Sample records for laboratory soil incubations

  1. Leaching of soils during laboratory incubations does not affect soil organic carbon mineralisation but solubilisation.

    PubMed

    González-Domínguez, Beatriz; Studer, Mirjam S; Hagedorn, Frank; Niklaus, Pascal A; Abiven, Samuel

    2017-01-01

    Laboratory soil incubations provide controlled conditions to investigate carbon and nutrient dynamics; however, they are not free of artefacts. As carbon and nitrogen cycles are tightly linked, we aimed at investigating whether the incubation-induced accumulation of mineral nitrogen (Nmin) biases soil organic carbon (SOC) mineralisation. For this, we selected two soils representative of the C:N ratio values found in European temperate forests, and applied two incubation systems: 'closed' beakers and 'open' microlysimeters. The latter allowed leaching the soil samples during the incubation. By the end of the 121-day experiment, the low C:N soil significantly accumulated more Nmin in beakers (5.12 g kg-1 OC) than in microlysimeters (3.00 g kg-1 OC) but there was not a significant difference in SOC mineralisation at any point of the experiment. On the other hand, Nmin did not accumulate in the high C:N soil but, by the end of the experiment, leaching had promoted 33.9% more SOC solubilisation than beakers. Therefore, we did not find evidence that incubation experiments introduce a bias on SOC mineralisation. This outcome strengthens results from soil incubation studies.

  2. Leaching of soils during laboratory incubations does not affect soil organic carbon mineralisation but solubilisation

    PubMed Central

    Studer, Mirjam S.; Hagedorn, Frank; Niklaus, Pascal A.; Abiven, Samuel

    2017-01-01

    Laboratory soil incubations provide controlled conditions to investigate carbon and nutrient dynamics; however, they are not free of artefacts. As carbon and nitrogen cycles are tightly linked, we aimed at investigating whether the incubation-induced accumulation of mineral nitrogen (Nmin) biases soil organic carbon (SOC) mineralisation. For this, we selected two soils representative of the C:N ratio values found in European temperate forests, and applied two incubation systems: ‘closed’ beakers and ‘open’ microlysimeters. The latter allowed leaching the soil samples during the incubation. By the end of the 121-day experiment, the low C:N soil significantly accumulated more Nmin in beakers (5.12 g kg-1 OC) than in microlysimeters (3.00 g kg-1 OC) but there was not a significant difference in SOC mineralisation at any point of the experiment. On the other hand, Nmin did not accumulate in the high C:N soil but, by the end of the experiment, leaching had promoted 33.9% more SOC solubilisation than beakers. Therefore, we did not find evidence that incubation experiments introduce a bias on SOC mineralisation. This outcome strengthens results from soil incubation studies. PMID:28380005

  3. Biomarkers as Indicators of Respiration During Laboratory Incubations of Alaskan Arctic Tundra Permafrost Soils

    NASA Astrophysics Data System (ADS)

    Hutchings, J.; Schuur, E.; Bianchi, T. S.; Bracho, R. G.

    2015-12-01

    High latitude permafrost soils are estimated to store 1,330 - 1,580 Pg C, which account for ca. 40% of global soil C and nearly twice that of atmospheric C. Disproportionate heating of high latitude regions during climate warming potentially results in permafrost thaw and degradation of surficial and previously-frozen soil C. Understanding how newly-thawed soils respond to microbial degradation is essential to predicting C emissions from this region. Laboratory incubations have been a key tool in understanding potential respiration rates from high latitude soils. A recent study found that among the common soil measurements, C:N was the best predictor of C losses. Here, we analyzed Alaskan Arctic tundra soils from before and after a nearly 3-year laboratory incubation. Bulk geochemical values as well as the following biomarkers were measured: lignin, amino acids, n-alkanes, and glycerol dialkyl glycerol tetraethers (GDGT). We found that initial C:N did not predict C losses and no significant change in C:N between initial and final samples. The lignin acid to aldehyde (Ad:Al) degradation index showed the same results with a lack of C loss prediction and no significant change during the experiment. However, we did find that C:N and Ad:Al had a significant negative correlation suggesting behavior consistent with expectations. The failure to predict C losses was likely influenced by a number of factors, including the possibility that biomarkers were tracking a smaller fraction of slower cycling components of soil C. To better interpret these results, we also used a hydroxyproline-based amino acid degradation index and n-alkanes to estimate the contribution Sphagnum mosses to soil samples - known to have slower turnover times than vascular plants. Finally, we applied a GDGT soil temperature proxy to estimate the growing season soil temperatures before each incubation, as well as investigating the effects of incubation temperature on the index's temperature estimate.

  4. Effects of Soil Moisture on the Temperature Sensitivity of Soil Heterotrophic Respiration: A Laboratory Incubation Study

    PubMed Central

    Zhou, Weiping; Hui, Dafeng; Shen, Weijun

    2014-01-01

    The temperature sensitivity (Q10) of soil heterotrophic respiration (Rh) is an important ecological model parameter and may vary with temperature and moisture. While Q10 generally decreases with increasing temperature, the moisture effects on Q10 have been controversial. To address this, we conducted a 90-day laboratory incubation experiment using a subtropical forest soil with a full factorial combination of five moisture levels (20%, 40%, 60%, 80%, and 100% water holding capacity - WHC) and five temperature levels (10, 17, 24, 31, and 38°C). Under each moisture treatment, Rh was measured several times for each temperature treatment to derive Q10 based on the exponential relationships between Rh and temperature. Microbial biomass carbon (MBC), microbial community structure and soil nutrients were also measured several times to detect their potential contributions to the moisture-induced Q10 variation. We found that Q10 was significantly lower at lower moisture levels (60%, 40% and 20% WHC) than at higher moisture level (80% WHC) during the early stage of the incubation, but became significantly higher at 20%WHC than at 60% WHC and not significantly different from the other three moisture levels during the late stage of incubation. In contrast, soil Rh had the highest value at 60% WHC and the lowest at 20% WHC throughout the whole incubation period. Variations of Q10 were significantly associated with MBC during the early stages of incubation, but with the fungi-to-bacteria ratio during the later stages, suggesting that changes in microbial biomass and community structure are related to the moisture-induced Q10 changes. This study implies that global warming’s impacts on soil CO2 emission may depend upon soil moisture conditions. With the same temperature rise, wetter soils may emit more CO2 into the atmosphere via heterotrophic respiration. PMID:24647610

  5. Radiocarbon in CO2 and Soil Organic Matter from Laboratory Incubations, Barrow, Alaska, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lydia Vaughn; Margaret Torn

    Dataset includes Delta14C measurements made from soil organic matter and CO2 from laboratory soil incubations of active layer soils collected in Barrow, Alaska in 2012. In addition to Delta14CO2, dataset CO2 production rates and carbon and nitrogen concentrations. Samples were collected from intensive study site 1 areas A, B, and C, and the site 0 and AB transects, from specified positions in high-centered, flat-centered, and low centered polygons.

  6. Soil respiration is not limited by reductions in microbial biomass during long-term soil incubations

    USDA-ARS?s Scientific Manuscript database

    Declining rates of soil respiration are reliably observed during long-term laboratory incubations, but the cause is uncertain. We explored different controls on soil respiration during long-term soil incubations. Following a 707 day incubation (30 C) of soils from cultivated and forested plots at Ke...

  7. Soil Organic Carbon Degradation during Incubation, Barrow, Alaska, 2012

    DOE Data Explorer

    Elizabeth Herndon; Ziming Yang; Baohua Gu

    2017-01-05

    This dataset provides information about soil organic carbon decomposition in Barrow soil incubation studies. The soil cores were collected from low-center polygon (Area A) and were incubated in the laboratory at different temperatures for up to 60 days. Transformations of soil organic carbon were characterized by UV and FT-IR, and small organic acids in water-soluble carbons were quantified by ion chromatography during the incubation (Herndon et al., 2015).

  8. Radiocarbon in CO2 and Soil Organic Matter from Laboratory Incubations, Barrow, Alaska, 2014

    DOE Data Explorer

    Lydia Vaughn; Margaret Torn

    2018-02-20

    Dataset includes 14C measurements made from soil organic matter and CO2 from paired anaerobic and aerobic laboratory soil incubations of active layer soils collected in Barrow, Alaska in 2014. In addition to 14CO2, dataset includes CO2 production rates and carbon and nitrogen concentrations. Samples were collected from intensive study site 1 areas A, B, and C, and the site 0 and AB transects, from specified positions in high-centered, flat-centered, and low centered polygons.

  9. Effect of irrigation water salinity on the organic carbon mineralization in soil (laboratory incubation)

    NASA Astrophysics Data System (ADS)

    Mancer, Halima; Bouhoun, Mustapha Daddi

    2018-05-01

    In a laboratory study, the impact of salts on mineralization of organic carbon of soil was examined through the monitoring of the amount of CO2-C released from soil. The soil used was classified as a nonsaline soil which has been irrigated with artificially salinized water, a factorial combination of three types of salts (NaCl, MgCl2, CaCl2) with three levels of electrical conductivities (3, 6, and 9 dS.m-1) was used to assess the Carbon mineralization. The incubation was carried out under aerobic conditions and at a constant temperature of 28 °C during 70 days with moisture adjusted to 2/3 of the field capacity. No significant (P > 0.05) variation in the amount of CO2-C release from soil was observed until day 56 of the incubation, but it was significantly different due to the irrigation with salt solutions during the days: 70 (p ≤ 0.05). The results suggest that the rate of C-CO2 evolution decreased with the increase in water salinity compared to the control. Also this decrease of C-mineralization in the soils irrigated by the salts solutions of NaCl was the greatest compared to the other two salts (CaCl2, and MgCl2). These results suggest that C mineralization depended on the type of salts as well as the duration of incubation.

  10. A rapid and cost effective method for soil carbon mineralization under static incubations

    USDA-ARS?s Scientific Manuscript database

    Soil incubations with subsequent determination of carbon dioxide (CO2) are common soil assays used to estimate C mineralization rates and active organic C pools. Two common methods used to detect CO2 in laboratory incubations are gas chromatography (GC) and alkali absorption followed by titration (...

  11. A rapid and cost effective method for soil carbon mineralization under static incubations

    USDA-ARS?s Scientific Manuscript database

    Soil incubations with subsequent measurement of carbon dioxide (CO2) evolved are common soil assays to estimate C mineralization rates and active organic C. Two common methods used to detect CO2 in laboratory incubations are gas chromatography (GC) and alkali absorption followed by titration (NaOH)...

  12. Recycling vs. stabilisation of soil sugars - a long-term laboratory incubation experiment

    NASA Astrophysics Data System (ADS)

    Basler, A.; Dippold, M.; Helfrich, M.; Dyckmans, J.

    2015-06-01

    Independent of its chemical structure carbon (C) persists in soil for several decades, controlled by stabilisation and recycling. To disentangle the importance of the two factors on the turnover dynamics of soil sugars, an important compound of soil organic matter (SOM), a three year incubation experiment was conducted on a silty loam soil under different types of land use (arable land, grassland and forest) by adding 13C-labeled glucose. The compound specific isotope analysis of soil sugars was used to examine the dynamics of different sugars during incubation. Sugar dynamics were dominated by a pool of high mean residence times (MRT) indicating that recycling plays an important role for sugars. However, this was not substantially affected by soil C content. Six months after label addition the contribution of the label was much higher for microbial biomass than for CO2 production for all examined soils, corroborating that substrate recycling was very effective within the microbial biomass. Two different patterns of tracer dynamics could be identified for different sugars: while fucose (fuc) and mannose (man) showed highest label contribution at the beginning of the incubation with a subsequent slow decline, galactose (gal) and rhamnose (rha) were characterised by slow label incorporation with subsequently constant levels, which indicates that recycling is dominating the dynamics of these sugars. This may correspond to (a) different microbial growing strategies (r and K-strategist) or (b) location within or outside the cell membrane (lipopolysaccharides vs. exopolysaccharides) and thus be subject of different re-use within the microbial food web. Our results show how the microbial community recycles substrate very effectively and that high losses of substrate only occur during initial stages after substrate addition.

  13. Drivers of soil organic matter vulnerability to climate change. Part I: Laboratory incubations of Swiss forest soils and radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    González Domínguez, Beatriz; Studer, Mirjam S.; Niklaus, Pascal A.; Haghipour, Negar; McIntyre, Cameron; Wacker, Lukas; Zimmermann, Stephan; Walthert, Lorenz; Hagedorn, Frank; Abiven, Samuel

    2016-04-01

    Given the key role of soil organic carbon (SOC) on climate and greenhouse gas regulation, there is an increasing need to incorporate the carbon (C) feedback between SOC and the atmosphere into earth system models. The evaluation of these models points towards uncertainties on the response of CO2-C fluxes, derived from the decomposition of SOC, to the influence of controls/drivers. SOC vulnerability refers to the likelihood of losing previously stabilized soil organic matter, by the effect of environmental factors. The objective of this study is to produce a SOC vulnerability ranking of soils and to provide new insights into the influence of environmental and soil properties controls. Research on SOC vulnerability tends to focus on climatic controls and neglect the effect of other factors, such as soil geochemistry and mineralogy, on C stabilization/de-stabilization processes. In this work, we hypothesized that climate (mean annual temperature and soil moisture status proxy at the research sites in the period 1981-2010), soil (pH and % clay) and terrain (slope gradient and orientation) characteristics are the main controls of the CO2-C fluxes from SOC. Following a statistics-based approach, we selected 54 forest sites across Switzerland, which cover a broad spectrum of values for the hypothesized controls. Then, we selected the study sites so that the controls are orthogonal to each other; thus, their effect was not confounded. At each site, we collected three non-overlapping topsoil (i.e. 20 cm) composites within 40 x 40 m2 plots. In the laboratory, we sieved fresh soils at 2 mm and run a 2-weeks pre-incubation, before beginning a 6-months aerobic soil incubation under controlled conditions of moisture and temperature. Periodically, we collected NaOH (1M) traps containing the CO2-C derived from microbial heterotrophic respiration. We calculated the cumulative CO2-C respired and the one-pool SOC decomposition rates from the 54 forest sites, and linked these data to

  14. SPRUCE Methylotrophic Methanogenesis in Sphagnum-dominated Peatland Soils – CH4 and CO2 Production in Laboratory Incubations

    DOE Data Explorer

    Zalman, Cassandra A.; Meade, N.; Chanton, J.; Kostka, J. E.; Bridgham, S. D.; Keller, J. K.

    2017-12-01

    This study investigated the potential for methylotrophic methanogenesis in three Sphagnum-dominated peatland soils in northern Minnesota. Collected soils were amended with 13C-labeled traditional substrates (acetate and sodium bicarbonate/ H2) and methylated substrates (methanol, monomethylamine (“MMA”), dimethylsulfide (“DMS”)) and monitored for δ13C-CH4, δ 13C-CO2, and net CH4 and CO2 production in laboratory incubations. The peatlands included in the study were (1) the S1 Bog, home to the SPRUCE Experiment and located at the Marcell Experimental Forest (MEF, U.S. Forest Service), (2) Bog Lake Fen, also located at the MEF, and (3) Zim Bog. These sites have been described in detail previously (Medvedeff et al., 2015)

  15. Effects of soil water content and grass recycling on N2O emission in an urban lawn under laboratory incubation study

    NASA Astrophysics Data System (ADS)

    Nataningtyas, Dilin Rahayu; Morita, Shunsuke; Hatano, Ryusuke

    2017-12-01

    In the context of global warming, the increase of N2O gas production from the agricultural area has gained enhancing concern due to N2O is a potent greenhouse gas and an ozone depleted substance. While adding clipping grass has been accepted to replace N-fertilizer input in urban law management its effect on soil gas emission still questionable. A laboratory incubation study had been conducted to evaluate the effect of soil water content and grass recycling on greenhouse gas emission from an urban lawn. The soil samples were taken from Yurigahara Park, Sapporo, Hokkaido Japan. The 17 days at 25°C incubation study was started after adjusting soil water content to 35% and 50% with and without adding the clipping grass on soil surfaces. Greenhouse gas emissions were higher with the addition of grass, however, for NO and N2O considerably higher in 35% than 50% water content. The denitrification process was responsible for the N2O increase in this action. Soil chemical and microbial properties, pH, WEOC, NO3--N, NH4+-N and microbial biomass nitrogen (MBN) as well as N-grass content were also measured to know their correlation with N2O emission. The fine-scale heterogeneity occurred in the soil has impact on the variability of soil chemical properties that influenced the N2O emission. In the other hand, the effect of grass recycling appeared to increased soil N-inorganic contents and stimulated the N-gaseous concentration.

  16. CO2 dinamics and priming effect of different Hungarian soils based on laboratory incubation experiment

    NASA Astrophysics Data System (ADS)

    Zacháry, Dóra; Szalai, Zoltán; Filep, Tibor; Kovács, József; Jakab, Gergely

    2017-04-01

    Soil processes are particularly important in terms of global carbon cycle, as soils globally contain approximately 2000 Gt carbon, which is higher than the carbon stock of the atmosphere and the terrestrial ecosystem together. Therefore small alterations in the soils' carbon sequestration potential can generate rapid and significant changes in the atmosphere carbon concentration. Soil texture is one of the most important soil parameters which plays a significant role in soil carbon sequestration. Fine textured soils generally considered containing more microbial biomass, and having a lower rate of biomass turnover and organic matter decomposition than coarse textured soils. In spite of this, several recent studies have shown contradicting trends. Our aim was to investigate the influence of the basic soil properties (texture, pH, organic matter content, etc.) on the biological and physicochemical processes determining the soil CO2 emission. Thirteen Hungarian soil samples (depth of 0-20 cm) were incubated during six months. The samples are mainly high clay and organic matter content forest soils, but two forest soils developed on sand were also collected. The soils are derived from C3 forests and C3 croplands from different sites of Hungary. C4 maize residues were added to the soils in order to get natural 13C enrichment for stable isotope measurement purposes and for quantifying the priming effect caused by the crop residue addition. The temperature (20°C) and humidity (70% field capacity) conditions were kept constant in an incubator. The soil respiration was measured at specified intervals (on day 3, 8, 15, 30, 51, 79, 107, 135 and 163) and trapped in 2M NaOH and quantified by titration with 1M HCl. Our first results based on the cumulative CO2 respiration values show positive priming for all type of soils. Results confirm the statement that in certain cases fine textured soils release more CO2. To determine which soil properties influence the most the soil CO2

  17. Laboratory persistence in soil of thiacloprid, pendimethalin and fenarimol incubated with treated wastewater and dissolved organic matter solutions. Contribution of soil biota.

    PubMed

    Rodríguez-Liébana, José Antonio; ElGouzi, Siham; Peña, Aránzazu

    2017-08-01

    Reutilization of treated wastewater (TWW) in agriculture has continued to grow, especially in areas prone to frequent drought periods. One of the major aspects derived from this practice is the addition of important amounts of organic carbon (OC) that could interfere with the fate of organic contaminants in soils. This study has evaluated the impact of irrigation with a secondary TWW and dissolved OC (DOC) solutions from sewage sludge in the dissipation of thiacloprid (THC), pendimethalin (PDM) and fenarimol (FEN) in an OC-poor agricultural soil under laboratory conditions. The effect on soil microbial activity was also assessed through the measurement of dehydrogenase activity. Biotic processes were the main responsible for the degradation of the three compounds. Results showed that while THC was rapidly degraded (DT 50  ≤ 5.5 d), PDM and FEN were moderately persistent in soil (DT 50  ≥ 93 d). Incubation with TWW did not modify the decay rate of the three pesticides, but initially inhibited soil biota. Solutions of DOC did not alter the dissipation of FEN, but contrasting effects were observed for THC and PDM. Low DOC concentrations (30 mg L -1 ) accelerated THC disappearance, a fact explained by stimulation of endogenous biota rather than by the presence of exogenous microorganisms from the solution. On the other hand, high DOC concentrations (300 mg L -1 ) had more influence on the activity of microorganisms at longer times, and showed a trend to enhance the disappearance of the moderately persistent PDM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Microbial carbon recycling - an underestimated process controlling soil carbon dynamics - Part 1: A long-term laboratory incubation experiment

    NASA Astrophysics Data System (ADS)

    Basler, A.; Dippold, M.; Helfrich, M.; Dyckmans, J.

    2015-10-01

    Independent of its chemical structure carbon (C) persists in soil for several decades, controlled by stabilization and recycling. To disentangle the importance of the two factors on the turnover dynamics of soil sugars, an important compound of soil organic matter (SOM), a 3-year incubation experiment was conducted on a silty loam soil under different types of land use (arable land, grassland and forest) by adding 13C-labelled glucose. The compound-specific isotope analysis of soil sugars was used to examine the dynamics of different sugars during incubation. Sugar dynamics were dominated by a pool of high mean residence times (MRT) indicating that recycling plays an important role for sugars. However, this was not substantially affected by soil C content. Six months after label addition the contribution of the label was much higher for microbial biomass than for CO2 production for all examined land use types, corroborating that substrate recycling was very effective within the microbial biomass. Two different patterns of tracer dynamics could be identified for different sugars: while fucose and mannose showed highest label contribution at the beginning of the incubation with a subsequent slow decline, galactose and rhamnose were characterized by slow label incorporation with subsequently constant levels, which indicates that recycling is dominating the dynamics of these sugars. This may correspond to (a) different microbial growing strategies (r and K-strategist) or (b) location within or outside the cell membrane (lipopolysaccharides vs. exopolysaccharides) and thus be subject of different re-use within the microbial food web. Our results show how the microbial community recycles substrate very effectively and that high losses of substrate only occur during initial stages after substrate addition. This study indicates that recycling is one of the major processes explaining the high MRT observed for many SOM fractions and thus is crucial for understanding the

  19. A novel 15N tracer approach for the quantification of N2 and N2O emissions from soil incubations in a completely automated laboratory set up

    NASA Astrophysics Data System (ADS)

    Scheer, Clemens; Dannenmann, Michael; Meier, Rudolf

    2015-04-01

    The microbial mediated production of nitrous oxide (N2O) and its reduction to dinitrogen (N2) via denitrification represents a loss of nitrogen (N) from fertilised agro-ecosystems to the atmosphere. Although denitrification has received great interest by biogeochemists in the last decades, the magnitude of N2lossesand related N2:N2O ratios from soils still are largely unknown due to methodical constraints. We present a novel 15N tracer approach, based on a previous developed tracer method to study denitrification in pure bacterial cultures which was modified for the use on soil incubations in a completely automated laboratory set up. The method uses a background air in the incubation vessels that is replaced with a helium-oxygen gas mixture with a 50-fold reduced N2 background (2 % v/v). This method allows for a direct and sensitive quantification of the N2 and N2O emissions from the soil with isotope-ratio mass spectrometry after 15N labelling of denitrification N substrates and minimises the sensitivity to the intrusion of atmospheric N2 at the same time. The incubation set up was used to determine the influence of different soil moisture levels on N2 and N2O emissions from a sub-tropical pasture soil in Queensland/Australia. The soil was labelled with an equivalent of 50 μg-N per gram dry soil by broadcast application of KNO3solution (4 at.% 15N) and incubated for 3 days at 80% and 100% water filled pore space (WFPS), respectively. The headspace of the incubation vessel was sampled automatically over 12hrs each day and 3 samples (0, 6, and 12 hrs after incubation start) of headspace gas analysed for N2 and N2O with an isotope-ratio mass spectrometer (DELTA V Plus, Thermo Fisher Scientific, Bremen, Germany(. In addition, the soil was analysed for 15N NO3- and NH4+ using the 15N diffusion method, which enabled us to obtain a complete N balance. The method proved to be highly sensitive for N2 and N2O emissions detecting N2O emissions ranging from 20 to 627 μN kg

  20. Short-term incubation studies on degradation of biochar in soil

    NASA Astrophysics Data System (ADS)

    Lanza, Giacomo; Wirth, Stephan; Geßler, Arthur; Kern, Jürgen; Mumme, Jan

    2014-05-01

    Biochar is considered a stable, recalcitrant substance, which holds potential to store carbon in soils for prolonged time and therefore would provide a long-term carbon sink. Furthermore, biochar is discussed to enhance soil fertility and plant productivity, and may improve water and nutrient holding capacity. However, mineralisation to CO2 may occur, as for any soil organic carbon pool, depending on char composition, soil properties and environmental conditions. Therefore, it is important to gain insight into the stability of its carbon structure and the dynamics of decay processes in soil. The evaluation of biochar stability in soil is complicated by the impact of external factors thus as soil moisture and temperature, soil nutrient status and moreover by extended decay timescales. To overcome these difficulties, we performed dynamic incubation experiments under laboratory conditions, using a multi-channel, automated infra-red gas analysis system at 20°C for up to 10 days to detect CO2 emission over time. Our aim was to compare the decay dynamics of different biochar preparations added to soil, i.e. HTC-char and pyrochar from maize silage with and without biological post-processing (anaerobic digestion), as compared to unmodified maize straw. Digestate from a maize silage-fed anaerobic biogas reactor was also tested. As a result, the addition of charred or digested materials to soil resulted in much lower CO2 emission rates as compared to the unmodified maize straw, proving stability of biochar carbon compounds. Pyrochar showed to be the most stable of all substrates added, as the CO2 emission was hardly distinguishable from that of the control soil. Soil enriched with HTC-char emitted significantly more CO2 compared to soil enriched with pyrochar, but the post-processing was effective in reducing the emissions. Furthermore, HTC-char showed a two-step decay kinetics, which cannot apparently be explained with a simple double-pool model. In conclusion, the short

  1. Fire vs. Metal: A Laboratory Study Demonstrating Microbial Responses to Soil Disturbances

    ERIC Educational Resources Information Center

    Stromberger, Mary E.

