current-use pesticides) and a mixture assessment based on the ratios of detected compounds to available effects-based benchmarks. The sediments were tested for toxicity with the amphipod Hyalella azteca (28-d exposure), the midge Chironomus dilutus (10-d), and, at a few sites, with the freshwater mussel Lampsilis siliquoidea (28-d). Sediment concentrations, normalized to organic carbon content, infrequently exceeded benchmarks for aquatic health, which was generally consistent with low rates of observed toxicity. However, the benchmark-based mixture score and the pyrethroid insecticide bifenthrin were significantly related to observed sediment toxicity. The sediment mixture score and bifenthrin were also significant predictors of the upper limits of several univariate measures of the macroinvertebrate community (EPT percent, MMI (Macroinvertebrate Multimetric Index) Score, Ephemeroptera and Trichoptera richness) using quantile regression. Multivariate pattern matching (Mantel-like tests) of macroinvertebrate species per site to identified contaminant metrics and sediment toxicity also indicate that the sediment mixture score and bifenthrin have weak, albeit significant, influence on the observed invertebrate community composition. Together, these three lines of evidence (toxicity tests, univariate metrics, and

  13. TOXICITY IDENTIFICATION EVALUATION (TIE) RESULTS FOR METAL CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Identification of contaminants in sediment is necessary for sound management decisions on sediment disposal, remediation, determination of ecological risk, and source identification. We have been developing sediment toxicity identification evaluation (TIE) techniques that allow ...

  14. Toxicity of Anacostia River, Washington, D.C., USA, sediment fed to mute swans (Cygnus olor)

    USGS Publications Warehouse

    Beyer, W.N.; Day, D.; Melancon, M.J.; Sileo, L.

    2000-01-01

    Sediment ingestion is sometimes the principal route by which waterfowl are exposed to environmental contaminants, and at severely contaminated sites waterfowl have been killed by ingesting sediment. Mute swans (Cygnus olor) were fed a diet for 6 weeks with a high but environmentally realistic concentration (24%) of sediment from the moderately polluted Anacostia River in the District of Columbia, USA, to estimate the sediment's toxicity. Control swans were fed the same diet without the sediment. Five organochlorine compounds were detected in the treated diets, but none of 22 organochlorine compounds included in the analyses was detected in livers of the treated swans. The concentrations of 24 polynuclear aromatic hydrocarbons measured in the treated diet were as high as 0.80 mg/kg, and they were thought to have been responsible for the observed induction of hepatic microsomal monooxygenase activity in livers. A concentration of 85 mg/kg of lead in the diet was enough to decrease red blood cell ALAD activity but was not high enough to cause more serious effects of lead poisoning. The dietary concentrations of Al, Fe, V, and Ba were high compared to the concentrations of these elements known to be toxic in laboratory feeding studies. However, the lack of accumulation in the livers of the treated swans suggested that these elements were not readily available from the ingested sediment. We did not study all potential toxic effects, but, on the basis of those that we did consider, we concluded that the treated swans were basically healthy after a chronic exposure to the sediment.

  15. What’s Causing Toxicity in Sediments? Results of Twenty Years of Toxicity Identification and Evaluations (TIEs)

    EPA Science Inventory

    Sediment Toxicity Identification and Evaluation (TIEs) methods have been used for twenty years to identify the causes of toxicity in sediments around the world. We summarized and categorized results of more than 80 peer-reviewed TIE studies into non-ionic organic, cationic, ammo...

  16. Sediment and erosion control laboratory facility expansion.

    DOT National Transportation Integrated Search

    2016-08-01

    The Sediment and Erosion Control Laboratory (SEC Lab), formerly the Hydraulics, Sedimentation, and : Erosion Control Laboratory, is operated by the Texas A&M Transportation Institutes Environment and : Planning Program. Performance evaluation prog...

  17. Assessing contamination in Great Lakes sediments using benthic invertebrate communities and the sediment quality triad approach

    USGS Publications Warehouse

    Canfield, Timothy J.; Dwyer, F. James; Fairchild, James F.; Haverland, Pamela S.; Ingersoll, Christopher G.; Kemble, Nile E.; Mount, David R.; La Point, Thomas W.; Burton, G. Allen; Swift, M. C.

    1996-01-01

    Sediments in many Great Lakes harbors and tributary rivers are contaminated. As part of the USEPA's Assessment and Remediation of Contaminated Sediment (ARCS) program, a number of studies were conducted to determine the nature and extent of sediment contamination in Great Lakes Areas of Concern (AOC). This paper describes the composition of benthic invertebrate communities in contaminated sediments and is one in a series of papers describing studies conducted to evaluate sediment toxicity from three AOC's (Buffalo River, NY; Indiana Harbor, IN; Saginaw River, MI), as part of the ARCS Program. Oligochaeta (worms) and Chironomidae (midge) comprised over 90% of the benthic invertebrate numbers in samples collected from depositional areas. Worms and midge consisted of taxa identified as primarily contaminant tolerant organisms. Structural deformities of mouthparts in midge larvae were pronounced in many of the samples. Good concurrence was evident between measures of laboratory toxicity, sediment contaminant concentration, and benthic invertebrate community composition in extremely contaminated samples. However, in moderately contaminated samples, less concordance was observed between the benthos community composition and either laboratory toxicity test results or sediment contaminant concentration. Laboratory sediment toxicity tests may better identify chemical contamination in sediments than many commonly used measures of benthic invertebrate community composition. Benthic measures may also reflect other factors such as habitat alteration. Evaluation of non-contaminant factors are needed to better interpret the response of benthic invertebrates to sediment contamination.

  18. A TOXICITY ASSESSMENT APPROACH TO EVALUATING IN-SITU BIOREMEDIATION OF PAH CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Freshwater and marine sediment toxicity tests were used to measure baseline toxicity of sediment samples collected from New Jersey/New York Harbor (NJ/NY) (non-PAH- contaminated) sediment (ERC). Four freshwater toxicity tests were used: 1) amphipod (Hyalella azteca) mortality and...

  19. Chronic sublethal effects of San Francisco Bay sediments on nereis (neanthes) arenaceodentata; effect of food ration on sediment toxicity. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, D.W.; Dillon, T.M.

    1993-09-01

    This report is designed to address concerns regarding the effect of food ration on toxicity during chronic sublethal sediment bioassays. To this end, a contaminated San Francisco Bay sediment and a clean control sediment were evaluated in a chronic sublethal test under a series of different food rations, with the marine polychaete worm Nereis (Neanthes) arenaceodentata. Animals were exposed from early juvenile stage through the onset of gametogenesis. Treatments were 2.OX, 1.OX, 0.5X, and 0.25X where X is the recommended food ration for laboratory cultures. Test end points were survival, growth, and reproduction. The contaminated sediment was a composite ofmore » several cores taken to project depth (38 ft (11.6 m) below mean low water mark) from an area in Oakland Inner Harbor known to be contaminated with polycyclic aromatic hydrocarbons and metals. Comparisons were made with a clean control sediment. The control sediment is used in the laboratory cultures of N. arenaceodentata and was collected from Sequim, WA. Mean percent survival of Neanthes was high (>90 percent) in both the contaminated and control sediment across all food ration treatments. Individual wet weights were significantly reduced with decreasing food ration in both contaminated and control sediments. Significant differences in wet weight between sediment types were observed at the 1.OX, 0.5X, and 0.25X rations. Reproduction (fecundity and emergent juvenile (EJ) production) was also Chronic sublethal, Neanthes, Dredged material, San Francisco Bay, Food ration, Sediment.« less

  20. A comparison of sediment toxicity test methods at three Great Lake Areas of Concern

    USGS Publications Warehouse

    Burton, G. Allen; Ingersoll, Christopher G.; Burnett, LouAnn C.; Henry, Mary; Hinman, Mark L.; Klaine, Stephen J.; Landrum, Peter F.; Ross, Phillipe; Tuchman, Marc

    1996-01-01

    The significance of sediment contamination is often evaluated using sediment toxicity (bioassay) testing. There are relatively few “standardized” test methods for evaluating sediments. Popular sediment toxicity methods examine the extractable water (elutriate), interstitial water, or whole (bulk) sediment phases using test species spanning the aquatic food chain from bacteria to fish. The current study was designed to evaluate which toxicity tests were most useful in evaluations of sediment contamination at three Great Lake Areas of Concern. Responses of 24 different organisms including fish, mayflies, amphipods, midges, cladocerans, rotifers, macrophytes, algae, and bacteria were compared using whole sediment or elutriate toxicity assays. Sediments from several sites in the Buffalo River, Calumet River (Indiana Harbor), and Saginaw River were tested, as part of the U.S. Environmental Protection Agency's (USEPA) Assessment and Remediation of Contaminated Sediments (ARCS) Project. Results indicated several assays to be sensitive to sediment toxicity and able to discriminate between differing levels of toxicity. Many of the assay responses were significantly correlated to other toxicity responses and were similar based on factor analysis. For most applications, a test design consisting of two to three assays should adequately detect sediment toxicity, consisting of various groupings of the following species: Hyalella azteca, Ceriodaphnia dubia, Chironomus riparius, Chironomus tentans, Daphnia magna, Pimephales promelas, Hexagenia bilineata, Diporeia sp., Hydrilla verticillata, or Lemna minor.

  1. FIELD VALIDATION OF SEDIMENT TOXCITY IDENTIFCATION AND EVALUATION METHODS

    EPA Science Inventory

    Sediment Toxicity Identification and Evaluation (TIE) methods have been developed for both porewaters and whole sediments. These relatively simple laboratory methods are designed to identify specific toxicants or classes of toxicants in sediments; however, the question of whethe...

  2. A FIELD VALIDATION OF TWO SEDIMENT-AMPHIPOD TOXICITY TESTS

    EPA Science Inventory

    A field validation study of two sediment-amphipod toxicity tests was conducted using sediment samples collected subtidally in the vicinity of a polycyclic aromatic hydrocarbon (PAH)-contaminated Superfund site in Elliott Bay, WA, USA. Sediment samples were collected at 30 stati...

  3. Estuarine sediment toxicity tests on diatoms: Sensitivity comparison for three species

    NASA Astrophysics Data System (ADS)

    Moreno-Garrido, Ignacio; Lubián, Luis M.; Jiménez, Begoña; Soares, Amadeu M. V. M.; Blasco, Julián

    2007-01-01

    Experimental populations of three marine and estuarine diatoms were exposed to sediments with different levels of pollutants, collected from the Aveiro Lagoon (NW of Portugal). The species selected were Cylindrotheca closterium, Phaeodactylum tricornutum and Navicula sp. Previous experiments were designed to determine the influence of the sediment particle size distribution on growth of the species assayed. Percentage of silt-sized sediment affect to growth of the selected species in the experimental conditions: the higher percentage of silt-sized sediment, the lower growth. In any case, percentages of silt-sized sediment less than 10% did not affect growth. In general, C. closterium seems to be slightly more sensitive to the selected sediments than the other two species. Two groups of sediment samples were determined as a function of the general response of the exposed microalgal populations: three of the six samples used were more toxic than the other three. Chemical analysis of the samples was carried out in order to determine the specific cause of differences in toxicity. After a statistical analysis, concentrations of Sn, Zn, Hg, Cu and Cr (among all physico-chemical analyzed parameters), in order of importance, were the most important factors that divided the two groups of samples (more and less toxic samples). Benthic diatoms seem to be sensitive organisms in sediment toxicity tests. Toxicity data from bioassays involving microphytobentos should be taken into account when environmental risks are calculated.

  4. An evaluation of the toxicity of contaminated sediments from Waukegan Harbor, Illinois, following remediation

    USGS Publications Warehouse

    Kemble, N.E.; Hardesty, D.G.; Ingersoll, C.G.; Johnson, B. Thomas; Dwyer, F.J.; MacDonald, D.D.

    2000-01-01

    Waukegan Harbor in Illinois was designated as a Great Lakes Area of Concern due to high concentrations of sediment-associated polychlorinated biphenyls (PCBs). The objective of this study was to evaluate the toxicity of 20 sediment samples collected after remediation (primarily dredging) of Waukegan Harbor for PCBs. A 42-day whole sediment toxicity test with the amphipod Hyalella azteca (28-day sediment exposure followed by a 14-day reproductive phase) and sediment toxicity tests with Microtox® were conducted to evaluate sediments from Waukegan Harbor. Endpoints measured were survival, growth, and reproduction (amphipods) and luminescent light emission (bacteria). Survival of amphipods was significantly reduced in 6 of the 20 sediment samples relative to the control. Growth of amphipods (either length or weight) was significantly reduced relative to the control in all samples. However, reproduction of amphipods identified only two samples as toxic relative to the control. The Microtox basic test, conducted with organic extracts of sediments identified only one site as toxic. In contrast, the Microtox solid-phase test identified about 50% of the samples as toxic. A significant negative correlation was observed between reproduction and the concentration of three polynuclear aromatic hydrocarbons (PAHs) normalized to total organic carbon. Sediment chemistry and toxicity data were evaluated using sediment quality guidelines (consensus-based probable effect concentrations, PECs). Results of these analyses indicate that sediment samples from Waukegan Harbor were toxic to H. azteca contaminated at similar contaminant concentrations as sediment samples that were toxic to H. azteca from other areas of the United States. The relationship between PECs and the observed toxicity was not as strong for the Microtox test. The results of this study indicate that the first phase of sediment remediation in Waukegan Harbor successfully lowered concentrations of PCBs at the site

  5. Dredged Material Analysis Tools; Performance of Acute and Chronic Sediment Toxicity Methods

    DTIC Science & Technology

    2008-04-01

    Chronic Sediment Toxicity Methods Jeffery Steevens, Alan Kennedy, Daniel Farrar, Cory McNemar, Mark R. Reiss, Roy K. Kropp, Jon Doi, and Todd Bridges...Research Program ERDC/EL TR-08-16 April 2008 Dredged Material Analysis Tools Performance of Acute and Chronic Sediment Toxicity Methods Jeffery...potential advan- tages and disadvantages of using chronic sediment toxicity tests with relevant benthic macroinvertebrates as part of dredged material

  6. Dredged Material Analysis Tools; Performance of Acute and Chronic Sediment Toxicity Methods

    DTIC Science & Technology

    2008-07-01

    Chronic Sediment Toxicity Methods Jeffery Steevens, Alan Kennedy, Daniel Farrar, Cory McNemar, Mark R. Reiss, Roy K. Kropp, Jon Doi, and Todd Bridges...Environmental Research Program ERDC/EL TR-08-16 July 2008 Revised Dredged Material Analysis Tools Performance of Acute and Chronic Sediment Toxicity ...insight into the potential advan- tages and disadvantages of using chronic sediment toxicity tests with relevant benthic macroinvertebrates as part of

  7. Inter-laboratory trial of a standardized sediment contact test with the aquatic plant Myriophyllum aquaticum (ISO 16191).

    PubMed

    Feiler, Ute; Ratte, Monika; Arts, Gertie; Bazin, Christine; Brauer, Frank; Casado, Carmen; Dören, Laszlo; Eklund, Britta; Gilberg, Daniel; Grote, Matthias; Gonsior, Guido; Hafner, Christoph; Kopf, Willi; Lemnitzer, Bernd; Liedtke, Anja; Matthias, Uwe; Okos, Ewa; Pandard, Pascal; Scheerbaum, Dirk; Schmitt-Jansen, Mechthild; Stewart, Kathleen; Teodorovic, Ivana; Wenzel, Andrea; Pluta, Hans-Jürgen

    2014-03-01

    A whole-sediment toxicity test with Myriophyllum aquaticum has been developed by the German Federal Institute of Hydrology and standardized within the International Organization for Standardization (ISO; ISO 16191). An international ring-test was performed to evaluate the precision of the test method. Four sediments (artificial, natural) were tested. Test duration was 10 d, and test endpoint was inhibition of growth rate (r) based on fresh weight data. Eighteen of 21 laboratories met the validity criterion of r ≥ 0.09 d(-1) in the control. Results from 4 tests that did not conform to test-performance criteria were excluded from statistical evaluation. The inter-laboratory variability of growth rates (20.6%-25.0%) and inhibition (26.6%-39.9%) was comparable with the variability of other standardized bioassays. The mean test-internal variability of the controls was low (7% [control], 9.7% [solvent control]), yielding a high discriminatory power of the given test design (median minimum detectable differences [MDD] 13% to 15%). To ensure these MDDs, an additional validity criterion of CV ≤ 15% of the growth rate in the controls was recommended. As a positive control, 90 mg 3,5-dichlorophenol/kg sediment dry mass was tested. The range of the expected growth inhibition was proposed to be 35 ± 15%. The ring test results demonstrated the reliability of the ISO 16191 toxicity test and its suitability as a tool to assess the toxicity of sediment and dredged material. © 2013 SETAC.

  8. Pesticide concentrations in water and sediment and associated invertebrate toxicity in Del Puerto and Orestimba Creeks, California, 2007-2008.

    PubMed

    Ensminger, Michael; Bergin, Rick; Spurlock, Frank; Goh, Kean S

    2011-04-01

    The California's San Joaquin River and its tributaries including Orestimba (ORC) and Del Puerto (DPC) Creeks are listed on the 2006 US EPA Clean Water Act §303(d) list for pesticide impairment. From December 2007 through June 2008, water and sediment samples were collected from both creeks in Stanislaus County to determine concentrations of organophosphorus (OP) and pyrethroid insecticides and to identify toxicity to Ceriodaphnia dubia and Hyalella azteca. OPs were detected in almost half (10 of 21) of the water samples, at concentrations from 0.005 to 0.912 μg L(-1). Diazinon was the most frequently detected OP, followed by chlorpyrifos and dimethoate. Two water samples were toxic to C. dubia; based on median lethal concentrations (LC50), chlorpyrifos was likely the cause of this toxicity. Pyrethroids were detected more frequently in sediment samples (18 detections) than in water samples (three detections). Pyrethroid concentrations in water samples ranged from 0.005 to 0.021 μg L(-1). These concentrations were well below reported C. dubia LC50s, and toxicity was not observed in laboratory bioassays. Cyfluthrin, bifenthrin, esfenvalerate, and λ-cyhalothrin were detected in sediment samples at concentrations ranging from 1.0 to 74.4 ng g(-1), dry weight. At DPC, all but one sediment sample caused 100% toxicity to H. azteca. Based on estimated toxicity units (TUs), bifenthrin was likely responsible for this toxicity and λ-cyhalothrin also contributed. At ORC, survival of H. azteca was significantly reduced in four of the 11 sediment samples. However, pyrethroids were detected in only two of these samples. Based on TUs, bifenthrin and λ-cyhalothrin likely contributed to the toxicity.

  9. Toxicity of Anacostia River, Washington, DC, USA, sediment fed to mute swans (Cygnus olor)

    USGS Publications Warehouse

    Beyer, W.N.; Day, D.; Melancon, M.J.; Sileo, L.

    2000-01-01

    Sediment ingestion is sometimes the principal route by which waterfowl are exposed to environmental contaminants, and at severely contaminated sites waterfowl have been killed by ingesting sediment. Mute swans (Cygnus olor) were fed a diet for six weeks with a high but environmentally realistic concentration (24%) of sediment from the moderately polluted Anacostia River in the District of Columbia, to estimate the sediment?s toxicity. Control swans were fed the same diet without the sediment. Five organochlorine compounds were detected in the treated diets but none of 22 organochlorine compounds included in the analyses were detected in livers of the treated swans. The concentrations of 24 polynuclear aromatic hydrocarbons measured in the treated diet were as high as 0.80 mg/kg and they were thought to have been responsible for the observed induction of hepatic microsomal monooxygenase activity in livers. A concentration of 85 mg/kg of lead in the diet was enough to decrease red blood cell ALAD activity but was not high enough to cause more serious effects of lead poisoning. The dietary concentrations of Al, Fe, V, and Ba were high compared to the concentrations of these elements known to be toxic in laboratory feeding studies, but these elements did not accumulate in the livers of the treated swans and probably were not readily available in the sediment. Although ingestion of the Anacostia River sediment caused subtle toxicological effects in swans, we concluded from pathological examinations and weight data that the treated swans remained basically healthy.

  10. Removal of organic contaminant toxicity from sediments - Early work toward development of a toxicity identification evaluation (TIE) method

    USGS Publications Warehouse

    Lebo, J.A.; Huckins, J.N.; Petty, J.D.; Ho, K.T.

    1999-01-01

    Work was performed to determine the feasibility of selectively detoxifying organic contaminants in sediments. The results of this research will be used to aid in the development of a scheme for whole-sediment toxicity identification evaluations (TIEs). The context in which the method will be used inherently restricts the treatments to which the sediments can be subjected: Sediments cannot be significantly altered physically or chemically and the presence and bioavailabilities of other toxicants must not be changed. The methodological problem is daunting because of the requirement that the detoxification method be relatively fast and convenient together with the stipulation that only innocuous and minimally invasive treatments be used. Some of the experiments described here dealt with degrees of decontamination (i.e., detoxification as predicted from instrumental measurements) of spiked sediments rather than with degrees of detoxification as gauged by toxicity tests (e.g., 48-h toxicity tests with amphipods). Although the larger TIE scheme itself is mostly outside the scope of this paper, theoretical aspects of bioavailability and of the desorption of organic contaminants from sediments are discussed.

  11. Accumulation of trace metals in sediments in a Mediterranean Lagoon: Usefulness of metal sediment fractionation and elutriate toxicity assessment.

    PubMed

    Zaaboub, Noureddine; Martins, Maria Virgínia Alves; Dhib, Amel; Béjaoui, Béchir; Galgani, François; El Bour, Monia; Aleya, Lotfi

    2015-12-01

    The authors investigated sediment quality in Bizerte Lagoon (Tunisia) focusing on geochemical characteristics, metal sediment fractionation and elutriate toxicity assessment. Nickel, Cu, Zn, Pb, Cr and Cd partitioning in sediments was studied; accumulation and bioavailability were elucidated using enrichment factors, sequential extractions, redox potential, acid volatile sulfide and biotest procedures in toxicity evaluation. Results revealed an accumulation for Pb and Zn, reaching 99 and 460 mg kg(-1) respectively. In addition, the acid volatile sulfide values were high in both eastern and western lagoon areas, thus affecting metal availability. Mean enrichment factor values for Pb and Zn were 4.8 and 4.9, respectively, with these elements as the main contributors to the lagoon's moderate enrichment level. Toxicity levels were influenced by accumulation of Zn in different surface sediment areas. Core sediments were investigated in areas with the highest metal concentrations; metal fractionation and biotest confirmed that Zn contributes to sediment toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Coastal circulation and sediment dynamics in Hanalei Bay, Kaua'i, Hawaii, part III, studies of sediment toxicity

    USGS Publications Warehouse

    Carr, Robert S.; Nipper, Marion; Field, Michael; Biedenbach, James M.

    2006-01-01

    Toxicity tests are commonly conducted as a measure of the bioavailability of toxic chemicals to biota in an environment. Chemical analyses alone are insufficient to determine whether contaminants pose a threat to biota. Porewater toxicity tests are extremely sensitive to a broad range of contaminants in marine environments and provide ecologically relevant data on sensitive life stages. The inclusion of porewater toxicity testing as an additional indicator of sediment quality provides a more comprehensive picture of contaminant effects in these sensitive habitats. In this study purple-spined sea urchin (Arbacia punctulata) fertilization and embryological development porewater toxicity tests were used to evaluate the sediments collected from the coastal environment around Hanalei Bay, Kaua’i, Hawaii. These tests have been used previously to assess the bioavailability of contaminants associated with sediments in the vicinity of coral reefs.

  13. DO TIE LABORATORY BASED METHODS REALLY REFLECT FIELD CONDITIONS

    EPA Science Inventory

    Sediment Toxicity Identification and Evaluation (TIE) methods have been developed for both interstitial waters and whole sediments. These relatively simple laboratory methods are designed to identify specific toxicants or classes of toxicants in sediments; however, the question ...

  14. Toxicological and chemical screening of Antarctica sediments: Use of whole sediment toxicity tests, microtox, mutatox and semipermeable membrane devices (SPMDs)

    USGS Publications Warehouse

    Cleveland, Laverne; Little, Edward E.; Petty, Jimmie D.; Johnson, B. Thomas; Lebo, Jon A.; Orazio, Carl E.; Dionne, Jane

    1997-01-01

    Eight whole sediment samples from Antarctica (four from Winter Quarters Bay and four from McMurdo Sound) were toxicologically and chemically evaluated. Also, the influence of ultraviolet radiation on the toxicity and bioavailability of contaminants associated with the sediment samples was assessed. The evaluations were accomplished by use of a 10-day whole sediment test with Leptocheirus plumulosus, Microtox®, Mutatox® and semipermeable membrane devices (SPMDs). Winter Quarters Bay sediments contained about 250 ng g−1 (dry weight) total PCBs and 20 μg g−1 total PAHs. These sediments elicited toxicity in the Microtox test and avoidance and inhibited burrowing in the L. plumulosus test. The McMurdo Sound sediment samples contained only trace amounts of PCBs and no PAHs, and were less toxic in both the L. plumulosus and Microtox tests compared to the Winter Quarters Bay sediments. The sediments from McMurdo Sound apparently contained some unidentified substance which was photolytically modified to a more toxic form. The photolytic modification of sediment-associated contaminants, coupled with the polar ozone hole and increased incidence of ultraviolet radiation could significantly increase hazards to Antarctic marine life.

  15. Predicting the toxicity of sediment-associated trace metals with simultaneously extracted trace metal: Acid-volatile sulfide concentrations and dry weight-normalized concentrations: A critical comparison

    USGS Publications Warehouse

    Long, E.R.; MacDonald, D.D.; Cubbage, J.C.; Ingersoll, C.G.

    1998-01-01

    The relative abilities of sediment concentrations of simultaneously extracted trace metal: acid-volatile sulfide (SEM: AVS) and dry weight-normalized trace metals to correctly predict both toxicity and nontoxicity were compared by analysis of 77 field-collected samples. Relative to the SEM:AVS concentrations, sediment guidelines based upon dry weight-normalized concentrations were equally or slightly more accurate in predicting both nontoxic and toxic results in laboratory tests.

  16. METHOD FOR TESTING THE AQUATIC TOXICITY OF SEDIMENT EXTRACTS FOR USE IN IDENTIFYING ORGANIC TOXICANTS IN SEDIMENTS

    EPA Science Inventory

    Biologically-directed fractionation techniques are a fundamental tool for identifying the cause of toxicity in environmental samples, but few are available for studying mixtures of organic chemicals in aquatic sediments. This paper describes a method for extracting organic chemic...

  17. Laboratory performance in the Sediment Laboratory Quality-Assurance Project, 1996-98

    USGS Publications Warehouse

    Gordon, John D.; Newland, Carla A.; Gagliardi, Shane T.

    2000-01-01

    Analytical results from all sediment quality-control samples are compiled and statistically summarized by the USGS, Branch of Quality Systems, both on an intra- and interlaboratory basis. When evaluating these data, the reader needs to keep in mind that every measurement has an error component associated with it. It is premature to use the data from the first five SLQA studies to judge any of the laboratories as performing in an unacceptable manner. There were, however, some notable differences in the results for the 12 laboratories that participated in the five SLQA studies. For example, the overall median percent difference for suspended-sediment concentration on an individual laboratory basis ranged from –18.04 to –0.33 percent. Five of the 12 laboratories had an overall median percent difference for suspended-sediment concentration of –2.02 to –0.33 percent. There was less variability in the median difference for the measured fine-size material mass. The overall median percent difference for fine-size material mass ranged from –10.11 to –4.27 percent. Except for one laboratory, the median difference for fine-size material mass was within a fairly narrow range of –6.76 to –4.27 percent. The median percent difference for sand-size material mass differed among laboratories more than any other physical sediment property measured in the study. The overall median percent difference for the sand-size material mass ranged from –1.49 percent to 26.39 percent. Five of the nine laboratories that do sand/fine separations had overall median percent differences that ranged from –1.49 to 2.98 percent for sand-size material mass. Careful review of the data reveals that certain laboratories consistently produced data within statistical control limits for some or all of the physical sediment properties measured in this study, whereas other laboratories occasionally produced data that exceeded the control limits.

  18. PREDICTING THE TOXICITY OF SEDIMENTS SPIKED WITH SILVER

    EPA Science Inventory

    Previous experiments conducted with freshwater sediments spiked with silver have shown that, when expressed on a dry weight basis, the toxicity of silver is sediment-specific and dependent on the form of silver added (e.g., AgNO3, Ag2S). This study was conducted to assess the use...

  19. Effects of Lumbriculus variegatus (Annelida, Oligochaete) bioturbation on zinc sediment chemistry and toxicity to the epi-benthic invertebrate Chironomus tepperi (Diptera: Chironomidae).

    PubMed

    Colombo, Valentina; Pettigrove, Vincent J; Hoffmann, Ary A; Golding, Lisa A

    2016-09-01

    Classical laboratory-based single-species sediment bioassays do not account for modifications to toxicity from bioturbation by benthic organisms which may impact predictions of contaminated sediment risk to biota in the field. This study aims to determine the effects of bioturbation on the toxicity of zinc measured in a standard laboratory bioassay conducted with chironomid larvae (Chironomus tepperi). The epi-benthic chironomid larvae were exposed to two different levels of sediment contamination (1600 and 1980 mg/kg of dry weight zinc) in the presence or absence of annelid worms (Lumbriculus variegatus) which are known to be tolerant to metal and to have a large impact on sediment properties through bioturbation. Chironomids had 5-6x higher survival in the presence of L. variegatus which shows that bioturbation had a beneficial effect on the chironomid larvae. Chemical analyses showed that bioturbation induced a flux of zinc from the pore water into the water column, thereby reducing the bioavailability of zinc in pore water to the chironomid larvae. This also suggested that pore water was the major exposure path for the chironomids to metals in sediment. During the study, annelid worms (Oligochaetes) produced a thin layer of faecal pellets at the sediment surface, a process known to: (i) create additional adsorption sites for zinc, thus reducing its availability, (ii) increase the microbial abundance that in turn could represent an additional food source for opportunistic C. tepperi larvae, and (iii) modify the microbial community's structure and alter the biogeochemical processes it governs thus indirectly impact zinc toxicity. This study represents a contribution in recognising bioturbating organisms as "ecological engineers" as they directly and indirectly influence metal bioavailability and impact other sediment-inhabiting species. This is significant and should be considered in risk assessment of zinc levels (and other metals) in contaminated sediment

  20. Developmental toxicity of lead contaminated sediment to mallard ducks

    USGS Publications Warehouse

    Hoffman, D.J.; Heinz, G.H.; Sileo, L.; Audet, D.J.; Campbell, J.K.; LeCaptain, L.J.

    2000-01-01

    Sediment ingestion has been identified as an important exposure route for toxicants in waterfowl. The toxicity of lead-contaminated sediment from the Coeur d'Alene River Basin (CDARB) in Idaho was examined on posthatching development of mallard (Anas platyrhynchos) ducklings for 6 weeks. Day-old ducklings received either untreated control diet, clean sediment (24%) supplemented control diet, CDARB sediment (3,449 I?g/g lead) supplemented diets at 12% or 24%, or a positive control diet containing lead acetate equivalent to that found in 24% CDARB. The 12% CDARB diet resulted in a geometric mean blood lead concentration of 1.41 ppm (WW) with over 90% depression of red blood cell ALAD activity and over threefold elevation of free erythrocyte protoporphyrin concentration. The 24% CDARB diet resulted in blood lead of 2.56 ppm with over sixfold elevation of protoporphyrin and lower brain weight. In this group the liver lead concentration was 7.92 ppm (WW), and there was a 40% increase in hepatic reduced glutathione concentration. The kidney lead concentration in this group was 7.97 ppm, and acid-fast inclusion bodies were present in the kidneys of four of nine ducklings. The lead acetate positive control group was more adversely affected in most respects than the 24% CDARB group. With a less optimal diet (mixture of two thirds corn and one third standard diet), CDARB sediment was more toxic; blood lead levels were higher, body growth and liver biochemistry (TBARS) were more affected, and prevalence of acid-fast inclusion bodies increased. Lead from CDARB sediment accumulated more readily in duckling blood and liver than reported in goslings, but at given concentrations was generally less toxic to ducklings. Many of these effects are similar to ones reported in wild mallards and geese within the CDARB.

  1. Developmental toxicity of lead-contaminated sediment to mallard ducklings

    USGS Publications Warehouse

    Hoffman, D.J.; Heinz, G.H.; Sileo, L.; Audet, D.J.; Campbell, J.K.; LeCaptain, L.J.

    2000-01-01

    Sediment ingestion has been identified as an important exposure route for toxicants in waterfowl. The toxicity of lead-contaminated sediment from the Coeur d'Alene River Basin (CDARB) in Idaho was examined on posthatching development of mallard (Anas platyrhynchos) ducklings for 6 weeks. Day-old ducklings received either untreated control diet, clean sediment (24%) supplemented control diet, CDARB sediment (3,449 ug/g lead) supplemented diets at 12% or 24%, or a positive control diet containing lead acetate equivalent to that found in 24% CDARB. The 12% CDARB diet resulted in a geometric mean blood lead concentration of 1.41 ppm (WW) with over 90% depression of red blood cell ALAD activity and over threefold elevation of free erythrocyte protoporphyrin concentration. The 24% CDARB diet resulted in blood lead of 2.56 ppm with over sixfold elevation of protoporphyrin and lower brain weight. In this group the liver lead concentration was 7.92 ppm (WW), and there was a 40% increase in hepatic reduced glutathione concentration. The kidney lead concentration in this group was 7.97 ppm, and acid-fast inclusion bodies were present in the kidneys of four of nine ducklings. The lead acetate positive control group was more adversely affected in most respects than the 24% CDARB group. With a less optimal diet (mixture of two thirds corn and one third standard diet), CDARB sediment was more toxic; blood lead levels were higher, body growth and liver biochemistry (TBARS) were more affected, and prevalence of acid-fast inclusion bodies increased. Lead from CDARB sediment accumulated more readily in duckling blood and liver than reported in goslings, but at given concentrations was generally less toxic to ducklings. Many of these effects are similar to ones reported in wild mallards and geese within the CDARB.

  2. Studying toxicity

    USGS Publications Warehouse

    Elkus, A.; LeBlanc, L.; Kim, C.; Van Beneden, R.; Mayer, G.

    2006-01-01

    With funding from the George Mitchell Center for the Environment at the University of Maine, a team of scientists used a simple laboratory-based sediment resuspension design, and two well-established aquatic toxicology models, fathead minnows (Pimephales promelas) and zebrafish (Danio rerio), to evaluate if resuspension of Penobscot river sediment significantly elevates the toxicity of river water and to provide preliminary information on the types of chemicals likely to desorb during resuspension. The group collected sediments from two sites with known chemical contamination downstream of the Great Works and Veazie dams. The sediments were examined to determine the dynamics of PAH desorption and degradation under different resuspension frequencies. The scientists used clarified water from resuspension experiments for toxicity tests with the water-flea Ceriodaphnia dubia, and other aquatic test organisms to infer toxicity from sediments from northern California rivers. Data from the study will help ascertain whether metals and/or xenoestrogens are present in the desorption water and give insight into possible avenues of sediment remediation.

  3. How toxic is coal ash? A laboratory toxicity case study

    DOE PAGES

    Sherrard, Rick M.; Carriker, Neil; Greeley, Jr., Mark Stephen

    2014-12-08

    Under a consent agreement among the Environmental Protection Agency (EPA) and proponents both for and against stricter regulation, EPA is to issue a new coal ash disposal rule by the end of 2014. Laboratory toxicity investigations often yield conservative estimates of toxicity because many standard test species are more sensitive than resident species, thus could provide information useful to the rule-making. However, few laboratory studies of coal ash toxicity are available; most studies reported in the literature are based solely on field investigations. In this paper, we describe a broad range of toxicity studies conducted for the Tennessee Valley Authoritymore » (TVA) Kingston ash spill, results of which help provide additional perspective on the toxicity of coal ash.« less

  4. Toxicity of sediment collected upriver and downriver of major cities along the lower Mississippi River

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.

    1998-01-01

    The Lower Mississippi River contributes significantly to the biodiversity and ecological stability of the alluvial valley. Agricultural, industrial and municipal developments have historically impacted environmental quality of the river. Toxicity of sediment and sediment pore water was used to assess the current effects of major cities on sediment quality along the Lower Mississippi River. Composite sediment samples were collected from four sites upriver and four sites downriver of five major cities: Cairo, IL; Memphis, TN; Vicksburg, MS; Baton Rouge, LA; and New Orleans, LA. Following EPA's standard methods for acute toxicity testing of freshwater solid-phase sediment, Hyalella azteca were exposed to the sediments for 10 d with two water renewals per day. Hyalella azteca were also exposed for 96 h to pore water extracted from the sediments. After the initial tests, the animals were exposed to ultraviolet light for 12 h. Sediments were analyzed for organics (organochlorine pesticides, PCBs, organophosphate insecticides, and PAHs) and metals (Cr, Cu, Pb, Mn, Ni, Zn). With the exception of upriver from Memphis, solid-phase sediments were not toxic to H. azteca. Pore water from sediments collected upriver of Memphis showed slight toxicity. Exposure of H. azteca to ultraviolet light did not increase the toxicity of the sediment or pore-water samples, indicating a lack of PAH toxicity. Chemical analyses did not reveal any contaminant levels of concern in the sediments. Based on toxicity testing and chemical analyses, quality of sediments collected from the Lower Mississippi was good, with the exception of sites sampled upriver of Memphis.

  5. Laboratory theory and methods for sediment analysis

    USGS Publications Warehouse

    Guy, Harold P.

    1969-01-01

    The diverse character of fluvial sediments makes the choice of laboratory analysis somewhat arbitrary and the pressing of sediment samples difficult. This report presents some theories and methods used by the Water Resources Division for analysis of fluvial sediments to determine the concentration of suspended-sediment samples and the particle-size distribution of both suspended-sediment and bed-material samples. Other analyses related to these determinations may include particle shape, mineral content, and specific gravity, the organic matter and dissolved solids of samples, and the specific weight of soils. The merits and techniques of both the evaporation and filtration methods for concentration analysis are discussed. Methods used for particle-size analysis of suspended-sediment samples may include the sieve pipet, the VA tube-pipet, or the BW tube-VA tube depending on the equipment available, the concentration and approximate size of sediment in the sample, and the settling medium used. The choice of method for most bed-material samples is usually limited to procedures suitable for sand or to some type of visual analysis for large sizes. Several tested forms are presented to help insure a well-ordered system in the laboratory to handle the samples, to help determine the kind of analysis required for each, to conduct the required processes, and to assist in the required computations. Use of the manual should further 'standardize' methods of fluvial sediment analysis among the many laboratories and thereby help to achieve uniformity and precision of the data.

  6. DO TIE LABORATORY BASED ASSESSMENT METHODS REALLY PREDICT FIELD EFFECTS?

    EPA Science Inventory

    Sediment Toxicity Identification and Evaluation (TIE) methods have been developed for both porewaters and whole sediments. These relatively simple laboratory methods are designed to identify specific toxicants or classes of toxicants in sediments; however, the question of whethe...

  7. Assessing the toxicity of sediments using the medaka embryo-larval assay and 2 other bioassays.

    PubMed

    Barhoumi, Badreddine; Clérandeau, Christelle; Landi, Laure; Pichon, Anaïk; Le Bihanic, Florane; Poirier, Dominique; Anschutz, Pierre; Budzinski, Hélène; Driss, Mohamed Ridha; Cachot, Jérôme

    2016-09-01

    Sediments are sinks for aquatic pollutants, and analyzing toxicity in such complex matrices is still challenging. To evaluate the toxicity of bioavailable pollutants accumulated in sediments from the Bizerte lagoon (Tunisia), a novel assay, the medaka embryo-larval assay by sediment contact, was applied. Japanese medaka (Oryzias latipes) embryos were incubated in direct contact with sediment samples up to hatching. Lethal and sublethal adverse effects were recorded in embryos and larvae up to 20 d postfertilization. Results from medaka embryo-larval assay were compared with cytotoxicity (Microtox®), genotoxicity (SOS chromotest), and pollutant content of sediments. The results highlight differences in the contamination profile and toxicity pattern between the different studied sediments. A significant correlation was shown between medaka embryo-larval assay by sediment contact and SOS chromotest responses and concentrations of most organic pollutants studied. No correlation was shown between pollutant levels and Microtox. According to the number of sediment samples detected as toxic, medaka embryo-larval assay by sediment contact was more sensitive than Microtox, which in turn was more sensitive than the SOS chromotest; and medaka embryo-larval assay by sediment contact allowed sediment toxicity assessment of moderately polluted sediments without pollutant extraction and using an ecologically realistic exposure scenario. Although medaka embryo-larval assay by sediment contact should be tested on a larger sample set, the results show that it is sensitive and convenient enough to monitor the toxicity of natural sediments. Environ Toxicol Chem 2016;35:2270-2280. © 2016 SETAC. © 2016 SETAC.

  8. Capturing Bioavailable Organic Contaminants for Phase II Whole Sediment Toxicity Identification Evaluations

    EPA Science Inventory

    In Phase I of whole sediment TIEs, causes of toxicity to freshwater and marine organisms are characterized into broad toxicant classes including ammonia, metals and organic chemicals. In the whole sediment Phase I TIEs performed so far, organic chemicals have been shown to be t...

  9. SEDIMENT TOXICITY ASSESSMENT: COMPARISON OF STANDARD AND NEW TESTING DESIGNS

    EPA Science Inventory

    Standard methods of sediment toxicity testing are fairly well accepted; however, as with all else, evolution of these methods is inevitable. We compared a standard ASTM 10-day amphipod toxicity testing method with smaller, 48- and 96-h test methods using very toxic and reference ...

  10. A tropical sediment toxicity test using the dipteran Chironomus crassiforceps to test metal bioavailability with sediment pH change in tropical acid-sulfate sediments.

    PubMed

    Peck, Mika R; Klessa, David A; Baird, Donald J

    2002-04-01

    The wetlands of the Magela floodplain of northern Australia, which is the major sink for dissolved metals transported in the Magela Creek system, contain acid-sulfate sediments. The rewetting of oxidized acid-sulfate soil each wet season produces acidic pulses that have the potential to alter the bioavailability of sediment-associated metal contaminants. Acute toxicity tests (72-h mean lethal concentration [LC50]) using the tropical chironomid Chironomus crassiforceps Kieffer showed that copper toxicity decreased from 0.64 mg/L at pH 6 to 2.30 mg/L at pH 4. Uranium toxicity showed a similar trend (36 mg/L at pH 6 and 58 mg/L at pH 4). Sediment toxicity tests developed using C. crassiforceps also showed that both metals were less toxic at the lower sediment pH with pore-water copper toxicity having a lowest-observed-effect concentration of 4.73 mg/L at pH 4 compared to 1.72 mg/L at pH 6. However, a lower pH increased pore-water metal concentrations and overlying water concentrations in bioassays. Hydrogen ion competition on metal receptor sites in C. crassiforceps was proposed to explain the decrease in toxicity in response to increased H+ activity. This study highlights the need to consider site-specific physicochemical conditions before applying generic risk assessment methods.

  11. A Paradigm for Developing Sediment Toxicity Bioassays for the Regulatory Evaluation of Dredged Material

    DTIC Science & Technology

    1994-06-01

    sediment-associated toxicant in the lower Fox River and Green Bay , Wisconsin," Environ. Toxicol. Chem. 9, 313-322. Burton, G. A., Jr., Stemmer, B. L...Barton, J. ¶ USEPA, Region X, Seatle, WA Bay . S. It So. CA Coastal Water Research Project, Long Beach, CA Black, J. t EA Engineering, Science and...Umbeck F. I USAGE, Seattle District, Seattle, WA Ward, J. f Battelle Northwest Pacific Laboratory, Sequim , WA Weber, C.¶ USEPA, Cincinnati, OH Welch, T

  12. Evolving Role of Passive Samplers in Whole Sediment Toxicity Identification Evaluations

    EPA Science Inventory

    In Phase I of whole sediment TIEs, causes of toxicity to freshwater and marine organisms are characterized into broad toxicant classes including ammonia, metals and organic chemicals. In Phase II of the TIE, the specific toxicants causing observed toxicity are identified. For a...

  13. A TOXICITY IDENTIFICATION EVALUATION OF SILTY MARINE HARBOR SEDIMENTS TO CHARACTERIZE PERSISTENT AND NON-PERSISTENT CONSTITUENTS

    EPA Science Inventory

    Sediment toxicity in silty marine harbor sediments is frequently dominated by ammonia or sulfide, leaving the adverse effects of persistent toxic substances unnoticed. To investigate the latter, we subjected interstitial water from three contaminated silty sediments to toxicity i...

  14. Influence of sediment on the fate and toxicity of a polyethoxylated tallowamine surfactant system (MON 0818) in aquatic microcosms

    USGS Publications Warehouse

    Wang, N.; Besser, J.M.; Buckler, D.R.; Honegger, J.L.; Ingersoll, C.G.; Johnson, B. Thomas; Kurtzweil, M.L.; MacGregor, J.; McKee, M.J.

    2005-01-01

    The fate and toxicity of a polyethoxylated tallowamine (POEA) surfactant system, MON 0818, was evaluated in water–sediment microcosms during a 4-d laboratory study. A surfactant solution of 8 mg l−1 nominal concentration was added to each of nine 72-l aquaria with or without a 3-cm layer of one of two natural sediments (total organic carbon (TOC) 1.5% or 3.0%). Control well water was added to each of nine additional 72-l aquaria with or without sediment. Water samples were collected from the microcosms after 2, 6, 24, 48, 72, and 96 h of aging to conduct 48-h toxicity tests with Daphnia magna and to determine surfactant concentrations. Elevated mortality of D. magna (43–83%) was observed in overlying water sampled from water-only microcosms throughout the 96-h aging period, whereas elevated mortality (23–97%) was only observed in overlying water sampled from water–sediment microcosms during the first 24 h of aging. Measured concentrations of MON 0818 in water-only microcosms remained relatively constant (4–6 mg l−1) during the 96-h period, whereas the concentrations in overlying water from microcosms containing either of the two types of sediment dissipated rapidly, with half-lives of 13 h in the 3.0% TOC sediment and 18 h in the 1.5% TOC sediment. Both toxicity and the concentration of MON 0818 in overlying water decreased more rapidly in microcosms containing sediment with the higher percent TOC and clay and with a higher microbial biomass. Mortality of D. magna was significantly correlated with surfactant concentrations in the overlying water. These results indicate that the toxicity of the POEA surfactant in water rapidly declines in the presence of sediment due to a reduction in the surfactant concentration in the overlying water above the sediment.

  15. PHOTOACTIVATION AND TOXICITY OF MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBON COMPOUNDS IN MARINE SEDIMENT

    EPA Science Inventory

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration se...

  16. Studying the effect of CO2-induced acidification on sediment toxicity using acute amphipod toxicity test.

    PubMed

    Basallote, M Dolores; De Orte, Manoela R; DelValls, T Ángel; Riba, Inmaculada

    2014-01-01

    Carbon capture and storage is increasingly being considered one of the most efficient approaches to mitigate the increase of CO2 in the atmosphere associated with anthropogenic emissions. However, the environmental effects of potential CO2 leaks remain largely unknown. The amphipod Ampelisca brevicornis was exposed to environmental sediments collected in different areas of the Gulf of Cádiz and subjected to several pH treatments to study the effects of CO2-induced acidification on sediment toxicity. After 10 days of exposure, the results obtained indicated that high lethal effects were associated with the lowest pH treatments, except for the Ría of Huelva sediment test. The mobility of metals from sediment to the overlying seawater was correlated to a pH decrease. The data obtained revealed that CO2-related acidification would lead to lethal effects on amphipods as well as the mobility of metals, which could increase sediment toxicity.

  17. Sediment contamination of residential streams in the metropolitan kansas city area, USA: Part II. whole-sediment toxicity to the amphipod hyalella azteca

    USGS Publications Warehouse

    Tao, J.; Ingersoll, C.G.; Kemble, N.E.; Dias, J.R.; Murowchick, J.B.; Welker, G.; Huggins, D.

    2010-01-01

    This is the second part of a study that evaluates the influence of nonpoint sources on the sediment quality of five adjacent streams within the metropolitan Kansas City area, central United States. Physical, chemical, and toxicity data (Hyalella azteca 28-day whole-sediment toxicity test) for 29 samples collected in 2003 were used for this evaluation, and the potential causes for the toxic effects were explored. The sediments exhibited a low to moderate toxicity, with five samples identified as toxic to H. azteca. Metals did not likely cause the toxicity based on low concentrations of metals in the pore water and elevated concentrations of acid volatile sulfide in the sediments. Although individual polycyclic aromatic hydrocarbons (PAHs) frequently exceeded effect-based sediment quality guidelines [probable effect concentrations (PECs)], only four of the samples had a PEC quotient (PEC-Q) for total PAHs over 1.0 and only one of these four samples was identified as toxic. For the mean PEC-Q for organochlorine compounds (chlordane, dieldrin, sum DDEs), 4 of the 12 samples with a mean PEC-Q above 1.0 were toxic and 4 of the 8 samples with a mean PEC-Q above 3.0 were toxic. Additionally, four of eight samples were toxic, with a mean PEC-Q above 1.0 based on metals, PAHs, polychlorinated biphenyls (PCBs), and organochlorine pesticides. The increase in the incidence of toxicity with the increase in the mean PEC-Q based on organochlorine pesticides or based on metals, PAHs, PCBs, and organochlorine pesticides suggests that organochlorine pesticides might have contributed to the observed toxicity and that the use of a mean PEC-Q, rather than PEC-Qs for individual compounds, might be more informative in predicting toxic effects. Our study shows that stream sediments subject to predominant nonpoint sources contamination can be toxic and that many factors, including analysis of a full suite of PAHs and pesticides of both past and present urban applications and the origins of

  18. Toxicity of sediment-associated pesticides to Chironomus dilutus and Hyalella azteca.

    PubMed

    Ding, Yuping; Weston, Donald P; You, Jing; Rothert, Amanda K; Lydy, Michael J

    2011-07-01

    Two hundred sediment samples were collected and their toxicity evaluated to aquatic species in a previous study in the agriculturally dominated Central Valley of California, United States. Pyrethroid insecticides were the main contributors to the observed toxicity. However, mortality in approximately one third of the toxic samples could not be explained solely by the presence of pyrethroids in the matrices. Hundreds of pesticides are currently used in the Central Valley of California, but only a few dozen are analyzed in standard environmental monitoring. A significant amount of unexplained sediment toxicity may be due to pesticides that are in widespread use that but have not been routinely monitored in the environment, and even if some of them were, the concentrations harmful to aquatic organisms are unknown. In this study, toxicity thresholds for nine sediment-associated pesticides including abamectin, diazinon, dicofol, fenpropathrin, indoxacarb, methyl parathion, oxyfluorfen, propargite, and pyraclostrobin were established for two aquatic species, the midge Chironomus dilutus and the amphipod Hyalella azteca. For midges, the median lethal concentration (LC₅₀) of the pesticides ranged from 0.18 to 964 μg/g organic carbon (OC), with abamectin being the most toxic and propargite being the least toxic pesticide. A sublethal growth endpoint using average individual ash-free dry mass was also measured for the midges. The no-observable effect concentration values for growth ranged from 0.10 to 633 μg/g OC for the nine pesticides. For the amphipods, fenpropathrin was the most toxic, with an LC₅₀ of 1-2 μg/g OC. Abamectin, diazinon, and methyl parathion were all moderately toxic (LC₅₀s 2.8-26 μg/g OC). Dicofol, indoxacarb, oxyfluorfen, propargite, and pyraclostrobin were all relatively nontoxic, with LC₅₀s greater than the highest concentrations tested. The toxicity information collected in the present study will be helpful in decreasing the

  19. Relation between different metal pollution criteria in sediments and its contribution on assessing toxicity.

    PubMed

    Alves, Cristina M; Ferreira, Carlos M H; Soares, Helena M V M

    2018-05-14

    Several tools have been developed and applied to evaluate the metal pollution status of sediments and predict their potential ecological risk assessment. To date, a comprehensive relationship between the information given by these sediment tools for predicting metal bioavailability and the effective toxicity observed is lacking. In this work, the possible inter-correlations between the data outcoming from using several qualitative evaluation tools of the sediment contamination (contamination factor, CF, the enrichment factor, EF, or the geoaccumulation index, Igeo), metal speciation on sediments (evaluated by the modified BCR sequential extraction procedure) and free metal concentrations in pore waters were studied. It was also our aim to evaluate if these assessment tools could be used for predicting the pore waters toxicity data as toxicity proxy. Principal component analysis and cluster analysis revealed that two quality indices used (CF and EF) were highly correlatable with the more labile fractions from BCR sediment speciation. However, neither of these parameters did correlate with the toxicity of pore waters measured by the chronic toxicity (72 h) in Pseudokirchneriella subcapitata. In contrast, the toxic effects of the given total metal load in sediments were better evaluated by using an additive metal approach using pore water free metal concentrations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Effects of organic amendments on the toxicity and bioavailability of cadmium and copper in spiked formulated sediments

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; May, T.W.; Ingersoll, C.G.

    2003-01-01

    We evaluated the partitioning and toxicity of cadmium (Cd) and copper (Cu) spiked into formulated sediments containing two types of organic matter (OM), i.e., cellulose and humus. Amendments of cellulose up to 12.5% total organic carbon (TOC) did not affect partitioning of Cd or Cu between sediment and pore water and did not significantly affect the toxicity of spiked sediments in acute toxicity tests with the amphipod Hyalella azteca. In contrast, amendments of natural humus shifted the partitioning of both Cd and Cu toward greater concentrations in sediment and lesser concentrations in pore water and significantly reduced toxic effects of both metals. Thresholds for toxicity, based on measured metal concentrations in whole sediment, were greater for both Cd and Cu in sediments amended with a low level of humus (2.9% TOC) than in sediments without added OM. Amendments with a high level of humus (8.9% TOC) eliminated toxicity at the highest spike concentrations of both metals (sediment concentrations of 12.4 ??g Cd/g and 493 ??g Cu/g). Concentrations of Cd in pore water associated with acute toxicity were similar between sediments with and without humus amendments, suggesting that toxicity of Cd was reduced primarily by sorption to sediment OM. However, toxic effects of Cu in humus treatments were associated with greater pore-water concentrations than in controls, suggesting that toxicity of Cu was reduced both by sorption and by complexation with soluble ligands. Both sorption and complexation by OM tend to make proposed sediment quality guidelines (SQGs) based on total metal concentrations more protective for high-OM sediments. Our results suggest that the predictive ability of SQGs could be improved by models of metal interactions with natural OM in sediment and pore water.

  1. Effects of organic amendments on the toxicity and bioavailability of cadmium and copper in spiked formulated sediments.

    PubMed

    Besser, John M; Brumbaugh, William G; May, Thomas W; Ingersoll, Christopher G

    2003-04-01

    We evaluated the partitioning and toxicity of cadmium (Cd) and copper (Cu) spiked into formulated sediments containing two types of organic matter (OM), i.e., cellulose and humus. Amendments of cellulose up to 12.5% total organic carbon (TOC) did not affect partitioning of Cd or Cu between sediment and pore water and did not significantly affect the toxicity of spiked sediments in acute toxicity tests with the amphipod Hyalella azteca. In contrast, amendments of natural humus shifted the partitioning of hoth Cd and Cu toward greater concentrations in sediment and lesser concentrations in pore water and significantly reduced toxic effects of both metals. Thresholds for toxicity, based on measured metal concentrations in whole sediment, were greater for both Cd and Cu in sediments amended with a low level of humus (2.9% TOC) than in sediments without added OM. Amendments with a high level of humus (8.9% TOC) eliminated toxicity at the highest spike concentrations of both metals (sediment concentrations of 12.4 microg Cd/g and 493 microg Cu/g). Concentrations of Cd in pore water associated with acute toxicity were similar between sediments with and without humus amendments, suggesting that toxicity of Cd was reduced primarily by sorption to sediment OM. However, toxic effects of Cu in humus treatments were associated with greater pore-water concentrations than in controls, suggesting that toxicity of Cu was reduced both by sorption and by complexation with soluble ligands. Both sorption and complexation by OM tend to make proposed sediment quality guidelines (SQGs) based on total metal concentrations more protective for high-OM sediments. Our results suggest that the predictive ability of SQGs could be improved by models of metal interactions with natural OM in sediment and pore water.

  2. Evaluation of phase II toxicity identification evaluation methods for freshwater whole sediment and interstitial water.

    PubMed

    Phillips, Bryn M; Anderson, Brian S; Hunt, John W; Clark, Sara L; Voorhees, Jennifer P; Tjeerdema, Ron S; Casteline, Jane; Stewart, Margaret

    2009-02-01

    Phase I whole sediment toxicity identification evaluation (TIE) methods have been developed to characterize the cause of toxicity as organic chemicals, metals, or ammonia. In Phase II identification treatments, resins added to whole sediment to reduce toxicity caused by metals and organics can be separated and eluted much like solid-phase extraction (SPE) columns are eluted for interstitial water. In this study, formulated reference sediments spiked with toxic concentrations of copper, fluoranthene, and nonylphenol were subjected to whole sediment and interstitial water TIE treatments to evaluate Phase I and II TIE procedures for identifying the cause of toxicity to Hyalella azteca. Phase I TIE treatments consisted of adding adsorbent resins to whole sediment, and using SPE columns to remove spiked chemicals from interstitial water. Phase II treatments consisted of eluting resins and SPE columns and the preparation and testing of eluates for toxicity and chemistry. Whole sediment resins and SPE columns significantly reduced toxicity, and the eluates from all treatments contained toxic concentrations of the spiked chemical except for interstitial water fluoranthene. Toxic unit analysis based on median lethal concentrations (LC50s) allowed for the comparison of chemical concentrations among treatments, and demonstrated that the bioavailability of some chemicals was reduced in some samples and treatments. The concentration of fluoranthene in the resin eluate closely approximated the original interstitial water concentration, but the resin eluate concentrations of copper and nonylphenol were much higher than the original interstitial water concentrations. Phase II whole sediment TIE treatments provided complementary lines of evidence to the interstitial water TIE results.

  3. SEDIMENT TOXICITY IDENTIFICATION EVALUATION (TIE)PHASE I,II,III GUIDANCE DOCUMENT

    EPA Science Inventory

    Sediment contamination in the United States has been amply documented and, in order to comply with the 1972 Clean Water Act, the U.S. Environmental Protection Agency must address the issue of toxic sediments. Contaminated sediments from a number of freshwater and marine sites hav...

  4. Identifying the cause of sediment toxicity in agricultural sediments: the role of pyrethroids and nine seldom-measured hydrophobic pesticides.

    PubMed

    Weston, Donald P; Ding, Yuping; Zhang, Minghua; Lydy, Michael J

    2013-01-01

    Few currently used agricultural pesticides are routinely monitored for in the environment. Even if concentrations are known, sediment LC(50) values are often lacking for common sediment toxicity testing species. To help fill this data gap, sediments in California's Central Valley were tested for nine hydrophobic pesticides seldom analyzed: abamectin, diazinon, dicofol, fenpropathrin, indoxacarb, methyl parathion, oxyfluorfen, propargite, and pyraclostrobin. Most were detected, but rarely at concentrations acutely toxic to Hyalella azteca or Chironomus dilutus. Only abamectin, fenpropathrin, and methyl parathion were found at concentrations of potential concern, and only in one or two samples. One-quarter of over 100 samples from agriculture-affected waterways exhibited toxicity, and in three-fourths of the toxic samples, pyrethroids exceeded concentrations expected to cause toxicity. The pyrethroid Bi-fen-thrin in particular, as well as lambda-cyhalothrin, cypermethrin, esfenvalerate, permethrin, and the organophosphate chlorpyrifos, were primarily responsible for the observed toxicity, rather than the more novel analytes, despite the fact that much of the sampling targeted areas of greatest use of the novel pesticides. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Bioavailability and toxicity of metals from a contaminated sediment by acid mine drainage: linking exposure-response relationships of the freshwater bivalve Corbicula fluminea to contaminated sediment.

    PubMed

    Sarmiento, Aguasanta M; Bonnail, Estefanía; Nieto, José Miguel; DelValls, Ángel

    2016-11-01

    Streams and rivers strongly affected by acid mine drainage (AMD) have legal vacuum in terms of assessing the water toxicity, since the use of conventional environmental quality biomarkers is not possible due to the absence of macroinvertebrate organisms. The Asian clam Corbicula fluminea has been widely used as a biomonitor of metal contamination by AMD in freshwater systems. However, these clams are considered an invasive species in Spain and the transplantation in the field study is not allowed by the Environmental Protection Agency. To evaluate the use of the freshwater bivalve C. fluminea as a potential biomonitor for sediments contaminated by AMD, the metal bioavailability and toxicity were investigated in laboratory by exposure of clams to polluted sediments for 14 days. The studied sediments were classified as slightly contaminated with As, Cr, and Ni; moderately contaminated with Co; considerably contaminated with Pb; and heavily contaminated with Cd, Zn, and specially Cu, being reported as very toxic to Microtox. On the fourth day of the exposure, the clams exhibited an increase in concentration of Ga, Ba, Sb, and Bi (more than 100 %), followed by Co, Ni, and Pb (more than 60 %). After the fourth day, a decrease in concentration was observed for almost all metals studied except Ni. An allometric function was used to determine the relationship between the increases in metal concentration in soft tissue and the increasing bioavailable metal concentrations in sediments.

  6. Toxicity of nickel-spiked freshwater sediments to benthic invertebrates-Spiking methodology, species sensitivity, and nickel bioavailability

    USGS Publications Warehouse

    Besser, John M.; Brumbaugh, William G.; Kemble, Nile E.; Ivey, Chris D.; Kunz, James L.; Ingersoll, Christopher G.; Rudel, David

    2011-01-01

    This report summarizes data from studies of the toxicity and bioavailability of nickel in nickel-spiked freshwater sediments. The goal of these studies was to generate toxicity and chemistry data to support development of broadly applicable sediment quality guidelines for nickel. The studies were conducted as three tasks, which are presented here as three chapters: Task 1, Development of methods for preparation and toxicity testing of nickel-spiked freshwater sediments; Task 2, Sensitivity of benthic invertebrates to toxicity of nickel-spiked freshwater sediments; and Task 3, Effect of sediment characteristics on nickel bioavailability. Appendices with additional methodological details and raw chemistry and toxicity data for the three tasks are available online at http://pubs.usgs.gov/sir/2011/5225/downloads/.

  7. Sediment toxicity test results for the Urban Waters Study 2010, Bellingham Bay, Washington

    USGS Publications Warehouse

    Biedenbach, James M.

    2011-01-01

    The Washington Department of Ecology annually determines the quality of recently deposited sediments in Puget Sound as a part of Ecology's Urban Waters Initiative. The annual sediment quality studies use the Sediment Quality Triad (SQT) approach, thus relying on measures of chemical contamination, toxicity, and benthic in-faunal effects (Chapman, 1990). Since 2002, the studies followed a rotating sampling scheme, each year sampling a different region of the greater Puget Sound Basin. During the annual studies, samples are collected in locations selected with a stratified-random design, patterned after the designs previously used in baseline surveys completed during 1997-1999 (Long and others, 2003; Wilson and Partridge, 2007). Sediment samples were collected by personnel from the Washington Department of Ecology, in June of 2010 and shipped to the U. S. Geological Survey (USGS) laboratory in Corpus Christi, Texas (not shown), where the tests were performed. Sediment pore water was extracted with a pneumatic apparatus and was stored frozen. Just before testing, water-quality measurements were made and salinity adjusted, if necessary. Tests were performed on a dilution series of each sample consisting of 100-, 50-, and 25-percent pore-water concentrations. The specific objectives of this study were to: * Extract sediment pore water from a total of 30 sediment samples from the Bellingham Bay, Washington area within a day of receipt of the samples. * Measure water-quality parameters (salinity, dissolved oxygen, pH, sulfide, and ammonia) of thawed pore-water samples before testing and adjust salinity, temperature and dissolved oxygen, if necessary, to obtain optimal ranges for the test species. * Conduct the fertilization toxicity test with pore water using sea urchin (Stronylocentrotus purpuratus) (S. purpuratus) gametes. * Perform quality control assays with reference pore water, dilution blanks and a positive control dilution series with sodium dodecyl sulfate (SDS

  8. Use of porewater extracts to identify the cause of toxicity in marine and estuarine sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, W.S.