    2005-01-01

    Incubation studies are traditionally used in soil microbiology laboratory classes to demonstrate microbial respiration and N mineralization-immobilization processes. Sometimes these exercises are done to calculate a N balance in N fertilizer-amended soils. However, examining microbial responses to environmental perturbations would appeal to soil…

  2. Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abichou, Tarek, E-mail: abichou@eng.fsu.edu; Mahieu, Koenraad; Chanton, Jeff

    2011-05-15

    Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions.more » These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, K{sub m}, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.« less

  3. Measuring temperature dependence of soil respiration: importance of incubation time, soil type, moisture content and model fits

    NASA Astrophysics Data System (ADS)

    Schipper, L. A.; Robinson, J.; O'Neill, T.; Ryburn, J.; Arcus, V. L.

    2015-12-01

    Developing robust models of the temperature response and sensitivity of soil respiration is critical for determining changes carbon cycling in response to climate change and at daily to annual time scales. Currently, approaches for measuring temperature dependence of soil respiration generally use long incubation times (days to weeks and months) at a limited number of incubation temperatures. Long incubation times likely allow thermal adaptation by the microbial population so that results are poorly representative of in situ soil responses. Additionally, too few incubation temperatures allows for the fit and justification of many different predictive equations, which can lead to inaccuracies when used for carbon budgeting purposes. We have developed a method to rapidly determine the response of soil respiration rate to wide range of temperatures. An aluminium block with 44 sample slots is heated at one end and cooled at the other to give a temperature gradient from 0 to 55°C at about one degree increments. Soil respiration is measured within 5 hours to minimise the possibility of thermal adaptation. We have used this method to demonstrate the similarity of temperature sensitivity of respiration for different soils from the same location across seasons. We are currently testing whether long-term (weeks to months) incubation alter temperature response and sensitivity that occurs in situ responses. This method is also well suited for determining the most appropriate models of temperature dependence and sensitivity of soil respiration (including macromolecular rate theory MMRT). With additional testing, this method is expected to be a more reliable method of measuring soil respiration rate for soil quality and modelling of soil carbon processes.

  4. Fate of lignin, cutin and suberin in soil organic matter fractions - an incubation experiment

    NASA Astrophysics Data System (ADS)

    Mueller, Carsten W.; Mueller, Kevin E.; Freeman, Katherine H.; Ingrid, Kögel-Knabner

    2010-05-01

    The turnover of soil organic matter (SOM) is controlled by its chemical composition, its spatial accessibility and the association with the mineral phase. Separation of bulk soils by physical fractionation and subsequent chemical analysis of these fractions should give insights to how compositional differences in SOM drive turnover rates of different size-defined carbon pools. The main objective of this study was to elucidate the relative abundance and recalcitrance of lignin, cutin and suberin in aggregated bulk soils and SOM fractions in the course of SOM decomposition. Bulk soils and physically-separated size fractions (sand, silt and clay) of the Ah horizon of a forest soil (under Picea abies L.Karst) were parallel incubated over a period of one year. In order to differentiate between particulate OM (POM) and mineral-associated SOM the particle size fractions were additionally separated by density after the incubation experiment. We used solid-state 13C-CPMAS NMR spectroscopy and GC-MS (after copper oxide oxidation and solvent extraction) to analyze the composition of the incubated samples. The abundance and isotopic composition (including 13C and 14C) of the respired CO2 further enabled us to monitor the dynamics of SOM mineralization. This approach allowed for differentiating between C stabilization of soil fractions due to accessibility/aggregation and to biochemical recalcitrance at different scales of resolution (GC-MS, NMR). We found a relative enrichment of alkyl C and decreasing lignin contents in the order of sand < silt < clay by 13C-NMR spectroscopy and GC-MS within soils and fractions before the incubation, resulting in increased lipid to lignin ratios with decreasing particle size. An accumulation of aliphatic C compounds was especially found for the small silt and clay sized particulate OM (POM). For the fresh particulate OM (POM) of the sand fraction a clear decay of lignin was observed in the course of the incubation experiment, indicated by

  5. Evaluation and simulation of nitrogen mineralization of paddy soils in Mollisols area of Northeast China under waterlogged incubation.

    PubMed

    Zhang, Yuling; Xu, Wenjing; Duan, Pengpeng; Cong, Yaohui; An, Tingting; Yu, Na; Zou, Hongtao; Dang, Xiuli; An, Jing; Fan, Qingfeng; Zhang, Yulong

    2017-01-01

    Understanding the nitrogen (N) mineralization process and applying appropriate model simulation are key factors in evaluating N mineralization. However, there are few studies of the N mineralization characteristics of paddy soils in Mollisols area of Northeast China. The soils were sampled from the counties of Qingan and Huachuan, which were located in Mollisols area of Northeast China. The sample soil was incubated under waterlogged at 30°C in a controlled temperature cabinet for 161 days (a 2: 1 water: soil ratio was maintained during incubation). Three models, i.e. the single first-order kinetics model, the double first-order kinetics model and the mixed first-order and zero-order kinetics model were used to simulate the cumulative mineralised N (NH4+-N and TSN) in the laboratory and waterlogged incubation. During 161 days of waterlogged incubation, the average cumulative total soluble N (TSN), ammonium N (NH4+-N), and soluble organic N (SON) was 122.2 mg kg-1, 85.9 mg kg-1, and 36.3 mg kg-1, respectively. Cumulative NH4+-N was significantly (P < 0.05) positively correlated with organic carbon (OC), total N (TN), pH, and exchangeable calcium (Ca), and cumulative TSN was significantly (P < 0.05) positively correlated with OC, TN, and exchangeable Ca, but was not significantly (P > 0.05) correlated with C/N ratio, cation exchange capacity (CEC), extractable iron (Fe), clay, and sand. When the cumulative NH4+-N and TSN were simulated, the single first-order kinetics model provided the least accurate simulation. The parameter of the double first-order kinetics model also did not represent the actual data well, but the mixed first-order and zero-order kinetics model provided the most accurate simulation, as demonstrated by the estimated standard error, F statistic values, parameter accuracy, and fitting effect. Overall, the results showed that SON was involved with N mineralization process, and the mixed first-order and zero-order kinetics model accurately simulates

  6. Disentangling controls on mineral-stabilized soil organic matter using a slurry incubation

    NASA Astrophysics Data System (ADS)

    Lavallee, J. M.; Cotrufo, M. F.; Paul, E. A.; Conant, R. T.

    2014-12-01

    Mineral-stabilized organic matter (OM) is the largest and oldest pool of soil carbon and nitrogen. Mineral stabilization limits OM availability to soil microbes, preventing its decomposition and prolonging its turnover. Thus, understanding controls on the decomposition of mineral-stabilized OM is key to understanding soil carbon and nitrogen dynamics. The very slow turnover of mineral-stabilized OM makes it challenging to study in a typical incubation, and as a result, many potential controls (temperature, OM chemistry, and mineralogy) on its turnover remain unclear. We aimed to better understand controls on decomposition of mineral-stabilized OM by employing a slurry incubation technique, which speeds up microbial processing of OM by maximizing OM accessibility to microbes. In a slurry incubation, we expect that any OM that is not stabilized on mineral surfaces will be available for decomposition and will be converted to CO2. Using this technique, we studied the interactive effects of incubation temperature, plant material type (aboveground vs. belowground), and soil fraction (silt vs. clay) on CO2 efflux and OM stabilization. We separated silt-sized and clay-sized fractions from an agricultural soil, added aboveground or belowground plant material to each, and incubated them at 15°C, 25°C and 35°C. The added plant material was isotopically labeled (13C and 15N), which allowed us to trace it through the system and distinguish between the responses of the new (derived from the plant material) and old (derived from what was already present in the silt and clay) OM to warming. We measured CO2 efflux and 13CO2 efflux throughout the incubation. We performed one short-term harvest at day 6 and one final harvest at day 60. Initial results show higher cumulative CO2 efflux at warmer temperatures regardless of plant material type or soil fraction. A larger fraction of that CO2 came from OM that was initially present in the silt and clay, rather than from the plant

  7. Evaluation and simulation of nitrogen mineralization of paddy soils in Mollisols area of Northeast China under waterlogged incubation

    PubMed Central

    Zhang, Yuling; Xu, Wenjing; Duan, Pengpeng; Cong, Yaohui; An, Tingting; Yu, Na; Zou, Hongtao; Dang, Xiuli; An, Jing; Fan, Qingfeng; Zhang, Yulong

    2017-01-01

    Background Understanding the nitrogen (N) mineralization process and applying appropriate model simulation are key factors in evaluating N mineralization. However, there are few studies of the N mineralization characteristics of paddy soils in Mollisols area of Northeast China. Materials and methods The soils were sampled from the counties of Qingan and Huachuan, which were located in Mollisols area of Northeast China. The sample soil was incubated under waterlogged at 30°C in a controlled temperature cabinet for 161 days (a 2: 1 water: soil ratio was maintained during incubation). Three models, i.e. the single first-order kinetics model, the double first-order kinetics model and the mixed first-order and zero-order kinetics model were used to simulate the cumulative mineralised N (NH4+-N and TSN) in the laboratory and waterlogged incubation. Principal results During 161 days of waterlogged incubation, the average cumulative total soluble N (TSN), ammonium N (NH4+-N), and soluble organic N (SON) was 122.2 mg kg-1, 85.9 mg kg-1, and 36.3 mg kg-1, respectively. Cumulative NH4+-N was significantly (P < 0.05) positively correlated with organic carbon (OC), total N (TN), pH, and exchangeable calcium (Ca), and cumulative TSN was significantly (P < 0.05) positively correlated with OC, TN, and exchangeable Ca, but was not significantly (P > 0.05) correlated with C/N ratio, cation exchange capacity (CEC), extractable iron (Fe), clay, and sand. When the cumulative NH4+-N and TSN were simulated, the single first-order kinetics model provided the least accurate simulation. The parameter of the double first-order kinetics model also did not represent the actual data well, but the mixed first-order and zero-order kinetics model provided the most accurate simulation, as demonstrated by the estimated standard error, F statistic values, parameter accuracy, and fitting effect. Conclusions Overall, the results showed that SON was involved with N mineralization process, and the mixed

  8. Use of urban composts for the regeneration of a burnt Mediterranean soil: a laboratory approach.

    PubMed

    Cellier, Antoine; Francou, Cédric; Houot, Sabine; Ballini, Christine; Gauquelin, Thierry; Baldy, Virginie

    2012-03-01

    In Mediterranean region, forest fires are a major problem leading to the desertification of the environment. Use of composts is considered as a solution for soil and vegetation rehabilitation. In this study, we determined under laboratory conditions the effects of three urban composts and their mode of application (laid on the soil surface or mixed into the soil) on soil restoration after fire: a municipal waste compost (MWC), a compost of sewage sludge mixed with green waste (SSC) and a green waste compost (GWC). Carbon (C) and nitrogen (N) mineralisation, total microbial biomass, fungal biomass and soil characteristics were measured during 77-day incubations in microcosms. The impact of composts input on hydrological behaviour related to erodibility was estimated by measuring runoff, retention and percolation (i.e. infiltration) of water using a rainfall simulator under laboratory conditions. Input of composts increased organic matter and soil nutrient content, and enhanced C and N mineralisation and total microbial biomass throughout the incubations, whereas it increased sporadically fungal biomass. For all these parameters, the MWC induced the highest improvement while GWC input had no significant effect compared to the control. Composts mixed with soil weakly limited runoff and infiltration whereas composts laid at the soil surface significantly reduced runoff and increased percolation and retention, particularly with the MWC. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Effects of incubation time and filtration method on Kd of indigenous selenium and iodine in temperate soils.

    PubMed

    Almahayni, T; Bailey, E; Crout, N M J; Shaw, G

    2017-10-01

    In this study, the effects of incubation time and the method of soil solution extraction and filtration on the empirical distribution coefficient (K d ) obtained by de-sorbing indigenous selenium (Se) and iodine (I) from arable and woodland soils under temperate conditions were investigated. Incubation time had a significant soil- and element-dependent effect on the K d values, which tended to decrease with the incubation time. Generally, a four-week period was sufficient for the desorption K d value to stabilise. Concurrent solubilisation of soil organic matter (OM) and release of organically-bound Se and I was probably responsible for the observed decrease in K d with time. This contrasts with the conventional view of OM as a sink for Se and I in soils. Selenium and I K d values were not significantly affected by the method of soil solution extraction and filtration. The results suggest that incubation time is a key criterion when selecting Se and I K d values from the literature for risk assessments. Values derived from desorption of indigenous soil Se and I might be most appropriate for long-term assessments since they reflect the quasi-equilibrium state of their partitioning in soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Pre-incubation in soil improves the nitrogen fertiliser value of hair waste.

    PubMed

    Malepfane, N M; Muchaonyerwa, P

    2018-01-25

    Global generation of human hair waste and its disposal at landfills could contribute to the leaching of nitrates into ground water. High concentrations of nitrogen (N) and other elements suggest that the waste could be a source of plant nutrients and differences in ethnic hair types could affect nutrient release and fertiliser value. The objective of this study was to determine the effects of hair type, as an N source, and pre-incubation time on dry-matter yield, nutrient uptake by spinach (Spinacia oleracea L.) and residual soil nutrients. Salons in Pietermaritzburg provided bulk African and Caucasian hair waste, without distinguishing age, sex, health status or livelihood of the individuals. The hair waste was analysed for elemental composition. A pot experiment was set up under glasshouse conditions. The hair waste was incorporated (400 kg N ha -1 ) into a loamy oxisol and pre-incubated for 0, 28, 56 and 84 days before planting spinach. Potassium (K) and phosphorus (P) were corrected to the same level for all treatments. Spinach seedlings were then cultivated for 6 weeks. Shoot dry-matter and the uptake of all nutrients, except P, were increased by the pre-incubation of hair. African hair pre-incubated for 28 days resulted in greater dry-matter, N, K, Mn and S uptake than Caucasian hair. Increasing pre-incubation resulted in a decline in the residual soil pH and exchangeable K. The findings suggested that pre-incubation improves the N fertiliser value of hair and that African hair has greater value than Caucasian hair when pre-incubated for a short period.

  11. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers, and incubation time.

    PubMed

    Margesin, Rosa; Hämmerle, Marion; Tscherko, Dagmar

    2007-02-01

    We investigated the influence of three factors-diesel oil concentration [2500, 5000, 10,000, 20,000 mg total petroleum hydrocarbons (TPH) kg(-1) soil], biostimulation (unfertilized, inorganic fertilization with NPK nutrients, or oleophilic fertilization with Inipol EAP22), and incubation time-on hydrocarbon removal, enzyme activity (lipase), and microbial community structure [phospholipid fatty acids (PLFA)] in a laboratory soil bioremediation treatment. Fertilization enhanced TPH removal and lipase activity significantly (P < or = 0.001). The higher the initial contamination, the more marked was the effect of fertilization. Differences between the two fertilizers were not significant (P > 0.05). Microbial communities, as assessed by PLFA patterns, were primarily influenced by the TPH content, followed by fertilization, and the interaction of these two factors, whereas incubation time was of minor importance. This was demonstrated by three-factorial analysis of variance and multidimensional scaling analysis. Low TPH content had no significant effect on soil microbial community, independent of the treatment. High TPH content generally resulted in increased PLFA concentrations, whereby a significant increase in microbial biomass with time was only observed with inorganic fertilization, whereas oleophilic fertilization (Inipol EAP22) tended to inhibit microbial activity and to reduce PLFA contents with time. Among bacteria, PLFA indicative of the Gram-negative population were significantly (P < or = 0.05) increased in soil samples containing high amounts of diesel oil and fertilized with NPK after 21-38 days of incubation at 20 degrees C. The Gram-positive population was not significantly influenced by TPH content or biostimulation treatment.

  12. Use of raw or incubated organic wastes as amendments in reducing pesticide leaching through soil columns.

    PubMed

    Marín-Benito, J M; Brown, C D; Herrero-Hernández, E; Arienzo, M; Sánchez-Martín, M J; Rodríguez-Cruz, M S

    2013-10-01

    Soil amendment with organic wastes is becoming a widespread management practice since it can effectively solve the problems of uncontrolled waste accumulation and improve soil quality. However, when simultaneously applied with pesticides, organic wastes can significantly modify the environmental behaviour of these compounds. This study evaluated the effect of sewage sludges (SS), grape marc (GM) and spent mushroom substrates (SMS) on the leaching of linuron, diazinon and myclobutanil in packed columns of a sandy soil with low organic matter (OM) content (<1%). Soil plus amendments had been incubated for one month (1 m) or 12 months (12 m). Data from the experimental breakthrough curves (BTCs) were fitted to the one-dimensional transport model CXTFIT 2.1. All three amendments reduced leaching of linuron and myclobutanil relative to unamended soil. SMS was the most effective in reducing leaching of these two compounds independent of whether soil was incubated for 1 m or 12 m. Soil amendments increased retardation coefficients (Rexp) by factors of 3 to 5 for linuron, 2 to 4 for diazinon and 3 to 5 for myclobutanil relative to unamended soil. Leaching of diazinon was relatively little affected by soil amendment compared to the other two compounds and both SS and SMS amendment with 1m incubation resulted in enhanced leaching of diazinon. The leaching data for linuron and myclobutanil were well described by CXTFIT (mean square error, MSE<4.9·10(-7) and MSE<7.0·10(-7), respectively) whereas those of diazinon were less well fitted (MSE<2.1·10(-6)). The BTCs for pesticides were similar in soils incubated for one month or one year, indicating that the effect of amendment on leaching persists over relatively long periods of time. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. AggModel: A soil organic matter model with measurable pools for use in incubation studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segoli, Moran; De Gryze, S.; Dou, Fugen

    2013-01-01

    Current soil organic matter (SOM) models are empirical in nature by employing few conceptual SOM pools that have a specific turnover time, but that are not measurable and have no direct relationship with soil structural properties. Most soil particles are held together in aggregates and the number, size and stability of these aggregates significantly affect the size and amount of organic matter contained in these aggregates, and its susceptibility to decomposition. While it has been shown that soil aggregates and their dynamics can be measured directly in the laboratory and in the field, the impact of soil aggregate dynamics onmore » SOM decomposition has not been explicitly incorporated in ecosystem models. Here, we present AggModel, a conceptual and simulation model that integrates soil aggregate and SOM dynamics. In AggModel, we consider unaggregated and microaggregated soil that can exist within or external to macroaggregated soil. Each of the four aggregate size classes contains particulate organic matter and mineral-associated organic matter fractions. We used published data from laboratory incubations to calibrate and validate the biological and environmental effects on the rate of formation and breakdown of macroaggregates and microaggregates, and the organic matter dynamics within these different aggregate fractions. After calibration, AggModel explained more than 70% of the variation in aggregate masses and over 90% of the variation in aggregate-associated carbon. The model estimated the turnover time of macroaggregates as 32 days and 166 days for microaggregates. Sensitivity analysis of AggModel parameterization supported the notion that macroaggregate turnover rate has a strong control over microaggregate masses and, hence, carbon sequestration. In addition to AggModel being a proof-of-concept, the advantage of a model that is based on measurable SOM fractions is that its internal structure and dynamics can be directly calibrated and validated by

  14. Patterns of Community Change among Ammonia Oxidizers in Meadow Soils upon Long-Term Incubation at Different Temperatures

    PubMed Central

    Avrahami, Sharon; Conrad, Ralf

    2003-01-01

    The effect of temperature on the community structure of ammonia-oxidizing bacteria was investigated in three different meadow soils. Two of the soils (OMS and GMS) were acidic (pH 5.0 to 5.8) and from sites in Germany with low annual mean temperature (about 10°C), while KMS soil was slightly alkaline (pH 7.9) and from a site in Israel with a high annual mean temperature (about 22°C). The soils were fertilized and incubated for up to 20 weeks in a moist state and as a buffered (pH 7) slurry amended with urea at different incubation temperatures (4 to 37°C). OMS soil was also incubated with less fertilizer than the other soils. The community structure of ammonia oxidizers was analyzed before and after incubation by denaturing gradient gel electrophoresis (DGGE) of the amoA gene, which codes for the α subunit of ammonia monooxygenase. All amoA gene sequences found belonged to the genus Nitrosospira. The analysis showed community change due to temperature both in moist soil and in the soil slurry. Two patterns of community change were observed. One pattern was a change between the different Nitrosospira clusters, which was observed in moist soil and slurry incubations of GMS and OMS. Nitrosospira AmoA cluster 1 was mainly detected below 30°C, while Nitrosospira cluster 4 was predominant at 25°C. Nitrosospira clusters 3a, 3b, and 9 dominated at 30°C. The second pattern, observed in KMS, showed a community shift predominantly within a single Nitrosospira cluster. The sequences of the individual DGGE bands that exhibited different trends with temperature belonged almost exclusively to Nitrosospira cluster 3a. We conclude that ammonia oxidizer populations are influenced by temperature. In addition, we confirmed previous observations that N fertilizer also influences the community structure of ammonia oxidizers. Thus, Nitrosospira cluster 1 was absent in OMS soil treated with less fertilizer, while Nitrosospira cluster 9 was only found in the sample given less

  15. Release of native and amended boron from arid zone soils after varying incubation times

    USDA-ARS?s Scientific Manuscript database

    In this study we evaluated the boron (B) release from soils containing elevated native B and examined the extent to which incubation time affected B release. Five soils varying in initial pH and clay content were selected for the study. The soils were spiked with five varying doses of B as H3BO3 (...

  16. Soil Organic Carbon Degradation in Low Temperature Soil Incubations from Flat- and High-Centered Polygons, Barrow, Alaska, 2012-2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jianqiu Zheng; David Graham

    This dataset provides information about organic acids accumulation and ferrous ion concentrations during soil incubations at controlled temperature. Soil cores were collected in 2012 and 2013 from the flat- and high-centered polygon active layers and permafrost (when present) from the NGEE-Arctic Intensive Study Site 1, Barrow, Alaska.

  17. Responses of indigenous microorganisms to soil incubation as viewed by transmission electron microscopy of cell thin sections.

    NASA Technical Reports Server (NTRS)

    Bae, h. C.; Casida, L. E., Jr.

    1973-01-01

    Indigenous soil microorganisms were cultivated in their soil habitat with 50% moisture capacity at 30 C for two weeks. Changes in microorganism cells were studied by electron microscopy during incubation, with particular attention to the dormant cell growth and to the ability of cystlike cells to germinate and reencyst. The responses of various cell species to incubation conditions are described and illustrated by photomicrographs.

  18. Persistence in soil of Miscanthus biochar in laboratory and field conditions

    PubMed Central

    Budai, Alice; O’Toole, Adam; Ma, Xingzhu; Rumpel, Cornelia; Abiven, Samuel

    2017-01-01

    Evaluating biochars for their persistence in soil under field conditions is an important step towards their implementation for carbon sequestration. Current evaluations might be biased because the vast majority of studies are short-term laboratory incubations of biochars produced in laboratory-scale pyrolyzers. Here our objective was to investigate the stability of a biochar produced with a medium-scale pyrolyzer, first through laboratory characterization and stability tests and then through field experiment. We also aimed at relating properties of this medium-scale biochar to that of a laboratory-made biochar with the same feedstock. Biochars were made of Miscanthus biomass for isotopic C-tracing purposes and produced at temperatures between 600 and 700°C. The aromaticity and degree of condensation of aromatic rings of the medium-scale biochar was high, as was its resistance to chemical oxidation. In a 90-day laboratory incubation, cumulative mineralization was 0.1% for the medium-scale biochar vs. 45% for the Miscanthus feedstock, pointing to the absence of labile C pool in the biochar. These stability results were very close to those obtained for biochar produced at laboratory-scale, suggesting that upscaling from laboratory to medium-scale pyrolyzers had little effect on biochar stability. In the field, the medium-scale biochar applied at up to 25 t C ha-1 decomposed at an estimated 0.8% per year. In conclusion, our biochar scored high on stability indices in the laboratory and displayed a mean residence time > 100 years in the field, which is the threshold for permanent removal in C sequestration projects. PMID:28873471

  19. Simple Laboratory Experiment for Illustrating Soil Respiration.

    ERIC Educational Resources Information Center

    Hattey, J. A.; Johnson, G. V.

    1997-01-01

    Describes an experiment to illustrate the effect of food source and added nutrients (N) on microbial activity in the soil. Supplies include air-dried soil, dried plant material, sources of carbon and nitrogen, a trap such as KOH, colored water, and a 500-mL Erlenmeyer flask. Includes a diagram of an incubation chamber to demonstrate microbial…

  20. Eleven years of crop diversification alters decomposition dynamics of litter mixtures incubated with soil

    DOE PAGES

    McDaniel, M. D.; Grandy, A. S.; Tiemann, L. K.; ...