    1994-12-31

    Amphipod toxicity tests in the evaluation of dredged material proposed for ocean disposal has come under increased scrutiny by the regulated community in the Port of NY/NJ. In recent large-scale assessments of sediment quality in the harbor, the vast majority of locations were deemed highly contaminated when tested with Ampelisca abdita. Toxicity tests, by themselves, do not provide data regarding the cause of toxicity of these sediments. The enormous potential costs associated with most proposed alternatives to ocean disposal of dredged sediments has prompted the investigation of the causative agents of toxicity in sediments of the NY/NJ Harbor. Sediment frommore » five locations in the harbor, selected in consultation with local regulatory agencies to represent diverse potential contamination scenarios, was collected and tested for toxicity to the amphipods Ampelisca abdita, Leptocheirus plumulosus, Eohaustorius estuadus, Rhepoxynius abronius, and the mysid shrimp, Mysidopsis bahia, using 10-day static bioassays. Porewater from each of the five sediments was extracted under centrifugation and used in water-only toxicity tests with A. abdita, L. plumulosus, R. abronius, E. estuadus, M. bahia, M. beryllina, and Microtox. A Phase 1 Toxicity Identification Evaluation of the three most toxic porewater samples was conducted using several of the species tested. Results from the preliminary investigations and the ongoing TIE`s will be presented. Species selection, porewater toxicity test procedures, and Phase 1, 2, and 3 paradigms will be discussed.« less

  9. A TOXICITY ASSESSMENT APPROACH FOR THE EVALUATION OF IN-SITU BIOREMEDIATION OF PAH CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Freshwater and marine sediment toxicity test were used to measure baseline toxicity of sediment samples collected from New York/New Jersey Harbor (NY/NJH) and East River (ER) (PAH contaminated) sediments and to determine the effectiveness of the developed biotreatment strategies ...

  10. Optimization of Hyalella azteca IQ Toxicity Test{trademark} for prediction of 28-day sediment toxicity tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novotny, A.N.; Ezzard, C.L.; Douglas, W.S.

    1995-12-31

    The IQ Toxicity Test, which is a rapid screening toxicity test consisting of the observation of in-vivo inhibition of an enzymatic process using a fluorescent substrate, has proven successful for the determination of 24 and 48-hour EC50`s of D. magna, C. dubia, D. pulex and M. bahia. The application of this concept to utilize the freshwater amphipod Hyalella azteca may be an excellent way in which to reduce the standard 28-day chronic sediment toxicity test to possibly one hour`s time. This study incorporates an additive experimental design to explore the effects of and interactions between five specific variables: size ofmore » the amphipod, exposure time to the toxicant, concentration of substrate, exposure time to the substrate, and length of time starved prior to testing. The results of the IQ toxicity test were compared to those of a 28-day chronic sediment toxicity test. Preliminary data indicate that there is an optimal combination of these variables which results in a concise, reproducible toxicity test for use with Hyalella azteca, and would potentially be applicable to other freshwater amphipods in the future.« less

  11. Sediment Toxicity Identification Evaluations (TIEs): Manipulating Bioavailability to Whole Organisms to Identify Environmental Toxins

    EPA Science Inventory

    Toxicity tests are a common method for determining whether sediment contaminants represent an environmental risk. Toxicity tests indicate if contaminants in sediments are bioavailable and capable of causing adverse biological effects to whole aquatic organisms. Several environmen...

  12. Toxicity of sediments potentially contaminated by coal mining and natural gas extraction to unionid mussels and commonly tested benthic invertebrates

    USGS Publications Warehouse

    Wang, Ning; Ingersoll, Christopher G.; Kunz, James L.; Brumbaugh, William G.; Kane, Cindy M.; Evans, R. Brian; Alexander, Steven; Walker, Craig; Bakaletz, Steve

    2013-01-01

    Sediment toxicity tests were conducted to assess potential effects of contaminants associated with coal mining or natural gas extraction activities in the upper Tennessee River basin and eastern Cumberland River basin in the United States. Test species included two unionid mussels (rainbow mussel, Villosa iris, and wavy-rayed lampmussel, Lampsilis fasciola, 28-d exposures), and the commonly tested amphipod, Hyalella azteca (28-d exposure) and midge, Chironomus dilutus (10-d exposure). Sediments were collected from seven test sites with mussel communities classified as impacted and in proximity to coal mining or gas extraction activities, and from five reference sites with mussel communities classified as not impacted and no or limited coal mining or gas extraction activities. Additional samples were collected from six test sites potentially with high concentrations of polycyclic aromatic hydrocarbons (PAHs) and from a test site contaminated by a coal ash spill. Mean survival, length, or biomass of one or more test species was reduced in 10 of 14 test samples (71%) from impacted areas relative to the response of organisms in the five reference samples. A higher proportion of samples was classified as toxic to mussels (63% for rainbow mussels, 50% for wavy-rayed lampmussels) compared with amphipods (38%) or midge (38%). Concentrations of total recoverable metals and total PAHs in sediments did not exceed effects-based probable effect concentrations (PECs). However, the survival, length, or biomasses of the mussels were reduced significantly with increasing PEC quotients for metals and for total PAHs, or with increasing sum equilibrium-partitioning sediment benchmark toxic units for PAHs. The growth of the rainbow mussel also significantly decreased with increasing concentrations of a major anion (chloride) and major cations (calcium and magnesium) in sediment pore water. Results of the present study indicated that (1) the findings from laboratory tests were generally

  13. USE OF POWDERED COCONUT CHARCOAL AS A TOXICITY IDENTIFICATION AND EVALUATION MANIPULATION FOR ORGANIC TOXICANTS IN MARINE SEDIMENTS

    EPA Science Inventory

    We report on a procedure using powdered coconut charcoal to sequester organic contaminants and reduce toxicity in sediments as part of a series of toxicity identification and evaluation (TIE) methods. Powdered coconut charcoal (PCC) was effective in reducing the toxicity of endos...

  14. Assessment of Supercritical Fluid Extraction Use in Whole Sediment Toxicity Identification Evaluations

    EPA Science Inventory

    In this investigation, supercritical fluid extraction (SFE) with pure CO2 was assessed as a confirmatory tool in Phase III of whole sediment toxicity identification evaluations (TIEs). The SFE procedure was assessed on two reference sediments and three contaminated sediments usi...

  15. Sediment laboratory quality-assurance project: studies of methods and materials

    USGS Publications Warehouse

    Gordon, J.D.; Newland, C.A.; Gray, J.R.

    2001-01-01

    In August 1996 the U.S. Geological Survey initiated the Sediment Laboratory Quality-Assurance project. The Sediment Laboratory Quality Assurance project is part of the National Sediment Laboratory Quality-Assurance program. This paper addresses the fmdings of the sand/fme separation analysis completed for the single-blind reference sediment-sample project and differences in reported results between two different analytical procedures. From the results it is evident that an incomplete separation of fme- and sand-size material commonly occurs resulting in the classification of some of the fme-size material as sand-size material. Electron microscopy analysis supported the hypothesis that the negative bias for fme-size material and the positive bias for sand-size material is largely due to aggregation of some of the fine-size material into sand-size particles and adherence of fine-size material to the sand-size grains. Electron microscopy analysis showed that preserved river water, which was low in dissolved solids, specific conductance, and neutral pH, showed less aggregation and adhesion than preserved river water that was higher in dissolved solids and specific conductance with a basic pH. Bacteria were also found growing in the matrix, which may enhance fme-size material aggregation through their adhesive properties. Differences between sediment-analysis methods were also investigated as pan of this study. Suspended-sediment concentration results obtained from one participating laboratory that used a total-suspended solids (TSS) method had greater variability and larger negative biases than results obtained when this laboratory used a suspended-sediment concentration method. When TSS methods were used to analyze the reference samples, the median suspended sediment concentration percent difference was -18.04 percent. When the laboratory used a suspended-sediment concentration method, the median suspended-sediment concentration percent difference was -2

  16. Photoactivation and toxicity of mixtures of polycyclic aromatic hydrocarbon compounds in marine sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartz, R.C.; Ferraro, S.P.; Lamberson, J.O.

    1997-10-01

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration series of either single compounds or as approximately equitoxic mixtures of all four compounds. Standard 10-d sediment toxicity tests were conducted under fluorescent lighting. After 10 d, survivors were exposed for 1 h to ultraviolet (UV) radiation in the absence of sediment and then tested for their ability to bury in uncontaminated sediment. The 10-d median lethal concentrations (LC50s) were 2.31 mg acenaphthene/g organic carbon (OC),more » 2.22 mg phenanthrene/g OC, 3.31 mg fluoranthene/g OC, and 2.81 mg pyrene/g OC. These LC50s were used to calculate the sum of toxic units ({Sigma}TU) of the four PAHs in the approximately equitoxic mixtures. The {Sigma}TU LC50 was then calculated for the mixture treatments. If the toxicologic interaction of a mixture of contaminants is additive, {Sigma}TU LC50 = 1.0. The observed LC50 (1.55 {Sigma}TU) was slightly, but significantly, greater than unity, indicating that the interaction of PAHs in the mixture was less than additive. Exposure to UV radiation enhanced the toxic effects of fluoranthene and pyrene, but did not affect the toxicity of acenaphthene and phenanthrene. Effects of UV radiation on the toxicity of the mixture of four PAHs could be explained by the photoactivation of fluoranthene and pyrene alone. These results are consistent with predictions based on photophysical properties of PAH compounds.« less

  17. Assessment of sediment toxicity and chemical concentrations in the San Diego Bay region, California, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairey, R.; Roberts, C.; Jacobi, M.

    1998-08-01

    Sediment quality within San Diego Bay, Mission Bay, and the Tijuana River Estuary of California was investigated as part of an ongoing statewide monitoring effort (Bay Protection and Toxic Cleanup Program). Study objectives were to determine the incidence, spatial patterns, and spatial extent of toxicity in sediments and porewater; the concentration and distribution of potentially toxic anthropogenic chemicals; and the relationships between toxicity and chemical concentrations. Rhepoxynius abronius survival bioassays, grain size, and total organic carbon analyses were performed on 350 sediment samples. Strongylocentrotus purpuratus development bioassays were performed on 164 pore-water samples. Toxicity was demonstrated throughout the San Diegomore » Bay region, with increased incidence and concordance occurring in areas of industrial and shipping activity. Trace metal and trace synthetic organic analyses were performed on 229 samples. Copper, zinc, mercury, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and chlordane were found to exceed ERM (effects range median) or PEL (probable effects level) sediment quality guidelines and were considered the six major chemicals or chemical groups of concern. Statistical analysis of the relationships between amphipod toxicity, bulk phase sediment chemistry, and physical parameters demonstrated few significant linear relationships. Significant differences in chemical levels were found between toxic and nontoxic responses using multivariate and univariate statistics. Potential sources of anthropogenic chemicals were discussed.« less

  18. Development and Evaluation of Reverse Polyethylene Samplers for Marine Phase II Whole-Sediment Toxicity Identification Evaluation

    EPA Science Inventory

    Marine and estuarine sediments accumulate contaminants and act as a sink for a wide range of toxic chemicals. As a result, the sediments themselves can become a source of contamination. At sufficient levels, contaminated sediments can cause benthic impairments and toxicity to mar...

  19. Using an interlaboratory study to revise methods for conducting 10-d to 42-d water or sediment toxicity tests with Hyalella azteca

    USGS Publications Warehouse

    Ivey, Chris D.; Ingersoll, Christopher G.; Brumbaugh, William G.; Hammer, Edward J.; Mount, David R.; Hockett, J. Russell; Norberg-King, Teresa J.; Soucek, Dave; Taylor, Lisa

    2016-01-01

    Studies have been conducted to refine US Environmental Protection Agency, ASTM International, and Environment Canada standard methods for conducting 42-d reproduction tests with Hyalella azteca in water or in sediment. Modifications to the H. azteca method include better-defined ionic composition requirements for exposure water (i.e., >15 mg/L of chloride and >0.02 mg/L of bromide) and improved survival, growth, and reproduction with alternate diets provided as increased rations over time in water-only or whole-sediment toxicity tests. A total of 24 laboratories volunteered to participate in the present interlaboratory study evaluating the performance of H. azteca in 42-d studies in control sand or control sediment using the refined methods. Improved growth and reproduction of H. azteca was observed with 2 alternate diets of 1) ramped diatoms (Thalassiosira weissflogii) + ramped Tetramin or 2) yeast–cerophyll–trout chow (YCT) + ramped Tetramin, especially when compared with results from the traditional diet of 1.8 mg YCT/d. Laboratories were able to meet proposed test acceptability criteria and in most cases had lower variation in growth or reproduction compared with previous interlaboratory studies using the traditional YCT diet. Laboratory success in conducting 42-d H. azteca exposures benefited from adherence to several key requirements of the detailed testing, culturing, and handling methods. Results from the present interlaboratory study are being used to help revise standard methods for conducting 10-d to 42-d water or sediment toxicity exposures with H. azteca.

  20. An interlaboratory comparison of sediment elutriate preparation and toxicity test methods

    EPA Science Inventory

    Elutriate bioassays are among numerous methods that exist for assessing the potential toxicity of sediments in aquatic systems. In this study, interlaboratory results were compared from 96-hour Ceriodaphnia dubia and Pimephales promelas static-renewal acute toxicity tests conduct...

  1. Toxicity of water and sediment from stormwater retarding basins to Hydra hexactinella.

    PubMed

    Rosenkrantz, Rikke T; Pollino, Carmel A; Nugegoda, Dayanthi; Baun, Anders

    2008-12-01

    Hydra hexactinella was used to assess the toxicity of stormwater and sediment samples from three retarding basins in Melbourne, Australia, using an acute test, a sublethal test, and a pulse test. Stormwater from the Avoca St retarding basins resulted in a LC50 of 613 ml/L, NOEC and LOEC values of 50 ml/L and 100 ml/L, while the 7h pulse exposure caused a significant increase in the mean population growth rate compared to the control. Water samples from the two other retarding basins were found non-toxic to H. hexactinella. This is the first study to employ sediment tests with Hydra spp. on stormwater sediments and a lower population growth rate was observed for organisms exposed to sediment from the Avoca St retarding basins. The behavioral study showed that H. hexactinella tended to avoid the sediment-water interface when exposed to sediment from all retarding basins, compared to the reference sediment. Further work is needed to determine the long-term effects of stormwater polluted sediments and acute effects due to organism exposure to short-term high concentrations during rain events.

  2. Assessment of sediment toxicity in the Lagoon of Venice (Italy) using a multi-species set of bioassays.

    PubMed

    Picone, Marco; Bergamin, Martina; Losso, Chiara; Delaney, Eugenia; Arizzi Novelli, Alessandra; Ghirardini, Annamaria Volpi

    2016-01-01

    Within the framework of a Weight of Evidence (WoE) approach, a set of four toxicity bioassays involving the amphipod Corophium volutator (10 d lethality test on whole sediment), the sea urchin Paracentrotus lividus (fertilization and embryo toxicity tests on elutriate) and the pacific oyster Crassostrea gigas (embryo toxicity test on elutriate) was applied to sediments from 10 sampling sites of the Venice Lagoon (Italy). Sediments were collected during three campaigns carried out in May 2004 (spring campaign), October 2004 (autumn campaign) and February 2005 (winter campaign). Toxicity tests were performed on all sediment samples. Sediment grain-size and chemistry were measured during spring and autumn campaigns. This research investigated (i) the ability of toxicity tests in discriminating among sites with different contamination level, (ii) the occurrence of a gradient of effect among sampling sites, (iii) the possible correlation among toxicity tests, sediment chemistry, grain size and organic carbon, and (iv) the possible occurrence of toxicity seasonal variability. Sediment contamination levels were from low to moderate. No acute toxicity toward amphipods was observed, while sea urchin fertilization was affected only in few sites in just a single campaign. Short-term effects on larval development of sea urchin and oyster evidenced a clear spatial trend among sites, with increasing effects along the axis connecting the sea-inlets with the industrial area. The set of bioassays allowed the identification of a spatial gradient of effect, with decreasing toxicity from the industrial area toward the sea-inlets. Multivariate data analysis showed that the malformations of oyster embryos were significantly correlated to the industrial contamination (metals, polynuclear aromatic hydrocarbons, hexachlorobenzene and polychlorinated biphenyls), while sea urchin development to sediment concentrations of As, Cr and organic carbon. Both embryo toxicity tests were

  3. Improving sediment-quality guidelines for nickel: development and application of predictive bioavailability models to assess chronic toxicity of nickel in freshwater sediments

    USGS Publications Warehouse

    Vangheluwe, Marnix L. U.; Verdonck, Frederik A. M.; Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.; Schlekat, Christan E.; Rogevich Garman, Emily

    2013-01-01

    Within the framework of European Union chemical legislations an extensive data set on the chronic toxicity of sediment nickel has been generated. In the initial phase of testing, tests were conducted with 8 taxa of benthic invertebrates in 2 nickel-spiked sediments, including 1 reasonable worst-case sediment with low concentrations of acid-volatile sulfide (AVS) and total organic carbon. The following species were tested: amphipods (Hyalella azteca, Gammarus pseudolimnaeus), mayflies (Hexagenia sp.), oligochaetes (Tubifex tubifex, Lumbriculus variegatus), mussels (Lampsilis siliquoidea), and midges (Chironomus dilutus, Chironomus riparius). In the second phase, tests were conducted with the most sensitive species in 6 additional spiked sediments, thus generating chronic toxicity data for a total of 8 nickel-spiked sediments. A species sensitivity distribution was elaborated based on 10% effective concentrations yielding a threshold value of 94 mg Ni/kg dry weight under reasonable worst-case conditions. Data from all sediments were used to model predictive bioavailability relationships between chronic toxicity thresholds (20% effective concentrations) and AVS and Fe, and these models were used to derive site-specific sediment-quality criteria. Normalization of toxicity values reduced the intersediment variability in toxicity values significantly for the amphipod species Hyalella azteca and G. pseudolimnaeus, but these relationships were less clearly defined for the mayfly Hexagenia sp. Application of the models to prevailing local conditions resulted in threshold values ranging from 126 mg to 281 mg Ni/kg dry weight, based on the AVS model, and 143 mg to 265 mg Ni/kg dry weight, based on the Fe model

  4. Bacterial toxicity assessment of drinking water treatment residue (DWTR) and lake sediment amended with DWTR.

    PubMed

    Yuan, Nannan; Wang, Changhui; Pei, Yuansheng

    2016-11-01

    Drinking water treatment residue (DWTR) seems to be very promising for controlling lake sediment pollution. Logically, acquisition of the potential toxicity of DWTR will be beneficial for its applications. In this study, the toxicity of DWTR and sediments amended with DWTR to Aliivibrio fischeri was evaluated based on the Microtox(®) solid and leachate phase assays, in combination with flow cytometry analyses and the kinetic luminescent bacteria test. The results showed that both solid particles and aqueous/organic extracts of DWTR exhibited no toxicity to the bacterial luminescence and growth. The solid particles of DWTR even promoted bacterial luminescence, possibly because DWTR particles could act as a microbial carrier and provide nutrients for bacteria growth. Bacterial toxicity (either luminescence or growth) was observed from the solid phase and aqueous/organic extracts of sediments with or without DWTR addition. Further analysis showed that the solid phase toxicity was determined to be related mainly to the fixation of bacteria to fine particles and/or organic matter, and all of the observed inhibition resulting from aqueous/organic extracts was identified as non-significant. Moreover, DWTR addition not only had no adverse effect on the aqueous/organic extract toxicity of the sediment but also reduced the solid phase toxicity of the sediment. Overall, in practical application, the solid particles, the water-soluble substances transferred to surface water or the organic substances in DWTR had no toxicity or any delayed effect on bacteria in lakes, and DWTR can therefore be considered as a non-hazardous material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Mapping sediment contamination and toxicity in Winter Quarters Bay, McMurdo Station, Antarctica.

    PubMed

    Crockett, Alan B; White, Gregory J

    2003-07-01

    Winter Quarters Bay (WQB) is a small embayment located adjacent to McMurdo Station, the largest research base in Antarctica. The bay is approximately 250 m wide and long, with a maximum depth of 33 m. Historically, trash from the McMurdo Station was piled on the steep shoreline of WQB, doused with fuel and ignited. That practice has ceased, and the adjacent land area has been regraded to cover the residual waste. The bottom of WQB remains littered with drums, equipment, tanks, tires, cables, and other objects, especially the southeastern side of the bay where dumping took place. Sediments are contaminated with PCBs, metals, and hydrocarbon fuels. The objectives of this study were to map the distribution of organic contaminants in WQB, assess the toxicity of WQB sediments using a simple microbial test, and determine correlations between toxicity and contaminant levels. The study suggests that adverse ecological effects have occurred from one or more of the contaminants found in WQB but the source of the toxic impacts to bay sediments remains unknown. Whole sediment toxicity was only correlated with oil-equivalent while solvent extracts of sediments were correlated with PAHs and oil-equivalent. The authors recommend that an integrated research plan be developed that focuses on determining what additional information is needed to make informed decisions on possible remediation of WQB.

  6. Toxicity assessment in marine sediment for the Terra Nova environmental effects monitoring program (1997-2010)

    NASA Astrophysics Data System (ADS)

    Whiteway, Sandra A.; Paine, Michael D.; Wells, Trudy A.; DeBlois, Elisabeth M.; Kilgour, Bruce W.; Tracy, Ellen; Crowley, Roger D.; Williams, Urban P.; Janes, G. Gregory

    2014-12-01

    This paper discusses toxicity test results on sediments from the Terra Nova offshore oil development. The Terra Nova Field is located on the Grand Banks approximately 350 km southeast of Newfoundland (Canada). The amphipod (Rhepoxynius abronius) survival and solid phase luminescent bacteria (Vibrio fischeri, or Microtox) assays were conducted on sediment samples collected from approximately 50 stations per program year around Terra Nova during baseline (1997), prior to drilling, and in 2000, 2001, 2002, 2004, 2006, 2008 and 2010 after drilling began. The frequency of toxic responses in the amphipod toxicity test was low. Of the ten stations that were toxic in environmental effects monitoring (EEM) years, only one (station 30(FE)) was toxic in more than one year and could be directly attributed to Terra Nova project activities. In contrast, 65 (18%) of 364 EEM samples were toxic to Microtox. Microtox toxicity in EEM years was not related to distance from Terra Nova drill centres or concentrations of >C10-C21 hydrocarbons or barium, the primary constituents of the synthetic-based drill muds used at Terra Nova. Of the variables tested, fines and strontium levels showed the strongest (positive) correlations with toxicity. Neither fines nor strontium levels were affected by drill cuttings discharge at Terra Nova, except at station 30(FE) (and that station was not toxic to Microtox). Benthic macro-invertebrate abundance, richness and diversity were greater in toxic than in non-toxic sediments. Therefore, Microtox responses indicating toxicity were associated with positive biological responses in the field. This result may have been an indirect function of the increased abundance of most invertebrate taxa in less sandy sediments with higher gravel content, where fines and strontium levels and, consequently, toxicity to Microtox were high; or chemical substances released by biodegradation of organic matter, where invertebrates are abundant, may be toxic to Microtox. Given

  7. The SED-TOX: Toxicity-directed management tool to assess and rank sediments based on their hazard -- concept and application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bombardier, M.; Bermingham, N.

    1999-04-01

    This article introduces the sediment Toxicity (SED-TOX) Index for the assessment and ranking of toxic hazards in sediment. Major features include expression of toxicity responses on a single scale of measurement (dry weight-based toxic units), consideration of multiple routes of exposure (pore water, organic extract, wet sediment, and whole sediment), application of differential treatments to toxicity data depending on the level of response, and use of weighting factors to discriminate sediment exposure phases and effect endpoints on the basis of sensitivity. A battery of seven bioassays with four test species (Vibrio fischeri, Escherichia coli, Lytechinus pictus, and Amphiporeia virginiana) wasmore » conducted on 49 marine sediment samples collected from six sites at Anse-a-Beaufils and Cap-aux-Meules, which are in the Gulf of St. Lawrence. The SED-TOX scores were calculated for each sampling station and compared with sediment contaminant concentrations. Results indicate that physico-chemical characterization is not sufficient to assess contaminated-sediment hazard for organisms; furthermore, using several exposure phases and test species belonging to various trophic levels increases the possibility of correctly identifying toxic sediments. The results of this study indicate that the SED-TOX approach is valuable as a toxicity assessment and ranking tool for sediments. It could easily be combined with other measures of ecosystem disturbance to discriminate between polluted and unpolluted sites.« less

  8. Sediment toxicity and bioaccumulation of nano and micron-sized aluminum oxide.

    PubMed

    Stanley, Jacob K; Coleman, Jessica G; Weiss, Charles A; Steevens, Jeffery A

    2010-02-01

    Nano-aluminum oxide (Al(2)O(3)) is used commercially in coatings and abrasives. Nano-Al(2)O(3) can also be generated through the oxidation of nano-aluminum in military propellants and energetics. The purpose of the present study was to assess toxicity and bioaccumulation of nano-Al(2)O(3) to a variety of sediment organisms (Tubifex tubifex, Hyalella azteca, Lumbriculus variegatus, and Corbicula fluminea). The bioaccumulation and toxicity of nano-Al(2)O(3) was compared with that of micron-sized Al(2)O(3) to investigate potential size-related effects. Results of the present study show species-specific differences in relative bioaccumulation of nano and micron-sized Al(2)O(3). Significant toxic effects (survival and growth) were observed in H. azteca testing, but only at high concentrations unlikely to be found in the environment. Nano-Al(2)O(3) was found to be more toxic than micron-sized Al(2)O(3) to H. azteca survival in a 14-d study in which organisms were in direct contact with a thin layer of 625 or 2,500 mg of Al(2)O(3) dispersed on the surface of either sediment or sand. A significant growth effect was also observed for nano but not micron-sized Al(2)O(3) at the highest treatment level tested (100 g/kg Al(2)O(3)) in a 10-d H. azteca bioassay in which Al(2)O(3) was homogenized with sediment. However, differences in measured sediment Al concentrations (micron-sized = 55.1 [+/-0.6] g/kg Al; nano-sized = 66.2 [+/-0.6] g/kg Al) in the nano and micron-sized Al(2)O(3) preclude direct comparison of the toxicity of these two treatments based on particle size. Copyright 2009 SETAC.

  9. Annotated Bibliography of Bioassays Related to Sediment Toxicity Testing in Washington State

    DTIC Science & Technology

    1990-10-01

    effects of sediments contaminated with heavy metals, petroleum hydrocarbons , synthetic organic compounds and radionuclides. It also provides an... molluscs (adults only), echinoderm larvae and fish), and bioassay procedures with selected toxicants (metals, petrochemicals, pesticides, contaminated...reference sediment + 15 mm test sediment. Bioaccumulation tests (with same organisms) are a’so discussed. EPA/COE (U.S. Environmental Protection Agency

  10. Quality-assurance plan for the analysis of fluvial sediment by the U.S. Geological Survey Kentucky Water Science Center Sediment Laboratory

    USGS Publications Warehouse

    Shreve, Elizabeth A.; Downs, Aimee C.

    2005-01-01

    This report describes laboratory procedures used by the U.S. Geological Survey Kentucky Water Science Center Sediment Laboratory for the processing and analysis of fluvial-sediment samples for concentration of sand and finer material. The report details the processing of a sediment sample through the laboratory from receiving the sediment sample, through the analytical process, to compiling results of the requested analysis. Procedures for preserving sample integrity, calibrating and maintaining of laboratory and field instruments and equipment, analyzing samples, internal quality assurance and quality control, and validity of the sediment-analysis results also are described. The report includes a list of references cited and a glossary of sediment and quality-assurance terms.

  11. MINIATURIZED SEDIMENT PROCEDURES FOR ASESSING TOXICITY USING MARINE AND FRESHWATER AMPHIPODS AND EMBRYO/LARVAL FISH

    EPA Science Inventory

    Sediment toxicity tests are needed that can be conducted with less sediment volume and fewer organisms. Bench scale remediation techniques often produce less sediment than is required to perform the standardized sediment methods and the excess sediments that are generated present...

  12. ISOLATING AND FRACTIONATING ORGANIC TOXICANTS IN SEDIMENTS: EVALUATION OF AN EXPERIMENTAL APPROACH

    EPA Science Inventory

    Most solid-phase sediment TIE techniques for organic chemicals have been focused on solid phase sorptive techniques, such as amending contaminated sediments with the carbonaceousresin, Ambersorb coconut charcoal, or XAD resin to reduce toxicity caused by organic contaminants. Cha...

  13. ISOLATING AND EVALUATING ORGANIC TOXICANTS IN SEDIMENTS: EVALUATION OF AN EXPERIMENTAL APPROACH

    EPA Science Inventory

    Most solid-phase sediment toxicity identification and evaluation (TIE) techniques for organic chemicals have been focused on solid phase sorptive techniques, such as amending contaminated sediments with the carbonaceous resin, Ambersorb, coconut charcoal, or XAD resin to reduce t...

  14. Field monitoring of toxic organic pollution in the sediments of Pearl River estuary and its tributaries.

    PubMed

    Fu, J; Wang, Z; Mai, B; Kang, Y

    2001-01-01

    Field monitoring of the toxic organic compounds (PCBs, PAHs, organochlorine pesticides) in the top sediments of Pearl River Estuary and its up-streams were made. It was found that the highest concentrations of these toxic organic compounds occurred in the sediment sampled at Macau inner harbor (ZB013), which is a sink of suspended fine particles transported from the upstream waterways. Because of the affinity of the hydrophobic organic compounds (PAHs, PCBs) for the solid phase, these fine particle depositions led to accumulation of these compounds in the sediment of Macau. The atmospheric dry deposition may be another source of the toxic organic pollution in the sediment.

  15. Use of sublethal endpoints in sediment toxicity tests with the amphipod Hyalella azteca

    USGS Publications Warehouse

    Ingersoll, Chris G.; Brunson, Eric L.; Dwyer, F. James; Hardesty, Douglas K.; Kemble, Nile E.

    1998-01-01

    Short-term sediment toxicity tests that only measure effects on survival can be used to identify high levels of contamination but may not be able to identify marginally contaminated sediments. The objective of the present study was to develop a method for determining the potential sublethal effects of contaminants associated with sediment on the amphipod Hyalella azteca (e.g., reproduction). Exposures to sediment were started with 7- to 8-d-old amphipods. On day 28, amphipods were isolated from the sediment and placed in water-only chambers where reproduction was measured on day 35 and 42. Typically, amphipods were first in amplexus at about day 21 to 28 with release of the first brood between day 28 to 42. Endpoints measured included survival (day 28, 35, and 42), growth (as length and weight on day 28 and 42), and reproduction (number of young/female produced from day 28 to 42). This method was used to evaluate a formulated sediment and field-collected sediments with low to moderate concentrations of contaminants. Survival of amphipods in these sediments was typically >85% after the 28-d sediment exposures and the 14-d holding period in water to measure reproduction. Reproduction was more variable than growth; hence, more replicates might be needed to establish statistical differences among treatments. Previous studies have demonstrated that growth of H. azteca in sediment tests often provides unique information that can be used to discriminate toxic effects of exposure to contaminants. Either length or weight can be measured in sediment tests with H. azteca. However, additional statistical options are available if length is measured on individual amphipods, such as nested analysis of variance that can account for variance in length within replicates. Ongoing water-only studies testing select contaminants will provide additional data on the relative sensitivity and variability of sublethal endpoints in toxicity tests with H. azteca.

  16. Comparison of methods for conducting marine and estuarine sediment porewater toxicity tests—extraction, storage, and handling techniques

    USGS Publications Warehouse

    Carr, R.S.; Chapman, D.C.

    1995-01-01

    A series of studies was conducted to compare different porewater extraction techniques and to evaluate the effects of sediment and porewater storage conditions on the toxicity of pore water, using assays with the sea urchin Arbacia punctulata. If care is taken in the selection of materials, several different porewater extraction techniques (pressurized squeezing, centrifugation, vacuum) yield samples with similar toxicity. Where the primary contaminants of concern are highly hydrophobic organic compounds, centrifugation is the method of choice for minimizing the loss of contaminants during the extraction procedure. No difference was found in the toxicity of pore water obtained with the Teflon® and polyvinyl chloride pressurized extraction devices. Different types of filters in the squeeze extraction devices apparently adsorbed soluble contaminants to varying degrees. The amount of fine suspended particulate material remaining in the pore water after the initial extraction varied among the methods. For most of the sediments tested, freezing and thawing did not affect the toxicity of porewater samples obtained by the pressurized squeeze extraction method. Pore water obtained by other methods (centrifugation, vacuum) and frozen without additional removal of suspended particulates by centrifugation may exhibit increased toxicity compared with the unfrozen sample.The toxicity of pore water extracted from refrigerated (4°C) sediments exhibited substantial short-term (days, weeks) changes. Similarly, sediment pore water extracted over time from a simulated amphipod solid-phase toxicity test changed substantially in toxicity. For the sediments tested, the direction and magnitude of change in toxicity of pore water extracted from both refrigerated and solid-phase test sediments was unpredictable.

  17. Metal mobility and toxicity to microalgae associated with acidification of sediments: CO2 and acid comparison.

    PubMed

    De Orte, M R; Lombardi, A T; Sarmiento, A M; Basallote, M D; Rodriguez-Romero, A; Riba, I; Del Valls, A

    2014-05-01

    The injection and storage of CO2 into marine geological formations has been suggested as a mitigation measure to prevent global warming. However, storage leaks are possible resulting in several effects in the ecosystem. Laboratory-scale experiments were performed to evaluate the effects of CO2 leakage on the fate of metals and on the growth of the microalgae Phaeodactylum tricornutum. Metal contaminated sediments were collected and submitted to acidification by means of CO2 injection or by adding HCl. Sediments elutriate were prepared to perform toxicity tests. The results showed that sediment acidification enhanced the release of metals to elutriates. Iron and zinc were the metals most influenced by this process and their concentration increased greatly with pH decreases. Diatom growth was inhibited by both processes: acidification and the presence of metals. Data obtained is this study is useful to calculate the potential risk of CCS activities to the marine environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Toxicity of lead-contaminated sediment to mallards

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; Sileo, L.; Audet, D.J.; LeCaptain, L.J.

    1999-01-01

    Because consumption of lead-contaminated sediment has been suspected as the cause of waterfowl mortality in the Coeur d?Alene River basin in Idaho, we studied the bioavailability and toxicity of this sediment to mallards (Anas platyrhynchos). In experiment 1, one of 10 adult male mallards died when fed a pelleted commercial duck diet that contained 24% lead-contaminated sediment (with 3,400 μg/g lead in the sediment). Protoporphyrin levels in the blood increased as the percentage of lead-contaminated sediment in the diet increased. Birds fed 24% lead-contaminated sediment exhibited atrophy of the breast muscles, green staining of the feathers around the vent, viscous bile, green staining of the gizzard lining, and renal tubular intranuclear inclusion bodies. Mallards fed 24% lead-contaminated sediment had means of 6.1 μg/g of lead in the blood and 28 μg/g in the liver (wet-weight basis) and 1,660 μg/g in the feces (dry-weight basis). In experiment 2, we raised the dietary concentration of the lead-contaminated sediment to 48%, but only about 20% sediment was actually ingested due to food washing by the birds. Protoporphyrin levels were elevated in the lead-exposed birds, and all of the mallards fed 48% lead-contaminated sediment had renal tubular intranuclear inclusion bodies. The concentrations of lead in the liver were 9.1 μg/g for mallards fed 24% lead-contaminated sediment and 16 μg/g for mallards fed 48% lead-contaminated sediment. In experiment 3, four of five mallards died when fed a ground corn diet containing 24% lead-contaminated sediment (with 4,000 μg/g lead in this sample of sediment), but none died when the 24% lead-contaminated sediment was mixed into a nutritionally balanced commercial duck diet; estimated actual ingestion rates for sediment were 14% and 17% for the corn and commercial diets. Lead exposure caused elevations in protoporphyrin, and four of the five mallards fed 24% lead-contaminated sediment in a commercial diet and all five

  19. Contaminants in stream sediments from seven United States metropolitan areas: part II—sediment toxicity to the amphipod Hyalella azteca and the midge Chironomus dilutus

    USGS Publications Warehouse

    Kemble, Nile E.; Hardesty, Douglas K.; Ingersoll, Christopher G.; Kunz, James L.; Sibley, Paul K.; Calhoun, Daniel L.; Gilliom, Robert J.; Kuivila, Kathryn; Nowell, Lisa H.; Moran, Patrick W.

    2013-01-01

    Pyrethroids are hydrophobic compounds that have been observed to accumulate in sediments (Laskowski 2002). Toxicity of pyrethroids in field-collected sediment from small urban streams (Weston et al. 2005; Holmes et al. 2008; Ding et al. 2010; Domagalski et al. 2010) or with pyrethroids spiked into sediment (Amweg et al. 2006; Hintzen et al. 2009) have been evaluated primarily in 10 day lethality tests conducted with the amphipod Hyalella azteca. However, the sublethal effects in long-term exposures to pyrethroids in sediment have not been evaluated, and the distribution of pyrethroids sediments has not typically been evaluated in wadeable streams (Gilliom et al. 2006). This article is the second in a series that describe the results of a study of the distribution and toxicity of pyrethroids and other co-occurring trace elements and organic contaminants (PCBs, PAHs, OC pesticides) in stream sediments from 7 metropolitan areas across the United States (Moran et al. 2012). The study evaluated 98 sediment samples collected from streams ranging from undeveloped to highly urban and differs from previous studies by sampling larger wadeable streams and avoiding point sources (such as storm drains) and other inflows (Gilliom et al. 2006). Part 1 of the series characterizes sediment contaminants in relation to urbanization and other factors in the 7 metropolitan study areas (Nowell et al. 2012). Part 2 (this article) evaluates relationships between sediment chemistry and sediment toxicity in 28 day whole-sediment exposures conducted with the amphipod H. azteca and in 10 day whole-sediment exposure conducted with the midge Chironomus dilutus (USEPA United States Environmental Protection Agency 2000; ASTM American Society for Testing and Materials International 2012). Toxicity end points evaluated in the amphipod and midge exposures included the effects of these field-collected sediments on survival, weight, or biomass of the test organisms.

  20. From streets to streams: assessing the toxicity potential of urban sediment by particle size

    USGS Publications Warehouse

    Corsi, Steven R.; Selbig, William R.; Roger T. Bannerman,; ,

    2013-01-01

    Urban sediment can act as a transport mechanism for a variety of pollutants to move towards a receiving water body. The concentrations of these pollutants oftentimes exceed levels that are toxic to aquatic organisms. Many treatment structures are designed to capture coarse sediment but do not work well to similarly capture the fines. This study measured concentrations of select trace metals and PAHs in both the silt and sand fractions of urban sediment from four sources: stormwater bed, stormwater suspended, street dirt, and streambed. Concentrations were used to assess the toxic potential of sediment based on published sediment quality guidelines. All sources of sediment showed some level of toxic potential with stormwater bed sediment the highest followed by stormwater suspended, street dirt, and streambed. Both metal and PAH concentration distributions were highly correlated between the four sampling locations suggesting the presence of one or perhaps only a few sources of these pollutants which remain persistent as sediment is transported from street to stream. Comparison to other forms of combustion- and vehicle-related sources of PAHs revealed coal tar sealants to have the strongest correlation, in both the silt and sand fractions, at all four sampling sites. This information is important for environmental managers when selecting the most appropriate Best Management Practice (BMP) as a way to mitigate pollution conveyed in urban stormwater from source to sink.

  1. Bioavailability Assessment of a Contaminated Field Sediment from Patrick Bayou, Texas, USA: Toxicity Identification Evaluation and Equilibrium Partitioning

    EPA Science Inventory

    Contaminated sediments are commonly found in urbanized harbors. At sufficiently high contaminant levels, sediments can cause toxicity to aquatic organisms and impair benthic communities. As a result, remediation is necessary and diagnosing the cause of sediment toxicity become...

  2. A SEDIMENT TOXICITY EVALUATION OF THREE LARGE RIVER SYSTEMS

    EPA Science Inventory

    Sediment toxicity samples were collected from selected sites on the Ohio River, Missouri River and upper Mississippi River as part of the 2004 and 2005 Environmental Monitoring and Assessment Program-Great Rivers Ecosystems Study (EMAP-GRE). Samples were collected by compositing...

  3. Toxicity assessment of sediments from the Grand Calumet River and Indiana Harbor Canal in northwestern Indiana, USA

    USGS Publications Warehouse

    Ingersoll, C.G.; MacDonald, D.D.; Brumbaugh, W.G.; Johnson, B. Thomas; Kemble, N.E.; Kunz, J.L.; May, T.W.; Wang, N.; Smith, J.R.; Sparks, D.W.; Ireland, D.S.

    2002-01-01

    The objective of this study was to evaluate the toxicity of sediments from the Grand Calumet River and Indiana Harbor Canal located in northwestern Indiana, USA. Toxicity tests used in this assessment included 10-day sediment exposures with the amphipod Hyalella azteca, 31-day sediment exposures with the oligochaete Lumbriculus variegatus, and the Microtox® Solid-Phase Sediment Toxicity Test. A total of 30 sampling stations were selected in locations that had limited historic matching toxicity and chemistry data. Toxic effects on amphipod survival were observed in 60% of the samples from the assessment area. Results of a toxicity test with oligochaetes indicated that sediments from the assessment area were too toxic to be used in proposed bioaccumulation testing. Measurement of amphipod length after the 10-day exposures did not provide useful information beyond that provided by the survival endpoint. Seven of the 15 samples that were identified as toxic in the amphipod tests were not identified as toxic in the Microtox test, indicating that the 10-day H. azteca test was more sensitive than the Microtox test. Samples that were toxic tended to have the highest concentrations of metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs). The toxic samples often had an excess of simultaneously extracted metals (SEM) relative to acid volatile sulfide (AVS) and had multiple exceedances of probable effect concentrations (PECs). Metals may have contributed to the toxicity of samples that had both an excess molar concentration of SEM relative to AVS and elevated concentrations of metals in pore water. However, of the samples that had an excess of SEM relative to AVS, only 38% of these samples had elevated concentration of metals in pore water. The lack of correspondence between SEM-AVS and pore water metals indicates that there are variables in addition to AVS controlling the concentrations of metals in pore water. A mean PEC quotient of 3

  4. A ten year summary of concurrent ambient water column and sediment toxicity tests in the Chesapeake Bay watershed: 1990-1999.

    PubMed

    Hall, Lenwood W; Anderson, Ronald D; Alden, Raymond W

    2002-06-01

    The goal of this study was to identify the relative toxicity of ambient areas in the Chesapeake Bay watershed by using a suite of concurrent water column and sediment toxicity tests at seventy-five ambient stations in 20 Chesapeake Bay rivers from 1990 through 1999. Spatial and temporal variability was examined at selected locations throughout the 10 yr study. Inorganic and organic contaminants were evaluated in ambient water and sediment concurrently with water column and sediment tests to assess possible causes of toxicity although absolute causality can not be established. Multivariate statistical analysis was used to develop a multiple endpoint toxicity index (TOX-INDEX) at each station for both water column and sediment toxicity data. Water column tests from the 10 yr testing period showed that 49% of the time, some degree of toxicity was reported. The most toxic sites based on water column results were located in urbanized areas such as the Anacostia River, Elizabeth River and the Middle River. Water quality criteria for copper, lead, mercury, nickel and zinc were exceeded at one or more of these sites. Water column toxicity was also reported in localized areas of the South and Chester Rivers. Both spatial and temporal variability was reported from the suite of water column toxicity tests. Some degree of sediment toxicity was reported from 62% of the tests conducted during the ten year period. The Elizabeth River and Baltimore Harbor stations were reported as the most toxic areas based on sediment results. Sediment toxicity guidelines were exceeded for one or more of the following metals at these two locations: arsenic, cadmium, chromium, copper, lead, nickel and zinc. At the Elizabeth River stations nine of sixteen semi-volatile organics and two of seven pesticides measured exceeded the ER-M values in 1990. Ambient sediment toxicity tests in the Elizabeth River in 1996 showed reduced toxicity. Various semi-volatile organics exceeded the ER-M values at a

  5. The Influence of Test Conditions on the Performance of Chironomus dilutus and Hyalella azteca in Sediment Toxicity Tests

    EPA Science Inventory

    In most all sediment toxicity assessments, the performance of organisms in control sediments is a key parameter in defining sediment toxicity, whether through direct statistical comparison to control or by normalizing to control performance to compare results across sites or batc...

  6. Predicting toxicity to Hyalella azteca in pyrogenic-impacted sediments-Do we need to analyze for all 34 PAHs?

    PubMed

    Geiger, Stephen C; Azzolina, Nicholas A; Nakles, David V; Hawthorne, Steven B

    2016-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are major drivers of risk at many urban and/or industrialized sediment sites. The US Environmental Protection Agency (USEPA) currently recommends using measurements of 18 parent + 16 groups of alkylated PAHs (PAH-34) to assess the potential for sediment-bound PAHs to impact benthic organisms at these sites. ASTM Method D7363-13 was developed to directly measure low-level sediment porewater PAH concentrations. These concentrations are then compared to ambient water criteria (final chronic values [FCVs]) to assess the potential for impact to benthic organisms. The interlaboratory validation study that was used to finalize ASTM D7363-13 was developed using 24 of the 2-, 3-, and 4-ring PAHs (PAH-24) that are included in the USEPA PAH-34 analyte list. However, it is the responsibility of the user of ASTM Method D7363 to establish a test method to quantify the remaining 10 higher molecular weight PAHs that make up PAH-34. These higher molecular weight PAHs exhibit extremely low saturation solubilities that make their detection difficult in porewater, which has proven difficult to implement in a contract laboratory setting. As a result, commercial laboratories are hesitant to conduct the method on the entire PAH-34 analyte list. This article presents a statistical comparison of the ability of the PAH-24 and PAH-34 porewater results to predict survival of the freshwater amphipod Hyalella azteca, using the original 269 sediment samples used to gain ASTM D7363 Method approval. The statistical analysis shows that the PAH-24 are statistically indistinguishable from the PAH-34 for predicting toxicity. These results indicate that the analysis of freely dissolved porewater PAH-24 is sufficient for making risk-based decisions based on benthic invertebrate toxicity (survival and growth). This reduced target analyte list should result in a cost-saving for stakeholders and broader implementation of the method at PAH-impacted sediment sites

  7. A decision-making framework for sediment contamination.

    PubMed

    Chapman, Peter M; Anderson, Janette

    2005-07-01

    A decision-making framework for determining whether or not contaminated sediments are polluted is described. This framework is intended to be sufficiently prescriptive to standardize the decision-making process but without using "cook book" assessments. It emphasizes 4 guidance "rules": (1) sediment chemistry data are only to be used alone for remediation decisions when the costs of further investigation outweigh the costs of remediation and there is agreement among all stakeholders to act; (2) remediation decisions are based primarily on biology; (3) lines of evidence (LOE), such as laboratory toxicity tests and models that contradict the results of properly conducted field surveys, are assumed incorrect; and (4) if the impacts of a remedial alternative will cause more environmental harm than good, then it should not be implemented. Sediments with contaminant concentrations below sediment quality guidelines (SQGs) that predict toxicity toless than 5% of sediment-dwelling infauna and that contain no quantifiable concentrations of substances capable of biomagnifying are excluded from further consideration, as are sediments that do not meet these criteria but have contaminant concentrations equal to or below reference concentrations. Biomagnification potential is initially addressed by conservative (worst case) modeling based on benthos and sediments and, subsequently, by additional food chain data and more realistic assumptions. Toxicity (acute and chronic) and alterations to resident communities are addressed by, respectively, laboratory studies and field observations. The integrative decision point for sediments is a weight of evidence (WOE) matrix combining up to 4 main LOE: chemistry, toxicity, community alteration, and biomagnification potential. Of 16 possible WOE scenarios, 6 result in definite decisions, and 10 require additional assessment. Typically, this framework will be applied to surficial sediments. The possibility that deeper sediments may be

  8. Sediment toxicity identification evaluation (TIE) studies at marine sites suspected of ordnance contamination

    USGS Publications Warehouse

    Carr, R.S.; Nipper, M.; Biedenbach, J.M.; Hooten, R.L.; Miller, K.; Saepoff, S.

    2001-01-01

    A sediment quality assessment survey and subsequent toxicity identification evaluation (TIE) study was conducted at several sites in Puget Sound, Washington. The sites were previously suspected of contamination with ordnance compounds. The initial survey employed sea urchin porewater toxicity tests to locate the most toxic stations. Sediments from the most toxic stations were selected for comprehensive chemical analyses. Based on the combined information from the toxicity and chemical data, three adjacent stations in Ostrich Bay were selected for the TIE study. The results of the phase I TIE suggested that organics and metals were primarily responsible for the observed toxicity in the sea urchin fertilization test. In addition to these contaminants, ammonia was also contributing to the toxicity for the sea urchin embryological development test. The phase II TIE study isolated the majority of the toxicity in the fraction containing nonpolar organics with high log Kow, but chemical analyses failed to identify a compound present at a concentration high enough to be responsible for the observed toxicity. The data suggest that some organic or organometallic contaminant(s) that were not included in the comprehensive suite of chemical analyses caused the observed toxicological responses.

  9. Comparability of river suspended-sediment sampling and laboratory analysis methods

    USGS Publications Warehouse

    Groten, Joel T.; Johnson, Gregory D.

    2018-03-06

    Accurate measurements of suspended sediment, a leading water-quality impairment in many Minnesota rivers, are important for managing and protecting water resources; however, water-quality standards for suspended sediment in Minnesota are based on grab field sampling and total suspended solids (TSS) laboratory analysis methods that have underrepresented concentrations of suspended sediment in rivers compared to U.S. Geological Survey equal-width-increment or equal-discharge-increment (EWDI) field sampling and suspended sediment concentration (SSC) laboratory analysis methods. Because of this underrepresentation, the U.S. Geological Survey, in collaboration with the Minnesota Pollution Control Agency, collected concurrent grab and EWDI samples at eight sites to compare results obtained using different combinations of field sampling and laboratory analysis methods.Study results determined that grab field sampling and TSS laboratory analysis results were biased substantially low compared to EWDI sampling and SSC laboratory analysis results, respectively. Differences in both field sampling and laboratory analysis methods caused grab and TSS methods to be biased substantially low. The difference in laboratory analysis methods was slightly greater than field sampling methods.Sand-sized particles had a strong effect on the comparability of the field sampling and laboratory analysis methods. These results indicated that grab field sampling and TSS laboratory analysis methods fail to capture most of the sand being transported by the stream. The results indicate there is less of a difference among samples collected with grab field sampling and analyzed for TSS and concentration of fines in SSC. Even though differences are present, the presence of strong correlations between SSC and TSS concentrations provides the opportunity to develop site specific relations to address transport processes not captured by grab field sampling and TSS laboratory analysis methods.

  10. Effects of sediment characteristics on the toxicity of chromium(III) and chromium(VI) to the amphipod, Hyalella azteca

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; Kemble, N.E.; May, T.W.; Ingersoll, C.G.

    2004-01-01

    We evaluated the influence of sediment characteristics, acid-volatile sulfide (AVS) and organic matter (OM), on the toxicity of chromium (Cr) in freshwater sediments. We conducted chronic (28-42-d) toxicity tests with the amphipod Hyalella azteca exposed to Cr(VI) and Cr(III) in water and in spiked sediments. Waterborne Cr(VI) caused reduced survival of amphipods with a median lethal concentration (LC50) of 40 ??g/L. Cr(VI) spiked into test sediments with differing levels of AVS resulted in graded decreases in AVS and sediment OM. Only Cr(VI)-spiked sediments with low AVS concentrations (<1 ??mol/g) caused significant amphipod mortality. Waterborne Cr(III) concentrations near solubility limits caused decreased survival of amphipods at pH 7 and pH 8 but not at pH 6. Sediments spiked with high levels of Cr(III) did not affect amphipod survival but had minor effects on growth and inconsistent effects on reproduction. Pore waters of some Cr(III)-spiked sediments contained measurable concentrations of Cr(VI), but observed toxic effects did not correspond closely to Cr concentrations in sediment or pore waters. Our results indicate that risks of Cr toxicity are low in freshwater sediments containing substantial concentrations of AVS.

  11. Calculating background levels for ecological risk parameters in toxic harbor sediment

    USGS Publications Warehouse

    Leadon, C.J.; McDonnell, T.R.; Lear, J.; Barclift, D.

    2007-01-01

    Establishing background levels for biological parameters is necessary in assessing the ecological risks from harbor sediment contaminated with toxic chemicals. For chemicals in sediment, the term contaminated is defined as having concentrations above background and significant human health or ecological risk levels. For biological parameters, a site could be considered contaminated if levels of the parameter are either more or less than the background level, depending on the specific parameter. Biological parameters can include tissue chemical concentrations in ecological receptors, bioassay responses, bioaccumulation levels, and benthic community metrics. Chemical parameters can include sediment concentrations of a variety of potentially toxic chemicals. Indirectly, contaminated harbor sediment can impact shellfish, fish, birds, and marine mammals, and human populations. This paper summarizes the methods used to define background levels for chemical and biological parameters from a survey of ecological risk investigations of marine harbor sediment at California Navy bases. Background levels for regional biological indices used to quantify ecological risks for benthic communities are also described. Generally, background stations are positioned in relatively clean areas exhibiting the same physical and general chemical characteristics as nearby areas with contaminated harbor sediment. The number of background stations and the number of sample replicates per background station depend on the statistical design of the sediment ecological risk investigation, developed through the data quality objective (DQO) process. Biological data from the background stations can be compared to data from a contaminated site by using minimum or maximum background levels or comparative statistics. In Navy ecological risk assessments (ERA's), calculated background levels and appropriate ecological risk screening criteria are used to identify sampling stations and sites with contaminated

  12. Selective removal of organic contaminants from sediments: A methodology for toxicity identification evaluations (TIEs)

    USGS Publications Warehouse

    Lebo, J.A.; Huckins, J.N.; Petty, J.D.; Ho, K.T.; Stern, E.A.

    2000-01-01

    Aqueous slurries of a test sediment spiked with dibenz[a,h]anthracene, 2,4,5,2′,4′,5′-hexachlorobiphenyl, p,p′-DDE, or phenanthrene were subjected to decontamination experimentation. The spiked sediments were agitated at elevated temperatures for at least 96 h in the presence of either of the two contaminant-absorbing media: clusters of polyethylene membrane or lipid-containing semipermeable membrane devices (SPMDs). The effects of treatment temperature and surface area of media on the removal of contaminants were explored. This work is part of a larger methodology for whole-sediment toxicity identification evaluation (TIE). A method is being sought that is capable of detoxifying sediments with respect to organic contaminants while leaving toxicity attributable to inorganic contaminants unaffected.

  13. Use of benthic invertebrate community structure and the sediment quality triad to evaluate metal-contaminated sediment in the upper Clark Fork River, Montana

    USGS Publications Warehouse

    Canfield, Timothy J.; Kemble, Nile E.; Brumbaugh, William G.; Dwyer, F. James; Ingersoll, Christopher G.; Fairchild, James F.

    1994-01-01

    The upper Clark Fork River, above Flathead River, is contaminated with large amounts of As, Cd, Cu, Pb, Mn, and Zn ores from past mining activities. The contaminated area extends from the Butte and Anaconda area to at least 230 km downstream to Milltown Reservoir. Both the upper Clark Fork River and Milltown Reservoir have been designated as U.S. Environmental Protection Agency Superfund sites because of metal-contaminated bottom sediments. We evaluated the impacts of past mining activities on the Clark Fork River ecosystem using benthic invertebrate community assessment, residue chemistry, and toxicity testing. Oligochaeta and Chironomidae generally accounted for over 90% of the benthic invertebrate community in the soft sediment depositional areas. Taxa of Oligochaeta and Chironomidae were predominantly pollution tolerant. Higher numbers of Chironomidae genera were present at stations with higher concentrations of metals in sediment identified as toxic by the amphipod Hyalella azteca in 28-d exposures. Frequency of mouthpart deformities in genera of Chironomidae was low and did not correspond to concentrations of metals in sediment. Total abundance of organisms/m2 did not correspond to concentrations of metals in the sediment samples. Chemical analyses, laboratory toxicity tests, and benthic community evaluations all provide evidence of metal-induced degradation to aquatic communities in both the reservoir and the river. Using a weight-of-evidence approach-the Sediment Quality Triad - provided good concurrence among measures of benthic community structure, sediment chemistry, and laboratory toxicity.

  14. Preparation and characterization of nickel-spiked freshwater sediments for toxicity tests: toward more environmentally realistic nickel partitioning

    USGS Publications Warehouse

    Brumbaugh, William G.; Besser, John M.; Ingersoll, Christopher G.; May, Thomas W.; Ivey, Chris D.; Schlekat, Christian E.; Garman, Emily R.

    2013-01-01

    Two spiking methods were compared and nickel (Ni) partitioning was evaluated during a series of toxicity tests with 8 different freshwater sediments having a range of physicochemical characteristics. A 2-step spiking approach with immediate pH adjustment by addition of NaOH at a 2:1 molar ratio to the spiked Ni was effective in producing consistent pH and other chemical characteristics across a range of Ni spiking levels. When Ni was spiked into sediment having a high acid-volatile sulfide and organic matter content, a total equilibration period of at least 10 wk was needed to stabilize Ni partitioning. However, highest spiking levels evidently exceeded sediment binding capacities; therefore, a 7-d equilibration in toxicity test chambers and 8 volume-additions/d of aerobic overlying water were used to avoid unrealistic Ni partitioning during toxicity testing. The 7-d pretest equilibration allowed excess spiked Ni and other ions from pH adjustment to diffuse from sediment porewater and promoted development of an environmentally relevant, 0.5- to 1-cm oxic/suboxic sediment layer in the test chambers. Among the 8 different spiked sediments, the logarithm of sediment/porewater distribution coefficient values (log Kd) for Ni during the toxicity tests ranged from 3.5 to 4.5. These Kd values closely match the range of values reported for various field Ni-contaminated sediments, indicating that testing conditions with our spiked sediments were environmentally realistic.

  15. Influence of a Brazilian sewage outfall on the toxicity and contamination of adjacent sediments

    USGS Publications Warehouse

    Abessa, D.M.S.; Carr, R.S.; Rachid, B.R.F.; Sousa, E.C.P.M.; Hortelani, M.A.; Sarkis, J.E.

    2005-01-01

    The submarine sewage outfall of Santos (SSOS) is situated in the Santos Bay (São Paulo, Brazil) and is potentially a significant source of contaminants to the adjacent marine ecosystem. The present study aimed to assess the influence of SSOS on the sediment toxicity and contamination at Santos Bay. At the disposal site, sediments tended to be finer, organically richer and exhibited higher levels of surfactants and metals, sometimes exceeding the “Threshold Effect Level” values. The SSOS influence was more evident toward the East, where the sediments exhibited higher levels of TOC, total S and metals during the summer 2000 sampling campaign. Sediment toxicity to amphipods was consistently detected in four of the five stations studied. Amphipod survival tended to correlate negatively to Hg, total N and % mud. This work provides evidence that the SSOS discharge affects the quality of sediments from Santos Bay, and that control procedures are warranted.

  16. Evaluation of the Reference Envelope Approach for Assessing Toxicity in Contaminated Surficial Urban Freshwater Sediments

    EPA Science Inventory

    The reference envelope (RE) has been proposed as an alternative approach to assess sediment toxicity to overcome limitations imposed by the use of control sediments including differences in non-contaminant characteristics and low statistical power when many test sediments are com...

  17. Recent Developments in Whole Sediment Toxicity Identification Evaluations: Innovations in Manipulations and Endpoints

    EPA Science Inventory

    Whole sediment Toxicity Identification Evaluation (TIE) methods were developed primarily in the late 1990s and early 2000s in research programs dedicated to developing manipulations and endpoints to characterize and identify causes of toxicity to benthic freshwater and marine org...

  18. Photoenhanced toxicity of weathered crude oil in sediment and water to larval zebrafish

    EPA Science Inventory

    Solar radiation exposure can increase the toxicity of bioaccumulated oil compounds in a diversity of aquatic species. We investigated the photoenhanced toxicity of weathered South Louisiana crude oil in sediment and water accommodated fractions (WAF) to larval zebrafish. Larvae w...

  19. A sediment ecotoxicity assessment platform for in situ measures of chemistry, bioaccumulation and toxicity. Part 2: Integrated application to a shallow estuary.

    PubMed

    Rosen, Gunther; Chadwick, D Bart; Burton, G Allen; Taulbee, W Keith; Greenberg, Marc S; Lotufo, Guilherme R; Reible, Danny D

    2012-03-01

    A comprehensive, weight-of-evidence based ecological risk assessment approach integrating laboratory and in situ bioaccumulation and toxicity testing, passive sampler devices, hydrological characterization tools, continuous water quality sensing, and multi-phase chemical analyses was evaluated. The test site used to demonstrate the approach was a shallow estuarine wetland where groundwater seepage and elevated organic and inorganic contaminants were of potential concern. Although groundwater was discharging into the surficial sediments, little to no chemical contamination was associated with the infiltrating groundwater. Results from bulk chemistry analysis, toxicity testing, and bioaccumulation, however, suggested possible PAH toxicity at one station, which might have been enhanced by UV photoactivation, explaining the differences between in situ and laboratory amphipod survival. Concurrently deployed PAH bioaccumulation on solid-phase micro-extraction fibers positively correlated (r(2) ≥ 0.977) with in situ PAH bioaccumulation in amphipods, attesting to their utility as biomimetics, and contributing to the overall improved linkage between exposure and effects demonstrated by this approach. Published by Elsevier Ltd.

  20. Evaluation of Reduced Sediment Volume Procedures for Acute Toxicity Tests Using the Estuarine Amphipod Leptocheirus plumulosus

    EPA Science Inventory

    The volume of sediment required to perform a sediment toxicity bioassay is a major driver of the overall cost associated with that bioassay. Sediment volume affects bioassay cost due to sediment collection, transportation, storage, and disposal costs as well as labor costs assoc...

  1. PREDICTING THE TOXICITY OF CHROMIUM-SPIKED SEDIMENTS USING ACID VOLATILE SULFIDE AND INTERSTITAL WATER MEASUREMENTS

    EPA Science Inventory

    Chromium exists in sediments in two oxidation states: Cr(III) is relatively insoluble and nontoxic, whereas Cr(VI) is much more soluble and toxic. Cr(VI) is not thermodynamically favored in anoxic sediments. Acid-volatile sulfide (A VS) is formed only in anoxic sediments, therefo...

  2. PREDICTING THE TOXICITY OF CHROMIUM-SPIKED SEDIMENTS USING ACID-VOLATILE SULFIDE AND INTERSTITIAL WATER MEASUREMENTS

    EPA Science Inventory

    Chromium exists in sediments in two oxidation states: Cr(III) is relatively insoluble and nontoxic, whereas Cr(VI) is much more soluble and toxic. Cr(VI) is not thermodynamically favored in anoxic sediments. Acid-volatile sulfide (AVS) is formed only in anoxic sediments, therefor...

  3. Transcriptomic analyses in a benthic fish exposed to contaminated estuarine sediments through laboratory and in situ bioassays.

    PubMed

    Costa, Pedro M; Miguel, Célia; Caeiro, Sandra; Lobo, Jorge; Martins, Marta; Ferreira, Ana M; Caetano, Miguel; Vale, Carlos; DelValls, T A; Costa, Maria H

    2011-11-01

    The transcription of contaminant response-related genes was investigated in juvenile Senegalese soles exposed to sediments from three distinct sites (a reference plus two contaminated) of a Portuguese estuary (the Sado, W Portugal) through simultaneous 28-day laboratory and in situ bioassays. Transcription of cytochrome P450 1A (CYP1A), metallothionein 1 (MT1), glutathione peroxidase (GPx), catalase (CAT), caspase 3 (CASP3) and 90 kDa heat-shock protein alpha (HSP90AA) was surveyed in the liver by real-time PCR. CASP3 transcription analysis was complemented by surveying apoptosis through the TUNEL reaction. After 14 days of exposure, relative transcription was either reduced or decreased in fish exposed to the contaminated sediments, revealing a disturbance stress phase during which animals failed to respond to insult. After 28 days of exposure all genes' transcription responded to contamination but laboratory and in situ assays depicted distinct patterns of regulation. Although sediments revealed a combination of organic and inorganic toxicants, transcription of the CYP1A gene was consistently correlated to organic contaminants. Metallothionein regulation was found correlated to metallic and organic xenobiotic contamination in the laboratory and in situ, respectively. The transcription of oxidative stress-related genes can be a good indicator of general stress but caution is mandatory when interpreting the results since regulation may be influenced by multiple factors. As for MT1, HSP90 up-regulation has potential to be a good indicator for total contamination, as well as the CASP3 gene, even though hepatocyte apoptosis depicted values inconsistent with sediment contamination, showing that programmed cell death did not directly depend on caspase transcription alone.

  4. Toxicity of stormwater treatment pond sediments to Hyallela azteca (Amphipoda)

    USGS Publications Warehouse

    Karouna-Renier, N.K.; Sparling, D.W.

    1997-01-01

    Stormwater wetlands are created to contain runoff from human developments and are designed to retain contaminants such as heavy metals, petroleum hydrocarbons, silt, pesticides, and nutrients before the runoff enter natural waterways. Because of this design, stormwater wetlands have a potential of becoming toxic sinks to organisms utilizing the wetlands for habitat. We conducted a 10-day sediment bioassay on Hyallela azteca as part of a larger study on the possible hazards of stormwater wetlands to aquatic invertebrates. Water and sediments from 10 wetlands separated into reference, residential, commercial, and highway land uses were used. No differences in survival were observed among land use categories, possibly because the ratio of acid volatile sulfides/simultaneously extractable metals (AVS/SEM) was > 1.0 for all of the ponds tested; values > 1 in this ratio are indications that toxic metals may not be bioavailable. Survival and growth rates correlated positively with AVS.