    2016-08-11

    Agricultural crop rotations have been shown to increase soil carbon (C), nitrogen (N), and microbial biomass. The mechanisms behind these increases remain unclear, but may be linked to the diversity of crop residue inputs to soil organic matter (SOM). Here, we used a residue mixture incubation to examine how variation in long-term diversity of plant communities in agroecosystems influences decomposition of residue mixtures, thus providing a comparison of the effects of plant diversification on decomposition in the long term (via crop rotation) and short term (via residue mixtures). Three crop residue mixtures, ranging in diversity from two to four species,more » were incubated for 360 d with soils from five crop rotations, ranging from monoculture corn (mC) to a complex five-crop rotation. In response, we measured fundamental soil pools and processes underlying C and N cycling. These included soil respiration, inorganic N, microbial biomass, and extracellular enzymes. We hypothesized that soils with more diverse cropping histories would show greater synergistic mixture effects than mC. For most variables (except extracellular enzymes), crop rotation history, or the long-term history of plant diversity in the field, had a stronger effect on soil processes than mixture composition. In contrast to our hypothesis, the mC soil had nearly three and seven times greater synergistic mixture effects for respiration and microbial biomass N, respectively, compared with soils from crop rotations. This was due to the low response of the mC soils to poor quality residues (corn and wheat), likely resulting from a lack of available C and nutrients to cometabolize these residues. These results indicate that diversifying crop rotations in agricultural systems alter the decomposition dynamics of new residue inputs, which may be linked to the benefits of increasing crop rotation diversity on soil nutrient cycling, SOM dynamics, and yields.« less

  1. Spectroscopic characterization of organic matter of a soil and vinasse mixture during aerobic or anaerobic incubation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doelsch, Emmanuel; Masion, Armand; Cazevieille, Patrick

    2009-06-15

    Mineralization potentials are often used to classify organic wastes. These methods involve measuring CO{sub 2} production during batch experiments, so variations in chemical compounds are not addressed. Moreover, the physicochemical conditions are not monitored during the reactions. The present study was designed to address these deficiencies. Incubations of a mixture of soil and waste (vinasse at 20% dry matter from a fermentation industry) were conducted in aerobic and anaerobic conditions, and liquid samples obtained by centrifugation were collected at 2 h, 1 d and 28 d. Dissolved organic carbon (DOC) patterns highlighted that: there was a 'soil effect' which increasedmore » organic matter (OM) degradation in all conditions compared to vinasse incubated alone; and OM degradation was faster under aerobic conditions since 500 mg kg{sup -1} of C remained after aerobic incubation, as compared to 4000 mg kg{sup -1} at the end of the anaerobic incubation period. No changes were detected by Fourier transform infrared spectroscopy (FTIR) between 2 h and 1 d incubation. At 28 days incubation, the FTIR signal of the aerobic samples was deeply modified, thus confirming the high OM degradation. Under anaerobic conditions, the main polysaccharide contributions ({nu}(C-O)) disappeared at 1000 and 1200 cm{sup -1}, as also confirmed by the {sup 13}C NMR findings. Under aerobic incubation, a 50% decrease in the polysaccharide proportion was observed. Under anaerobic conditions, significant chemical modifications of the organic fraction were detected, namely formation of low molecular weight organic acids.« less

  2. Effect of wood ash application on soil solution chemistry of tropical acid soils: incubation study.

    PubMed

    Nkana, J C Voundi; Demeyer, A; Verloo, M G

    2002-12-01

    The objective of this study was to determine the effect of wood ash application on soil solution composition of three tropical acid soils. Calcium carbonate was used as a reference amendment. Amended soils and control were incubated for 60 days. To assess soluble nutrients, saturation extracts were analysed at 15 days intervals. Wood ash application affects the soil solution chemistry in two ways, as a liming agent and as a supplier of nutrients. As a liming agent, wood ash application induced increases in soil solution pH, Ca, Mg, inorganic C, SO4 and DOC. As a supplier of elements, the increase in the soil solution pH was partly due to ligand exchange between wood ash SO4 and OH- ions. Large increases in concentrations of inorganic C, SO4, Ca and Mg with wood ash relative to lime and especially increases in K reflected the supply of these elements by wood ash. Wood ash application could represent increased availability of nutrients for the plant. However, large concentrations of basic cations, SO4 and NO3 obtained with higher application rates could be a concern because of potential solute transport to surface waters and groundwater. Wood ash must be applied at reasonable rates to avoid any risk for the environment.

  3. Laboratory incubation experiments assessing the factor interactions affecting urine-derived nitrous oxide emissions from spatially and temporally variable upland pastures

    NASA Astrophysics Data System (ADS)

    Charteris, Alice; Loick, Nadine; Marsden, Karina; Chadwick, Dave; Whelan, Mick; Rao Ravella, Sreenivas; Mead, Andrew; Cardenas, Laura

    2017-04-01

    Urine patches deposited to soils by grazing animals represent hot-spots of nitrous oxide (N2O) emissions (Hargreaves et al., 2015), a powerful greenhouse gas (GHG) and precursor of ozone depletion in the stratosphere. Urine N2O emissions are produced via nitrification of ureolysis-derived ammonium (NH4+) and/or subsequent nitrite (NO2-) and nitrate (NO3-) denitrification (Kool et al., 2006). The dominant process and the N2O fluxes generated depend on interactions between urine characteristics (e.g. nitrogen [N] concentration and volume), soil characteristics (e.g. carbon [C] availability and pH) and preceding and prevailing environmental conditions (e.g. soil moisture and temperature; Bergstermann et al., 2011; Butterbach-Bahl et al., 2013; Dijkstra et al., 2013). The spatial and temporal variability of these interactions in grazing systems is potentially large and greatly increases the uncertainty associated with N2O emission estimates from such systems. In particular, the contribution of extensively managed upland agroecosystems, which occupy ca. 5.5 million hectares in the UK and provide the bulk of land for sheep farming (Pollott & Stone, 2004), to UK GHG emissions is poorly defined. Improving understanding of the interactions between the wide range of factors affecting urine-derived N2O production and emission from pasture soils and considering this in the context of the spatial and temporal variability of the grazing environment could therefore be extremely valuable in improving the accuracy of N2O emission estimates from such systems. The factorial laboratory incubation experiments presented have been designed to assess the interactive effects of factors such as urine N concentration, volume and soil moisture affecting soil N2O (and nitric oxide [NO], nitrogen gas [N2] and carbon dioxide [CO2]) production and emissions (García-Marco et al., 2014) using the state-of-the-art Denitrification Incubation System (DENIS). This work forms part of a wider project

  4. The DIRT on Q10: In situ depletion of labile-inputs does not increase temperature sensitivity in a laboratory incubation (Invited)

    NASA Astrophysics Data System (ADS)

    Reynolds, L. L.; Lajtha, K.; Bowden, R.; Johnson, B. R.; Bridgham, S. D.

    2013-12-01

    C was the same for all replicate sets throughout, indicating no divergence due to the temperature rotations. Contrary to our hypothesis, our data indicates that Q10 was similar among the DIRT treatments, despite the clear differences in their carbon pools. Similar studies have examined the temperature response due to depletion labile substrate through laboratory incubation, rather beginning with presumably very different initial labile pools. Our results would suggest that soils with differing soil carbon content and presumably differing carbon quality have the same relative temperature responses. Recent studies have questioned the putative importance of chemical recalcitrance in soils, which would explain our results relative to the predictions of enzymatic kinetic theory.

  5. Laboratory evidence for short and long-term damage to pink salmon incubating in oiled gravel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heintz, R.; Rice, S.; Wiedmer, M.

    1995-12-31

    Pink salmon, incubating in gravel contaminated with crude oil, demonstrated immediate and delayed responses in the laboratory at doses consistent with the concentrations observed in oiled streams in Prince William Sound. The authors incubated pink salmon embryos in a simulated intertidal environment with gravel contaminated by oil from the Exxon Valdez. During the incubation and emergence periods the authors quantified dose-response curves for characters affected directly by the oil. After emergence, fish were coded wire tagged and released, or cultured in netpens. Delayed responses have been observed among the cultured fish, and further observations will be made when coded wiremore » tagged fish return in September 1995. The experiments have demonstrated that eggs need not contact oiled gravel to experience increased mortality, and doses as low as 17 ppb tPAH in water can have delayed effects on growth. A comparison of sediment tPAH concentrations from streams in Prince William Sound with these laboratory data suggests that many 1989 brood pink salmon were exposed to deleterious quantities of oil.« less

  6. A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations

    USGS Publications Warehouse

    Treat, C.C.; Natali, Susan M.; Ernakovich, Jessica; Iverson, Colleen M.; Lupasco, Massimo; McGuire, A. David; Norby, Richard J.; Roy Chowdhury, Taniya; Richter, Andreas; Šantrůčková, Hana; Schädel, C.; Schuur, Edward A.G.; Sloan, Victoria L.; Turetsky, Merritt R.; Waldrop, Mark P.

    2015-01-01

    Permafrost thaw can alter the soil environment through changes in soil moisture, frequently resulting in soil saturation, a shift to anaerobic decomposition, and changes in the plant community. These changes, along with thawing of previously frozen organic material, can alter the form and magnitude of greenhouse gas production from permafrost ecosystems. We synthesized existing methane (CH4) and carbon dioxide (CO2) production measurements from anaerobic incubations of boreal and tundra soils from the geographic permafrost region to evaluate large-scale controls of anaerobic CO2 and CH4 production and compare the relative importance of landscape-level factors (e.g., vegetation type and landscape position), soil properties (e.g., pH, depth, and soil type), and soil environmental conditions (e.g., temperature and relative water table position). We found fivefold higher maximum CH4 production per gram soil carbon from organic soils than mineral soils. Maximum CH4 production from soils in the active layer (ground that thaws and refreezes annually) was nearly four times that of permafrost per gram soil carbon, and CH4 production per gram soil carbon was two times greater from sites without permafrost than sites with permafrost. Maximum CH4 and median anaerobic CO2 production decreased with depth, while CO2:CH4 production increased with depth. Maximum CH4 production was highest in soils with herbaceous vegetation and soils that were either consistently or periodically inundated. This synthesis identifies the need to consider biome, landscape position, and vascular/moss vegetation types when modeling CH4 production in permafrost ecosystems and suggests the need for longer-term anaerobic incubations to fully capture CH4 dynamics. Our results demonstrate that as climate warms in arctic and boreal regions, rates of anaerobic CO2 and CH4 production will increase, not only as a result of increased temperature, but also from shifts in vegetation and increased

  7. Effect of different organic amendments on the dissipation of linuron, diazinon and myclobutanil in an agricultural soil incubated for different time periods.

    PubMed

    Marín-Benito, Jesús M; Herrero-Hernández, Eliseo; Andrades, M Soledad; Sánchez-Martín, María J; Rodríguez-Cruz, M Sonia

    2014-04-01

    Dissipation kinetics of pesticides belonging to three chemical groups (linuron, diazinon and myclobutanil) was studied in an unamended agricultural soil and in this soil amended with three organic residues: sewage sludge (SS), grape marc (GM) and spent mushroom substrate (SMS). The soils were incubated with the residues outdoors for one and 12 months. Mineralized, extracted and non-extractable fractions were also studied for (14)C-linuron and (14)C-diazinon. The dissipation kinetics was fitted to single first-order or first-order multicompartment models. The dissipation rate (k) decreased in the order diazinon>linuron>myclobutanil, and DT50 values decreased for linuron (1.6-4.8 times) or increased for myclobutanil (1.7-2.6 times) and diazinon (1.8-2.3 times) in the amended soils relative to the unamended soil. The lowest DT50 values for the three pesticides were recorded in GM-amended soil, and the highest values in SMS-amended soil. After 12 months of soil incubation, DT50 values decreased in both the unamended and amended soils for linuron, but increased for the unamended and SMS-amended soil for diazinon and myclobutanil. A certain relationship was observed between the sorption of pesticides by the soils and DT50 values, although it was significant only for myclobutanil (p<0.05). Dissipation mechanism recorded the lowest mineralization of (14)C-pesticides in the GM-soil despite the highest dissipation rate in this soil. The extracted (14)C-residues decreased with incubation time, with increased formation of non-extractable residues, higher in amended soils relative to the unamended soil. Soil dehydrogenase activity was, in general, stimulated by the addition of the organic amendments and pesticides to the soil after one month and 12 months of incubation. The results obtained revealed that the simultaneous use of amendments and pesticides in soils requires a previous study in order to check the environmental specific persistence of these compounds and their

  8. Gaseous nitrogen and bacterial responses to raw and digested dairy manure applications in incubated soil.

    PubMed

    Saunders, Olivia E; Fortuna, Ann-Marie; Harrison, Joe H; Cogger, Craig G; Whitefield, Elizabeth; Green, Tonia

    2012-11-06

    A study was conducted under laboratory conditions to compare rates of nitrous oxide (N(2)O) and ammonia (NH(3)) emissions when soil was amended with anaerobically digested dairy manure slurry containing <30% food byproducts, raw dairy manure slurry, or urea. Slurries were applied via surface and subsurface methods. A second objective was to correlate genes regulating nitrification and denitrification with rates of N(2)O production, slurry treatment, and application method. Ammonia volatilization from incubated soil ranged from 140 g kg(-1) of total N applied in digested slurry to 230 g kg(-1) in urea. Subsurface application of raw dairy manure slurry decreased ammonia volatilization compared with surface application. Anaerobic digestion increased N(2)O production. Cumulative N(2)O loss averaged 27 g kg(-1) of total N applied for digested slurry, compared with 5 g kg(-1) for raw dairy slurry. Genes of interest included a 16S rRNA gene selective for β-subgroup proteobacterial ammonia-oxidizers, amoA, narG, and nosZ quantified with quantitative polymerase chain reaction (qPCR) and real-time polymerase chain reaction (RT-PCR). Application of anaerobically digested slurry increased nitrifier and denitrifier gene copies that correlated with N(2)O production. Expression of all genes measured via mRNA levels was affected by N applications to soil. This study provides new information linking genetic markers in denitrifier and nitrifier populations to N(2)O production.

  9. Nitrification and N2O production processes in soil incubations after ammonium fertilizer application at high concentrations

    NASA Astrophysics Data System (ADS)

    Deppe, Marianna; Well, Reinhard; Giesemann, Anette; Flessa, Heinz

    2016-04-01

    High concentrations of ammonium as they occur, e.g., after point-injection of ammonium fertilizer solution according to the CULTAN fertilization technique may retard nitrification. Potential advantages in comparison to conventional fertilization include a higher N efficiency of crops, reduced nitrate leaching, and lower N2O and N2 emissions. Dynamics of nitrification due to plant uptake and dilution processes, leading to decreasing ammonium concentrations in fertilizer depots, has only poorly been studied before. Furthermore, there is little information about the relative contribution of different N2O production processes under these conditions. To elucidate the process dynamics a laboratory incubation study was conducted. After fertilization with ammonium sulfate at 5 levels (from 0 to 5000 mg NH4+-N kg-1; 20mg NO3--N kg-1 each), sandy loam soil was incubated in dynamic soil microcosms for 21 days. N2O, CH4 and CO2 fluxes as well as isotope signatures of N2O and, at three dates, NO3- and NH4+ were measured. To identify N2O production processes, acetylene inhibition (0.01 vol.%), 15N tracer approaches, and isotopomer data (15N site preference and δ18O) were used. N2O emissions were highest at 450mg NH4+-N kg-1 and declined with further increasing concentrations. At 5000 mg NH4+-N kg-1 nitrification was completely inhibited. However, approximately 90% of N2O production was inhibited by acetylene application, and there was no change in the relative contribution of nitrification and denitrification to N2O production with N level. Applying the non-equilibrium technique to our 15N tracer data revealed heterogeneous distribution of denitrification in soil, with at least two distinct NO3- pools, and spatial separation of NO3- formation and consumption. In comparison with the acetylene inhibition and 15N tracer approaches the results of the isotopomer approach were reasonable and indicated substantial contribution of nitrifier-denitrification (10-40%) to total N2O

  10. High turnover of fungal hyphae in incubation experiments.

    PubMed

    de Vries, Franciska T; Bååth, Erland; Kuyper, Thom W; Bloem, Jaap

    2009-03-01

    Soil biological studies are often conducted on sieved soils without the presence of plants. However, soil fungi build delicate mycelial networks, often symbiotically associated with plant roots (mycorrhizal fungi). We hypothesized that as a result of sieving and incubating without plants, the total fungal biomass decreases. To test this, we conducted three incubation experiments. We expected total and arbuscular mycorrhizal (AM) fungal biomass to be higher in less fertilized soils than in fertilized soils, and thus to decrease more during incubation. Indeed, we found that fungal biomass decreased rapidly in the less fertilized soils. A shift towards thicker hyphae occurred, and the fraction of septate hyphae increased. However, analyses of phospholipid fatty acids (PLFAs) and neutral lipid fatty acids could not clarify which fungal groups were decreasing. We propose that in our soils, there was a fraction of fungal biomass that was sensitive to fertilization and disturbance (sieving, followed by incubation without plants) with a very high turnover (possibly composed of fine hyphae of AM and saprotrophic fungi), and a fraction that was much less vulnerable with a low turnover (composed of saprotrophic fungi and runner hyphae of AMF). Furthermore, PLFAs might not be as sensitive in detecting changes in fungal biomass as previously thought.

  11. Ranking factors affecting emissions of GHG from incubated agricultural soils.

    PubMed

    García-Marco, S; Ravella, S R; Chadwick, D; Vallejo, A; Gregory, A S; Cárdenas, L M

    2014-07-01

    Agriculture significantly contributes to global greenhouse gas (GHG) emissions and there is a need to develop effective mitigation strategies. The efficacy of methods to reduce GHG fluxes from agricultural soils can be affected by a range of interacting management and environmental factors. Uniquely, we used the Taguchi experimental design methodology to rank the relative importance of six factors known to affect the emission of GHG from soil: nitrate (NO 3 - ) addition, carbon quality (labile and non-labile C), soil temperature, water-filled pore space (WFPS) and extent of soil compaction. Grassland soil was incubated in jars where selected factors, considered at two or three amounts within the experimental range, were combined in an orthogonal array to determine the importance and interactions between factors with a L 16 design, comprising 16 experimental units. Within this L 16 design, 216 combinations of the full factorial experimental design were represented. Headspace nitrous oxide (N 2 O), methane (CH 4 ) and carbon dioxide (CO 2 ) concentrations were measured and used to calculate fluxes. Results found for the relative influence of factors (WFPS and NO 3 - addition were the main factors affecting N 2 O fluxes, whilst glucose, NO 3 - and soil temperature were the main factors affecting CO 2 and CH 4 fluxes) were consistent with those already well documented. Interactions between factors were also studied and results showed that factors with little individual influence became more influential in combination. The proposed methodology offers new possibilities for GHG researchers to study interactions between influential factors and address the optimized sets of conditions to reduce GHG emissions in agro-ecosystems, while reducing the number of experimental units required compared with conventional experimental procedures that adjust one variable at a time.

  12. Ranking factors affecting emissions of GHG from incubated agricultural soils

    PubMed Central

    García-Marco, S; Ravella, S R; Chadwick, D; Vallejo, A; Gregory, A S; Cárdenas, L M

    2014-01-01

    Agriculture significantly contributes to global greenhouse gas (GHG) emissions and there is a need to develop effective mitigation strategies. The efficacy of methods to reduce GHG fluxes from agricultural soils can be affected by a range of interacting management and environmental factors. Uniquely, we used the Taguchi experimental design methodology to rank the relative importance of six factors known to affect the emission of GHG from soil: nitrate (NO3−) addition, carbon quality (labile and non-labile C), soil temperature, water-filled pore space (WFPS) and extent of soil compaction. Grassland soil was incubated in jars where selected factors, considered at two or three amounts within the experimental range, were combined in an orthogonal array to determine the importance and interactions between factors with a L16 design, comprising 16 experimental units. Within this L16 design, 216 combinations of the full factorial experimental design were represented. Headspace nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) concentrations were measured and used to calculate fluxes. Results found for the relative influence of factors (WFPS and NO3− addition were the main factors affecting N2O fluxes, whilst glucose, NO3− and soil temperature were the main factors affecting CO2 and CH4 fluxes) were consistent with those already well documented. Interactions between factors were also studied and results showed that factors with little individual influence became more influential in combination. The proposed methodology offers new possibilities for GHG researchers to study interactions between influential factors and address the optimized sets of conditions to reduce GHG emissions in agro-ecosystems, while reducing the number of experimental units required compared with conventional experimental procedures that adjust one variable at a time. PMID:25177207

  13. Soil Incubation Study to Assess the Impacts of Manure Application and Climate Change on Greenhouse Gas Emissions from Agricultural Soil

    NASA Astrophysics Data System (ADS)

    Schiavone, K.; Barbieri, L.; Adair, C.

    2015-12-01

    Agricultural fields in Vermont's Lake Champlain Basin have problems with the loss of nutrients due to runoff which creates eutrophic conditions in the lakes, ponds and rivers. In efforts to retain nitrogen and other nutrients in the soil farmers have started to inject manure rather than spraying it. Our understanding of the effects this might have on the volatilization of nitrogen into nitrous oxide is limited. Already, agriculture produces 69% of the total nitrous oxide emissions in the US. Understanding that climate change will affect the future of agriculture in Vermont, we set up a soil core incubation test to monitor the emissions of CO₂ and N₂O using a Photoacoustic Gas Sensor (PAS). Four 10 cm soil cores were taken from nine different fertilizer management plots in a No Till corn field; Three Injected plots, three Broadcast plots, and three Plow plots. Frozen soil cores were extracted in early April, and remained frozen before beginning the incubation experiment to most closely emulate three potential spring environmental conditions. The headspace was monitored over one week to get emission rates. This study shows that environmental and fertilizer treatments together do not have a direct correlation to the amount of CO₂ and N₂O emissions from agricultural soil. However, production of CO₂ was 26% more in warmer environmental conditions than in variable(freeze/thaw) environmental conditions. The injected fertilizer produced the most emissions, both CO₂ and N₂O. The total N₂O emissions from Injected soil cores were 2.2x more than from traditional broadcast manure cores. We believe this is likely due to the addition of rich organic matter under anaerobic soil conditions. Although, injected fertilizer is a better application method for reducing nutrient runoff, the global warming potential of N₂O is 298 times that of CO₂. With climate change imminent, assessing the harmful effects and benefits of injected fertilizer is a crucial next step in

  14. Raw or incubated olive-mill wastes and its biotransformed products as agricultural soil amendments-effect on sorption-desorption of triazine herbicides.

    PubMed

    Delgado-Moreno, Laura; Almendros, Gonzalo; Peña, Aránzazu

    2007-02-07

    Raw olive-mill waste and soil amendments obtained from their traditional composting or vermicomposting were added, at rates equivalent to 200 Mg ha-1, to a calcareous silty clay loam soil in a laboratory test, in order to improve its fertility and physicochemical characteristics. In particular, the effects on the sorption-desorption processes of four triazine herbicides have been examined. We found that comparatively hydrophobic herbicides terbuthylazine and prometryn increased their retention on amended soil whereas the more polar herbicides simazine and cyanazine were less affected. Soil application of olive cake, without transformation, resulted in the highest herbicide retention. Its relatively high content in aliphatic fractions and lipids could explain the increased herbicide retention through hydrophobic bonding and herbicide diffusion favored by poorly condensed macromolecular structures. On the other hand, the condensed aromatic structure of the compost and vermicompost from olive cake could hinder diffusion processes, resulting in lower herbicide sorption. In fact, the progressive humification in soil of olive-mill solid waste led to a decrease of sorption capacity, which suggested important changes in organic matter quality and interactions during the mineralization process. When soil amended with vermicompost was incubated for different periods of time, the enhanced herbicide sorption capacity persisted for 2 months. Pesticide desorption was reduced by the addition of fresh amendments but was enhanced during the transformation process of amendments in soil. Our results indicate the potential of soil amendments based on olive-mill wastes in the controlled, selective release of triazine herbicides, which varies depending on the maturity achieved by their biological transformation.

  15. Nitrous oxide emission reduction in temperate biochar-amended soils

    NASA Astrophysics Data System (ADS)

    Felber, R.; Hüppi, R.; Leifeld, J.; Neftel, A.

    2012-01-01

    Biochar, a pyrolysis product of organic residues, is an amendment for agricultural soils to improve soil fertility, sequester CO2 and reduce greenhouse gas (GHG) emissions. In highly weathered tropical soils laboratory incubations of soil-biochar mixtures revealed substantial reductions for nitrous oxide (N2O) and carbon dioxide (CO2). In contrast, evidence is scarce for temperate soils. In a three-factorial laboratory incubation experiment two different temperate agricultural soils were amended with green waste and coffee grounds biochar. N2O and CO2 emissions were measured at the beginning and end of a three month incubation. The experiments were conducted under three different conditions (no additional nutrients, glucose addition, and nitrate and glucose addition) representing different field conditions. We found mean N2O emission reductions of 60 % compared to soils without addition of biochar. The reduction depended on biochar type and soil type as well as on the age of the samples. CO2 emissions were slightly reduced, too. NO3- but not NH4+ concentrations were significantly reduced shortly after biochar incorporation. Despite the highly significant suppression of N2O emissions biochar effects should not be transferred one-to-one to field conditions but need to be tested accordingly.

  16. Determination of hydroxylated fatty acids from the biopolymer of tomato cutin and their fate during incubation in soil.

    PubMed

    Hauff, Simone; Chefetz, Benny; Shechter, Michal; Vetter, Walter

    2010-01-01

    The plant cuticle is a thin, predominantly lipid layer that covers all primary aerial surfaces of vascular plants. The monomeric building blocks of the cutin biopolymer are mainly ω-hydroxy fatty acids. Analysis of ω-hydroxy fatty acids from cutin isolated from tomato fruits at different stages of decomposition in soil. Different derivatives and mass spectrometric techniques were used for peak identification and evaluation. Preparation of purified cutin involving dewaxing and HCl treatment. Incubation of purified cutin for 20 months in soil. Pentafluorobenzoyl derivatives were used for GC/MS operated in the electron capture negative ion (ECNI) mode and trimethylsilyl ethers for GC/MS operated in the electron ionisation (EI) mode for analysis of ω-hydroxy fatty acids. Six ω-hydroxy fatty acids were detected in the purified cutin, three of which were identified as degradation products of 9,16-dihydroxyhexadecanoic acid as a consequence of the HCl treatment involved in the purification step. Incubation of the isolated cutin in soil was accompanied with decrease in concentration of all hydroxyl fatty acids. We produced evidence that the HCl treatment only affected free hydroxyl groups and thus could be used for proportioning free and bound OH-groups on cutin fatty acids. The method enabled a direct quantification of the ω-hydroxy fatty acids throughout the incubation phase. Copyright © 2010 John Wiley & Sons, Ltd.

  17. Decomposition of organic carbon in fine soil particles is likely more sensitive to warming than in coarse particles: an incubation study with temperate grassland and forest soils in northern China.

    PubMed

    Ding, Fan; Huang, Yao; Sun, Wenjuan; Jiang, Guangfu; Chen, Yue

    2014-01-01

    It is widely recognized that global warming promotes soil organic carbon (SOC) decomposition, and soils thus emit more CO2 into the atmosphere because of the warming; however, the response of SOC decomposition to this warming in different soil textures is unclear. This lack of knowledge limits our projection of SOC turnover and CO2 emission from soils after future warming. To investigate the CO2 emission from soils with different textures, we conducted a 107-day incubation experiment. The soils were sampled from temperate forest and grassland in northern China. The incubation was conducted over three short-term cycles of changing temperature from 5°C to 30°C, with an interval of 5°C. Our results indicated that CO2 emissions from sand (>50 µm), silt (2-50 µm), and clay (<2 µm) particles increased exponentially with increasing temperature. The sand fractions emitted more CO2 (CO2-C per unit fraction-C) than the silt and clay fractions in both forest and grassland soils. The temperature sensitivity of the CO2 emission from soil particles, which is expressed as Q10, decreased in the order clay>silt>sand. Our study also found that nitrogen availability in the soil facilitated the temperature dependence of SOC decomposition. A further analysis of the incubation data indicated a power-law decrease of Q10 with increasing temperature. Our results suggested that the decomposition of organic carbon in fine-textured soils that are rich in clay or silt could be more sensitive to warming than those in coarse sandy soils and that SOC might be more vulnerable in boreal and temperate regions than in subtropical and tropical regions under future warming.

  18. Decomposition of Organic Carbon in Fine Soil Particles Is Likely More Sensitive to Warming than in Coarse Particles: An Incubation Study with Temperate Grassland and Forest Soils in Northern China

    PubMed Central

    Ding, Fan; Huang, Yao; Sun, Wenjuan; Jiang, Guangfu; Chen, Yue

    2014-01-01

    It is widely recognized that global warming promotes soil organic carbon (SOC) decomposition, and soils thus emit more CO2 into the atmosphere because of the warming; however, the response of SOC decomposition to this warming in different soil textures is unclear. This lack of knowledge limits our projection of SOC turnover and CO2 emission from soils after future warming. To investigate the CO2 emission from soils with different textures, we conducted a 107-day incubation experiment. The soils were sampled from temperate forest and grassland in northern China. The incubation was conducted over three short-term cycles of changing temperature from 5°C to 30°C, with an interval of 5°C. Our results indicated that CO2 emissions from sand (>50 µm), silt (2–50 µm), and clay (<2 µm) particles increased exponentially with increasing temperature. The sand fractions emitted more CO2 (CO2-C per unit fraction-C) than the silt and clay fractions in both forest and grassland soils. The temperature sensitivity of the CO2 emission from soil particles, which is expressed as Q10, decreased in the order clay>silt>sand. Our study also found that nitrogen availability in the soil facilitated the temperature dependence of SOC decomposition. A further analysis of the incubation data indicated a power-law decrease of Q10 with increasing temperature. Our results suggested that the decomposition of organic carbon in fine-textured soils that are rich in clay or silt could be more sensitive to warming than those in coarse sandy soils and that SOC might be more vulnerable in boreal and temperate regions than in subtropical and tropical regions under future warming. PMID:24736659

  19. A Laboratory Exercise Relating Soil Energy Budgets to Soil Temperature

    ERIC Educational Resources Information Center

    Koenig, Richard T.; Cerny-Koenig, Teresa; Kotuby-Amacher, Janice; Grossl, Paul R.

    2008-01-01

    Enrollment by students in degree programs other than traditional horticulture, agronomy, and soil science has increased in basic plant and soil science courses. In order to broaden the appeal of these courses to students from majors other than agriculture, we developed a hands-on laboratory exercise relating the basic concepts of a soil energy…

  20. Changes in Soil Carbon Turnover after Five Years of Bioenergy Cropping Systems from a Long-Term Incubation Experiment and Radiocarbon Measurements.

    NASA Astrophysics Data System (ADS)

    Szymanski, L. M.; Sanford, G. R.; Heckman, K. A.; Jackson, R. D.; Marin-Spiotta, E.

    2016-12-01

    In the face of climate change, the global production of bioenergy crops has increased in response to policies calling for non-fossil energy sources as a means to mitigate rising atmospheric carbon (C) concentrations. To provide overall C sequestration benefits, identifying biomass crops that can maintain or enhance soil resources is desirable for sustainable bioenergy production. The objective of our study was to compare the effects of four bioenergy cropping systems on SOM dynamics in two agricultural soils: Mollisols at the University of Wisconsin Agricultural Research Station in Arlington, Wisconsin and Alfisols at Kellogg Biological Station in Hickory Corners, Michigan, USA. We used fresh soils collected in 2013 and archived soils collected in 2008 to measure differences among biofuel crops after 5 years of management. Using a 365-day laboratory soil incubation and radiocarbon measurements of bulk soil and respired C, we separated soils into three SOM pools and determined their corresponding turnover times. Total soil C respired from surface soils increased in the order: mixed species perennials > monoculture perennials > monoculture annuals. More C was associated with the active fraction in the sandy loam Alfisol and with the slow-cycling fraction in the silt loam Mollisol. Radiocarbon content of respired CO2 did not differ between corn and switchgrass, but did differ between 2008 and 2013. The respiration of more radiocarbon-depleted C after 5 years of cultivation may be due to an initial flux of young C following tillage in 2008 or to depletion of labile plant inputs with continued harvest. All bioenergy cropping systems lost soil C after 5 years. Monoculture perennial switchgrass systems did not provide significant C sequestration benefits, as expected, compared to monoculture annual corn systems. Bioenergy crop land-use change affects soil C dynamics, with implications for assessing C costs associated with biofuel production.

  1. Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: An incubation study

    PubMed Central

    Molaei, Ali; Haghnia, Gholamhosain; Astaraei, Alireza; Rasouli-Sadaghiani, MirHassan; Teresa Ceccherini, Maria; Datta, Rahul

    2017-01-01

    Oxytetracycline (OTC) and sulfamethoxazole (SMX) are two of most widely used antibiotics in livestock and poultry industry. After consumption of antibiotics, a major portion of these compounds is excreted through the feces and urine of animals. Land application of antibiotic-treated animal wastes has caused increasing concern about their adverse effects on ecosystem health. In this regard, inconsistent results have been reported regarding the effects of antibiotics on soil microbial activities. This study was conducted based on the completely randomized design to the measure microbial biomass carbon, cumulative respiration and iron (III) reduction bioassays. Concentrations of OTC and SMX including 0, 1, 10, 25, 50, and 100 mg/kg were spiked in triplicate to a sandy loam soil and incubated for 21 days at 25°C. Results showed that the effects of OTC and SMX antibiotics on cumulative respiration and microbial biomass carbon were different. SMX antibiotic significantly affected soil microbial biomass carbon and cumulative respiration at different treatments compared to control with increasing incubation time. OTC antibiotic, on the other hand, negatively affected cumulative respiration compared to control treatment throughout the incubation period. Although OTC antibiotic positively affected microbial biomass carbon at day one of incubation, there was no clear trend in microbial biomass carbon between different treatments of this antibiotic after that time period. Nevertheless, sulfamethoxazole and oxytetracycline antibiotics had similar effects on iron (III) reduction such that they considerably affected iron (III) reduction at 1 and 10 mg/kg, and iron (III) reduction was completely inhibited at concentrations above 10 mg/kg. Hence, according to our results, microbial biomass carbon and cumulative respiration experiments are not able alone to exhibit the effect of antibiotics on soil microbial activity, but combination of these two experiments with iron (III

  2. Soil erodibility variability in laboratory and field rainfall simulations

    NASA Astrophysics Data System (ADS)

    Szabó, Boglárka; Szabó, Judit; Jakab, Gergely; Centeri, Csaba; Szalai, Zoltán

    2017-04-01

    Rainfall simulation experiments are the most common way to observe and to model the soil erosion processes in in situ and ex situ circumstances. During modelling soil erosion, one of the most important factors are the annual soil loss and the soil erodibility which represent the effect of soil properties on soil loss and the soil resistance against water erosion. The amount of runoff and soil loss can differ in case of the same soil type, while it's characteristics determine the soil erodibility factor. This leads to uncertainties regarding soil erodibility. Soil loss and soil erodibility were examined with the investigation of the same soil under laboratory and field conditions with rainfall simulators. The comparative measurement was carried out in a laboratory on 0,5 m2, and in the field (Shower Power-02) on 6 m2 plot size where the applied slope angles were 5% and 12% with 30 and 90 mm/h rainfall intensity. The main idea was to examine and compare the soil erodibility and its variability coming from the same soil, but different rainfall simulator type. The applied model was the USLE, nomograph and other equations which concern single rainfall events. The given results show differences between the field and laboratory experiments and between the different calculations. Concerning for the whole rainfall events runoff and soil loss, were significantly higher at the laboratory experiments, which affected the soil erodibility values too. The given differences can originate from the plot size. The main research questions are that: How should we handle the soil erodibility factors and its significant variability? What is the best solution for soil erodibility determination?

  3. Temporal variability in Cu speciation, phytotoxicity, and soil microbial activity of Cu-polluted soils as affected by elevated temperature.

    PubMed

    Fu, Qing-Long; Weng, Nanyan; Fujii, Manabu; Zhou, Dong-Mei

    2018-03-01

    Global warming has obtained increasing attentions due to its multiple impacts on agro-ecosystem. However, limited efforts had been devoted to reveal the temporal variability of metal speciation and phytotoxicity of heavy metal-polluted soils affected by elevated temperature under the global warming scenario. In this study, effects of elevated temperature (15 °C, 25 °C, and 35 °C) on the physicochemical properties, microbial metabolic activities, and phytotoxicity of three Cu-polluted soils were investigated by a laboratory incubation study. Soil physicochemical properties were observed to be significantly altered by elevated temperature with the degree of temperature effect varying in soil types and incubation time. The Biolog and enzymatic tests demonstrated that soil microbial activities were mainly controlled and decreased with increasing incubation temperature. Moreover, plant assays confirmed that the phytotoxicity and Cu uptake by wheat roots were highly dependent on soil types but less affected by incubation temperature. Overall, the findings in this study have highlighted the importance of soil types to better understand the temperature-dependent alternation of soil properties, Cu speciation and bioavailability, as well as phytotoxicity of Cu-polluted soils under global warming scenario. The present study also suggests the necessary of investigating effects of soil types on the transport and accumulation of toxic elements in soil-crop systems under global warming scenario. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. CO2 and CH4 Production in Low-Temperature Soil Incubations from Low and High Centered Polygons, Barrow, Alaska, 2012-2013

    DOE Data Explorer

    Taniya RoyChowdhury; David Graham; Stan Wullschleger

    2016-08-29

    The dataset consists of respiration and methane production rates obtained from soil microcosm studies carried out under controlled temperature and incubation conditions. Soils represent the low- and high-centered polygon active layers and permafrost (when present) from the NGEE-Arctic Intensive Study Site 1.

  5. Lignin biochemistry and soil N determine crop residue decomposition and soil priming

    USDA-ARS?s Scientific Manuscript database

    Cropping history can affect soil properties, including available N, but little is known about the interactive effects of residue biochemistry, temperature and cropping history on residue decomposition. A laboratory incubation examined the role of residue biochemistry and temperature on the decomposi...

  6. Effects of Growth Medium, Inoculum Size, and Incubation Time on Culturability and Isolation of Soil Bacteria

    PubMed Central

    Davis, Kathryn E. R.; Joseph, Shayne J.; Janssen, Peter H.

    2005-01-01

    Soils are inhabited by many bacteria from phylogenetic groups that are poorly studied because representatives are rarely isolated in cultivation studies. Part of the reason for the failure to cultivate these bacteria is the low frequency with which bacterial cells in soil form visible colonies when inoculated onto standard microbiological media, resulting in low viable counts. We investigated the effects of three factors on viable counts, assessed as numbers of CFU on solid media, and on the phylogenetic groups to which the isolated colony-forming bacteria belong. These factors were inoculum size, growth medium, and incubation time. Decreasing the inoculum size resulted in significant increases in the viable count but did not appear to affect colony formation by members of rarely isolated groups. Some media that are traditionally used for soil microbiological studies returned low viable counts and did not result in the isolation of members of rarely isolated groups. Newly developed media, in contrast, resulted in high viable counts and in the isolation of many members of rarely isolated groups, regardless of the inoculum size. Increased incubation times of up to 3 months allowed the development of visible colonies of members of rarely isolated groups in conjunction with the use of appropriate media. Once isolated, pure cultures of members of rarely isolated groups took longer to form visible colonies than did members of commonly isolated groups. Using these new media and extended incubation times, we were able to isolate many members of the phyla Acidobacteria (subdivisions 1, 2, 3, and 4), Gemmatimonadetes, Chloroflexi, and Planctomycetes (including representatives of the previously uncultured WPS-1 lineage) as well as members of the subclasses Rubrobacteridae and Acidimicrobidae of the phylum Actinobacteria. PMID:15691937

  7. High-Iron Biosolids Compost-Induced Changes in Lead and Arsenic Speciation and Bioaccessibility in Co-contaminated Soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Sally L; Clausen, Ingrid; Chappell, Mark A

    2012-10-23

    The safety of urban farming has been questioned due to the potential for contamination in urban soils. A laboratory incubation, a field trial, and a second laboratory incubation were conducted to test the ability of high-Fe biosolids–based composts to reduce the bioaccessibility of soil Pb and As in situ. Lead and As bioaccessibility were evaluated using an in vitro assay. Changes in Pb, As, and Fe speciation were determined on select samples after the second laboratory incubation using μ–X-ray fluorescence mapping followed by μ–X-ray absorption near-edge structure (XANES). A compost with Fe added to wastewater treatment residuals (Fe WTR compost)more » added to soils at 100 g kg -1 decreased Pb bioaccessibility in both laboratory incubations. Mixed results were observed for As. Composts tested in the field trial (Fe added as Fe powder or FeCl 2) did not reduce bioaccessible Pb, and limited reductions were observed in bioaccessible As. These composts had no effect on Pb bioaccessibility during the second laboratory incubation. Bulk XANES showed association of Pb with sulfates and carbonates in the control soil. μ-XANES for three points in the Fe WTR amended soil showed Pb present as Fe-sorbed Pb (88 and 100% of two points) and pyromorphite (12 and 53% of two points). Bulk XANES of the Fe WTR compost showed 97% of total Fe present as Fe 3+. The results of this study indicate that addition of high-Fe biosolids compost is an effective means to reduce Pb accessibility only for certain types of Fe-rich materials.« less

  8. SOIL AND FILL LABORATORY SUPPORT - 1991

    EPA Science Inventory

    The report gives results of soil analysis laboratory work by the University of Florida in Support of the Florida Radon Research Program (FRRP). Analyses were performed on soil and fill samples collected during 1991 by the FRRP Research House program and the New House Evaluation P...

  9. High-Iron Biosolids Compost-Induced Changes in Lead and Arsenic Speciation and Bioaccessibility in Co-contaminated Soils

    EPA Science Inventory

    The safety of urban farming has been questioned due to the potential for contamination in urban soils. A laboratory incubation, a field trial, and a second laboratory incubation were conducted to test the ability of high-Fe biosolids–based composts to reduce the bioaccessibil...

  10. 15N-CPMAS nuclear magnetic resonace spectroscopy and biological stability of soil organic nitrogen in whole soil and particle-size fractions

    Treesearch

    R.J. DiCosty; D.P. Weliky; S.J. Anderson; E.A. Paul

    2003-01-01

    Soil organic nitrogen was quantified by solid-state 15N cross-polarization nuclear magnetic resonance spectroscopy (NMR) during a 14-month laboratory incubation of a sandy loam soil amended with 15N-clover. In whole soil and particle-size fractions, the clover-derived N was always 85-90% amide, 5 10% guanidinium N of...

  11. Extension of laboratory-measured soil spectra to field conditions

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.; Weismiller, R. A.; Biehl, L. L.; Robinson, B. F.

    1982-01-01

    Spectral responses of two glaciated soils, Chalmers silty clay loam and Fincastle silt loam, formed under prairie grass and forest vegetation, respectively, were measured in the laboratory under controlled moisture equilibria using an Exotech Model 20C spectroradiometer to obtain spectral data in the laboratory under artificial illumination. The same spectroradiometer was used outdoors under solar illumination to obtain spectral response from dry and moistened field plots with and without corn residue cover, representing the two different soils. Results indicate that laboratory-measured spectra of moist soil are directly proportional to the spectral response of that same field-measured moist bare soil over the 0.52 micrometer to 1.75 micrometer wavelength range. The magnitudes of difference in spectral response between identically treated Chalmers and Fincastle soils are greatest in the 0.6 micrometers to 0.8 micrometer transition region between the visible and near infrared, regardless of field condition or laboratory preparation studied.

  12. Laboratory Experiment on Electrokinetic Remediation of Soil

    ERIC Educational Resources Information Center

    Elsayed-Ali, Alya H.; Abdel-Fattah, Tarek; Elsayed-Ali, Hani E.

    2011-01-01

    Electrokinetic remediation is a method of decontaminating soil containing heavy metals and polar organic contaminants by passing a direct current through the soil. An undergraduate chemistry laboratory is described to demonstrate electrokinetic remediation of soil contaminated with copper. A 30 cm electrokinetic cell with an applied voltage of 30…

  13. Effect of ferrihydrite biomineralization on methanogenesis in an anaerobic incubation from paddy soil

    NASA Astrophysics Data System (ADS)

    Zhuang, Li; Xu, Jielong; Tang, Jia; Zhou, Shungui

    2015-05-01

    Microbial reduction of Fe(III) can be one of the major factors controlling methane production from anaerobic sedimentary environments, such as paddy soils and wetlands. Although secondary iron mineralization following Fe(III) reduction is a process that occurs naturally over time, it has not yet been considered in methanogenic systems. This study performed a long-term anaerobic incubation of a paddy soil and ferrihydrite-supplemented soil cultures to investigate methanogenesis during ferrihydrite biomineralization. The results revealed that the long-term effect of ferrihydrite on methanogenesis may be enhancement rather than suppression documented in previous studies. During initial microbial ferrihydrite reduction, methanogenesis was suppressed; however, the secondary minerals of magnetite formation was simultaneous with facilitated methanogenesis in terms of average methane production rate and acetate utilization rate. In the phase of magnetite formation, microbial community analysis revealed a strong stimulation of the bacterial Geobacter, Bacillus, and Sedimentibacter and the archaeal Methanosarcina in the ferrihydrite-supplemented cultures. Direct electric syntrophy between Geobacter and Methanosarcina via conductive magnetite is the plausible mechanism for methanogenesis acceleration along with magnetite formation. Our data suggested that a change in iron mineralogy might affect the conversion of anaerobic organic matter to methane and might provide a fresh perspective on the mitigation of methane emissions from paddy soils by ferric iron fertilization.

  14. A comparison of artificial incubation and natural incubation hatching success of gopher tortoise (Gopherus polyphemus) eggs in southern Mississippi

    USGS Publications Warehouse

    Noel, Krista M.; Qualls, Carl P.; Ennen, Joshua R.

    2012-01-01

    Recent studies have found that Gopher Tortoise, Gopherus polyphemus, populations in southern Mississippi exhibit low recruitment, due in part to very low hatching success of their eggs. We sought to determine if the cause(s) of this low hatching success was related to egg quality (intrinsic factors), unsuitability of the nest environment (extrinsic factors), or a combination of the two. In 2003, hatching success was monitored simultaneously for eggs from the same clutches that were incubated in the laboratory and left to incubate in nests. A subset of randomly chosen eggs from each clutch was incubated in the laboratory under physical conditions that were known to be conducive to successful hatching to estimate the proportion of eggs that were capable of hatching in a controlled setting. Hatching success in the laboratory was compared with that of eggs incubated in natural nests to estimate the proportion of eggs that failed to hatch presumably from extrinsic factors. Laboratory hatching success was 58.8%, suggesting that roughly 40% of the eggs were intrinsically incapable of hatching even when incubated under controlled conditions. Hatching success in natural nests, 16.7%, was significantly lower than hatching success in the laboratory, suggesting that approximately 42.1% of eggs were capable of hatching but failed to hatch due to some extrinsic aspect(s) of the nest environment. Thus, the low hatching success of Gopher Tortoise eggs in southern Mississippi appears to be attributable to a combination of intrinsic (egg quality) and extrinsic (nest environment) factors.

  15. Community-level physiological profiles of bacteria and fungi: Plate type and incubation temperature influences on contrasting soils

    Treesearch

    Aimee T. Classen; Sarah I. Boyle; Kristin E. Haskins; Steven T. Overby; Stephen C. Hart

    2003-01-01

    Temperature sensitivity of community-level physiological profiles (CLPPs) was examined for two semiarid soils from the southwestern United States using five different C-substrate profile microtiter plates (Biolog GN2, GP2, ECO, SFN2, and SFP2) incubated at five different temperature regimes.The CLPPs produced from all plate types were relatively unaffected by these...

  16. Laboratory-scale bioremediation of oil-contaminated soil of Kuwait with soil amendment materials.

    PubMed

    Cho, B H; Chino, H; Tsuji, H; Kunito, T; Nagaoka, K; Otsuka, S; Yamashita, K; Matsumoto, S; Oyaizu, H

    1997-10-01

    A huge amount of oil-contaminated soil remains unremediated in the Kuwait desert. The contaminated oil has the potentiality to cause pollution of underground water and to effect the health of people in the neighborhood. In this study, laboratory scale bioremediation experiments were carried out. Hyponex (Hyponex, Inc.) and bark manure were added as basic nutrients for microorganisms, and twelve kinds of materials (baked diatomite, microporous glass, coconut charcoal, an oil-decomposing bacterial mixture (Formula X from Oppenheimer, Inc.), and eight kinds of surfactants) were applied to accelerate the biodegradation of oil hydrocarbons. 15% to 33% of the contaminated oil was decomposed during 43 weeks' incubation. Among the materials tested, coconut charcoal enhanced the biodegradation. On the contrary, the addition of an oil-decomposing bacterial mixture impeded the biodegradation. The effects of the other materials were very slight. The toxicity of the biodegraded compounds was estimated by the Ames test and the tea pollen tube growth test. Both of the hydrophobic (dichloromethane extracts) and hydrophilic (methanol extracts) fractions showed a very slight toxicity in the Ames test. In the tea pollen tube growth test, the hydrophobic fraction was not toxic and enhanced the growth of pollen tubes.

  17. Controlling risks of P water pollution by sorption on soils, pyritic material, granitic material, and different by-products: effects of pH and incubation time.

    PubMed

    Romar-Gasalla, Aurora; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Sanjurjo, María J; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2018-05-13

    Batch experiments were used to test P sorbent potential of soil samples, pyritic and granitic materials, mussel shell, mussel shell ash, sawdust, and slate waste fines for different pH and incubation times. Maximum P sorption varied in a wide range of pH: < 4 for pyritic material, 4-6 for forest soil, > 5 for slate fines, > 6 for shell ash, and pH 6-8 for mussel shell. P sorption was rapid (< 24 h) for forest soil, shell ash, pyritic material, and fine shell. On the opposite side, it was clearly slower for vineyard soil, granitic material, slate fines, pine sawdust, and coarse shell, with increased P sorption even 1 month later. For any incubation time, P sorption was > 90% in shell ash, whereas forest soil, pyritic material, and fine shell showed sorption rates approaching 100% within 24 h of incubation. These results could be useful to manage and/or recycle the sorbents tested when focusing on P immobilization or removal, in circumstances where pH changes and where contact time may vary from hours to days, thus aiding to diminish P pollution and subsequent eutrophication risks, promoting conservation and sustainability.

  18. Dissipation of sulfamethoxazole in pasture soils as affected by soil and environmental factors.

    PubMed

    Srinivasan, Prakash; Sarmah, Ajit K

    2014-05-01

    The dissipation of sulfamethoxazole (SMO) antibiotic in three different soils was investigated through laboratory incubation studies. The experiments were conducted under different incubation conditions such as initial chemical concentration, soil depth, temperature, and with sterilisation. The results indicate that SMO dissipated rapidly in New Zealand pasture soils, and the 50% dissipation times (DT50) in Hamilton, Te Kowhai and Horotiu soils under non-sterile conditions were 9.24, 4.3 and 13.33 days respectively. During the incubation period for each sampling event the soil dehydrogenase activity (DHA) and the variation in microbial community were monitored thorough phospholipid fatty acid extraction analysis (PLFA). The DHA data correlated well with the dissipation rate constants of SMO antibiotic, an increase in the DHA activity resulted in faster antibiotic dissipation. The PLFA analysis was indicative of higher bacterial presence as compared to fungal community, highlighting the type of microbial community responsible for dissipation. The results indicate that with increasing soil depth, SMO dissipation in soil was slower (except for Horotiu) while with increase in temperature the antibiotic loss was faster, and was noticeable in all the soils. Both the degree of biological activity and the temperature of the soil influenced overall SMO dissipation. SMO is not likely to persist more than 5-6 months in all three soils suggesting that natural biodegradation may be sufficient for the removal of these contaminants from the soil. Its dissipation in sterile soils indicated abiotic factors such as strong sorption onto soil components to play a role in the dissipation of SMO. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The effect of diet manipulation on nitrous oxide and methane emissions from manure application to incubated grassland soils

    NASA Astrophysics Data System (ADS)

    Cardenas, L. M.; Chadwick, D.; Scholefield, D.; Fychan, R.; Marley, C. L.; Jones, R.; Bol, R.; Well, R.; Vallejo, A.