  5. Disturbances to metal partitioning during toxicity testing of iron(II)-rich estuarine pore waters and whole sediments.

    PubMed

    Simpson, Stuart L; Batley, Graeme E

    2003-02-01

    Metal partitioning is altered when suboxic estuarine sediments containing Fe(II)-rich pore waters are disturbed during collection, preparation, and toxicity testing. Experiments with model Fe(II)-rich pore waters demonstrated the rates at which adsorptive losses of Cd, Cu, Ni, Mn, Pb, and Zn occur upon exposure to air. Experiments with Zn-contaminated estuarine sediments demonstrated large and often unpredictable changes to metal partitioning during sediment storage, removal of organisms, and homogenization before testing. Small modifications to conditions, such as aeration of overlying waters, caused large changes to the metal partitioning. Disturbances caused by sediment collection required many weeks for reestablishment of equilibrium. Bioturbation by benthic organisms led to oxidation of pore-water Fe(II) and lower Zn fluxes because of the formation of Fe hydroxide precipitates that adsorb pore-water Zn. For five weeks after the addition of organisms to sediments, Zn fluxes increased slowly as the organisms established themselves in the sediments, indicating that the establishment of equilibrium was not rapid. The results are discussed in terms of the dynamic nature of suboxic, Fe(II)-rich estuarine sediments, how organisms perturb their environment, and the importance of understanding chemistry in toxicity testing with whole sediments or pore water. Recommendations are provided for the handling of sediments for toxicity testing.

  6. A simple control for sediment-toxicity exposures using the amphipod, Hyalella azteca

    USGS Publications Warehouse

    Lasier, Peter J.; Urich, Matthew L.

    2014-01-01

    Sediment-toxicity exposures comparing survival and growth of the freshwater amphipod, Hyalella azteca, are often components of aquatic-habitat assessments. Standardized exposure methods have been established and require evaluations for quality assurance. Test acceptability using performance-based criteria can be determined from exposures to control sediments, which are collected from the environment or formulated from commercially available components. Amending sand with leached alfalfa solids provided a simple formulated sediment that elicited consistently acceptable survival and growth in 28-day exposures with and without a daily feeding regime. A procedure is described for preparing the sediment along with results from comparisons among sand, amended sand, and field-collected sediments that incorporated three feeding regimes.

  7. EFFECTS OF SEDIMENT TYPE ON BENTHIC MACROINFAUNAL COLONIZATION OF LABORATORY MICROCOSMS

    EPA Science Inventory

    We tested the effects of four different sediment types on macroinfaunal colonization and community development in our laboratory flow-thru microcosm system (all microcosms were 20 cm side-1 and sediment depth was 5 cm) over a period of 41 days. Sediments included Santa Rosa Islan...

  8. Identification of acute toxicants in New Bedford Harbor sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, K.T.; McKinney, R.A.; Kuhn, A.

    1997-03-01

    New Bedford Harbor (NBH) is a marine Superfund site contaminated with high concentrations of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and metals. Experiments were conducted to determine the causal toxic agent(s) in pore waters from New Bedford Harbor sediments to amphipods and mysid shrimp. Chemical manipulations to characterize toxicity revealed that pore-water toxicity was organic in nature. Fractionation and subsequent mass spectral identification of peaks in the toxic fraction indicated that PCBs. PAHs, and unknown compounds were present. Comparisons of PAH LC50s and PAH concentrations in this fraction indicated that the toxicity was not due to PAHs because themore » PAH concentrations were much lower than the reported PAH LC50s. One unknown peak was positively identified as bis(2-ethylhexyl) phthalate, and the other tentatively identified as pyrazole. Toxicity tests and comparison of toxicity in the blank and toxic fractions eliminated the two unknowns as toxic causal agents. The authors determined the range of PCB LC50s to fall between 10 and 110 ppb for Mysidopsis bahia and Ampelisca abdita. Concentrations of PCBs for the toxic fractions ranged from 12 to 27 ppb. This range falls within the observed PCB LC50s for M. bahia and A. abdita. Based upon these PCB concentrations, they concluded that PCBs were the acute toxic agents in NBH pore waters. Other compounds in the toxic fractions, or compounds that coeluted and were undistinguished from PCBs had minor contributions to the measured toxicity.« less

  9. Toxicity of lead-contaminated sediment to mute swans

    USGS Publications Warehouse

    Day, D.D.; Beyer, W.N.; Hoffman, D.J.; Morton, Alexandra; Sileo, L.; Audet, D.J.; Ottinger, M.A.

    2003-01-01

    weight and hematocrit and hemoglobin concentrations in swans on control (no sediment) and reference (uncontaminated) sediment diets remained unchanged. These data provide evidence that mute swans consuming environmentally relevant concentrations of Coeur d'Alene River Basin sediment developed severe sublethal lead poisoning. Furthermore, toxic effects were more pronounced when the birds were fed lead contaminated sediment combined with rice, which closely resembles the diet of swans in the wild.

  10. Sediment Chemistry and Toxicity in Barnegat Bay, New Jersey: Pre- and Post- Hurricane Sandy, 2012-2013.

    USGS Publications Warehouse

    Romanok, Kristin M.; Szabo, Zoltan; Reilly, Timothy J.; Defne, Zafer; Ganju, Neil K.

    2016-01-01

    Hurricane Sandy made landfall in Barnegat Bay, October, 29, 2012, damaging shorelines and infrastructure. Estuarine sediment chemistry and toxicity were investigated before and after to evaluate potential environmental health impacts and to establish post-event baseline sediment-quality conditions. Trace element concentrations increased throughout Barnegat Bay up to two orders of magnitude, especially north of Barnegat Inlet, consistent with northward redistribution of silt. Loss of organic compounds, clay, and organic carbon is consistent with sediment winnowing and transport through the inlets and sediment transport modeling results. The number of sites exceeding sediment quality guidance levels for trace elements tripled post-Sandy. Sediment toxicity post-Sandy was mostly unaffected relative to pre-Sandy conditions, but at the site with the greatest relative increase for trace elements, survival rate of the test amphipod decreased (indicating degradation). This study would not have been possible without comprehensive baseline data enabling the evaluation of storm-derived changes in sediment quality.

  11. Sediment chemistry and toxicity in Barnegat Bay, New Jersey: Pre- and post-Hurricane Sandy, 2012-13.

    PubMed

    Romanok, Kristin M; Szabo, Zoltan; Reilly, Timothy J; Defne, Zafer; Ganju, Neil K

    2016-06-30

    Hurricane Sandy made landfall in Barnegat Bay, October, 29, 2012, damaging shorelines and infrastructure. Estuarine sediment chemistry and toxicity were investigated before and after to evaluate potential environmental health impacts and to establish post-event baseline sediment-quality conditions. Trace element concentrations increased throughout Barnegat Bay up to two orders of magnitude, especially north of Barnegat Inlet, consistent with northward redistribution of silt. Loss of organic compounds, clay, and organic carbon is consistent with sediment winnowing and transport through the inlets and sediment transport modeling results. The number of sites exceeding sediment quality guidance levels for trace elements tripled post-Sandy. Sediment toxicity post-Sandy was mostly unaffected relative to pre-Sandy conditions, but at the site with the greatest relative increase for trace elements, survival rate of the test amphipod decreased (indicating degradation). This study would not have been possible without comprehensive baseline data enabling the evaluation of storm-derived changes in sediment quality. Published by Elsevier Ltd.

  12. Selected streambed sediment compounds and water toxicity results for Westside Creeks, San Antonio, Texas, 2014

    USGS Publications Warehouse

    Crow, Cassi L.; Wilson, Jennifer T.; Kunz, James L.

    2016-12-01

    IntroductionThe Alazán, Apache, Martínez, and San Pedro Creeks in San Antonio, Texas, are part of a network of urban tributaries to the San Antonio River, known locally as the Westside Creeks. The Westside Creeks flow through some of the oldest neighborhoods in San Antonio. The disruption of streambed sediment is anticipated during a planned restoration to improve and restore the environmental condition of 14 miles of channelized sections of the Westside Creeks in San Antonio. These construction activities can create the potential to reintroduce chemicals found in the sediments into the ecosystem where, depending on hydrologic and environmental conditions, they could become bioavailable and toxic to aquatic life. Elevated concentrations of sediment-associated contaminants often are measured in urban areas such as San Antonio, Tex. Contaminants found in sediment can affect the health of aquatic organisms that ingest sediment. The gradual accumulation of trace elements and organic compounds in aquatic organisms can cause various physiological issues and can ultimately result in death of the aquatic organisms; in addition, subsequent ingestion of aquatic organisms can transfer the accumulated contaminants upward through the food chain (a process called biomagnification).The U.S. Geological Survey, in cooperation with the San Antonio River Authority, collected sediment samples and water samples for toxicity testing from sites on the Westside Creeks as part of an initial characterization of selected contaminants in the study area. Samples were collected in January 2014 during base-flow conditions and again in May 2104 after a period of stormwater runoff (poststorm conditions). Sediment samples were analyzed for selected constituents, including trace elements and organic contaminants such as pesticides, brominated flame retardants, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). In addition, as an indicator of ecological health (and

  13. EVALUATION OF THE EFFECTS OF COAL FLY ASH AMENDMENTS ON THE TOXICITY OF A CONTAMINATED MARINE SEDIMENT

    PubMed Central

    Burgess, Robert M.; Perron, Monique M.; Friedman, Carey L.; Suuberg, Eric M.; Pennell, Kelly G.; Cantwell, Mark G.; Pelletier, Marguerite C.; Ho, Kay T.; Serbst, Jonathan R.; Ryba, Stephan A.

    2013-01-01

    Approaches for cleaning-up contaminated sediments range from dredging to in situ treatment. In the present report, we discuss the effects of amending reference and contaminated sediments with coal fly ash to reduce the bioavailability and toxicity of a field sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Six fly ashes and a coconut charcoal were evaluated in 7 d whole sediment toxicity tests with a marine amphipod (Ampelisca abdita) and mysid (Americamysis bahia). Fly ashes with high carbon content and the coconut charcoal showed proficiency at reducing toxicity. Some of the fly ashes demonstrated toxicity in the reference treatments. It is suspected that some of this toxicity is related to the presence of ammonia associated with fly ashes as a result of post-oxidation treatment to reduce nitrous oxides emissions. Relatively simple methods exist to remove ammonia from fly ash prior to use and fly ashes with low ammonia content are available. Fly ashes were also shown to effectively reduce overlying water concentrations of several PAHs. There was no evidence of the release of the metals cadmium, copper, nickel or lead from the fly ashes. A preliminary 28 d polychaete bioaccumulation study with one of the high carbon fly ashes and a reference sediment was also performed. Although preliminary, there was no evidence of adverse effects to worm growth or lipid content, or the accumulation of PAHs or mercury from exposure to the fly ash. These data show fly ashes with high carbon contents may represent viable remedial materials for reducing the bioavailability of organic contaminants in sediments. PMID:18717615

  14. Biomarkers of effects of hypoxia and oil-shale contaminated sediments in laboratory-exposed gibel carp (Carassius auratus gibelio).

    PubMed

    Kreitsberg, Randel; Baršienė, Janina; Freiberg, Rene; Andreikėnaitė, Laura; Tammaru, Toomas; Rumvolt, Kateriina; Tuvikene, Arvo

    2013-12-01

    In North-East Estonia, considerable amounts of toxicants (e.g. polycyclic aromatic hydrocarbons (PAHs), phenols, heavy metals) leach into water bodies through discharges from the oil-shale industry. In addition, natural and anthropogenic hypoxic events in water bodies affect the health of aquatic organisms. Here we report a study on the combined effects of contaminated sediment and hypoxia on the physiology of gibel carp (Carssius auratus gibelio). We conducted a laboratory exposure study that involved exposure to polluted sediments from oil-shale industries (River Purtse) and sediments from a relatively clean environment (River Selja), together with sediments spiked with PAHs. The oxygen content (saturation vs. hypoxia (< 2 mg/L)) was changed to reflect hypoxia. A multi-biomarker approach was chosen to enable the combined effects to be assessed comprehensively and integratively. We used HPLC to measure the PAH concentration in sediment and fish muscle, fixed wavelength fluorescence (FF) analyses to indicate the presence of PAH metabolites in fish bile, and nuclear abnormalities in erythrocytes as markers of geno- and cyto-toxicity; and we monitored the change in body condition and measured EROD activity to indicate CYP1A induction. High levels of PAH conjugates in fish bile were found in the group exposed to the Purtse River sediment under hypoxia. The results suggested that induction of the CYP1A gene was modulated by hypoxia as well as by heavy metals. We found a correlation between several erythrocyte abnormalities (8-shaped nuclei and blebbed nuclei) and PAH metabolite content in fish. In conclusion, a measurable effect of pollution from the oil-shale industry on fish health parameters was clear under different oxygen levels. © 2013 Elsevier Inc. All rights reserved.

  15. Fine Sediment Effects on Brook Trout Eggs in Laboratory Streams

    Treesearch

    David G. Argent; Patricia A. Flebbe

    1999-01-01

    This study was designed to determine effects of different fine sediments (0.43-0.85 mm in diameter) on survival of brook trout (Salvelinus fontinalis) eggs during early developmental stages under laboratory conditions. Intragravel permeability and dissolved oxygen declined with increasing fine sediment amounts. Survival at each developmental stage...

  16. PAHs concentration and toxicity in organic solvent extracts of atmospheric particulate matter and sea sediments.

    PubMed

    Ozaki, Noriatsu; Takeuchi, Shin-ya; Kojima, Keisuke; Kindaichi, Tomonori; Komatsu, Toshiko; Fukushima, Takehiko

    2012-01-01

    The concentration of polycyclic aromatic hydrocarbons (PAHs) and the toxicity to marine bacteria (Vibrio fischeri) were measured for the organic solvent extracts of sea sediments collected from an urban watershed area (Hiroshima Bay) of Japan and compared with the concentrations and toxicity of atmospheric particulate matter (PM). In atmospheric PM, the PAHs concentration was highest in fine particulate matter (FPM) collected during cold seasons. The concentrations of sea sediments were 0.01-0.001 times those of atmospheric PM. 1/EC50 was 1-10 L g(-1) PM for atmospheric PM and 0.1-1 L g(-1) dry solids for sea sediments. These results imply that toxic substances from atmospheric PM are diluted several tens or hundreds of times in sea sediments. The ratio of the 1/EC50 to PAHs concentration ((1/EC50)/16PAHs) was stable for all sea sediments (0.1-1 L μg(-1) 16PAHs) and was the same order of magnitude as that of FPM and coarse particulate matter (CPM). The ratio of sediments collected from the west was more similar to that of CPM while that from the east was more similar to FPM, possibly because of hydraulic differences among water bodies. The PAHs concentration pattern analyses (principal component analysis and isomer ratio analysis) were conducted and the results showed that the PAHs pattern in sea sediments was quite different to that of FPM and CPM. Comparison with previously conducted PAHs analyses suggested that biomass burning residues comprised a major portion of these other sources.

  17. IDENTIFICATION AND EVALUATION OF STRESSORS IN TOXIC SEDIMENTS AND DREDGED MATERIALS

    EPA Science Inventory

    Identification of stressors in aquatic systems is critical to sound assessment and management of our nation's waterways for a number of reasons. Identification of specific classes of toxicants (or stressors) can be useful in designing effective sediment remediation methods and re...

  18. Sediment nickel bioavailability and toxicity to estuarine crustaceans of contrasting bioturbative behaviors--an evaluation of the SEM-AVS paradigm.

    PubMed

    Chandler, G Thomas; Schlekat, Christian E; Garman, Emily R; He, Lijian; Washburn, Katherine M; Stewart, Emily R; Ferry, John L

    2014-11-04

    Robust sediment quality criteria require chemistry and toxicity data predictive of concentrations where population/community response should occur under known geochemical conditions. Understanding kinetic and geochemical effects on toxicant bioavailability is key, and these are influenced by infaunal sediment bioturbation. This study used fine-scale sediment and porewater measurement of contrasting infaunal effects on carbon-normalized SEM-AVS to evaluate safe or potentially toxic nickel concentrations in a high-binding Spartina saltmarsh sediment (4%TOC; 35-45 μmol-S2-·g(-1)). Two crustaceans producing sharply contrasting bioturbation--the copepod Amphiascus tenuiremis and amphipod Leptocheirus plumulosus--were cultured in oxic to anoxic sediments with SEM[Ni]-AVS, TOC, porewater [Ni], and porewater DOC measured weekly. From 180 to 750 μg-Ni·g(-1) sediment, amphipod bioturbation reduced [AVS] and enhanced porewater [Ni]. Significant amphipod uptake, mortality, and growth-depression occurred at the higher sediment [Ni] even when [SEM-AVS]/foc suggested acceptable risk. Less bioturbative copepods produced higher AVS and porewater DOC but exhibited net population growth despite porewater [Ni] 1.3-1.7× their aqueous [Ni] LOEC. Copepod aqueous tests with/without dissolved organic matter showed significant aqueous DOC protection, which suggests porewater DOC attenuates sediment Ni toxicity. The SEM[Ni]-AVS relationship was predictive of acceptable risk for copepods at the important population-growth level.

  19. Effects of Storage on Sediment Toxicity, Bioaccumulation Potential, and Chemistry

    DTIC Science & Technology

    1991-01-01

    and tested with organisms used by the US Army Engineer District, New York. Test sedi- ments were collected from Westchester Creek (WC), Gowanus Bay ...Ms. Carole Brown, ERSD, obtained the sediment samples. Dr. Eric Crecelius, Battelle Pacific Northwest Laboratories, Sequim , WA, coordinated chemical...other sites, suspected of containing contam- inated sediment, were Westchester Creek (WC), Gowanus Bay (GB), and Arthur Kill (AK), all located in

  20. THE INFLUENCE OF ORGANIC MATTER QUALITY ON THE TOXICITY AND PARTIONING OF SEDIMENT-ASSOCIATED FLUORANTHENE

    EPA Science Inventory

    Organic matter in sediment is derived from many sources, including dead plants and animals, fecal matter, and flocculated colloidal organic matter. hemical partitioning and toxicity of nonpolar organic contaminants is strongly affected by the quantity of sediment organic matter. ...

  1. Detrital magnetization of laboratory-redeposited sediments

    NASA Astrophysics Data System (ADS)

    Valet, Jean-Pierre; Tanty, Cyrielle; Carlut, Julie

    2017-07-01

    We conducted several redeposition experiments in laboratory using natural and artificial sediments in order to investigate the role of grain size and lithology on sedimentary remanence acquisition. The role of grain size was investigated by using sorted sediment from natural turbidites. Taking advantage of the magnetic grain size distribution within turbidites, we compared redeposition experiments performed with coarse magnetic grains taken from the bottom layers of a turbidite with fine grains from the upper layers of the same turbidite. In order to document the magnetization acquired for increasing sediment concentrations that is analogous to increasing depth in the sediment column, the samples were frozen at temperatures between -5 and -10 °C. Magnetization acquisition behaved similarly in both situations, so that little smearing of the palaeomagnetic signal should be linked to grain size variability within this context. Other series of experiments were aimed at investigating the influence of lithology. We used clay or carbonated sediments that were combined with magnetic separates from basaltic rocks or with single-domain biogenic magnetite. The experiments revealed that the magnetization responded differently with clay and carbonates. Clay rapidly inhibited alignment of magnetic grains at low concentrations and, therefore, significant magnetization lock-in occurred despite large water contents, perhaps even within the bioturbated layer. Extension of the process over a deeper interval contributes to smear the geomagnetic signal and therefore to alter the palaeomagnetic record. In carbonates, the magnetization was acquired within a narrow window of 45-50 per cent sediment concentration, therefore, little smearing of the geomagnetic signal can be expected. Finally, experiments on carbonate sediments and biogenic magnetite with increasing field intensities indicate that magnetization acquisition is linear with respect to field intensity. Altogether, the results

  2. Can interpreting sediment toxicity tests a mega sites benefit from novel approaches to normalization to address batching of tests?

    EPA Science Inventory

    Sediment toxicity tests are a key tool used in Ecological Risk Assessments for contaminated sediment sites. Interpreting test results and defining toxicity is often a challenge. This is particularly true at mega sites where the testing regime is large, and by necessity performed ...

  3. Toxicity of sediment cores collected from the Ashtabula River in northeastern Ohio, USA, to the amphipod Hyalella azteca

    USGS Publications Warehouse

    Ingersoll, C.G.; Kemble, N.E.; Kunz, J.L.; Brumbaugh, W.G.; MacDonald, D.D.; Smorong, D.

    2009-01-01

    This study was conducted to support a Natural Resource Damage Assessment and Restoration project associated with the Ashtabula River in Ohio. The objective of the study was to evaluate the chemistry and toxicity of 50 sediment samples obtained from five cores collected from the Ashtabula River (10 samples/core, with each 10-cm-diameter core collected to a total depth of about 150 cm). Effects of chemicals of potential concern (COPCs) measured in the sediment samples were evaluated by measuring whole-sediment chemistry and whole-sediment toxicity in the sediment samples (including polycyclic aromatic hydrocarbons [PAHs], polychlorinated biphenyls [PCBs], organochlorine pesticides, and metals). Effects on the amphipod Hyalella azteca at the end of a 28-day sediment toxicity test were determined by comparing survival or length of amphipods in individual sediment samples in the cores to the range of responses of amphipods exposed to selected reference sediments that were also collected from the cores. Mean survival or length of amphipods was below the lower limit of the reference envelope in 56% of the sediment samples. Concentrations of total PCBs alone in some samples or concentrations of total PAHs alone in other samples were likely high enough to have caused the reduced survival or length of amphipods (i.e., concentrations of PAHs or PCBs exceeded mechanistically based and empirically based sediment quality guidelines). While elevated concentrations of ammonia in pore water may have contributed to the reduced length of amphipods, it is unlikely that the reduced length was caused solely by elevated ammonia (i.e., concentrations of ammonia were not significantly correlated with the concentrations of PCBs or PAHs and concentrations of ammonia were elevated both in the reference sediments and in the test sediments). Results of this study show that PAHs, PCBs, and ammonia are the primary COPCs that are likely causing or substantially contributing to the toxicity to

  4. Distribution and assessment of sediment toxicity in Tamaki Estuary, Auckland, New Zealand

    NASA Astrophysics Data System (ADS)

    Abrahim, G. M. S.; Parker, R. J.; Nichol, S. L.

    2007-07-01

    Heavy metal levels in surface sediments from Tamaki Estuary demonstrate significant up estuary increases in Cu, Pb, Zn, Cd and mud concentrations. Increased metal levels towards the head of the estuary are linked to local catchment sources reflecting the historical development, industrialisation and urbanisation of catchment areas surrounding the upper estuary. The relatively narrow constriction in the middle estuary (Panmure area), makes it susceptible to accumulation of upper estuary pollutants, since the constriction reduces circulation and extends the time required for fine waterborne sediments in the upper estuary to exchange with fresh coastal water. As a result fine fraction sediments trapped in the upper estuary facilitate capture and retention of pollutants at the head of the estuary. The increase in sandy mud poor sediments towards the mouth of the estuary is associated with generally low metal concentrations. The estuary’s geomorphic shape with a mid estuary constriction, sediment texture and mineralogy and catchment history are significant factors in understanding the overall spatial distribution of contaminants in the estuary. Bulk concentration values for Cu, Pb, Zn, and Cd in all the studied surface samples occur below ANZECC ISQG-H toxicity values. Cd and Cu concentrations are also below the ISQG-L toxicity levels for these elements. However, Pb and Zn concentrations do exceed the ISQG-L values in some of the surface bulk samples in the upper estuary proximal to long established sources of catchment pollution.

  5. Assessment of sediment contamination at Great Lakes Areas of Concern: the ARCS Program Toxicity-Chemistry Work Group strategy

    USGS Publications Warehouse

    Ross, P.E.; Burton, G.A.; Crecelius, E.A.; Filkins, J. C.; Giesy, J.P.; Ingersoll, C.G.; Landrum, P.F.; Mac, M.J.; Murphy, T.J.; Rathbun, J. E.; Smith, V. E.; Tatem, H. E.; Taylor, R.W.

    1992-01-01

    In response to a mandate in Section 118(c)(3) of the Water Quality Act of 1987, a program called Assessment and Remediation of Contaminated Sediments (ARCS) was established. Four technical work groups were formed. This paper details the research strategy of the Toxicity-Chemistry Work Group.The Work Group's general objectives are to develop survey methods and to map the degree of contamination and toxicity in bottom sediments at three study areas, which will serve as guidance for future surveys at other locations. A related objective is to use the data base that will be generated to calculate sediment quality concentrations by several methods. The information needed to achieve these goals will be collected in a series of field surveys at three areas: Saginaw Bay (MI), Grand Calumet River (IN), and Buffalo River (NY). Assessments of the extent of contamination and potential adverse effects of contaminants in sediment at each of these locations will be conducted by collecting samples for physical characterization, toxicity testing, mutagenicity testing, chemical analyses, and fish bioaccumulation assays. Fish populations will be assessed for tumors and external abnormalities, and benthic community structure will be analyzed. A mapping approach will use low-cost indicator parameters at a large number of stations, and will extrapolate by correlation from traditional chemical and biological studies at a smaller number of locations. Sediment toxicity testing includes elutriate, pore water and whole sediment bioassays in a three-tiered framework. In addition to the regular series of toxicity tests at primary mater stations, some stations are selected for a more extensive suite of tests.

  6. Developmental Toxicity of Louisiana Crude Oiled Sediment to Zebrafish

    EPA Science Inventory

    Embryonic exposures to polycyclic aromatic hydrocarbons (PAHs) and petroleum products cause a characteristic suite of developmental defects in a variety of fish species. We exposed zebrafish embryos to sediment mixed with laboratory weathered South Louisiana crude oil. Oiled sedi...

  7. SEDIMENT TOXICITY IDENTIFICATION AND EVALUATIONS: NEW TEST METHODS. WHAT'S BEEN DONE? WHERE ARE WE GOING?

    EPA Science Inventory

    Toxic sediments pose a risk to aquatic life, human health and wildlife throughout the world. There is an overwhelming amount of evidence that demonstrates chemicals in sediments are responsible for toxicological and ecological effects. The ability to identify the class or specifi...

  8. INTERLABORATORY COMPARISON OF A REDUCED VOLUME MARINE SEDIMENT TOXICITY TEST METHOD USING AMPHIPOD AMPELISCA ABDITA

    EPA Science Inventory

    The U.S. Environmental Protection Agency has standardized methods for performing acute marine amphipod sediment toxicity tests. A test design reducing sediment volume from 200 to 50 ml and overlying water from 600 to 150 ml was recently proposed. An interlaboratory comparison wa...

  9. Evaluation of the Polyethylene Reverse Sampler as a Dosing System in Marine Phase II Whole Sediment Toxicity Identification Evaluations (TIEs)

    EPA Science Inventory

    Contaminated marine sediments can cause acute and chronic impairments to benthic organisms. Nonionic organic contaminants (NOCs) are often a primary cause of impairment. Toxicity Identification Evaluations (TIEs) are used to identify chemicals causing toxicity in sediments. Ph...

  10. Quality-assurance plan for the analysis of fluvial sediment by laboratories of the U.S. Geological Survey

    USGS Publications Warehouse

    Matthes, Wilbur J.; Sholar, Clyde J.; George, John R.

    1992-01-01

    This report describes procedures used by the Iowa District sediment laboratory of the U.S. Geological Survey to assure the quality of sediment-laboratory data. These procedures can be used by other U.S. Geological Survey laboratories regardless of size and type of operation for quality assurance and quality control of specific sediment-laboratory processes. Also described are the equipment, specifications, calibration and maintenance, and the protocol for methods used in the analyses of fluvial sediment for concentration or particle size.

  11. STORAGE DURATION AND TEMPERATURE AND THE ACUTE TOXICITIES OF ESTUARINE SEDIMENTS TO MYSIDOPSIS BAHIA AND LEPTOCHEIRUS PLUMULOSUS.

    EPA Science Inventory

    Many statutory needs for sediment quality assessment exist (U.S. EPA 1996). A variety of sediment toxicity tests have been used to support the development of sediment quality guidelines and to determine the benthic impacts of dredging activities and point and non-point source tox...

  12. STORAGE DURATION AND TEMPERATURE AND THE ACUTE TOXICITIES OF ESTUARINE SEDIMENTS TO MYSIDOPSIS BAHIA AND LEPTOCHEIRUS PLUMULOSUS

    EPA Science Inventory

    Many statutory needs for sediment quality assessment exist (U.S. EPA 1996). A variety of sediment toxicity tests have been used to support the development of sediment quality guidelines and to determine the benthic impacts of dredging activities and point and non-point source tox...

  13. A comparison of relative toxicity rankings by some small-scale laboratory tests

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Small-scale laboratory tests for fire toxicity, suitable for use in the average laboratory hood, are needed for screening and ranking materials on the basis of relative toxicity. The performance of wool, cotton, and aromatic polyamide under several test procedures is presented.

  14. Sediment toxicity assessment in the Lagoon of Venice (Italy) using Paracentrotus lividus (Echinodermata: Echinoidea) fertilization and embryo bioassays.

    PubMed

    Volpi Ghirardini, A; Arizzi Novelli, A; Tagliapietra, D

    2005-09-01

    The capacity of two toxicity bioassays (fertilization and embryo toxicity tests) to discriminate sediment toxicity using the sea urchin Paracentrotus lividus was tested in five stations with different levels of pollution in the Lagoon of Venice. Two stations were located in estuarine sites, two in the industrial zone, and one in a site at the top of our quality gradient (reference). Elutriate was chosen as sediment matrix to assess the potential effects of bioavailable pollutants in the water column as a consequence of sediment resuspension (dredging and dumping, fishing gear, etc.). An experimental design based on Quality Assurance/Quality Control procedures (QA/QC) was adopted in order to set the methodological basis for an effective use of these bioassays in monitoring programs. Results revealed both higher embriotoxicity than spermiotoxicity in all stations and the efficacy of combined use of both toxicity bioassays in discriminating differing pollution/bioavailability between stations and periods. The good representativeness of the integrated sampling scheme and the standardization of all experimental phases yielded high precision of results. Clear Toxicity Fingerprints were evidenced for the investigated sites through the combined use of both bioassays. A good fit between ecotoxicological data and chemical contamination levels was found, except for unnatural sediment texture.

  15. HYDRAULIC CHARACTERISTICS OF SEWER SEDIMENT GATE FLUSHING TANKS: LABORATORY FLUME STUDIES

    EPA Science Inventory

    The objective of this study was to test the performance of gate flushing tanks, simulated in a laboratory flume, to remove sediments from combined sewers and storage tanks. A significant amount of sediment/debris/sludge may accumulate at the bottom of a sewer during dry weather o...

  16. HYDRAULIC CHARACTERISTICS OF SEWER SEDIMENT GATE-FLUSHING TANKS: LABORATORY FLUME STUDIES

    EPA Science Inventory

    The objective of this study was to test the performance of gate-flushing tanks, simulated in a laboratory flume, to remove sediments from combined sewers and storage tanks. A significant amount of sediment/debris/sludge may accumulate at the bottom of a sewer during dry weather o...

  17. Analysis of the ecotoxicity data submitted within the framework of the REACH Regulation. Part 3. Experimental sediment toxicity assays.

    PubMed

    Cesnaitis, Romanas; Sobanska, Marta A; Versonnen, Bram; Sobanski, Tomasz; Bonnomet, Vincent; Tarazona, Jose V; De Coen, Wim

    2014-03-15

    For the first REACH registration deadline, companies have submitted registrations with relevant hazard and exposure information for substances at the highest tonnage level (above 1000 tonnes per year). At this tonnage level, information on the long-term toxicity of a substance to sediment organisms is required. There are a number of available test guidelines developed and accepted by various national/international organisations, which can be used to investigate long-term toxicity to sediment organisms. However instead of testing, registrants may also use other options to address toxicity to sediment organisms, e.g. weight of evidence approach, grouping of substances and read-across approaches, as well as substance-tailored exposure-driven testing. The current analysis of the data provided in ECHA database focuses on the test methods applied and the test organisms used in the experimental studies to assess long-term toxicity to sediment organisms. The main guidelines used for the testing of substances registered under REACH are the OECD guidelines and OSPAR Protocols on Methods for the Testing of Chemicals used in the Offshore Oil Industry: "Part A: A Sediment Bioassay using an Amphipod Corophium sp." explaining why one of the mostly used test organisms is the marine amphipod Corophium sp. In total, testing results with at least 40 species from seven phyla are provided in the database. However, it can be concluded that the ECHA database does not contain a high enough number of available experimental data on toxicity to sediment organisms for it to be used extensively by the scientific community (e.g. for development of non-testing methods to predict hazards to sediment organisms). © 2013.

  18. Developmental toxicity of lead-contaminated sediment in Canada geese (Branta canadensis)

    USGS Publications Warehouse

    Hoffman, David J.; Heinz, Gary H.; Sileo, Louis; Audet, Daniel J.; Campbell, Juile K.; Obrecht, Holly H.

    2000-01-01

    Sediment ingestion has recently been identified as an important exposure route for toxicants in waterfowl. The effects of lead-contaminated sediment from the Coeur d'Alene River Basin (CDARB) in Idaho on posthatching development of Canada geese (Branta canadensis) were examined for 6 wk. Day-old goslings received either untreated control diet, clean sediment (48%) supplemented control diet, or CDARB sediment (3449 mug/g lead) supplemented diets at 12%, 24%, or 48%. The 12% CDARB diet resulted in a geometric mean blood lead concentration of 0.68 ppm (ww), with over 90% depression of red blood cell ALAD activity and over fourfold elevation of free erythrocyte protoporphyrin concentration. The 24% CDARB diet resulted in blood lead of 1.61 ppm with decreased hematocrit, hemoglobin, and plasma protein in addition to the effects just described. The 48% CDARB diet resulted in blood lead of 2.52 ppm with 22% mortality, decreased growth, and elevated plasma lactate dehydrogenase-L (LDH-L) activity. In this group the liver lead concentration was 6.57 ppm (ww), with twofold increases in hepatic lipid peroxidation (thiobarbituric acid-reactive substances, TBARS) and in reduced glutathione concentration; associated effects included elevated glutathione reductase activity but lower protein-bound thiols concentration and glucose-6-phosphate dehydrogenase (G-6-PDH) activity. The kidney lead concentration in this group was 14.93 ppm with subacute renal tubular nephrosis in one of the surviving goslings. Three other geese in this treatment group exhibited calcified areas of marrow, and one of these displayed severe chronic fibrosing pancreatitis. Lead from CDARB sediment accumulated less readily in gosling blood and tissues than reported in ducklings but at given concentrations was generally more toxic to goslings. Many of these effects were similar to those reported in wild geese and mallards within the Coeur d'Alene River Basin.

  19. SEDIMENT CHEMICAL CONTAMINATION AND TOXICITY ASSOCIATED WITH A COASTAL GOLF COURSE COMPLEX.

    EPA Science Inventory

    The increasing density of golf courses represents a potential source of sediment contamination to nearby coastal areas, the chemical and biological magnitude of which is almost unknown. The objective of this study was to determine the concentrations of contaminants and toxicities...

  20. Development and application of a marine sediment pore-water toxicity test using Ulva fasciata zoospores

    USGS Publications Warehouse

    Hooten, Russell L.; Carr, R. Scott

    1998-01-01

    An acute (96 h) pore-water toxicity test protocol using germination and growth of Ulva fasciatazoospores as endpoints was developed to test the toxicity of marine and estuarine sediment pore-water samples. Tests with an organic toxicant (sodium dodecyl sulfate; SDS), three metals (Cd, Cu, and Zn), and ammonia (NH3) were conducted to determine zoospore sensitivity. Zoospore germination and gametophyte growth were as sensitive to SDS as sea urchin (Arbacia punctulata) fertilization and embryological development. Zoospore sensitivity to metals was greater than or comparable to that of adult macroalgae. Zoospores were less sensitive to NH3than were other commonly used toxicity test organisms. Test results using this algal assay with sediment pore-water samples with high NH3 concentrations were compared with results from sea urchin fertilization and embryological development tests for the same samples. Ulva fasciatazoospore germination was not affected by samples with high NH3 concentrations that were toxic in both sea urchin tests. Zoospore tolerance of NH3 and sensitivity to other contaminants indicate that their response may be useful in toxicity identification evaluation studies with pore-water samples that contain high concentrations of unionized NH3.

  1. Use of sediment quality guidelines

    USGS Publications Warehouse

    Wenning, R. J.; Batley, G. E.; Ingersoll, Christopher G.; Moore, David W.

    2005-01-01

    Are sediment quality guidelines (SQGs) adequately able to predict the presence or absence of chronic toxicity to sediment-dwelling organisms in field-collected sediments? Can SQGs predict effects resulting from the bioaccumulation of sediment-associated contaminants? Do SQGs define cause-and-effect relationships? Can they predict effects on organisms exposed in the field on the basis of amphipod mortality measured in the laboratory?These and other questions brought together 55 scientists from 8 countries for a Pellston Workshop convened by the Society of Environmental Toxicology and Chemistry (SETAC) in Fairmont, Montana, USA. In this book, these experts in ecology, ecotoxicology, engineering, environmental regulation, and risk assessment examine the scientific underpinnings of sediment quality guidelines and provide recommendations on the appropriate use of SQGs in the assessment and management of contaminated sediments.

  2. Toxicity assessment of polluted sediments using swimming behavior alteration test with Daphnia magna

    NASA Astrophysics Data System (ADS)

    Nikitin, O. V.; Nasyrova, E. I.; Nuriakhmetova, V. R.; Stepanova, N. Yu; Danilova, N. V.; Latypova, V. Z.

    2018-01-01

    Recently behavioral responses of organisms are increasingly used as a reliable and sensitive tool in aquatic toxicology. Behavior-related endpoints allow efficiently studying the effects of sub-lethal exposure to contaminants. At present behavioural parameters frequently are determined with the use of digital analysis of video recording by computer vision technology. However, most studies evaluate the toxicity of aqueous solutions. Due to methodological difficulties associated with sample preparation not a lot of examples of the studies related to the assessment of toxicity of other environmental objects (wastes, sewage sludges, soils, sediments etc.) by computer vision technology. This paper presents the results of assessment of the swimming behavior alterations of Daphnia magna in elutriates from both uncontaminated natural and artificially chromium-contaminated bottom sediments. It was shown, that in elutriate from chromium contaminated bottom sediments (chromium concentration 115±5.7 μg l-1) the swimming speed of daphnids was decreases from 0.61 cm s-1 (median speed over the period) to 0.50 cm s-1 (median speed at the last minute of the experiment). The relocation of Daphnia from the culture medium to the extract from the non-polluted sediments does not essential changes the swimming activity.

  3. AN ASSESSMENT OF PHTHALATE ESTER TOXICITY TO FRESHWATER BENTHOS: 2. SEDIMENT EXPOSURES

    EPA Science Inventory

    Seven phthalate esters were evaluated for their stability and 10-d acute toxicity to the freshwater invertebrates Hyalella azteca and Chironomus tentans following incorporation into sediment. The chemicals were diethyl (DEP), di-n-butyl (DBP), di-n-hyxyl (DHP), di-[2-ethylhexyl] ...

  4. Laboratory Evaluation of Acoustic Backscatter and LISST Methods for Measurements of Suspended Sediments

    PubMed Central

    Meral, Ramazan

    2008-01-01

    The limitation of traditional sampling method to provide detailed spatial and temporal profiles of suspended sediment concentration has led to an interest in alternative devices and methods based on scattering of underwater sound and light. In the present work, acoustic backscatter and LISST (the Laser In Situ Scattering Transmissometry) devices, and methodologies were given. Besides a laboratory study was conducted to compare pumping methods for different sediment radiuses at the same concentration. The glass spheres (ballotini) of three different radiuses of 115, 137 and 163 μm were used to obtain suspension in the sediment tower at laboratory. A quite good agreement was obtained between these methods and pumping results with the range at 60.6-94.2% for sediment concentration and 91.3-100% for radius measurements. These results and the other studies show that these methods have potential for research tools for sediment studies. In addition further studies are needed to determine the ability of these methods for sediment measurement under different water and sediment material conditions. PMID:27879747

  5. Sediment pore-water toxicity test results and preliminary toxicity identification of post-landfall pore-water samples collected following the Deepwater Horizon oil release, Gulf of Mexico, 2010

    USGS Publications Warehouse

    Biedenbach, James M.; Carr, Robert S.

    2011-01-01

    Pore water from coastal beach and marsh sediments from the northern Gulf of Mexico, pre- and post-landfall of the Deepwater Horizon oil release, were collected and evaluated for toxicity with the sea urchin fertilization and embryological development assays. There were 17 pre-landfall samples and 49 post-landfall samples tested using both assays. Toxicity was determined in four pre-landfall sites and in seven post-landfall sites in one or both assays as compared to a known reference sediment pore-water sample collected in Aransas Bay, Texas. Further analysis and testing of five of the post-landfall toxic samples utilizing Toxicity Identification Evaluation techniques indicated that ammonia, and to a lesser extent metals, contributed to most, if not all, of the observed toxicity in four of the five samples. Results of one sample (MS-39) indicated evidence that ammonia, metals, and non-ionic organics were contributing to the observed toxicity.

  6. Comparison of an Ampelisca abdita growth rate test with other standard amphipod sediment toxicity tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schafer, K.; Weston, D.P.

    1995-12-31

    Amphipod crustaceans are often used to measure the toxicity of bulk sediments. Acute lethal bioassays are commonly employed, but this study investigated the potential for using a chronic growth bioassay with Ampelisca abdita. A potential advantage of this method is that the growth rate could be a more sensitive measure of contamination than mortality. Growth rates for A. abdita in sediments spiked with cadmium and crude oil were compared to mortality rates in A. abdita, Eohaustorius estuaries, and Rhepoxynius abronius in sediments with the same concentrations of contaminants. A. abdita was more sensitive to cadmium than the other two species.more » For crude oil, there was a significant shift in size distribution from the control even at concentrations as low as 150 mg/kg of oil. The standard acute lethal tests for all species, on the other hand, did not show significant mortality until at least 1,600 mg/kg. The results confirm that growth rates are a more sensitive indicator of toxicity, and to at least the three contaminants tested, A. abdita is as sensitive as E. estuarius and R. abronius. This study also confirmed the reported high mortality rates of E. estuaries in San Francisco Bay sediments. The causes of this high mortality are unknown but give further reason for using A. abdita for toxicity tests in this region.« less

  7. Effects of a simulated agricultural runoff event on sediment toxicity in a managed backwater wetland

    USDA-ARS?s Scientific Manuscript database

    permethrin (both cis and trans isomers), on 10-day sediment toxicity to Hyalella azteca in a managed natural backwater wetland after a simulated agricultural runoff event. Sediment samples were collected at 10, 40, 100, 300, and 500 m from inflow 13 days prior to amendment and 1, 5, 12, 22, and 36 ...

  8. Developmental Toxicity of Louisiana Crude Oil-Spiked Sediment to Zebrafish

    EPA Science Inventory

    Embryonic exposures to the components of petroleum, including polycyclic aromatic hydrocarbons (PAHs), cause a characteristic suite of developmental defects and cardiotoxicity in a variety of fish species. We exposed zebrafish embryos to reference sediment mixed with laboratory w...

  9. Lidocaine Metabolism and Toxicity: A Laboratory Experiment for Dental Students.

    ERIC Educational Resources Information Center

    Kusek, J. C.

    1980-01-01

    A laboratory exercise for dental students is presented using a toxic dose of lidocaine in place of an anesthetic dose of pentobarbital. The use of lidocaine demonstrates its toxic and lethal actions and increases the relevance of the experience for dental students. (Author/MLW)

  10. Effects-based spatial assessment of contaminated estuarine sediments from Bear Creek, Baltimore Harbor, MD, USA.

    PubMed

    Hartzell, Sharon E; Unger, Michael A; McGee, Beth L; Wilson, Sacoby M; Yonkos, Lance T

    2017-10-01

    Estuarine sediments in regions with prolonged histories of industrial activity are often laden to significant depths with complex contaminant mixtures, including trace metals and persistent organic pollutants. Given the complexity of assessing risks from multi-contaminant exposures, the direct measurement of impacts to biological receptors is central to characterizing contaminated sediment sites. Though biological consequences are less commonly assessed at depth, laboratory-based toxicity testing of subsurface sediments can be used to delineate the scope of contamination at impacted sites. The extent and depth of sediment toxicity in Bear Creek, near Baltimore, Maryland, USA, was delineated using 10-day acute toxicity tests with the estuarine amphipod Leptocheirus plumulosus, and chemical analysis of trace metals and persistent organic pollutants. A gradient of toxicity was demonstrated in surface sediments with 21 of 22 tested sites differing significantly from controls. Effects were most pronounced (100% lethality) at sites proximate to a historic industrial complex. Sediments from eight of nine core samples to depths of 80 cm were particularly impacted (i.e., caused significant lethality to L. plumulosus) even in locations overlain with relatively non-toxic surface sediments, supporting a conclusion that toxicity observed at the surface (top 2 cm) does not adequately predict toxicity at depth. In seven of nine sites, toxicity of surface sediments differed from toxicity at levels beneath by 28 to 69%, in five instances underestimating toxicity (28 to 69%), and in two instances overestimating toxicity (44 to 56%). Multiple contaminants exceeded sediment quality guidelines and correlated positively with toxic responses within surface sediments (e.g., chromium, nickel, polycyclic aromatic hydrocarbon (PAH), total petroleum hydrocarbon). Use of an antibody-based PAH biosensor revealed that porewater PAH concentrations also increased with depth at most sites. This

  11. Identification of water soluble and particle bound compounds causing sublethal toxic effects. A field study on sediments affected by a chlor-alkali industry.

    PubMed

    Bosch, Carme; Olivares, Alba; Faria, Melissa; Navas, Jose M; del Olmo, Iván; Grimalt, Joan O; Piña, Benjamín; Barata, Carlos

    2009-08-13

    A combination of cost effective sublethal Daphnia magna feeding tests, yeast- and cell culture-based bioassays and Toxicity Identification Evaluation (TIE) procedures was used to characterize toxic compounds within sediments collected in a river area under the influence of the effluents from a chlor-alkali industry (Ebro River, NE Spain). Tests were designed to measure and identify toxic compounds in the particulate and filtered water fractions of sediment elutriates. The combined use of bioassays responding to elutriates and dioxin-like compounds evidenced the existence of three major groups of hazardous contaminants in the most contaminated site: (A) metals such as cadmium and mercury bound to sediment fine particles that could be easily resuspended and moved downstream, (B) soluble compounds (presumably, lye) able to alkalinize water to toxic levels, and (C) organochlorine compounds with high dioxin-like activity. These results provided evidence that elutriate D. magna feeding responses can be used as surrogate assays for more tedious chronic whole sediment tests, and that the incorporation of such tests in sediment TIE procedures may improve the ability to identify the toxicity of particle-bound and water-soluble contaminants in sediments.

  12. Assessing the status of sediment toxicity and macroinvertebrate communities in the Eighteenmile Creek Area of Concern, New York

    USGS Publications Warehouse

    George, Scott D.; Duffy, Brian T.; Baldigo, Barry P.

    2017-01-01

    In 1972, the governments of Canada and the United States committed to restoring the physical, chemical, and biological integrity of the Laurentian Great Lakes under the Great Lakes Water Quality Agreement. Through this framework, the downstream-most section of Eighteenmile Creek, a tributary to the south shore of Lake Ontario in New York, was designated as an Area of Concern (AOC) because water quality and bed sediments were contaminated by past industrial and municipal discharges, waste disposal, and pesticide usage. Five beneficial use impairments (BUIs) have been identified in the AOC including the degradation of the “benthos”, or the benthic macroinvertebrate community. This investigation used sediment toxicity testing and macroinvertebrate community assessments to determine if the toxicity of bed sediments in the AOC differed from that of an unimpacted reference stream. Results from 10-day toxicity tests indicated that survival and growth of the dipteran Chironomus dilutus and the amphipod Hyalella azteca did not differ significantly between sediments from the AOC and reference area. Analyses of benthic macroinvertebrate community integrity and structure also indicated that macroinvertebrate communities, while impacted across most sites on both streams, were generally similar between the AOC and reference area. Despite these findings, the upstream-most AOC site consistently scored poorly in all analyses, which suggests that localized sediment toxicity may exist in the AOC, even if large scale differences between the AOC and a comparable reference stream are minimal.

  13. Characterization of selected bed-sediment-bound organic and inorganic contaminants and toxicity, Barnegat Bay and major tributaries, New Jersey, 2012

    USGS Publications Warehouse

    Romanok, Kristin M.; Reilly, Timothy J.; Lopez, Anthony R.; Trainor, John J.; Hladik, Michelle; Stanley, Jacob K.; Farrar, Daniel

    2014-01-01

    A study of bed-sediment toxicity and organic and inorganic contaminants was conducted by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection (NJDEP). Bed-sediment samples were collected once from 22 sites in Barnegat Bay and selected major tributaries during August–September 2012 and analyzed for toxicity and a suite of organic and inorganic contaminants by the USGS and the U.S. Army Corps of Engineers. Sampling sites were selected to coincide with an existing water-quality monitoring network used by the NJDEP and others in order to evaluate water-quality conditions in Barnegat Bay and the surrounding watershed. Two of the 22 sites are reference sites and are within or adjacent to the study area; bed-sediment samples from reference sites allow for comparisons of results for the Barnegat Bay watershed to results from less affected settings within the region. Toxicity testing was conducted by exposing the estuarine amphipod Leptocheirus plumulosus and the freshwater amphipod Hyalella azteca to sediments for 28 days, and the percent survival, difference in biomass, and individual dry weights were measured. Reproductive effects also were evaluated for estuarine samples. Bed-sediment samples from four sites within Barnegat Bay were subjected to a toxicity identification evaluation to determine probable causes of toxicity. Samples were analyzed for a suite of 94 currently-used pesticides, 21 legacy pesticides, 24 trace elements, 40 polycyclic aromatic hydrocarbons, 7 polychlorinated biphenyls (PCBs) as Arochlor mixtures, and 145 individual PCB congeners. Concentrations of detected compounds were compared to sediment-quality guidelines, where appropriate.

  14. Variations of sediment toxicity in a tidal estuary: a case study of the South Passage, Changjiang (Yangtze) Estuary.

    PubMed

    Gao, Jinjuan; Shi, Huahong; Dai, Zhijun; Mei, Xuefei

    2015-06-01

    Sediments in estuaries, especially those containing a large reservoir of contaminants released from urban and industrial activities, have had great impacts on benthic fauna and associated species. A better understanding of the toxicity of contaminants in estuarine sediments is of great significance to ecological assessments. Here, based on the collected sediments from neap to spring tides in the South Passage, Changjiang Estuary, the toxicity of the sediments was first studied using the frog embryo teratogenesis assay-Xenopus (FETAX). The results showed that the extracts of estuarine sediments induced multiple malformations in the embryos and that the phenotypes of malformation had two distinct patterns of variations corresponding to the tidal cycles. The phenotypes in the first pattern were dominated by hypopigmentation and edema of the heart, and the pattern was mainly controlled by fine-grained fractions. The phenotypes in the second pattern were dominated by edema of the heart and enlarged proctodeum, and it was mostly controlled by coarse-grain fractions. The sediment toxicity was higher during the spring and flood tides, which may be influenced by the grain size and sediment resuspension. Furthermore, obvious periodicities existed in the changes of the percentages of hatching (14-16 h and 6 h), enlarged proctodeum (15-18 h), and bent tail (5-7 h) due to the influence of tidal cycles. Moreover, our results also suggested that FETAX is an appropriate cost-effective biological monitoring tool to assess estuarine ecological health in contaminated sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The fate, distribution, and toxicity of lindane in tests with Chironomus riparius: effects of bioturbation and sediment organic matter content.

    PubMed

    Goedkoop, Willem; Peterson, Märit

    2003-01-01

    In this laboratory study, we address the effect of Chironomus bioturbation (0, 2,000, 6,000, and 18,000 ind/m2) and sediment organic matter content (10, 20, and 40%) on the fate, distribution, and bioavailability of 14C-lindane under standardized conditions in toxicity tests with artificial sediment. The results show that both Chironomus burrowing activity and sediment organic matter strongly modify test conditions. Larval mortality and development were inversely related with Chironomus densities and lindane concentration. Sediment organic matter content affected larval development rates but not mortality. Partitioning of lindane between the sediment, overlying water, and interstitial water was affected negatively by Chironomus larval densities: however, sediment partitioning was positively affected by sediment organic matter content. Bioturbation by Chironomus resulted in a remobilization of particle-associated lindane to the interstitial and overlying water, implying an increase in the bioavailability of the test compound. Strong positive relationships were found between Chironomus densities and lindane concentrations in interstitial water. The presence of Chironomus also resulted in lower label recovery. Label recovery on sediment particles ranged from 49 to 61% of initially added label in microcosms without Chironomus, from 41 to 56% at low larval densities, and from 15 to 50% at high larval densities. These results show that large discrepancies may exist between nominal test concentrations (from test compound additions) and true exposure concentrations even under standardized test conditions, which can introduce a relatively large error term in risk assessments. Calculations show that volatilization may be a quantitatively important sink for test compounds.

  16. Assessing condition of macroinvertebrate communities and sediment toxicity in the St. Lawrence River at Massena Area-of-Concern

    USGS Publications Warehouse

    Duffy, Brian T.; Baldigo, Barry P.; Smith, Alexander J.; George, Scott D.; David, Anthony M.

    2016-01-01

    In 1972, the USA and Canada agreed to restore the chemical, physical, and biological integrity of the Great Lakes ecosystem under the first Great Lakes Water Quality Agreement. In subsequent amendments, part of the St. Lawrence River at Massena, New York and segments of three tributaries, were designated as an Area of Concern (AOC) due to the effects of polychlorinated biphenyls (PCBs), lead and copper contamination, and habitat degradation and resulting impairment to several beneficial uses. Because sediments have been largely remediated, the present study was initiated to evaluate the current status of the benthic macroinvertebrate (benthos) beneficial use impairment (BUI). Benthic macroinvertebrate communities and sediment toxicity tests using Chironomus dilutus were used to test the hypotheses that community condition and sediment toxicity at AOC sites were not significantly different from those of adjacent reference sites. Grain size was found to be the main driver of community composition and macroinvertebrate assemblages, and bioassessment metrics did not differ significantly between AOC and reference sites of the same sediment class. Median growth of C. dilutus and its survival in three of the four river systems did not differ significantly in sediments from AOC and reference sites. Comparable macroinvertebrate assemblages and general lack of toxicity across most AOC and reference sites suggest that the quality of sediments should not significantly impair benthic macroinvertebrate communities in most sites in the St. Lawrence River AOC.

  17. Testing lagoonal sediments with early life stages of the copepod Acartia tonsa (Dana): An approach to assess sediment toxicity in the Venice Lagoon.

    PubMed

    Picone, Marco; Bergamin, Martina; Delaney, Eugenia; Ghirardini, Annamaria Volpi; Kusk, Kresten Ole

    2018-01-01

    The early-life stages of development of the calanoid copepod Acartia tonsa from egg to copepodite I is proposed as an endpoint for assessing sediment toxicity by exposing newly released eggs directly onto the sediment-water interface. A preliminary study of 5 sediment samples collected in the lagoon of Venice highlighted that the larval development rate (LDR) and the early-life stages (ELS) mortality endpoints with A. tonsa are more sensitive than the standard amphipod mortality test; moreover LDR resulted in a more reliable endpoint than ELS mortality, due to the interference of the sediment with the recovery of unhatched eggs and dead larvae. The LDR data collected in a definitive study of 48 sediment samples from the Venice Lagoon has been analysed together with the preliminary data to evaluate the statistical performances of the bioassay (among replicate variance and minimum significant difference between samples and control) and to investigate the possible correlation with sediment chemistry and physical properties. The results showed that statistical performances of the LDR test with A. tonsa correspond with the outcomes of other tests applied to the sediment-water interface (Strongylocentrotus purpuratus embryotoxicity test), sediments (Neanthes arenaceodentata survival and growth test) and porewater (S. purpuratus); the LDR endpoint did, however, show a slightly higher variance as compared with other tests used in the Lagoon of Venice, such as 10-d amphipod lethality test and larval development with sea urchin and bivalves embryos. Sediment toxicity data highlighted the high sensitivity and the clear ability of the larval development to discriminate among sediments characterized by different levels of contamination. The data of the definitive study evidenced that inhibition of the larval development was not affected by grain-size and the organic carbon content of the sediment; in contrast, a strong correlation between inhibition of the larval development

  18. Bioaccumulation of toxic substances associated with dredging and dredged material disposal: a literature review

    USGS Publications Warehouse

    Seelye, James G.; Mac, Michael J.

    1984-01-01

    A literature review of sediment bioassessment was conducted as the first step in the development of a more standardized and ecologically sound test procedure for evaluating sediment quality. Based on the review, the authors concluded that 1) a standardized laboratory bioassessment test should consist of flowthrough exposure of at least 10 days duration using more than one aquatic organism including at least an infaunal benthic invertebrate and a fish species. 2) Before adoption of a laboratory sediment bioassessment procedure, the laboratory results should be evaluated by comparison with field conditions. 3) Most current sediment bioassessment regulatory tests measure acute toxicity or bioaccumulation. Development of tests to evaluate chronic, sublethal effects is needed.

  19. Pollutant Concentrations and Toxic Effects on the Red Alga Ceramium tenuicorne of Sediments from Natural Harbors and Small Boat Harbors on the West Coast of Sweden.

    PubMed

    Eklund, Britta; Hansson, Tomas; Bengtsson, Henrik; Eriksson Wiklund, Ann-Kristin

    2016-04-01

    This investigation set out to analyze the toxicity of surface sediments in a number of natural harbors and small boat harbors on the west coast of Sweden. This was done with the growth inhibition method with Ceramium tenuicorne. Also, concentrations of copper (Cu), lead (Pb), zinc (Zn), irgarol, organotin compounds, and polycyclic aromatic hydrocarbons (PAHs) in the sediments were analyzed. The small boat harbors were heavily polluted by Cu, Zn, butyltins, and PAHs, and to a lesser extent by Pb. The Cu, Pb, Zn, and butyltins probably originated from their past and/or present use in antifouling paints, whereas the PAHs probably had multiple sources, including boat motor exhausts. The measured toxicity of the sediment was generally related to their Cu, Zn, and butyltin content, although other toxic substances than those analyzed here probably contributed to the toxicity in some of the harbors. The natural harbor sediments contained less pollutants and were less toxic than the small boat harbor sediments. Nevertheless, our data indicate that the boating pressure today may be high enough to produce toxic effects even in natural harbors in pristine areas. The strongest relationship between toxicity and the major pollutants was obtained when the sediment toxicity was expressed as gram wet weight per liter compared with gram dry weight per liter and gram total organic carbon per liter. Hence, for pollutants that can be elutriated with natural sea water, sediment toxicity expressed as gram wet weight per liter appears preferable.

  20. Evaluation of toxicity of polluted marine sediments from Bahia Salina Cruz, Mexico.

    PubMed

    Gonzalez-Lozano, Maria Cristina; Mendez-Rodriguez, Lia C; Maeda-Martinez, Alejandro M; Murugan, Gopal; Vazquez-Botello, Alfonso

    2010-01-01

    Bahia Salina Cruz, Oaxaca, Mexico is a major center of oil and refined product distribution on the Mexican Pacific coast. From the start of oil industry operations in 1979, negative effects from discharges of treated effluents in the bay have been a constant concern for local communities. We analyzed 28 surface sediment samples obtained in June, 2002 to evaluate the level of toxicity in the littoral zone, port-harbor, and La Ventosa estuary in Bahia Salina Cruz. The extractable organic matter concentration was high (1,213 to 7,505 micro g g(-1)) in 5 of 7 stations from the port and harbor, whereas it was low in 12 of 16 stations in the littoral zone (36 to 98 micro g g(-1)). The total aromatic hydrocarbon concentration was highest (57 to 142 micro g g(-1)) in the port and harbor compared to the La Ventosa estuary and the littoral zone. Among the heavy metals analyzed, cadmium exceeded the effects range-low values associated with adverse biological effects. The geo-accumulation index of sediments was moderate to strong contamination at 5 stations in the nonlittoral and 6 stations in the littoral zone. The enrichment of lead, zinc, and cadmium at 5 stations from the littoral, port, and harbor suggest that these metals are of anthropogenic origin. Bioassay tests of elutriates of sediments on nauplii of Artemia franciscana and Artemia sp. showed that the port and harbor were more toxic than the La Ventosa estuary and the coastal zone. The Microtox test (Vibrio fischeri) did not show a similar response with the solid phase of the sediments. The results of this study indicate that the high levels of organic content and metals in the sediments of port-harbor and the La Ventosa estuary are mainly caused by anthropogenic activities.

  1. RESUSPENSION OF CONTAMINATED FIELD AND FORMULATED REFERENCE SEDIMENTS PART 1: EVALUATION OF METAL RELEASE UNDER CONTROLLED LABORATORY CONDITIONS

    EPA Science Inventory

    In aquatic systems where metal-contaminated sediments are present, the potential exists for metals to be released to the water column when sediment resuspension occurs. The release and partitioning behavior of sediment-bound, toxic heavy metals is not well understood during res...

  2. Sediment trapping efficiency of adjustable check dam in laboratory and field experiment

    NASA Astrophysics Data System (ADS)

    Wang, Chiang; Chen, Su-Chin; Lu, Sheng-Jui

    2014-05-01

    Check dam has been constructed at mountain area to block debris flow, but has been filled after several events and lose its function of trapping. For the reason, the main facilities of our research is the adjustable steel slit check dam, which with the advantages of fast building, easy to remove or adjust it function. When we can remove transverse beams to drain sediments off and keep the channel continuity. We constructed adjustable steel slit check dam on the Landow torrent, Huisun Experiment Forest station as the prototype to compare with model in laboratory. In laboratory experiments, the Froude number similarity was used to design the dam model. The main comparisons focused on types of sediment trapping and removing, sediment discharge, and trapping rate of slit check dam. In different types of removing transverse beam showed different kind of sediment removal and differences on rate of sediment removing, removing rate, and particle size distribution. The sediment discharge in check dam with beams is about 40%~80% of check dam without beams. Furthermore, the spacing of beams is considerable factor to the sediment discharge. In field experiment, this research uses time-lapse photography to record the adjustable steel slit check dam on the Landow torrent. The typhoon Soulik made rainfall amounts of 600 mm in eight hours and induced debris flow in Landow torrent. Image data of time-lapse photography demonstrated that after several sediment transport event the adjustable steel slit check dam was buried by debris flow. The result of lab and field experiments: (1)Adjustable check dam could trap boulders and stop woody debris flow and flush out fine sediment to supply the need of downstream river. (2)The efficiency of sediment trapping in adjustable check dam with transverse beams was significantly improved. (3)The check dam without transverse beams can remove the sediment and keep the ecosystem continuity.

  3. Tolerance of freshwater test organisms to formulated sediments for use as control materials in whole-sediment toxicity tests

    USGS Publications Warehouse

    Kemble, N.E.; Dwyer, F.J.; Ingersoll, C.G.; Dawson, T.D.; Norberg-King, T. J.

    1999-01-01

    A method is described for preparing formulated sediments for use intoxicity testing. Ingredients used to prepare formulated sediments included commercially available silt, clay, sand, humic acid, dolomite, and α-cellulose (as a source of organic carbon). α-Cellulose was selected as the source of organic carbon because it is commercially available, consistent from batch to batch, and low in contaminant concentrations. The tolerance of freshwater test organisms to formulated sediments for use as control materials in whole-sediment toxicity testing was evaluated. Sediment exposures were conducted for 10 d with the amphipod Hyalella azteca, the midges Chironomus riparius and C. tentans, and the oligochaete Lumbriculus variegatus and for 28 d with H. azteca. Responses of organisms in formulated sediments was compared with a field-collected control sediment that has routinely been used to determine test acceptability. Tolerance of organisms to formulated sediments was evaluated by determining responses to varying levels of α-cellulose, to varying levels of grain size, to evaluation of different food types, or to evaluation of different sources of overlying water. In the 10-d exposures, survival of organisms exposed to the formulated sediments routinely met or exceeded the responses of test organisms exposed to the control sediment and routinely met test acceptability criteria required in standard methods. Growth of amphipods and oligochaetes in 10-d exposures with formulated sediment was often less than growth of organisms in the field-collected control sediment. Additional research is needed, using the method employed to prepare formulated sediment, to determine if conditioning formulated sediments before starting 10-d tests would improve the growth of amphipods. In the 28-d exposures, survival of H. azteca was low when reconstituted water was used as the source of overlying water. However, when well water was used as the source of overlying water in 28-d exposures

  4. Toxicity evaluation with the microtox® test to assess the impact of in situ oiled shoreline treatment options: natural attenuation and sediment relocation

    USGS Publications Warehouse

    Lee, Kenneth; Wohlgeschaffen, Gary; Tremblay, Gilles H.; Johnson, B. Thomas; Sergy, Gary A.; Prince, Roger C.; Guenette, Chantal C.; Owens, Edward H.