    Changes to agricultural management, particularly of the nitrogen (N) input to farms, have great potential for mitigating emissions of N containing gases, especially the greenhouse gas nitrous oxide (N 2O). Manipulating diets fed to livestock is a potential method for controlling N excretion and emissions of greenhouse gases (GHG's) to the atmosphere. We selected three slurries derived from sheep that had been fed, either ensiled ryegrass ( Lolium hybridicum), lucerne ( Medicago sativa) or kale ( Brassica oleracea) and applied them to a grassland soil from the UK in a laboratory experiment using a special He/O 2 atmosphere incubation facility. The resulting fluxes of N 2O, CH 4 and N 2 were measured, with the largest total N fluxes generated by the ryegrass slurry treatment (14.23 ryegrass, 10.84 lucerne, 13.88 kale and 4.40 kg N ha -1 from the control). Methane was emitted only from the ryegrass slurry treatment. The isotopomer signatures for N 2O in the control and lucerne slurry treatments indicated that denitrification was the main process responsible for N 2O emissions.

  20. Biodegradation of acetanilide herbicides acetochlor and butachlor in soil.

    PubMed

    Ye, Chang-ming; Wang, Xing-jun; Zheng, He-hui

    2002-10-01

    The biodegradation of two acetanilide herbicides, acetochlor and butachlor in soil after other environmental organic matter addition were measured during 35 days laboratory incubations. The herbicides were applied to soil alone, soil-SDBS (sodium dodecylbenzene sulfonate) mixtures and soil-HA (humic acid) mixtures. Herbicide biodegradation kinetics were compared in the different treatment. Biodegradation products of herbicides in soil alone samples were identified by GC/MS at the end of incubation. Addition of SDBS and HA to soil decreased acetochlor biodegradation, but increased butachlor biodegradation. The biodegradation half-life of acetochlor and butachlor in soil alone, soil-SDBS mixtures and soil-HA mixtures were 4.6 d, 6.1 d and 5.4 d and 5.3 d, 4.9 d and 5.3 d respectively. The biodegradation products were hydroxyacetochlor and 2-methyl-6-ethylaniline for acetochlor, and hydroxybutachlor and 2,6-diethylaniline for butachlor.

  1. Modeling the effects of tree species and incubation temperature on soil's extracellular enzyme activity in 78-year-old tree plantations

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoqi; Wang, Shen S. J.; Chen, Chengrong

    2017-12-01

    Forest plantations have been widely used as an effective measure for increasing soil carbon (C), and nitrogen (N) stocks and soil enzyme activities play a key role in soil C and N losses during decomposition of soil organic matter. However, few studies have been carried out to elucidate the mechanisms behind the differences in soil C and N cycling by different tree species in response to climate warming. Here, we measured the responses of soil's extracellular enzyme activity (EEA) to a gradient of temperatures using incubation methods in 78-year-old forest plantations with different tree species. Based on a soil enzyme kinetics model, we established a new statistical model to investigate the effects of temperature and tree species on soil EEA. In addition, we established a tree species-enzyme-C/N model to investigate how temperature and tree species influence soil C/N contents over time without considering plant C inputs. These extracellular enzymes included C acquisition enzymes (β-glucosidase, BG), N acquisition enzymes (N-acetylglucosaminidase, NAG; leucine aminopeptidase, LAP) and phosphorus acquisition enzymes (acid phosphatases). The results showed that incubation temperature and tree species significantly influenced all soil EEA and Eucalyptus had 1.01-2.86 times higher soil EEA than coniferous tree species. Modeling showed that Eucalyptus had larger soil C losses but had 0.99-2.38 times longer soil C residence time than the coniferous tree species over time. The differences in the residual soil C and N contents between Eucalyptus and coniferous tree species, as well as between slash pine (Pinus elliottii Engelm. var. elliottii) and hoop pine (Araucaria cunninghamii Ait.), increase with time. On the other hand, the modeling results help explain why exotic slash pine can grow faster, as it has 1.22-1.38 times longer residual soil N residence time for LAP, which mediate soil N cycling in the long term, than native coniferous tree species like hoop pine and

  2. Co-addition of manure increases the dissipation rates of tylosin A and the numbers of resistance genes in laboratory incubation experiments.

    PubMed

    Li, Qian; Wang, Yan; Zou, Yong-De; Liao, Xin-Di; Liang, Juan-Boo; Xin, Wen; Wu, Yin-Bao

    2015-09-15

    The behavior of veterinary antibiotics in the soil is commonly studied using the following methods to add antibiotics to the soil: (A) adding manure collected from animals fed a diet that includes antibiotics; (B) adding antibiotic-free animal manure spiked with antibiotics; and (C) the direct addition of antibiotics. However, most studies have only used methods (B) and (C) in their research, and few studies have simultaneously compared the different antibiotic addition methods. This study used tylosin A (TYLA) as a model antibiotic to compare the effects of these three commonly used antibiotic addition methods on the dissipation rates of TYLA and the numbers of resistance genes in laboratory incubation experiments. The results showed that the three treatment methods produced similar TYLA degradation trends; however, there were significant differences (P<0.05) in the TYLA degradation half-life (t1/2) among the three methods. The half-life of TYLA degradation in treatments A, B and C was 2.44 ± 0.04, 1.21 ± 0.03 and 5.13 ± 0.11 days, respectively. The presence of manure resulted in a higher electrical conductivity (EC), higher relative abundance of Citrobacter amalonaticus, higher macrolide resistant gene (ermB, ermF and ermT) count and lower ecological toxicity in the soil, which could partially explain the higher TYLA degradation rate in the treatments containing manure. The higher degradation rate of TYLA in treatment B when compared to treatment A could be due to the lower concentrations of tylosin B (TYLB) and tylosin D (TYLD). The main route for veterinary antibiotics to enter the soil is via the manure of animals that have been administered antibiotics. Therefore, the more appropriate method to study the degradation and ecotoxicity of antibiotic residues in the soil is by using manure from animals fed/administered the particular antibiotic rather than by adding the antibiotic directly to the soil. Copyright © 2015. Published by Elsevier B.V.

  3. Measuring Nitrification: A Laboratory Approach to Nutrient Cycling.

    ERIC Educational Resources Information Center

    Hicks, David J.

    1990-01-01

    Presented is an approach to the study of nutrient cycling in the school laboratory. Discussed are obtaining, processing, and incubating samples; extraction of ions from soil; procedures for nitrate and ammonium analysis; data analysis; an example of results; and other aspects of the nitrogen cycle. (CW)

  4. Effects of spent mushroom compost application on the physicochemical properties of a degraded soil

    NASA Astrophysics Data System (ADS)

    Gümüş, İlknur; Şeker, Cevdet

    2017-11-01

    Under field and laboratory conditions, the application of organic amendments has generally shown an improvement in soil physicochemical properties. Here, spent mushroom compost (SMC) is proposed as a suitable organic amendment for soil structure restoration. Our study assessed the impact of SMC on the physicochemical properties of a weak-structured and physically degraded soil. The approach involved the establishment of a pot experiment with SMC applications into soil (control, 0.5, 1, 2, 4 and 8 %). Soils were incubated at field capacity (-33 kPa) for 21, 42, and 62 days under laboratory conditions. SMC applications into the soil significantly increased the aggregate stability (AS) and decreased the modulus of rupture. The application of SMC at rates of 1, 2, 4, and 8 % significantly increased the total nitrogen and soil organic carbon contents of the degraded soil at all incubation periods (p < 0.05). The results obtained in this study indicate that the application of SMC can improve soil physicochemical properties, which may benefit farmers, land managers, and mushroom growers.

  5. GROSS N TRANSFORMATION RATES AND MICROBIAL POPULATION DYNAMICS UNDER FIELD AND LABORATORY CONDITIONS FROM TWO DIFFERENT ECOSYSTEMS

    EPA Science Inventory

    Change of soil and environmental conditions can influence microbial activities and subsequent soil nitrogen (N) transformation processes. The objective of this study was to compare gross N transformation rates between field and laboratory incubation conditions using an old-field...

  6. Emission of Carbon Dioxide Influenced by Different Water Levels from Soil Incubated Organic Residues

    PubMed Central

    Hossain, M. B.; Puteh, A. B.

    2013-01-01

    We studied the influence of different organic residues and water levels on decomposition rate and carbon sequestration in soil. Organic residues (rice straw, rice root, cow dung, and poultry litter) including control were tested under moistened and flooding systems. An experiment was laid out as a complete randomized design at 25°C for 120 days. Higher CO2-C (265.45 mg) emission was observed in moistened condition than in flooding condition from 7 to 120 days. Among the organic residues, poultry litter produced the highest CO2-C emission. Poultry litter with soil mixture increased 121% cumulative CO2-C compared to control. On average, about 38% of added poultry litter C was mineralized to CO2-C. Maximum CO2-C was found in 7 days after incubation and thereafter CO2-C emission was decreased with the increase of time. Control produced the lowest CO2-C (158.23 mg). Poultry litter produced maximum cumulative CO2-C (349.91 mg). Maximum organic carbon was obtained in cow dung which followed by other organic residues. Organic residues along with flooding condition decreased cumulative CO2-C, k value and increased organic C in soil. Maximum k value was found in poultry litter and control. Incorpored rice straw increased organic carbon and decreased k value (0.003 g d−1) in soil. In conclusion, rice straw and poultry litter were suitable for improving soil carbon. PMID:24163626

  7. Linking Water Table Dynamics to Carbon Cycling in Artificial Soil Column Incubations

    NASA Astrophysics Data System (ADS)

    Geertje, Pronk; Adrian, Mellage; Tatjana, Milojevic; Fereidoun, Rezanezhad; Cappellen Philippe, Van

    2016-04-01

    The biogeochemistry of wetlands soils is closely tied to their hydrology. Water table fluctuations that cause flooding and drying of these systems may lead to enhanced degradation of organic matter and release of greenhouse gasses (e.g. CO2, CH4) to the atmosphere. However, predicting the influence of water table fluctuations on the biogeochemical functioning of soils requires an understanding of the interactions of soil hydrology with biogeochemical and microbial processes. To determine the effects of water table dynamics on carbon cycling, we are carrying out state-of-the-art automated soil column experiments with fully integrated monitoring of hydro-bio-geophysical process variables under both constant and oscillating water table conditions. An artificial, homogeneous mixture consisting of minerals and organic matter is used to provide a well-defined starting material. The artificial soils are composed of quartz sand, montmorillonite, goethite and humus from a forested riparian zone, from which we also extracted the microbial inoculum added to the soil mixture. The artificial soils are packed into 60 cm high, 7.5 cm wide columns. In the currently ongoing experiment, three replicate columns are incubated while keeping the water table constant water at mid-depth, while another three columns alternate between drained and saturated conditions. Micro-sensors installed at different depths below the soil surface record time-series redox potentials (Eh) varying between oxidizing (~+700 mV) and reducing (~-200 mV) conditions. Continuous O2 levels throughout the soil columns are monitored using high-resolution, luminescence-based, Multi Fiber Optode (MuFO) microsensors. Pore waters are collected periodically with MicroRhizon samplers from different depths, and analyzed for pH, EC, dissolved inorganic and organic carbon and ion/cation compositions. These measurements allow us to track the changes in pore water geochemistry and relate them to differences in carbon cycling

  8. Examination - Plants - Lunar (Germ Free) Soil - Plant Laboratory - MSC

    NASA Image and Video Library

    1969-10-08

    S69-53894 (October 1969) --- Dr. Charles H. Walkinshaw, Jr., Spaceflight Biotechnology Branch botanist, Preventive Medicine Division, Manned Spacecraft Center (MSC), examines sorghum and tobacco plants in lunar (germ free) soil in the Plant Laboratory of the MSC’s Lunar Receiving Laboratory. The soil was brought back from the moon by the crew of the Apollo 11 lunar landing mission.

  9. Active Layer Soil Carbon and Nutrient Mineralization, Barrow, Alaska, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan D. Wullschleger; Holly M. Vander Stel; Colleen Iversen

    This data set consists of bulk soil characteristics as well as carbon and nutrient mineralization rates of active layer soils manually collected from the field in August, 2012, frozen, and then thawed and incubated across a range of temperatures in the laboratory for 28 day periods in 2013-2015. The soils were collected from four replicate polygons in each of the four Areas (A, B, C, and D) of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Soil samples were coincident with the established Vegetation Plots that are located in center, edge, and trough microtopographymore » in each polygon. Data included are 1) bulk soil characteristics including carbon, nitrogen, gravimetric water content, bulk density, and pH in 5-cm depth increments and also by soil horizon, 2) carbon, nitrogen, and phosphorus mineralization rates for soil horizons incubated aerobically (and in one case both aerobically and anaerobically) for 28 days at temperatures that included 2, 4, 8, and 12 degrees C. Additional soil and incubation data are forthcoming. They will be available when published as part of another paper that includes additional replicate analyses.« less

  10. Students Dig Deep in the Mystery Soil Lab: A Playful, Inquiry-Based Soil Laboratory Project

    ERIC Educational Resources Information Center

    Thiet, Rachel K.

    2014-01-01

    The Mystery Soil Lab, a playful, inquiry-based laboratory project, is designed to develop students' skills of inquiry, soil analysis, and synthesis of foundational concepts in soil science and soil ecology. Student groups are given the charge to explore and identify a "Mystery Soil" collected from a unique landscape within a 10-mile…

  11. Controls upon microbial accessibility to soil organic matter following woody plant encroachment into grasslands

    NASA Astrophysics Data System (ADS)

    Creamer, C. A.; Boutton, T. W.; Filley, T. R.

    2009-12-01

    Woody plant encroachment (WPE) into savannas and grasslands is a global phenomenon that alters soil organic matter (SOM) dynamics through changes in litter quality and quantity, soil structure, microbial ecology, and soil hydrology. To elucidate the controls upon microbial accessibility to SOM, bulk soils from a chronosequence of progressive WPE into native grasslands at the Texas A&M Agricultural Experimental Station La Copita Research Area were incubated for one year. The quantity and stable carbon isotope composition of respired CO2, plant biopolymer chemistry in SOM, and microbial community structure were tracked. Respiration rates declined steadily over the course of the experiment with 15-25% of the total CO2 respired released in the first month of incubation. Between 8 and 18% of the total carbon was mineralized to CO2 throughout the incubation. After day 84 a significantly (p < 0.05) greater portion of carbon was mineralized from soils of older woody clusters (34-86 years) than from soils of younger clusters (14-23 years) and the native grassland. Approximately 80% of patterns seen in cumulative CO2 loss could be explained by the proportions of macro- and micro-aggregates within each soil, suggesting soil structure is a major controlling factor of respiration rates. Despite documented carbon accrual within La Copita soils due to WPE, we observed no evidence of enhanced carbon stabilization in these respiration experiments. In fact, a greater proportion of total carbon was lost from the soil of mature woody stands than from young stands, suggesting carbon accumulation observed with WPE may be due to greater input rates or microbial dynamics not captured in the laboratory incubation. A cluster approximately 34 years in age represents a transition point in WPE where respiration dynamics become distinct between grassland and wooded elements. By day 84 of the incubation CO2 respired from all soils was depleted with respect to bulk SOM (1.5 to 5‰) and this

  12. A microbial functional group-based module for simulating methane production and consumption: Application to an incubated permafrost soil

    DOE PAGES

    Xu, Xiaofeng; Elias, Dwayne A.; Graham, David E.; ...

    2015-07-23

    In this study, accurately estimating methane (CH 4) flux is critically important for investigating and predicting the biogeochemistry-climate feedback. Better simulating CH 4 flux requires explicit representations of microbial processes on CH 4 dynamics because all processes for CH 4 production and consumption are actually carried out by microbes. A microbial functional group based module was developed and tested against an incubation experiment. The module considers four key mechanisms for CH 4 production and consumption: methanogenesis from acetate or single-carbon compounds and CH 4 oxidation using molecular oxygen or other inorganic electron acceptors. These four processes were carried out bymore » four microbial functional groups: acetoclastic methanogens, hydrogenotrophic methanogens, aerobic methanotrophs, and anaerobic methanotrophs. This module was then linked with the decomposition subroutine of the Community Land Model, and was further used to simulate dynamics of carbon dioxide (CO 2) and CH 4 concentrations from an incubation experiment with permafrost soils. The results show that the model could capture the dynamics of CO 2 and CH 4 concentrations in microcosms with top soils, mineral layer soils and permafrost soils under natural and saturated moisture conditions and a temperature gradient of -2°C, 3°C, and 5°C. Sensitivity analysis confirmed the importance of acetic acid's direct contribution as substrate and indirect effects through pH feedback on CO 2 and CH 4 production and consumption. This study suggests that representing the microbial mechanisms is critical for modeling CH 4 production and consumption; it is urgent to incorporate microbial mechanisms into Earth system models for better predicting the behavior of the climate system.« less

  13. Arsenic speciation in arsenic-rich Brazilian soils from gold mining sites under anaerobic incubation

    USGS Publications Warehouse

    De Mello, J. W. V.; Talbott, J.L.; Scott, J.; Roy, W.R.; Stucki, J.W.

    2007-01-01

    Background. Arsenic speciation in environmental samples is essential for studying toxicity, mobility and bio-transformation of As in aquatic and terrestrial environments. Although the inorganic species As(III) and As(V) have been considered dominant in soils and sediments, organisms are able to metabolize inorganic forms of arsenic into organo-arsenic compounds. Arsenosugars and methylated As compounds can be found in terrestrial organisms, but they generally occur only as minor constituents. We investigated the dynamics of arsenic species under anaerobic conditions in soils surrounding gold mining areas from Minas Gerais State, Brazil to elucidate the arsenic biogeochemical cycle and water contamination mechanisms. Methods. Surface soil samples were collected at those sites, namely Paracatu Formation, Banded Iron Formation and Riacho dos Machados Sequence, and incubated in CaCl2 2.5 mmol L-1 suspensions under anaerobic conditions for 1, 28, 56 and 112 days. After that, suspensions were centrifuged and supernatants analyzed for soluble As species by IC-ICPMS and HPLC-ICPMS. Results. Easily exchangeable As was mainly arsenite, except when reducible manganese was present. Arsenate was mainly responsible for the increase in soluble arsenic due to the reductive dissolution of either iron or manganese in samples from the Paracatu Formation and Riacho dos Machados Sequence. On the other hand, organic species of As dominated in samples from the Banded Iron Formation during anaerobic incubation. Discussion. Results are contrary to the expectation that, in anaerobic environments, As release due to the reductive dissolution of Fe is followed by As(V) reduction to As(III). The occurrence of organo-arsenic species was also found to be significant to the dynamics of soluble arsenic, mainly in soils from the Banded Iron Formation (BIF), under our experimental conditions. Conclusions. In general, As(V) and organic As were the dominant species in solution, which is surprising

  14. Incubation and Intuition in Creative Problem Solving.

    PubMed

    Gilhooly, Kenneth J

    2016-01-01

    Creative problem solving, in which novel solutions are required, has often been seen as involving a special role for unconscious processes (Unconscious Work) which can lead to sudden intuitive solutions (insights) when a problem is set aside during incubation periods. This notion of Unconscious Work during incubation periods is supported by a review of experimental studies and particularly by studies using the Immediate Incubation paradigm. Other explanations for incubation effects, in terms of Intermittent Work or Beneficial Forgetting are considered. Some recent studies of divergent thinking, using the Alternative Uses task, carried out in my laboratory regarding Immediate vs. Delayed Incubation and the effects of resource competition from interpolated activities are discussed. These studies supported a role for Unconscious Work as against Intermittent Conscious work or Beneficial Forgetting in incubation.

  15. Incubation and Intuition in Creative Problem Solving

    PubMed Central

    Gilhooly, Kenneth J.

    2016-01-01

    Creative problem solving, in which novel solutions are required, has often been seen as involving a special role for unconscious processes (Unconscious Work) which can lead to sudden intuitive solutions (insights) when a problem is set aside during incubation periods. This notion of Unconscious Work during incubation periods is supported by a review of experimental studies and particularly by studies using the Immediate Incubation paradigm. Other explanations for incubation effects, in terms of Intermittent Work or Beneficial Forgetting are considered. Some recent studies of divergent thinking, using the Alternative Uses task, carried out in my laboratory regarding Immediate vs. Delayed Incubation and the effects of resource competition from interpolated activities are discussed. These studies supported a role for Unconscious Work as against Intermittent Conscious work or Beneficial Forgetting in incubation. PMID:27499745

  16. CO2 and CH4 Production and CH4 Oxidation in Low Temperature Soil Incubations from Flat- and High-Centered Polygons, Barrow, Alaska, 2012

    DOE Data Explorer

    David E. Graham; Jianqiu Zheng; Taniya RoyChowdhury

    2016-08-31

    The dataset consists of respiration and methane production rates and methane oxidation potential obtained from soil microcosm studies carried out under controlled temperature and incubation conditions. Soils cores collected in 2012 represent the flat- and high-centered polygon active layers and permafrost (when present) from the NGEE Arctic Intensive Study Site 1, Barrow, Alaska.

  17. Responses of soil carbon turnover rates to pyrogenic carbon additions to a forest soil of Sierra Nevada, California: effects of pyrolysis temperature and soil depth

    NASA Astrophysics Data System (ADS)

    Santos, F.; Bird, J. A.; Berhe, A. A.

    2017-12-01

    Pyrogenic organic carbon (PyC) is a heterogenous mixture of thermally altered residues, ranging from slightly charred plant biomass to soot. Despite its apparent stability in soils, PyC has been reported to either increase or decrease (priming effect, PE), or have no effect on the mineralization rates of native soil organic matter (SOM), highlighting our limited knowledge on the mechanisms driving PyC-induced PE. Little is known about how PyC's pyrolysis temperature, and soil depth (surface versus subsurface) affect the direction of PE. To address this gap knowledge, we conducted from a 1-year laboratory incubation study aimed to investigate the interactive effects of pyrolysis temperature and soil depth on the mineralization rates of native SOM in fine-loamy, temperate forest soil that received additions of dual-labeled 13C and 15N jack pine pyrogenic organic matter produced at 300oC (PyC300) and 450oC (PyC450). Soil and PyC mixture were incubated in surface (0-10 cm) and subsurface (50-70 cm) forest soils in the dark at 55% soil field capacity and 25oC. Losses of native SOM as 13CO2 were measured periodically from the 13C-labeled PyC, and native (unlabeled) SOM during the incubation study using a Thermo Scientific GasBench interfaced to a Delta V Plus isotope ratio mass spectrometer. In surface soils, the addition of PyC300 decreased the turnover rates of native C relative to control treatments, whereas PyC400 had no effect on native C turnover rates. In subsurface soils, neither PyC300 nor PyC400 additions affected native C turnover rates. Our preliminary findings suggest that pyrolysis temperature is an important factor driving the persistence of soil C in Sierra Nevada forest soils.

  18. Comparison of different incubation conditions for microbiological environmental monitoring.

    PubMed

    Gordon, Oliver; Berchtold, Manfred; Staerk, Alexandra; Roesti, David

    2014-01-01

    Environmental monitoring represents an integral part of the microbiological quality control system of a pharmaceutical manufacturing operation. However, guidance documents differ regarding recommendation of a procedure, particularly regarding incubation time, incubation temperature, or nutrient media. Because of these discrepancies, many manufacturers decide for a particular environmental monitoring sample incubation strategy and support this decision with validation data. Such validations are typically laboratory-based in vitro studies, meaning that these are based on comparing incubation conditions and nutrient media through use of cultured microorganisms. An informal survey of the results of these in vitro studies performed at Novartis or European manufacturing sites of different pharmaceutical companies highlighted that no consensus regarding the optimal incubation conditions for microbial recovery existed. To address this question differently, we collected a significant amount of samples directly from air, inanimate surfaces, and personnel in pharmaceutical production and packaging rooms during manufacturing operation (in situ study). Samples were incubated under different conditions suggested in regulatory guidelines, and recovery of total aerobic microorganisms as well as moulds was assessed. We found the highest recovery of total aerobic count from areas with personnel flow using a general microbiological growth medium incubated at 30-35 °C. The highest recovery of moulds was obtained with mycological medium incubated at 20-25 °C. Single-plate strategies (two-temperature incubation or an intermediate incubation temperature of 25-30 °C) also yielded reasonable recovery of total aerobic count and moulds. However, recovery of moulds was found to be highly inefficient at 30-35 °C compared to lower incubation temperatures. This deficiency could not be rectified by subsequent incubation at 20-25 °C. A laboratory-based in vitro study performed in parallel was

  19. Using Mid Infrared Spectroscopy to Predict the Decomposability of Soil Organic Matter Stored in Arctic Tundra Soils

    NASA Astrophysics Data System (ADS)

    Matamala, R.; Fan, Z.; Jastrow, J. D.; Liang, C.; Calderon, F.; Michaelson, G.; Ping, C. L.; Mishra, U.; Hofmann, S. M.