    2003-01-01

    Changes in the toxicity levels of beach sediment, nearshore water, and bottom sediment samples were monitored with the Microtox® Test to evaluate the two in situ oil spill treatment options of natural attenuation (natural recovery––no treatment) and sediment relocation (surf washing). During a series of field trials, IF-30 fuel oil was intentionally sprayed onto the surface of three mixed sediment (pebble and sand) beaches on the island of Spitsbergen, Svalbard, Norway (78°56′ N, 16°45′ E). At a low wave-energy site (Site 1 with a 3-km wind fetch), where oil was stranded within the zone of normal wave action, residual oil concentrations and beach sediment toxicity levels were significantly reduced by both options in less than five days. At Site 3, a higher wave-energy site with a 40-km wind fetch, oil was intentionally stranded on the beach face in the upper intertidal/supratidal zones, above the level of normal wave activity. At this site under these experimental conditions, sediment relocation was effective in accelerating the removal of the oil from the sediments and reducing the Microtox® Test toxicity response to background levels. In the untreated (natural attenuation) plot at this site, the fraction of residual oil remaining within the beach sediments after one year (70%) continued to generate a toxic response. Chemical and toxicological analyses of nearshore sediment and sediment-trap samples at both sites confirmed that oil and suspended mineral fines were effectively dispersed into the surrounding environment by the in situ treatments. In terms of secondary potential detrimental effects from the release of stranded oil from the beaches, the toxicity level (Microtox® Test) of adjacent nearshore sediment samples did not exceed the Canadian regulatory limit for dredged spoils destined for ocean disposal.

  5. Pyrethroid insecticide concentrations and toxicity in streambed sediments and loads in surface waters of the San Joaquin Valley, California, USA

    USGS Publications Warehouse

    Domagalski, Joseph L.; Weston, Donald P.; Zhang, Minghua; Hladik, Michelle L.

    2010-01-01

    Pyrethroid insecticide use in California, USA, is growing, and there is a need to understand the fate of these compounds in the environment. Concentrations and toxicity were assessed in streambed sediment of the San Joaquin Valley of California, one of the most productive agricultural regions of the United States. Concentrations were also measured in the suspended sediment associated with irrigation or storm‐water runoff, and mass loads during storms were calculated. Western valley streambed sediments were frequently toxic to the amphipod, Hyalella azteca, with most of the toxicity attributable to bifenthrin and cyhalothrin. Up to 100% mortality was observed in some locations with concentrations of some pyrethroids up to 20 ng/g. The western San Joaquin Valley streams are mostly small watersheds with clay soils, and sediment‐laden irrigation runoff transports pyrethroid insecticides throughout the growing season. In contrast, eastern tributaries and the San Joaquin River had low bed sediment concentrations (<1 ng/g) and little or no toxicity because of the preponderance of sandy soils and sediments. Bifenthrin, cyhalothrin, and permethrin were the most frequently detected pyrethroids in irrigation and storm water runoff. Esfenvalerate, fenpropathrin, and resmethrin were also detected. All sampled streams contributed to the insecticide load of the San Joaquin River during storms, but some compounds detected in the smaller creeks were not detected in the San Joaquin River. The two smallest streams, Ingram and Hospital Creeks, which had high sediment toxicity during the irrigation season, accounted for less than 5% of the total discharge of the San Joaquin River during storm conditions, and as a result their contribution to the pyrethroid mass load of the larger river was minimal. 

  6. Comparative performances of eggs and embryos of sea urchin (Paracentrotus lividus) in toxicity bioassays used for assessment of marine sediment quality.

    PubMed

    Khosrovyan, A; Rodríguez-Romero, A; Salamanca, M J; Del Valls, T A; Riba, I; Serrano, F

    2013-05-15

    The potential toxicity of sediments from various ports was assessed by means of two different liquid-phase toxicity bioassays (acute and chronic) with embryos and eggs of sea urchin Paracentrotus lividus. Performances of embryos and eggs of P. lividus in these bioassays were compared for their interchangeable applicability in integrated sediment quality assessment. The obtained endpoints (percentages of normally developed plutei and fertilized eggs) were linked to physical and chemical properties of sediments and demonstrated dependence on sediment contamination. The endpoints in the two bioassays were strongly correlated and generally exhibited similar tendency throughout the samples. Therein, embryos demonstrated higher sensitivity to elutriate exposure, compared to eggs. It was concluded that these tests could be used interchangeably for testing toxicity of marine sediments. Preferential use of any of the bioassays can be determined by the discriminatory capacity of the test or vulnerability consideration of the test subject to the surrounding conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. GATE AND VACUUM FLUSHING OF SEWER SEDIMENT: LABORATORY TESTING

    EPA Science Inventory

    The objective of this study was to test the performance of a traditional gate-flushing device and a newly-designed vacuum-flushing device in removing sediment from combined sewers and CSO storage tanks. A laboratory hydraulic flume was used to simulate a reach of sewer or storag...

  8. SHORT-EXPOSURE, SUBLETHAL, SEDIMENT TOXICITY TEST USING THE MARINE BIVALVE MULINIA LATERALIS: STATISTICAL DESIGN AND COMPARATIVE SENSITIVITY

    EPA Science Inventory

    Over the last 10 years a great deal of research effort has concentrated on determining the effects of contaminated sediments on aquatic organisms. or marine systems, this effort has emphasized acute sediment toxicity tests using amphipods, although a variety of other end points a...

  9. Assessment of heavy metals bioavailability and toxicity toward Vibrio fischeri in sediment of the Huelva estuary.

    PubMed

    Rosado, Daniel; Usero, José; Morillo, José

    2016-06-01

    Relationship between toxicity and bioavailable metals in sediments from the Huelva estuary and its littoral of influence was analyzed. Toxicity was assessed with Microtox® bioassay using a marine luminescent bacterium: Vibrio fischeri. Bioavailable metals were considered as both, acid extractable fraction of BCR procedure and the sum of exchangeable and bound to carbonates fractions of Tessier sequential extraction. A bioavailable metals index was calculated to integrate results in a single figure. Toxicity and bioavailable metals showed a similar pattern. Higher levels were found in the estuary than in the littoral (140 TU/g). In Huelva estuary, highest levels were found in the Tinto estuary (5725 TU/g), followed by the Odiel estuary (5100 TU/g) and the Padre Santo Canal (2500 TU/g). Results in this area were well over than those in nearby estuaries. Furthermore, they are similar to or even higher than those in other polluted sediments around the world. Bioavailable metal index showed a stronger correlation with acid extractable fraction of BCR (R(2) = 0.704) than that for the sum of exchangeable and bound to carbonates fractions of Tessier (R(2) = 0.661). These results suggest that bioavailable metals are an important source of sediment toxicity in the Huelva estuary and its littoral of influence, an area with one of the highest mortality risks of Spain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Sediment porewater toxicity assessment studies in the vicinity of offshore oil and gas production platforms in the Gulf of Mexico

    USGS Publications Warehouse

    Carr, R.S.; Chapman, D.C.; Presley, B.J.; Biedenbach, J.M.; Robertson, L.; Boothe, P.; Kilada, R.; Wade, T.; Montagna, P.

    1996-01-01

    As part of a multidisciplinary program to assess the potential long-term impacts of offshore oil and gas exploration and production activities in the Gulf of Mexico, sediment chemical analyses and porewater toxicity tests were conducted in the vicinity of five offshore platforms. Based on data from sea urchin fertilization and embryological development assays, toxicity was observed near four of the five platforms sampled; the majority of the toxic samples were collected within 150 m of a platform. There was excellent agreement among the results of porewater tests with three different species (sea urchin embryological development, polychaete reproduction, and copepod nauplii survival). The sediment concentrations of several metals were well in excess of sediment quality assessment guidelines at a number of stations, and good agreement was observed between predicted and observed toxicity. Porewater metal concentrations compared with EC50, LOEC, and NOEC values generated for water-only exposures indicated that the porewater concentrations for several metals were high enough to account for the observed toxicity. Results of these studies utilizing highly sensitive toxicity tests suggest that the contaminant-induced impacts from offshore platforms are limited to a localized area in the immediate vicinity of the platforms. 

  11. Toxicity and bioaccumulation of a mixture of heavy metals in Chironomus tentans (Diptera: Chironomidae) in synthetic sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrahy, E.A.; Clements, W.H.

    1997-02-01

    This research investigated toxicity and bioaccumulation of a mixture of Cd, Cu, Pb, and Zn in Chironomus tentans in synthetic sediment, and compared predicted to measured steady-state bioaccumulation factors (BAFs). In a toxicity test, C. tentans were exposed to various dilutions of a base concentration (1.0 X) of a mixture of the four metals (5 {micro}g/g Cd. 10 {micro}g/g Cu. 70 {micro}g/g Pb, and 300 {micro}g/g Zn) in synthetic sediment. Mortality ranged from 17 to 100%. To measure bioaccumulation of the metals, C. tentans were exposed to 0.35 X the base concentration for a period of up to 14 dmore » in two uptake tests. Bioaccumulation of all four metals increased over the 14-d uptake phases. Concentrations of metals in chironomids were significantly correlated with exposure time in the uptake phases. Only concentrations of copper approached background levels after 7 d depuration. Uptake rate coefficients and elimination rate constants were determined for each metal. Bioaccumulation factors were highest for Cd and lowest for Pb. With the exception of Pb, steady-state BAFs were within a factor of about two of those calculated using the first-order kinetic model. The high BAFs calculated may indicate greater bioavailability in synthetic sediment. Studies comparing toxicity and bioaccumulation of natural and synthetic sediments are necessary before the use of synthetic sediments is widely adopted.« less

  12. Evaluation of toxicity to the amphipod, Hyalella azteca, and to the midge, Chironomus dilutus; and bioaccumulation by the oligochaete, Lumbriculus variegatus, with exposure to PCB-contaminated sediments from Anniston, Alabama

    USGS Publications Warehouse

    Ingersoll, Christopher G.; Steevens, Jeffery A.; MacDonald, Donald D.; Brumbaugh, William G.; Coady, Matthew R.; Farrar, J. Daniel; Lotufo, Guilherme R.; Kemble, Nile E.; Kunz, James L.; Stanley, Jacob K.; Sinclair, Jesse A.; Ingersoll, Christopher G.; Steevens, Jeffery A.; MacDonald, Donald D.

    2014-01-01

    The U.S. Environmental Protection Agency (USEPA) requested that as part of the remedial investigation for the Anniston, Alabama Polychlorinated Biphenyl (PCB) Site (Anniston PCB Site), that Pharmacia Corporation and Solutia Inc. (P/S) perform long-term reproduction toxicity tests with the amphipod, Hyalella azteca, and the midge, Chironomus dilutus, and bioaccumulation tests with the oligochaete, Lumbriculus variegatus, using sediment samples collected from reference locations and from Operable Unit 4 of the Anniston PCB Site. The sediment toxicity testing and sediment bioaccumulation results will be used by ARCADIS U.S., Inc. (ARCADIS) as part of a weight-of-evidence assessment to evaluate risks and establish sediment remediation goals for contaminants to sediment-dwelling organisms inhabiting the Anniston PCB Site. The goal of this study was to characterize relations between sediment chemistry and sediment toxicity and relations between sediment chemistry and sediment bioaccumulation in samples of sediments collected from the Anniston PCB Site. A total of 32 samples were evaluated from six test sites and one reference site to provide a wide range in concentrations of chemicals of potential concern (COPCs) including PCBs in samples of whole sediment. The goal of this study was not to determine the extent of sediment contamination across the Anniston PCB Site. Hence, the test sites or samples collected from within a test site were not selected to represent the spatial extent of sediment contamination across the Anniston PCB Site. Sediment chemistry, pore-water chemistry, and sediment toxicity data were generated for 26 sediment samples from the Anniston PCB Site. All of the samples were evaluated to determine if they qualified as reference sediment samples. Those samples that met the chemical selection criteria and biological selection criteria were identified as reference samples and used to develop the reference envelope for each toxicity test endpoint. Physical

  13. Occurrence, compositional distribution, and toxicity assessment of pyrethroid insecticides in sediments from the fluvial systems of Chaohu Lake, Eastern China.

    PubMed

    Wang, Ji-Zhong; Bai, Ya-Shu; Wu, Yakton; Zhang, Shuo; Chen, Tian-Hu; Peng, Shu-Chuan; Xie, Yu-Wei; Zhang, Xiao-Wei

    2016-06-01

    Surface sediment-associated synthetic pyrethroid insecticides (SPs) are known to pose high risks to the benthic organisms in Chaohu Lake, a shallow lake of Eastern China. However, the pollution status of the lake's tributaries and estuaries is still unknown. The present study was conducted to investigate the occurrence, compositional distribution, and toxicity of 12 currently used SPs in the surface sediments from four important tributaries, as well as in the sediment cores at their estuaries, using GC-MS for quantification. All SPs selected were detectable, with cypermethrin, es/fenvalerate, and permethrin dominant in both surface and core sediments, suggesting that these compounds were extensively applied. Urban samples contained the highest summed concentrations of the 12 SPs analyzed (Σ12SP) in both surface and core sediments compared with rural samples, suggesting that urban areas near aquatic environments posed high risks for SPs. The mean concentration of Σ12SP in surface sediments of each river was generally higher than that found in core sediments from its corresponding estuary, perhaps implying recent increases in SP usage. Surface sediments were significantly dominated by cypermethrin and permethrin, whereas core sediments were dominated by permethrin and es/fenvalerate. The compositional distributions demonstrated a spatial variation for surface sediments because urban sediments generally contained greater percentages of permethrin and cypermethrin, but rural sediments had significant levels of es/fenvalerate and cypermethrin. In all sediment cores, the percentage of permethrin gradually increased, whereas es/fenvalerate tended to decrease, from the bottom sediments to the top, indicating that the former represented fresh input, whereas the latter represented historical residue. Most urban samples would be expected to be highly toxic to benthic organisms due to the residue of SPs based on a calculation of toxic units (TUs) using toxicity data of the

  14. Limitations of Reverse Polyethylene Samplers (RePES) for Evaluating Toxicity of Field Contaminated Sediments

    EPA Science Inventory

    Passive samplers are used to measure dissolved nonionic organic contaminants (NOCs) in environmental media. More recently, reverse polyethylene samplers (RePES) have been used with spiked sediments to recreate interstitial water exposure concentrations and observed toxicity. In...

  15. Effects of acid-volatile sulfide on metal bioavailability and toxicity to midge (Chironomus tentans) larvae in black shale sediments

    USGS Publications Warehouse

    Ogendi, G.M.; Brumbaugh, W.G.; Hannigan, R.E.; Farris, J.L.

    2007-01-01

    Metal bioavailability and toxicity to aquatic organisms are greatly affected by variables such as pH, hardness, organic matter, and sediment acid-volatile sulfide (AVS). Sediment AVS, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides, has been studied intensely in recent years. Few studies, however, have determined the spatial variability of AVS and its interaction with simultaneously extracted metals (SEM) in sediments containing elevated concentrations of metals resulting from natural geochemical processes, such as weathering of black shales. We collected four sediment samples from each of four headwater bedrock streams in northcentral Arkansa (USA; three black shale-draining streams and one limestone-draining stream). We conducted 10-d acute whole-sediment toxicity tests using the midge Chironomus tentans and performed analyses for AVS, total metals, SEMs, and organic carbon. Most of the sediments from shale-draining streams had similar total metal and SEM concentrations but considerable differences in organic carbon and AVS. Zinc was the leading contributor to the SEM molar sum, averaging between 68 and 74%, whereas lead and cadmium contributed less than 3%. The AVS concentration was very low in all but two samples from one of the shale streams, and the sum of the SEM concentrations was in molar excess of AVS for all shale stream sediments. No significant differences in mean AVS concentrations between sediments collected from shale-draining or limestone-draining sites were noted (p > 0.05). Midge survival and growth in black shale-derived sediments were significantly less (p < 0.001) than that of limestone-derived sediments. On the whole, either SEM alone or SEM-AVS explained the total variation in midge survival and growth about equally well. However, survival and growth were significantly greater (p < 0.05) in the two sediment samples that contained measurable AVS compared with the two sediments from the

  16. Comparison of Instream and Laboratory Methods of Measuring Sediment Oxygen Demand

    USGS Publications Warehouse

    Hall, Dennis C.; Berkas, Wayne R.

    1988-01-01

    Sediment oxygen demand (SOD) was determined at three sites in a gravel-bottomed central Missouri stream by: (1) two variations of an instream method, and (2) a laboratory method. SOD generally was greatest by the instream methods, which are considered more accurate, and least by the laboratory method. Disturbing stream sediment did not significantly decrease SOD by the instream method. Temperature ranges of up to 12 degree Celsius had no significant effect on the SOD. In the gravel-bottomed stream, the placement of chambers was critical to obtain reliable measurements. SOD rates were dependent on the method; therefore, care should be taken in comparing SOD data obtained by different methods. There is a need for a carefully researched standardized method for SOD determinations.

  17. Multi-walled Carbon Nanotubes Reduce Toxicity of Diphenhydramine to Ceriodaphnia dubia in Water and Sediment Exposures.

    PubMed

    Myer, Mark H; Black, Marsha C

    2017-09-01

    Multi-walled carbon nanotubes are adsorptive materials that have potential for remediation of organic contaminants in water. Sediment elutriate exposures were undertaken with Ceriodaphnia dubia to compare the toxic effects of diphenhydramine in the presence and absence of sediment and multi-walled carbon nanotubes. In both sediment and solution-only treatments, addition of 0.318 mg/g of carbon nanotubes significantly decreased 48-h mortality relative to control, with a 78.7%-90.1% reduction in treatments with nanotube-amended sediment and 40.7%-53.3% reduction in nanotube-amended water exposures. The greatest degree of relative mortality reduction occurred in sediments containing higher levels of natural organic matter, indicating a potential additive effect.

  18. IN SITU BIOASSAY CHAMBER FOR ASSESSMENT OF SEDIMENT TOXICITY AND BIOACCUMULATION USING BENTHIC INVERTEBRATES

    EPA Science Inventory

    In this study, we describe the construction of a simple, inexpensive bioassay chamber for testing sediment toxicity (survival and growth) and bioaccumulation under field conditions using the midge Chironomus tentans and the oligochaete Lumbriculus variegatus. The test chamber is ...

  19. STUDIES ON BIOREMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBON-CONTAMINATED SEDIMENTS: BIOAVAILABILITY, BIODEGRADABILITY, AND TOXICITY ISSUES

    EPA Science Inventory

    The widespread contamination of aquatic sediments by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective bioremediation processes, on which the bioavailability and the toxicity of PAHs often have a significant impact. This research investigated the biode...

  20. EVALUATION OF BIOACCUMULATION AND PHOTOINDUCED TOXICITY OF FLUORANTHENE IN LARVAL AND ADULT LIFE-STAGES OF CHIRONOMUS TENTANS

    EPA Science Inventory

    Laboratory sediment tests were conducted to evaluate the bioaccumulation and photoinduced toxicity of fluoranthene in larval and adult life-stages of Chironomus tentans. In the first of two experiments, fourth-instar and adult C. tentans exposed to spiked sediments were collected...

  1. Priority and emerging flame retardants in rivers: occurrence in water and sediment, Daphnia magna toxicity and risk assessment.

    PubMed

    Cristale, Joyce; García Vázquez, Alejandro; Barata, Carlos; Lacorte, Silvia

    2013-09-01

    The occurrence, partitioning and risk of eight polybrominated diphenyl ethers (PBDEs), nine new brominated (NBFRs) and ten organophosphorus flame retardants (OPFRs) were evaluated in three Spanish rivers suffering different anthropogenic pressures (Nalón, Arga and Besòs). OPFRs were ubiquitous contaminants in water (ΣOPFRs ranging from 0.0076 to 7.2μgL(-1)) and sediments (ΣOPFRs ranging 3.8 to 824μgkg(-1)). Brominated flame retardants were not detected in waters, whereas ΣPBDEs ranged from 88 to 812μgkg(-1) and decabromodiphenyl ethane (DBDPE) reached 435μgkg(-1) in sediments from the River Besòs, the most impacted river. The occurrence of flame retardants in river water and sediment was clearly associated with human activities, since the highest levels occurred near urban and industrial zones and after wastewater treatment plants discharge. Daphnia magna toxicity was carried out for OPFRs, the most ubiquitous flame retardants, considering individual compounds and mixtures. Toxicity of nine tested OPFRs differed largely among compounds, with EC50 values ranging over three magnitude orders (0.31-381mgL(-1)). Results evidenced that these compounds act by non-polar narcosis, since their toxicity was proportional to their lipophilicity (Kow). Furthermore, their joint toxicity was additive, which means that single and joint toxicity can be predicted knowing their concentration levels in water using quantitative structure activity relationships (QSARs) and predictive mixture models. Based on these results, a risk assessment considering joint effect was performed calculating and summing risk quotients (RQs) for the water and sediment samples. No significant risk to D. magna (ΣRQs <1) was observed for any of the monitored rivers. © 2013.

  2. Risk and toxicity assessments of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake, China.

    PubMed

    Fu, Jie; Hu, Xin; Tao, Xiancong; Yu, Hongxia; Zhang, Xiaowei

    2013-11-01

    Heavy metal pollution is one of the most serous environmental issues globally. To evaluate the metal pollution in Jiangsu Province of China, the total concentrations of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake were analyzed. Ecological risk of sediments and human health risk of fish consumption were assessed respectively. Furthermore, toxicity of samples on expression of the stress responsive genes was evaluated using microbial live cell-array method. The results showed that the heavy metals concentrations in sediments from the Yangtze River were much higher than those in sediments from the Taihu Lake. However, the fishes from the Taihu Lake had higher concentrations of heavy metals than fishes from the Yangtze River. Ecological risk evaluation showed that the heavy metal contaminants in sediments from the Yangtze River posed higher risk of adverse ecological effects, while sediments from the study areas of Taihu Lake were relatively safe. Health risk assessment suggested that the heavy metals in fishes of both Yangtze River and Taihu Lake might have risk of adverse health effects to human. The toxicity assessment indicated that the heavy metals in these sediments and fishes showed transcriptional effects on the selected 21 stress responsive genes, which were involved in the pathways of DNA damage response, chemical stress, and perturbations of electron transport. Together, this field investigation combined with chemical analysis, risk assessment and toxicity bioassay would provide useful information on the heavy metal pollution in Jiangsu Province. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate

    USGS Publications Warehouse

    Winters, W.J.; Pecher, I.A.; Waite, W.F.; Mason, D.H.

    2004-01-01

    This paper presents results of shear strength and acoustic velocity (p-wave) measurements performed on: (1) samples containing natural gas hydrate from the Mallik 2L-38 well, Mackenzie Delta, Northwest Territories; (2) reconstituted Ottawa sand samples containing methane gas hydrate formed in the laboratory; and (3) ice-bearing sands. These measurements show that hydrate increases shear strength and p-wave velocity in natural and reconstituted samples. The proportion of this increase depends on (1) the amount and distribution of hydrate present, (2) differences, in sediment properties, and (3) differences in test conditions. Stress-strain curves from the Mallik samples suggest that natural gas hydrate does not cement sediment grains. However, stress-strain curves from the Ottawa sand (containing laboratory-formed gas hydrate) do imply cementation is present. Acoustically, rock physics modeling shows that gas hydrate does not cement grains of natural Mackenzie Delta sediment. Natural gas hydrates are best modeled as part of the sediment frame. This finding is in contrast with direct observations and results of Ottawa sand containing laboratory-formed hydrate, which was found to cement grains (Waite et al. 2004). It therefore appears that the microscopic distribution of gas hydrates in sediment, and hence the effect of gas hydrate on sediment physical properties, differs between natural deposits and laboratory-formed samples. This difference may possibly be caused by the location of water molecules that are available to form hydrate. Models that use laboratory-derived properties to predict behavior of natural gas hydrate must account for these differences.

  4. Are PAHS the Right Metric for Assessing Toxicity Related to Oils, Tars, Creosote and Similar Contaminants in Sediments?

    EPA Science Inventory

    Oils, tars, and other non-aqueous phase hydrocarbon liquids (NAPLs) are common sources of contamination in aquatic sediments, and the toxicity of such contamination has generally been attributed to component chemicals, particularly PAHs. While there is no doubt PAHs can be toxic ...

  5. Contaminants in stream sediments from seven U.S. metropolitan areas: Data summary of a National Pilot Study

    USGS Publications Warehouse

    Moran, Patrick W.; Calhoun, Dan L.; Nowell, Lisa H.; Kemble, Nile E.; Ingersoll, Chris G.; Hladik, Michelle; Kuivila, Kathryn; Falcone, James A.; Gilliom, Robert J.

    2012-01-01

    This report presents data collected as a part of a synoptic survey of stream sediment contaminants, associated watershed characteristics and invertebrate responses in laboratory sediment toxicity tests from 98 streams (sites) in seven metropolitan study areas across the continental United States. The report presents methods, data, and sediment-quality guidelines, including the derivation of a new sediment pyrethroid probable effects concentration, for the purposes of relating measured contaminants to land use and toxicity evaluation. The study evaluated sites that ranged in their degree of relative urbanization within the study areas of Atlanta, Boston, Dallas-Fort Worth, Denver, Milwaukee-Green Bay, Salt Lake City, and Seattle-Tacoma. In all, 108 chemical analytes quantified in the study are presented, by class and number of individual compounds, as follows: polyaromatic hydrocarbons (PAHs) (28), organochlorine pesticides (OCs) (18), polychlorinated biphenyls (Aroclors) (3), pyrethroid insecticides (14), fipronil compounds (4), priority trace and other major elements (41). The potential of these sediments to cause toxicity to sediment-dwelling invertebrates was evaluated using two standard sediment toxicity tests: a 28-day growth and survival toxicity test with the amphipod Hyalella azteca, and a 10-day growth and survival toxicity test with the midge Chironomus dilutus. Further, approximately 95 relevant watershed and reach-level characteristics were generated and are presented to aid in interpretation and explanation of contaminant and toxicity patterns. Interpretation of the findings of this study, including the relationships with urbanization and other factors, the relationship between sediment toxicity and sediment chemistry in the seven study areas, and the sources and occurrence of pyrethroid insecticides, are discussed in detail in a forthcoming series of journal articles.

  6. OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing.

    PubMed

    Busquet, François; Strecker, Ruben; Rawlings, Jane M; Belanger, Scott E; Braunbeck, Thomas; Carr, Gregory J; Cenijn, Peter; Fochtman, Przemyslaw; Gourmelon, Anne; Hübler, Nicole; Kleensang, André; Knöbel, Melanie; Kussatz, Carola; Legler, Juliette; Lillicrap, Adam; Martínez-Jerónimo, Fernando; Polleichtner, Christian; Rzodeczko, Helena; Salinas, Edward; Schneider, Katharina E; Scholz, Stefan; van den Brandhof, Evert-Jan; van der Ven, Leo T M; Walter-Rohde, Susanne; Weigt, Stefan; Witters, Hilda; Halder, Marlies

    2014-08-01

    The OECD validation study of the zebrafish embryo acute toxicity test (ZFET) for acute aquatic toxicity testing evaluated the ZFET reproducibility by testing 20 chemicals at 5 different concentrations in 3 independent runs in at least 3 laboratories. Stock solutions and test concentrations were analytically confirmed for 11 chemicals. Newly fertilised zebrafish eggs (20/concentration and control) were exposed for 96h to chemicals. Four apical endpoints were recorded daily as indicators of acute lethality: coagulation of the embryo, lack of somite formation, non-detachment of the tail bud from the yolk sac and lack of heartbeat. Results (LC50 values for 48/96h exposure) show that the ZFET is a robust method with a good intra- and inter-laboratory reproducibility (CV<30%) for most chemicals and laboratories. The reproducibility was lower (CV>30%) for some very toxic or volatile chemicals, and chemicals tested close to their limit of solubility. The ZFET is now available as OECD Test Guideline 236. Considering the high predictive capacity of the ZFET demonstrated by Belanger et al. (2013) in their retrospective analysis of acute fish toxicity and fish embryo acute toxicity data, the ZFET is ready to be considered for acute fish toxicity for regulatory purposes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. SEWER SEDIMENT GATE AND VACUUM FLUSHING TANKS: LABORATORY FLUME STUDIES

    EPA Science Inventory

    The objective of this study was to test the performance of a traditional gate-flushing device and a newly designed vacuum-flushing device in removing sediments from combined sewers and CSO storage tanks. A laboratory hydraulic flune was used to simulate a reach of sewer or storag...

  8. Toxicity and fate of two munitions constituents in spiked sediment exposures with the marine amphipod Eohaustorius estuarius.

    PubMed

    Rosen, Gunther; Lotufo, Guilherme R

    2005-11-01

    The lethal toxicity of the explosive compounds 14C-labeled 2,4,6-trinitrotoluene (TNT) and nonradiolabeled hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the estuarine amphipod Eohaustorius estuarius was investigated in 10-d spiked sediment exposures. The 10-d median lethal concentration (LC50) was determined using the sum molar initial concentration of TNT, aminodinitrotoluenes (ADNTs), and diaminonitrotoluenes (DANTs), as determined by high-performance liquid chromatography (HPLC), and collectively referred to as HPLC-TNT*. Despite expectations of higher toxicity in sandy sediment (Yaquina Bay [YB], OR, USA) compared to relatively fine-grained sediment (San Diego Bay [SDB], CA, USA), LC50 values were similar: 159 and 125 micromol/kg, for YB and SDB sediments, respectively. When expressed as the sum of TNT and all its degradation products (14C-TNT*), LC50s were approximately two times the corresponding LC50s determined by HPLC. The HPLC-TNT* fraction likely corresponds to the most bioavailable and toxic transformation products. The concentrations of 14C-TNT* in tissues were substantially higher than those for HPLC-TNT*, suggesting that compounds other than TNT and its major aminated transformation products were prevalent. Critical body residues were similar for exposures to SDB (11.7 micromol/kg) and YB sediments (39.4 micromol/kg), despite marked differences in the nature of compounds available for uptake in the exposure media. The critical body residues for E. estuarius are lower than those reported for other aquatic invertebrates (83-172 micromol/kg). Unlike observations for TNT, RDX was only loosely associated with SDB sediment, with near complete recovery of the parent compound by chemical analysis. Exposure to RDX did not result in significant mortality even at the highest measured sediment concentration of 10,800 micromol/kg dry weight, nor tissue concentrations as high as 96 micromol/kg wet weight. The lack of RDX lethal effects in this study is

  9. Toxicity risk assessment of mercury, DDT and arsenic legacy pollution in sediments: A triad approach under low concentration conditions.

    PubMed

    Marziali, L; Rosignoli, F; Drago, A; Pascariello, S; Valsecchi, L; Rossaro, B; Guzzella, L

    2017-09-01

    The determination of sediment toxicity is challenging due to site-specific factors affecting pollutants distribution and bioavailability, especially when contamination levels are close to expected non-effect concentrations. Different lines of evidence and sensitive tools are necessary for a proper toxicity risk assessment. We examined the case study of the Toce River (Northern Italy), where past industrial activities determined Hg, DDT and As enrichment in sediments. A triad approach comprising chemical, ecotoxicological and ecological analyses (benthic invertebrates) was carried out for risk assessment of residual contamination in river sediments. A "blank" site upstream from the industrial site was selected to compare the other sites downstream. Sediment, water and benthic invertebrate samplings were carried out following standard protocols. Results emphasized that despite the emissions of the industrial site ceased about 20years ago, sediments in the downstream section of the river remain contaminated by Hg, DDT and As with concentrations exceeding Threshold Effect Concentrations. A chronic whole-sediment test with Chironomus riparius showed decreased development rate and a lower number of eggs per mass in the contaminated sediments. Benthic community was analyzed with the calculation of integrated (STAR_ICMi) and stressor-specific metrics (SPEAR pesticide and mean sensitivity to Hg), but no significant differences were found between upstream and downstream sites. On the other hand, multivariate analysis (partial Redundancy Analysis and variation partitioning) emphasized a slight impact on invertebrate community, accounting for 5% variation in taxa composition. Results show that legacy contaminants in sediments, even at low concentrations, may be bioavailable and possibly toxic for benthic invertebrates. At low concentration levels, sensitive and site-specific tools need to be developed for a proper risk analysis. Copyright © 2017 Elsevier B.V. All rights

  10. USE OF ULVA LACTUCA TO DISTINGUISH PH DEPENDENT TOXICANTS IN MARINE WATERS AND SEDIMENTS

    EPA Science Inventory

    Ulva lactuca (sea lettuce) is a cosmopolitan marine attached green seaweed capable of sequestering high environmental levels of ammonia. Ammonia can be acutely toxic to marine organisms and is often found in dredged sediments from highly industrial areas or from areas with high c...

  11. Evaluation of Metal Toxicity in Streams Affected by Abandoned Mine Lands, Upper Animas River Watershed, Colorado

    USGS Publications Warehouse

    Besser, John M.; Allert, Ann L.; Hardesty, Douglas K.; Ingersoll, Christopher G.; May, Thomas W.; Wang, Ning; Leib, Kenneth J.

    2001-01-01

    Acid drainage from abandoned mines and from naturally-acidic rocks and soil in the upper Animas River watershed of Colorado generates elevated concentrations of acidity and dissolved metals in stream waters and deposition of metal-contaminated particulates in streambed sediments, resulting in both toxicity and habitat degradation for stream biota. High concentrations of iron (Fe), aluminum (Al), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) occur in acid streams draining headwaters of the upper Animas River watershed, and high concentrations of some metals, especially Zn, persist in circumneutral reaches of the Animas River and Mineral Creek, downstream of mixing zones of acid tributaries. Seasonal variation of metal concentrations is reflected in variation in toxicity of stream water. Loadings of dissolved metals to the upper Animas River and tributaries are greatest during summer, during periods of high stream discharge from snowmelt and monsoonal rains, but adverse effects on stream biota may be greater during winter low-flow periods, when stream flows are dominated by inputs of groundwater and contain greatest concentrations of dissolved metals. Fine stream-bed sediments of the upper Animas River watershed also contain elevated concentrations of potentially toxic metals. Greatest sediment metal concentrations occur in the Animas River upstream from Silverton, where there are extensive deposits of mine and mill tailings, and in mixing zones in the Animas River and lower Mineral Creek, where precipitates of Fe and Al oxides also contain high concentrations of other metals. This report summarizes the findings of a series of toxicity studies in streams of the upper Animas River watershed, conducted on-site and in the laboratory between 1998 and 2000. The objectives of these studies were: (1) to determine the relative toxicity of stream water and fine stream-bed sediments to fish and invertebrates; (2) to determine the seasonal range of toxicity in stream

  12. A comprehensive study of the toxicity of natural multi-contaminated sediments: New insights brought by the use of a combined approach using the medaka embryo-larval assay and physico-chemical analyses.

    PubMed

    Barjhoux, Iris; Clérandeau, Christelle; Menach, Karyn Le; Anschutz, Pierre; Gonzalez, Patrice; Budzinski, Hélène; Morin, Bénédicte; Baudrimont, Magalie; Cachot, Jérôme

    2017-08-01

    Sediment compartment is a long term sink for pollutants and a secondary source of contamination for aquatic species. The abiotic factors controlling the bioavailability and thus the toxicity of complex mixtures of pollutants accumulated in sediments are poorly documented. To highlight the different factors influencing sediment toxicity, we identified and analyzed the physico-chemical properties, micro-pollutant contents, and toxicity level of six contrasted sediments in the Lot-Garonne continuum. Sediment toxicity was evaluated using the recently described Japanese medaka (Oryzias latipes) embryo-larval assay with direct exposure to whole sediment (MELAc). Multiple toxicity endpoints including embryotoxicity, developmental defects and DNA damage were analyzed in exposed embryos. Chemical analyses revealed significant variations in the nature and contamination profile of sediments, mainly impacted by metallic trace elements and, unexpectedly, polycyclic aromatic hydrocarbons. Exposure to sediments induced different toxic impacts on medaka early life stages when compared with the reference site. Principal component analysis showed that the toxic responses following exposure to sediments from the Lot River and its tributary were associated with micro-pollutant contamination: biometric measurements, hatching success, genotoxicity, craniofacial deformities and yolk sac malabsorption were specifically correlated to metallic and organic contaminants. Conversely, the main biological responses following exposure to the Garonne River sediments were more likely related to their physico-chemical properties than to their contamination level. Time to hatch, cardiovascular injuries and spinal deformities were correlated to organic matter content, fine particles and dissolved oxygen levels. These results emphasize the necessity of combining physico-chemical analysis of sediment with toxicity assessment to accurately evaluate the environmental risks associated with sediment

  13. Towards more ecological relevance in sediment toxicity testing with fish: Evaluation of multiple bioassays with embryos of the benthic weatherfish (Misgurnus fossilis).

    PubMed

    Schreiber, Benjamin; Fischer, Jonas; Schiwy, Sabrina; Hollert, Henner; Schulz, Ralf

    2018-04-01

    The effects of sediment contamination on fish are of high significance for the protection of ecosystems, human health and economy. However, standardized sediment bioassays with benthic fish species, that mimic bioavailability of potentially toxic compounds and comply with the requirements of alternative test methods, are still scarce. In order to address this issue, embryos of the benthic European weatherfish (Misgurnus fossilis) were exposed to freeze-dried sediment (via sediment contact assays (SCA)) and sediment extracts (via acute fish embryo toxicity tests) varying in contamination level. The extracts were gained by accelerated solvent extraction with (i) acetone and (ii) pressurized hot water (PHWE) and subsequently analyzed for polycyclic aromatic hydrocarbons, polychlorinated biphenyls and polychlorinated dibenzodioxins and dibenzofurans. Furthermore, embryos of the predominately used zebrafish (Danio rerio) were exposed to extracts from the two most contaminated sediments. Results indicated sufficient robustness of weatherfish embryos towards varying test conditions and sensitivity towards relevant sediment-bound compounds. Furthermore, a compliance of effect concentrations derived from weatherfish embryos exposed to sediment extracts (96h-LC 50 ) with both measured gradient of sediment contamination and previously published results was observed. In comparison to zebrafish, weatherfish embryos showed higher sensitivity to the bioavailability-mimicking extracts from PHWE but lower sensitivity to extracts gained with acetone. SCAs conducted with weatherfish embryos revealed practical difficulties that prevented an implementation with three of four sediments tested. In summary, an application of weatherfish embryos, using bioassays with sediment extracts from PHWE might increase the ecological relevance of sediment toxicity testing: it allows investigations using benthic and temperate fish species considering both bioavailable contaminants and animal welfare

  14. Gene expression profiling to characterize sediment toxicity – a pilot study using Caenorhabditis elegans whole genome microarrays

    PubMed Central

    Menzel, Ralph; Swain, Suresh C; Hoess, Sebastian; Claus, Evelyn; Menzel, Stefanie; Steinberg, Christian EW; Reifferscheid, Georg; Stürzenbaum, Stephen R

    2009-01-01

    Background Traditionally, toxicity of river sediments is assessed using whole sediment tests with benthic organisms. The challenge, however, is the differentiation between multiple effects caused by complex contaminant mixtures and the unspecific toxicity endpoints such as survival, growth or reproduction. The use of gene expression profiling facilitates the identification of transcriptional changes at the molecular level that are specific to the bio-available fraction of pollutants. Results In this pilot study, we exposed the nematode Caenorhabditis elegans to three sediments of German rivers with varying (low, medium and high) levels of heavy metal and organic contamination. Beside chemical analysis, three standard bioassays were performed: reproduction of C. elegans, genotoxicity (Comet assay) and endocrine disruption (YES test). Gene expression was profiled using a whole genome DNA-microarray approach to identify overrepresented functional gene categories and derived cellular processes. Disaccharide and glycogen metabolism were found to be affected, whereas further functional pathways, such as oxidative phosphorylation, ribosome biogenesis, metabolism of xenobiotics, aging and several developmental processes were found to be differentially regulated only in response to the most contaminated sediment. Conclusion This study demonstrates how ecotoxicogenomics can identify transcriptional responses in complex mixture scenarios to distinguish different samples of river sediments. PMID:19366437

  15. Effects of turbidity, sediment, and polyacrylamide on native freshwater mussels

    USGS Publications Warehouse

    Buczek, Sean B.; Cope, W. Gregory; McLaughlin, Richard A.; Kwak, Thomas J.

    2018-01-01

    Turbidity is a ubiquitous pollutant adversely affecting water quality and aquatic life in waterways globally. Anionic polyacrylamide (PAM) is widely used as an effective chemical flocculent to reduce suspended sediment (SS) and turbidity. However, no information exists on the toxicity of PAM‐flocculated sediments to imperiled, but ecologically important, freshwater mussels (Unionidae). Thus, we conducted acute (96 h) and chronic (24 day) laboratory tests with juvenile fatmucket (Lampsilis siliquoidea) and three exposure conditions (nonflocculated settled sediment, SS, and PAM‐flocculated settled sediment) over a range of turbidity levels (50, 250, 1,250, and 3,500 nephelometric turbidity units). Survival and sublethal endpoints of protein oxidation, adenosine triphosphate (ATP) production, and protein concentration were used as measures of toxicity. We found no effect of turbidity levels or exposure condition on mussel survival in acute or chronic tests. However, we found significant reductions in protein concentration, ATP production, and oxidized proteins in mussels acutely exposed to the SS condition, which required water movement to maintain sediment in suspension, indicating responses that are symptoms of physiological stress. Our results suggest anionic PAM applied to reduce SS may minimize adverse effects of short‐term turbidity exposure on juvenile freshwater mussels without eliciting additional lethal or sublethal toxicity.

  16. Development of a Complete Life Cycle Sediment Toxicity Test for the Sheepshead Minnow (Cyprinodon variegatus)

    EPA Science Inventory

    Existing sediment toxicity test methods are limited to acute and chronic exposure of invertebrates and acute exposure of vertebrates, with limited guidance on the chronic exposure of vertebrates, specifically fishes. A series of life stage-specific studies were conducted to dete...

  17. Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments

    USGS Publications Warehouse

    Lee, J.Y.; Yun, T.S.; Santamarina, J.C.; Ruppel, C.

    2007-01-01

    The interaction among water molecules, guest gas molecules, salts, and mineral particles determines the nucleation and growth behavior of gas hydrates in natural sediments. Hydrate of tetrahydrofuran (THF) has long been used for laboratory studies of gas hydrate-bearing sediments to provide close control on hydrate concentrations and to overcome the long formation history of methane hydrate from aqueous phase methane in sediments. Yet differences in the polarizability of THF (polar molecule) compared to methane (nonpolar molecule) raise questions about the suitability of THF as a proxy for methane in the study of hydrate-bearing sediments. From existing data and simple macroscale experiments, we show that despite its polar nature, THF's large molecular size results in low permittivity, prevents it from dissolving precipitated salts, and hinders the solvation of ions on dry mineral surfaces. In addition, the interfacial tension between water and THF hydrate is similar to that between water and methane hydrate. The processes that researchers choose for forming hydrate in sediments in laboratory settings (e.g., from gas, liquid, or ice) and the pore-scale distribution of the hydrate that is produced by each of these processes likely have a more pronounced effect on the measured macroscale properties of hydrate-bearing sediments than do differences between THF and methane hydrates themselves.

  18. Toxic metals in Venics lagoon sediments: Model, observation, an possible removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, A.; Molinaroli, E.

    1994-11-01

    We have modeled the distribution of nine toxic metals in the surface sediments from 163 stations in the Venice lagoon using published data. Three entrances from the Adriatic Sea control the circulation in the lagoon and divide it into three basins. We assume, for purposes of modeling, that Porto Marghera at the head of the Industrial Zone area is the single source of toxic metals in the Venice lagoon. In a standing body of lagoon water, concentration of pollutants at distance x from the source (C{sub 0}) may be given by C=C{sub 0}e{sup -kx} where k is the rate constantmore » of dispersal. We calculated k empirically using concentrations at the source, and those farthest from it, that is the end points of the lagoon. Average k values (ppm/km) in the lagoon are: Zn 0.165, Cd 0.116, Hg 0.110, Cu 0.105, Co 0.072, Pb 0.058, Ni 0.008, Cr (0.011) and Fe (0.018 percent/km), and they have complex distributions. Given the k values, concentration at source (C{sub 0}), and the distance x of any point in the lagoon from the source, we have calculated the model concentrations of the nine metals at each sampling station. Tides, currents, floor morphology, additional sources, and continued dumping perturb model distributions causing anomalies (observed minus model concentrations). Positive anomalies are found near the source, where continued dumping perturbs initial boundary conditions, and in areas of sluggish circulation. Negative anomalies are found in areas with strong currents that may flush sediments out of the lagoon. We have thus identified areas in the lagoon where higher rate of sediment removal and exchange may lesson pollution. 41 refs., 4 figs., 3 tabs.« less

  19. Toxicity of smelter slag-contaminated sediments from Upper Lake Roosevelt and associated metals to early life stage White Sturgeon (Acipenser transmontanus Richardson, 1836)

    USGS Publications Warehouse

    Little, E.E.; Calfee, R.D.; Linder, G.

    2014-01-01

    The toxicity of five smelter slag-contaminated sediments from the upper Columbia River and metals associated with those slags (cadmium, copper, zinc) was evaluated in 96-h exposures of White Sturgeon (Acipenser transmontanus Richardson, 1836) at 8 and 30 days post-hatch. Leachates prepared from slag-contaminated sediments were evaluated for toxicity. Leachates yielded a maximum aqueous copper concentration of 11.8 μg L−1 observed in sediment collected at Dead Man's Eddy (DME), the sampling site nearest the smelter. All leachates were nonlethal to sturgeon that were 8 day post-hatch (dph), but leachates from three of the five sediments were toxic to fish that were 30 dph, suggesting that the latter life stage is highly vulnerable to metals exposure. Fish maintained consistent and prolonged contact with sediments and did not avoid contaminated sediments when provided a choice between contaminated and uncontaminated sediments. White Sturgeon also failed to avoid aqueous copper (1.5–20 μg L−1). In water-only 96-h exposures of 35 dph sturgeon with the three metals, similar toxicity was observed during exposure to water spiked with copper alone and in combination with cadmium and zinc. Cadmium ranging from 3.2 to 41 μg L−1 or zinc ranging from 21 to 275 μg L−1 was not lethal, but induced adverse behavioral changes including a loss of equilibrium. These results suggest that metals associated with smelter slags may pose an increased exposure risk to early life stage sturgeon if fish occupy areas contaminated by slags.

  20. Using SPME fibers and Tenax to predict the bioavailability of pyrethroids and chlorpyrifos in field sediments.

    PubMed

    Harwood, Amanda D; Landrum, Peter F; Weston, Donald P; Lydy, Michael J

    2013-02-01

    The presence of pyrethroids in both urban and agricultural sediments at levels lethal to invertebrates has been well documented. However, variations in bioavailability among sediments make accurate predictions of toxicity based on whole sediment concentrations difficult. A proposed solution to this problem is the use of bioavailability-based estimates, such as solid phase microextraction (SPME) fibers and Tenax beads. This study compared three methods to assess the bioavailability and ultimately toxicity of pyrethroid pesticides including field-deployed SPME fibers, laboratory-exposed SPME fibers, and a 24-h Tenax extraction. The objective of the current study was to compare the ability of these methods to quantify the bioavailable fraction of pyrethroids in contaminated field sediments that were toxic to benthic invertebrates. In general, Tenax proved a more sensitive method than SPME fibers and a correlation between Tenax extractable concentrations and mortality was observed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Prospective Environmental Risk Assessment for Sediment-Bound Organic Chemicals: A Proposal for Tiered Effect Assessment.

    PubMed

    Diepens, Noël J; Koelmans, Albert A; Baveco, Hans; van den Brink, Paul J; van den Heuvel-Greve, Martine J; Brock, Theo C M

    A broadly accepted framework for prospective environmental risk assessment (ERA) of sediment-bound organic chemicals is currently lacking. Such a framework requires clear protection goals, evidence-based concepts that link exposure to effects and a transparent tiered-effect assessment. In this paper, we provide a tiered prospective sediment ERA procedure for organic chemicals in sediment, with a focus on the applicable European regulations and the underlying data requirements. Using the ecosystem services concept, we derived specific protection goals for ecosystem service providing units: microorganisms, benthic algae, sediment-rooted macrophytes, benthic invertebrates and benthic vertebrates. Triggers for sediment toxicity testing are discussed.We recommend a tiered approach (Tier 0 through Tier 3). Tier-0 is a cost-effective screening based on chronic water-exposure toxicity data for pelagic species and equilibrium partitioning. Tier-1 is based on spiked sediment laboratory toxicity tests with standard benthic test species and standardised test methods. If comparable chronic toxicity data for both standard and additional benthic test species are available, the Species Sensitivity Distribution (SSD) approach is a more viable Tier-2 option than the geometric mean approach. This paper includes criteria for accepting results of sediment-spiked single species toxicity tests in prospective ERA, and for the application of the SSD approach. We propose micro/mesocosm experiments with spiked sediment, to study colonisation success by benthic organisms, as a Tier-3 option. Ecological effect models can be used to supplement the experimental tiers. A strategy for unifying information from various tiers by experimental work and exposure-and effect modelling is provided.

  2. Evaluation of older bay mud sediment from Richmond Harbor, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinza, M.R.; Mayhew, H.L.; Word, J.Q.

    The older, bay mud (OBM) unit predates modem man and could act as a barrier to the downward transport of contaminants from the younger bay mud (YBM) because of its hard-packed consistency. However, its chemical and biological nature have not been well characterized. Battelle/Marine Sciences Laboratory (MSL) conducted three independent studies of OBM sediment in January 1993, January 1994, and October 1994. These studies evaluated potential chemical contamination and biological effects of OBM that could occur as a result of dredging and disposal activities. These evaluations were performed by conducting chemical analysis, solid-phase toxicity tests, suspended- particulate-phase (SPP) toxicity tests,more » and bioaccumulation tests on the OBM sediment. If the sediment chemistry and toxicity results showed no or minimal contamination and toxicological responses, then either the OBM could be left exposed in Richmond Harbor after dredging the YBM without leaving a source of contamination, or if the project depths necessitate, the OBM would be acceptable for disposal at an appropriate disposal site.« less

  3. Toxicity of sediments from a mangrove forest patch in an urban area in Pernambuco (Brazil).

    PubMed

    Oliveira, D D; Souza-Santos, L P; Silva, H K P; Macedo, S J

    2014-06-01

    Industrial and urban residues are discharged every day to the rivers and may arrive at the mangrove forest and prejudice the quality of the environment and the organisms present there. The mangrove forest patch studied is encircled by an urban area of the city of Recife (Brazil) that has approximate 1.5 million inhabitants and is one of the most industrialized centers in Northeast Brazil. The aim of this study was to assess the quality of the sediments of this mangrove patch in terms of metal contamination and ecotoxicology. Samples of surface sediment were collected in six stations for toxicological tests and trace metal determination (Cr, Zn, Mn, Fe, Cu, Pb, Co and Ni), in July and August, 2006 (rainy season); and in January and February 2007 (dry season). Toxicity tests with solid-phase sediments were carried out with the copepod Tisbe biminiensis in order to observe lethal and sub-lethal endpoints and correlate them with chemical data. In June, there were no observed lethal effect, but two stations presented sub-lethal effects. In January, lethal effect occurred in three stations and sub-lethal in one station. The levels for Zn and Cr were at higher levels than international proposed guidelines (NOAA). There was a negative significant correlation between the copepods׳ fecundity, and Zn and Cr concentrations. Therefore, the studied sediments can be considered to have potential toxic to benthos due to the high content of Zn and Cr. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Toxic shock syndrome: clinical and laboratory features in 15 patients.

    PubMed

    Tofte, R W; Williams, D N

    1981-02-01

    Toxic shock syndrome is a recently recognized illness with serious morbidity and mortality that occurs primarily in healthy menstruating women who use tampons. Thirteen women and two men were evaluated; two of the women died in spite of seemingly appropriate therapy. All patients had a temperature of 38.9 degrees C or greater, hypotension of syncope, a skin rash with subsequent desquamation, mucous membrane inflammation, and laboratory evidence of multiple organ dysfunction. Staphylococcus aureus was isolated from the cervix or vagina in eight women and from soft-tissue infections in both men. Two patients were bacteremic. The significant heterogeneity in the clinical manifestations, laboratory abnormalities, and therapeutic requirements among patients may result in diagnostic confusion and inappropriate therapy. Although toxic shock syndrome appears to be associated with tampon usage and S. aureus, the pathogenesis remains unknown.

  5. Laboratory studies on antimycin A as a fish toxicant

    USGS Publications Warehouse

    Berger, Bernard L.; Lennon, Robert E.; Hogan, James W.

    1969-01-01

    Liquid and sand formulations of antimycin A were tested in laboratory waters of various temperature, hardness, pH, and turbidity against 31 species of fresh-water fish of various sizes and life stages. Each formulation of toxicant was lethal under all water conditions to fish eggs, fry, fingerlings, and adult fish. Trouts are the most sensitive and catfishes the least sensitive. Of the 31 species, 24 succumb to 5 p.p.b. or less of the toxicant; only certain catfishes survive 25 p.p.b, The order of toxicity to various species of fish suggests that antimycin has possibilities for selective or partial control of certain unwanted fish. Although toxic to fish under ice, antimycin is more active in warm water than in cold. It is slightly more active in soft water than in hard; it is more active and persists far longer in water at pH 5 to 8 than at pH 9 or 10. It is active on fish in either clear and turbid waters, and it can be detoxified by potassium permanganate, The results contributed to registration of antimycin A in Fintrol-5 formulation as a fish toxicant.

  6. A model to understand the confounding effects of natural sediments in toxicity tests with Chironomus riparius.

    PubMed

    Péry, Alexandre R; Sulmon, Vanessa; Mons, Raphaël; Flammarion, Patrick; Lagadic, Laurent; Garric, Jeanne

    2003-10-01

    Recently, we built a model to link feeding input with growth, emergence, and reproduction of the midge Chironomus riparius exposed to an artificial sandy sediment. This model is based on assumptions about both feeding behavior and use of energy. Here, we show how it can be used for toxicity tests with natural sediments to understand and model the influence of sediment characteristics. We measured growth, emergence, and reproduction of chironomids exposed in beakers to four unpolluted natural sediments and three feeding conditions (no feeding, 0.2 mg Tetramin/larva/d, and 1.4 mg Tetramin/larva/d) and compared the results with data obtained on our artificial sandy sediment. Sediment characteristics had lower influence on growth than feeding level, but their influence could not be neglected. First, we could distinguish between sandy sediments and other sediments. This difference resulted in a significant delay of about 18 h in the growth curves. Second, in case of food limitation, chironomids could use the organic materials in the sediment, provided that the C:N ratio of the sediment was less than 14. Our model proved to be able to incorporate those two phenomena. As for reproduction, we observed a better reproduction (measured in number of eggs per mass) for natural sediments than for artificial sediments. We showed that this difference could be due to the lipid content of the natural sediments.

  7. Toxic assessment of the leachates of paddy soils and river sediments from e-waste dismantling sites to microalga, Pseudokirchneriella subcapitata.

    PubMed

    Nie, Xiangping; Fan, Canpeng; Wang, Zhaohui; Su, Tian; Liu, Xinyu; An, Taicheng

    2015-01-01

    The potential adverse effects of e-waste recycling activity on environment are getting increasing concern. In this work, a model alga, Pseudokirchneriella subcapitata, was employed to assess the toxic effects of the leachates of paddy soils and river sediments collected from e-waste dismantling sites. Chemical analysis of the paddy soils and river sediments and their leachates were carried out and the growth rate, chlorophyll a fluorescence and anti-oxidative systems of the alga were measured. Results showed that two leachates decreased the amount of PSII active reaction centers and affected photosynthesis performance, interfered with chlorophyll synthesis and inhibited algal growth. Some chemical pollutants in the sediments and soils such as polybrominated diphenyl ethers (PBDEs) and metals derived from e-waste recycling activity may impose oxidative stress on algae and affect the activity of anti-oxidative enzymes such as GST, SOD, CAT and APX. The leachates of both river sediments and paddy soils are potentially toxic to the primary producers, P. subcapitata and the leachate from sediments was more deleterious than that from soils. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. NA{sup +}, K{sup +}-ATPase, histopathological, and genetic responses of Corbicula fluminea to sediment-associated copper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, S.

    1995-12-31

    Time-dependent responses to sediment-associated copper were studies at hierarchical levels of biological organization along an extreme concentration gradient (40 to 40,000 mg/kg total Cu). Laboratory and in situ estimates of molecular to tissue-level responses (Na/K-ATPase activity, DNA content, histopathology) were monitored in Corbicula fluminea (Asiatic clam), and compared with laboratory and field based survival of Corbicula and Elimia teres (an indigenous Gastropoda). Mollusc survival was, in turn, compared with effects on macrobenthic community composition along the stream/[Cu] gradient. Relationships between selected sediment characteristics and the bioavailability and toxicity of sediment associated copper were also investigated. Sediment-associated copper depressed Na/K-ATPase activitymore » and led to histopathological damage of renal and gill epithelia (vacuolization, degeneration), indicating that impaired ion regulation was an important mechanism of toxicity. Concurrent reductions in DNA content were believed to be secondary effects due to cell death, not an indication of genotoxicity. Sublethal responses were significantly correlated with survival in both species; however, while survival in situ was indicative of differences in community structure, laboratory-based survival was not. Copper levels in tissues were indicative of exposure, but were not significantly correlated with adverse effects. Copper levels in sediments, interstitial water, and overlying water varied independently of sediment characteristics except pH. Cu/AVS ratios were predictive of Corbicula and Elimia survival, but were not significantly related to differences in community structure. Instead, macrobenthic community structure was influenced by other sediment factors (grain size, Eh, pH).« less

  9. PROFILE OF TOXIC RESPONSE TO SEDIMENTS USING WHOLE-ANIMAL AND IN VITRO SUBMITOCHONDRIAL PARTICLE (SMP) ASSAYS

    EPA Science Inventory

    A rapid bioassy for monitoring acute toxicity of wastewater, ground water, and soil and sediment extracts using submitochondrial particles (SMP) has been developed. The assay utilizes the mitochondrial electron transfer enzyme complex present in all eukaryotic cells. Prior develo...

  10. Sediment-contact fish embryo toxicity assay with Danio rerio to assess particle-bound pollutants in the Tietê River Basin (São Paulo, Brazil).

    PubMed

    Rocha, Paula Suares; Bernecker, Conny; Strecker, Ruben; Mariani, Carolina Fiorillo; Pompêo, Marcelo Luiz Martins; Storch, Volker; Hollert, Henner; Braunbeck, Thomas

    2011-10-01

    The Tietê River and its tributary Pinheiros River receive a highly complex organic and inorganic pollutants load from sanitary sewage and industrial sources, as well as agricultural and agroindustrial activities. The aim of the present study was to evaluate the embryotoxic and teratogenic effects of sediments from selected locations in the Tietê River Basin by means of the sediment contact embryo toxicity assay with Danio rerio, in order to provide a comprehensive and realistic insight into the bioavailable hazard potential of these sediment samples. Lethal and sub-lethal effects were recorded, and high embryo toxicity could be found in the samples not only in the vicinity of the megacity São Paulo (Billings reservoir and Pinheiros River samples), but also downstream (in the reservoirs Barra Bonita, Promissão and Três Irmãos). Results confirm that most toxicity is due to the discharges of the metropolitan area of São Paulo. However, they also indicate additional sources of pollutants along the river course, probably from industrial, agricultural and agroindustrial residues, which contribute to the degradation of each area. The sediment contact fish embryo test showed to be powerful tool to detect embryo toxicity in sediments, not only by being a sensitive method, but also for taking into account bioavailability. This test provides an ecological highly realistic and relevant exposure scenario, and should therefore be added in ecotoxicological sediment quality assessments. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Estimation of Wildlife Hazard Levels Using Interspecies Correlation Models and Standard Laboratory Rodent Toxicity Data

    EPA Science Inventory

    Toxicity data from laboratory rodents are widely available and frequently used in human health assessments as an animal model. We explore the possibility of using single rodent acute toxicity values to predict chemical toxicity to a diversity of wildlife species and to estimate ...

  12. Tidal river sediments in the Washington, D.C. area. 111 Biological effects associated with sediment contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlekat, C.E.; McGee, B.L.; Boward, D.M.

    1994-06-01

    Sediment toxicity and benthic marcroinvertebrate community structure were measured as one component of a study conceived to determine the distribution and effect of sediment contamination in tidal freshwater portions of the Potomac and Anacostia rivers in the Washington, D.C., area. Samples were collected at 15 sites. Analyses included a partial life cycle (28 d) whole sediment test using the amphipod Hyalella azteca (Talitridae) and an assessment of benthic community structure. Survival and growth (as estimated by amphipod length) were experimental endpoints for the toxicity test. Significant mortality was observed in 5 to 10 sites in the lower Anacostia River basinmore » and at the main channel Potomac River site. Sublethal toxicity, as measured by inhibition of amphipod growth, was not observed. Toxicity test results were in general agreement with synoptically measured sediment contaminant concentrations. Porewater total ammonia (NH{sub 3} + NH{sub 4}{sup +}) appears to be responsible for the toxicity of sediments from the Potomac River, while correlation analysis and simultaneously extracted metals: acid volatile sulfide (SEM:AVA) results suggest that the toxicity associated with Anacostia River sediments was due to organic compounds. Twenty-eight macroinvertebrate taxa were identified among all sites, with richness varying from 5 to 17 taxa per site. Groups of benthic assemblages identified by group-average cluster analysis exhibited variable agreement with sediment chemical and sediment toxicity results. Integration of toxicological, chemical, and ecological components suggests that adverse environmental effects manifest in lower Anacostia River benthos result from chemical contamination of sediment. 37 refs., 2 figs., 7 tabs.« less

  13. Deriving Sediment Interstitial Water Remediation Goals ...

    EPA Pesticide Factsheets

    This document contains a methodology for developing interstitial water remediation goals (IWRGs) for nonionic organic pollutants (toxicants) in sediments for the protection of benthic organisms. The document provides the basis for using the final chronic values (FCVs) from EPA’s aquatic water quality criteria (AWQC) for the protection of aquatic life to set the IWRGs for toxicants in sediments. Concentrations of the toxicants in the sediment interstitial water are measured using passive sampling. This document also discusses how to evaluate the consistency between passive sampling measurements and sediment toxicity test results. When these data are consistent, one can be reasonably assured that the causes of toxicity to benthic organisms in the sediment have been correctly identified and that the developed IWRGs for the toxicants will be protective of the benthic organisms at the site. The consistency evaluation is an important step in developing defensible IWRGs. To assist in developing defensible IWRGs.

  14. Laboratory investigation of the erosion of cohesive sediments under oscillatory flows using a synchronized imaging technique

    NASA Astrophysics Data System (ADS)

    Sou, In Mei; Calantoni, Joseph; Reed, Allen; Furukawa, Yoko

    2012-11-01

    A synchronized dual stereo particle image velocimetry (PIV) measurement technique is used to examine the erosion process of a cohesive sediment core in the Small Oscillatory Flow Tunnel (S-OFT) in the Sediment Dynamics Laboratory at the Naval Research Laboratory, Stennis Space Center, MS. The dual stereo PIV windows were positioned on either side of a sediment core inserted along the centerline of the S-OFT allowing for a total measurement window of about 20 cm long by 10 cm high with sub-millimeter spacing on resolved velocity vectors. The period of oscillation ranged from 2.86 to 6.12 seconds with constant semi-excursion amplitude in the test section of 9 cm. During the erosion process, Kelvin-Helmholtz instabilities were observed as the flow accelerated in each direction and eventually were broken down when the flow reversed. The relative concentration of suspended sediments under different flow conditions was estimated using the intensity of light scattered from the sediment particles in suspension. By subtracting the initial light scattered from the core, the residual light intensity was assumed to be scattered from suspended sediments eroded from the core. Results from two different sediment core samples of mud and sand mixtures will be presented.

  15. POREWATER TOXICITY TESTING: AN OVERVIEW

    EPA Science Inventory

    Sediments act as sinks for contaminants, where they may build up to toxic levels. Sediments containing toxic levels of contaminants pose a risk to aquatic life, human health, and wildlife. There is an overwhelming amount of evidence that demonstrates chemicals in sediments are re...

  16. COMPARATIVE TOXICITY TESTING OF SELECTED BENTHIC AND EPIBENTHIC ORGANISMS FOR THE DEVELOPMENT OF SEDIMENT QUALITY TEST PROTOCOLS

    EPA Science Inventory

    Sediment contamination has resulted in the need to develop an appropriate suite of toxicity tests to assess ecotoxicological impacts on estuarine ecosystems. Existing Environmental Protection Agency (EPA) protocols recommend a number of test organisms, including amphipods, polych...

  17. Evaluation of influence of sediment on the sensitivity of a unionid mussel (Lampsilis siliquoidea) to ammonia in 28-day water exposures

    USGS Publications Warehouse

    Wang, N.; Consbrock, R.A.; Ingersoll, C.G.; Barnhart, M.C.

    2011-01-01

    A draft update of the U.S. Environmental Protection Agency ambient water quality criteria (AWQC) for ammonia substantially lowers the ammonia AWQC, primarily due to the inclusion of toxicity data for freshwater mussels. However, most of the mussel data used in the updated AWQC were generated from water-only exposures and limited information is available on the potential influence of the presence of a substrate on the response of mussels in laboratory toxicity tests. Our recent study demonstrated that the acute sensitivity of mussels to ammonia was not influenced by the presence of substrate in 4-d laboratory toxicity tests. The objective of the current study was to determine the sensitivity of mussels to ammonia in chronic 28-d water exposures with the sediment present (sediment treatment) or absent (water-only treatment). The chronic toxicity test was conducted starting with two-month-old juvenile mussels (fatmucket, Lampsilis siliquoidea) in a flow-through diluter system, which maintained consistent pH (???8.3) and six concentrations of total ammonia nitrogen (N) in overlying water and in sediment pore water. The chronic value (ChV, geometric mean of the no-observed-effect concentration and the lowest-observed-effect concentration) was 0.36mgN/L for survival or biomass in the water-only treatment, and was 0.66mgN/L for survival and 0.20mgN/L for biomass in the sediment treatment. The 20% effect concentration (EC20) for survival was 0.63mgN/L in the water-only treatment and was 0.86mgN/L in the sediment treatment (with overlapping 95% confidence intervals; no EC20 for biomass was estimated because the data did not meet the conditions for any logistic regression analysis). The similar ChVs or EC20s between the water-only treatment and the sediment treatment indicate that the presence of sediment did not substantially influence the sensitivity of juvenile mussels to ammonia in the 28-d chronic laboratory water exposures. ?? 2011 SETAC.

  18. Evaluation of influence of sediment on the sensitivity of a unionid mussel (Lamsilis silquoidea) to ammonia in 28-day water exposures

    USGS Publications Warehouse

    Wang, Ning; Consbrock, Rebecca A.; Ingersoll, Christopher G.; Barnhart, M. Christopher

    2011-01-01

    A draft update of the U.S. Environmental Protection Agency ambient water quality criteria (AWQC) for ammonia substantially lowers the ammonia AWQC, primarily due to the inclusion of toxicity data for freshwater mussels. However, most of the mussel data used in the updated AWQC were generated from water-only exposures and limited information is available on the potential influence of the presence of a substrate on the response of mussels in laboratory toxicity tests. Our recent study demonstrated that the acute sensitivity of mussels to ammonia was not influenced by the presence of substrate in 4-d laboratory toxicity tests. The objective of the current study was to determine the sensitivity of mussels to ammonia in chronic 28-d water exposures with the sediment present (sediment treatment) or absent (water-only treatment). The chronic toxicity test was conducted starting with two-month-old juvenile mussels (fatmucket, Lampsilis siliquoidea) in a flow-through diluter system, which maintained consistent pH (≈8.3) and six concentrations of total ammonia nitrogen (N) in overlying water and in sediment pore water. The chronic value (ChV, geometric mean of the no-observed-effect concentration and the lowest-observed-effect concentration) was 0.36 mg N/L for survival or biomass in the water-only treatment, and was 0.66 mg N/L for survival and 0.20 mg N/L for biomass in the sediment treatment. The 20% effect concentration (EC20) for survival was 0.63 mg N/L in the water-only treatment and was 0.86 mg N/L in the sediment treatment (with overlapping 95% confidence intervals; no EC20 for biomass was estimated because the data did not meet the conditions for any logistic regression analysis). The similar ChVs or EC20s between the water-only treatment and the sediment treatment indicate that the presence of sediment did not substantially influence the sensitivity of juvenile mussels to ammonia in the 28-d chronic laboratory water exposures.

  19. Field Validation of Toxicity Tests to Evaluate the Potential for Beneficial Use of Produced Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph Bidwell; Jonathan Fisher; Naomi Cooper

    2008-03-31

    This study investigated potential biological effects of produced water contamination derived from occasional surface overflow and possible subsurface intrusion at an oil production site along the shore of Skiatook Lake, Oklahoma. We monitored basic chemistry and acute toxicity to a suite of standard aquatic test species (fathead minnow-Pimephales promelas, Daphnia pulex, Daphnia magna, and Ceriodaphnia dubia) in produced water and in samples taken from shallow groundwater wells on the site. Toxicity identification evaluations and ion toxicity modeling were used to identify toxic constituents in the samples. Lake sediment at the oil production site and at a reference site were alsomore » analyzed for brine intrusion chemically and by testing sediment toxicity using the benthic invertebrates, Chironomus dilutus, and Hyallela azteca. Sediment quality was also assessed with in situ survival and growth studies with H. azteca and the Asian clam, Corbicula fluminea, and by benthic macroinvertebrate community sampling. The produced water was acutely toxic to the aquatic test organisms at concentrations ranging from 1% to 10% of the whole produced water sample. Toxicity identification evaluation and ion toxicity modeling indicated major ion salts and hydrocarbons were the primary mixture toxicants. The standardized test species used in the laboratory bioassays exhibited differences in sensitivity to these two general classes of contaminants, which underscores the importance of using multiple species when evaluating produced water toxicity. Toxicity of groundwater was greater in samples from wells near a produced water injection well and an evaporation pond. Principle component analyses (PCA) of chemical data derived from the groundwater wells indicated dilution by lake water and possible biogeochemical reactions as factors that ameliorated groundwater toxicity. Elevated concentrations of major ions were found in pore water from lake sediments, but toxicity from these ions

  20. National Water Quality Laboratory Profile

    USGS Publications Warehouse

    Raese, Jon W.

    1994-01-01

    The National Water Quality Laboratory determines organic and inorganic constituents in samples of surface and ground water, river and lake sediment, aquatic plant and animal material, and precipitation collected throughout the United States and its territories by the U.S. Geological Survey. In water year 1994, the Laboratory produced more than 900,000 analytical results for about 65,000 samples. The Laboratory also coordinates an extensive network of contract laboratories for the determination of radiochemical and stable isotopes and work for the U.S. Department of Defense Environmental Contamination Hydrology Program. Heightened concerns about water quality and about the possible effects of toxic chemicals at trace and ultratrace levels have contributed to an increased demand for impartial, objective, and independent data.

  1. LABORATORY EVALUATION OF METHODS TO SEPARATE FINE GRAINED SEDIMENT FROM STORM WATER

    EPA Science Inventory

    A literature survey had been conducted by the St. Anthony Falls Hydraulic laboratory to assess various methods for separation of sediment from storm water at construction sites. Two methods have shown some promise in this application, and a research program was initiated with the...

  2. Assessing sediments from Upper Mississippi River navigational pools using a benthic invertebrate community evaluation and the sediment quality triad approach

    USGS Publications Warehouse

    Canfield, T.J.; Brunson, E.L.; Dwyer, F.J.; Ingersoll, C.G.; Kemble, N.E.

    1998-01-01

    Benthic invertebrate samples were collected from 23 pools in the Upper Mississippi River (UMR) and from one station in the Saint Croix River (SCR) as part of a study to assess the effects of the extensive flooding of 1993 on sediment contamination in the UMR system. Sediment contaminants of concern included both organic and inorganic compounds. Oligochaetes and chironomids constituted over 80% of the total abundance in samples from 14 of 23 pools in the UMR and SCR samples. Fingernail clams comprised a large portion of the community in three of 23 UMR pools and exceeded abundances of 1,000/m2 in five of 23 pools. Total abundance ranged from 250/m2 in samples from pool 1 to 22,389/m2 in samples from pool 19. Abundance values are comparable with levels previously reported in the literature for the UMR. Overall frequency of chironomid mouthpart deformities was 3% (range 0-13%), which is comparable to reported incidence of deformities in uncontaminated sediments previously evaluated. Sediment contamination was generally low in the UMR pools and the SCR site. Correlations between benthic measures and sediment chemistry and other abiotic parameters exhibited few significant or strong correlations. The sediment quality triad (Triad) approach was used to evaluate data from laboratory toxicity tests, sediment chemistry, and benthic community analyses; it showed that 88% of the samples were not scored as impacted based on sediment toxicity, chemistry, and benthic measures. Benthic invertebrate distributions and community structure within the UMR in the samples evaluated in the present study were most likely controlled by factors independent of contaminant concentrations in the sediments.

  3. Toxicity of fluoranthene to Daphnia magna, Hyalella azteca, Chironomus tentans, and Stylaria lacustris in water-only and whole sediment exposures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suedel, B.C.; Rodgers, J.H. Jr.

    1996-07-01

    Fluoranthene is a polycyclic aromatic hydrocarbon (PAH) with a hydrophobic nature (water solubility = 265 {mu}g/L; U.S. EPA 1980) and a propensity to sorb to sediments. Fluoranthene has a K{sub oc} of 4.65, an intermediate value for PAHs. Fluoranthene can be toxic to some aquatic organisms at concentrations lower than its aqueous solubility. Therefore, desorption from sediments could produce aqueous concentrations that are harmful to aquatic organisms. Very few studies have examined the toxicity of fluoranthene to freshwater organisms. Data for other PAHs show that crustaceans are the most sensitive species, followed by polychaete worms and fish. Effects of fluoranthene-amendedmore » sediments on selected marine benthic organisms were examined. The objectives of this research were to (1) determine the relative sensitivities of Daphnia magna Straus, Hyalella azteca Saussure, Chironomus tentans Fabricius, and Stylaria lacustris Linnaeus in 48-hr and 10-d aqueous phase exposures to fluoranthene; and (2) determine the relative responses of these organisms in 10-d fluoranthene-amended sediment exposures. 12 refs., 3 tabs.« less

  4. Reconciling laboratory and field assessments of neonicotinoid toxicity to honeybees

    PubMed Central

    Henry, Mickaël; Cerrutti, Nicolas; Aupinel, Pierrick; Decourtye, Axel; Gayrard, Mélanie; Odoux, Jean-François; Pissard, Aurélien; Rüger, Charlotte; Bretagnolle, Vincent

    2015-01-01

    European governments have banned the use of three common neonicotinoid pesticides due to insufficiently identified risks to bees. This policy decision is controversial given the absence of clear consistency between toxicity assessments of those substances in the laboratory and in the field. Although laboratory trials report deleterious effects in honeybees at trace levels, field surveys reveal no decrease in the performance of honeybee colonies in the vicinity of treated fields. Here we provide the missing link, showing that individual honeybees near thiamethoxam-treated fields do indeed disappear at a faster rate, but the impact of this is buffered by the colonies' demographic regulation response. Although we could ascertain the exposure pathway of thiamethoxam residues from treated flowers to honeybee dietary nectar, we uncovered an unexpected pervasive co-occurrence of similar concentrations of imidacloprid, another neonicotinoid normally restricted to non-entomophilous crops in the study country. Thus, its origin and transfer pathways through the succession of annual crops need be elucidated to conveniently appraise the risks of combined neonicotinoid exposures. This study reconciles the conflicting laboratory and field toxicity assessments of neonicotinoids on honeybees and further highlights the difficulty in actually detecting non-intentional effects on the field through conventional risk assessment methods. PMID:26582026

  5. Reconciling laboratory and field assessments of neonicotinoid toxicity to honeybees.

    PubMed

    Henry, Mickaël; Cerrutti, Nicolas; Aupinel, Pierrick; Decourtye, Axel; Gayrard, Mélanie; Odoux, Jean-François; Pissard, Aurélien; Rüger, Charlotte; Bretagnolle, Vincent

    2015-11-22

    European governments have banned the use of three common neonicotinoid pesticides due to insufficiently identified risks to bees. This policy decision is controversial given the absence of clear consistency between toxicity assessments of those substances in the laboratory and in the field. Although laboratory trials report deleterious effects in honeybees at trace levels, field surveys reveal no decrease in the performance of honeybee colonies in the vicinity of treated fields. Here we provide the missing link, showing that individual honeybees near thiamethoxam-treated fields do indeed disappear at a faster rate, but the impact of this is buffered by the colonies' demographic regulation response. Although we could ascertain the exposure pathway of thiamethoxam residues from treated flowers to honeybee dietary nectar, we uncovered an unexpected pervasive co-occurrence of similar concentrations of imidacloprid, another neonicotinoid normally restricted to non-entomophilous crops in the study country. Thus, its origin and transfer pathways through the succession of annual crops need be elucidated to conveniently appraise the risks of combined neonicotinoid exposures. This study reconciles the conflicting laboratory and field toxicity assessments of neonicotinoids on honeybees and further highlights the difficulty in actually detecting non-intentional effects on the field through conventional risk assessment methods. © 2015 The Author(s).

  6. Pollution, toxicity, and ecological risk of heavy metals in surface river sediments of a large basin undergoing rapid economic development.

    PubMed

    Tang, Wenzhong; Zhang, Chao; Zhao, Yu; Shan, Baoqing; Song, Zhixin

    2017-05-01

    A comprehensive and detailed investigation of heavy metal pollution, toxicity, and ecological risk assessment was conducted for the surface river sediments of the Haihe Basin in China based on 220 sampling sites selected in 2013. The average concentrations of Cr, Cu, Ni, Pb, and Zn in the sediments were 129 mg/kg, 63.4 mg/kg, 36.6 mg/kg, 50.0 mg/kg, and 202 mg/kg, respectively. As indicated by the geoaccumulation and pollution load indices, most surface river sediments of the Haihe Basin were contaminated with the investigated metals, especially in the junction region of the Zi Ya He and Hei Long Gang watersheds. The 5 heavy metals in the sediments all had anthropogenic sources, and the enrichment degrees followed the order Cu > Pb > Zn > Cr > Ni, with mean enrichment factors of 3.27, 2.77, 2.58, 1.81, and 1.44, respectively. According to the mean index of comprehensive potential ecological risk (38.9), the studied sediments of the Haihe Basin showed low potential ecological risk, but the sediments were potentially biologically toxic based on the mean probable effect concentration quotient (0.547), which may be the result of speciation of the 5 metals in the sediments. The results indicate that heavy metal pollution should be considered during the development of ecological restoration strategies in the Haihe Basin. Environ Toxicol Chem 2017;36:1149-1155. © 2016 SETAC. © 2016 SETAC.

  7. Contamination by persistent toxic substances in surface sediment of urban rivers in Chaohu City, China.

    PubMed

    Li, Feipeng; Zhang, Haiping; Meng, Xiangzhou; Chen, Ling; Yin, Daqiang

    2012-01-01

    The concentration and spatial distribution of persistent toxic substances (PTS) in the river sediment in Chaohu City, China were investigated. A total of nine surface sediments were collected and the selected PTS pollutants including six heavy metals and nineteen polybrominated diphenyl ethers (PBDEs) were analyzed. The mean heavy metal concentrations (in mg/kg, dry weight) ranged within 0.18-1.53 (Hg), 50.08-200.18 (Cu), 118.70-313.65 (Zn), 50.77-310.85 (Cr), 37.12-92.72 (Pb) and 13.29-197.24 (As), and Cu, Zn and As have been regarded as the main metal pollutants. The levels of PBDEs (1.2-12.1 ng/g) and BDE-209 (2.4-30.5 ng/g) were at the middle level of the global range. BDE-209 was the predominant congener (67.0%-85.7%), which agrees with the fact that technical deca-BDE mixtures are the dominant PBDE formulation in China. The relative high level of PTS pollutants in the western part of the city is probably owing to the intensive agricultural activities and lack of sewerage system there. The ecological risk assessment with the sediment quality guidelines (SOGs) indicates that the urban river sediments in the city have been heavily contaminated by heavy metals with probable ecotoxicological impacts on freshwater organisms and the main toxic pollutants are Hg and As. The results of current study imply that the city, and perhaps many other small cities in China as well, requires immediate pollution control measures with emphasis on not only conventional organic pollutants but also on PTS such as heavy metals and PBDEs.

  8. Reduced Toxicity, High Performance Monopropellant at the U.S. Air Force Research Laboratory

    DTIC Science & Technology

    2010-04-27

    develop reduced toxicity monopropellant formulations to replace spacecraft hydrazine monopropellant. The Air Force Research Laboratory’s (AFRL’s...Public Release, Distribution unlimited REDUCED TOXICITY, HIGH PERFORMANCE MONOPROPELLANT AT THE U.S. AIR FORCE RESEARCH LABORATORY T.W. Hawkins...information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations

  9. Development of rearing and testing protocols for a new freshwater sediment test species: the gastropod Valvata piscinalis.

    PubMed

    Ducrot, Virginie; Cognat, Claudine; Mons, Raphaël; Mouthon, Jacques; Garric, Jeanne

    2006-03-01

    This paper aimed at proposing rearing and testing protocols for Valvata piscinalis, a new potential species for sediment toxicity testing. Such tests were developed since this species reliably represents the bio/ecological characteristics of other gastropods. It may thus be representative of their sensitivity to chemicals. V. piscinalis was successfully cultured in our laboratory for six generations. Cultures provided a high productivity for a low working time and low costs. The tests conditions we proposed seemed to be relevant for the development of reliable tests with this species. Indeed, hatching probability of egg-capsules, as well as embryo, newborn and juvenile survival rates, were close to 100%. Moreover, growth rates and fecundity were significantly higher than in field and in other laboratory studies. Partial life-cycle tests on clean sediments were achieved for various feeding levels to determine survival, growth and reproduction patterns, ad libitum feeding level and life cycle parameters values. Ad libitum feeding levels for newborn, juveniles and adults were 0.1, 0.4 and 0.8 mg Tetramin/individual/working day. Growth tests with zinc-spiked sediments provided a no-effect concentration and a lowest effect concentration of respectively 200 and 624 mg zinc/kg dry sediment. Other growth tests on spiked sediments we ran at our laboratory with second, third and fourth instars larvae of Chironomus riparius pointed out that V. piscinalis was more sensible to zinc than the chironomid, which is a routine test species in ecotoxicology. According to these results, V. piscinalis is a promising candidate species for sediment toxicity testing.

  10. Hospital and urban effluent waters as a source of accumulation of toxic metals in the sediment receiving system of the Cauvery River, Tiruchirappalli, Tamil Nadu, India.

    PubMed

    Devarajan, Naresh; Laffite, Amandine; Ngelikoto, Patience; Elongo, Vicky; Prabakar, Kandasamy; Mubedi, Josué I; Piana, Pius T M; Wildi, Walter; Poté, John

    2015-09-01

    Hospital and urban effluents contain a variety of toxic and/or persistent substances in a wide range of concentrations, and most of these compounds belong to the group of emerging contaminants. The release of these substances into the aquatic ecosystem can lead to the pollution of water resources and may place aquatic organisms and human health at risk. Sediments receiving untreated and urban effluent waters from the city of Tiruchirappalli in the state of Tamil Nadu, India, are analyzed for potential environmental and human health risks. The sediment samples were collected from five hospital outlet pipes (HOP) and from the Cauvery River Basin (CRB) both of which receive untreated municipal effluent waters (Tiruchirappalli, Tamil Nadu, India). The samples were characterized for grain size, organic matter, toxic metals, and ecotoxicity. The results highlight the high concentration of toxic metals in HOP, reaching values (mg kg(-1)) of 1851 (Cr), 210 (Cu), 986 (Zn), 82 (Pb), and 17 (Hg). In contrast, the metal concentrations in sediments from CRB were lower than the values found in the HOP (except for Cu, Pb), with maximum values (mg kg(-1)) of 75 (Cr), 906 (Cu), 649 (Zn), 111 (Pb), and 0.99 (Hg). The metal concentrations in all sampling sites largely exceed the Sediment Quality Guidelines (SQGs) and the Probable Effect Concentration (PEC) for the Protection of Aquatic Life recommendation. The ecotoxicity test with ostracods exposed to the sediment samples presents a mortality rate ranging from 22 to 100 % (in sediments from HOP) and 18-87 % (in sediments from CRB). The results of this study show the variation of toxic metal levels as well as toxicity in sediment composition related to both the type of hospital and the sampling period. The method of elimination of hospital and urban effluents leads to the pollution of water resources and may place aquatic organisms and human health at risk.

  11. Toxicological effects of short-term resuspension of metal-contaminated freshwater and marine sediments.

    PubMed

    Fetters, Kyle J; Costello, David M; Hammerschmidt, Chad R; Burton, G Allen

    2016-03-01

    Sediments in navigation-dominated waterways frequently are contaminated with a variety of particle-associated pollutants and are subject to frequent short-term resuspension events. There is little information documenting whether resuspension of metal-contaminated sediments has adverse ecological effects on resident aquatic organisms. Using a novel laboratory approach, the authors examined the mobilization of Zn, Cu, Cd, Pb, Ni, and Cr during resuspension of 1 freshwater and 2 coastal marine sediments and whether resuspension and redeposition resulted in toxicity to model organisms. Sediment flux exposure chambers were used to resuspend metal-contaminated sediments from 1 site in Lake DePue, Illinois (USA), and 2 sites in Portsmouth Naval Shipyard, Maine (USA). Short-term (4-h) resuspension of sediment at environmentally relevant suspended particulate matter concentrations (<1 g/L) resulted in metal mobilization to water that was sediment and metal specific. Overall, the net release of metals from suspended particles was limited, likely because of scavenging by organic matter and Fe oxides that formed during sediment interaction with oxic water. Minimal toxicity to organisms (survival of Hyalella azteca and Daphnia magna; survival, growth, and tissue metal concentration of Neanthes arenaceodentata; bioluminescence of Pyrocystis lunula) was observed during 4-h exposure to resuspended sediments and during 4-d to 10-d post-exposure recovery periods in uncontaminated water. Redeposited suspended particles exhibited increased metal bioavailability and toxicity to H. azteca, highlighting the potential for adverse ecological impacts because of changes in metal speciation. It is important to consider interactions between organisms' life histories and sediment disturbance regimes when assessing risks to ecosystems. © 2015 SETAC.

  12. Monitoring toxicity of polycyclic aromatic hydrocarbons in intertidal sediments for five years after the Hebei Spirit oil spill in Taean, Republic of Korea.

    PubMed

    Lee, Chang-Hoon; Lee, Jong-Hyeon; Sung, Chan-Gyoung; Moon, Seong-Dae; Kang, Sin-Kil; Lee, Ji-Hye; Yim, Un Hyuk; Shim, Won Joon; Ha, Sung Yong

    2013-11-15

    Ecotoxicological monitoring of intertidal sediments was performed for 5 years after the Hebei Spirit oil spill in Taean, Korea. Sediment toxicity was observed on most of the beaches 4 months after the spill and later decreased rapidly to nontoxic levels 8 months after the spill. The concentrations of total polycyclic aromatic hydrocarbons (TPAHs) in the sediments ranged from 2 to 530,000 ng/g during the monitoring. More than half of the samples exhibited significant toxicity 5 years after the Hebei Spirit oil spill. Using a logistic regression model, the median lethal concentration of TPAHs to amphipod Monocorophium uenoi was estimated to be 36,000 ng/g. From the 63 chemistry and toxicity data, the effect range-low, effect range median, threshold effect level, and probable effect level were derived to be 3190, 54,100, 2480, and 29,000 ng/g, respectively. The relative compositions of the PAH groups indicated that the weathering process is still ongoing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Sediment quality assessment studies of Tampa bay, Florida

    USGS Publications Warehouse

    Carr, Scott R.; Chapman, Duane C.; Long, Edward R.; Windom, Herbert L.; Thursby, Glen; Sloane, Gail M.; Wolfe, Douglas A.

    1996-01-01

    A survey of the toxicity of sediments throughout the Tampa Bay estuary was performed as part of the National Oceanic and Atmospheric Administration's National Status and Trends Program. The objectives of the survey were to determine the spatial extent and severity of toxicity and to identify relationships between chemical contamination and toxicity. Three independent toxicity tests were performed: a 10-d amphipod survival test of the whole sediments with Ampelisca abdita, a sea urchin fertilization test of sediment pore water with Arbacia punctulata, and a 5-min Microtox® bioluminescence test with solvent extracts of the sediments. Seventy-three percent of the 165 undiluted sediment pore-water samples were significantly toxic relative to reference samples with the sea urchin fertilization test. In contrast, only 2% of the 165 samples were significantly toxic in the amphipod tests. The causes of toxicity were not determined. However, concentrations of numerous trace metals, pesticides, polychlorinated biphenyl (PCB) congeners, polycyclic aromatic hydrocarbons (PAHs), and ammonia were highly correlated with pore-water toxicity. Concentrations of many substances, especially total dichlorodiphenyltrichloroethanes (DDTs), endrin, total PCBs, certain PAHs, lead, and zinc, occurred at concentrations in the toxic samples that equaled or exceeded concentrations that have been previously associated with sediment toxicity.

  14. Toxicity of sediment pore water in Puget Sound (Washington, USA): a review of spatial status and temporal trends

    USGS Publications Warehouse

    Long, Edward R.; Carr, R. Scott; Biedenbach, James M.; Weakland, Sandra; Partridge, Valerie; Dutch, Margaret

    2013-01-01

    Data from toxicity tests of the pore water extracted from Puget Sound sediments were compiled from surveys conducted from 1997 to 2009. Tests were performed on 664 samples collected throughout all of the eight monitoring regions in the Sound, an area encompassing 2,294.1 km2. Tests were performed with the gametes of the Pacific purple sea urchin, Strongylocentrotus purpuratus, to measure percent fertilization success as an indicator of relative sediment quality. Data were evaluated to determine the incidence, degree of response, geographic patterns, spatial extent, and temporal changes in toxicity. This is the first survey of this kind and magnitude in Puget Sound. In the initial round of surveys of the eight regions, 40 of 381 samples were toxic for an incidence of 10.5 %. Stations classified as toxic represented an estimated total of 107.1 km2, equivalent to 4.7 % of the total area. Percent sea urchin fertilization ranged from >100 % of the nontoxic, negative controls to 0 %. Toxicity was most prevalent and pervasive in the industrialized harbors and lowest in the deep basins. Conditions were intermediate in deep-water passages, urban bays, and rural bays. A second round of testing in four regions and three selected urban bays was completed 5–10 years following the first round. The incidence and spatial extent of toxicity decreased in two of the regions and two of the bays and increased in the other two regions and the third bay; however, only the latter change was statistically significant. Both the incidence and spatial extent of toxicity were lower in the Sound than in most other US estuaries and marine bays.

  15. Understanding bioavailability and toxicity of sediment-associated contaminants by combining passive sampling with in vitro bioassays in an urban river catchment.

    PubMed

    Li, Juan-Ying; Tang, Janet Yat Man; Jin, Ling; Escher, Beate I

    2013-12-01

    Bioavailable and bioaccessible fractions of sediment-associated contaminants are considered as better dose metrics for sediment-quality assessment than total concentrations. The authors applied exhaustive solvent extraction and nondepletive equilibrium sampling techniques to sediment samples collected along the Brisbane River in South East Queensland, Australia, which range from pristine environments to urban and industry-impacted areas. The wide range of chemicals expected prevents comprehensive chemical analysis, but a battery of cell-based bioassays sheds light on mixture effects of chemicals in relation to various modes of toxic action. Toxic effects were expressed as bioanalytical equivalent concentrations (BEQs) normalized to the organic carbon content of each sediment sample. Bioanalytical equivalent concentrations from exhaustive extraction agreed fairly well with values estimated from polydimethylsiloxane passive sampling extracts via the constant organic carbon to polydimethylsiloxane partition coefficient. Agreement was best for bioassays indicative of photosynthesis inhibition and oxidative stress response and discrepancy within a factor of 3 for the induction of the aryl hydrocarbon receptor. For nonspecific cytotoxicity, BEQ from exhaustive extraction were 1 order of magnitude higher than values from equilibrium sampling, possibly because of coextraction of bioactive natural organic matter that led to an overestimation of toxicity in the exhaustive extracts, which suggests that passive sampling is better suited in combination with bioanalytical assessment than exhaustive extraction. © 2013 SETAC.

  16. Review of the use of Ceramium tenuicorne growth inhibition test for testing toxicity of substances, effluents, products sediment and soil

    NASA Astrophysics Data System (ADS)

    Eklund, Britta

    2017-08-01

    A growth inhibition test has been developed based on two clones of the red macroalga Ceramium tenuicorne, one originating from 7 PSU and the other from 20 PSU. The species can be adapted to different salinities and the test can be carried out between 4 and 32 PSU. This test became an ISO standard in 2010 (ISO 107 10) for testing of chemicals and water effluents. In this study new and published data has been compiled on toxicity of single substances, waste waters from pulp mills, leachates from antifouling paints, harbour sediments and soil used for maintenance of leisure boats. The results show that the alga is sensitive to both metals and organic compounds and to biocides used in antifouling paints. By testing leachates from antifouling paints these could be ranked according to their toxicity. Similarly, the toxicity of waste waters from pulp mills was determined and the efficiency of secondary treatment evaluated. Further, the test method proved useful to test the toxicity in sediment samples. Sediments from small town harbours and ship lanes were shown to be harmful and compounds originating from antifouling paints were responsible for a large part of the inhibiting effect. The alga proved to be sensitive to contaminants leaking from boat yard soil. The growth inhibition test is a robust test that has high repeatability and reproducibility and easily can be applied on water, soil and sediment samples without being too costly. The species is found worl-wide in temperate waters, which makes the results relevant for large areas. In the Baltic Sea C. tenuicorne is the most common red alga species and is thus particularly relevant for this area. The overall results show that contaminants from boat activities and the use of antifouling paints in particular pose a threat to the environment.

  17. The standardized fish bioassay procedure for detecting and culturing actively toxic Pfiesteria, used by two reference laboratories for atlantic and gulf coast states.

    PubMed Central

    Burkholder, J M; Marshall, H G; Glasgow, H B; Seaborn, D W; Deamer-Melia, N J

    2001-01-01

    In the absence of purified standards of toxins from Pfiesteria species, appropriately conducted fish bioassays are the "gold standard" that must be used to detect toxic strains of Pfiesteria spp. from natural estuarine water or sediment samples and to culture actively toxic Pfiesteria. In this article, we describe the standardized steps of our fish bioassay as an abbreviated term for a procedure that includes two sets of trials with fish, following the Henle-Koch postulates modified for toxic rather than infectious agents. This procedure was developed in 1991, and has been refined over more than 12 years of experience in research with toxic Pfiesteria. The steps involve isolating toxic strains of Pfiesteria (or other potentially, as-yet-undetected, toxic Pfiesteria or Pfiesteria-like species) from fish-killing bioassays with natural samples; growing the clones with axenic algal prey; and retesting the isolates in a second set of fish bioassays. The specific environmental conditions used (e.g., temperature, salinity, light, other factors) must remain flexible, given the wide range of conditions from which natural estuarine samples are derived. We present a comparison of information provided for fish culture conditions, reported in international science journals in which such research is routinely published, and we provide information from more than 2,000 fish bioassays with toxic Pfiesteria, along with recommendations for suitable ranges and frequency of monitoring of environmental variables. We present data demonstrating that algal assays, unlike these standardized fish bioassays, should not be used to detect toxic strains of Pfiesteria spp. Finally, we recommend how quality control/assurance can be most rapidly advanced among laboratories engaged in studies that require research-quality isolates of toxic Pfiesteria spp. PMID:11677184

  18. Flow-sediment-large woody debris interplay: Introducing an appropriately scaled laboratory experiment

    NASA Astrophysics Data System (ADS)

    Friedrich, H.; Spreitzer, G.; Tunnicliffe, J. F.

    2017-12-01

    The morphology of steep (>0.01 m/m) forested streams is governed not only by water-sediment interplay, but also by accumulations of coarse and fine organic debris. In this project we look at the jamming dynamics (formation, persistence and hydraulic feedbacks) of large woody debris with the help of scaled laboratory experiments. In New Zealand, the recruitment of wood from both natural tree-fall and forest harvesting has led to obstruction of culverts, bridges and other river constrictions. Understanding the dynamics of jam formation and persistence is important for harvest practice guidelines, management of sediment accumulation, as well as establishing impacts to habitat and infrastructure. In this study, we provide the context of our work, present our experimental setup for studying the complex flow-sediment-wood interactions and present some initial results. In our experimental setup, we varied feed rates of sediment and organic fine material in order to establish concentration thresholds for jam formation, and development of sediment retention capacity upstream of the jam. Large woody debris accumulation is studied for different blocking scenarios, and the effect on sediment transport is measured. Sediment quantities and changes in channel bed morphology upstream of the critical cross section are evaluated, together with resulting backwater effects, and associated energy losses. In the long term, our results will inform our understanding of the processes that take place from the mobilization of woody debris to accumulation.

  19. FIELD VALIDATION OF SEDIMENT TIE METHODS

    EPA Science Inventory

    Sediment toxicity is a widely recognized problem in many regions of the world. Frequently, however, the cause of toxicity is not known. The ability to identify the cause(s) of toxicity in sediments allows managers to determine sources of continuing contamination to support sele...

  20. Modifying Foods and Feeding Regimes to Optimize the Performance of Hyalella azteca during Chronic Toxicity Tests

    EPA Science Inventory

    The amphipod Hyalella azteca is commonly used to assess the toxicity of sediments and waters. However, laboratories have reported varying success in maintaining healthy cultures and in obtaining consistent growth and reproduction (where applicable), especially during tests...

  1. The erosion behaviour of biologically active sewer sediment deposits: observations from a laboratory study.

    PubMed

    Banasiak, Robert; Verhoeven, Ronny; De Sutter, Renaat; Tait, Simon

    2005-12-01

    The erosion behaviour of various fine-grained sediment deposits has been investigated in laboratory experiments. This work mainly focused on tests using sewer sediment in which strong biochemical reactions were observed during the deposit formation period. A small number of initial tests were conducted in which the deposits were made from mixtures of "clean" mineral and organic sediments. The erosion behaviour observed in these tests was compared with the erosion characteristics for sediments taken from deposits in a sewer. The impact of the biological processes on physical properties such as bulk density, water content, deposit structure and the erosive behaviour as a function of bed shear stress are quantified and discussed. Based on these observations it is believed that bio-processes weaken the strength of the in-pipe sediment deposits. A significantly weaker sediment surface layer was observed during deposition under quiescent oxygen-rich conditions. This resulted in a deposit with low shear strength which may be a cause of a first foul flush of suspended sediment when flow rates were increased. Comparison between tests with sewer sediments and the artificial representative surrogates suggested that the deposits of the later did not correctly simulate the depositional development and the resultant erosion patterns observed with the more bio-active sewer sediment.

  2. SEDIMENT TOXICITY AND COMMUNITY COMPOSITION OF BENTHOS AND COLONIZED PERIPHYTON IN THE EVERGLADES - FLORIDA BAY TRANSITIONAL ZONE.

    EPA Science Inventory

    Lewis, Michael A., Larry R. Goodman, John M. Macauley and James C. Moore. 2004. Sediment Toxicity and Community Composition of Benthos and Colonized Periphyton in the Everglades-Florida Bay Transitional Zone. Ecotoxicology. 13(3):231-244. (ERL,GB 1164).

    This survey provid...

  3. Are antifouling paint particles a continuous source of toxic chemicals to the marine environment?

    PubMed

    Soroldoni, Sanye; Abreu, Fiamma; Castro, Ítalo Braga; Duarte, Fabio Andrei; Pinho, Grasiela Lopes Leães

    2017-05-15

    Antifouling paint particles (APPs) are generated during periodical maintenance of boat hulls. Chemical composition and toxicity (either chronic or acute) of APPs found in the sediment was evaluated using the epibenthic copepod Nitokra sp. The APPs analyzed showed the presence of high levels of metals such as Cu (234,247±268μgg -1 ), Zn (112,404±845μgg -1 ) and the booster biocide DCOIT (0.13μgg -1 ). Even at low concentrations (as from 5mgg -1 of APPs by mass of sediment) a significantly decrease in the fecundity was observed in laboratory tests. When the sediment was disturbed in elutriate test, a LC 50 of 0.14% for APPs was found. This study was the first assessment of toxicity associated with the presence of APPs in sediment to benthic organisms, and it calls attention to the need of improving regulations in boatyards and marina areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. ATTENUATION/STABILIZATION OF ARSENIC BY IRON (HYDR)OXIDES IN SOILS/SEDIMENTS: LABORATORY STUDY.

    EPA Science Inventory

    Laboratory studies will be performed to assess the role of naturally occurring soil/sediment iron (hydr)oxides on the attenuation/stabilization of arsenic. Changes in the reversibility of arsenic partitioning will be assessed as a function of aging time using model experimental ...

  5. Assessment of trace metals contamination level, bioavailability and toxicity in sediments from Dakar coast and Saint Louis estuary in Senegal, West Africa.

    PubMed

    Diop, Cheikh; Dewaelé, Dorothée; Cazier, Fabrice; Diouf, Amadou; Ouddane, Baghdad

    2015-11-01

    Trace metals have the potential to associate with sediments that have been recognised as significant source of contamination for the benthic environment. The current study aims assessing the trace metals contamination level in sediments from Dakar coast and Saint Louis estuary, and to examine their bioavailability to predict potential toxicity of sediments. Surface sediment samples were collected between June 2012 and January 2013 in three sampling periods from eight stations. Trace metals were analysed using inductively coupled plasma-optical emission spectrometer. Geoaccumulation indexes (Igeo) showed strong pollution by Cd, Cr, Cu and Pb confirmed by enrichment factor (EF) suggesting that these metals derived from anthropogenic sources. Toxicity indexes exceeded one in several sites suggesting the potential effects on sediment-dwelling organisms, which may constitute a risk to populations' health. However, seasonal variability of metal bioavailability was noted, revealing the best period to monitor metal contamination. From an ecotoxicological point of view, concentrations of Cd, Cr, Cu and Pb were above the effects range low threshold limit of the sediment quality guidelines for adverse biological effects. In addition, with Pb concentrations above the effect range medium values in some sites, biological effects may occur. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Effects of untreated hospital effluents on the accumulation of toxic metals in sediments of receiving system under tropical conditions: case of South India and Democratic Republic of Congo.

    PubMed

    Mubedi, Josué Ilunga; Devarajan, Naresh; Le Faucheur, Séverine; Mputu, John Kayembe; Atibu, Emmanuel K; Sivalingam, Periyasamy; Prabakar, Kandasamy; Mpiana, Pius T; Wildi, Walter; Poté, John

    2013-10-01

    Physicochemical and ecotoxicological analyses have been performed to assess the quality of sediments receiving untreated hospital effluents from Indian and Democratic Republic of Congo (DRC) hospitals. The sediments were collected monthly and characterized for grain size, organic matter, total organic carbon, total carbon, nitrogen, phosphorus, toxic metals and ecotoxicity. The results highlight the high concentration of toxic metals from the Indian hospital effluent receiving systems, especially for Cr, Cu, As, Zn and Hg. On the other hand, the metal concentrations in the sediment receiving system from DRC are low (e.g. maximum Hg and Zn concentration were 0.46 and 48.84 mg kg(-1) respectively). Ostracods exposed to sediment samples H2 (September month sample) and H3 (June and September month samples) were found dead after 6d of exposure whereas the higher mortality rate for Congo sediments was 23% but was accompanied with 33 ± 7% of growth inhibition. The results of this study show the variation of sediment composition on toxic metal levels as well as toxicity related to both, the type of hospitals and the sampling period. Additionally, hospital effluent disposal practices at the study sites can lead to the pollution of water resources and may generate risks for aquatic organisms and human health. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Recovery of ostracod with known ages in differently textured sediments and comparison of toxicity of heavily contaminated sediments with ostracod Heterocypris incongruens and amphipod Hyalella azteca

    NASA Astrophysics Data System (ADS)

    Stepanova, N. Yu; Nikitin, O. V.; Latypova, V. Z.; Vybornova, I. B.; Galieva, G. S.; Okunev, R. V.

    2018-01-01

    The recovery of 1-, 4-, 6,-, and 8-d-old ostracods (Heterocypris incongruens) from sediments with different texture has been evaluated. The recovery of ostracods at all ages has been in agreement with the acceptability criterion of 80% of survival for sediment tests. The recovery of ostracods has turned out to be equal to or more than 80% for sand and silt sediments, respectively. The comparison of survival rates between ostracods and amphipods has shown good convergence in the tests of heavily contaminated sediments (R2=0.75, p<0.05). The sediment quality criteria (TEC) have been exceeded mostly for total petroleum hydrocarbons (100% samples), Cr (100%), Ni (87%), Cu (87%), Pb (47%), and Cd (53%). The content of acid volatile sulfides (AVS) has been significantly higher than that of simultaneously extracted metals (SEM). The obtained results have indicated that, metals (Cu, Zn, Cd, Ni, and Pb) are non-bioavailable. Only one sample has exceeded TEC for PAHs (dibenz[a,h]anthracene). It was observed that, no significant correlation between the effect of toxicity and the chemical content.

  8. Investigation on the eco-toxicity of lake sediments with the addition of drinking water treatment residuals.

    PubMed

    Yuan, Nannan; Wang, Changhui; Pei, Yuansheng

    2016-08-01

    Drinking water treatment residuals (WTRs) have a potential to realize eutrophication control objectives by reducing the internal phosphorus (P) load of lake sediments. Information regarding the ecological risk of dewatered WTR reuse in aquatic environments is generally lacking, however. In this study, we analyzed the eco-toxicity of leachates from sediments with or without dewatered WTRs toward algae Chlorella vulgaris via algal growth inhibition testing with algal cell density, chlorophyll content, malondialdehyde content, antioxidant enzyme superoxide dismutase activity, and subcellular structure indices. The results suggested that leachates from sediments unanimously inhibited algal growth, with or without the addition of different WTR doses (10% or 50% of the sediment in dry weight) at different pH values (8-9), as well as from sediments treated for different durations (10 or 180days). The inhibition was primarily the result of P deficiency in the leachates owing to WTR P adsorption, however, our results suggest that the dewatered WTRs were considered as a favorable potential material for internal P loading control in lake restoration projects, as it shows acceptably low risk toward aquatic plants. Copyright © 2016. Published by Elsevier B.V.

  9. Bioaccumulation and Toxicity of Uranium, Arsenic and Nickel to Juveniles and Adults Hyalella azteca in Spiked Sediment Bioassays.

    PubMed

    Goulet, Richard R; Thompson, Patsy-A

    2018-05-26

    Uranium mining and milling release arsenic (As), nickel (Ni) and uranium (U) to receiving waters, which accumulate in sediments. The objective of this study was to investigate if As, Ni and U concentrations in tissue residue of Hyalella azteca, overlying water, sediment pore water and solids could predict juvenile and adult survival and growth in similar conditions to lake sediments downstream of Uranium mines and mills. We conducted 14 day, static sediment toxicity tests spiked with uranium, arsenic and nickel salts. For uranium, we spiked uranyl nitrate with sodium bicarbonate to limit U precipitation once in contact with circumneutral sediment. LC 50 for As, Ni and U of juveniles and adults based on measured concentrations in sediments were 1.8 and 2.2 µmol As/g dw, 6.3 and 13.4 µmol Ni/g dw and 0.2 and 0.9 µmol U/g dw, respectively. Adult survival and growth linearly decreased with increasing bioaccumulation. For juveniles, metal accumulation linearly predicted survival. We calculated lethal body concentrations (LBC 50 ) for juveniles and adults of 70 and 485 nmol As/g dw, 246 and 832 nmol Ni/g dw and 1.7 and 4.4 nmol U/g dw, respectively. The concentrations of As, Ni and U in tissue residue leading to a 20% decrease in growth were 427 nmol As/g, 755 nmol Ni/g and 5 nmol U/g. Overall, this study showed that Uranium was the most toxic element followed by As and Ni, that juveniles were more sensitive to the three metals tested than adults and that threshold body concentrations can support assessment of benthic invertebrate community impairment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Vertical distribution of potentially toxic elements in sediments impacted by intertidal geothermal hot springs (Bahia Concepcion, Gulf of California)

    NASA Astrophysics Data System (ADS)

    Leal-Acosta, M. L.; Shumilin, E.

    2016-12-01

    The intertidal geothermal hot springs (GHS) in Bahia Concepcion, Gulf of California are the source of potentially toxic elements to the adjacent marine environment surrounded by mangroves trees. The anoxic sediments enriched in organic carbon accumulate As, Hg and other heavy metals that can be bioavailable for the biota. To know the vertical distribution of these elements the geochemistry of a short sediment core was carried out. It was collected in June, 2010 in the mangrove area near to GHS (1 m) during a low tide, pushing manually a polypropylene tube into the sediments. The extracted sediment core was cut with plastic knife on 1 cm thick sub-samples, stored in plastic bags and transported on ice to the laboratory. The major and trace elements contents were determinate by ICP-MS after total digestion with stronger acids (HClO4-HNO3-HCl-HF). Certificate reference materials were used for the quality control of the method obtaining good recoveries for most of the elements (80-105%). The sediment core had high maximum contents of CaCO3 (70%) and total organic carbon (12%). The concentration of Hg along the core ranges from 650 to 74300 mg kg-1 and had more than three orders of magnitude above the reference values of 40 mg kg-1 for the Upper Continental Crust (UCC)1. In contrast, As ranges from 12 to 258 mg kg-1 resulting in more than one order of magnitude respect to UCC1 (1.7 mg kg-1). Similar pattern result for Mn, Cu, Pb, and Zn with the maximum values of 3200 mg kg-1, 42 mg kg-1, 12.4 mg kg-1, 71 mg kg-1 respectively that coincide with the maximum for As at the same core depth (4 cm). The Ca, Li, Co, Sb, U, and Mg also show high contents in comparison with the UCC1reference values. The maximum contents of Mo and Cd coincide with maximum concentration of sulfur (2%) at 6 to 8 cm. The enrichment factor calculated using Al as normalizing element showed Cd (7-280), As (26-329) and Hg (23-1196) as highly enriched mainly in the first centimeters of the sediment core

  11. Relative sensitivity of an amphipod Hyalella azteca, a midge Chironomus dilutus, and a unionid mussel Lampsilis siliquoidea to a toxic sediment

    USGS Publications Warehouse

    Ingersoll, Christopher G.; Kunz, James L.; Hughes, Jamie P.; Wang, Ning; Ireland, D. Scott; Mount, David R.; Hockett, J. Russell; Valenti, Ted W

    2015-01-01

    The objective of the present study was to evaluate the relative sensitivity of test organisms in exposures to dilutions of a highly toxic sediment contaminated with metals and organic compounds. One dilution series was prepared using control sand (low total organic carbon [TOC; <0.1%, low binding capacity for contaminants]) and a second dilution series was prepared using control sediment from West Bearskin Lake, Minnesota, USA (high TOC [∼10% TOC, higher binding capacity for contaminants]). Test organisms included an amphipod (Hyalella azteca; 10-d and 28-d exposures), a midge (Chironomus dilutus; 20-d and 48-d exposures started with <1-h-old larvae, and 13-d and 48-d exposures started with 7-d-old larvae), and a unionid mussel (Lampsilis siliquoidea; 28-d exposures). Relative species sensitivity depended on the toxicity endpoint and the diluent. All 3 species were more sensitive in sand dilutions than in West Bearskin Lake sediment dilutions. The <1-h-old C. dilutus were more sensitive than 7-d-old C. dilutus, but replicate variability was high in exposures started with the younger midge larvae. Larval biomass and adult emergence endpoints of C. dilutus exhibited a similar sensitivity. Survival, weight, and biomass of H. azteca were more sensitive endpoints in 28-d exposures than in 10-d exposures. Weight and biomass of L. siliquoidea were sensitive endpoints in both sand and West Bearskin Lake sediment dilutions. Metals, ammonia, oil, and other organic contaminants may have contributed to the observed toxicity.

  12. Postembryonic growth and development of Hyalella azteca in laboratory cultures and contaminated sediments

    USGS Publications Warehouse

    Nelson, M.K.; Brunson, Eric L.

    1995-01-01

    The environmental, biological, and ecological requirements of but a few species used in testing sediments are known and well understood. The present investigation was designed to provide fundamental information on the postembryonic growth and development of Hyalella azteca">Hyalella azteca (Amphipoda) that can be used as sublethal indicators of contaminated sediments, and the influence growth characteristics may have on interpretation of sediment toxicity test results. The biological endpoints for measuring H. azteca">H. azteca growth and development included sexual maturation, molt frequency, intermolt duration, body length, antennal segment addition, and the relation between total body length and antennal segment addition. To use growth and development of H. azteca">H. azteca as sublethal indicators of contaminated sediments, tests of up to 28 days duration should begin with immature amphipods (less than two weeks old) that will begin the adult stage at the end of the test. Sexual maturation begins at the sixth instar (about 24 days at 20°C) and can be used as a sublethal indicator of development effects. The presence of an enlarged propodus is a reliable indicator of sexual maturation in H. azteca">H. azteca which easily distinguishes the immature (first five instars) from the juvenile (instars 6 and 7) stage.

  13. Thickness of surficial sediment at and near the Idaho National Engineering Laboratory, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, S.R.; Liszewski, M.J.; Ackerman, D.J.

    1996-06-01

    Thickness of surficial sediment was determined from natural-gamma logs in 333 wells at and near the Idaho National Engineering Laboratory in eastern Idaho to provide reconnaissance data for future site-characterization studies. Surficial sediment, which is defined as the unconsolidated clay, silt, sand, and gravel that overlie the uppermost basalt flow at each well, ranges in thickness from 0 feet in seven wells drilled through basalt outcrops east of the Idaho Chemical Processing Plant to 313 feet in well Site 14 southeast of the Big Lost River sinks. Surficial sediment includes alluvial, lacustrine, eolian, and colluvial deposits that generally accumulated duringmore » the past 200 thousand years. Additional thickness data, not included in this report, are available from numerous auger holes and foundation borings at and near most facilities.« less

  14. Mercury remediation in wetland sediment using zero-valent iron and granular activated carbon.

    PubMed

    Lewis, Ariel S; Huntington, Thomas G; Marvin-DiPasquale, Mark C; Amirbahman, Aria

    2016-05-01

    Wetlands are hotspots for production of toxic methylmercury (MeHg) that can bioaccumulate in the food web. The objective of this study was to determine whether the application of zero-valent iron (ZVI) or granular activated carbon (GAC) to wetland sediment could reduce MeHg production and bioavailability to benthic organisms. Field mesocosms were installed in a wetland fringing Hodgdon Pond (Maine, USA), and ZVI and GAC were applied. Pore-water MeHg concentrations were lower in treated compared with untreated mesocosms; however, sediment MeHg, as well as total Hg (THg), concentrations were not significantly different between treated and untreated mesocosms, suggesting that smaller pore-water MeHg concentrations in treated sediment were likely due to adsorption to ZVI and GAC, rather than inhibition of MeHg production. In laboratory experiments with intact vegetated sediment clumps, amendments did not significantly change sediment THg and MeHg concentrations; however, the mean pore-water MeHg and MeHg:THg ratios were lower in the amended sediment than the control. In the laboratory microcosms, snails (Lymnaea stagnalis) accumulated less MeHg in sediment treated with ZVI or GAC. The study results suggest that both GAC and ZVI have potential for reducing MeHg bioaccumulation in wetland sediment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Mercury remediation in wetland sediment using zero-valent iron and granular activated carbon

    USGS Publications Warehouse

    Lewis, Ariel S.; Huntington, Thomas G.; Marvin-DiPasquale, Mark C.; Amirbahman, Aria

    2016-01-01

    Wetlands are hotspots for production of toxic methylmercury (MeHg) that can bioaccumulate in the food web. The objective of this study was to determine whether the application of zero-valent iron (ZVI) or granular activated carbon (GAC) to wetland sediment could reduce MeHg production and bioavailability to benthic organisms. Field mesocosms were installed in a wetland fringing Hodgdon Pond (Maine, USA), and ZVI and GAC were applied. Pore-water MeHg concentrations were lower in treated compared with untreated mesocosms; however, sediment MeHg, as well as total Hg (THg), concentrations were not significantly different between treated and untreated mesocosms, suggesting that smaller pore-water MeHg concentrations in treated sediment were likely due to adsorption to ZVI and GAC, rather than inhibition of MeHg production. In laboratory experiments with intact vegetated sediment clumps, amendments did not significantly change sediment THg and MeHg concentrations; however, the mean pore-water MeHg and MeHg:THg ratios were lower in the amended sediment than the control. In the laboratory microcosms, snails (Lymnaea stagnalis) accumulated less MeHg in sediment treated with ZVI or GAC. The study results suggest that both GAC and ZVI have potential for reducing MeHg bioaccumulation in wetland sediment.

  16. Ecotoxicological Response of Marine Organisms to Inorganic and Organic Sediment Amendments in Laboratory Exposures

    DTIC Science & Technology

    2011-08-15

    toxicity tests involving lethal and sublethal endpoints were conducted on sediments amended with apatite, organoclay, chitin , or acetate, with the polychaete...the test organisms. Chitin and acetate, however, repetitively resulted in adverse effects on survival and/or adverse or positive effects on organism...dissolved oxygen concentration, for chitin and acetate, respectively) as a result of the microbial breakdown of the amendments. For N. arenaceodentata

  17. In situ acoustic and laboratory ultrasonic sound speed and attenuation measured in heterogeneous soft seabed sediments: Eel River shelf, California

    USGS Publications Warehouse

    Gorgas, T.J.; Wilkens, R.H.; Fu, S.S.; Neil, Frazer L.; Richardson, M.D.; Briggs, K.B.; Lee, H.

    2002-01-01

    We compared in situ and laboratory velocity and attenuation values measured in seafloor sediments from the shallow water delta of the Eel River, California. This region receives a substantial volume of fluvial sediment that is discharged annually onto the shelf. Additionally, a high input of fluvial sediments during storms generates flood deposits that are characterized by thin beds of variable grain-sizes between the 40- and 90-m isobaths. The main objectives of this study were (1) to investigate signatures of seafloor processes on geoacoustic and physical properties, and (2) to evaluate differences between geoacoustic parameters measured in situ at acoustic (7.5 kHz) and in the laboratory at ultrasonic (400 kHz) frequencies. The in situ acoustic measurements were conducted between 60 and 100 m of water depth. Wet-bulk density and porosity profiles were obtained to 1.15 m below seafloor (m bsf) using gravity cores of the mostly cohesive fine-grained sediments across- and along-shelf. Physical and geoacoustic properties from six selected sites obtained on the Eel margin revealed the following. (1) Sound speed and wet-bulk density strongly correlated in most cases. (2) Sediment compaction with depth generally led to increased sound speed and density, while porosity and in situ attenuation values decreased. (3) Sound speed was higher in coarser- than in finer-grained sediments, on a maximum average by 80 m s-1. (4) In coarse-grained sediments sound speed was higher in the laboratory (1560 m s-1) than in situ (1520 m s-1). In contrast, average ultrasonic and in situ sound speed in fine-grained sediments showed only little differences (both approximately 1480 m s-1). (5) Greater attenuation was commonly measured in the laboratory (0.4 and 0.8 dB m-1 kHz-1) than in situ (0.02 and 0.65 dB m-1 kHz-1), and remained almost constant below 0.4 m bsf. We attributed discrepancies between laboratory ultrasonic and in situ acoustic measurements to a frequency dependence of

  18. Assessing condition of macroinvertebrate communities and bed sediment toxicity in the Rochester Embayment Area of Concern, New York, USA

    USGS Publications Warehouse

    Duffy, Brian; George, Scott D.; Baldigo, Barry P.; Smith, Alexander J.

    2017-01-01

    The United States and Canada agreed to restore the chemical, physical, and biological integrity of the Great Lakes ecosystem under the first Great Lakes Water Quality Agreement in 1972. The lowest reach of the Genesee River and the Rochester Embayment on Lake Ontario between Bogus Point and Nine Mile Point, including Braddock Bay, were designated as an Area of Concern (AOC) due to effects of contaminated sediments and physical disturbance on several beneficial uses. Following sediment remedial efforts and with conditions improving in the AOC, the present study was conducted to reevaluate the status of the benthic macroinvertebrate (benthos) beneficial use impairment (BUI). Benthic macroinvertebrate community assessments and 10-day Chironomus dilutus bioassays were used to test the hypotheses that sediments within the AOC were no more toxic than sediments from surrounding reference areas. The study was separated into three discrete systems (Genesee River, Lake Ontario, and Braddock Bay) and non-parametric analyses determined that a multimetric index of benthic macroinvertebrate community integrity was significantly higher at AOC sites compared to reference sites on the Genesee River and in Braddock Bay while AOC and reference sites on Lake Ontario did not differ significantly. Survival and growth of C. dilutus were also similar between AOC and reference sites for each system with the exception of significantly higher growth at reference sites on Lake Ontario. Results generally indicated that the condition of benthos and toxicity of sediment of the Rochester Embayment AOC are similar to or better than that in the surrounding area.

  19. Toxic exposure to ethylene dibromide and mercuric chloride: effects on laboratory-reared octopuses.

    PubMed

    Adams, P M; Hanlon, R T; Forsythe, J W

    1988-01-01

    The effects of acute and chronic exposure to either ethylene dibromide (EDB) or mercuric chloride (MC) were studied in laboratory-reared Octopus joubini, O. maya and O. bimaculoides. The advantages of using octopuses were that the responses were immediate, highly visible and sensitive. All species demonstrated signs of toxicity to acute and chronic exposure to EDB and to MC. A dosage-sensitive relationship for the loss and subsequent recovery of locomotor response and of chromatophore expansion was found for each species after acute exposure. For each species the LC50 for chronic exposure occurred within 12 hr at 100 mg/l for EDB and within 3 hr at 1,000 mg/l for MC. This study demonstrated the potential usefulness of laboratory-reared octopuses in evaluating the toxicity of marine environmental pollutants.

  20. Environmental fate of pyrethroids in urban and suburban stream sediments and the appropriateness of Hyalella azteca model in determining ecological risk.

    PubMed

    Palmquist, Katherine; Fairbrother, Anne; Salatas, Johanna; Guiney, Patrick D

    2011-07-01

    According to several recent studies using standard acute Hyalella azteca sediment bioassays, increased pyrethroid use in urban and suburban regions in California has resulted in the accumulation of toxic concentrations of pyrethroids in sediments of area streams and estuaries. However, a critical review of the literature indicates that this is likely an overestimation of environmental risk. Hyalella azteca is consistently the most susceptible organism to both aqueous and sediment-associated pyrethroid exposures when compared to a suite of other aquatic taxa. In some cases, H. azteca LC50 values are less than the community HC10 values, suggesting that the amphipod is an overly conservative model for community- or ecosystem-level impacts of sediment-associated pyrethroids. Further, as a model for responses of field populations of H. azteca, the laboratory bioassays considerably overestimate exposure, because the amphipod is more appropriately characterized as an epibenthic organism, not a true sediment dweller; H. azteca preferentially inhabit aquatic macrophytes, periphyton mats, and leaf litter, which drastically reduces their exposure to contaminated sediments. Sediment-bound pyrethroids are transported via downstream washing of fine particulates resulting in longer range transport but also more efficient sequestration of the chemical. In addition, site-specific variables such as sediment organic carbon content, grain size, temperature, and microbial activity alter pyrethroid bioavailability, degradation, and toxicity on a microhabitat scale. The type and source of the carbon in particular, influences the pyrethroid sequestering ability of sediments. The resulting irregular distribution of pyrethroids in stream sediments suggests that sufficient nonimpacted habitat may exist as refugia for resident sediment-dwelling organisms for rapid recolonization to occur. Given these factors, we argue that the amphipod model provides, at best, a screening level assessment of

  1. Binding strength-associated toxicity reduction by birnessite and hydroxyapatite in Pb and Cd contaminated sediments.

    PubMed

    Lee, Seungbae; An, Jinsung; Kim, Young-Jin; Nam, Kyoungphile

    2011-02-28

    In situ stabilization of sediment-bound heavy metals has been proposed as an alternative to ex situ treatment due to the concerns on ecosystem disturbance and remediation cost. The present study was conducted to test the performance of birnessite, hydroxyapatite, and zeolite as stabilizing agents for Pb and Cd in sediment. The heavy metal binding capacity and strength of the stabilizing agents were determined by analyzing Langmuir model parameters. The three agents showed the similar binding capacity (i.e., maximum monolayer sorption constant, K(a)) ranging from 1.13 to 3.62×10(5) mg/kg for Pb and 1.07 to 1.33×10(5) mg/kg for Cd. In contrast, binding strength (i.e., binding energy constant, b) of birnessite and hydroxyapatite was about one order higher than that of zeolite. This is further supported by five-step sequential extraction data: more than 99 and 70% of freshly spiked Pb and Cd were present as not-readily extractable fractions in birnessite and hydroxyapatite, respectively while the fractions were 17.9 and 14.1% in zeolite. Toxicity Characteristic Leaching Procedure (TCLP) test was also conducted to verify the effectiveness of the heavy metal-stabilizing ability of birnessite and hydroxyapatite. Birnessite successfully retained both Pb and Cd against the leaching solution, satisfying the TCLP extract concentration limits (i.e., 5 and 1 mg/L, respectively). However, hydroxyapatite released about 223.7 mg/L of Cd into the solution, which greatly exceeded the limit. The toxicity test with Hyalella azteca showed that their survival rate increased by 92.5-100% when birnessite or hydroxyapatite was added to Pb- or Cd-spiked sediment as a stabilizing agent. Our data demonstrate the potential use of birnessite and hydroxyapatite as an effective in situ remediation means for heavy metal-contaminated sediment with minimal risk to the aquatic ecosystem. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Fractionation and potential toxic risk of metals from superficial sediment in Itaipu Lake--boundary between Brazil and Paraguay.

    PubMed

    Kalwa, Miguel; Quináia, Sueli Pércio; Pletsch, Adelmo L; Techy, Laura; Felsner, Maria Lurdes

    2013-01-01

    The objective of this study was to evaluate fractions of metals (labile and pseudo-total) extracted from sediment samples collected in Itaipu Lake (boundary between Brazil and Paraguay) and to assess the dynamics and mobility of these fractions by identifying the same bioavailability and ecological risk to metals in the aquatic environment. The concentrations of metal ions were determined by flame atomic absorption spectrometry. There was a correlation between the metal ions, both in the labile and the pseudo-total, with regard to particle size. To assess metals concentrations in sediment, numerical sediment-quality guidelines were applied. The concentrations of aluminum, cadmium, iron, manganese, lead, and zinc in all sediment samples are lower than the proposed probable effects level (PEL), thus possibly indicating that there are no harmful effects from these metals. In contrast, concentrations of copper, chromium, and nickel exceeded the PEL in some samples, thus indicating that these stations are at potential risk. The level of contamination in sediments of Itaipu Lake for all metals was evaluated using contamination factor, degree of contamination, and sum-of-metals toxic unit.

  3. Non-Additive Increases in Sediment Stability Are Generated by Macroinvertebrate Species Interactions in Laboratory Streams

    PubMed Central

    Albertson, Lindsey K.; Cardinale, Bradley J.; Sklar, Leonard S.

    2014-01-01

    Previous studies have shown that biological structures such as plant roots can have large impacts on landscape morphodynamics, and that physical models that do not incorporate biology can generate qualitatively incorrect predictions of sediment transport. However, work to date has focused almost entirely on the impacts of single, usually dominant, species. Here we ask whether multiple, coexisting species of hydropsychid caddisfly larvae have different impacts on sediment mobility compared to single-species systems due to competitive interactions and niche differences. We manipulated the presence of two common species of net-spinning caddisfly (Ceratopsyche oslari, Arctopsyche californica) in laboratory mesocosms and measured how their silk filtration nets influence the critical shear stress required to initiate sediment grain motion when they were in monoculture versus polyculture. We found that critical shear stress increases non-additively in polycultures where species were allowed to interact. Critical shear stress was 26% higher in multi-species assemblages compared to the average single-species monoculture, and 21% greater than levels of stability achieved by the species having the largest impact on sediment motion in monoculture. Supplementary behavioral experiments suggest the non-additive increase in critical shear stress may have occurred as competition among species led to shifts in the spatial distribution of the two populations and complementary habitat use. To explore the implications of these results for field conditions, we used results from the laboratory study to parameterize a common model of sediment transport. We then used this model to estimate potential bed movement in a natural stream for which we had measurements of channel geometry, grain size, and daily discharge. Although this extrapolation is speculative, it illustrates that multi-species impacts could be sufficiently large to reduce bedload sediment flux over annual time scales in

  4. Using aquatic macroinvertebrate species traits to build test batteries for sediment toxicity assessment: accounting for the diversity of potential biological responses to toxicants.