    2016-12-01

    The large amounts of organic matter stored in permafrost-region soils are preserved in a relatively undecomposed state by the cold and wet environmental conditions limiting decomposer activity. With pending climate changes and the potential for warming of Arctic soils, there is a need to better understand the amount and potential susceptibility to mineralization of the carbon stored in the soils of this region. Studies have suggested that soil C:N ratio or other indicators based on the molecular composition of soil organic matter could be good predictors of potential decomposability. In this study, we investigated the capability of Fourier-transform mid infrared spectroscopy (MidIR) spectroscopy to predict the evolution of carbon dioxide (CO2) produced by Arctic tundra soils during a 60-day laboratory incubation. Soils collected from four tundra sites on the Coastal Plain, and Arctic Foothills of the North Slope of Alaska were separated into active-layer organic, active-layer mineral, and upper permafrost and incubated at 1, 4, 8 and 16 °C. Carbon dioxide production was measured throughout the incubations. Total soil organic carbon (SOC) and total nitrogen (TN) concentrations, salt (0.5 M K2SO4) extractable organic matter (SEOM), and MidIR spectra of the soils were measured before and after incubation. Multivariate partial least squares (PLS) modeling was used to predict cumulative CO2 production, decay rates, and the other measurements. MidIR reliably estimated SOC and TN and SEOM concentrations. The MidIR prediction models of CO2 production were very good for active-layer mineral and upper permafrost soils and good for the active-layer organic soils. SEOM was also a very good predictor of CO2 produced during the incubations. Analysis of the standardized beta coefficients from the PLS models of CO2 production for the three soil layers indicated a small number (9) of influential spectral bands. Of these, bands associated with O-H and N-H stretch, carbonates, and

  20. Behavior of oxyfluorfen in soils amended with different sources of organic matter. Effects on soil biology.

    PubMed

    Gómez, Isidoro; Rodríguez-Morgado, Bruno; Parrado, Juan; García, Carlos; Hernández, Teresa; Tejada, Manuel

    2014-05-30

    We performed a laboratory study on the effect of oxyfluorfen at a rate of 4lha(-1) on biological properties of a soil amended with four organic wastes (two biostimulants/biofertilizers, obtained from rice bran, RB1 and RB2; municipal solid waste, MSW; and sheep manure, SM). Soil was mixed with SM at a rate of 1%, MSW at a rate of 0.52%, RB1 at a rate of 0.39% and RB2 at a rate of 0.30%, in order to apply the same amount of organic matter to the soil. The enzymatic activities and microbial community in the soil were determined during the incubation times. The application of RB1 and RB2 to soil without oxyfluorfen increased the enzymatic activities and biodiversity, peaking at day 10 of the incubation period. This stimulation was higher in the soil amended with RB2 than in that amended with RB1. In SM and CF-amended soils, the stimulation of enzymatic activities and soil biodiversity increased during the experiment. The application of herbicide in organic-amended soils decreased the inhibition of soil enzymatic activities and soil biodiversity. Possibly the low molecular weight protein content easily assimilated by soil microorganisms and the higher fat content in the biostimulants/biofertilizers are responsible for the lower inhibition of these soil biological properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Soil profile property estimation with field and laboratory VNIR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Diffuse reflectance spectroscopy (DRS) soil sensors have the potential to provide rapid, high-resolution estimation of multiple soil properties. Although many studies have focused on laboratory-based visible and near-infrared (VNIR) spectroscopy of dried soil samples, previous work has demonstrated ...

  2. Preliminary data on growth and enzymatic abilities of soil fungus Humicolopsis cephalosporioides at different incubation temperatures.

    PubMed

    Elíades, Lorena Alejandra; Cabello, Marta N; Pancotto, Verónica; Moretto, Alicia; Rago, María Melisa; Saparrat, Mario C N

    2015-01-01

    Nothofagus pumilio (Poepp & Endl.) Krasser, known as "lenga" is the most important timber wood species in southernmost Patagonia (Argentina). Humicolopsis cephalosporioides Cabral & Marchand is a soil fungus associated with Nothofagus pumilio forests, which has outstanding cellulolytic activity. However, there is no information about the ability of this fungus to use organic substrates other than cellulose, and its ability to produce different enzyme systems, as well as its response to temperature. The aim of this study was to examine the role of H. cephalosporioides in degradation processes in N. pumilio forests in detail by evaluating the in vitro ability of four isolates of this fungus to grow and produce different lytic enzyme systems, and their response to incubation temperature. The ability of the fungi to grow and produce enzyme systems was estimated by inoculating them on agar media with specific substrates, and the cultures were incubated at three temperatures. A differential behavior of each strain in levels of growth and enzyme activity was found according to the medium type and/or incubation temperature. A intra-specific variability was found in H. cephalosporioides. Likewise a possible link between the saprotrophic role of this fungus in N. pumilio forests and the degradation of organic matter under stress conditions, such as those from frosty environments, was also discussed. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  3. Soil examination for a forensic trace evidence laboratory-Part 3: A proposed protocol for the effective triage and management of soil examinations.

    PubMed

    Woods, Brenda; Lennard, Chris; Kirkbride, K Paul; Robertson, James

    2016-05-01

    In the past, forensic soil examination was a routine aspect of forensic trace evidence examinations. The apparent need for soil examinations then went through a period of decline and with it the capability of many forensic laboratories to carry out soil examinations. In more recent years, interest in soil examinations has been renewed due-at least in part-to soil examinations contributing to some high profile investigations. However, much of this renewed interest has been in organisations with a primary interest in soil and geology rather than forensic science. We argue the need to reinstate soil examinations as a trace evidence sub-discipline within forensic science laboratories and present a pathway to support this aim. An examination procedure is proposed that includes: (i) appropriate sample collection and storage by qualified crime scene examiners; (ii) exclusionary soil examinations by trace evidence scientists within a forensic science laboratory; (iii) inclusionary soil examinations by trace evidence scientists within a forensic science laboratory; and (iv) higher-level examination of soils by specialist soil scientists and palynologists. Soil examinations conducted by trace evidence scientists will be facilitated if the examinations are conducted using the instrumentation routinely used by these examiners. Hence, the proposed examination protocol incorporates instrumentation in routine use in a forensic trace evidence laboratory. Finally, we report on an Australian soil scene variability study and a blind trial that demonstrate the utility of the proposed protocol for the effective triage and management of soil samples by forensic laboratories. Crown Copyright © 2016. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Potential vulnerability of southeast Alaskan wetland soil carbon stocks to climate warming

    NASA Astrophysics Data System (ADS)

    Fellman, J.; D'Amore, D. V.; Hood, E. W.

    2015-12-01

    Carbon cycling along the high latitude coastal margins of Alaska is poorly understood relative to boreal and arctic ecosystems. The perhumid coastal temperate rainforest (PCTR) of southeast Alaska has some of the densest carbon stocks (>300 Mg C ha-1) in the world but the fate of these stocks with continued warming will balance on the poorly constrained rates of carbon accumulation and loss. We quantified the rate of dissolved organic carbon (DOC) and carbon dioxide (CO2) production from four different wetland types (rich fen, poor fen, forested wetland and cedar wetland) using controlled laboratory incubations of surface (10 cm) and subsurface (25 cm) soils incubated at 8 ºC and 15 ºC for 37 weeks. This design allowed us to determine the potential vulnerability of wetland soil carbon stocks to climate warming and partition organic matter mineralization into DOC and CO2 fluxes and its controls (e.g., wetland type and temperature). Furthermore, we used fluorescence characterization of DOC and laboratory bioassays to assess how climate warming may impact the quality and bioavailability of DOC delivered to fluvial systems. Soil depth and temperature strongly influenced carbon loss in all four wetland types with the greatest CO2 fluxes observed in the rich fen and greatest DOC fluxes observed in the poor fen. Of the fluxes, CO2 was the most sensitive to incubation temperature but DOC showed more variation with wetland type. Fluxes of DOC and CO2 were positively correlated only during the last few months of the incubation suggesting strong biotic control of DOC production developed as soil organic matter decomposition progressed. Moreover, bioavailable DOC and protein-like fluorescence were greatest in the initial soil extractions but dramatically decreased over the length of the incubations. Our findings suggest that soil organic matter decomposition will increase as the PCTR continues to warm, but this response will also will vary with wetland type.

  5. Extractable atrazine and its metabolites in agricultural soils from the temperate humid zone.

    PubMed

    Mahía, J; Martín, A; Díaz-Raviña, M

    2008-04-01

    Extractable atrazine and its metabolites (hydroxyatrazine, deethylatrazine and deisopropylatrazine) were evaluated in agricultural soils from the temperate humid zone (Galicia, NW Spain) under laboratory conditions. The experiment was performed with five soils with different properties (organic C, soil texture and atrazine application history), both unamended and treated with atrazine at field application rate. Measurements of the atrazine compounds were made at different time intervals (1, 3, 6, 9 and 12 weeks) during a 3-month incubation period. Results showed that only hydroxyatrazine was detected in the extractable fraction of the unamended soils, with values remaining relatively constant throughout the incubation period. Atrazine addition notably increased the concentration of the parent compound and its degradation products; deisopropylatrazine and hydroxyatrazine were the main metabolites detected in the extractable fraction of the treated soils, whereas deethylatrazine was not detected. After 7 days incubation, values of total extractable residues, expressed as percentage of initially added atrazine, ranged from 75 to 86% (25-68% of atrazine, 7-11% of hydroxyatrazine and 9-57% of deisopropylatrazine). The values decreased rapidly during the first 3 weeks of incubation, showing values of 2-8% in soils with higher atrazine application and from 28 to 30% in soils with lower application history. At the end of the incubation, 2-8% of total extractable residues were still detected (0-4% of atrazine, 2-3% of hydroxyatrazine and 0-2% of deisopropylatrazine), indicating a residual effect of atrazine addition. These variations in the extractable fraction indicated that most added atrazine was rapidly degraded, especially in soils with higher application history.

  6. Dust emissions of organic soils observed in the field and laboratory

    NASA Astrophysics Data System (ADS)

    Zobeck, T. M.; Baddock, M. C.; Guo, Z.; Van Pelt, R.; Acosta-Martinez, V.; Tatarko, J.

    2011-12-01

    According to the U.S. Soil Taxonomy, Histosols (also known as organic soils) are soils that are dominated by organic matter (>20% organic matter) in half or more of the upper 80 cm. These soils, when intensively cropped, are subject to wind erosion resulting in loss in crop productivity and degradation of soil, air, and water quality. Estimating wind erosion on Histosols has been determined by USDA-Natural Resources Conservation Service as a critical need for the Wind Erosion Prediction System (WEPS) model. WEPS has been developed to simulate wind erosion on agricultural land in the US, including soils with organic soil material surfaces. However, additional field measurements are needed to calibrate and validate estimates of wind erosion of organic soils using WEPS. In this study, we used a field portable wind tunnel to generate suspended sediment (dust) from agricultural surfaces for soils with a range of organic contents. The soils were tilled and rolled to provide a consolidated, friable surface. Dust emissions and saltation were measured using an isokinetic vertical slot sampler aspirated by a regulated suction source. Suspended dust was collected on filters of the dust slot sampler and sampled at a frequency of once every six seconds in the suction duct using a GRIMM optical particle size analyzer. In addition, bulk samples of airborne dust were collected using a sampler specifically designed to collect larger dust samples. The larger dust samples were analyzed for physical, chemical, and microbiological properties. In addition, bulk samples of the soils were tested in a laboratory wind tunnel similar to the field wind tunnel and a laboratory dust generator to compare field and laboratory results. For the field wind tunnel study, there were no differences between the highest and lowest organic content soils in terms of their steady state emission rate under an added abrader flux, but the soil with the mid-range of organic matter had less emission by one third

  7. A comparison of in situ methods for measuring net nitrogen mineralization rates of organic soil amendments.

    PubMed

    Hanselman, Travis A; Graetz, Donald A; Obreza, Thomas A

    2004-01-01

    In situ incubation methods may help provide site-specific estimates of N mineralization from land-applied wastes. However, there are concerns about the reliability of the data generated by the various methods due to containment artifacts. We amended a sandy soil with either poultry manure, biosolids, or yard-waste compost and incubated the mixtures using four in situ methods (buried bags, covered cylinders, standard resin traps, and "new" soil-resin traps) and a conventional laboratory technique in plastic bags. Each incubation device was destructively sampled at 45-d intervals for 180 d and net N mineralization was determined by measuring the amount of inorganic N that accumulated in the soil or soil plus resin traps. Containment effects were evaluated by comparing water content of the containerized soil to a field-reference soil column. In situ incubation methods provided reasonable estimates of short-term (< 45 d) N mineralization, but long-term (> 45 d) mineralization data were not accurate due to a variety of problems specific to each technique. Buried bags and covered cylinders did not retain mineralized N due to water movement into and out of the containers. Neither resin method captured all of the mineralized N that leached through the soil columns, but the new soil-resin trap method tracked field soil water content better than all other in situ methods evaluated. With further refinement and validation, the new soil-resin trap method may be a useful in situ incubation technique for measuring net N mineralization rates of organic soil amendments.

  8. Effects of Changing pH, Incubation Time, and As(V) Competition, on F- Retention on Soils, Natural Adsorbents, By-Products, and Waste Materials.

    PubMed

    Quintáns-Fondo, Ana; Santás-Miguel, Vanesa; Nóvoa-Muñoz, Juan C; Arias-Estévez, Manuel; Fernández-Sanjurjo, María J; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2018-01-01

    The purpose of this work was to elucidate the repercussion of changing pH, incubation time and As(V) competition on fluoride (F - ) sorption on forest and vineyard soil samples, pyritic, and granitic materials, as well as on the by-products pine sawdust, oak wood ash, mussel shell ash, fine and coarse mussel shell, and slate processing waste fines. To reach this end, the methodological approach was based on batch-type experiments. The results indicate that, for most materials, F - sorption was very high at the start, but was clearly diminished when the pH value increased. However, oak wood ash and shell ash showed high F - sorption even at alkaline pH, and pine sawdust showed low F - sorption for any pH value. Specifically, F - sorption was close to 100% for both ashes at pH < 6, and around 70% at pH 10, while for forest soil it was close to 90% at pH < 2, and around 60% at pH values near 8. Regarding the effect of incubation time on F - sorption, it was very low for both soils, pyritic material, granitic material, and both kinds of ashes, as all of them showed very rapid F - sorption from the start, with differences being lesser than 10% between sorption at 30 min and 1 month of incubation. However, sawdust and slate fines sorbed 20% of added F - in 30 min, remaining constant up to 12 h, and doubling after 30 days. And finally, mussel shell sorbed 20% at 30 min, increasing to close to 60% when incubation time was 30 days. This means that some of the materials showed a first sorption phase characterized by rapid F - sorption, and a slower sorption in a second phase. As regards the effect of the presence of As(V) on F - sorption, it was almost negligible, indicating the absence of competition for sorption sites. In view of that all, these results could aid to appropriately manage soils and by-products when focusing on F - removal, in circumstances where pH value changes, contact time vary from hours to days, and potential competition between F - and As(V) could take

  9. Effects of changing pH, incubation time, and As(V) competition, on F- retention on soils, natural adsorbents, by-products, and waste materials

    NASA Astrophysics Data System (ADS)

    Quintáns-Fondo, Ana; Santás-Miguel, Vanesa; Nóvoa-Muñoz, Juan C.; Arias-Estévez, Manuel; Fernández-Sanjurjo, María J.; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2018-03-01

    The purpose of this work was to elucidate the repercussion of changing pH, incubation time and As(V) competition on fluoride (F-) sorption on forest and vineyard soil samples, pyritic and granitic materials, as well as on the by-products pine sawdust, oak wood ash, mussel shell ash, fine and coarse mussel shell, and slate processing waste fines. To reach this end, the methodological approach was based on batch-type experiments. The results indicate that, for most materials, F- sorption was very high at the start, but was clearly diminished when the pH value increased. However, oak wood ash and shell ash showed high F- sorption even at alkaline pH, and pine sawdust showed low F- sorption for any pH value. Specifically, F- sorption was close to 100% for both ashes at pH <6, and around 70% at pH 10, while for forest soil it was close to 90% at pH <2, and around 60% at pH values near 8. Regarding the effect of incubation time on F- sorption, it was very low for both soils, pyritic material, granitic material and both kinds of ashes, as all of them showed very rapid F- sorption from the start, with differences being lesser than 10% between sorption at 30 min and 1 month of incubation. However, sawdust and slate fines sorbed 20% of added F- in 30 minutes, remaining constant up to twelve hours, and doubling after 30 days. And finally, mussel shell sorbed 20% at 30 minutes, increasing to close to 60% when incubation time was 30 days. This means that some of the materials showed a first sorption phase characterized by rapid F- sorption, and a slower sorption in a second phase. As regards the effect of the presence of As(V) on F- sorption, it was almost negligible, indicating the absence of competition for sorption sites. In view of that all, these results could aid to appropriately manage soils and by-products when focusing on F- removal, in circumstances where pH value changes, contact time vary from hours to days, and potential competition between F- and As(V) could take

  10. Information content of incubation experiments for inverse estimation of pools in the Rothamsted carbon model: a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Scharnagl, Benedikt; Vrugt, Jasper A.; Vereecken, Harry; Herbst, Michael

    2010-05-01

    Turnover of soil organic matter is usually described with multi-compartment models. However, a major drawback of these models is that the conceptually defined compartments (or pools) do not necessarily correspond to measurable soil organic carbon (SOC) fractions in real practice. This not only impairs our ability to rigorously evaluate SOC models but also makes it difficult to derive accurate initial states. In this study, we tested the usefulness and applicability of inverse modeling to derive the various carbon pool sizes in the Rothamsted carbon model (ROTHC) using a synthetic time series of mineralization rates from laboratory incubation. To appropriately account for data and model uncertainty we considered a Bayesian approach using the recently developed DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm. This Markov chain Monte Carlo scheme derives the posterior probability density distribution of the initial pool sizes at the start of incubation from observed mineralization rates. We used the Kullback-Leibler divergence to quantify the information contained in the data and to illustrate the effect of increasing incubation times on the reliability of the pool size estimates. Our results show that measured mineralization rates generally provide sufficient information to reliably estimate the sizes of all active pools in the ROTHC model. However, with about 900 days of incubation, these experiments are excessively long. The use of prior information on microbial biomass provided a way forward to significantly reduce uncertainty and required duration of incubation to about 600 days. Explicit consideration of model parameter uncertainty in the estimation process further impaired the identifiability of initial pools, especially for the more slowly decomposing pools. Our illustrative case studies show how Bayesian inverse modeling can be used to provide important insights into the information content of incubation experiments. Moreover, the outcome of this

  11. Laboratory measurements of electrical resistivity versus water content on small soil cores

    NASA Astrophysics Data System (ADS)

    Robain, H.; Camerlynck, C.; Bellier, G.; Tabbagh, A.

    2003-04-01

    The assessment of soil water content variations more and more leans on geophysical methods that are non invasive and that allow a high spatial sampling. Among the different methods, DC electrical imaging is moving forward. DC Electrical resistivity shows indeed strong seasonal variations that principally depend on soil water content variations. Nevertheless, the widely used Archie's empirical law [1], that links resistivity with voids saturation and water conductivity is not well suited to soil materials with high clay content. Furthermore, the shrinking and swelling properties of soil materials have to be considered. Hence, it is relevant to develop new laboratory experiments in order to establish a relation between electrical resistivity and water content taking into account the rheological and granulometrical specificities of soil materials. The experimental device developed in IRD laboratory allows to monitor simultaneously (i) the water content, (ii) the electrical resistivity and (iii) the volume of a small cylindrical soil core (100cm3) put in a temperature controlled incubator (30°C). It provides both the shrinkage curve of the soil core (voids volume versus water content) and the electrical resistivity versus water content curve The modelisation of the shrinkage curve gives for each moisture state the water respectively contained in macro and micro voids [2], and then allows to propose a generalized Archie's like law as following : 1/Rs = 1/Fma.Rma + 1/Fmi.Rmi and Fi = Ai/(Vi^Mi.Si^Ni) with Rs : the soil resistivity. Fma and Fmi : the so called "formation factor" for macro and micro voids, respectively. Rma and Rmi : the resistivity of the water contained in macro and micro voids, respectively. Vi : the volume of macro and micro voids, respectively. Si : the saturation of macro and micro voids, respectively. Ai, Mi and Ni : adjustment coefficients. The variations of Rmi are calculated, assuming that Rma is a constant. Indeed, the rise of ionic

  12. Laboratory measurements of nitric oxide release from forest soil with a thick organic layer under different understory types

    NASA Astrophysics Data System (ADS)

    Bargsten, A.; Falge, E.; Pritsch, K.; Huwe, B.; Meixner, F. X.

    2010-05-01

    Nitric oxide (NO) plays an important role in the photochemistry of the troposphere. NO from soil contributes up to 40% to the global budget of atmospheric NO. Soil NO emissions are primarily caused by biological activity (nitrification and denitrification), that occurs in the uppermost centimeter of the soil, a soil region often characterized by high contents of organic material. Most studies of NO emission potentials to date have investigated mineral soil layers. In our study we sampled soil organic matter under different understories (moss, grass, spruce and blueberries) in a humid mountainous Norway spruce forest plantation in the Fichtelgebirge (Germany). We performed laboratory incubation and flushing experiments using a customized chamber technique to determine the response of net potential NO flux to physical and chemical soil conditions (water content and temperature, bulk density, particle density, pH, C/N ratio, organic C, soil ammonium, soil nitrate). Net potential NO fluxes (in terms of mass of N) from soil samples taken under different understories ranged from 1.7-9.8 ng m-2 s-1 (soil sampled under grass and moss cover), 55.4-59.3 ng m-2 s-1 (soil sampled under spruce cover), and 43.7-114.6 ng m-2 s-1 (soil sampled under blueberry cover) at optimum water content and a soil temperature of 10 °C. The water content for optimum net potential NO flux ranged between 0.76 and 0.8 gravimetric soil moisture for moss covered soils, between 1.0 and 1.1 for grass covered soils, 1.1 and 1.2 for spruce covered soils, and 1.3 and 1.9 for blueberry covered soils. Effects of soil physical and chemical characteristics on net potential NO flux were statistically significant (0.01 probability level) only for NH4+. Therefore, as an alternative explanation for the differences in soil biogenic NO emission we consider more biological factors like understory vegetation type, amount of roots, and degree of mycorrhization; they have the potential to explain the observed

  13. Estimation of soil profile properties using field and laboratory VNIR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Diffuse reflectance spectroscopy (DRS) soil sensors have the potential to provide rapid, high-resolution estimation of multiple soil properties. Although many studies have focused on laboratory-based visible and near-infrared (VNIR) spectroscopy of dried soil samples, previous work has demonstrated ...

  14. Microbial Methanogenesis In Laboratory Incubations Of Coal: Implications For A Sustainable Energy Resource In Subsurface Coalbeds

    NASA Astrophysics Data System (ADS)

    Harris, S. H.; Barker, C. E.; Smith, R. L.

    2005-12-01

    Methane desorbed from subsurface coalseams contributes about 8% of the total natural gas produced in the US. This value is expected to increase over the next several years as a growing proportion of energy demands are supplied from unconventional reservoirs. Isotopic analyses of gas samples from several geographically separate coalbeds indicates a substantial proportion of the sorbed methane is biogenic in origin. Furthermore, previous studies have shown the ability of microbial consortia to degrade coal in aerobic laboratory incubations. These findings suggests the stimulation of microbial methane production in subsurface coals may provide a sustainable source of domestic energy. To address this prospect, we assessed the ability of indigenous microbial populations to produce methane in coal maintained under anaerobic conditions in the laboratory and investigated factors that influenced the rate and extent of the process. Several freshly collected coals of different rank were examined for their ability to support methanogenesis in mineral medium alone or amended with different nutrients such as hydrogen (4 kPa), formate (20 mM), or acetate (25mM). Microbial methane production was distinguished from abiotic desorption by subtracting methane generated in replicate incubations that contained bromoethanesulfonic acid (5 mM), an inhibitor of methanogenesis. The extent and rate of methane production varied among the different coals. A relatively shallow (400 m), immature coal exhibited a rate of 700 nmole CH4*day-1*g coal-1, a value comparable to previous observations of contaminated sediments. Methane production was negligible in a deeper, relatively mature (650 m) coal obtained from the same borehole although the same material exhibited a rate of about 80 nmole CH4*day-1*g coal-1 after a formate amendment. In contrast, hydrogen proved to be ineffective as a methanogenic substrate, although this electron donor was rapidly consumed in coal incubations. A filter

  15. Infrared measurements of pristine and disturbed soils 1. Spectral contrast differences between field and laboratory data

    USGS Publications Warehouse

    Johnson, J. R.; Lucey, P.G.; Horton, K.A.; Winter, E.M.

    1998-01-01

    Comparison of emissivity spectra (8-13 ??m) of pristine soils in the field with laboratory reflectance spectra of the same soils showed that laboratory spectra tend to have less spectral contrast than field spectra (see following article). We investigated this the phenomenon by measuring emission spectra of both undisturbed (in situ) and disturbed soils (prepared as if for transport to the laboratory). The disturbed soils had much less spectral contrast than the undisturbed soils in the reststrahlen region near 9 ??m. While the increased porosity of a disturbed soil can decrease spectral contrast due to multiple scattering, we hypothesize that the effect is dominantly the result of a difference in grain-size distribution of the optically active layer (i.e., fine particle coatings). This concept was proposed by Salisbury et al. (1994) to explain their observations that soils washed free of small particles adhering the larger grains exhibited greater spectral contrast than unwashed soils. Our laboratory reflectance spectra of wet- and dry-sieved soils returned from field sites also show greater spectral contrast for wet-sieved (washed) soils. We therefore propose that undisturbed soils in the field can be characterized as 'clean' soils (washed free of fine particles at the surface due to rain and wind action) and that disturbed soils represent 'dirty' soils (contaminated with fine particle coatings). The effect of packing soils in the field and laboratory also increases spectral contrast but not to the magnitude of that observed for undisturbed and wet-sieved soils. Since it is a common practice to use laboratory spectra of field samples to interpret spectra obtained remotely, we suggest that the influence of fine particle coatings on disturbed soils, if unrecognized, could influence interpretations of remote sensing data.Comparison of emissivity spectra (8-13 ??m) of pristine soils in the field with laboratory reflectance spectra of the same soils showed that

  16. Linking SOM Content, Chemistry, and Decomposition: Complex Responses to Input Manipulation and Long-term Incubation

    NASA Astrophysics Data System (ADS)

    Bridgham, S. D.; Reynolds, L. L.; Tfaily, M.; Roscioli, K.; Lajtha, K.; Bowden, R.; Johnson, B. R.