    PubMed

    Ducrot, Virginie; Usseglio-Polatera, Philippe; Péry, T Alexandre R R; Mouthon, Jacques; Lafont, Michel; Roger, Marie-Claude; Garric, Jeanne; Férard, Jean-François

    2005-09-01

    An original species-selection method for the building of test batteries is presented. This method is based on the statistical analysis of the biological and ecological trait patterns of species. It has been applied to build a macroinvertebrate test battery for the assessment of sediment toxicity, which efficiently describes the diversity of benthic macroinvertebrate biological responses to toxicants in a large European lowland river. First, 109 potential representatives of benthic communities of European lowland rivers were selected from a list of 479 taxa, considering 11 biological traits accounting for the main routes of exposure to a sediment-bound toxicant and eight ecological traits providing an adequate description of habitat characteristics used by the taxa. Second, their biological and ecological trait patterns were compared using coinertia analysis. This comparison allowed the clustering of taxa into groups of organisms that exhibited similar life-history characteristics, physiological and behavioral features, and similar habitat use. Groups exhibited various sizes (7-35 taxa), taxonomic compositions, and biological and ecological features. Main differences among group characteristics concerned morphology, substrate preferendum and habitat utilization, nutritional features, maximal size, and life-history strategy. Third, the best representatives of the mean biological and ecological characteristics of each group were included in the test battery. The final selection was composed of Chironomus riparius (Insecta: Diptera), Branchiura sowerbyi (Oligochaeta: Tubificidae), Lumbriculus variegatus (Oligochaeta: Lumbriculidae), Valvata piscinalis (Gastropoda: Valvatidae), and Sericostoma personatum (Trichoptera: Sericostomatidae). This approach permitted the biological and ecological variety of the battery to be maximized. Because biological and ecological traits of taxa determine species sensitivity, such maximization should permit the battery to better account

  5. Effect of salinity on metal mobility in Sečovlje salina sediment (northern Adriatic, Slovenia)

    NASA Astrophysics Data System (ADS)

    Kovač, N.; Ramšak, T.; Glavaš, N.; Dolenec, M.; Rogan Šmuc, N.

    2016-12-01

    Saline sediment (saline healing mud or "fango") from the Sečovlje Salina (northern Adriatic, Slovenia) is traditionally used in the coastal health resorts as a virgin material for medical treatment, wellness and relax purposes. Therapeutic qualities of the healing mud depend on its mineralogical composition and physical, mineralogical, geochemical and biological properties. Their microbial and potentially toxic elements contamination are the most important features affecting user safety. However, the degree of metal toxicity (and its regulation) for natural healing mud is still under discussion. Therefore, the influence of the overlying water salinity on the mobility of heavy metals (and some other geochemical characteristic) was studied for saline sediments of the Sečovlje Salina. Experiments takes place in tanks under defined conditions i.e. at day (21 °C): night (16 °C) cycle for three months. Sediment was covered with water of different salinities (36, 155, 323 g NaCl L-1 and distillate water) and mixed/stirred every week during the experimental period. At the same time, the evaporated water was replaced with distilled water. The mud samples were analyzed, at the beginning and at the end of experiment, for mineral (XRD), elemental composition (ICP-MS) and organic content (% TOC, % TN). Geochemical analysis of the aqueous phase (content of cations and anions) have also been carried out in an accredited Canadian laboratory Actlabs (Activation Laboratories, Canada). Salinity and maturation of sediment does not significantly affect its mineral composition. The samples taken at the end of the experiment have higher percent of water but lower organic carbon concentration. Concentrations of investigated elements are comparable to that in surface sediments from Central Adriatic Sea. In the water phase, concentrations of most elements (As, Ba, Cu, Mo, Mn, Ni, Sr, Sb) rise from the beginning to the end of the experiment, whereas the metal (potentially toxic elements

  6. Accumulation, distribution, and toxicity of copper in sediments of catfish ponds receiving periodic copper sulfate applications.

    PubMed

    Han, F X; Hargreaves, J A; Kingery, W L; Huggett, D B; Schlenk, D K

    2001-01-01

    Copper sulfate (CuSO4) is applied periodically to commercial channel catfish (Ictalurus panctatus) ponds as an algicide or parasiticide. Current understanding of the chemistry of copper in soil-water systems suggests that copper may accumulate in pond sediments, although the forms and potential bioavailability of copper in catfish pond sediments are not known. This study investigated the accumulation and distribution of copper in the sediment of catfish ponds receiving periodic additions of CuSO4.5H2O. All ponds were constructed in Sharkey (very-fine, smectitic, thermic Chromic Epiaquert) soil. Nine 0.40-ha ponds received 59 applications of 2.27 kg CuSO4.5H2O per application per pond over 3 yr; no CuSO4.5H2O applications were made to nine additional ponds. Total Cu concentration in the sediments of CuSO4.5H2O-amended catfish ponds (172.5 mg kg(-1)) was four to five times higher than that in the sediments of nonamended ponds (36.1 mg kg(-1)). Copper accumulated in catfish pond sediments at a rate of 41 microg kg(-1) dry sediment for each 1 kg ha(-1) of CuSO4. 5H2O applied to ponds. Copper in the sediments of amended ponds was mainly in the organic matter-bound (30.7%), carbonate-bound (31.8%), and amorphous iron oxide-bound (22.1%) fractions with a considerable fraction (3.4%; 3 to 8 mg kg(-1)) in soluble and exchangeable fractions. This indicates that Cu accumulates differentially in various fractions, with proportionally greater initial accumulation in potentially bioavailable forms. However, toxicity bioassays with amphipods (Hyallela azteca) and common cattail (Typha latifolia L.) indicated that the effect of exposure to amended or nonamended pond sediments was not different.

  7. Water-sediment controversy in setting environmental standards for selenium

    USGS Publications Warehouse

    Hamilton, Steven J.; Lemly, A. Dennis

    1999-01-01

    A substantial amount of laboratory and field research on selenium effects to biota has been accomplished since the national water quality criterion was published for selenium in 1987. Many articles have documented adverse effects on biota at concentrations below the current chronic criterion of 5 μg/L. This commentary will present information to support a national water quality criterion for selenium of 2 μg/L, based on a wide array of support from federal, state, university, and international sources. Recently, two articles have argued for a sediment-based criterion and presented a model for deriving site-specific criteria. In one example, they calculate a criterion of 31 μg/L for a stream with a low sediment selenium toxicity threshold and low site-specific sediment total organic carbon content, which is substantially higher than the national criterion of 5 μg/L. Their basic premise for proposing a sediment-based method has been critically reviewed and problems in their approach are discussed.

  8. Data compilation for assessing sediment and toxic chemical loads from the Green River to the lower Duwamish Waterway, Washington

    USGS Publications Warehouse

    Conn, Kathleen E.; Black, Robert W.

    2014-01-01

    Between February and June 2013, the U.S. Geological Survey collected representative samples of whole water, suspended sediment, and (or) bed sediment from a single strategically located site on the Duwamish River, Washington, during seven periods of different flow conditions. Samples were analyzed by Washington-State-accredited laboratories for a large suite of compounds, including polycyclic aromatic hydrocarbons and other semivolatile compounds, polychlorinated biphenyl Aroclors and the 209 congeners, metals, dioxins/furans, volatile organic compounds, pesticides, butyltins, hexavalent chromium, and total organic carbon. Chemical concentrations associated with bulk bed sediment (<2 mm) and fine bed sediment (<62.5 μm) fractions were compared to chemical concentrations associated with suspended sediment. Bulk bed sediment concentrations generally were lower than fine bed sediment and suspended-sediment concentrations. Concurrent with the chemistry sampling, additional parameters were measured, including instantaneous river discharge, suspended-sediment concentration, sediment particle-size distribution, and general water-quality parameters. From these data, estimates of instantaneous sediment and chemical loads from the Green River to the Lower Duwamish Waterway were calculated.

  9. Accumulation of toxic metals and organic micro-pollutants in sediments from tropical urban rivers, Kinshasa, Democratic Republic of the Congo.

    PubMed

    Kilunga, Pitchouna I; Sivalingam, Periyasamy; Laffite, Amandine; Grandjean, Dominique; Mulaji, Crispin K; de Alencastro, Luiz Felippe; Mpiana, Pius T; Poté, John

    2017-07-01

    The increasing contamination of fresh water resource by toxic metals and Persistence Organic Pollutants (POPs) is a major environmental concern globally. In the present investigation, surface sediments collected from three main rivers named, Makelele, Kalamu and Nsanga, draining through the city of Kinshasa, Democratic Republic of the Congo, were characterized for grain size, organic matter, toxic metals, POPs (including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs)), and polycyclic aromatic hydrocarbons (PAHs). Furthermore, enrichment factor (EF) and geoaccumulation index (Igeo) were performed to determine metal source and pollution status. The results highlighted high concentration of toxic metals in all sediment samples, reaching the values (mg kg -1 ) of 325 (Cu), 549 (Zn), 165 (Pb) and 1.5 (Cd). High values of PCBs and OCPs were detected in sediment samples, e.g. in Makelele river, PCB values ranged from 0.9 to 10.9 with total PCBs (∑7 PCBs × 4.3): 169.3 μg kg -1 ; OCPs from 21.6 to 146.8 with ∑OCPs: 270.6 μg kg -1 . The PBDEs concentrations were higher in investigated rivers comparatively with values detected in many rivers from Sub-Saharan Africa. The ΣPAHs value ranged from 22.6 to 1011.9 μg kg -1 . River contamination may be explained by local intense domestic activities, urban and agricultural runoff, industrial and hospital wastewaters discharge into the rivers without prior treatment. This research provides not only a first baseline information on the extent of contamination in this tropical ecosystem but also represents useful tools incorporated to evaluate sediment quality in the river receiving systems which can be applied to similar aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Calculation and evaluation of sediment effect concentrations for the amphipod Hyalella azteca and the midge Chironomus riparius

    USGS Publications Warehouse

    Ingersoll, Christopher G.; Haverland, Pamela S.; Brunson, Eric L.; Canfield, Timothy J.; Dwyer, F. James; Henke, Chris; Kemble, Nile E.; Mount, David R.; Fox, Richard G.

    1996-01-01

    Procedures are described for calculating and evaluating sediment effect concentrations (SECs) using laboratory data on the toxicity of contaminants associated with field-collected sediment to the amphipod Hyalella azteca and the midge Chironomus riparius. SECs are defined as the concentrations of individual contaminants in sediment below which toxicity is rarely observed and above which toxicity is frequently observed. The objective of the present study was to develop SECs to classify toxicity data for Great Lake sediment samples tested with Hyalella azteca and Chironomus riparius. This SEC database included samples from additional sites across the United States in order to make the database as robust as possible. Three types of SECs were calculated from these data: (1) Effect Range Low (ERL) and Effect Range Median (ERM), (2) Threshold Effect Level (TEL) and Probable Effect Level (PEL), and (3) No Effect Concentration (NEC). We were able to calculate SECs primarily for total metals, simultaneously extracted metals, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). The ranges of concentrations in sediment were too narrow in our database to adequately evaluate SECs for butyltins, methyl mercury, polychlorinated dioxins and furans, or chlorinated pesticides. About 60 to 80% of the sediment samples in the database are correctly classified as toxic or not toxic depending on type of SEC evaluated. ERMs and ERLs are generally as reliable as paired PELs and TELs at classifying both toxic and non-toxic samples in our database. Reliability of the SECs in terms of correctly classifying sediment samples is similar between ERMs and NECs; however, ERMs minimize Type I error (false positives) relative to ERLs and minimize Type II error (false negatives) relative to NECs. Correct classification of samples can be improved by using only the most reliable individual SECs for chemicals (i.e., those with a higher percentage of correct classification). SECs

  11. ORGANIC CONTAMINANT DISTRIBUTION IN SEDIMENTS, POLYCHAETES (NEREIS VIRENS) AND THE AMERICAN LOBSTER, HOMARUS AMERICANUS IN A LABORATORY FOOD CHAIN EXPERIMENT

    EPA Science Inventory

    A laboratory experiment was conducted to investigate the transfer of organic contaminants from an environmentally contaminated marine sediment through a simple marine food chain. The infaunal polychaete, Nereis virens, was exposed to contaminated sediment collected from the Passa...

  12. Toxicity testing of sediment collected in the vicinity of effluent discharges from seafood processing plants in the maritimes.

    PubMed

    Lalonde, Benoit A; Jackman, Paula; Doe, Ken; Garron, Christine; Aubé, Jamie

    2009-04-01

    There are over 1100 fish-processing plants in Canada and the majority of them discharge untreated effluents directly to marine or estuarine receiving environments. The purpose of this study was to evaluate chemical and toxicological characteristics of sediments near fish-processing plant effluent discharges to assess potential impacts of seafood-processing effluents on receiving environments. Eighteen sediment samples were collected near effluent discharges of six seafood-processing plant outfalls in New Brunswick, Canada in the winter of 2006. Ammonia levels ranged from <0.2 to 3480 microg/g, sulfide levels ranged from <0.4 to 6970 microg/g, and redox ranged from -255 to 443 mV. Only one sample had a Microtox Solid-Phase Test IC(50) value below 1000 mg/kg, whereas three samples caused greater than 30% reduction to amphipod survival. Redox, sulfide, and ammonia concentrations were all found to be significantly related to both Eohaustorius estuarius survival and Microto (Vibrio fischeri) IC(50). An increase in sulfide (R (2) = 0.584; 0.750) and ammonia (R (2) = 0.478; 0.552) and a decrease in redox (R (2) = 0.485; 0.651) were associated with an increase in toxicity to E. estuarius and Microtox, respectively. The highest toxicity to both test organisms, and the most contaminated sediments based on physical/chemical characteristics measured, was observed in samples from Blacks Harbour.

  13. Spatiotemporal trend analysis of metal concentrations in sediments of a residential California stream with toxicity and regulatory implications.

    PubMed

    Hall, Lenwood W; Anderson, Ronald D; Killen, William D

    2017-06-07

    The objective of this study was to determine if concentrations of arsenic, cadmium, chromium, copper, lead, nickel and zinc measured in the sediments of a residential stream in California (Pleasant Grove Creek) have changed temporally or spatially from 2006 to 2016. Threshold Effect Levels (TELs), conservative ecological effects benchmarks, and exceedances for the seven metals were also evaluated over the 11-year time period to provide insight into potential metal toxicity to resident benthic communities. In addition, the bioavailability of metals in sediments was also determined by calculating Simultaneous Extracted Metal/Acid Volatle Sulfide (SEM/AVS) ratios to allow an additional assessment of toxicity. Regulatory implications of this data set and the role of metal toxicity are also discussed. Stream-wide temporal trend analysis showed no statistically significant trends for any of the metals. However, spatial analysis for several sites located near storm drains did show a significant increase for most metals over the 11-year period. TEL exceedances during the 7 years of sampling, spanning 2006-2016, were reported for all metals with the number of exceedances ranging from 47 for copper and zinc to 1 for lead. A spatial analysis showed that the highest number of TEL exceedances and the highest number of SEM/AVS ratios greater than one with at least one metal exceeding a TEL occurred at upstream sites. The potentially toxic metal concentrations reported in Pleasant Grove Creek should be used in the 303 (d) listing process for impaired water bodies in California.

  14. Vertical profile, source apportionment, and toxicity of PAHs in sediment cores of a wharf near the coal-based steel refining industrial zone in Kaohsiung, Taiwan.

    PubMed

    Chen, Chih-Feng; Chen, Chiu-Wen; Ju, Yun-Ru; Dong, Cheng-Di

    2016-03-01

    Three sediment cores were collected from a wharf near a coal-based steel refining industrial zone in Kaohsiung, Taiwan. Analyses for 16 polycyclic aromatic hydrocarbons (PAHs) of the US Environmental Protection Agency priority list in the core sediment samples were conducted using gas chromatography-mass spectrometry. The vertical profiles of PAHs in the core sediments were assessed, possible sources and apportionment were identified, and the toxicity risk of the core sediments was determined. The results from the sediment analyses showed that total concentrations of the 16 PAHs varied from 11774 ± 4244 to 16755 ± 4593 ng/g dry weight (dw). Generally, the vertical profiles of the PAHs in the sediment cores exhibited a decreasing trend from the top to the lower levels of the S1 core and an increasing trend of PAHs from the top to the lower levels of the S2 and S3 cores. Among the core sediment samples, the five- and six-ring PAHs were predominantly in the S1 core, ranging from 42 to 54 %, whereas the composition of the PAHs in the S2 and S3 cores were distributed equally across three groups: two- and three-ring, four-ring, and five- and six-ring PAHs. The results indicated that PAH contamination at the site of the S1 core had a different source. The molecular indices and principal component analyses with multivariate linear regression were used to determine the source contributions, with the results showing that the contributions of coal, oil-related, and vehicle sources were 38.6, 35.9, and 25.5 %, respectively. A PAH toxicity assessment using the mean effect range-median quotient (m-ERM-q, 0.59-0.79), benzo[a]pyrene toxicity equivalent (TEQ(carc), 1466-1954 ng TEQ/g dw), and dioxin toxicity equivalent (TEQ(fish), 3036-4174 pg TEQ/g dw) identified the wharf as the most affected area. The results can be used for regular monitoring, and future pollution prevention and management should target the coal-based industries in this region for pollution reduction.

  15. Do sediment type and test durations affect results of laboratory-based, accelerated testing studies of permeable pavement clogging?

    PubMed

    Nichols, Peter W B; White, Richard; Lucke, Terry

    2015-04-01

    Previous studies have attempted to quantify the clogging processes of Permeable Interlocking Concrete Pavers (PICPs) using accelerated testing methods. However, the results have been variable. This study investigated the effects that three different sediment types (natural and silica), and different simulated rainfall intensities, and testing durations had on the observed clogging processes (and measured surface infiltration rates) of laboratory-based, accelerated PICP testing studies. Results showed that accelerated simulated laboratory testing results are highly dependent on the type, and size of sediment used in the experiments. For example, when using real stormwater sediment up to 1.18 mm in size, the results showed that neither testing duration, nor stormwater application rate had any significant effect on PICP clogging. However, the study clearly showed that shorter testing durations generally increased clogging and reduced the surface infiltration rates of the models when artificial silica sediment was used. Longer testing durations also generally increased clogging of the models when using fine sediment (<300 μm). Results from this study will help researchers and designers better anticipate when and why PICPs are susceptible to clogging, reduce maintenance and extend the useful life of these increasingly common stormwater best management practices. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. IDENTIFICATION OF STRESSORS IN TOXIC SEDIMENTS: WHOLE SEDIMENT AND INSTITIAL WATER RESULTS

    EPA Science Inventory

    Identification of stressors in aquatic systems is critical to sound assessment and management of our nation's waterways. Information from stressor identification can be useful in designing effective sediment remediation methods, assessing options for sediment disposal, allowing m...

  17. Coupled numerical modeling of gas hydrates bearing sediments from laboratory to field-scale conditions

    NASA Astrophysics Data System (ADS)

    Sanchez, M. J.; Santamarina, C.; Gai, X., Sr.; Teymouri, M., Sr.

    2017-12-01

    Stability and behavior of Hydrate Bearing Sediments (HBS) are characterized by the metastable character of the gas hydrate structure which strongly depends on thermo-hydro-chemo-mechanical (THCM) actions. Hydrate formation, dissociation and methane production from hydrate bearing sediments are coupled THCM processes that involve, amongst other, exothermic formation and endothermic dissociation of hydrate and ice phases, mixed fluid flow and large changes in fluid pressure. The analysis of available data from past field and laboratory experiments, and the optimization of future field production studies require a formal and robust numerical framework able to capture the very complex behavior of this type of soil. A comprehensive fully coupled THCM formulation has been developed and implemented into a finite element code to tackle problems involving gas hydrates sediments. Special attention is paid to the geomechanical behavior of HBS, and particularly to their response upon hydrate dissociation under loading. The numerical framework has been validated against recent experiments conducted under controlled conditions in the laboratory that challenge the proposed approach and highlight the complex interaction among THCM processes in HBS. The performance of the models in these case studies is highly satisfactory. Finally, the numerical code is applied to analyze the behavior of gas hydrate soils under field-scale conditions exploring different features of material behavior under possible reservoir conditions.

  18. The National Sedimentation Laboratory: 50 years of soil and water research in a changing environment

    USDA-ARS?s Scientific Manuscript database

    The papers in this issue are based on selected presentations made at a symposium convened to celebrate the 50th anniversary of the founding of the National Sedimentation Laboratory (NSL) of the US Department of Agriculture (USDA), Agricultural Research Service (ARS), located in Oxford, Mississippi. ...

  19. Optimizing laboratory-based radon flux measurements for sediments.

    PubMed

    Chanyotha, Supitcha; Kranrod, Chutima; Kritsananuwat, Rawiwan; Lane-Smith, Derek; Burnett, William C

    2016-07-01

    Radon flux via diffusion from sediments and other materials may be determined in the laboratory by circulating air through the sample and a radon detector in a closed loop. However, this approach is complicated by the necessity of having to determine the total air volume in the system and accounting for any small air leaks that can arise if using extended measurement periods. We designed a simple open-loop configuration that includes a measured mass of wet sediment and water inside a gas-tight reaction flask connected to a drying system and a radon-in-air analyzer. Ambient air flows through two charcoal columns before entering the reaction vessel to eliminate incoming radon. After traveling through the reaction flask, the air passes the drier and the radon analyzer and is then vented. After some time, the radon activity will reach a steady state depending upon the airflow rate. With this approach, the radon flux via diffusion is simply the product of the steady-state radon activity (Bq/m(3)) multiplied by the airflow rate (mL/min). We demonstrated that this setup could produce good results for materials that produce relatively high radon fluxes. We also show that a modified closed system approach, including radon removal of the incoming air by charcoal filtration in a bypass, can produce very good results including samples with very low emission rates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Kinetic and microbial community analysis of methyl ethyl ketone biodegradation in aquifer sediments.

    PubMed

    Fahrenfeld, N; Pruden, A; Widdowson, M

    2017-02-01

    Methyl ethyl ketone (MEK) is a common groundwater contaminant often present with more toxic compounds of primary interest. Because of this, few studies have been performed to determine the effect of microbial community structure on MEK biodegradation rates in aquifer sediments. Here, microcosms were prepared with aquifer sediments containing MEK following a massive spill event and compared to laboratory-spiked sediments, with MEK biodegradation rates quantified under mixed aerobic/anaerobic conditions. Biodegradation was achieved in MEK-contaminated site sediment microcosms at about half of the solubility (356 mg/L) with largely Firmicutes population under iron-reducing conditions. MEK was biodegraded at a higher rate [4.0 ± 0.74 mg/(L days)] in previously exposed site samples compared to previously uncontaminated sediments [0.51 ± 0.14 mg/(L days)]. Amplicon sequencing and denaturing gradient gel electrophoresis of 16S rRNA genes were combined to understand the relationship between contamination levels, biodegradation, and community structure across the plume. More heavily contaminated sediments collected from an MEK-contaminated field site had the most similar communities than less contaminated sediments from the same site despite differences in sediment texture. The more diverse microbial community observed in the laboratory-spiked sediments reduced MEK concentration 47 % over 92 days. Results of this study suggest lower rates of MEK biodegradation in iron-reducing aquifer sediments than previously reported for methanogenic conditions and biodegradation rates comparable to previously reported nitrate- and sulfate-reducing conditions.

  1. Laboratory, Field, and Analytical Procedures for Using ...

    EPA Pesticide Factsheets

    Regardless of the remedial technology invoked to address contaminated sediments in the environment, there is a critical need to have tools for assessing the effectiveness of the remedy. In the past, these tools have included chemical and biomonitoring of the water column and sediments, toxicity testing and bioaccumulation studies performed on site sediments, and application of partitioning, transport and fate modeling. All of these tools served as lines of evidence for making informed environmental management decisions at contaminated sediment sites. In the last ten years, a new tool for assessing remedial effectiveness has gained a great deal of attention. Passive sampling offers a tool capable of measuring the freely dissolved concentration (Cfree) of legacy contaminants in water and sediments. In addition to assessing the effectiveness of the remedy, passive sampling can be applied for a variety of other contaminated sediments site purposes involved with performing the preliminary assessment and site inspection, conducting the remedial investigation and feasibility study, preparing the remedial design, and assessing the potential for contaminant bioaccumulation. While there is a distinct need for using passive sampling at contaminated sediments sites and several previous documents and research articles have discussed various aspects of passive sampling, there has not been definitive guidance on the laboratory, field and analytical procedures for using pas

  2. Measuring hypoxia induced metal release from highly contaminated estuarine sediments during a 40 day laboratory incubation experiment.

    PubMed

    Banks, Joanne L; Ross, D Jeff; Keough, Michael J; Eyre, Bradley D; Macleod, Catriona K

    2012-03-15

    Nutrient inputs to estuarine and coastal waters worldwide are increasing and this in turn is increasing the prevalence of eutrophication and hypoxic and anoxic episodes in these systems. Many urbanised estuaries are also subject to high levels of anthropogenic metal contamination. Environmental O(2) levels may influence whether sediments act as sinks or sources of metals. In this study we investigated the effect of an extended O(2) depletion event (40 days) on fluxes of trace metals (and the metalloid As) across the sediment-water interface in sediments from a highly metal contaminated estuary in S.E. Tasmania, Australia. We collected sediments from three sites that spanned a range of contamination and measured total metal concentration in the overlying water using sealed core incubations. Manganese and iron, which are known to regulate the release of other divalent cations from sub-oxic sediments, were released from sediments at all sites as hypoxia developed. In contrast, the release of arsenic, cadmium, copper and zinc was comparatively low, most likely due to inherent stability of these elements within the sediments, perhaps as a result of their refractory origin, their association with fine-grained sediments or their being bound in stable sulphide complexes. Metal release was not sustained due to the powerful effect of metal-sulphide precipitation of dissolved metals back into sediments. The limited mobilisation of sediment bound metals during hypoxia is encouraging, nevertheless the results highlight particular problems for management in areas where hypoxia might occur, such as the release of metals exacerbating already high loads or resulting in localised toxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Developing the sediment and erosion control laboratory to become a hands-on training and education center.

    DOT National Transportation Integrated Search

    2013-11-01

    The Sedimentation and Erosion Control (SEC) Laboratory has an established reputation as a renowned soil erosion research facility in the United States since its inception in 1990. During the past two decades, the lab has expanded its original perform...

  4. Methane Bubbles Transport Particles From Contaminated Sediment to a Lake Surface

    NASA Astrophysics Data System (ADS)

    Delwiche, K.; Hemond, H.

    2017-12-01

    Methane bubbling from aquatic sediments has long been known to transport carbon to the atmosphere, but new evidence presented here suggests that methane bubbles also transport particulate matter to a lake surface. This transport pathway is of particular importance in lakes with contaminated sediments, as bubble transport could increase human exposure to toxic metals. The Upper Mystic Lake in Arlington, MA has a documented history of methane bubbling and sediment contamination by arsenic and other heavy metals, and we have conducted laboratory and field studies demonstrating that methane bubbles are capable of transporting sediment particles over depths as great as 15 m in Upper Mystic Lake. Methane bubble traps were used in-situ to capture particles adhered to bubble interfaces, and to relate particle mass transport to bubble flux. Laboratory studies were conducted in a custom-made 15 m tall water column to quantify the relationship between water column height and the mass of particulate transport. We then couple this particle transport data with historical estimates of ebullition from Upper Mystic Lake to quantify the significance of bubble-mediated particle transport to heavy metal cycling within the lake. Results suggest that methane bubbles can represent a significant pathway for contaminated sediment to reach surface waters even in relatively deep water bodies. Given the frequent co-occurrence of contaminated sediments and high bubble flux rates, and the potential for human exposure to heavy metals, it will be critical to study the significance of this transport pathway for a range of sediment and contaminant types.

  5. Application of sediment quality guidelines in the assessment and management of contaminated surficial sediments in Port Jackson (Sydney Harbour), Australia.

    PubMed

    Birch, Gavin F; Taylor, Stuart E

    2002-06-01

    Sediments in the Port Jackson estuary are polluted by a wide range of toxicants and concentrations are among the highest reported for any major harbor in the world. Sediment quality guidelines (SQGs), developed by the National Oceanographic and Atmospheric Administration (NOAA) in the United States are used to estimate possible adverse biological effects of sedimentary contaminants in Port Jackson to benthic animals. The NOAA guidelines indicate that Pb, Zn, DDD, and DDE are the most likely contaminants to cause adverse biological effects in Port Jackson. On an individual chemical basis, the detrimental effects due to these toxicants may occur over extensive areas of the harbor, i.e., about 40%, 30%, 15% and 50%, respectively. The NOAA SQGs can also be used to estimate the probability of sediment toxicity for contaminant mixtures by determining the number of contaminants exceeding an upper guideline value (effects range medium, or ERM), which predicts probable adverse biological effects. The exceedence approach is used in the current study to estimate the probability of sediment toxicity and to prioritize the harbour in terms of possible adverse effects on sediment-dwelling animals. Approximately 1% of the harbor is mantled with sediment containing more than ten contaminants exceeding their respective ERM concentrations and, based on NOAA data, these sediments have an 80% probability of being toxic. Sediment with six to ten contaminants exceeding their respective ERM guidelines extend over approximately 4% of the harbor and have a 57% probability of toxicity. These areas are located in the landward reaches of embayments in the upper and central harbor in proximity to the most industrialised and urbanized part of the catchment. Sediment in a further 17% of the harbor has between one and five exceedences and has a 32% probability of being toxic. The application of SQGs developed by NOAA has not been tested outside North America, and the validity of using them in Port

  6. EFFECT OF REDOX ZONATION ON THE REDUCTIVE TRANSFORMATION OF P-CYANONITROBENZENE IN A LABORATORY SEDIMENT COLUMN

    EPA Science Inventory

    The reductive transformation of a model compound, p-cyanonitrobenzene (pCNB), was investigated in a laboratory sediment column that had been characterized with respect to redox zonation. Characterization of the redox zones was assessed by measurement of the solution phase concent...

  7. An effective medium inversion algorithm for gas hydrate quantification and its application to laboratory and borehole measurements of gas hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Chand, Shyam; Minshull, Tim A.; Priest, Jeff A.; Best, Angus I.; Clayton, Christopher R. I.; Waite, William F.

    2006-08-01

    The presence of gas hydrate in marine sediments alters their physical properties. In some circumstances, gas hydrate may cement sediment grains together and dramatically increase the seismic P- and S-wave velocities of the composite medium. Hydrate may also form a load-bearing structure within the sediment microstructure, but with different seismic wave attenuation characteristics, changing the attenuation behaviour of the composite. Here we introduce an inversion algorithm based on effective medium modelling to infer hydrate saturations from velocity and attenuation measurements on hydrate-bearing sediments. The velocity increase is modelled as extra binding developed by gas hydrate that strengthens the sediment microstructure. The attenuation increase is modelled through a difference in fluid flow properties caused by different permeabilities in the sediment and hydrate microstructures. We relate velocity and attenuation increases in hydrate-bearing sediments to their hydrate content, using an effective medium inversion algorithm based on the self-consistent approximation (SCA), differential effective medium (DEM) theory, and Biot and squirt flow mechanisms of fluid flow. The inversion algorithm is able to convert observations in compressional and shear wave velocities and attenuations to hydrate saturation in the sediment pore space. We applied our algorithm to a data set from the Mallik 2L-38 well, Mackenzie delta, Canada, and to data from laboratory measurements on gas-rich and water-saturated sand samples. Predictions using our algorithm match the borehole data and water-saturated laboratory data if the proportion of hydrate contributing to the load-bearing structure increases with hydrate saturation. The predictions match the gas-rich laboratory data if that proportion decreases with hydrate saturation. We attribute this difference to differences in hydrate formation mechanisms between the two environments.

  8. An effective medium inversion algorithm for gas hydrate quantification and its application to laboratory and borehole measurements of gas hydrate-bearing sediments

    USGS Publications Warehouse

    Chand, S.; Minshull, T.A.; Priest, J.A.; Best, A.I.; Clayton, C.R.I.; Waite, W.F.

    2006-01-01

    The presence of gas hydrate in marine sediments alters their physical properties. In some circumstances, gas hydrate may cement sediment grains together and dramatically increase the seismic P- and S-wave velocities of the composite medium. Hydrate may also form a load-bearing structure within the sediment microstructure, but with different seismic wave attenuation characteristics, changing the attenuation behaviour of the composite. Here we introduce an inversion algorithm based on effective medium modelling to infer hydrate saturations from velocity and attenuation measurements on hydrate-bearing sediments. The velocity increase is modelled as extra binding developed by gas hydrate that strengthens the sediment microstructure. The attenuation increase is modelled through a difference in fluid flow properties caused by different permeabilities in the sediment and hydrate microstructures. We relate velocity and attenuation increases in hydrate-bearing sediments to their hydrate content, using an effective medium inversion algorithm based on the self-consistent approximation (SCA), differential effective medium (DEM) theory, and Biot and squirt flow mechanisms of fluid flow. The inversion algorithm is able to convert observations in compressional and shear wave velocities and attenuations to hydrate saturation in the sediment pore space. We applied our algorithm to a data set from the Mallik 2L–38 well, Mackenzie delta, Canada, and to data from laboratory measurements on gas-rich and water-saturated sand samples. Predictions using our algorithm match the borehole data and water-saturated laboratory data if the proportion of hydrate contributing to the load-bearing structure increases with hydrate saturation. The predictions match the gas-rich laboratory data if that proportion decreases with hydrate saturation. We attribute this difference to differences in hydrate formation mechanisms between the two environments.

  9. Do weirs affect the physical and geochemical mobility of toxic metals in mining-impacted floodplain sediments?

    NASA Astrophysics Data System (ADS)

    Bulcock, Amelia; Coleman, Alexandra; Whitfield, Elizabeth; Andres Lopez-Tarazon, Jose; Byrne, Patrick; Whitfield, Greg

    2015-04-01

    Weirs are common river structures designed to modify river channel hydraulics and hydrology for purposes of navigation, flood defence, irrigation and hydrometry. By design, weirs constrain natural flow processes and affect sediment flux and river channel forms leading to homogenous river habitats and reduced biodiversity. The recent movement towards catchment-wide river restoration, driven by the EU Water Framework Directive, has recognised weirs as a barrier to good ecological status. However, the removal of weirs to achieve more 'natural' river channels and flow processes is inevitably followed by a period of adjustment to the new flow regime and sediment flux. This period of adjustment can have knock-on effects that may increase flood risk, sedimentation and erosion until the river reaches a state of geomorphological equilibrium. Many catchments in the UK contain a legacy of toxic metals in floodplain sediments due to historic metal mining activities. The consequences of weir removal in these catchments may be to introduce 'stored' mine wastes into the river system with severe implications for water quality and biodiversity. The purpose of this study is to investigate the potential impact of a weir on the physical and geochemical mobilisation of mine wastes in the formerly mined River Twymyn catchment, Wales. Our initial investigations have shown floodplain and riverbed sediments to be grossly contaminated (up to 15,500 mg/kg Pb) compared to soil from a pre-mining Holocene terrace (180 mg/kg Pb). Geomorphological investigations also suggest that weir removal will re-establish more dynamic river channel processes resulting in lateral migration of the channel and erosion of contaminated floodplain sediments. These data will be used as a baseline for more detailed investigations of the potential impact of weirs on the physical and geochemical mobilisation of contaminated sediments. We have two specific objectives. (1) Geomorphological assessments will use unmanned

  10. A three-dimensional stratigraphic model for aggrading submarine channels based on laboratory experiments, numerical modeling, and sediment cores

    NASA Astrophysics Data System (ADS)

    Limaye, A. B.; Komatsu, Y.; Suzuki, K.; Paola, C.

    2017-12-01

    Turbidity currents deliver clastic sediment from continental margins to the deep ocean, and are the main driver of landscape and stratigraphic evolution in many low-relief, submarine environments. The sedimentary architecture of turbidites—including the spatial organization of coarse and fine sediments—is closely related to the aggradation, scour, and lateral shifting of channels. Seismic stratigraphy indicates that submarine, meandering channels often aggrade rapidly relative to lateral shifting, and develop channel sand bodies with high vertical connectivity. In comparison, the stratigraphic architecture developed by submarine, braided is relatively uncertain. We present a new stratigraphic model for submarine braided channels that integrates predictions from laboratory experiments and flow modeling with constraints from sediment cores. In the laboratory experiments, a saline density current developed subaqueous channels in plastic sediment. The channels aggraded to form a deposit with a vertical scale of approximately five channel depths. We collected topography data during aggradation to (1) establish relative stratigraphic age, and (2) estimate the sorting patterns of a hypothetical grain size distribution. We applied a numerical flow model to each topographic surface and used modeled flow depth as a proxy for relative grain size. We then conditioned the resulting stratigraphic model to observed grain size distributions using sediment core data from the Nankai Trough, offshore Japan. Using this stratigraphic model, we establish new, quantitative predictions for the two- and three-dimensional connectivity of coarse sediment as a function of fine-sediment fraction. Using this case study as an example, we will highlight outstanding challenges in relating the evolution of low-relief landscapes to the stratigraphic record.

  11. Laboratory investigation of the erosion of cohesive sediments under oscillatory flows using a synchronized imaging technique

    NASA Astrophysics Data System (ADS)

    Sou, I.; Calantoni, J.; Reed, A. H.; Furukawa, Y.

    2012-12-01

    A synchronized dual stereo particle image velocimetry (PIV) measurement technique is used to examine the erosion process of a cohesive sediment core in the Small Oscillatory Flow Tunnel (S-OFT) in the Sediment Dynamics Laboratory at the Naval Research Laboratory, Stennis Space Center, MS. The PIV system uses four cameras and a dual cavity Nd:YAG laser. The system allows for a pair of stereo PIV windows of about 10 cm by 10 cm each to be arbitrarily located within a single light sheet. Image pairs were acquired with all four cameras at 50 Hz for 50 consecutive seconds for each flow condition. The stereo PIV windows were positioned on either side of sediment cores inserted along the centerline of the S-OFT allowing for a total measurement window of about 20 cm long by 10 cm high with sub-millimeter spacing on resolved velocity vectors. The oscillatory flows are generated by two types of driving mechanism (scotch yoke and crank lever) for converting the rotational motion of the flywheel into the linear motion of a piston. The period of oscillation ranged from 2.86 to 6.12 seconds with constant semi-excursion amplitude in the test section of 9 cm. Two kinds of inorganic sediment samples were examined. One was a mixture of 50% kaolinite and 50% 500-micron sand under flows driven by the crank lever mechanism. Another sediment core was a mixture of 50% mud collected in Galveston Bay, TX, and 50% 250-micron sand under flows driven by the scotch-yoke mechanism. During the erosion process, Kelvin-Helmholtz instabilities were observed as the flow accelerated in each direction and eventually were broken down when the flow reversed. An example of the instantaneous velocity field superimposed on the raw image is shown in Figure 1. The relative concentration of suspended sediments under different flow conditions was estimated using the intensity of light scattered from the sediment particles in suspension. By subtracting the initial light scattered from the mud core, the residual

  12. Refining methods for conducting long-term sediment and water toxicity tests with Chironomus dilutus: Formation of a midge chronic testing work group

    EPA Science Inventory

    Standard methods have been established by USEPA, ASTM International, Environment Canada and Organization for Economic Cooperation and Development for conducting sediment toxicity tests with various species of midges including Chironomus dilutus. Short-term 10-day exposures are ty...

  13. Coupling Between Overlying Hydrodynamics, Bioturbation, and Biogeochemical Processes Controls Metal Mobility, Bioavailability, and Toxicity in Sediments

    DTIC Science & Technology

    2016-05-01

    Geochemistry 54 5.2.3.2 Toxicity 56 5.2.4 Discussion 57 5.3 Effects of Bioturbation and Bioirrigation on Particle Dispersion and Oxygen ...Redistribution 61 5.3.1 Burrow structures and sediment mixing 61 5.3.2 Discussion 64 5.3.3 Oxygen optode results 65 5.3.4 Discussion 68 5.4 Effects ...concentrations in the pore water 84 5.5.4 Dissolved oxygen profile 86 5.5.5 Effects of physical, chemical and biological processes on metal mobility 86

  14. Geomechanical Behaviors of Laboratory-Formed Non-Cementing Hydrate-Bearing Sediments

    NASA Astrophysics Data System (ADS)

    Seol, Y.

    2015-12-01

    Natural hydrate-bearing sediments (HBS) have been known to exist with non-cementing pore habits, i.e., pore-filling, load-bearing, or patchy type. However, few laboratory studies have been conducted to characterize geomechanical behaviors of non-cementing CH4-HBS, which are of great importance in engineering the process of drilling and gas production in natural hydrate reservoir. In this study, we conducted multi-stage drained triaxial tests on laboratory synthesized CH4-HBS samples, which were formed in sand-clay mixtures (5%wt kaolinite) to have non-cementing habits. Three different effective confining stresses, σ3' = 0.69, 1.38, and 2.76 MPa, were applied on the HBS with the hydrate saturation, Sh, in the range of 0 to ~ 40%. The result confirms that the strength and stiffness of HBS increases with effective confining stress and hydrate saturation. It is also demonstrated that when compared to the cementing HBS, the non-cementing HBS has lower strength and cohesion, owing to less inter-particle adhesion effects from non-cementing hydrate.

  15. Evaluation of copper toxicity using site specific algae and water chemistry: Field validation of laboratory bioassays.

    PubMed

    Fawaz, Elyssa G; Salam, Darine A; Kamareddine, Lina

    2018-07-15

    Studies of metal toxicity to microalgae have predominantly been conducted using single non-target algae species and without due regard for the chemistry of the treated waters, leading to ineffective or excessive algaecide treatments. In this study, indigenous multi-algal species (Scenedesmus quadricauda, and Scenedesmus subspicatus and Oscillatoria agardhii) were used in laboratory toxicity bioassays under simulated field water chemistry (pH = 7.2, hardness = 196 mg L -1 as CaCO 3 , and alkalinity = 222 mg L -1 as CaCO 3 ) to determine the optimum copper sulfate treatment dose to control algae growth in an irrigation canal. Toxicity bioassays were conducted using copper sulfate in chelated (with EDTA) and non-chelated (without EDTA) forms to assess the influence of the use of synthetic chelators in toxicity studies. Also, copper toxicity to the indigenous algae species was measured in the non-modified EPA test medium (pH = 7.5, hardness = 92 mg L -1 as CaCO 3 , alkalinity = 10 mg L -1 as CaCO 3 and EDTA= 300 µg L -1 ) to assess the impact of the water chemistry on algae inhibitory algal dosages. Under simulated water chemistry conditions, lower toxicity was measured in the test flasks with the chelated form of copper (96 h- EC 50 = 386.67 µg L -1 as Cu) as compared to those with the non-chelated metal (96 h-EC 50 = 217.17 µg L -1 as Cu). In addition, higher copper toxicity was measured in the test flasks prepared with the non-modified EPA medium using chelated copper (96 h-EC 50 = 65.93 µg L -1 as Cu) as compared to their analogous microcosms with modified water chemistry (96 h-EC 50 = 386.67 µg L -1 as Cu), the increased water hardness and alkalinity in the latter case contributing to the decrease of the metal bioavailability. Results from laboratory experiments showed good correlation with copper dosages used in a small scale field testing to control algae growth, increasing confidence in

  16. Handbook of acute toxicity of chemicals to fish and aquatic invertebrates : summaries of toxicity tests conducted at Columbia National Fisheries Research Laboratory, 1965-78

    USGS Publications Warehouse

    Johnson, W. Waynon; Finley, Mack T.

    1980-01-01

    Acute toxicity is a major subject of research at Columbia National Fisheries Research Laboratory for evaluating the impact of toxic chemicals on fishery resources. The Laboratory has played a leading role in developing research technology for toxicity testing and data interpretation. In 1965-78, more than 400 chemicals were tested against a variety of invertebrates and fish species representative of both cold- and warm-water climates.The use of acute toxicity tests for assessing the potential hazard of chemical contaminants to aquatic organisms is well documented (Boyd 1957; Henderson et al. 1960; Sanders and Cope 1966; Macek and McAllister 1970). Static acute toxicity tests provide rapid and (within limits) reproducible concentration-response curves for estimating toxic effects of chemicals on aquatic organisms. These tests provide a database for determining relative toxicity of a large number of chemicals to a variety of species and for estimating acute effects of chemical spills on natural aquatic systems; they also assist in determining priority and design of additional toxicity studies.Acute toxicity tests usually provide estimates of the exposure concentration causing 50% mortality (LC50) to test organisms during a specified period of time. For certain invertebrates, the effective concentration is based on immobilization, or some other identifiable endpoint, rather than on lethality. The application of the LC50 has gained acceptance among toxicologists and is generally the most highly rated test for assessing potential adverse effects of chemical contaminants to aquatic life (Brungs and Mount 1978; American Institute for Biological Sciences 1978a).The literature contains numerous papers dealing with the acute toxicity of chemicals to freshwater organisms. However, there is a tremendous need for a concise compendium of toxicity data covering a large variety of chemicals and test species. This Handbook is a compilation of a large volume of acute toxicity data

  17. Bioassays with caged hyalella azteca to determine in situ toxicity downstream of two Saskatchewan, Canada, uranium operations.

    PubMed

    Robertson, Erin L; Liber, Karsten

    2007-11-01

    The main objectives of this in situ study were to evaluate the usefulness of an in situ bioassay to determine if downstream water bodies at the Key Lake and Rabbit Lake uranium operations (Saskatchewan, Canada) were toxic to Hyalella azteca and, if toxicity was observed, to differentiate between the contribution of surface water and sediment contamination to in situ toxicity. These objectives were achieved by performing 4-d in situ bioassays with laboratory-reared H. azteca confined in specially designed, paired, surface water and sediment exposure chambers. Results from the in situ bioassays revealed significant mortality, relative to the respective reference site, at the exposure sites at both Key Lake (p sediment exposure chambers at either Key Lake (p = 0.232) or Rabbit Lake (p = 0.072). This suggests that surface water (the common feature of both types of exposure chambers) was the primary cause of in situ mortality of H. azteca at both operations, although this relationship was stronger at Key Lake. At Key Lake, the primary cause of aquatic toxicity to H. azteca did not appear to be correlated with the variables measured in this study, but most likely with a pulse of organic mill-process chemicals released during the time of the in situ study-a transient event that was caused by a problem with the mill's solvent extraction process. The suspected cause of in situ toxicity to H. azteca at Rabbit Lake was high levels of uranium in surface water, sediment, and pore water.

  18. Magnitude and extent of sediment toxicity in four bays of the Florida Panhandle: Pensacola, Choctawhatchee, St. Andrew and Apalachicola. National status and trends program for marine environmental quality: Technical memo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, E.R.; Sloane, G.M.; Carr, R.S.

    1997-10-01

    The toxicity of sediments in Pensacola, Choctawhatcheee, St. Andrew and Apalachicola Bays was determined as part of bioeffects assessments performed by NOAA`s National Status and Trends Program. The objectives of the survey were to determine: (1) the spatial patterns in toxicity throughout each bay, (2) the spatial extent of toxicity throughout and among the bays, (3) the severity of degree of toxicity, and (4) the relationships between chemical contamination and toxicity. The survey was conducted over two years: Pensacola Bay and St. Andrew Bay were sampled in 1993; and Choctawhatchee Bay, Apalachicola Bay and Bayou Chico (a sub-basin of Pensacolamore » Bay) were sampled during 1994. Surficial sediment samples were collected from 123 randomly-chosen locations throughout the five areas. Multiple toxicity tests were conducted on all samples, and chemical analyses were performed on 102 of the 123 samples. Toxicological tests were conducted to determine survival, reproductive success, morphological development, metabolic activity, and genotoxicity; all bays showed toxicity in at least some of the samples.« less

  19. Acid Volatile Sulfides and Simultaneously Extracted Copper, Lead, and Zinc in Sediments of Sinclair Inlet, Washington

    DTIC Science & Technology

    1993-09-01

    to Doug Vaught, J. Towell, and Eric Schlierman of Puget Sound Naval Shipyard for providing laboratory space, equipment, and logistical support for the...availability and mobility of toxic metal contamination in the sediments of Sinclair Inlet, Puget Sound , Washington, acid volatile sulfide (AVS) and... Puget Sound , Washington ........ 1 2. Apparatus used for measuring acid volatile sulfides ........................... 5 3. Sulfide electrode

  20. Evaluation of a laboratory-scale bioreactive in situ sediment cap for the treatment of organic contaminants.

    PubMed

    Himmelheber, David W; Pennell, Kurt D; Hughes, Joseph B

    2011-11-01

    The development of bioreactive sediment caps, in which microorganisms capable of contaminant transformation are placed within an in situ cap, provides a potential remedial design that can sustainably treat sediment and groundwater contaminants. The goal of this study was to evaluate the ability and limitations of a mixed, anaerobic dechlorinating consortium to treat chlorinated ethenes within a sand-based cap. Results of batch experiments demonstrate that a tetrachloroethene (PCE)-to-ethene mixed consortium was able to completely dechlorinate dissolved-phase PCE to ethene when supplied only with sediment porewater obtained from a sediment column. To simulate a bioreactive cap, laboratory-scale sand columns inoculated with the mixed culture were placed in series with an upflow sediment column and directly supplied sediment effluent and dissolved-phase chlorinated ethenes. The mixed consortium was not able to sustain dechlorination activity at a retention time of 0.5 days without delivery of amendments to the sediment effluent, evidenced by the loss of cis-1,2-dichloroethene (cis-DCE) dechlorination to vinyl chloride. When soluble electron donor was supplied to the sediment effluent, complete dechlorination of cis-DCE to ethene was observed at retention times of 0.5 days, suggesting that sediment effluent lacked sufficient electron donor to maintain active dechlorination within the sediment cap. Introduction of elevated contaminant concentrations also limited biotransformation performance of the dechlorinating consortium within the cap. These findings indicate that in situ bioreactive capping can be a feasible remedial approach, provided that residence times are adequate and that appropriate levels of electron donor and contaminant exist within the cap. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Causes and ecological effects of resuspended contaminated sediments (RCS) in marine environments.

    PubMed

    Roberts, David A

    2012-04-01

    Sediments act as a net sink for anthropogenic contaminants in marine ecosystems and contaminated sediments may have a range of toxicological effects on benthic fauna and associated species. When resuspended, however, particulate-bound contaminants may be remobilised into the water column and become bioavailable to an additional assemblage of species. Such resuspension occurs through a range of natural and anthropogenic processes each of which may be thought of as pulsed disturbances resulting in pulsed exposures to contaminants. Thus, it is important to understand not only the toxicological responses of organisms to resuspended contaminated sediments (RCS), but also the frequency, magnitude and duration of sediment disturbance events. Such information is rarely collected together with toxicological data. Rather, the majority of published studies (>50% of the articles captured in this review) have taken the form of fixed-duration laboratory-based exposures with individual species. While this research has clearly demonstrated that resuspension of contaminated sediments can liberate sediment-bound contaminants leading to toxicity and bioaccumulation under controlled conditions, the potential for ecological effects in the field is often unclear. Monitoring studies suggest that recurrent natural disturbances such as tides and waves may cause the majority of contaminant release in many environments. However, various processes also act to limit the spatial and temporal scales across which contaminants are remobilised to the most toxic dissolved state. Various natural and anthropogenic disturbances of contaminated sediments have been linked to both community-level and sub-lethal responses in exposed populations of invertebrates and fish in the field. Together these findings suggest that resuspension of contaminated sediments is a frequently recurring ecological threat in contaminated marine habitats. Further consideration of how marine communities respond to temporally

  2. ISSUES IN SEDIMENT TOXICITY AND ECOLOGICAL RISK ASSESSMENT

    EPA Science Inventory

    This paper is based on a facilitated Workshop and Roundtable Discussion of key issues in sediment toxicology and ecological risk assessment (ERA) as applied to sediments that was held at the Conference on Dredged Material Management: Options and Environmental Considerations. The ...

  3. Laboratory Investigations and Numerical Modeling of Loss Mechanisms in Sound Propagation In Sandy Sediments

    DTIC Science & Technology

    2008-09-30

    meeting of the Acoustical Society of America in Providence, RI [7]. In this model , the scalar form Biot’s poroelastic equations could be used since...Laboratory Investigations and Numerical Modeling of Loss Mechanisms in Sound Propagation in Sandy Sediments. Brian T. Hefner Applied...Number: N00014-05-1-0225 http://www.apl.washington.edu LONG-TERM GOALS To develop accurate models for high frequency sound propagation within

  4. Evaluation of ability of reference toxicity tests to identify stress in laboratory populations of the amphipod Hyalella azteca

    USGS Publications Warehouse

    McNulty, E.W.; Dwyer, F.J.; Ellersieck, Mark R.; Greer, E.I.; Ingersoll, C.G.; Rabeni, C.F.

    1999-01-01

    Standard methods for conducting toxicity tests imply that the condition of test organisms can be established using reference toxicity tests. However, only a limited number of studies have evaluated whether reference toxicity tests can actually be used to determine if organisms are in good condition at the start of a test. We evaluated the ability of reference toxicants to identify stress associated with starvation in laboratory populations of the amphipod Hyalella azteca using acute toxicity tests and four reference toxicants: KCl, CdCl2, sodium pentachlorophenate (NaPCP), and carbaryl. Stress associated with severe starvation was observed with exposure of amphipods to carbaryl or NaPCP but not with exposure to KCl or CdCl2 (i.e., lower LC50 with severe starvation). Although the LC50s for NaPCP and carbaryl were statistically different between starved and fed amphipods, this difference may not be biologically significant given the variability expected in acute lethality tests. Stress associated with sieving, heat shock, or cold shock of amphipods before the start of a test was not evident with exposure to carbaryl or KCl as reference toxicants. The chemicals evaluated in this study provided minimal information about the condition of the organisms used to start a toxicity test. Laboratories should periodically perform reference toxicity tests to assess the sensitivity of life stages or strains of test organisms. However, use of other test acceptability criteria required in standard methods such as minimum survival, growth, or reproduction of organisms in the control treatment at the end of a test, provides more useful information about the condition of organisms used to start a test compared to data generated from reference toxicity tests.

  5. Toxic trace element assessment for soils/sediments deposited during Hurricanes Katrina and Rita from southern Louisiana, USA: a sequential extraction analysis.

    PubMed

    Shi, Honglan; Witt, Emitt C; Shu, Shi; Su, Tingzhi; Wang, Jianmin; Adams, Craig

    2010-07-01

    Analysis of soil/sediment samples collected in the southern Louisiana, USA, region three weeks after Hurricanes Katrina and Rita passed was performed using sequential extraction procedures to determine the origin, mode of occurrence, biological availability, mobilization, and transport of trace elements in the environment. Five fractions: exchangeable, bound to carbonates, bound to iron (Fe)-manganese (Mn) oxides, bound to organic matter, and residual, were subsequently extracted. The toxic trace elements Pb, As, V, Cr, Cu, and Cd were analyzed in each fraction, together with Fe in 51 soil/sediment samples. Results indicated that Pb and As were at relatively high concentrations in many of the soil/sediment samples. Because the forms in which Pb and As are present tend to be highly mobile under naturally occurring environmental conditions, these two compounds pose an increased health concern.Vanadium and Cr were mostly associated with the crystal line nonmobile residual fraction. A large portion of the Cu was associated with organic matter and residual fraction. Cadmium concentrations were low in all soil/sediment samples analyzed and most of this element tended to be associated with the mobile fractions. An average of 21% of the Fe was found in the Fe-Mn oxide fraction, indicating that a substantial part of the Fe was in an oxidized form. The significance of the overall finding of the present study indicated that the high concentrations and high availabilities of the potentially toxic trace elements As and Pb may impact the environment and human health in southern Louisiana and, in particular, the New Orleans area. Copyright (c) 2010 SETAC.

  6. 11. MOVABLE BED SEDIMENTATION MODELS. AUTOMATIC SEDIMENT FEEDER DESIGNED AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. MOVABLE BED SEDIMENTATION MODELS. AUTOMATIC SEDIMENT FEEDER DESIGNED AND BUILT BY WES. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  7. Measuring erosion rates of contaminated cohesive sediments using laboratory and in-situ devices in combination: experiences of investigations in River Elbe and Saale

    NASA Astrophysics Data System (ADS)

    Noack, Markus; Gerbersdorf, Sabine; Hillebrand, Gudrun; Kasimir, Petra; Wieprecht, Silke

    2014-05-01

    Deposition of contaminated sediments in areas of no or low flow velocity such as groyne fields or impounded river stretches represent a significant thread to water quality if long-deposited sediments are remobilized during flood and storm events. In contrast to non-cohesive sediments the dynamics of cohesive sediments is not fully understood mainly because of multiple physico-chemical factors and variable biological influence. Hence, site-specific investigations are required to develop water management strategies as well as modelling approaches to predict the dynamic behavior of cohesive material. The Institute for Modelling Hydraulic and Environmental Systems (IWS, University of Stuttgart) has a strong experience in developing measuring strategies and techniques to deal with the complex interactions between biological and sedimentary characteristics regarding erosion and remobilization of cohesive material. Specifically, the detection of critical shear stresses for incipient motion of cohesive particles has been realized for both one laboratory device (SETEG) and an in-situ device. For site-specific investigations ideally both methods should be combined. The first method (SETEG) includes the on-site extraction of sediment cores allowing for depth-dependent analysis under controlled laboratory conditions, while the second one measures the surface only but reduces possible artifacts due to sediment withdrawal and transport. Both methods were applied at groyne fields and deposition areas of the River Elbe and River Saale, which are both heavily affected by pollution of anthropogenic contaminants mainly originating from the release of chemical industry before 1990. Next to the detection of critical shear stresses and erosion rates, further sedimentary attributes are analyzed such as particle size distribution, water content and density as well as biological attributes such as TOC and microbial mass. The analyses of the sediment cores result in vertical profiles for

  8. Full-life chronic toxicity of sodium salts to the mayfly Neocloeon triangulifer in tests with laboratory cultured food.

    PubMed

    Soucek, David J; Dickinson, Amy

    2015-09-01

    Although insects occur in nearly all freshwater ecosystems, few sensitive insect models exist for use in determining the toxicity of contaminants. The objectives of the present study were to adapt previously developed culturing and toxicity testing methods for the mayfly Neocloeon triangulifer (Ephemeroptera: Baetidae), and to further develop a method for chronic toxicity tests spanning organism ages of less than 24 h post hatch to adult emergence, using a laboratory cultured diatom diet. The authors conducted 96-h fed acute tests and full-life chronic toxicity tests with sodium chloride, sodium nitrate, and sodium sulfate. The authors generated 96-h median lethal concentrations (LC50s) of 1062 mg Cl/L (mean of 3 tests), 179 mg N-NO3 /L, and 1227 mg SO4 /L. Acute to chronic ratios ranged from 2.1 to 6.4 for chloride, 2.5 to 5.1 for nitrate, and 2.3 to 8.5 for sulfate. The endpoints related to survival and development time were consistently the most sensitive in the tests. The chronic values generated for chloride were in the same range as those generated by others using natural foods. Furthermore, our weight-versus-fecundity plots were similar to those previously published using the food culturing method on which the present authors' method was based, indicating good potential for standardization. The authors believe that the continued use of this sensitive mayfly species in laboratory studies will help to close the gap in understanding between standard laboratory toxicity test results and field-based observations of community impairment. © 2015 SETAC.

  9. Evaluation of laboratory-scale in situ capping sediments with purple parent rock to control the eutrophication.

    PubMed

    Huang, Xuejiao; Shi, Wenhao; Ni, Jiupai; Li, Zhenlun

    2017-03-01

    In this study, the effectiveness of controlling the eutrophication using purple parent rock to cap the sediments was evaluated in the laboratory scale. Sediments were collected from Sanxikou reservoir (China) in July 2013. Then, three types of purple parent rock (T 1 f, J 3 p, and J 2 s) which are distributed widely in southwest China were used to cap the sediments. Limestone and calcite were used as the contrast group, because they had been reported as effective controls on eutrophication. Then, they were incubated at 20 °C for 46 days. The results indicated that the application of purple parent rock as a barrier material can effectively inhibit the release of nutrient elements in sediments, and the inhibition rates of total nitrogen (TN), total phosphorus (TP), ammonium (NH 4 -N), and nitrate (NO 3 -N) were much better than that of limestone and calcite. Among the three types of purple parent rock, J 3 p exhibited the best inhibitory effect on the release of nitrogen in sediments, and the inhibition efficiency of TN, NH 4 -N, and NO 3 -N was 59.7, 77.6, and 45.1%, respectively. As for T 1 f, it exhibited the best inhibitory effect on the release of TP in sediments with the inhibition rate of 94.4%. Whereas all these capping materials showed weak inhibition on release of organic matter in sediments, and the inhibition efficiencies were less than 20%. Moreover, these treatments could also cause distinct changes in the microbial community in sediments and overlying water, and the contents of TN and TP in all capping materials increased. All results demonstrated that purple parent rock could inhibit the release of nutrient in sediments through mechanical interception, physical adsorption, and chemical absorption as well as changing the microbial activity in the covering layer, sediments, or overlying water.

  10. Distribution and pollution, toxicity and risk assessment of heavy metals in sediments from urban and rural rivers of the Pearl River delta in southern China.

    PubMed

    Xiao, Rong; Bai, Junhong; Huang, Laibin; Zhang, Honggang; Cui, Baoshan; Liu, Xinhui

    2013-12-01

    Sediments were collected from the upper, middle and lower reaches of both urban and rural rivers in a typical urbanization zone of the Pearl River delta. Six heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) were analyzed in all sediment samples, and their spatial distribution, pollution levels, toxicity and ecological risk levels were evaluated to compare the characteristics of heavy metal pollution between the two rivers. Our results indicated that the total contents of the six metals in all samples exceeded the soil background value in Guangdong province. Based on the soil quality thresholds of the China SEPA, Cd levels at all sites exceeded class III criteria, and other metals exhibited pollution levels exceeding class II or III criteria at both river sites. According to the sediment quality guidelines of the US EPA, all samples were moderately to heavily polluted by Cr, Cu, Ni, Pb and Zn. Compared to rural river sites, urban river sites exhibited heavier pollution. Almost all sediment samples from both rivers exhibited moderate to serious toxicity to the environment, with higher contributions from Cr and Ni. A "hot area" of heavy metal pollution being observed in the upper and middle reaches of the urban river area, whereas a "hot spot" was identified at a specific site in the middle reach of the rural river. Contrary metal distribution patterns were also observed along typical sediment profiles from urban and rural rivers. However, the potential ecological risk indices of rural river sediments in this study were equal to those of urban river sediments, implying that the ecological health issues of the rivers in the undeveloped rural area should also be addressed. Sediment organic matter and grain size might be important factors influencing the distribution profiles of these heavy metals.

  11. Degradation of fipronil in anaerobic sediments and the effect on porewater concentrations.

    PubMed

    Brennan, Amanda A; Harwood, Amanda D; You, Jing; Landrum, Peter F; Lydy, Michael J

    2009-09-01

    The current study measured the degradation of fipronil in laboratory-spiked silt loam sediment under anaerobic conditions at different aging times. The half-life of fipronil in anaerobic sediments spiked at 5.8+/-0.049 and 21+/-1.4microg/kg dry weight (dw) was 21+/-0.22 and 15+/-0.11d, respectively. Fipronil-sulfide was the primary degradation product with fipronil-sulfone detected at lower concentrations. No degradation occurred to fipronil-sulfide and fipronil-sulfone over 200d in separate systems. A concurrent decline in sediment concentrations resulted in a decline of fipronil in sediment porewater with an increase in fipronil-sulfide and fipronil-sulfone measured by matrix-solid phase microextraction (matrix-SPME). Equilibrium among sediment, porewater, and matrix-SPME fiber occurred within 138d for fipronil and fipronil-sulfone; however, fipronil-sulfide did not reach equilibrium during the test, and modeling predicted upwards of 1083d to reach equilibrium. Regardless of the time to reach equilibrium, the rapid degradation of fipronil has little ecological significance given that fipronil-sulfide and fipronil-sulfone have equal or greater toxicity, and exhibit greater environmental stability in both the sediment and porewater, thereby becoming bioavailable.

  12. Tributyltin-resistant bacteria from estuarine and freshwater sediments.

    PubMed Central

    Wuertz, S; Miller, C E; Pfister, R M; Cooney, J J

    1991-01-01

    Resistance to tributyltin (TBT) was examined in populations from TBT-polluted sediments and nonpolluted sediments from an estuary and from fresh water as well as in pure cultures isolated from those sediments. The 50% effective concentrations (EC50s) for populations were higher at a TBT-polluted freshwater site than at a site without TBT, suggesting that TBT selected for a TBT-resistant population. In contrast, EC50s were significantly lower for populations from a TBT-contaminated estuarine site than for those from a site without TBT, suggesting that other factors in addition to TBT determine whether populations become resistant. EC50s for populations from TBT-contaminated freshwater sediments were nearly 30 times higher than those for populations from TBT-contaminated estuarine sediments. We defined a TBT-resistant bacterium as one which grows on trypticase soy agar containing 8.4 microM TBT, a concentration which prevented the growth of 90% of the culturable bacteria from these sediments. The toxicity of TBT in laboratory media was influenced markedly by the composition of the medium and whether it was liquid or solid. Ten TBT-resistant isolates from estuarine sediments and 19 from freshwater sediments were identified to the genus level. Two isolates, each a Bacillus sp., may be the first gram-positive bacteria isolated from fresh water in the presence of a high concentration of TBT. There was a high incidence of resistance to heavy metals: metal resistance indices were 0.76 for estuarine isolates and 0.68 for freshwater isolates.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1746939

  13. Inter-lab testing of Hyalella azteca water and sediment methods: 1 Summary of 10- to 42-d data from 25 laboratories

    EPA Science Inventory

    Over the past four years, USEPA Duluth, USGS Columbia, the Illinois Natural History Survey, and Environment Canada have been conducting studies to refine the USEPA and ASTM International methods for conducting 10- to 42-d water or sediment toxicity exposures with the amphipod Hya...

  14. Degradation of disperse blue 79 in anaerobic sediment-water systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, E.J.

    1988-09-01

    In recent years, concern over the environmental fate of the disperse azo dyes in natural water systems has grown. This concern arises from the fact that these dyes are very hydrophobic compounds, suggesting that they will partition strongly to bottom sediments where reductive cleavage of the azo linkage may occur. This transformation process could result in the release of potentially hazardous aromatic amines into the water column. Earlier studies in this laboratory demonstrated that the reductive cleavage of simple substituted azobenzenes in anaerobic sediment-water systems is a facile process. To determine whether reductive transformation of disperse azo dyes in naturalmore » water systems is an important environmental process, the fate of disperse Blue 79 in anaerobic sediment-water systems was studied. Disperse Blue 79 was selected for study for several reasons. It is by far the largest volume dye on the market today; the average annual production in the US from 1983 to 1985 was approximately 3.2 million kilograms. Furthermore, the reductive cleavage of the azo linkage of Disperse Blue 79 results in the formation of 2-bromo-4,6-dinitroaniline (BDNA), which has been shown to be both toxic and mutagenic. Recently, the Interagency Testing Committee, a Federal body established under the Toxic Substances Control Act, selected Disperse Blue 79 as a compound needing study with respect to its environmental fate and impact.« less

  15. Ecotoxicological assessment of aquatic sediments with Caenorhabditis elegans (Nematoda) -- A method for testing liquid medium and whole-sediment samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traunspurger, W.; Haitzer, M.; Hoess, S.

    1997-02-01

    The authors present a method using the free-living nematode Caenorhabditis elegans to assess toxicity in liquid medium and whole-sediment setups. Test duration is 72 h; endpoints are body length, number of eggs inside worms, percentage of gravid worms, and number of offspring per worm. The effect of CdCl{sub 2} on C. elegans in liquid-phase exposures is described as an example. Results from a field study with cadmium polluted sediments from the River Elbe (Germany) suggest that nematodes may be useful organisms in assessing toxicity of sediments in the whole phase.

  16. ACUTE TOXICITY OF FIVE SEDIMENT-ASSOCIATED METALS, INDIVIDUALLY AND IN A MIXTURE, TO THE ESTUARINE MEIOBENTHIC HARPACTICOID COPEPOD AMPHIASCUS TENUIREMIS. (R825279)

    EPA Science Inventory

    Abstract

    The acute effects of many individual, seawater-solubilized metals on meiobenthic copepods and nematodes are well known. In sediments, however, metals most often occur as mixtures, and it is not known whether such mixtures exhibit simple additive toxicity to me...

  17. Laboratory and field measurements of upwelled radiance and reflectance spectra of suspended James River sediments near Hopewell, Virginia

    NASA Technical Reports Server (NTRS)

    Whilock, C. H.; Witte, W. G.; Gurganus, E. A.; Usry, J. W.

    1978-01-01

    Spectral reflectance characteristics of suspended Bermuda Hundred and Bailey Bay bottom sediments taken from the Hopewell, Va., area were measured in the laboratory for water mixture total suspended solids concentrations between 4 and 173 parts per million. Field spectral reflectance measurements were made of the James River waters near Bermuda Hundred on two occasions. The results of these tests indicate that both Bermuda Hundred and Bailey Bay suspended sediments produce their strongest reflectance in the green and red regions of the spectrum.

  18. The Prestige oil spill: a laboratory study about the toxicity of the water-soluble fraction of the fuel oil.

    PubMed

    Navas, José M; Babín, Mar; Casado, Susana; Fernández, Carlos; Tarazona, José V

    2006-07-01

    The Prestige oil spill caused severe effects on the coastal fauna and flora due to direct contact of organisms with the fuel oil. However, the water soluble fraction (WSF) of the fuel oil can also provoke deleterious effects in the long term and even in regions not directly affected by the spill. Our objective was to determine the toxicity of the WSF using a battery of laboratory toxicity tests. To obtain a WSF in the laboratory, a sample of the spilled fuel was mixed with adequate medium, sonicated, agitated and filtered. No cytotoxic effects were detected in RTG-2 cells exposed to the WSF. In an algae growth inhibition test (OECD test guideline 201) the WSF did not affect the growth of Chlorella vulgaris. Furthermore, acute and reproductive toxicity tests (OECD test guideline 202) carried out using Daphnia magna did not indicate any deleterious effect of the WSF. In a bioassay designed in our laboratory, D. magna were fed with algae previously exposed to the fuel, but no toxic effects were detected. However, the WSF was able to induce a dose-dependent increase of ethoxyresorufin-O-deethylase activity in RTG-2 cells, indicating the presence of chemicals that could cause sub-lethal effects to organisms. After chemical analyses it was established that the final total quantity of polyaromatic hydrocarbons dissolved in medium was approximately 70 ng/ml. These low concentrations explain the observed lack of toxicity.

  19. Recent advances in the use of estuarine meiobenthos to assess contaminated sediment effects in multi-species whole sediment microcosms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, G.T.; Coull, B.C.; Schizas, N.V.

    1995-12-31

    Many marine meiobenthic taxa (i.e. invertebrates passing a 1-mm sieve but retaining on a 0.063 mm sieve) are ideal for ``whole-sediment`` and porewater bioassay of sedimented pollutants. Annual production of meiobenthos is 5--10 times that of the more commonly studied macrobenthos, and > 95% of all meiobenthos live in the oxic zone of muddy sediments at densities of 4--12 million per M{sup 2}. Most spend their entire lifecycles, burrowing freely and feeding on/within the sediment:porewater matrix, many taxa undergo 10--14 generations per year, most larval/juvenile stages are benthic, and many have easily quantifiable reproductive output. Furthermore, many meiobenthic taxa canmore » be cultured indefinitely over multiple life-cycles within simple sediment microcosms consisting of sealed whole-sediment cores collected intact from intertidal mudflats. The authors describe several recent technical developments exploiting meiofaunal sediment culture for rapid contaminated sediment bioassays of toxicant effects on survival, reproduction and population growth of meiobenthic taxa in whole-sediment microcosms. Currently meiobenthic copepods, nematodes, foraminifers and polychaetes are being continuously cultured to study these parameters under exposure to model sediment-associated toxicants (e.g. cadmium). Bioassays are run for 21-d under flowing seawater. With this approach, fertile benthic copepods (e.g. Amphiascus tenuiremis) can be added to core microcosms to assess survival and growth of a fixed population cohort. All other meiobenthic taxa are enumerated relative to controls and evaluated for toxicant effects on higher order community-level endpoints. This approach exploits meiobenthos` high abundance and rapid reproductive rates to yield on a micro scale better endpoints than much larger sediment mesocosms targeted at macrofaunal endpoints.« less

  20. Toxicity, Bioaccumulation and Biotransformation of Silver Nanoparticles in Marine Organisms.

    EPA Science Inventory

    The toxicity, bioaccumulation and biotransformation of citrate and polyvinylpyrrolidone (PVP) coated silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) in marine organisms via marine sediment exposure was investigated. Results from 7-d sediment toxicity tests indicate that Ag...

  1. Mercury toxicity in the aquatic oligochaete Sparganophilus pearsei: I. Variation in resistance among populations.

    PubMed

    Vidal, D E; Horne, A J

    2003-08-01

    Mercury contamination has become a problem in many San Francisco Bay Area watersheds due to its elevated presence in sediments and aquatic organisms. The present study used laboratory lethal toxicity (LC50) tests to examine the mercury tolerance of aquatic oligochaete worms, Sparganophilus pearsei, from contaminated and uncontaminated areas. The oligochaetes were collected in the following fresh water reservoirs: Sandy Wool (reference area), San Pablo, Lake Anza, Lake Herman, and Guadalupe. These last four reservoirs were contaminated with levels of mercury that ranged from 1.5 to 2 mg/kg (wet weight). Mercury concentrations in sediment and tissue from Sandy Wool were below detection limits and worms from this site were the least tolerant of mercury in laboratory exposures (LC50 = 0.22 mg/L). Worms from the other, more contaminated, reservoirs contained elevated tissue mercury concentrations and were more tolerant in laboratory tests (LC50 = 1.48-2.19 mg/L). The present study demonstrates that different populations of the aquatic oligochaete S. pearsei have developed different tolerances to mercury depending on their previous history of exposure to mercury contamination.

  2. Geostatistical Modeling of Sediment Abundance in a Heterogeneous Basalt Aquifer at the Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Welhan, John A.; Farabaugh, Renee L.; Merrick, Melissa J.; Anderson, Steven R.

    2007-01-01

    The spatial distribution of sediment in the eastern Snake River Plain aquifer was evaluated and modeled to improve the parameterization of hydraulic conductivity (K) for a subregional-scale ground-water flow model being developed by the U.S. Geological Survey. The aquifer is hosted within a layered series of permeable basalts within which intercalated beds of fine-grained sediment constitute local confining units. These sediments have K values as much as six orders of magnitude lower than the most permeable basalt, and previous flow-model calibrations have shown that hydraulic conductivity is sensitive to the proportion of intercalated sediment. Stratigraphic data in the form of sediment thicknesses from 333 boreholes in and around the Idaho National Laboratory were evaluated as grouped subsets of lithologic units (composite units) corresponding to their relative time-stratigraphic position. The results indicate that median sediment abundances of the stratigraphic units below the water table are statistically invariant (stationary) in a spatial sense and provide evidence of stationarity across geologic time, as well. Based on these results, the borehole data were kriged as two-dimensional spatial data sets representing the sediment content of the layers that discretize the ground-water flow model in the uppermost 300 feet of the aquifer. Multiple indicator kriging (mIK) was used to model the geographic distribution of median sediment abundance within each layer by defining the local cumulative frequency distribution (CFD) of sediment via indicator variograms defined at multiple thresholds. The mIK approach is superior to ordinary kriging because it provides a statistically best estimate of sediment abundance (the local median) drawn from the distribution of local borehole data, independent of any assumption of normality. A methodology is proposed for delineating and constraining the assignment of hydraulic conductivity zones for parameter estimation, based on the

  3. Assessment of sediment quality based on acid-volatile sulfide and simultaneously extracted metals in heavily industrialized area of Asaluyeh, Persian Gulf: concentrations, spatial distributions, and sediment bioavailability/toxicity.

    PubMed

    Arfaeinia, Hossein; Nabipour, Iraj; Ostovar, Afshin; Asadgol, Zahra; Abuee, Ehsan; Keshtkar, Mozhgan; Dobaradaran, Sina

    2016-05-01

    Sediment samples from the coastal area of Asaluyeh harbor were collected during autumn and spring 2015. The acid-volatile sulfide (AVS) and simultaneously extracted metals (SEMs) were measured to assess the sediment quality and potential ecological risks. The average concentrations (and relative standard deviation (RSD)) of AVS in the industrial sediments were 12.32 μmol/g (36.91) and 6.34 μmol/g (80.05) in autumn and spring, respectively, while in the urban area, these values were 0.44 μmol/g (123.50) and 0.31 μmol/g (160.0) in autumn and spring, respectively. The average concentrations of SEM (and RSD) in the industrial sediments were 15.02 μmol/g (14.38) and 12.34 μmol/g (20.65) in autumn and spring, respectively, while in the urban area, these values were 1.10 μmol/g (43.03) and 1.06 μmol/g (55.59) in autumn and spring, respectively. Zn was the predominant component (34.25-86.24 %) of SEM, while the corresponding value for Cd, much more toxic ingredient, was less than 1 %. Some of the coastal sediments in the harbor of Asaluyeh (20 and 47 % in autumn and spring, respectively) had expected adverse biological effects based on the suggested criterion by United States Environmental Protection Agency (USEPA), while most stations (80 and 53 % in autumn and spring, respectively) had uncertain adverse effects.

  4. Combining Field and Laboratory Experiments in Order to Understand Interactions Between Flow, Sediment, Vegetation And Bank Erosion in Riparian Rehabilitation Works

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. F.; Gorrick, S.; Kalma, J.; Cook, N.; Outhet, D.; Raine, A.

    2005-12-01

    Riparian lands are important for maintaining viable ecosystems, improving water quality and reducing sediment yields. Yet, riparian lands are frequently neglected, degraded and poorly managed. In many Australian riverine zones clearing or grazing of native riparian vegetation has resulted in varying degrees of erosion, sedimentation and degradation of aquatic ecosystems. Reintroducing riparian vegetation is one of the preferred methods for improving bank stability, reducing bank erosion to natural rates and rehabilitating channels. The present research aims to explore how reintroduced riparian vegetation modifies the flow and sediment transport patterns and at the same time how the vegetation is affected by flow and sediment. Both field experimentation and laboratory studies will lead to basic understanding of the processes involved and will help the efficient design of plantings for riparian rehabilitation. In order to be able to reproduce the most important processes in a laboratory physical model, a field site with a relatively simple geometry has been selected for the study. The site is on a small sand bed stream in the Hunter Valley in NSW. The reach has a large radius bend with no riparian vegetation on the outer bank, where erosion occurs periodically. Reintroduction of vegetation is planned for October 2005, with pre and post monitoring stages running from March 2005 to August 2008. Laboratory physical modelling based on field characteristics and with varying flow discharges and plant arrangement will provide information to help develop, adapt and test quantitative models of flow dynamics, sediment transport and bank erosion incorporating the effects of vegetation. These results can then be used by river managers when they are developing rehabilitation strategies.

  5. PREDICTING SEDIMENT METAL TOXICITY USING A SEDIMENT BIOTIC LIGAND MODEL: METHODOLOGY AND INITIAL APPLICATION

    EPA Science Inventory

    An extension of the simultaneously extracted metals/acid-volatile sulfide (SEM/AVS) procedure is presented that predicts the acute and chronic sediment metals effects concentrations. A biotic ligand model (BLM) and a pore water–sediment partitioning model are used to predict the ...

  6. Toxicological and chemical assessment of ordnance compounds in marine sediments and porewaters

    USGS Publications Warehouse

    Nipper, M.; Carr, R.S.; Biedenbach, J.M.; Hooten, R.L.; Miller, K.

    2002-01-01

    Toxicological and chemical studies were performed with a silty and a sandy marine sediment spiked with 2,6-dinitrotoluene (2,6-DNT), 2,4,6-trinitrophenylmethylnitramine (tetryl), or 2,4,6-trinitrophenol (picric acid). Whole sediment toxicity was analyzed by the 10-day survival test with the amphipod Ampelisca abdita, and porewater toxicity tests assessed macro-algae (Ulva fasciata) zoospore germination and germling growth, sea urchin (Arbacia punctulata) embryological development, and polychaete (Dinophilus gyrociliatus) survival and reproduction. Whole sediments spiked with 2,6-DNT were not toxic to amphipods. The fine-grained sediment spiked with tetryl was also not acutely toxic. The tetryl and picric acid LC50 values in the sandy sediment were 3.24 and 144 mg/kg dry weight, respectively. The fine-grained sediment spiked with picric acid generated a U-shaped concentration-response curve in the amphipod test, with increased survival both in the lowest and highest concentration. Grain-size distribution and organic carbon content strongly influenced the behavior of ordnance compounds in spiked sediments. Very low concentrations were measured in some of the treatments and irreversible binding and biodegradation are suggested as the processes responsible for the low measurements. Porewater toxicity varied with its sedimentary origin and with ordnance compound. The sea urchin embryological development test tended to be the least sensitive. Tetryl was the most toxic chemical in all porewater tests, and picric acid the least toxic. Samples spiked with 2,6-DNT contained a degradation product identified as 2-methyl-3-nitroaniline (also known as 2-amino-6-nitrotoluene), and unidentified peaks, possibly degradation products, were also seen in some of the picric acid- and tetryl-spiked samples. Degradation products may have played a role in observed toxicity. ?? 2002 Elsevier Science Ltd. All rights reserved.

  7. Reduced Toxicity, High Performance Monopropellant at the U.S. Air Force Research Laboratory

    NASA Astrophysics Data System (ADS)

    Hawkins, T. W.; Brand, A. J.; McKay, M. B.; Tinnirello, M.

    2010-09-01

    Current programs are aiming to develop reduced toxicity monopropellant formulations to replace spacecraft hydrazine monopropellant. The Air Force Research Laboratory's(AFRL's) approach to replacing hydrazine is the synthesis and development of energetic compounds/formulations with substantially less vapor toxicity and superior performance(specific impulse and density). Characterization and testing of these high energy density materials is an essential part of the screening process for viable advanced propellants. Hazardous handling characteristics, undesirable physical properties or unacceptable sensitivity behaviors must also be identified and/or modified to further development by a potential user. AFRL has successfully identified a novel monopropellant(designated AF-M315E) that shows great promise as an avenue toward replacement of hydrazine monopropellant for spacecraft propulsion. Hazard and safety/sensitivity, stability, and toxicity studies have been conducted on the monopropellant and will be described. The results from AF-M315E indicate that a >50% improvement in propulsion system performance over hydrazine is achievable while simultaneously providing a safer environment for the general public, ground personnel, crews and flight participants.

  8. Laboratory studies to characterize the efficacy of sand capping a coal tar-contaminated sediment.

    PubMed

    Hyun, Seunghun; Jafvert, Chad T; Lee, Linda S; Rao, P Suresh C

    2006-06-01

    Placement of a microbial active sand cap on a coal tar-contaminated river sediment has been suggested as a cost effective remediation strategy. This approach assumes that the flux of contaminants from the sediment is sufficiently balanced by oxygen and nutrient fluxes into the sand layer such that microbial activity will reduce contaminant concentrations within the new benthic zone and reduce the contaminant flux to the water column. The dynamics of such a system were evaluated using batch and column studies with microbial communities from tar-contaminated sediment under different aeration and nutrient inputs. In a 30-d batch degradation study on aqueous extracts of coal tar sediment, oxygen and nutrient concentrations were found to be key parameters controlling the degradation rates of polycyclic aromatic hydrocarbons (PAHs). For the five PAHs monitored (naphthalene, fluorene, phenanthrene, anthracene, and pyrene), degradation rates were inversely proportional to molecular size. For the column studies, where three columns were packed with a 20-cm sand layer on the top of a 5 cm of sediment layer, flow was established to sand layers with (1) aerated water, (2) N(2) sparged water, or (3) HgCl(2)-sterilized N(2) sparged water. After steady-state conditions, PAH concentrations in effluents were the lowest in the aerated column, except for pyrene, whose concentration was invariant with all effluents. These laboratory scale studies support that if sufficient aeration can be achieved in the field through either active and passive means, the resulting microbially active sand layer can improve the water quality of the benthic zone and reduce the flux of many, but not all, PAHs to the water column.

  9. Pore-water and epibenthic exposures in contaminated sediments using embryos of two estuarine fish species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jelinski, J.A.; Anderson, S.L.

    1995-12-31

    The authors` objectives were to determine the feasibility of using embryos of two fish species, Menidia beryllina and Atherinops affinis, in estuarine sediment toxicity tests at ambient temperatures and salinities, and to compare pore-water and sediment water interface corer (SWIC) exposure techniques using these same species. The ultimate goal is to determine whether these pore-water and SWIC methods can be used in in situ exposure studies. Sediment samples were collected at both a reference and contaminated site at the Mare Island Naval Shipyard in San Francisco Bay. Pore-water testes were conducted using methods developed in the laboratory, and SWIC testsmore » were conducted using a modification of B. Anderson et al. Salinity and temperature tolerance experiments revealed that M. beryllina embryos can tolerate temperatures between 160 C and 240 C and salinities of 10 ppt to 25 ppt, whereas A. affinis has a temperature range between 160 C and 200 C. Comparisons between pore-water and SWIC exposures at a reference site within MINSY showed no significant difference in hatching success. However, hatching success in SWIC exposures was significantly lower than pore-water exposures at a previously characterized contaminated site. In conclusion, both M. beryllina and A. affinis embryos may be useful for sediment and in situ toxicity testing in estuarine environments. Their wide temperature and salinity tolerances allow for minimal test manipulations, and M. beryllina showed excellent hatching success in reference sediments for both types of exposures.« less

  10. Development and evaluation of consensus-based sediment effect concentrations for polychlorinated biphenyls

    USGS Publications Warehouse

    MacDonald, Donald D.; Dipinto, Lisa M.; Field, Jay; Ingersoll, Christopher G.; Long, Edward R.; Swartz, Richard C.

    2000-01-01

    Sediment-quality guidelines (SQGs) have been published for polychlorinated biphenyls (PCBs) using both empirical and theoretical approaches. Empirically based guidelines have been developed using the screening-level concentration, effects range, effects level, and apparent effects threshold approaches. Theoretically based guidelines have been developed using the equilibrium-partitioning approach. Empirically-based guidelines were classified into three general categories, in accordance with their original narrative intents, and used to develop three consensus-based sediment effect concentrations (SECs) for total PCBs (tPCBs), including a threshold effect concentration, a midrange effect concentration, and an extreme effect concentration. Consensus-based SECs were derived because they estimate the central tendency of the published SQGs and, thus, reconcile the guidance values that have been derived using various approaches. Initially, consensus-based SECs for tPCBs were developed separately for freshwater sediments and for marine and estuarine sediments. Because the respective SECs were statistically similar, the underlying SQGs were subsequently merged and used to formulate more generally applicable SECs. The three consensus-based SECs were then evaluated for reliability using matching sediment chemistry and toxicity data from field studies, dose-response data from spiked-sediment toxicity tests, and SQGs derived from the equilibrium-partitioning approach. The results of this evaluation demonstrated that the consensus-based SECs can accurately predict both the presence and absence of toxicity in field-collected sediments. Importantly, the incidence of toxicity increases incrementally with increasing concentrations of tPCBs. Moreover, the consensus-based SECs are comparable to the chronic toxicity thresholds that have been estimated from dose-response data and equilibrium-partitioning models. Therefore, consensus-based SECs provide a unifying synthesis of existing

  11. RELEVANCE OF ROOTED VASCULAR PLANTS AS INDICATORS OF ESTUARINE SEDIMENT QUALITY

    EPA Science Inventory

    Toxicity assessments and numerical quality assessment guidelines for estuarine sediments are rarely based on information for aquatic plants. The effect of this lack of information on contaminated sediment evaluations is largely unknown. For this reason, the toxicities of whole se...

  12. Variations in toxicity of semi-coking wastewater treatment processes and their toxicity prediction.

    PubMed

    Ma, Xiaoyan; Wang, Xiaochang; Liu, Yongjun; Gao, Jian; Wang, Yongkun

    2017-04-01

    Chemical analyses and bioassays using Vibrio fischeri and Daphnia magna were conducted to evaluate comprehensively the variation of biotoxicity caused by contaminants in wastewater from a semi-coking wastewater treatment plant (WWTP). Pretreatment units (including an oil-water separator, a phenols extraction tower, an ammonia stripping tower, and a regulation tank) followed by treatment units (including anaerobic-oxic treatment units, coagulation-sedimentation treatment units, and an active carbon adsorption column) were employed in the semi-coking WWTP. Five benzenes, 11 phenols, and five polycyclic aromatic hydrocarbons (PAHs) were investigated as the dominant contaminants in semi-coking wastewater. Because of residual extractant, the phenols extraction process increased acute toxicity to V. fischeri and immobilization and lethal toxicity to D. magna. The acute toxicity of pretreated wastewater to V. fischeri was still higher than that of raw semi-coking wastewater, even though 90.0% of benzenes, 94.8% of phenols, and 81.0% of PAHs were removed. After wastewater pretreatment, phenols and PAHs were mainly removed by anaerobic-oxic and coagulation-sedimentation treatment processes respectively, and a subsequent active carbon adsorption process further reduced the concentrations of all target chemicals to below detection limits. An effective biotoxicity reduction was found during the coagulation-sedimentation and active carbon adsorption treatment processes. The concentration addition model can be applied for toxicity prediction of wastewater from the semi-coking WWTP. The deviation between the measured and predicted toxicity results may result from the effects of compounds not detectable by instrumental analyses, the synergistic effect of detected contaminants, or possible transformation products. Copyright © 2016. Published by Elsevier Inc.

  13. A novel contact assay for testing aryl hydrocarbon receptor (AhR)-mediated toxicity of chemicals and whole sediments in zebrafish (Danio rerio) embryos.

    PubMed

    Schiwy, Sabrina; Bräunig, Jennifer; Alert, Henriette; Hollert, Henner; Keiter, Steffen H

    2015-11-01

    The European Water Framework Directive aims to achieve a good ecological and chemical status in surface waters until 2015. Sediment toxicology plays a major role in this intention as sediments can act as a secondary source of pollution. In order to fulfill this legal obligation, there is an urgent need to develop whole-sediment exposure protocols, since sediment contact assays represent the most realistic scenario to simulate in situ exposure conditions. Therefore, in the present study, a vertebrate sediment contact assay to determine aryl hydrocarbon receptor (AhR)-mediated activity of particle-bound pollutants was developed. Furthermore, the activity and the expression of the CYP1 family in early life stages of zebrafish after exposure to freeze-dried sediment samples were investigated. In order to validate the developed protocol, effects of β-naphthoflavone and three selected sediment on zebrafish embryos were investigated. Results documented clearly AhR-mediated toxicity after exposure to β-naphthoflavone (β-NF) and to the sediment from the Vering canal. Upregulation of mRNA levels was observed for all investigated sediment samples. The highest levels of all investigated cyp genes (cyp1a, cyp1b1, cyp1c1, and cyp1c2) were recorded after exposure to the sediment sample of the Vering canal. In conclusion, the newly developed sediment contact assay can be recommended for the investigation of dioxin-like activities of single substances and the bioavailable fraction of complex environmental samples. Moreover, the exposure of whole zebrafish embryos to native (freeze-dried) sediment samples represents a highly realistic and ecologically relevant exposure scenario.

  14. Predicting the fate of sediment and pollutants in river floodplains.

    PubMed

    Malmon, Daniel V; Dunne, Thomas; Reneau, Steven L

    2002-05-01

    Geological processes such as erosion and sedimentation redistribute toxic pollutants introduced to the landscape by mining, agriculture, weapons development, and other human activities. A significant portion of these contaminants is insoluble, adsorbing to soils and sediments after being released. Geologists have long understood that much of this sediment is stored in river floodplains, which are increasingly recognized as important nonpoint sources of pollution in rivers. However, the fate of contaminated sediment has generally been analyzed using hydrodynamic models of in-channel processes, ignoring particle exchange with the floodplain. Here, we present a stochastic theory of sediment redistribution in alluvial valley floors that tracks particle-bound pollutants and explicitly considers sediment storage within floodplains. We use the theory to model the future redistribution and radioactive decay of 137Cs currently stored on sediment in floodplains at the Los Alamos National Laboratory (LANL) in New Mexico. Model results indicate that floodplain storage significantly reduces the rate of sediment delivery from upper Los Alamos Canyon, allowing 50% of the 137Cs currently residing in the valley floor to decay radioactively before leaving LANL. A sensitivity analysis shows that the rate of sediment overturn in the valley (and hence, the total amount of radioactive 137Cs predicted to leave LANL) is significantly controlled by the rate of sediment exchange with the floodplain. Our results emphasize that flood plain sedimentation and erosion processes can strongly influence the redistribution of anthropogenic pollutants in fluvial environments. We introduce a new theoretical framework for examining this interaction, which can provide a scientific basis for decision-making in a wide range of river basin management scenarios.

  15. Ecological risk assessment of toxic organic pollutant and heavy metals in water and sediment from a landscape lake in Tianjin City, China.

    PubMed

    Zhang, Ying; Liu, Yuanyuan; Niu, Zhiguang; Jin, Shaopei

    2017-05-01

    To estimate the ecological risk of toxic organic pollutant (formaldehyde) and heavy metals (mercury (Hg), arsenic (As), cadmium (Cd), and chromium (Cr)) in water and sediment from a landscape Lake in Tianjin City, an ecological risk assessment was performed. The risk quotient (RQ) method and the AQUATOX model were used to assess the ecological risk of formaldehyde in landscape water. Meanwhile, the RQ method and the potential ecological risk index method were used to assess the ecological risk of four heavy metals in water and sediment from the studied landscape lake, respectively. The results revealed that the maximum concentration of formaldehyde in landscape water was lower than the environmental quality standards of surface water in China. The maximum simulated concentrations of formaldehyde in phytoplankton and invertebrates were 3.15 and 22.91 μg/L, respectively, which were far less than its toxicity data values (1000 and 510 μg/L, respectively), suggesting that formaldehyde in landscape water was at a safe level for aquatic organisms. The RQ model indicated that the risks of phytoplankton and invertebrates were higher than that of fish posed by Hg and Cd in landscape water, and the risks from As and Cr were acceptable for all test organisms. Cd is the most important pollution factor among all heavy metals in sediment from studied landscape lake, and the pollution factor sequence of heavy metals was Hg > As > Cr > Cd. The values of risk index (RI) for four heavy metals in samples a and b were 43.48 and 72.66, which were much lower than the threshold value (150), suggesting that the ecological risk posed by heavy metals in sediment was negligible.

  16. Sediment dynamics in shallow Lake Markermeer, The Netherlands: field/laboratory surveys and first results for a 3-D suspended solids model.

    PubMed

    Kelderman, P; De Rozari, P; Mukhopadhyay, S; Ang'weya, R O

    2012-01-01

    In 2007/08, a study was undertaken on sediment dynamics in shallow Lake Markermeer, The Netherlands. Firstly, the sediment characteristics median grain size, mud content and loss on ignition showed a spatial as well as water depth related pattern indicating wind-induced sediment transport. Sediment dynamics were investigated in a sediment trap field survey at two stations. Sediment yields, virtually all coming from sediment resuspension, were significantly correlated with wind speeds. Resuspension rates for Lake Markermeer were very high, viz. ca. 1,000 g/m(2)day as an annual average, leading to high suspended solids (SS) contents, due to the large lake area and its shallowness (high 'Dynamic Ratio'). Sediment resuspension behaviour was further investigated in preliminary laboratory experiments using a 'micro-flume', applying increasing water currents onto five Lake Markermeer sediments. Resuspension showed a clear exponential behaviour. Finally, a 3-D model was set up for water quality and SS contents in Lake Markermeer; first results showed a good agreement between modelled and actual SS contents. Construction of artificial islands and dams will reduce wind fetches and may be expected to cause a substantial decrease in lake water turbidity.

  17. Developing Sediment Remediation Goals at Superfund Sites Based on Pore Water for the Protection of Benthic Organisms from Direct Toxicity to Non-ionic Organic Contaminants

    EPA Science Inventory

    This document contains a methodology for developing interstitial water remediation goals (IWRGs) for nonionic organic pollutants (toxicants) in sediments for the protection of benthic organisms. The document provides the basis for using the final chronic values (FCVs) from EPA’s...

  18. Freshwater Sediment Characterization Factors of Copper Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Pu, Yubing; Laratte, Bertrand; Ionescu, Rodica Elena

    2017-01-01

    Wide use of engineered nanoparticles (ENPs) is likely to result in the eventually accumulation of ENPs in sediment. The benthic organisms living in sediments may suffer relatively high toxic effects of ENPs. This study has selected copper oxide nanoparticles (nano-CuO) as a research object. To consider the impacts of spatial heterogeneity on ENPs toxicity, the characterization factor (CF) derived from life cycle assessment (LCA) methodology is used as an indicator in this study. A nano-specific fate model has been used to calculate the freshwater sediment fate factor (FF) of nano-CuO. A literature survey of the nano-CuO toxicology values has been performed to calculate the effect factor (EF). Seventeen freshwater sediment CFs of nano-CuO are proposed as recommended values for subcontinental regions. The region most likely to be affected by nano-CuO is northern Australia (CF of 21.01·103 CTUe, comparative toxic units) and the least likely is northern Europe and northern Canada (CF of 8.55·103 CTUe). These sediment CFs for nano-CuO could be used in the future when evaluating the ecosystem impacts of products containing nano-CuO by LCA method.

  19. Toxicity of nitrogenous fertilizers to eggs of snapping turtles (Chelydra serpentina) in field and laboratory exposures.

    PubMed

    de Solla, Shane Raymond; Martin, Pamela Anne

    2007-09-01

    Many reptiles oviposit in soil of agricultural landscapes. We evaluated the toxicity of two commonly used nitrogenous fertilizers, urea and ammonium nitrate, on the survivorship of exposed snapping turtle (Chelydra serpentina) eggs. Eggs were incubated in a community garden plot in which urea was applied to the soil at realistic rates of up to 200 kg/ha in 2004, and ammonium nitrate was applied at rates of up to 2,000 kg/ha in 2005. Otherwise, the eggs were unmanipulated and were subject to ambient temperature and weather conditions. Eggs were also exposed in the laboratory in covered bins so as to minimize loss of nitrogenous compounds through volatilization or leaching from the soil. Neither urea nor ammonium nitrate had any impact on hatching success or development when exposed in the garden plot, despite overt toxicity of ammonium nitrate to endogenous plants. Both laboratory exposures resulted in reduced hatching success, lower body mass at hatching, and reduced posthatching survival compared to controls. The lack of toxicity of these fertilizers in the field was probably due to leaching in the soil and through atmospheric loss. In general, we conclude that nitrogenous fertilizers probably have little direct impacts on turtle eggs deposited in agricultural landscapes.

  20. Laboratory Study on the Effect of Tidal Stream Turbines on Hydrodynamics and Sediment Dynamics

    NASA Astrophysics Data System (ADS)

    Amoudry, L.; Ramirez-Mendoza, R.; Peter, T.; McLelland, S.; Simmons, S.; Parsons, D. R.; Vybulkova, L.

    2016-02-01

    Tidal stream turbines (TST) are one potential technology for harnessing tidal energy, and the measurement and characterisation of their wakes is important both for environmental and development reasons. Indeed, wake recovery length is an important parameter for appropriate design of arrays, and wakes may result in altered dynamics both in the water column and at the seabed. We will report on laboratory scale experiments over a mobile sediment bed, which aim to quantify the detailed wake structure and its impact on sediment transport dynamics. A 0.2 m diameter model turbine was installed in a large-scale flume (16 m long, 1.6 m wide, 0.6 m deep) at the University of Hull's Total Environment Simulator and a steady current was driven over an artificial sediment bed using recirculating pumps. A high-resolution pulse-coherent acoustic Doppler profiler (Nortek Aquadopp HR) was used to measure vertical profiles of the three-dimensional mean current at different locations downstream of the model turbine. A three-dimensional Acoustic Ripple Profiler was used to map the bed and its evolution during the experiments. Acoustic backscatter systems were also deployed in two-dimensional arrays both along the flume and across the flume. These measurements revealed that the presence of the model turbine resulted in an expected reduction of the mean current and in changes in the vertical shear profiles. The bed mapping highlighted a horseshoe-shaped scour near the model turbine, and sediment deposition in the far wake region. The model turbine significantly influenced the suspension patterns, and generated significant asymmetry in the process, which was also evident from the other measurements (flow and sediment bed). These results highlight the effects induced by TSTs on near-bed hydrodynamics, suspension dynamics, and geomorphology, which may all have to be considered prior to large-scale deployments of arrays of TSTs in shelf seas.

  1. Development, evaluation, and application of sediment quality targets for assessing and managing contaminated sediments in Tampa Bay, Florida

    USGS Publications Warehouse

    MacDonald, D.D.; Carr, R.S.; Eckenrod, D.; Greening, H.; Grabe, S.; Ingersoll, C.G.; Janicki, S.; Janicki, T.; Lindskoog, R.A.; Long, E.R.; Pribble, R.; Sloane, G.; Smorong, D.E.

    2004-01-01

    Tampa Bay is a large, urban estuary that is located in west central Florida. Although water quality conditions represent an important concern in this estuary, information from numerous sources indicates that sediment contamination also has the potential to adversely affect aquatic organisms, aquatic-dependent wildlife, and human health. As such, protecting relatively uncontaminated areas of the bay from contamination and reducing the amount of toxic chemicals in contaminated sediments have been identified as high-priority sediment management objectives for Tampa Bay. To address concerns related to sediment contamination in the bay, an ecosystem-based framework for assessing and managing sediment quality conditions was developed that included identification of sediment quality issues and concerns, development of ecosystem goals and objectives, selection of ecosystem health indicators, establishment of metrics and targets for key indicators, and incorporation of key indicators, metrics, and targets into watershed management plans and decision-making processes. This paper describes the process that was used to select and evaluate numerical sediment quality targets (SQTs) for assessing and managing contaminated sediments. These SQTs included measures of sediment chemistry, whole-sediment and pore-water toxicity, and benthic invertebrate community structure. In addition, the paper describes how the SQTs were used to develop site-specific concentration-response models that describe how the frequency of adverse biological effects changes with increasing concentrations of chemicals of potential concern. Finally, a key application of the SQTs for defining sediment management areas is discussed.

  2. Deriving sediment Interstitial Water Remediation Goals ...

    EPA Pesticide Factsheets

    Background/Objectives. Passive sampling is becoming a frequently used measurement technique at Superfund sites with contaminated sediments. Passive sampling measures the concentrations of freely dissolved chemicals (Cfrees) in the sediment interstitial water. The freely dissolved chemical is a good surrogate for and a very practical means for estimating the concentrations of bioavailable chemical in the sediments. Building from this approach, a methodology is proposed to derive sediment Interstitial Water Remediation Goals (IWRGs) for the protection of benthic organisms from direct toxicity using Cfrees measured with passive sampling.Approach/Activities. In the early 2000s, EPA developed and released Equilibrium Partitioning Sediment Benchmarks (ESBs) for a series of chemicals. ESBs are intended to be chemical concentrations below which unacceptable toxicity to benthic organisms does not occur. The ESBs (expressed with the units of ug/g OC) were derived using the equations:ESB= K_OC×FCV where K_OC=0.00028+0.983K_OWThe KOC is the organic carbon normalized sediment-water chemical partition coefficient, FCV is the Final Chronic Value from EPA’s ambient water quality criteria for the protection of aquatic life, and KOW is the n-octanol/water partition coefficient for the chemical. At a specific site, the remedial goal (CS:ESB µg/kg-dw) in sediment are then derived using the site-specific fraction of organic carbon in the sediment (fOC:SS) at the site:C_

  3. Pilot study for ambient toxicity testing in Chesapeake bay. Year two report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, L.W.; Ziegenfuss, M.C.; Fischer, S.A.

    1992-11-01

    The primary goal of the ambient toxicity testing pilot study was to identify toxic areas in living resource habitats of the Chesapeake Bay watershed by using a battery of standardized, directly modified or recently developed water column, sediment and suborganismal toxicity tests. Tests were conducted twice at the following stations: Potomac River-Morgantown, Potomac River-Dahlgren, Patapsco River and Wye River. A suite of inorganic and organic contaminants was evaluated in the water column and sediment during these tests. Standard water quality conditions were also evaluated in water and sediment from all stations.

  4. Equilibrium sampling informs tissue residue and sediment remediation for pyrethroid insecticides in mariculture: A laboratory demonstration.

    PubMed

    Li, Juan-Ying; Shi, Wenxuan; Li, Zhenhua; Chen, Yiqin; Shao, Liu; Jin, Ling

    2018-03-01

    Mariculture product safety in relation to sediment quality has attracted increasing attention because of the accumulation of potentially hazardous chemicals, including pyrethroid insecticides, in sediment. Passive sampling has been widely used to assess the bioavailability of sediment-associated hydrophobic organic contaminants and predict their body residue in benthic organisms. Therefore, in this study, we introduced polydimethylsiloxane (PDMS) polymer as a biomimetic "chemometer" for freely-dissolved concentrations (C free ) to assess the efficacy of different carbon sorbents in reducing the bioavailability of pyrethroids in the process of sediment remediation. Black carbon (BC)-based materials (e.g., charcoal, biochar, and activated carbon) showed the advantageous sorption capacity over humic substance-based peat soil based on both C free and tissue residue in exposed clams. Of the tested BC-type materials, biochar appeared to be an ideal one in the remediation of pyrethroid-contaminated sediment. The predictive value of the PDMS chemometer approach to informing tissue residue was confirmed by a good agreement between the measured lipid-normalized concentrations of pyrethroids in clams and the lipid-based equilibrium concentrations calculated from C free via lipid-water partition coefficients. The quantitative inter-compartmental relationship underlying the laboratory system of sediment-pore water-PDMS-biota was also cross-validated by a mechanistically-based bioaccumulation model, thus confirming the validity of C free as a predictive intermediate to alert for tissue residue and guide sediment remediation. The present study revealed a great promise of sensing C free by polymer-based equilibrium sampling in predicting tissue residue of chemicals applied in mariculture against regulatory guidelines, and, in turn, informing remediation measures when needs arise. In situ demonstration is warranted in the future to ascertain the field applicability of this approach

  5. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems

    USGS Publications Warehouse

    MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A.

    2000-01-01

    Numerical sediment quality guidelines (SQGs) for freshwater ecosystems have previously been developed using a variety of approaches. Each approach has certain advantages and limitations which influence their application in the sediment quality assessment process. In an effort to focus on the agreement among these various published SQGs, consensus-based SQGs were developed for 28 chemicals of concern in freshwater sediments (i.e., metals, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and pesticides). For each contaminant of concern, two SQGs were developed from the published SQGs, including a threshold effect concentration (TEC) and a probable effect concentration (PEC). The resultant SQGs for each chemical were evaluated for reliability using matching sediment chemistry and toxicity data from field studies conducted throughout the United States. The results of this evaluation indicated that most of the TECs (i.e., 21 of 28) provide an accurate basis for predicting the absence of sediment toxicity. Similarly, most of the PECs (i.e., 16 of 28) provide an accurate basis for predicting sediment toxicity. Mean PEC quotients were calculated to evaluate the combined effects of multiple contaminants in sediment. Results of the evaluation indicate that the incidence of toxicity is highly correlated to the mean PEC quotient (R2= 0.98 for 347 samples). It was concluded that the consensus-based SQGs provide a reliable basis for assessing sediment quality conditions in freshwater ecosystems.

  6. Evaluation of Cardiac Toxicity Biomarkers in Rats from Different Laboratories

    PubMed Central

    Kim, Kyuri; Chini, Naseem; Fairchild, David G.; Engle, Steven K.; Reagan, William J.; Summers, Sandra D.; Mirsalis, Jon C.

    2016-01-01

    There is a great need for improved diagnostic and prognostic accuracy of potential cardiac toxicity in drug development. This study reports the evaluation of several commercially available biomarker kits by three institutions (SRI, Eli Lilly and Pfizer) for the discrimination between myocardial degeneration/necrosis and cardiac hypertrophy as well as the assessment of the inter-laboratory and inter-platform variation in results. Serum concentrations of natriuretic peptides (NT-proANP, NT-proBNP), cardiac and skeletal troponins (cTnI, cTnT, sTnI), myosin light chain 3 (Myl3) and fatty acid binding protein 3 (FABP3) were assessed in rats treated with minoxidil and isoproterenol. Minoxidil caused increased heart-to-body weight ratios and prominent elevations in NT-proANP and NT-proBNP concentrations detected at 24 hr postdose without elevation in troponins, Myl3 or FABP3 and with no abnormal histopathological findings. Isoproterenol caused ventricular leukocyte infiltration, myocyte fibrosis and necrosis with increased concentrations of the natriuretic peptides, cardiac troponins and Myl3. These results reinforce the advantages of a multi-marker strategy in elucidating the underlying cause of cardiac insult and detecting myocardial tissue damage at 24 hr post-treatment. The inter-laboratory and inter-platform comparison analyses also showed that the data obtained from different laboratories and platforms are highly correlated and reproducible, making these biomarkers widely applicable in preclinical studies. PMID:27638646

  7. Toxicity of carbon nanotubes to freshwater aquatic invertebrates

    USGS Publications Warehouse

    Mwangi, Joseph N.; Wang, Ning; Ingersoll, Christopher G.; Hardesty, Doug K.; Brunson, Eric L.; Li, Hao; Deng, Baolin

    2012-01-01

    Carbon nanotubes (CNTs) are hydrophobic in nature and thus tend to accumulate in sediments if released into aquatic environments. As part of our overall effort to examine the toxicity of carbon-based nanomaterials to sediment-dwelling invertebrates, we have evaluated the toxicity of different types of CNTs in 14-d water-only exposures to an amphipod (Hyalella azteca), a midge (Chironomus dilutus), an oligochaete (Lumbriculus variegatus), and a mussel (Villosa iris) in advance of conducting whole-sediment toxicity tests with CNTs. The results of these toxicity tests conducted with CNTs added to water showed that 1.00g/L (dry wt) of commercial sources of CNTs significantly reduced the survival or growth of the invertebrates. Toxicity was influenced by the type and source of the CNTs, by whether the materials were precleaned by acid, by whether sonication was used to disperse the materials, and by species of the test organisms. Light and electron microscope imaging of the surviving test organisms showed the presence of CNTs in the gut as well as on the outer surface of the test organisms, although no evidence was observed to show penetration of CNTs through cell membranes. The present study demonstrated that both the metals solubilized from CNTs such as nickel and the "metal-free" CNTs contributed to the toxicity.

  8. COPING WITH CONTAMINATED SEDIMENTS AND SOILS IN THE URBAN ENVIRONMENT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JONES,K.W.; VAN DER LELIE,D.; MCGUIGAN,M.

    2004-05-25

    Soils and sediments contaminated with toxic organic and inorganic compounds harmful to the environment and to human health are common in the urban environment. We report here on aspects of a program being carried out in the New York/New Jersey Port region to develop methods for processing dredged material from the Port to make products that are safe for introduction to commercial markets. We discuss some of the results of the program in Computational Environmental Science, Laboratory Environmental Science, and Applied Environmental Science and indicate some possible directions for future work. Overall, the program elements integrate the scientific and engineeringmore » aspects with regulatory, commercial, urban planning, local governments, and community group interests. Well-developed connections between these components are critical to the ultimate success of efforts to cope with the problems caused by contaminated urban soils and sediments.« less

  9. ENCOURAGING TOXIC USE REDUCTION IN ACADEMIC LABORATORIES

    EPA Science Inventory

    This project seeks to balance essential research with its associated environmental burdens by promoting the use of less toxic and less polluting alternatives to commonly used toxic chemicals. MIT seeks to use the purchasing process to provide researchers with the o...

  10. Assessing variability in chemical acute toxicity of unionid mussels: Influence of intra- and inter-laboratory testing, life stage, and species - SETAC Abstract

    EPA Science Inventory

    We developed a toxicity database for unionid mussels to examine the extent of intra- and inter-laboratory variability in acute toxicity tests with mussel larvae (glochidia) and juveniles; the extent of differential sensitivity of the two life stages; and the variation in sensitiv...

  11. Consensus sediment quality guidelines for polycyclic aromatic hydrocarbon mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartz, R.C.

    1999-04-01

    Sediment quality guidelines (SQGs) for polycyclic aromatic hydrocarbons (PAHs) have been derived from a variety of laboratory, field, and theoretical foundations. They include the screening level concentration, effects ranges-low and -median, equilibrium partitioning concentrations, apparent effects threshold, {Sigma}PAH model, and threshold and probable effects levels. The resolution of controversial differences among the PAH SQGs lies in an understanding of the effects of mixtures. Polycyclic aromatic hydrocarbons virtually always occur in field-collected sediment as a complex mixture of covarying compounds. When expressed as a mixture concentration, that is, total PAH (TPAH), the guidelines form three clusters that were intended in theirmore » original derivations to represent threshold (TEC = 290 {micro}g/g organic carbon [OC]), median (MEC = 1,800 {micro}g/g OC), and extreme (EEC = 10,000 {micro}g/g OC) effects concentrations. The TEC/MEC/EEC consensus guidelines provide a unifying synthesis of other SQGs, reflect causal rather than correlative effects, account for mixtures, and predict sediment toxicity and benthic community perturbations at sites of PAH contamination. The TEC offers the most useful SQG because PAH mixtures are unlikely to cause adverse effects on benthic ecosystems below the TEC.« less

  12. Ecotoxicological evaluation of industrial port of Venice (Italy) sediment samples after a decontamination treatment.

    PubMed

    Libralato, Giovanni; Losso, Chiara; Arizzi Novelli, Alessandra; Citron, Marta; Della Sala, Stefano; Zanotto, Emanuele; Cepak, Franka; Volpi Ghirardini, Annamaria

    2008-12-01

    This work assesses the ecotoxicological effects of polluted sediment after a decontamination treatment process using a new sediment washing technique. Sediment samples were collected from four sites in Marghera Port industrial channels (Venice, Italy). Ecotoxicological evaluations were performed with Vibrio fischeri and Crassostrea gigas bioassays. Whole sediment and elutriate were deemed as the most suitable environmental matrices for this study. Toxicity scores developed in the Lagoon of Venice for V. fischeri on whole sediment and for C. gigas on elutriate were considered for the final ranking of samples. Ecotoxicological results showed that the treated sediment samples presented both acute and sub-chronic toxicities, which were mainly attributed to the presence of some remaining chemicals such as metals and polyaromatic hydrocarbons. The acute toxicity ranged from low to medium, while the sub-chronic one from absent to very high, suggesting that treated sediments could not be reused in direct contact with seawater.

  13. A bioaccumulation bioassay for freshwater sediments

    USGS Publications Warehouse

    Mac, Michael J.; Noguchi, George E.; Hesselberg, Robert J.; Edsall, Carol C.; Shoesmith, John A.; Bowker, James D.

    1990-01-01

    A laboratory bioassay is described for determining the bioavailability of contaminants from freshwater sediments. The bioassay consists of 10-d exposures to whole sediments under flow-through conditions. After testing five species, the fathead minnow (Pimephales promelas) and the earthworm (Lubricus terrestris) were recommended for use in the test. When the availability of polychlorinated biphenyls (PCBs), Hg and Zn from Great Lakes sediments was examined in laboratory exposures, only the PCBs were accumulated. A field validation study demonstrated that the magnitude of accumulation in laboratory exposures was similar to that in organisms caged in the field. A protocol is recommended for using the test as a standardized bioaccumulation bioassay.

  14. Laboratory Study of Quaternary Sediment Resistivity Related to Groundwater Contamination at Mae-Hia Landfill, Mueang District, Chiang Mai Province

    NASA Astrophysics Data System (ADS)

    Sichan, N.

    2007-12-01

    This study was aimed to understand the nature of the resistivity value of the sediment when it is contaminated, in order to use the information solving the obscure interpretation in the field. The pilot laboratory experiments were designed to simulate various degree of contamination and degree of saturation then observe the resulting changes in resistivity. The study was expected to get a better understanding of how various physical parameters effect the resistivity values in term of mathematic function. And also expected to apply those obtained function to a practical quantitatively interpretation. The sediment underlying the Mae-Hia Landfill consists of clay-rich material, with interfingerings of colluvium and sandy alluvium. A systematic study identified four kinds of sediment, sand, clayey sand, sandy clay, and clay. Representative sediment and leachate samples were taken from the field and returned to the laboratory. Both the physical and chemical properties of the sediments and leachate were analyzed to delineate the necessary parameters that could be used in Archie's equation. Sediment samples were mixed with various concentration of leachate solutions. Then the resistivity values were measured at various controlled steps in the saturation degree in a well- calibrated six-electrode model resistivity box. The measured resistivity values for sand, clayey sand, sandy clay when fully and partly saturated were collected, then plotted and fitted to Archie's equation, to obtain a mathematical relationship between bulk resistivity, porosity, saturation degree and resistivity of pore fluid. The results fit well to Archie's equation, and it was possible to determine all the unknown parameters representative of the sediment samples. For sand, clayey sand, sandy clay, and clay, the formation resistivity factors (F) are 2.90, 5.77, 7.85, and 7.85 with the products of cementation factor (m) and the pore geometry factors (a) (in term of -am) are 1.49, -1.63, -1.92, -2

  15. The effects of motorway runoff on freshwater ecosystems. 2: Identifying major toxicants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltby, L.; Boxall, A.B.A.; Forrow, D.M.

    1995-06-01

    Previous studies have provided prima facie evidence that runoff from the M1 motorway, UK, affects both the quality of the receiving water and the biota living there, in sites short distances from point sources-i.e., possible worst-case situations. Because discharges contain a wide variety of contaminants, both the identification of toxicants and the establishment of causal relationships between observed changes in water/sediment quality and biology are often difficult. In this particular case, the problem was addressed by conducting a series of toxicity tests using the benthic amphipod Gammarus pulex. The abundance of this species was greatly reduced downstream of the pointmore » where motorway runoff entered the stream. Stream water contaminated with motorway runoff was not toxic to G. pulex. However, exposure to contaminated sediments resulted in a slight reduction in survival over 14 d, and sediment manipulation experiments identified hydrocarbons, copper, and zinc as potential toxicants. Spiking experiments confirmed the importance of hydrocarbons, and fractionation studies indicated that most of the observed toxicity was due to the fraction containing polycyclic aromatic hydrocarbons. Animals exposed to contaminated sediments and water spiked with sediment extract accumulated aromatic hydrocarbons in direct proportion to exposure concentrations.« less

  16. Assessment of sediment contamination by spermiotoxicity and embryotoxicity bioassays with sea urchins (Paracentrotus lividus) and oysters (Crassostrea gigas).

    PubMed

    Geffard, O; Budzinski, H; Augagneur, S; Seaman, M N; His, E

    2001-07-01

    Gametes (sperm) and fertilized eggs (embryos) of the Mediterranean sea urchin, Paracentrotus lividus, and the Japanese oyster, Crassostrea gigas, were used to investigate the toxicity of two marine sediments, one polluted by polycyclic aromatic hydrocarbons (PAH) and the other by heavy metals. The sediment samples were freeze-dried for storage, and three different treatments were used for analysis: whole sediment, unfiltered elutriate, and filtered elutriate. The two sediments were toxic to sea urchin spermatozoa but not to oyster spermatozoa, and embryotoxicity was almost always the more sensitive endpoint for toxicity assessment. As a rule, whole sediment was more toxic than the elutriates by nearly two orders of magnitude. With respect to embryotoxicity, the whole sediments and the elutriates of the PAH-contaminated sediment were more toxic to oyster embryos, whereas the elutriates of the sediment polluted by heavy metals had stronger effects on sea urchin embryos. The results confirm that bioassays with Japanese oyster embryos provide a more sensitive appraisal of toxicity in the marine environment than bioassays with other developmental stages. As a whole, Mediterranean sea urchins and Japanese oysters were similar in overall sensitivity and are therefore both equally suited as bioassay organisms, but tests with oysters are more reproducible because of the better performance of the controls.

  17. Sediment-associated pesticides in an urban stream in Guangzhou, China: implication of a shift in pesticide use patterns.

    PubMed

    Li, Huizhen; Sun, Baoquan; Lydy, Michael J; You, Jing

    2013-04-01

    Pesticide use patterns in China have changed in recent years; however, the study of the environmental fate of current-use pesticides (CUPs) and their ecotoxicological significance in aquatic ecosystems is limited. In the present study, sediments were collected from an urban stream in the Chinese city of Guangzhou. Sediment-associated legacy organochlorine pesticides and CUPs-including organophosphates, pyrethroids, fipronil, and abamectin-were analyzed. Additionally, the relative toxicity of the sediments was evaluated with 10-d bioassays using Chironomus dilutus. Fifteen of 16 sediments collected from the stream were acutely toxic to C. dilutus, with 81% of the samples causing 100% mortality. Abamectin, fipronil, and pyrethroids (mainly cypermethrin) were identified as the principal contributors to the noted toxicity in the midges, with median predicted toxic units of 1.63, 1.63, and 1.03, respectively. Sediments taken from downstream sites, where residential and industrial regions were located, had elevated CUP concentrations and sediment toxicity compared with upstream sites. The present study is the first of its kind to link sediment CUPs, fipronil, and abamectin concentrations with toxicity in urban streams in China with a focus on shifting pesticide usage patterns. Copyright © 2013 SETAC.

  18. Laboratory experiments on dam-break flow of water-sediment mixtures

    USDA-ARS?s Scientific Manuscript database

    Dams induce sedimentation and store significant amounts of sediment as they age; therefore, dam failures often involve the release of sediment-laden water to the downstream floodplain. In particular, tailings dams, which are constructed to impound mining wastes, can cause devastating damage when the...

  19. USING MODELS TO EXTRAPOLATE POPULATION-LEVEL EFFECTS FROM LABORATORY TOXICITY TESTS IN SUPPORT OF POPULATION RISK ASSESSMENTS

    EPA Science Inventory

    Using models to extrapolate population-level effects from laboratory toxicity tests in support of population risk assessments. Munns, W.R., Jr.*, Anne Kuhn, Matt G. Mitro, and Timothy R. Gleason, U.S. EPA ORD NHEERL, Narragansett, RI, USA. Driven in large part by management goa...

  20. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; Ivey, C.D.; Ingersoll, C.G.; Moran, P.W.

    2008-01-01

    We studied the bioavailability and toxicity of copper, zinc, arsenic, cadmium, and lead in sediments from Lake Roosevelt (LR), a reservoir on the Columbia River in Washington, USA that receives inputs of metals from an upstream smelter facility. We characterized chronic sediment toxicity, metal bioaccumulation, and metal concentrations in sediment and pore water from eight study sites: one site upstream in the Columbia River, six sites in the reservoir, and a reference site in an uncontaminated tributary. Total recoverable metal concentrations in LR sediments generally decreased from upstream to downstream in the study area, but sediments from two sites in the reservoir had metal concentrations much lower than adjacent reservoir sites and similar to the reference site, apparently due to erosion of uncontaminated bank soils. Concentrations of acid-volatile sulfide in LR sediments were too low to provide strong controls on metal bioavailability, and selective sediment extractions indicated that metals in most LR sediments were primarily associated with iron and manganese oxides. Oligochaetes (Lumbriculus variegatus) accumulated greatest concentrations of copper from the river sediment, and greatest concentrations of arsenic, cadmium, and lead from reservoir sediments. Chronic toxic effects on amphipods (Hyalella azteca; reduced survival) and midge larvae (Chironomus dilutus; reduced growth) in whole-sediment exposures were generally consistent with predictions of metal toxicity based on empirical and equilibrium partitioning-based sediment quality guidelines. Elevated metal concentrations in pore waters of some LR sediments suggested that metals released from iron and manganese oxides under anoxic conditions contributed to metal bioaccumulation and toxicity. Results of both chemical and biological assays indicate that metals in sediments from both riverine and reservoir habitats of Lake Roosevelt are available to benthic invertebrates. These findings will be used as

  1. Influence of potentially confounding factors on sea urchin porewater toxicity tests

    USGS Publications Warehouse

    Carr, R.S.; Biedenbach, J.M.; Nipper, M.

    2006-01-01

    The influence of potentially confounding factors has been identified as a concern for interpreting sea urchin porewater toxicity test data. The results from >40 sediment-quality assessment surveys using early-life stages of the sea urchin Arbacia punctulata were compiled and examined to determine acceptable ranges of natural variables such as pH, ammonia, and dissolved organic carbon on the fertilization and embryological development endpoints. In addition, laboratory experiments were also conducted with A. punctulata and compared with information from the literature. Pore water with pH as low as 6.9 is an unlikely contributor to toxicity for the fertilization and embryological development tests with A. punctulata. Other species of sea urchin have narrower pH tolerance ranges. Ammonia is rarely a contributing factor in pore water toxicity tests using the fertilization endpoint, but the embryological development endpoint may be influenced by ammonia concentrations commonly found in porewater samples. Therefore, ammonia needs to be considered when interpreting results for the embryological development test. Humic acid does not affect sea urchin fertilization at saturation concentrations, but it could have an effect on the embryological development endpoint at near-saturation concentrations. There was no correlation between sediment total organic carbon concentrations and porewater dissolved organic carbon concentrations. Because of the potential for many varying substances to activate parthenogenesis in sea urchin eggs, it is recommended that a no-sperm control be included with every fertilization test treatment. ?? 2006 Springer Science+Business Media, Inc.

  2. Phosphorus amendment reduces bioavailability of lead to mallards ingesting contaminated sediments

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; Audet, D.J.

    2004-01-01

    Lead poisoning of waterfowl has been reported for decades in the Coeur d' Alene River Basin in Idaho as a result of the ingestion of lead-contaminated sediments. We conducted a study to determine whether the addition of phosphoric acid to sediments would reduce the bioavailability of lead to mallards (Anas platyrhynchos). When sediments were amended with 1 % phosphorus under laboratory conditions, and diets containing 12% amended sediment were fed to mallards, reductions in tissue lead were 43% in blood, 41 % in liver, and 59% in kidney with sediment containing about 4,520 ug/g lead on a dry-weight basis and 41, 30, and 57% with sediment containing about 6,990 ug/g lead. When sediments were treated with phosphorus and left to age for about 5 months in the field, reductions in lead were 56% in blood, 54% in liver, and 66% in kidney at one site with about 5,390 ug/g lead and 64, 57, and 77% at a second site with about 6,990 ug/g lead. In the field, the inability to mix the phosphoric acid uniformly and deeply enough into the sediment may have resulted in more than 1 % phosphorus being added to the sediment. Although both lab and field amendments of phosphorus substantially reduced the bioavailability of lead, lead concentrations in the tissues of mallards fed the amended sediments were still above those believed to be harmful to waterfowl. Based on earlier studies of sediment toxicity to waterfowl in the Coeur d' Alene River Basin, combined with the results of our amendment study, the addition of phosphoric acid as we used it might only significantly benefit waterfowl where sediments or soils contain less than 1,000-2,000 ug/g lead.

  3. Laboratory Experiments Modelling Sediment Transport by River Plumes

    NASA Astrophysics Data System (ADS)

    Sutherland, Bruce; Gingras, Murray; Knudson, Calla; Steverango, Luke; Surma, Chris

    2016-11-01

    Through lock-release laboratory experiments, the transport of particles by hypopycnal (surface) currents is examined as they flow into a uniform-density and a two-layer ambient fluid. In most cases the tank is tilted so that the current flows over a slope representing an idealization of a sediment-bearing river flowing into the ocean and passing over the continental shelf. When passing into a uniform-density ambient, the hypopycnal current slows and stops as particles rain out, carrying some of the light interstitial fluid with them. Rather than settling on the bottom, in many cases the descending particles accumulate to form a hyperpycnal (turbidity) current that flows downslope. This current then slows and stops as particles both rain out to the bottom and also rise again to the surface, carried upward by the light interstitial fluid. For a hypopycnal current flowing into a two-layer fluid, the current slows as particles rain out and accumulate at the interface of the two-layer ambient. Eventually these particles penetrate through the interface and settle to the bottom with no apparent formation of a hyperpycnal current. Analyses are performed to characterize the speed of the currents and stopping distances as they depend upon experiment parameters. Natural Sciences and Engineering Research Council.

  4. IDENTIFICATION OF TOXICANTS IN WHOLE MARINE SEDIMENTS: METHODS AND RESULTS

    EPA Science Inventory

    Identification of stressors in aquatic systems is critical to sound assessment and management of our nation's waterways. Information from stressor identification can be useful in designing effective sediment remediation methods, assessing options for sediment disposal, allowing m...

  5. Ecotoxicological bioassays of sediment leachates in a river bed flanked by decommissioned pesticide plants in Nantong City, East China.

    PubMed

    Zhou, Yan; Wang, Fenghe; Wan, Jinzhong; He, Jian; Li, Qun; Qiang Chen; Gao, Jay; Lin, Yusuo; Zhang, Shengtian

    2017-03-01

    Traditionally, the toxicity of river contaminants is analyzed chemically or physically through river bed sediments. The biotoxicity of polluted sediment leachates has not caught our attention. This study aims to overcome this deficiency through a battery of biotests which were conducted to monitor comprehensive toxicity of sediment leachates for the Yaogang River in East Jiangsu Province of China, which is in close proximity to former pesticide plants. The general physical and chemical parameters of major pollutants were analyzed from river bed sediments collected at five strategic locations. The ecotoxicity analyses undertaken include overall fish (adult zebrafish) acute toxicity, luminescent bacteria (Vibrio fischeri) bioassay, and zebrafish embryo toxicity assay. Compared with the control group, sediment leachates increased the lethality, inhibited the embryos hatching and induced development abnormalities of zebrafish embryos, and inhibited the luminescence of V. fischeri. The results show that sediment leachates may assume various toxic effects, depending on the test organism. This diverse toxicity to aquatic organisms reflects their different sensitivity to sediment leachates. It is found clearly that V. fischeri was the organism which was characterized by the highest sensitivity to the sediment leachates. The complicated toxicity of leachates was not caused by one single factor but by multiple pollutants together. This indicates the need of estimations of sediment leachate not only taking into account chemical detection but also of applying the biotests to the problem. Thus, multigroup bioassays are necessary to realistically evaluate river ecological risks imposed by leachates.