    2014-12-01

    The mechanisms of soil organic matter (SOM) protection and their relationship with carbon inputs and decomposition are poorly understood. We used Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and Fourier transform infrared spectroscopy (FTIR) to characterize SOM in soils exposed to litter-input exclusion or addition for 20 years, and subsequently incubated for more than a year. Our aim was to describe shifts in SOM content and chemical composition due to the input manipulation and degree of decomposition, particularly in the light (i.e., free particulate, younger) versus the heavy (mineral-adsorbed, older) fractions of SOM, and to link these shifts to carbon mineralization rates. The soils were collected from a deciduous hardwood forest in Meadville, PA, one of the Detritus and Input Removal Treatment (DIRT) sites. They were subjected to either litter and root exclusion (NI), double litter (DL), or ambient inputs (CO) for 20 years and subsequently incubated at 35oC for 525 days. Soils from the beginning and end of the incubation were divided into light and heavy fractions using 1.8 g cm-3 sodium polytungstate. Bulk CO soils and heavy fractions of NI, DL, and CO soil were analyzed with FTICR-MS, while light and heavy fractions were analyzed with FTIR. Twenty years of input exclusion decreased the mineralization rate, the total carbon respired, and total carbon content, though litter addition had no significant effect (NI < CO = DL). The FTICR-MS and FTIR data reveal substantial differences in SOM chemistry among DIRT treatments, fractions, and before and after incubation. CO contained several classes of compounds, including alcohols and phenols, not detected in either DL or NI soils, and all samples showed an enrichment in aromatics between the light and heavy fractions. The heavy fraction DL soils were proportionally enriched in lipids compared to NI and CO soils, and these lipids were preferentially mineralized during incubation. Heavy

  17. One-day rate measurements for estimating net nitrification potential in humid forest soils

    USGS Publications Warehouse

    Ross, D.S.; Fredriksen, G.; Jamison, A.E.; Wemple, B.C.; Bailey, S.W.; Shanley, J.B.; Lawrence, G.B.

    2006-01-01

    Measurements of net nitrification rates in forest soils have usually been performed by extended sample incubation (2-8 weeks), either in the field or in the lab. Because of disturbance effects, these measurements are only estimates of nitrification potential and shorter incubations may suffice. In three separate studies of northeastern USA forest soil surface horizons, we found that laboratory nitrification rates measured over 1 day related well to those measured over 4 weeks. Soil samples of Oa or A horizons were mixed by hand and the initial extraction of subsamples, using 2 mol L-1 KCl, occurred in the field as soon as feasible after sampling. Soils were kept near field temperature and subsampled again the following day in the laboratory. Rates measured by this method were about three times higher than the 4-week rates. Variability in measured rates was similar over either incubation period. Because NO3- concentrations were usually quite low in the field, average rates from 10 research watersheds could be estimated with only a single, 1-day extraction. Methodological studies showed that the concentration of NH4+ increased slowly during contact time with the KCl extractant and, thus, this contact time should be kept similar during the procedure. This method allows a large number of samples to be rapidly assessed. ?? 2006 Elsevier B.V. All rights reserved.

  18. Application of MCPA herbicide on soils amended with biostimulants: short-time effects on soil biological properties.

    PubMed

    Tejada, Manuel; García-Martínez, Ana M; Gómez, Isidoro; Parrado, Juan

    2010-08-01

    In this paper we studied in the laboratory the effect of MCPA herbicide at a rate of 1.5lha(-1) (manufactures rate recommended) on biological properties of a Plagic Antrosol amended with four biostimulants (WCDS, wheat condensed distillers soluble; PA-HE, hydrolyzed poultry feathers; CGHE, carob germ enzymatic extract; and RB, rice bran extract). Seven hundred grams of soil were mixed with WCDS at a rate of 10%, CGHE at a rate of 4.7%, PA-HE at a rate of 4.3%, and RB at a rate of 4.4%, respectively, in order to applying the same amount of organic matter to the soil (16.38 g organic matter). An unamended polluted and amended non-polluted soil were used as control. For all treatments, the soil ergosterol, dehydrogenase, urease, and phosphatase activities were measured at two incubation times (0 and 60 d). The 16S rDNA-DGGE profiles in all treatments were determined at the beginning and end of the incubation period. The results indicated that at the end of the incubation period and compared with the control soil, the dehydrogenase, urease and phosphatase activities and ergosterol decreased 39.3%, 20%, 15.7% and 56.5%, respectively in the non-organic amended polluted soil. The application of organic matter to unpolluted soil increased the enzymatic activities and ergosterol. However, this stimulation was higher in the soil amended with RB, followed by PA-HE, WCDS and CGHE. The application of herbicide in organic-amended soils decreased the enzymatic activities and ergosterol content. However, this decrease was lower than for the non-amended herbicide polluted soil. Possibly the low molecular weight protein content easily assimilated by soil microorganisms and the adsorption capacity of humic substances are responsible for less inhibition of these enzyme activities and soil ergosterol. The 16S rDNA-DGGE profiles indicated that herbicide did not negatively affect soil bacterial biodiversity. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Low-temperature incubation using a water supply

    USGS Publications Warehouse

    Wolf, K.; Quimby, M.C.

    1967-01-01

    Cell and tissue culture has been concerned primarily with homiothermic vertebrate cells which require incubation at about 37 C, and there is a great variety of incubators designed to maintain temperatures which are usually above ambient. The culture of poikilothermic vertebrate cells--and invertebrate, plant, and some microbial cells--can often be carried out at ambient temperatures, but for some work cooler conditions must be provided. Variety among the so-called low-temperature incubators is somewhat restricted; there are no small units, and all require a power source to maintain temperatures below ambient. We have used a gravity-fed water supply for 5 years to provide trouble-free, constant, low-temperature incubation of stock cultures of fish and amphibian cells. Though it is but a small part of our low-temperature incubator capacity, it has no power requirements and it provides maximal protection against temperature rises which could be lethal to some of the cell lines. Though the system has limitations, there is a considerable likelihood that the domestic water supply in other laboratories can also be used to provide low-temperature incubation.

  20. Micro-incubator for bacterial biosensing applications

    NASA Astrophysics Data System (ADS)

    Clasen, Estine; Land, Kevin; Joubert, Trudi-Heleen

    2016-02-01

    The presence of Escherichia coli (E. coli ) is a commonly used indicator micro-organism to determine whether water is safe for human consumption.1 This paper discusses the design of a micro-incubator that can be applied to concentrate bacteria prior to environmental water quality screening tests. High sensitivity and rapid test time is essential and there is a great need for these tests to be implemented on-site without the use of a laboratory infrastructure. In the light of these requirements, a mobile micro-incubator was designed, manufactured and characterised. A polydimethylsiloxane (PDMS) receptacle has been designed to house the 1-5 ml cell culture sample.2 A nano-silver printed electronics micro-heater has been designed to incubate the bacterial sample, with an array of temperature sensors implemented to accurately measure the sample temperature at various locations in the cell culture well. The micro-incubator limits the incubation temperature range to 37+/-3 °C in order to ensure near optimal growth of the bacteria at all times.3 The incubation time is adjustable between 30 minutes and 9 hours with a maximum rise time of 15 minutes to reach the set-point temperature. The surface area of the printed nano silver heating element is 500 mm2. Electrical and COMSOL Multiphysics simulations are included in order to give insight on micro-incubator temperature control. The design and characterization of this micro-incubator allows for further research in biosensing applications.

  1. Laboratory measurements of nitric oxide release from forest soil with a thick organic layer under different understory types

    NASA Astrophysics Data System (ADS)

    Bargsten, A.; Falge, E.; Huwe, B.; Meixner, F. X.

    2010-01-01

    Nitric oxide (NO) plays an important role in the photochemistry of the troposphere. NO from soil contributes up to 40% to the global budget of atmospheric NO. Soil NO emissions are primarily caused by biological activity (nitrification and denitrification), that occurs in the uppermost centimetres of the soil, a soil region often characterized by high contents of organic material. Most studies of NO emission potentials to date have investigated mineral soil layers. In our study we sampled soil organic matter under different understories (moss, grass, spruce and blueberries) in a humid mountainous Norway spruce forest plantation in the Fichtelgebirge (Germany). We performed laboratory incubation and fumigation experiments using a customized chamber technique to determine the response of net potential NO flux to physical and chemical soil conditions (water content and temperature, bulk density, particle density, pH, C/N ratio, organic C, soil ammonium, soil nitrate). Net potential NO fluxes (in terms of mass of N) from soils of different understories ranged from 1.7-9.8 ng m-2 s-1 (grass and moss), 55.4-59.3 ng m-2 s-1 (spruce), and 43.7-114.6 ng m-2 s-1 (blueberry) at optimum water content and a soil temperature of 10°C. The water content for optimum net potential NO flux ranged between 0.76 and 0.8 gravimetric soil moisture for moss, between 1.0 and 1.1 for grass, 1.1 and 1.2 for spruce, and 1.3 and 1.9 for blueberries. Effects of soil physical and chemical characteristics on net potential NO flux were statistically significant (0.01 probability level) only for NH4+. Therefore, the effects of biogenic factors like understory type, amount of roots, and degree of mycorrhization on soil biogenic NO emission are discussed; they have the potential to explain the observed different of net potential NO fluxes. Quantification of NO emissions from the upmost soil layer is therefore an important step to quantify soil NO emissions in ecosystems with substantial organic soil

  2. Laboratory and Airborne BRDF Analysis of Vegetation Leaves and Soil Samples

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2008-01-01

    Laboratory-based Bidirectional Reflectance Distribution Function (BRDF) analysis of vegetation leaves, soil, and leaf litter samples is presented. The leaf litter and soil samples, numbered 1 and 2, were obtained from a site located in the savanna biome of South Africa (Skukuza: 25.0degS, 31.5degE). A third soil sample, number 3, was obtained from Etosha Pan, Namibia (19.20degS, 15.93degE, alt. 1100 m). In addition, BRDF of local fresh and dry leaves from tulip tree (Liriodendron tulipifera) and acacia tree (Acacia greggii) were studied. It is shown how the BRDF depends on the incident and scatter angles, sample size (i.e. crushed versus whole leaf,) soil samples fraction size, sample status (i.e. fresh versus dry leaves), vegetation species (poplar versus acacia), and vegetation s biochemical composition. As a demonstration of the application of the results of this study, airborne BRDF measurements acquired with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the soil and leaf litter samples were obtained are compared to the laboratory results. Good agreement between laboratory and airborne measured BRDF is reported.

  3. Impact of temperature on the biological properties of soil

    NASA Astrophysics Data System (ADS)

    Borowik, Agata; Wyszkowska, Jadwiga

    2016-01-01

    The aim of the study was to determine the response of soil microorganisms and enzymes to the temperature of soil. The effect of the temperatures: 5, 10, 15, 20, and 25°C on the biological properties of soil was investigated under laboratory conditions. The study was performed using four different soils differing in their granulometric composition. It was found that 15°C was the optimal temperature for the development of microorganisms in soil. Typically, in the soil, the highest activity of dehydrogenases was observed at 10-15°C, catalase and acid phosphatase - at 15°C, alkaline phosphatase at 20°C, urease and β-glucosidase at 25°C. The highest colony development index for heterotrophic bacteria was recorded in soils incubated at 25°C, while for actinomycetes and fungi at 15°C. The incubation temperature of soil only slightly changed the ecophysiological variety of the investigated groups of microorganisms. Therefore, the observed climate changes might have a limited impact on the soil microbiological activity, because of the high ability of microorganisms to adopt. The response of soil microorganisms and enzymes was more dependent on the soil granulometric composition, organic carbon, and total nitrogen than on its temperature.

  4. Forest cockchafer larvae as methane production hotspots in soils and their importance for net soil methane fluxes

    NASA Astrophysics Data System (ADS)

    Görres, Carolyn-Monika; Kammann, Claudia; Murphy, Paul; Müller, Christoph

    2016-04-01

    Certain groups of soil invertebrates, namely scarab beetles and millipedes, are capable of emitting considerable amounts of methane due to methanogens inhabiting their gut system. It was already pointed out in the early 1990's, that these groups of invertebrates may represent a globally important source of methane. However, apart from termites, the importance of invertebrates for the soil methane budget is still unknown. Here, we present preliminary results of a laboratory soil incubation experiment elucidating the influence of forest cockchafer larvae (Melolontha hippocastani FABRICIUS) on soil methane cycling. In January/February 2016, two soils from two different management systems - one from a pine forest (extensive use) and one from a vegetable field (intensive use) - were incubated for 56 days either with or without beetle larvae. Net soil methane fluxes and larvae methane emissions together with their stable carbon isotope signatures were quantified at regular intervals to estimate gross methane production and gross methane oxidation in the soils. The results of this experiment will contribute to testing the hypothesis of whether methane production hotspots can significantly enhance the methane oxidation capacity of soils. Forest cockchafer larvae are only found in well-aerated sandy soils where one would usually not suspect relevant gross methane production. Thus, besides quantifying their contribution to net soil methane fluxes, they are also ideal organisms to study the effect of methane production hotspots on overall soil methane cycling. Funding support: Reintegration grant of the German Academic Exchange Service (DAAD) (#57185798).

  5. Tracing C Fluxes From Leaf Litter To Microbial Respired CO2 And Specific Soil Compounds

    NASA Astrophysics Data System (ADS)

    Rubino, M.; Lubritto, C.; D'Onofrio, A.; Gleixner, G.; Terrasi, F.; Cotrufo, F. M.

    2004-12-01

    Despite litter decomposition is one of the major process controlling soil C stores and nutrient cycling, yet C dynamics during litter decay are poorly understood and quantified. Here we report the results of a laboratory experiment where 13C depleted leaf litter was incubated on a 13C enriched soil with the aims to: i) partition the C loss during litter decay into microbial respired-CO2 and C input into the soil; ii) identify the soil compounds where litter derived C is retained; iii) assess whether litter quality is a determinant of both the above processes. Three 13C-depleted leaf litter(delta13C ca. -43), differing in their degradability, were incubated on C4 soil (delta13C ca. -18) under laboratory controlled conditions for 8 months, with litter respiration and delta13C-CO2 being measured at regular intervals. At harvest, Compound Specific Isotope Analyses was performed on soil and litter samples in order to follow the fate of litter-derived C compounds in the various pools of SOMƒn The delta13C of soils carbohydrates, alkanes and Phospho Lipids Fatty Acids (PLFA) were measured, and the mixing model approach used to quantify the contribution of litter derived C to the specific compounds.

  6. Microbial formation and degradation of oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) in soil during short-term incubation.

    PubMed

    Wilcke, Wolfgang; Kiesewetter, Mario; Bandowe, Benjamin A Musa

    2014-01-01

    We tested whether OPAHs were formed during 19-wk incubation of a fertile soil at optimum moisture in the dark. The soil had initial mean (±s.e., n = 3) concentrations of 22 ± 1.7 (Σ28PAHs) and 4.2 ± 0.34 μg g(-1) (Σ14OPAHs). After 19 wk, individual PAH and OPAH concentrations had decreased by up to 14 and 37%, respectively. Decreases in % of initial concentrations were positively correlated with their KOW values for PAHs (r = 0.48, p = 0.022) and 9 OPAHs (r = 0.78, p = 0.013) but negatively, albeit not significantly, for 5 OPAHs (r = -0.75, p = 0.145) suggesting net formation of some OPAHs. The latter was supported by significantly increasing 1-indanone/fluorene ratios while the other OPAH to parent-PAH ratios remained constant or tended to increase. We conclude that OPAHs are formed in soils during microbial turnover of PAHs in a short time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Soil erosion-runoff relationships: insights from laboratory studies

    NASA Astrophysics Data System (ADS)

    Mamedov, Amrakh; Warrington, David; Levy, Guy

    2016-04-01

    Understanding the processes and mechanisms affecting runoff generation and subsequent soil erosion in semi-arid regions is essential for the development of improved soil and water conservation management practices. Using a drip type laboratory rain simulator, we studied runoff and soil erosion, and the relationships between them, in 60 semi-arid region soils varying in their intrinsic properties (e.g., texture, organic matter) under differing extrinsic conditions (e.g., rain properties, and conditions prevailing in the field soil). Both runoff and soil erosion were significantly affected by the intrinsic soil and rain properties, and soil conditions within agricultural fields or watersheds. The relationship between soil erosion and runoff was stronger when the rain kinetic energy was higher rather than lower, and could be expressed either as a linear or exponential function. Linear functions applied to certain limited cases associated with conditions that enhanced soil structure stability, (e.g., slow wetting, amending with soil stabilizers, minimum tillage in clay soils, and short duration exposure to rain). Exponential functions applied to most of the cases under conditions that tended to harm soil stability (e.g., fast wetting of soils, a wide range of antecedent soil water contents and rain kinetic energies, conventional tillage, following biosolid applications, irrigation with water of poor quality, consecutive rain simulations). The established relationships between runoff and soil erosion contributed to a better understanding of the mechanisms governing overland flow and soil loss, and could assist in (i) further development of soil erosion models and research techniques, and (ii) the design of more suitable management practices for soil and water conservation.

  8. Biological Degradation of Black Carbon in Temperate Forest Soils: Effects of Clay Mineralogy and Nitrogen Availability

    NASA Astrophysics Data System (ADS)

    Bird, J. A.; Santos, F.; Torn, M. S.

    2008-12-01

    A critical knowledge gap in soil organic carbon (SOC) cycling concerns the SOC portion collectively known as pyrogenic C or black carbon (BC), which is a chemically heterogeneous class of highly reduced compounds produced by incomplete combustion. While the stocks of BC are significant in surface soils worldwide, this SOC pool has been considered to be relatively inert with negligible biologically mediated degradation of BC occurring. We will present findings from a laboratory incubation of dual-labeled (13C/15N) BC and its precursor wood (Pinus ponderosa) in two temperate soils (Haploxeralfs) that differ in their clay mineralogy (granitic versus andesitic parent material) and organic C content. In addition, we used N additions in the granitic soil to investigate the effects of N availability on soil and substrate C and N cycling. Sterile controls were used to demonstrate that the BC turnover observed was biotic. The laboratory incubations were carried out at 25°C and at 55% of soil water holding capacity. We are measuring the flux of mineralized 13C in respired CO2, dissolved organic C, soil microbial biomass, specific microbial groups (13C-phospholipid fatty acids) and density-defined soil organic matter fractions. The overall flux of 15N is being observed in the microbial biomass, soluble organic and inorganic pools, and organic matter fractions. We will present rates of biologically-mediated decomposition of BC and its precursor wood, as well as the effects of soil mineralogy and N availability on these rates and on products of decomposition. We will also present decomposition rates of native SOM in incubations with and without substrate to investigate C priming.

  9. Why does carbon increase in highly weathered soil under no-till upon lime and gypsum use?

    PubMed

    Inagaki, Thiago Massao; de Moraes Sá, João Carlos; Caires, Eduardo Fávero; Gonçalves, Daniel Ruiz Potma

    2017-12-01

    Field experiments have been used to explain how soil organic carbon (SOC) dynamics is affected by lime and gypsum applications, however, how SOC storage occurs is still debatable. We hypothesized that although many studies conclude that Ca-based soil amendments such as lime and gypsum may lead to SOC depletion due to the enhancement of microbial activity, the same does not occur under conservation agriculture conditions. Thus, the objective of this study was to elucidate the effects of lime and gypsum applications on soil microbial activity and SOC stocks in a no-till field and in a laboratory incubation study simulating no-till conditions. The field experiment was established in 1998 in a clayey Oxisol in southern Brazil following a completely randomized blocks design with a split-plot arrangement and three replications. Lime and gypsum were surface applied in 1998 and reapplied in 2013. Undisturbed soil samples were collected before the treatments reapplications, and one year after. The incubation experiment was carried out during 16months using these samples adding crop residues on the soil surface to simulate no-till field conditions. Lime and gypsum applications significantly increased the labile SOC stocks, microbial activity and soil fertility attributes in both field and laboratory experiments. Although the microbial activity was increased, no depletion of SOC stocks was observed in both experiments. Positive correlations were observed between microbial activity increase and SOC gains. Labile SOC and Ca 2+ content increase leads to forming complex with mineral soil fractions. Gypsum applications performed a higher influence on labile SOC pools in the field than in the laboratory experiment, which may be related to the presence of active root system in the soil profile. We conclude that incubation experiments using lime and gypsum in undisturbed samples confirm that soil microbial activity increase does not deplete SOC stocks under conservation agriculture

  10. Nitrification Is a Primary Driver of Nitrous Oxide Production in Laboratory Microcosms from Different Land-Use Soils.

    PubMed

    Liu, Rui; Hu, Hangwei; Suter, Helen; Hayden, Helen L; He, Jizheng; Mele, Pauline; Chen, Deli

    2016-01-01

    Most studies on soil N2O emissions have focused either on the quantifying of agricultural N2O fluxes or on the effect of environmental factors on N2O emissions. However, very limited information is available on how land-use will affect N2O production, and nitrifiers involved in N2O emissions in agricultural soil ecosystems. Therefore, this study aimed at evaluating the relative importance of nitrification and denitrification to N2O emissions from different land-use soils and identifying the potential underlying microbial mechanisms. A (15)N-tracing experiment was conducted under controlled laboratory conditions on four agricultural soils collected from different land-use. We measured N2O fluxes, nitrate ([Formula: see text]), and ammonium ([Formula: see text]) concentration and (15)N2O, (15)[Formula: see text], and (15)[Formula: see text] enrichment during the incubation. Quantitative PCR was used to quantify ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Our results showed that nitrification was the main contributor to N2O production in soils from sugarcane, dairy pasture and cereal cropping systems, while denitrification played a major role in N2O production in the vegetable soil under the experimental conditions. Nitrification contributed to 96.7% of the N2O emissions in sugarcane soil followed by 71.3% in the cereal cropping soil and 70.9% in the dairy pasture soil, while only around 20.0% of N2O was produced from nitrification in vegetable soil. The proportion of nitrified nitrogen as N2O (PN2O-value) varied across different soils, with the highest PN2O-value (0.26‰) found in the cereal cropping soil, which was around 10 times higher than that in other three systems. AOA were the abundant ammonia oxidizers, and were significantly correlated to N2O emitted from nitrification in the sugarcane soil, while AOB were significantly correlated with N2O emitted from nitrification in the cereal cropping soil. Our findings suggested that soil

  11. N2O, NO, N2 and CO2 emissions from tropical savanna and grassland of northern Australia: an incubation experiment with intact soil cores

    NASA Astrophysics Data System (ADS)

    Werner, C.; Reiser, K.; Dannenmann, M.; Hutley, L. B.; Jacobeit, J.; Butterbach-Bahl, K.

    2014-11-01

    Strong seasonal variability of hygric and thermal soil conditions are a defining environmental feature in northern Australia. However, how such changes affect the soil-atmosphere exchange of nitrous oxide (N2O), nitric oxide (NO) and dinitrogen (N2) is still not well explored. By incubating intact soil cores from four sites (three savanna, one pasture) under controlled soil temperatures (ST) and soil moisture (SM) we investigated the release of the trace gas fluxes of N2O, NO and carbon dioxide (CO2). Furthermore, the release of N2 due to denitrification was measured using the helium gas flow soil core technique. Under dry pre-incubation conditions NO and N2O emissions were very low (<7.0 ± 5.0 μg NO-N m-2 h-1; <0.0 ± 1.4 μg N2O-N m-2 h-1) or in the case of N2O, even a net soil uptake was observed. Substantial NO (max: 306.5 μg N m-2 h-1) and relatively small N2O pulse emissions (max: 5.8 ± 5.0 μg N m-2 h-1) were recorded following soil wetting, but these pulses were short lived, lasting only up to 3 days. The total atmospheric loss of nitrogen was generally dominated by N2 emissions (82.4-99.3% of total N lost), although NO emissions contributed almost 43.2% to the total atmospheric nitrogen loss at 50% SM and 30 °C ST incubation settings (the contribution of N2 at these soil conditions was only 53.2%). N2O emissions were systematically higher for 3 of 12 sample locations, which indicates substantial spatial variability at site level, but on average soils acted as weak N2O sources or even sinks. By using a conservative upscale approach we estimate total annual emissions from savanna soils to average 0.12 kg N ha-1 yr-1 (N2O), 0.68 kg N ha-1 yr-1 (NO) and 6.65 kg N ha-1 yr-1 (N2). The analysis of long-term SM and ST records makes it clear that extreme soil saturation that can lead to high N2O and N2 emissions only occurs a few days per year and thus has little impact on the annual total. The potential contribution of nitrogen released due to pulse events

  12. Soils Sampling and Testing Training Guide for Field and Laboratory Technicians on Roadway Construction

    DOT National Transportation Integrated Search

    1999-12-01

    This manual has been developed as a training guide for field and laboratory technicians responsible for sampling and testing of soils used in roadway construction. Soils training and certification will increase the knowledge of laboratory, production...

  13. Towards a representation of priming on soil carbon decomposition in the global land biosphere model ORCHIDEE (version 1.9.5.2)

    NASA Astrophysics Data System (ADS)

    Guenet, Bertrand; Esteban Moyano, Fernando; Peylin, Philippe; Ciais, Philippe; Janssens, Ivan A.

    2016-03-01

    Priming of soil carbon decomposition encompasses different processes through which the decomposition of native (already present) soil organic matter is amplified through the addition of new organic matter, with new inputs typically being more labile than the native soil organic matter. Evidence for priming comes from laboratory and field experiments, but to date there is no estimate of its impact at global scale and under the current anthropogenic perturbation of the carbon cycle. Current soil carbon decomposition models do not include priming mechanisms, thereby introducing uncertainty when extrapolating short-term local observations to ecosystem and regional to global scale. In this study we present a simple conceptual model of decomposition priming, called PRIM, able to reproduce laboratory (incubation) and field (litter manipulation) priming experiments. Parameters for this model were first optimized against data from 20 soil incubation experiments using a Bayesian framework. The optimized parameter values were evaluated against another set of soil incubation data independent from the ones used for calibration and the PRIM model reproduced the soil incubations data better than the original, CENTURY-type soil decomposition model, whose decomposition equations are based only on first-order kinetics. We then compared the PRIM model and the standard first-order decay model incorporated into the global land biosphere model ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems). A test of both models was performed at ecosystem scale using litter manipulation experiments from five sites. Although both versions were equally able to reproduce observed decay rates of litter, only ORCHIDEE-PRIM could simulate the observed priming (R2 = 0.54) in cases where litter was added or removed. This result suggests that a conceptually simple and numerically tractable representation of priming adapted to global models is able to capture the sign and magnitude of the

  14. Towards a representation of priming on soil carbon decomposition in the global land biosphere model ORCHIDEE (version 1.9.5.2)

    NASA Astrophysics Data System (ADS)

    Guenet, B.; Moyano, F. E.; Peylin, P.; Ciais, P.; Janssens, I. A.