  6. Release of elements to natural water from sediments of Lake Roosevelt, Washington, USA

    USGS Publications Warehouse

    Paulson, Anthony J.; Cox, Stephen E.

    2007-01-01

    Reservoir sediments from Lake Roosevelt (WA, USA) that were contaminated with smelter waste discharged into the Columbia River (BC, Canada) were examined using three measures of elemental release reflecting varying degrees of physical mixing and time scales. Aqueous concentrations of Cd, Cu, Pb, and Zn in the interstitial water of reservoir sediments, in the gently stirred overlying waters of incubated sediment cores, and in supernatants of aggressively tumbled slurries of reservoir sediments generally were higher than the concentrations from a reference site. When compared to chronic water-quality criteria, all three measures of release suggest that slag-contaminated sediments near the U.S.-Canadian border are potentially toxic as a result of Cu release and Pb release in two of the three measures. All three measures of Cd release suggest potential toxicity for one site farther down the reservoir, probably contaminated as a result of transport and adsorption of Cd from smelter liquid waste. Releases of Zn and As did not appear to be potentially toxic. Carbonate geochemistry indirectly affects the potential toxicity by increasing water hardness.

  7. Using biodynamic models to reconcile differences between laboratory toxicity tests and field biomonitoring with aquatic insects

    USGS Publications Warehouse

    Buchwalter, D.B.; Cain, D.J.; Clements, W.H.; Luoma, S.N.

    2007-01-01

    Aquatic insects often dominate lotic ecosystems, yet these organisms are under-represented in trace metal toxicity databases. Furthermore, toxicity data for aquatic insects do not appear to reflect their actual sensitivities to metals in nature, because the concentrations required to elicit toxicity in the laboratory are considerably higher than those found to impact insect communities in the field. New approaches are therefore needed to better understand how and why insects are differentially susceptible to metal exposures. Biodynamic modeling is a powerful tool for understanding interspecific differences in trace metal bioaccumulation. Because bioaccumulation alone does not necessarily correlate with toxicity, we combined biokinetic parameters associated with dissolved cadmium exposures with studies of the subcellular compartmentalization of accumulated Cd. This combination of physiological traits allowed us to make predictions of susceptibility differences to dissolved Cd in three aquatic insect taxa: Ephemerella excrucians, Rhithrogena morrisoni, and Rhyacophila sp. We compared these predictions with long-term field monitoring data and toxicity tests with closely related taxa: Ephemerella infrequens, Rhithrogena hageni, and Rhyacophila brunea. Kinetic parameters allowed us to estimate steady-state concentrations, the time required to reach steady state, and the concentrations of Cd projected to be in potentially toxic compartments for different species. Species-specific physiological traits identified using biodynamic models provided a means for better understanding why toxicity assays with insects have failed to provide meaningful estimates for metal concentrations that would be expected to be protective in nature. ?? 2007 American Chemical Society.

  8. An easy, rapid and inexpensive method to monitor tributyltin (TBT) toxicity in the laboratory.

    PubMed

    Cruz, Andreia; Moreira, Rafael; Mendo, Sónia

    2014-05-01

    Tributyltin (TBT) contamination remains a major problem worldwide. Many laboratories are committed to the development of remediation methodologies that could help reduce the negative impact of this compound in the environment. Furthermore, it is important to have at hand simple methodologies for evaluating TBT toxicity in the laboratory, besides the use of complex and costly analytical instrumentation. With that purpose, a method was adapted that is based on the inhibition of growth of an indicator strain, Micrococcus luteus ATCC 9341, under TBT. Different types of matrices, of TBT concentrations and sample treatments were tested. The results herein reported show that the bioassay method can be applied for both aqueous and soil samples and also for a high range of TBT concentrations (at least up to 500 μmol/L). Besides being cheap and easy to perform, it can be performed in any laboratory. Additionally, one possible application of the method to monitor TBT degradation is presented as an example.

  9. Carbon nanotubes affect the toxicity of CuO nanoparticles to denitrification in marine sediments by altering cellular internalization of nanoparticle

    PubMed Central

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Li, Mu; Huang, Haining; Li, Xu

    2016-01-01

    Denitrification is an important pathway for nitrate transformation in marine sediments, and this process has been observed to be negatively affected by engineered nanomaterials. However, previous studies only focused on the potential effect of a certain type of nanomaterial on microbial denitrification. Here we show that the toxicity of CuO nanoparticles (NPs) to denitrification in marine sediments is highly affected by the presence of carbon nanotubes (CNTs). It was found that the removal efficiency of total NOX−-N (NO3−-N and NO2−-N) in the presence of CuO NPs was only 62.3%, but it increased to 81.1% when CNTs appeared in this circumstance. Our data revealed that CuO NPs were more easily attached to CNTs rather than cell surface because of the lower energy barrier (3.5 versus 36.2 kT). Further studies confirmed that the presence of CNTs caused the formation of large, incompact, non-uniform dispersed, and more negatively charged CuO-CNTs heteroaggregates, and thus reduced the nanoparticle internalization by cells, leading to less toxicity to metabolism of carbon source, generation of reduction equivalent, and activities of nitrate reductase and nitrite reductase. These results indicate that assessing nanomaterial-induced risks in real circumstances needs to consider the “mixed” effects of nanomaterials. PMID:27279546

  10. Water quality, organic chemistry of sediment, and biological conditions of streams near an abandoned wood-preserving plant site at Jackson, Tennessee

    USGS Publications Warehouse

    Bradfield, A.D.; Flexner, N.M.; Webster, D.A.

    1993-01-01

    An investigation of water quality, organic sediment chemistry, and biological conditions of streams near an abandoned wood-preserving plant site at Jackson, Tennessee, was conducted during December 1990. The study was designed to assess the extent of possible contamination of water and biota in the streams from creosote-related discharge originating at this Superfund site. Central Creek, adjacent to the plant, had degraded water quality and biological conditions. Water samples from the most downstream station on Central Creek contained 30 micrograms per liter of pentachlorophenol, which exceeds the State's criterion maximum concentrations of 9 micrograms per liter for fish and aquatic life. Bottom-sediment samples from stations on Central Creek contained concentrations of acenaphthene, napthalene, and phenanthrene ranging from 1,400 to 2,500 micrograms per kilogram. Chronic or acute toxicity resulted during laboratory experiments using test organisms exposed to creosote-related contaminants. Sediment elutriate samples from Central Creek caused slightly to highly toxic effects on Ceriodaphnia dubia. Pimephales promelas, and Photobacterium phosphoreum. Fish-tissue samples from this station contained concentrations of naphthalene. dibenzofuran, fluorene, and phenanthrene ranging from 1.5 to 3.9 micrograms per kilogram Blue-green algae at this station represented about 79 percent of the organisms counted, whereas diatoms accounted for only 11 percent. Benthic invertebrate and fish samples from Central Creek had low diversity and density. Sediment samples from a station on the South Fork Forked Deer River downstream from its confluence with Central Creek contained concentrations of acenaphthene, anthracene, chrysene, fluoranthene, fluorene, pyrere, and phenanthrene ranging from 2,800 to 69,000 micrograms per kilogram. Sediment elutriate samples using water as elutriate from this station contained concentrations of extractable organic compounds ranging from an estimated

  11. MODELING FINE SEDIMENT TRANSPORT IN ESTUARIES

    EPA Science Inventory

    A sediment transport model (SEDIMENT IIIA) was developed to assist in predicting the fate of chemical pollutants sorbed to cohesive sediments in rivers and estuaries. Laboratory experiments were conducted to upgrade an existing two-dimensional, depth-averaged, finite element, coh...

  12. A laboratory study of sediment and contaminant release during gas ebullition.

    PubMed

    Yuan, Qingzhong; Valsaraj, Kalliat T; Reible, Danny D; Willson, Clinton S

    2007-09-01

    Significant quantities of gas are generated from labile organic matter in contaminated sediments. The implications for the gas generation and subsequent release of contaminants from sediments are unknown but may include enhanced direct transport such as pore water advection and diffusion. The behavior of gas in sediments and the resulting migration of a polyaromatic hydrocarbon, viz phenanthrene, were investigated in an experimental system with methane injection at the base of a sediment column. Hexane above the overlying water layer was used to trap any phenanthrene migrating out of the sediment layer. The rate of suspension of solid particulate matter from the sediment bed into the overlying water layer was also monitored. The experiments indicated that significant amounts of both solid particulate matter and contaminant can be released from a sediment bed by gas movement with the amount of release related to the volume of gas released. The effective mass transfer coefficient of gas bubble-facilitated contaminant release was estimated under field conditions, being around three orders of magnitude smaller than that of bioturbation. A thin sand-capping layer (2 cm) was found to dramatically reduce the amount of contaminant or particles released with the gas because it could prevent or at least reduce sediment suspension. Based on the experimental observations, gas bubble-facilitated contaminant transport pathways for both uncapped and capped systems were proposed. Sediment cores were sliced to obtain phenanthrene concentration. X-ray computed tomography (CT) was used to investigate the void space distribution in the sediment penetrated by gas bubbles. The results showed that gas bubble migration could redistribute the sediment void spaces and may facilitate pore water circulation in the sediment.

  13. Development of a numerical model for calculating exposure to toxic and nontoxic stressors in the water column and sediment from drilling discharges.

    PubMed

    Rye, Henrik; Reed, Mark; Frost, Tone Karin; Smit, Mathijs G D; Durgut, Ismail; Johansen, Øistein; Ditlevsen, May Kristin

    2008-04-01

    Drilling discharges are complex mixtures of chemical components and particles which might lead to toxic and nontoxic stress in the environment. In order to be able to evaluate the potential environmental consequences of such discharges in the water column and in sediments, a numerical model was developed. The model includes water column stratification, ocean currents and turbulence, natural burial, bioturbation, and biodegradation of organic matter in the sediment. Accounting for these processes, the fate of the discharge is modeled for the water column, including near-field mixing and plume motion, far-field mixing, and transport. The fate of the discharge is also modeled for the sediment, including sea floor deposition, and mixing due to bioturbation. Formulas are provided for the calculation of suspended matter and chemical concentrations in the water column, and burial, change in grain size, oxygen depletion, and chemical concentrations in the sediment. The model is fully 3-dimensional and time dependent. It uses a Lagrangian approach for the water column based on moving particles that represent the properties of the release and an Eulerian approach for the sediment based on calculation of the properties of matter in a grid. The model will be used to calculate the environmental risk, both in the water column and in sediments, from drilling discharges. It can serve as a tool to define risk mitigating measures, and as such it provides guidance towards the "zero harm" goal.

  14. Reconnaissance of dioxin-like and estrogen-like toxicities in sediments of Taean, Korea-seven years after the Hebei Spirit oil spill.

    PubMed

    Kim, Cheolmin; Lee, Inae; Jung, Dawoon; Hong, Seongjin; Khim, Jong Seong; Giesy, John P; Yim, Un Hyuk; Shim, Won Joon; Choi, Kyungho

    2017-02-01

    Oil spills near the coastlines may damage marine and intertidal ecosystem. Constituents of the oil have been reported to cause toxic consequences mediated by aryl hydrocarbon receptor (AhR), and estrogen receptor (ER). In the present study, AhR- and ER-mediated toxicities of coastal sediments of Taean were investigated seven years after Hebei Spirit oil spill (HSOS). Sediment samples were collected on June and October 2014 from seven locations along the Taean coastline, where signs of oil spill were detected. Sediment samples were extracted in Soxhlet extractors and further processed through activated silica gels to separate into four fractions; F1 (saturate hydrocarbons), F2 (aromatic hydrocarbons), F3 (resins and polar compounds), and F4 (residues). ER-mediated and AhR-mediated potencies (% E2 max and % TCDD max ) of each fraction were determined using MVLN cells and H4IIE-luc cells, respectively. F2 and F3 fractions of Sinduri 1, Sinduri 2, and Sogeunri 1 samples showed greater AhR-mediated potencies (up to 107% TCDD max ). Chemical analysis revealed that PAH components are correlated with AhR-binding activities. The % E2 max results varied by sample: While there was no noticeable induction of ER-dependent responses (<45%), some aromatics fractions (F2) exhibited the highest ER-mediated responses. Compared with previous reports from the same sites, both AhR-mediated and ER-mediated potencies have decreased over time. Nevertheless, AhR-mediated potencies could be identified in the environmental samples even after 7 years of the incident. Therefore, possible ecosystem implications of these findings should be further investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Development and Evaluation of Polychaete Reverse Samplers for Marine Phase II Whole Sediment Toxicitiy Identification Evaluations (TIE)

    EPA Science Inventory

    Marine and estuarine sediments accumulate contaminants and act as a sink for a wide range of toxic chemicals. As a result, the sediments themselves can become a source of contamination. At sufficient levels, contaminated sediments can cause benthic impairments and toxicity to m...

  16. U.S. Geological Survey Quality-Assurance Project for Sediment Analysis

    USGS Publications Warehouse

    Gordon, John D.; Newland, Carla

    2000-01-01

    Introduction Sediment is derived primarily from natural weathering of rock and is an assemblage of individual mineral grains that are then deposited by some physical agent, such as water, wind, ice, or gravity (Fetter, 1988). The U.S. Geological Survey (USGS) samples sediments and collects data on the amount of sediment in selected waterways. The most pressing sediment-related problems are associated with environmental questions, such as the transport and fate of attached pollutants, effects of sediment on aquatic biota and their habitats, and effects on sediment transport from land-use changes. Current (2000) sediment issues require that sediment studies address multiple objectives in water-resources management (Koltun and others, 1997). To support sediment research, the USGS operates laboratories for the analysis of the physical characteristics of sediment. Sediment laboratories producing data for the USGS have two principal functions: (1) the determination of suspended-sediment concentration in samples and (2) the determination of sand/fine separations. The reliability of these determinations and the usefulness of the data are dependent on the accuracy and reliability of the laboratory analyses (Guy, 1969).

  17. Multivariate analysis and geochemical approach for assessment of metal pollution state in sediment cores.

    PubMed

    Jamshidi-Zanjani, Ahmad; Saeedi, Mohsen

    2017-07-01

    Vertical distribution of metals (Cu, Zn, Cr, Fe, Mn, Pb, Ni, Cd, and Li) in four sediment core samples (C 1 , C 2 , C 3 , and C 4 ) from Anzali international wetland located southwest of the Caspian Sea was examined. Background concentration of each metal was calculated according to different statistical approaches. The results of multivariate statistical analysis showed that Fe and Mn might have significant role in the fate of Ni and Zn in sediment core samples. Different sediment quality indexes were utilized to assess metal pollution in sediment cores. Moreover, a new sediment quality index named aggregative toxicity index (ATI) based on sediment quality guidelines (SQGs) was developed to assess the degree of metal toxicity in an aggregative manner. The increasing pattern of metal pollution and their toxicity degree in upper layers of core samples indicated increasing effects of anthropogenic sources in the study area.

  18. A comparison of four porewater sampling methods for metal mixtures and dissolved organic carbon and the implications for sediment toxicity evaluations

    USGS Publications Warehouse

    Cleveland, Danielle; Brumbaugh, William G.; MacDonald, Donald D.

    2017-01-01

    Evaluations of sediment quality conditions are commonly conducted using whole-sediment chemistry analyses but can be enhanced by evaluating multiple lines of evidence, including measures of the bioavailable forms of contaminants. In particular, porewater chemistry data provide information that is directly relevant for interpreting sediment toxicity data. Various methods for sampling porewater for trace metals and dissolved organic carbon (DOC), which is an important moderator of metal bioavailability, have been employed. The present study compares the peeper, push point, centrifugation, and diffusive gradients in thin films (DGT) methods for the quantification of 6 metals and DOC. The methods were evaluated at low and high concentrations of metals in 3 sediments having different concentrations of total organic carbon and acid volatile sulfide and different particle-size distributions. At low metal concentrations, centrifugation and push point sampling resulted in up to 100 times higher concentrations of metals and DOC in porewater compared with peepers and DGTs. At elevated metal levels, the measured concentrations were in better agreement among the 4 sampling techniques. The results indicate that there can be marked differences among operationally different porewater sampling methods, and it is unclear if there is a definitive best method for sampling metals and DOC in porewater.

  19. Influences on copper bioaccumulation, growth, and survival of the midge, Chironomus tentans, in metal-contaminated sediments

    USGS Publications Warehouse

    Besser, John M.; Kubitz, Jody A.; Ingersoll, Chris G.; Braselton, W. Emmett; Giesy, John P.

    1995-01-01

    Sediment bioassays with larvae of the midge, Chironomus tentans, were used to evaluate influences on the bioavailability and toxicity of copper (Cu) in sediments with a wide range of concentrations of metals, acid-volatile sulfide (AVS), and other physicochemical characteristics. Sediments were collected from sixteen lakes in Michigan, USA, and from twelve sites in the Clark Fork River drainage of Montana, USA, which are contaminated with metals from mining activities and from other anthropogenic sources. Bioassays with C. tentans larvae were conducted for ten days in a static-renewal test system, with endpoints of survival, growth, and metal bioaccumulation. Bioaccumulation of copper (Cu) was strongly correlated with Cu concentrations in porewater, and was increased significantly at Cu concentrations less than those affecting growth or survival. Midge survival and growth were not significantly correlated with concentrations of Cu in sediment or porewater, and were poorly predicted by ratios of acid-extractable metals to AVS in sediments. Principal components analysis indicated that Cu concentrations in porewater and bioaccumulation of Cu by midge larvae were influenced by AVS, sediment organic carbon, and porewater pH, and that toxicity was associated with high concentrations of Cu, high concentrations of zinc (Zn) and ammonia. No toxicity was observed in several sediments which contained low concentrations of AVS and high concentrations of Cu and Zn. In sediments which contain little AVS, bioavailability of metals may be controlled by constituents other than sulfides, such as organic matter and metal hydrous oxides. These results indicate that assessments of toxicity in metal-contaminated sediments should evaluate the importance of metal-binding phases other than sulfides, and the possible contributions of ammonia or other toxicants to toxicity in sediment bioassays.

  20. Freshwater in situ toxicity testing: Daphnia magna, Ceriodaphnia dubia, Pimephales promelas, Hyalella azteca and Chironomus tentans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, G.A. Jr.

    The use of traditional laboratory toxicity test species in field exposures have proven to be a valuable assessment tool for monitoring effluent, water, sediment and storm water quality. Mimicking fluctuating exposures of stressors with associated interactions with differing physico-chemical variables is difficult. In situ exposures are conducted for similar time periods measuring similar response endpoints as in more traditional laboratory tests. However, organisms are transferred to the field and exposed in various types of test chambers. The author has observed responses which are similar and which are significantly different from simultaneous laboratory exposures. Temperature, dissolved oxygen, suspended solids, natural light,more » flow, and predation may affect in situ responses, but are often removed from laboratory exposures. The strengths and weaknesses observed with these test systems over the past few years will be reviewed.« less

  1. Analysis of the toxic potential of Palicourea corymbifera (Müll. Arg.) Standl. in laboratory animals.

    PubMed

    Ribeiro de Assis, J C S; Suffredini, I B; Moreno, P R H; Young, M C; Varella, A D; Younes, R N; Bernardi, M M

    2006-04-01

    Palicourea species may produce bovine toxicity. Palicourea corymbifera grows in terra firme forests within the Amazon rain forest and in Tropical America, particularly in spots that gave place to gazing areas. The lyophilized extract done with the aerial organs of P. corymbifera were analyzed in male and female mice. Results revealed a significant toxicity: LD50 was 1.10 (1.04-1.15)g/kg for male mice, and 1.05 (1.00-1.10)g/kg for female mice. Locomotion was affected as well as there were reflexes linked to environmental stimuli in addition to changes in posture. Progressive central nervous system stimulus signs such as trembling and convulsions were detected, the latter followed by the animal's death. Macroscopic histopathological exams performed on the liver, kidneys and lungs of mice submitted to necropsy did not indicate the existence of lesions. General activity of animals, measured in an open field, was reduced as a result of the administration of the extract. Duration of locomotion and rearing frequency were reduced, in opposition to an increase in the duration of immobility. Thin layer chromatography analysis showed that monofluoroacetic acid is present in the lyophilized extract, but other qualitative techniques as gas chromatography/mass spectrometry and 19F nuclear magnetic resonance showed that the MFAA was not present in the extract, and that the toxicity is related to other compound, although the toxic profile is very similar to that of MFAA. P. corymbifera was shown to be significantly toxic to laboratory animals and investigation of the possible toxic substance shall be done.

  2. In vitro screening of organotin compounds and sediment extracts for cytotoxicity to fish cells.

    PubMed

    Giltrap, Michelle; Macken, Ailbhe; McHugh, Brendan; McGovern, Evin; Foley, Barry; Davoren, Maria

    2011-01-01

    The present study reports an in vitro screening method for contaminants in sediment samples utilizing an RTG-2 cell line. This technique integrates cytotoxicity testing with analytical chemistry with the aim of achieving a toxicity evaluation of the sediment sample. The toxic effect of individual organotin (OT) compounds and their presence in the sediment sample is the focus of the present study; however, other contaminants are also discussed. The following OT compounds: tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPT), diphenyltin (DPT), and a sediment solvent extract are exposed to the RTG-2 fish cell line. Both the alamar blue (AB) and neutral red (NR) assays are used to assess cytotoxicity after 24-h and 96-h exposure. Methodology for preparation of a sediment solvent extract suitable for biological testing and analytical determination is also described. With the RTG-2 cells, the AB and NR assays had comparable sensitivity for each individual OT compound exposure after 24 h, with TPT being the most toxic compound tested. The individual OT compound concentrations required to induce a 50% toxic effect on the cells (369 ng ml⁻¹ TBT, 1,905 ng ml⁻¹ DBT) did not equate to the concentrations of these contaminants present in the sediment extract that induced a 50% effect on the cells (294 ng ml⁻¹ TBT, 109 ng ml⁻¹ DBT). The solvent extract therefore exhibited a greater toxicity, and this suggests that the toxic effects observed were not due to OT compounds alone. The presence of other contaminants in the solvent extract is confirmed with chemical analysis, warranting further toxicity testing of contaminant mixtures and exposure to the cell line to further elucidate a complete toxicity evaluation. © 2010 SETAC.

  3. Fate, bioavailability and toxicity of silver in estuarine environments

    USGS Publications Warehouse

    Luoma, S.N.; Ho, Y.B.; Bryan, G.W.

    1995-01-01

    The chemistry and bioavailability of Ag contribute to its high toxicity in marine and estuarine waters. Silver is unusual, in that both the dominant speciation reaction in seawater and the processes important in sorbing Ag in sediments favour enhanced bioavailability. Formation of a stable chloro complex favours dispersal of dissolved Ag, and the abundant chloro complex is available to biota. Sequestration by sediments also occurs, but with relatively slow kinetics. Amorphous aggregated coatings enhance Ag accumulation in sediments, as well as Ag uptake from sediments by deposit feeders. In estuaries, the bioaccumulation of Ag increases 56-fold with each unit of increased Ag concentration in sediments. Toxicity for sensitive marine species occurs at absolute concentrations as low as those observed for any nonalkylated metal, partly because bioaccumulation increases so steeply with contamination. The environmental window of tolerance to Ag in estuaries could be narrower than for many elements.

  4. Fate and effects of picric acid and 2,6-DNT in marine environments: toxicity of degradation products.

    PubMed

    Nipper, Marion; Carr, R Scott; Biedenbach, James M; Hooten, Russell L; Miller, Karen

    2005-11-01

    The toxicity of transformation products of 2,6-dinitrotoluene (2,6-DNT) and 2,4,6-trinitrophenol (picric acid) were assessed in spiked sandy and fine-grained marine sediments and in seawater. Toxicity of pore water from sediments spiked with 2,6-DNT decreased for the macro-alga, Ulva fasciata, zoospores as biotransformation proceeded, but increased for the copepod, Schizopera knabeni, nauplii. The primary biotransformation product of 2,6-DNT, 2-amino-6-nitrotoluene, was also more toxic than the parent compound to copepod nauplii, but not to alga zoospores, in spiked seawater tests. Two biotransformation products of picric acid, picramic acid and 2,4-DNP, were more toxic than their parent compound. Porewater toxicity from picric acid-spiked sediments decreased significantly at the end of six-months incubation. Fine-grained sediment spiked with either ordnance compound had lower toxicity than its sandy counterpart after six months, suggesting faster microbial transformation in the former and production of less toxic products. Photo-transformation of 2,6-DNT in seawater resulted in a reduction in toxicity.

  5. Vertical distribution, composition profiles, sources and toxicity assessment of PAH residues in the reclaimed mudflat sediments from the adjacent Thane Creek of Mumbai.

    PubMed

    Basavaiah, N; Mohite, R D; Singare, P U; Reddy, A V R; Singhal, R K; Blaha, U

    2017-05-15

    A study on vertical distribution of magnetic susceptibility, carcinogenic and endocrine disrupting PAHs was performed in the reclaimed mudflat sediments adjacent to the Thane Creek of Mumbai. The 5-rings PAHs and ΣC-PAHs were more dominant at 120cm depth contributing 52.23% and 60.19% respectively to ∑PAHs. The average ratio values of LMW/HMW PAHs (0.58); Fla/(Fla+Pyr) (0.50); Ant/(Ant+Phe) (0.50); BaA/(Chry+BaA) (0.48); BaP/BghiP (2.06), Phe/Ant (1.03) and BaA/Chr (0.93) indicate that the PAH contamination might have raised due to inefficient combustion and pyrogenic emissions during the open burning of solid waste in the vicinity. This was further supported by the anthropogenic ferri(o)magnetic loading over the last 100years influencing the Creek sediments. The PAHs toxicity estimation was performed by calculating the toxic equivalent quantity (TEQ) value of 8.62ng TEQ/g which was below the safe level (600ng TEQ/g) suggested by the Canadian risk-based soil criterion for protection of human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Toxicity of Uranium Adsorbent Materials using the Microtox Toxicity Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jiyeon; Jeters, Robert T.; Gill, Gary A.

    2015-10-01

    The Marine Sciences Laboratory at the Pacific Northwest National Laboratory evaluated the toxicity of a diverse range of natural and synthetic materials used to extract uranium from seawater. The uranium adsorbent materials are being developed as part of the U. S. Department of Energy, Office of Nuclear Energy, Fuel Resources Program. The goal of this effort was to identify whether deployment of a farm of these materials into the marine environment would have any toxic effects on marine organisms.

  7. High-Frequency Sound Interaction in Ocean Sediments

    DTIC Science & Technology

    2003-09-30

    results, combined with measured sediment properties, to test the validity of sediment acoustic models , and in particular the poroelastic (Biot...understanding of the dominant scatterers versus frequency near the sediment surface, the potential need for poroelastic sediment models , the...work are described under a separate ONR project titled “ Acoustic propagation and scattering within sand sediments: Laboratory experiments, modeling

  8. SEDIMENT ASSESSMENT WITH THE BIVALVE MULINIA LATERALIS: MAXIMIZING TEST ORGANISM PROTECTION

    EPA Science Inventory

    Estuarine and marine sediments are a major repository for many of the more persistent chemicals introduced into surface waters. Approaches used by USEPA to identify a national inventory of contaminated sediment sites include, among other tools, whole-sediment toxicity (presently ...

  9. Sediment quality triad assessment survey of the Galveston Bay, Texas system

    USGS Publications Warehouse

    Carr, R. Scott; Chapman, Duane C.; Howard, Cynthia L.; Biedenbach, James M.

    1996-01-01

    To characterize the quality of sediments at key sites in the Galveston Bay Estuary, sediment samples were collected concurrently for chemical and physical analyses, toxicity testing and an assessment of benthic community structure. Significant toxicity, as determined by the sea urchin (Arbacia punetulata) pore water embryological development assay, was observed at 12 of the 24 sites investigated in this study. No toxicity was observed at any of the sites with the amphipod (Grandidierella japonica) solid-phase test. There were a number of sites with elevated levels of trace metals and petroleum hydrocarbons. The chemistry, toxicity and benthic data were ranked by station and a scaled rank sum was calculated to facilitate comparisons among the stations. Five sites exhibited strong evidence of contaminant-induced degradation, while 15 stations showed no evidence of contaminant-induced degradation. At eight additional sites the sediment quality triad (SQT) data indicated that unmeasured chemicals or conditions were stressing the system. Contaminant impacts could be reduced or eliminated by alternative regulatory and management practices, including the restriction of produced water discharges into coastal estuaries and the use of dredge material disposal practices that minimize the reintroduction of sediment-associated contaminants to the bays.

  10. Impact of sediment characteristics on the heavy metal concentration and their ecological risk level of surface sediments of Vaigai river, Tamilnadu, India.

    PubMed

    Paramasivam, K; Ramasamy, V; Suresh, G

    2015-02-25

    The distributions of the metals (Al, Fe, Mg, Cd, Cr, Cu, Ni, Pb and Zn) were measured for the surface sediments of the Vaigai river, Tamilnadu, India. These values are compared with different standard values to assess the level of toxicity of the heavy metals in the sediments. Risk indices (CF, PLI and PER) are also calculated to understand the level of toxicity of the metals. Multivariate statistical analyses (Pearson's correlation analysis, cluster analysis and factor analysis) are carried out to know the inter-relationship between sediment characteristics and the heavy metals. From this analysis, it is confirmed that the contents of clay and organic matter play an important role to raise the level of heavy metal contents as well as PLI and PER (level of toxicity). Heavy metal concentrations of the samples (after removing silt and clay fractions from bulk samples) show decrease in their concentrations and risk indices compared to the level of bulk samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Laboratory studies of the diagenesis and mobility of 239,240pu and 137Cs in nearshore sediments

    NASA Astrophysics Data System (ADS)

    Sholkovitz, Edward R.; Cochran, J. Kirk; Carey, Anne E.

    1983-08-01

    Controlled laboratory experiments have been used to study the diagenetic chemistry of 239,240Pu 137Cs, and 55Fe. Experiments using Buzzards Bay sediments in small tanks show that sulfate reduction is accompanied by the production of large pore water concentration gradients of alkalinity, phosphate, ammonia and dissolved organic carbon and the formation of subsurface maxima in Fe and Mn. These pore water profiles demonstrate that bacterially-mediated processes of organic matter degradation and redox reactions can be simulated in the laboratory. A vertical profile of 55Fe in pore waters is reported for the first time: it follows the profile of stable Fe and as such has a large (200 dpm/100 kg) subsurface maximum between 2-4 cm depth. Comparison of 55Fe/Fe ratios in sediments and pore waters shows that there is preferential solubilization of 55Fe over stable Fe. The pore water activities of 239,240Pu show no gradients within the large uncertainties of the counting statistics, but are two to four times higher than Buzzards Bay seawater (0.05 dpm/100 kg). The activity of 137Cs in the pore water profile is constant (40 dpm/100 kg) within the large counting uncertainties and is twice that of Buzzards Bay seawater. Cs-137 does not appear to be involved in diagenetic chemistry but may increase in pore waters as a result of ion exchange reactions. Flux estimates based on the pore water data show that remobilization and transport of 239,240 Pu in coastal sediments are not significant processes while the transport of l37Cs may be.

  12. Fluoride toxicity and bioaccumulation in the invasive amphipod Dikerogammarus villosus (Sowinsky, 1894): a laboratory study.

    PubMed

    Gonzalo, Cristina; Camargo, Julio A; Masiero, Luciano; Casellato, Sandra

    2010-11-01

    The tolerance of the invasive amphipod Dikerogammarus villosus to fluoride (F⁻) toxicity was examined via laboratory experiments. 96-h LC₅₀ and 240-h NOEC values were estimated to be 5.8 and 0.95 mg F⁻/L, respectively. Average whole-body fluoride content in control amphipods was 27.6 μg F⁻/g dry weight, whereas in exposed amphipods it ranged from 3,637 to 16,994 μg F⁻/g dry weight. All these results indicate that D. villosus is a very sensitive species to fluoride toxicity. Overall it is concluded that the potential risk of invasion for D. villosus in either natural or polluted freshwater ecosystems, exhibiting relatively high fluoride levels (at least ten-fold higher than the average freshwater background level of 0.15 mg F⁻/L), must be low.

  13. Sediment-quality assessment of the Lower Oconee River

    USGS Publications Warehouse

    Lasier, P.J.; Winger, P.V.; Shelton, J.L.; Bogenrieder, K.J.

    2004-01-01

    Sediment quality was assessed at multiple sites in the lower Oconee River, GA to identify contaminants potentially affecting the survival of an endemic ?At-Risk? species of fish, the robust redhorse (Moxostoma robustum). Five major tributaries that drain urban and agricultural watersheds enter this stretch of river and several carry permitted municipal and industrial effluents containing Cd, Cu, and Zn. Sediments for chemical analyses and toxicity tests with Hyalella azteca (Amphipoda) were collected at 12 locations that included sites above and below the major tributaries. Compared to national data bases and to the nearby Apalachicola-Chattahoochee-Flint watershed, sediments from the Oconee River had elevated concentrations of Cr, Cu, Hg and Zn. Zinc concentrations showed a marked increase in sediment downstream of the confluence of Buffalo Creek demonstrating contributions from permitted municipal and industrial effluents discharged to that tributary. When exposed to these sediments, growth of H. azteca was significantly reduced. Amphipod growth was also reduced when exposed to sediments collected from another site due to toxicity from Cr. Sediments in the lower Oconee River appear to be impaired due to metal contamination and could pose a threat to organisms, such as the robust redhorse, that are closely associated with this matrix during their life cycle.

  14. Sediment quality assessment using survival and embryo malformation tests in amphipod crustaceans: The Gulf of Riga, Baltic Sea AS case study

    NASA Astrophysics Data System (ADS)

    Strode, Evita; Jansons, Mintauts; Purina, Ingrida; Balode, Maija; Berezina, Nadezhda A.

    2017-08-01

    The aim of this study was to assess the toxicity of bottom sediment and to estimate the potential effects of contaminated sediment on health of benthic organisms in the Gulf of Riga (eastern Baltic Sea). Two endpoints were used: survival rate (acute toxicity test) of five crustacean amphipod species and frequency of embryo malformation (samples were collected from the field) in the two species. Toxic resistance of living animals to sediment quality was measured as survival rate (%) at 25 study sites from 2010-2012. Significant differences in the toxic resistance between species were found: 80-100% for Monoporeia affinis, 70-95% for Corophium volutator, 38-88% for Pontogammarus robustoides, 38-100% for Bathyporeia pilosa and 60-100% for Hyalella azteca. Reproductive disorders, measured as percentage (%) of malformed embryos per female, varied in the ranges of 0.0-9.5% in deep water species M. affinis and 0.3-7.5% in littoral species P. robustoides. Both the acute toxicity test and embryo malformation test (only M. affinis was used) indicated moderate and poor sediment quality at 20% and 12% accordingly in the study sites, low toxicity of sediment was estimated in 64% of cases, and no toxicity was recorded in the rest of the cases (4%). Additionally, sediment toxicity test using aquatic organisms was combined with sediment chemical analysis (trace metals) and the Benthic Quality Index (macrozoobenthos) was based on data collected from 13 sites in the Gulf of Riga in 2010 and used for triad sediment quality assessment. According to this combined approach, 23% of the bottom sediments were classified as likely impacted and 23% as possibly impacted (central and southern part of the Gulf). However, the remaining 54% was identified as likely un-impacted. The sediment quality assessment with single survival test or chemical analyses showed better sediment quality in the Gulf than the triad method. The embryo malformation test appeared to be more sensitive to pollution than

  15. DISSOLVED-COLLOIDAL PARTITIONING OF MOBILIZED METALS DURING RESUSPENSION OF MARINE SEDIMENTS

    EPA Science Inventory

    Sediments in many urban estuaries are contaminated by potentially toxic heavy metals. Over time, many of these metals accumulate in the sediment due to physico-chemical processes which remove them from the water column. Marine sediments are regularly subjected to physical process...

  16. Laboratory measurements of biomarkers and individual performances in Chironomus xanthus to evaluate pesticide contamination of sediments in a river of southeastern Brazil.

    PubMed

    Printes, Liane Biehl; Fernandes, Marisa Narciso; Espíndola, Evaldo Luiz Gaeta

    2011-03-01

    This study aimed at evaluating biomarkers, individual and population responses in the native Chironomus xanthus to assess the toxicity of pesticide-contaminated sediments from the Monjolinho River (Southeast Brazil). We measured cholinesterase (ChE) and glutathione S-transferase activities (GST), as biomarkers and survival, individual growth and adult emergence, as individual performances. There was no response of the ChE activity and a tendency to decreased GST activity in contaminated sites, but this was generally not statistically significant. Therefore, there was no association of the biomarker responses with exposure to sediment containing pesticides. In contrast, ash free dry mass was significantly increased and male emergence was decreased in C. xanthus exposed to the same sediments. In conclusion, the selected biomarkers were not sensitive and specific enough to detect and anticipate effects of pesticide contamination at the levels measured in the study area. Nevertheless, individual performances alterations pointed to potential pollution problems and possible ecological consequences. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Chronic Sublethal Effects of San Francisco Bay Sediments on Nereis (Neanthes) arenaceodentata; Effect of Storage Time on Sediment Toxicity

    DTIC Science & Technology

    1994-04-01

    Operations Program Chronic Sublethal Effects of San Francisco Bay Sediments on Nereis (Neanthes) arenaceodentata; Effect of Storage Time on Sediment...Dredging Miscellaneous Paper D-94-2 Operations Program April 1994 Chronic Sublethal Effects of San Francisco Bay Sediments on Nereis (Neanthes...tWatelrway EnD A2AIM a MI F~YRA • rI~WATIMA. •7 WATCH Moore, David W. Chronic sublethal effects of San Francisco Bay sediments on Nerels (Neanthes

  18. Sediment quality in the north coastal basin of Massachusetts, 2003

    USGS Publications Warehouse

    Breault, Robert F.; Ashman, Mary S.; Heath, Douglas

    2004-01-01

    The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, completed a reconnaissance-level study of bottom-sediment quality in selected lakes, rivers, and estuaries in the North Coastal Basin of Massachusetts. Bottom-sediment grab samples were collected from 20 sites in the North River, Lake Quannapowitt, Saugus River, Mill River, Shute Brook, Sea Plane Basin, Pines River, and Bear Creek. The samples were tested for various types of potentially harmful contaminants? including 33 elements, 17 polyaromatic hydrocarbons (PAHs), 22 organochlorine pesticides, and 7 polychlorinated biphenyl (PCB) mixtures (Aroclors)?to benthic organisms (bottom-dwelling) and humans. The results were compared among sampling sites, to background concentrations, and to concen-trations measured in other urban rivers, and sediment-quality guidelines were used to predict toxicity at the sampling sites to benthic organisms and humans. Because there are no standards for human toxicity for aquatic sediment, standards for contaminated upland soil were used. Contaminant concentrations measured in sediment collected from the North Coastal Basin generally were equal to or greater than concentrations in sediment from uncontaminated rivers throughout New England. Contaminants in North Coastal Basin sediment with elevated concentrations (above back-ground levels) included arsenic, chromium, copper, lead, nickel, and zinc, some of the PAHs, dichlorodiphenyltrichloro-ethane (DDT) and its metabolites, and dieldrin. No PCBs were measured above the detection limits. Measured concentrations of arsenic, chromium, and lead were also generally greater than those measured in other urban rivers throughout the conter-minous United States. With one exception (arsenic), local con-centrations measured in sediment samples collected from the North Coastal Basin were lower than concentrations measured in sediment collected from two of three urban rivers draining to Boston

  19. CORRELATIONS BETWEEN HOMOLOGUE CONCENTRATIONS OF PCDD/FS AND TOXIC EQUIVALENCY VALUES IN LABORATORY-, PACKAGE BOILER-, AND FIELD-SCALE INCINERATORS

    EPA Science Inventory

    The toxic equivalency (TEQ) values of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) are predicted with a model based on the homologue concentrations measured from a laboratory-scale reactor (124 data points), a package boiler (61 data points), and ...

  20. Scaling of Sediment Dynamics in a Reach-Scale Laboratory Model of a Sand-Bed Stream with Riparian Vegetation

    NASA Astrophysics Data System (ADS)

    Gorrick, S.; Rodriguez, J. F.

    2011-12-01

    A movable bed physical model was designed in a laboratory flume to simulate both bed and suspended load transport in a mildly sinuous sand-bed stream. Model simulations investigated the impact of different vegetation arrangements along the outer bank to evaluate rehabilitation options. Preserving similitude in the 1:16 laboratory model was very important. In this presentation the scaling approach, as well as the successes and challenges of the strategy are outlined. Firstly a near-bankfull flow event was chosen for laboratory simulation. In nature, bankfull events at the field site deposit new in-channel features but cause only small amounts of bank erosion. Thus the fixed banks in the model were not a drastic simplification. Next, and as in other studies, the flow velocity and turbulence measurements were collected in separate fixed bed experiments. The scaling of flow in these experiments was simply maintained by matching the Froude number and roughness levels. The subsequent movable bed experiments were then conducted under similar hydrodynamic conditions. In nature, the sand-bed stream is fairly typical; in high flows most sediment transport occurs in suspension and migrating dunes cover the bed. To achieve similar dynamics in the model equivalent values of the dimensionless bed shear stress and the particle Reynolds number were important. Close values of the two dimensionless numbers were achieved with lightweight sediments (R=0.3) including coal and apricot pips with a particle size distribution similar to that of the field site. Overall the moveable bed experiments were able to replicate the dominant sediment dynamics present in the stream during a bankfull flow and yielded relevant information for the analysis of the effects of riparian vegetation. There was a potential conflict in the strategy, in that grain roughness was exaggerated with respect to nature. The advantage of this strategy is that although grain roughness is exaggerated, the similarity of

  1. TESTING ACUTE TOXICITY OF CONTAMINATED SEDIMENT IN JINZHOU BAY WITH MARINE AMPHIPODS

    EPA Science Inventory

    Sediments in some areas of Jinzhou Bay are contaminated seriously by heavy metals and organic contaminants. To assess the biological effects of these compounds in the sediment, seven surface samples of sediment were collected at an interval of about 2km between sampling stations ...

  2. Interaction of fine sediment with alluvial streambeds

    USGS Publications Warehouse

    Jobson, Harvey E.; Carey, William P.

    1989-01-01

    More knowledge is needed about the physical processes that control the transport of fine sediment moving over an alluvial bed. The knowledge is needed to design rational sampling and monitoring programs that assess the transport and fate of toxic substances in surface waters because the toxics are often associated with silt- and clay-sized particles. This technical note reviews some of the past research in areas that may contribute to an increased understanding of the processes involved. An alluvial streambed can have a large capacity to store fine sediments that are extracted from the flow when instream concentrations are high and it can gradually release fine sediment to the flow when the instream concentrations are low. Several types of storage mechanisms are available depending on the relative size distribution of the suspended load and bed material, as well as the flow hydraulics. Alluvial flow tends to segregate the deposited material according to size and density. Some of the storage locations are temporary, but some can store the fine sediment for very long periods of time.

  3. Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China.

    PubMed

    Zheng, Na; Wang, Qichao; Liang, Zhongzhu; Zheng, Dongmei

    2008-07-01

    Wuli River, Cishan River, and Lianshan River are three freshwater rivers flowing through Huludao City, in a region of northeast China strongly affected by industrialization. Contamination assessment has never been conducted in a comprehensive way. For the first time, the contamination of three rivers impacted by different sources in the same city was compared. This work investigated the distribution and sources of Hg, Pb, Cd, Zn and Cu in the surface sediments of Wuli River, Cishan River, and Lianshan River, and assessed heavy metal toxicity risk with the application of two different sets of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM; and threshold effect level/probable effect level, TEL/PEL). Furthermore, this study used a toxic unit approach to compare and gauge the individual and combined metal contamination for Hg, Pb, Cd, Zn and Cu. Results showed that Hg contamination in the sediments of Wuli River originated from previous sediment contamination of the chlor-alkali producing industry, and Pb, Cd, Zn and Cu contamination was mainly derived from atmospheric deposition and unknown small pollution sources. Heavy metal contamination to Cishan River sediments was mainly derived from Huludao Zinc Plant, while atmospheric deposition, sewage wastewater and unknown small pollution were the primary sources for Lianshan River. The potential acute toxicity in sediment of Wuli River may be primarily due to Hg contamination. Hg is the major toxicity contributor, accounting for 53.3-93.2%, 7.9-54.9% to total toxicity in Wuli River and Lianshan River, respectively, followed by Cd. In Cishan River, Cd is the major sediment toxicity contributor, however, accounting for 63.2-66.9% of total toxicity.

  4. Properties of sediment-algae flocs as function of shear and environmental conditions : a laboratory study

    NASA Astrophysics Data System (ADS)

    Deng, Z.; He, Q.; Chassagne, C.; Manning, A. J.

    2017-12-01

    It has been observed that flocculation in-situ is greatly influenced by biochemical parameters[De Lucas Pardo, 2014]. In our previous work [Deng, 2017], we have found that flocs observed in the Yangtze Estuary are composed of mixtures of sediment and algae. In particular we have shown that flocs can be composed solely of algae aggregates. Depending on their position in the water column, the composition of flocs changes, as more or less sediment can be part of the floc. The presence of algae (phytoplankton biomass) in a floc is linked to the measured chlorophyll α concentration [Uncles et al., 1998]. The Particle Size Distribution (PSD) found in-situ depends on parameters such as position in the water column and shear rate, and also seasons. We showed that the PSD found in-situ is similar to the one measured in the lab, for the same floc composition and environmental conditions. In the present work we extend the laboratory investigations by analysing the impact of the floc history on its PSD. The PSD can be bimodal after a grow-break-up-regrow phase, indicating that flocs growth process depend on a timescale that is larger than the timescale associated to the change in shear rate. We will discuss the behaviour of the parameters needed in the flocculation model we propose upon the relevant variables. The ultimate goal is to propose a model that can be implemented in large scale sediment transport models. ReferencesDe Lucas Pardo, M. (2014), Effect of biota on fine sediment transport processes: A study of Lake Markermeer, TU Delft, Delft University of Technology. Deng, Z. (2017), Algae effects on cohesive sediment flocculation: a case study based on field observation in Yangtze Estuary, China (submitted)Uncles, R., A. Easton, M. Griffiths, C. Harris, R. Howland, I. Joint, R. King, A. Morris, and D. Plummer (1998), Concentrations of suspended chlorophyll in the tidal Yorkshire Ouse and Humber Estuary, Science of The Total Environment, 210-211, 367-375, doi:10.1016/s

  5. GENERAL GUIDELINES FOR USING THE SEDIMENT QUALITY TRIAD

    EPA Science Inventory

    The Sediment Quality Triad(Fig. 1),developed in the mid-1980s (Long and Chapman, 1985), is now widely used for conducting integrated assessments of sediment quality based on measures of chemistry,toxicity and benthos(e.g.,Canfield et al., 1994,1996,submitted; Carr et al., 1996;Ch...

  6. Use of a Novel Sediment Exposure to Determine the Effects of ...

    EPA Pesticide Factsheets

    Triclosan (5-chloro-2-(2,4-dichlorophenoxy) phenol) is a relatively new, commonly used antimicrobial compound found in many personal care products. Triclosan is toxic to marine organisms at the ug/l level, can photo-degrade to a dioxin, accumulate in humans, and has been found to be stable in marine sediments for over 30 years. To determine the effects of triclosan on marine benthic communities, we brought intact sediment cores into the laboratory and held them under flowing seawater conditions. A two cm layer of triclosan-spiked sediment was applied to the surface, and after a two-week exposure the meio- and macrofaunal communities were assessed for differences in composition relative to non-spiked core. The High Triclosan treatment (180 mg/kg dry weight) affected both the meio- and macro benthic communities. There were no discernable differences in the Low Triclosan treatment (14 mg/kg dry weight dry). This exposure method is effective for testing benthic community response to sediment contaminants, but improvements should be made as to the amount and method of applying the overlying sediment to prevent smothering of fragile benthic organisms. This paper describes the effects of triclosan on meio- and macro-benthic marine communities. It describes a novel system of whole benthic community exposure that is a promising method to evaluate effects on intact marine benthic communities. Triclosan concentrations greater than 180 mg/kg dry weight had a signif

  7. Integrated quality assessment of sediments from harbour areas in Santos-São Vicente Estuarine System, Southern Brazil

    NASA Astrophysics Data System (ADS)

    Buruaem, Lucas Moreira; de Castro, Ítalo Braga; Hortellani, Marcos Antonio; Taniguchi, Satie; Fillmann, Gilberto; Sasaki, Silvio Tarou; Varella Petti, Mônica Angélica; Sarkis, Jorge Eduardo de Souza; Bícego, Márcia Caruso; Maranho, Luciane Alves; Davanso, Marcela Bergo; Nonato, Edmundo Ferraz; Cesar, Augusto; Costa-Lotufo, Leticia Veras; Abessa, Denis Moledo de Souza

    2013-09-01

    Santos-São Vicente Estuarine System is a highly populated coastal zone in Brazil and where it is located the major port of Latin America. Historically, port activities, industrial and domestic effluents discharges have constituted the main sources of contaminants to estuarine system. This study aimed to assess the recent status of sediment quality from 5 zones of Port of Santos by applying a lines-of-evidence approach through integrating results of: (1) acute toxicity of whole sediment and chronic toxicity of liquid phases; (2) grain size, organic matter, organic carbon, nitrogen, phosphorus, trace metals, polycyclic aromatic hydrocarbons, linear alkylbenzenes and butyltins; (3) benthic community descriptors. Results revealed a gradient of increasing contamination for metals and organic compounds, alongside with their geochemical carriers. Sediment liquid phases were more toxic compared to whole sediment. Low number of species and individuals indicated the impoverishment of benthic community. The use of site-specific sediment quality guidelines was more appropriate to predict sediment toxicity. The integration of results through Sediment Quality Triad approach and principal component analysis allowed observing the effects of natural stressors and dredging on sediment quality and benthic distribution. Even with recent governmental efforts to control, pollution is still relevant in Port of Santos and a threat to local ecosystems.

  8. Bubbles in Sediments

    DTIC Science & Technology

    1998-09-30

    model (simplest) to a fluid saturated poroelastic model (most complex). Based on the results of the theoretical treatment, a laboratory experiment has...are widely separated for each model . Finally, if a sediment is modeled by Biot theory, which describes wave propagation in a saturated poroelastic ...application of Biot theory to sediment acoustics . The predicted resonance behavior under each model is distinct, so an optical extinction measurement may

  9. Bubbles in Sediments

    DTIC Science & Technology

    1999-09-30

    saturated poroelastic medium. The transition matrix scattering formalism was used to develop the scattered acoustic field(s) such that appropriate...sediment increases from a fluid model (simplest) to a fluid-saturated poroelastic model (most complex). Laboratory experiments in carefully quantified...of a linear acoustic field from a bubble, collection of bubbles, or other targets embedded in a fluid-saturated sediment are not well known. This

  10. Integrated assessment of contaminated sediments in the lower Fox River and Green Bay, Wisconsin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ankley, G.T.; Lodge, K.; Call, D.J.

    Samples of sediment and biota were collected from sites in the lower Fox River and southern Green Bay to determine existing or potential impacts of sediment-associated contaminants on different ecosystem components of this Great Lakes area of concern. Evaluation of benthos revealed a relatively depauperate community, particularly at the lower Fox River sites. Sediment pore water and bulk sediments from several lower Fox River sites were toxic to a number of test species including Pimephales promelas, Ceriodaphnia dubia, Hexagenia limbata, Selenastrum capricornutum, and Photobacterium phosphorum. An important component of the observed toxicity appeared to be due to ammonia. Evaluation ofmore » three bullhead (Ictalurus) species from the lower Fox River revealed an absence of preneoplastic or neoplastic liver lesions, and the Salmonella typhimurium bioassay indicated relatively little mutagenicity in sediment extracts. Apparent adverse reproductive effects were noted in two species of birds nesting along the lower Fox River and on a confined disposal facility for sediments near the mouth of the river, and there were measurable concentrations of potentially toxic 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), and planar polychlorinated biphenyls (PCBs) both in the birds and in sediments from several of the study sites. Based on toxic equivalency factors and the results of an in vitro bioassay with H4IIE rat hepatoma cells, it appeared that the majority of potential toxicity of the PCB/PCDF/PCDD mixture in biota from the lower Fox River/Green Bay system was due to the planar PCBs. The results of these studies are discussed in terms of an integrated assessment focused on providing data for remedial action planning.« less

  11. Associations between dioxins/furans and dioxin-like PCBs in estuarine sediment and blue crab

    USGS Publications Warehouse

    Liebens, J.; Mohrherr, C.J.; Karouna-Renier, N. K.; Snyder, R.A.; Rao, K.R.

    2011-01-01

    The objective of the present study was to evaluate the relationships between the quantity, toxicity, and compositional profile of dioxin/furan compounds (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in estuarine sediment and in the blue crab (Callinectes sapidus). Sediment and blue crab samples were collected in three small urban estuaries that are in relatively close proximity to each other. Results show that differences between PCDD/F and DL-PCB mass concentrations and total toxic equivalents (TEQ) toxicity in sediments of the three estuaries are reflected in those of the blue crab. TEQs are higher in the hepatopancreas of the crabs than in the sediment, but the concentration factor is inversely proportional to the TEQ in the sediments. Congener profiles in the crabs are systematically different from those in the sediments, and the difference is more pronounced for PCDD/Fs than for DL-PCBs, possibly due to differences in metabolization rates. Compared with sediment profiles, more lesser-chlorinated PCDD/Fs that have higher TEFs accumulate in crab hepatopancreas. This selective bioaccumulation of PCDD/Fs results in a TEQ augmentation in crab hepatopancreas compared with sediments. The bioaccumulation in the blue crab is also selective for PCDD/Fs over DL-PCBs. ?? 2011 Springer Science+Business Media B.V.

  12. Toxicity of sediments from Bahía de Chetumal, México, as assessed by hepatic EROD induction and histology in nile tilapia Oreochromis niloticus.

    PubMed

    Zapata-Pérez, O; Simá-Alvarez, R; Noreña-Barroso, E; Güemes, J; Gold-Bouchot, G; Ortega, A; Albores-Medina, A

    2000-01-01

    The effect of environmental pollutants present in sediments obtained from Bahía de Chetumal, a bay on the border between Mexico and Belize, was studied in nile tilapia (Oreochromis niloticus) intraperitoneally injected with sediment extracts from six different sites of the Bay. Sediment samples used for the study contained a variety of organic chemicals such as organochlorine pesticides, polychlorinated biphenyls (PCBs) and polynuclear aromatic hydrocarbons (PAHs). Total cytochrome P-450 and EROD activity were measured in fish liver. Haematological and histological analyses were also carried out. Hepatic P-450 content in treated fish increased from 43 to 240%, and EROD activity from 85 to 160% compared to controls. Extracts from two sampling sites inhibited EROD activity. There were positive significant correlations between P-450 content and the levels of PCBs 44 and 128. EROD activity correlated to HCB, op'-DDE, pp'-DDE, pp'-DDD, mirex and PCB 18 concentrations. Blood examination showed cell degeneration and binucleated leukocytes with abnormal chromatin. Extract treatment also resulted in foci of hyperplasia on the basement of gill lamellae, hypertrophy and oedema in gills and liver necrosis. Control fish showed no abnormalities. The results demonstrate that sediments from Bahía of Chetumal have the potential to cause histopathological, haematological and biochemical alterations in fish. The administration of sediment extracts to fish may serve as a useful test to screen the toxicity of sediments from different areas.

  13. Evaluation of sub-chronic toxic effects of petroleum ether, a laboratory solvent in Sprague-Dawley rats

    PubMed Central

    Parasuraman, Subramani; Sujithra, Jeyabalan; Syamittra, Balakrishnan; Yeng, Wong Yeng; Ping, Wu Yet; Muralidharan, Selvadurai; Raj, Palanimuthu Vasanth; Dhanaraj, Sokkalingam Arumugam

    2014-01-01

    Background: In general, organic solvents are inhibiting many physiological enzymes and alter the behavioural functions, but the available scientific knowledge on laboratory solvent induced organ specific toxins are very limited. Hence, the present study was planned to determine the sub-chronic toxic effects of petroleum ether (boiling point 40–60°C), a laboratory solvent in Sprague-Dawley (SD) rats. Materials and Methods: The SD rats were divided into three different groups viz., control, low exposure petroleum ether (250 mg/kg; i.p.) and high exposure petroleum ether (500 mg/kg; i.p.) administered group. The animals were exposed with petroleum ether once daily for 2 weeks. Prior to the experiment and end of the experiment animals behaviour, locomotor and memory levels were monitored. Before initiating the study animals were trained for 2 weeks for its learning process and its memory levels were evaluated. Body weight (BW) analysis, locomotor activity, anxiogenic effect (elevated plus maze) and learning and memory (Morris water navigation task) were monitored at regular intervals. On 14th day of the experiment, few ml of blood sample was collected from all the experimental animals for estimation of biochemical parameters. At the end of the experiment, all the animals were sacrificed, and brain, liver, heart, and kidney were collected for biochemical and histopathological analysis. Results: In rats, petroleum ether significantly altered the behavioural functions; reduced the locomotor activity, grip strength, learning and memory process; inhibited the regular body weight growth and caused anxiogenic effects. Dose-dependent organ specific toxicity with petroleum ether treated group was observed in brain, heart, lung, liver, and kidney. Extrapyramidal effects that include piloerection and cannibalism were also observed with petroleum ether administered group. These results suggested that the petroleum ether showed a significant decrease in central nervous system

  14. Laboratory simulation of hydrothermal petroleum formation from sediment in Escanaba Trough, offshore from northern California

    USGS Publications Warehouse

    Kvenvolden, K.A.; Rapp, J.B.; Hostettler, F.D.; Rosenbauer, R.J.

    1994-01-01

    Petroleum associated with sulfide-rich sediment is present in Escanaba Trough at the southern end of the Gorda Ridge spreading axis offshore from northern California within the Exclusive Economic Zone (EEZ) of the U.S. This location and occurrence are important for evaluation of the mineral and energy resource potential of the seafloor under U.S. jurisdiction. In Escanaba Trough, petroleum is believed to be formed by hydrothermal processes acting on mainly terrigenous organic material in Quaternary, river-derived sediment. To attempt to simulate these processes in the laboratory, portions of a Pleistocene gray-green mud, obtained from ??? 1.5 m below the seafloor at a water depth of ??? 3250 m in Escanaba Trough, were heated in the presence of water in four hydrous-pyrolysis experiments conducted at temperatures ranging from 250 to 350??C and at a pressure of 350 bar for 1.0-4.5 days. Distributions of n-alkanes, isoprenoid hydrocarbons, triterpanes, and steranes in the heated samples were compared with those in a sample of hydrothermal petroleum from the same area. Mud samples heated for less than 4.5 days at less than 350??C show changes in some, but not all, molecular marker ratios of organic compounds that are consistent with those expected during hydrothermal petroleum formation. Our results suggest that the organic matter in this type of sediment serves as one possible source for some of the compounds found in the hydrothermal petroleum. ?? 1994.

  15. Laboratory-Measured and Property-Transfer Modeled Saturated Hydraulic Conductivity of Snake River Plain Aquifer Sediments at the Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Perkins, Kim S.

    2008-01-01

    Sediments are believed to comprise as much as 50 percent of the Snake River Plain aquifer thickness in some locations within the Idaho National Laboratory. However, the hydraulic properties of these deep sediments have not been well characterized and they are not represented explicitly in the current conceptual model of subregional scale ground-water flow. The purpose of this study is to evaluate the nature of the sedimentary material within the aquifer and to test the applicability of a site-specific property-transfer model developed for the sedimentary interbeds of the unsaturated zone. Saturated hydraulic conductivity (Ksat) was measured for 10 core samples from sedimentary interbeds within the Snake River Plain aquifer and also estimated using the property-transfer model. The property-transfer model for predicting Ksat was previously developed using a multiple linear-regression technique with bulk physical-property measurements (bulk density [pbulk], the median particle diameter, and the uniformity coefficient) as the explanatory variables. The model systematically underestimates Ksat,typically by about a factor of 10, which likely is due to higher bulk-density values for the aquifer samples compared to the samples from the unsaturated zone upon which the model was developed. Linear relations between the logarithm of Ksat and pbulk also were explored for comparison.

  16. Thermoregulatory Responses to Environmental Toxicants: The Interaction of Thermal Stress and Toxicant Exposure

    DTIC Science & Technology

    2008-01-01

    of active laboratory investigation for over a century. It has been recognized since the late 1890s from studies conducted in small laboratory species...showed that the active alkaloid colchicine is more toxic in mice than frogs, suggesting that the warmer Tc of mammals may enhance drug toxicity. Ideally...interferon activity and leukocyte function, to limit the sequelae associated with infectious or inflammatory conditions (Heron and Berg, 1978; Johansen et al

  17. Composition, distribution, and potential toxicity of organochlorine mixtures in bed sediments of streams

    USGS Publications Warehouse

    Phillips, Patrick J.; Nowell, Lisa H.; Gilliom, Robert J.; Nakagaki, Naomi; Murray, Karen; VanAlstyne, Carolyn

    2010-01-01

    Mixtures of organochlorine compounds have the potential for additive or interactive toxicity to organisms exposed in the stream. This study uses a variety of methods to identify mixtures and a modified concentration-addition approach to estimate their potential toxicity at 845 stream sites across the United States sampled between 1992 and 2001 for organochlorine pesticides and polychlorinated biphenyls (PCBs) in bed sediment. Principal-component (PC) analysis identified five PCs that account for 77% of the total variance in 14 organochlorine compounds in the original dataset. The five PCs represent: (1) chlordane-related compounds and dieldrin; (2) p,p′-DDT and its degradates; (3) o,p′-DDT and its degradates; (4) the pesticide degradates oxychlordane and heptachlor epoxide; and (5) PCBs. The PC analysis grouped compounds that have similar chemical structure (such as parent compound and degradate), common origin (in the same technical pesticide mixture), and(or) similar relation of concentrations to land use. For example, the highest concentrations of chlordane compounds and dieldrin occurred at urban sites, reflecting past use of parent pesticides for termite control. Two approaches to characterizing mixtures—PC-based mixtures and unique mixtures—were applied to all 299 samples with a detection of two or more organochlorine compounds. PC-based mixtures are defined by the presence (in the sample) of one or more compounds associated with that PC. Unique mixtures are defined as a specific combination of two or more compounds detected in a sample, regardless of how many other compounds were also detected in that sample. The simplest PC-based mixtures (containing compounds from 1 or 2 PCs) commonly occurred in a variety of land use settings. Complex mixtures (containing compounds from 3 or more PCs) were most common in samples from urban and mixed/urban sites, especially in the Northeast, reflecting high concentrations of multiple chlordane, dieldrin, DDT

  18. Comparison of solid-phase and pore-water approaches for assessing the quality of marine and estuarine sediments

    USGS Publications Warehouse

    Carr, Robert Scott; Chapman, Duane C.

    1992-01-01

    As part of our continuing evaluation of the pore-water approach for assessing sediment quality, we made a series of side-by-side comparisons between the standard 10-day amphipod whole sediment test with the corophiid Grandidierella japonica and a suite of tests using pore water extracted from the same sediments. the pore-water tests evaluated were the sea urchin (Arbacia punctulata) sperm cell test and morphological development assay, the life-cycle test with the polychaete Dinophilus gyrociliatus, and acute exposures of red drum (Sciaenops ocellatus) embryo-larval stages. Sediment and surface microlayer samples were collected from contaminated sites. Whole-sediment, pore-water, and surface microlayer toxicity tests were performed. Pore-water toxicity tests were considerably more sensitive than the whole-sediment amphipod test, which is currently the most sensitive toxicity test now recommended for determining the acceptability of dredged material for open ocean disposal.

  19. Sediment toxicity in mid-continent great rivers (USA)

    EPA Science Inventory

    In this study, 530 sediment samples were collected from 447 sites between 2004 and 2006 at randomly selected shoreline sites along the main channel of the Ohio, Missouri and Upper Mississippi Rivers as part of the Environmental Monitoring and Assessment Program for Great Rivers E...

  20. Sampling method, storage and pretreatment of sediment affect AVS concentrations with consequences for bioassay responses.

    PubMed

    De Lange, H J; Van Griethuysen, C; Koelmans, A A

    2008-01-01

    Sediment treatment and sediment storage may alter sediment toxicity, and consequently biotic response. Purpose of our study was to combine these three aspects (treatment-toxicity-biotic response) in one integrated approach. We used Acid Volatile Sulfide (AVS) concentrations as a proxy of the disturbance of the sediment. AVS and Simultaneously Extracted Metal (SEM) concentrations were compared to bioassay responses with the freshwater benthic macroinvertebrate Asellus aquaticus. Storage conditions and sediment treatment affected AVS but not SEM levels. AVS can be used as a proxy for sediment disturbance. The best way to pretreat the sediment for use in a bioassay in order to maintain initial AVS conditions was to sample the sediment with an Ekman grab, immediately store it in a jar without headspace, and freeze it as soon as possible. In a survey using seven different sediments, bioassay responses of A. aquaticus were correlated with SEM and AVS characteristics.