    2015-10-01

    Priming of soil carbon decomposition encompasses different processes through which the decomposition of native (already present) soil organic matter is amplified through the addition of new organic matter, with new inputs typically being more labile than the native soil organic matter. Evidence for priming comes from laboratory and field experiments, but to date there is no estimate of its impact at global scale and under the current anthropogenic perturbation of the carbon cycle. Current soil carbon decomposition models do not include priming mechanisms, thereby introducing uncertainty when extrapolating short-term local observations to ecosystem and regional to global scale. In this study we present a simple conceptual model of decomposition priming, called PRIM, able to reproduce laboratory (incubation) and field (litter manipulation) priming experiments. Parameters for this model were first optimized against data from 20 soil incubation experiments using a Bayesian framework. The optimized parameter values were evaluated against another set of soil incubation data independent from the ones used for calibration and the PRIM model reproduced the soil incubations data better than the original, CENTURY-type soil decomposition model, whose decomposition equations are based only on first order kinetics. We then compared the PRIM model and the standard first order decay model incorporated into the global land biosphere model ORCHIDEE. A test of both models was performed at ecosystem scale using litter manipulation experiments from 5 sites. Although both versions were equally able to reproduce observed decay rates of litter, only ORCHIDEE-PRIM could simulate the observed priming (R2 = 0.54) in cases where litter was added or removed. This result suggests that a conceptually simple and numerically tractable representation of priming adapted to global models is able to capture the sign and magnitude of the priming of litter and soil organic matter.

  15. Mobilization of hydrophobic contaminants from soils by enzymatic depolymerization of soil organic matter.

    PubMed

    Wicke, Daniel; Reemtsma, Thorsten

    2010-02-01

    The effect of hydrolytic exoenzymes on the release of hydrophobic organic contaminants (HOC) from two different surface soils was studied in laboratory batch experiments. Incubation of the soils with cellulase with an activity fivefold above the inherent soil activity enhanced the release of hydrophobic contaminants (polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and hydroxylated PCB) by 40-200%. Xylanase and invertase did not show measurable effects at comparable relative activity levels. This suggests that cellulose substructures are important for the retention of HOC in soil organic matter (SOM). Hydrolytic exoenzymes, and the microorganisms that release them, contribute to the mobilization of HOC from soil, by shifting the sorption equilibrium in the course of SOM transformation into dissolved organic matter or by facilitating HOC diffusion as a consequence of reduced rigidity of SOM. We conclude that not only biodegradation but also sorption and desorption of HOC in soil can be influenced by (micro-) biology and the factors that determine its activity.

  16. Organic Carbon Transformation and Mercury Methylation in Tundra Soils from Barrow Alaska

    DOE Data Explorer

    Liang, L.; Wullschleger, Stan; Graham, David; Gu, B.; Yang, Ziming

    2016-04-20

    This dataset includes information on soil labile organic carbon transformation and mercury methylation for tundra soils from Barrow, Alaska. The soil cores were collected from high-centered polygon (trough) at BEO and were incubated under anaerobic laboratory conditions at both freezing and warming temperatures for up to 8 months. Soil organic carbon including reducing sugars, alcohols, and organic acids were analyzed, and CH4 and CO2 emissions were quantified. Net production of methylmercury and Fe(II)/Fe(total) ratio were also measured and provided in this dataset.

  17. Laboratory scale bioremediation of diesel hydrocarbon in soil by indigenous bacterial consortium.

    PubMed

    Sharma, Anjana; Rehman, Meenal Budholia

    2009-09-01

    In vitro experiment was performed by taking petrol pump soils and diesel in flasks with the micronutrients and macronutrients supplements. Cemented bioreactors having sterilized soil and diesel was used for in vivo analysis of diesel hydrocarbon degradation. There were two sets of experiments, first having three bioreactors (1) inoculated by KI. pneumoniae subsp. aerogenes with soil and diesel; (2) with addition of NH4NO3; and (3) served as control. In second set, one bioreactor was inoculated by bacterial consortium containing Moraxella saccharolytica, Alteromonas putrefaciens, KI. pneumoniae subsp. aerogenes and Pseudomonas fragi along with soil and diesel. The remaining two bioreactors (having NH4NO3 and control) were similar to the first set. The experiments were incubated for 30 days. Ability of bacterial inoculum to degrade diesel was analyzed through GC-MS. Smaller chain compounds were obtained after experimental period of 30 days. Rate of diesel degradation was better with the present bacterial consortium than individual bacteria. Present bacterial consortium can be a better choice for faster and complete remediation of contaminated hydrocarbon soils.

  18. Detrital Controls on Dissolved Organic Matter in Soils: A Field Experiment

    NASA Astrophysics Data System (ADS)

    Lajtha, K.; Crow, S.; Yano, Y.; Kaushal, S.; Sulzman, E.; Sollins, P.

    2004-12-01

    We established a long-term field study in an old growth coniferous forest at the H.J. Andrews Experimental Forest, OR, to address how detrital quality and quantity control soil organic matter accumulation and stabilization. The Detritus Input and Removal Treatments (DIRT) plots consist of treatments that double leaf litter, double woody debris inputs, exclude litter inputs, or remove root inputs via trenching. We measured changes in soil solution chemistry with depth, and conducted long-term incubations of bulk soils and soil density fractions from different treatments in order to elucidate effects of detrital inputs on the relative amounts and lability of different soil C pools. In the field, the effect of adding woody debris was to increase dissolved organic carbon (DOC) concentrations in O-horizon leachate and at 30 cm, but not at 100 cm, compared to control plots, suggesting increased rates of DOC retention with added woody debris. DOC concentrations decreased through the soil profile in all plots to a greater degree than did dissolved organic nitrogen (DON), most likely due to preferential sorption of high C:N hydrophobic dissolved organic matter (DOM) in upper horizons; %hydrophobic DOM decreased significantly with depth, and hydrophilic DOM had a much lower and narrower C:N ratio. Although laboratory extracts of different litter types showed differences in DOM chemistry, percent hydrophobic DOM did not differ among detrital treatments in the field, suggesting microbial equalization of DOM leachate in the field. In long-term laboratory incubations, light fraction material did not have higher rates of respiration than heavy fraction or bulk soils, suggesting that physical protection or N availability controls different turnover times of heavy fraction material, rather than differences in chemical lability. Soils from plots that had both above- and below-ground litter inputs excluded had significantly lower DOC loss rates, and a non-significant trend for lower

  19. ANAEROBIC SOIL DISINFESTATION IN MICROCOSMS OF TWO SANDY SOILS.

    PubMed

    Stremińska, M A; Runia, W T; Termorshuizen, A J; Feil, H; Van Der Wurff, A W G

    2014-01-01

    In recent years, anaerobic soil disinfestation (ASD) has been proposed as an alternative control method of soil-borne plant pathogens. It involves adding a labile carbon source, irrigating the soil to stimulate decomposition of organic material and then covering the soil with air-tight plastic to limit gas exchange. During the ASD process, soil microorganisms switch from aerobic to anaerobic metabolism. As a result, by-products of anaerobic metabolism are released into the soil environment such as various organic acids and gases. These by-products are reported to have a negative effect on survival of soil-borne plant pathogens. However, the efficacy of ASD to reduce soil-borne pathogens in practice may vary significantly. Therefore, we studied the efficacy of the ASD process in two different soils. In addition, it was investigated whether a pre-treatment with an anaerobic bacterial inoculum prior to ASD affected the efficacy of the process. Two sandy soils (dune sand and glacial sand) were inoculated in 2 L soil microcosms. We tested the efficacy of ASD treatment against the potato cyst nematode Globodera pallida. For each soil, three treatments were used: control treatment (no Herbie addition, aerobic incubation), ASD 1 (organic substrate addition, anaerobic incubation) and ASD 2 (organic substrate and anaerobic bacterial inoculum addition, anaerobic incubation). Soil microcosms were incubated in the dark at 20°C for two weeks. We observed that anaerobic soil disinfestation treatments were highly effective against Potato Cyst Nematode (PCN), with pathogen being eradicated totally in all but one ASD treatment (glacial sand ASD2) within two weeks. The relative abundance of Firmicutes (spore-forming bacteria, often fermentative) in total bacteria increased significantly in ASD treated soils. Numbers of these bacteria correlated positively with increased concentrations of acetic and butyric acids in soil water phase in ASD treatments.

  20. Tebuconazole dissipation and metabolism in Tifton loamy sand during laboratory incubationt.

    PubMed

    Strickland, Timothy C; Potter, Thomas L; Joo, Hyun

    2004-07-01

    The fungicide tebuconazole is widely used to control soil-borne and foliar diseases in peanuts and other crops. No published data are currently available on the extent and rate at which this compound degrades in soil. Unpublished data summarized in registration documents suggest that the compound is persistent, with 300-600 days half-life. We conducted a 63-day laboratory incubation to evaluate tebuconazole's dissipation kinetics and impact on soil microbial activity in Tifton loamy sand. Tifton soils support extensive peanut production in the Atlantic Coastal Plain region of Georgia and Alabama. Products containing tebuconazole are applied to an estimated 50% of the peanut acreage in the region. At the end of the incubation, 43 (+/-42)% of the parent compound was recovered in soil extracts. The first-order kinetic model, which gave a good fit to the dissipation data (r2 = 0.857), yielded a soil half-life (t1/2) of 49 days. This is 6-12 times more rapid than t1/2 values described in unpublished tebuconazole registration documents. Four degradates were identified. Tentative structural assignments indicated that degradates were derived from hydroxylation of the parent compound and/or chlorophenyl ring cleavage. Cleavage products showed a steady increase during the incubation, and on a molar basis were equal to 63% of the time zero tebuconazole concentration. No significant effect on soil microbial biomass was observed, indicating that when the compound is applied at normal agronomic rate it does not impact soil metabolic activity. Use of the soil-half life data derived in this study should improve the accuracy oftebuconazole fate assessments for Coastal Plain peanut production. The study also indicated that environmental assessment of selected degradates may be needed to fully evaluate risks of tebuconazole use.

  1. Effect of Palygorskite Clay, Fertilizers, and Lime on the Degradation of Oil Products in Oligotrophic Peat Soil under Laboratory Experimental Conditions

    NASA Astrophysics Data System (ADS)

    Tolpeshta, I. I.; Erkenova, M. I.

    2018-02-01

    The effect of native palygorskite clay and that modified with dodecyltrimethylammonium chloride on the degradation of oil products in an oligotrophic peat soil under complete flooding at the application of lime and mineral fertilizers has been studied under laboratory conditions. It has been shown that the incubation of oil-contaminated soil with unmodified clay and fertilizers at the application of lime under complete flooding with water affects the dynamics of pH and Eh and slows the development of reducing conditions compared to the use of clay without fertilizers. The addition of organoclay under similar conditions favors the formation of potential-determining system with a high redox capacity, which is capable of retaining the potential on a level of 100-200 mV at pH ˜ 7 for two months. It has been found that, under the experimental conditions, unmodified and modified clay, which has no toxic effect on the bacterial complex, does not increase the biodegradation efficiency of oil products in the oligotrophic peat soil compared to the experimental treatments without clay addition. Possible reasons for no positive effect of palygorskite clay on the biodegradation rate of oil products under experimental conditions have been analyzed.

  2. Quantifying soil surface photolysis under conditions simulating water movement in the field: a new laboratory test design.

    PubMed

    Hand, Laurence H; Nichols, Carol; Kuet, Sui F; Oliver, Robin G; Harbourt, Christopher M; El-Naggar, Essam M

    2015-10-01

    Soil surface photolysis can be a significant dissipation pathway for agrochemicals under field conditions, although it is assumed that such degradation ceases once the agrochemical is transported away from the surface following rainfall or irrigation and subsequent drainage of soil porewater. However, as both downward and upward water movements occur under field conditions, relatively mobile compounds may return to the surface, prolonging exposure to ultraviolet light and increasing the potential for degradation by photolysis. To test this hypothesis, a novel experimental system was used to quantify the contribution of photolysis to the overall dissipation of a new herbicide, bicyclopyrone, under conditions that mimicked field studies more closely than the standard laboratory test guidance. Soil cores were taken from 3 US field study sites, and the surfaces were treated with [(14) C]-bicyclopyrone. The radioactivity was redistributed throughout the cores using a simulated rainfall event, following which the cores were incubated under a xenon-arc lamp with continuous provision of moisture from below and a wind simulator to induce evaporation. After only 2 d, most of the test compound had returned to the soil surface. Significantly more degradation was observed in the irradiated samples than in a parallel dark control sample. Degradation rates were very similar to those observed in both the thin layer photolysis study and the field dissipation studies and significantly faster than in the soil metabolism studies conducted in the dark. Thus, for highly soluble, mobile agrochemicals, such as bicyclopyrone, photolysis is not terminated permanently by rainfall or irrigation but can resume following transport to the surface in evaporating water. © 2015 SETAC.

  3. Evaluation of incubation time for dermatophytes cultures.

    PubMed

    Rezusta, Antonio; de la Fuente, Sonia; Gilaberte, Yolanda; Vidal-García, Matxalen; Alcalá, Leticia; López-Calleja, Ana; Ruiz, Maria Angeles; Revillo, Maria José

    2016-07-01

    In general, it is recommended to incubate dermatophytes cultures for a minimum of 4 weeks. Several aspects of routine fungal cultures should be evaluated in order to implement appropriate and necessary changes. The aim of this study was to determine the optimum incubation time for routine dermatophytes cultures, analysing the time to find first fungal growth by visual observation. We recorded the time when the initial growth was detected for all dermatophyte isolates during a 4-year period. A total of 5459 dermatophyte cultures were submitted to our laboratory. From the total cultures, only 16 (1.42%) isolates were recovered over/after 17 days of incubation and only three dermatophyte species were recovered over 17 days. Fourteen isolates belong to Trichophyton rubrum, one isolate to Trichophyton mentagrophytes complex and one isolate to Epidermophyton floccosum. We concluded that an incubation period of 17 days is enough to establish a microbiological diagnosis of dermatophytosis. © 2016 Blackwell Verlag GmbH.

  4. 14C tebuconazole degradation in Colombian soils.

    PubMed

    Mosquera, C S; Martínez, M J; Guerrero, J A

    2010-01-01

    Tebuconazole is a fungicide used on onion crops (Allium Fistulosum L) in Colombia. Persistence of pesticides in soils is characterized by the half-life (DT50), which is influenced by their chemical structure, the physical and chemical properties of the soil and the previous soil history. Based on its structural and chemical properties, tebuconazole should be expected to be relatively persistent in soils. Laboratory incubation studies were conducted to evaluate persistence and bond residues of 14C tebuconazole in three soils, two inceptisol (I) and one histosol (H). Textural classifications were: loam (101), loamy sand (102) and loam (H03), respectively. Data obtained followed a first-order degradation kinetics (R2 > or = 0.899) with DT50 values between 158 and 198 days. The production of 14CO2 from the 14C-ring-labelled test chemicals was very low and increased slightly during 63 days in all cases. The methanol extractable 14C-residues were higher than aqueous ones and both decreased over incubation time for the three soils. The formation of bound 14C-residues increased with time and final values were 11.3; 5.55 and 7.87% for 101, 102 and H03 respectively. Soil 101 showed the lowest mineralization rate and the highest bound residues formation, which might be explained by the clay fraction content. In contrast, an inverse behavior was found for soils 102 and H03, these results might be explained by the higher soil organic carbon content.

  5. Laboratory and pilot-scale bioremediation of pentaerythritol tetranitrate (PETN) contaminated soil.

    PubMed

    Zhuang, Li; Gui, Lai; Gillham, Robert W; Landis, Richard C

    2014-01-15

    PETN (pentaerythritol tetranitrate), a munitions constituent, is commonly encountered in munitions-contaminated soils, and pose a serious threat to aquatic organisms. This study investigated anaerobic remediation of PETN-contaminated soil at a site near Denver Colorado. Both granular iron and organic carbon amendments were used in both laboratory and pilot-scale tests. The laboratory results showed that, with various organic carbon amendments, PETN at initial concentrations of between 4500 and 5000mg/kg was effectively removed within 84 days. In the field trial, after a test period of 446 days, PETN mass removal of up to 53,071mg/kg of PETN (80%) was achieved with an organic carbon amendment (DARAMEND) of 4% by weight. In previous laboratory studies, granular iron has shown to be highly effective in degrading PETN. However, for both the laboratory and pilot-scale tests, granular iron was proven to be ineffective. This was a consequence of passivation of the iron surfaces caused by the very high concentrations of nitrate in the contaminated soil. This study indicated that low concentration of organic carbon was a key factor limiting bioremediation of PETN in the contaminated soil. Furthermore, the addition of organic carbon amendments such as the DARAMEND materials or brewers grain, proved to be highly effective in stimulating the biodegradation of PETN and could provide the basis for full-scale remediation of PETN-contaminated sites. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Determination of Soil Moisture Content using Laboratory Experimental and Field Electrical Resistivity Values

    NASA Astrophysics Data System (ADS)

    Hazreek, Z. A. M.; Rosli, S.; Fauziah, A.; Wijeyesekera, D. C.; Ashraf, M. I. M.; Faizal, T. B. M.; Kamarudin, A. F.; Rais, Y.; Dan, M. F. Md; Azhar, A. T. S.; Hafiz, Z. M.

    2018-04-01

    The efficiency of civil engineering structure require comprehensive geotechnical data obtained from site investigation. In the past, conventional site investigation was heavily related to drilling techniques thus suffer from several limitations such as time consuming, expensive and limited data collection. Consequently, this study presents determination of soil moisture content using laboratory experimental and field electrical resistivity values (ERV). Field and laboratory electrical resistivity (ER) test were performed using ABEM SAS4000 and Nilsson400 soil resistance meter. Soil sample used for resistivity test was tested for characterization test specifically on particle size distribution and moisture content test according to BS1377 (1990). Field ER data was processed using RES2DINV software while laboratory ER data was analyzed using SPSS and Excel software. Correlation of ERV and moisture content shows some medium relationship due to its r = 0.506. Moreover, coefficient of determination, R2 analyzed has demonstrate that the statistical correlation obtain was very good due to its R2 value of 0.9382. In order to determine soil moisture content based on statistical correlation (w = 110.68ρ-0.347), correction factor, C was established through laboratory and field ERV given as 19.27. Finally, this study has shown that soil basic geotechnical properties with particular reference to water content was applicably determined using integration of laboratory and field ERV data analysis thus able to compliment conventional approach due to its economic, fast and wider data coverage.

  7. The status of soil mapping for the Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, G.L.; Lee, R.D.; Jeppesen, D.J.

    This report discusses the production of a revised version of the general soil map of the 2304-km{sup 2} (890-mi{sup 2}) Idaho National Engineering Laboratory (INEL) site in southeastern Idaho and the production of a geographic information system (GIS) soil map and supporting database. The revised general soil map replaces an INEL soil map produced in 1978 and incorporates the most current information on INEL soils. The general soil map delineates large soil associations based on National Resources Conservation Services [formerly the Soil Conservation Service (SCS)] principles of soil mapping. The GIS map incorporates detailed information that could not be presentedmore » on the general soil map and is linked to a database that contains the soil map unit descriptions, surficial geology codes, and other pertinent information.« less

  8. Laboratory and greenhouse assessment of phytoremediation of petroleum contaminated soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banks, M.K.; Schwab, A.P.; Wang, X.

    Phytoremediation of soils contaminated with petroleum and associated priority pollutants was evaluated in greenhouse and laboratory experiments. Mineralization of several PAHs was measured in rhizosphere soil, non-rhizosphere soil, and sterile soil amended with simulated root exudates. The least amount of mineralization was observed in sterile soil, but there were no differences among all other soils. Mineralization of 14 C-benzo[a]pyrene was determined in chambers to determine the effects of tall fescue on dissipation of this compound. After 180 days, the soils with fescue had more than twice the mineralization than soils without plants. In the soils with plants, evolution of 14CO2more » from the soil was five times greater than from the plant biomass. These experiments demonstrate that the presence of plants is a necessary part of the phytoremediation process. There appears to be no residual rhizosphere effect, and the simple exudation of organic compounds does not mimic fully the presence of roots.« less

  9. A portable freshwater closed-system fish egg incubation system

    USGS Publications Warehouse

    Sutherland, Jenny L.; Manny, Bruce A.; Kennedy, Gregory W.; Roseman, Edward F.; Allen, Jeffrey D.; Black, M. Glen

    2014-01-01

    To identify fish eggs collected in the field to species, a portable closed-system fish egg incubation system was designed and used to incubate and hatch the eggs in the laboratory. The system is portable, small in scale (2.54 × 1.52 × 2.03 m), and affordable, with the approximate cost of the system being US$8,300 (2012). The main tank is 678 L and holds a battery of up to 21 (egg) incubation jars. The system includes three independent water pumping systems to (1) provide aerated water to hatching jars, (2) filter and sterilize incubation water, and (3) provide temperature-controlled water in the main tank bath and the incubation jars. The system was successfully used to incubate freshwater fish eggs to raise resulting larvae to the post-yolk-sac stage for three seasons (spring 2012, spring 2013, and fall 2013) over two consecutive years, at two different locations, enabling us to identify fish eggs to species by providing identifiable fish larvae from incubated fish eggs.

  10. Effects of Soil Temperature and Moisture on Soil Respiration on the Tibetan Plateau

    PubMed Central

    Chang, Xiaofeng; Wang, Shiping; Xu, Burenbayin; Luo, Caiyun; Zhang, Zhenhua; Wang, Qi; Rui, Yichao; Cui, Xiaoying

    2016-01-01

    Understanding of effects of soil temperature and soil moisture on soil respiration (Rs) under future warming is critical to reduce uncertainty in predictions of feedbacks to atmospheric CO2 concentrations from grassland soil carbon. Intact cores with roots taken from a full factorial, 5-year alpine meadow warming and grazing experiment in the field were incubated at three different temperatures (i.e. 5, 15 and 25°C) with two soil moistures (i.e. 30 and 60% water holding capacity (WHC)) in our study. Another experiment of glucose-induced respiration (GIR) with 4 h of incubation was conducted to determine substrate limitation. Our results showed that high temperature increased Rs and low soil moisture limited the response of Rs to temperature only at high incubation temperature (i.e. 25°C). Temperature sensitivity (Q10) did not significantly decrease over the incubation period, suggesting that substrate depletion did not limit Rs. Meanwhile, the carbon availability index (CAI) was higher at 5°C compared with 15 and 25°C incubation, but GIR increased with increasing temperature. Therefore, our findings suggest that warming-induced decrease in Rs in the field over time may result from a decrease in soil moisture rather than from soil substrate depletion, because warming increased root biomass in the alpine meadow. PMID:27798671

  11. Some Remarks on Practical Aspects of Laboratory Testing of Deep Soil Mixing Composites Achieved in Organic Soils

    NASA Astrophysics Data System (ADS)

    Kanty, Piotr; Rybak, Jarosław; Stefaniuk, Damian

    2017-10-01

    This paper presents the results of laboratory testing of organic soil-cement samples are presented in the paper. The research program continues previously reported the authors’ experiences with cement-fly ash-soil sample testing. Over 100 of compression and a dozen of tension tests have been carried out altogether. Several samples were waiting for failure test for over one year after they were formed. Several factors, like: the large amount of the tested samples, a long observation time, carrying out the tests in complex cycles of loading and the possibility of registering the loads and deformation in the axial and lateral direction - have made it possible to take into consideration numerous interdependencies, three of which have been presented in this work: the increments of compression strength, the stiffness of soil-cement in relation to strength and the tensile strength. Compressive strength, elastic modulus and tensile resistance of cubic samples were examined. Samples were mixed and stored in the laboratory conditions. Further numerical analysis in the Finite Element Method numerical code Z_Soil, were performed on the basis of laboratory test results. Computations prove that cement-based stabilization of organic soil brings serious risks (in terms of material capacity and stiffness) and Deep Soil Mixing technology should not be recommended for achieving it. The numerical analysis presented in the study below includes only one type of organic and sandy soil and several possible geometric combinations. Despite that, it clearly points to the fact that designing the DSM columns in the organic soil may be linked with a considerable risk and the settlement may reach too high values. During in situ mixing, the organic material surrounded by sand layers surely mixes with one another in certain areas. However, it has not been examined and it is difficult to assume such mixing already at the designing stage. In case of designing the DSM columns which goes through a

  12. Contribution of soil fauna to soil functioning in degraded environments: a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Gargiulo, Laura; Mele, Giacomo; Moradi, Jabbar; Kukla, Jaroslav; Jandová, Kateřina; Frouz, Jan

    2016-04-01

    The restoration of the soil functions is essential for the recovery of highly degraded sites and, consequently, the study of the soil fauna role in the soil development in such environments has great potential from a practical point of view. The soils of the post-mining sites represent unique models for the study of the natural ecological succession because mining creates similar environments characterized by the same substrate, but by different ages according to the year of closure of mines. The aim of this work was to assess the contribution of different species of macrofauna on the evolution of soil structure and on the composition and activity of the microbial community in soil samples subjected to ecological restoration or characterized by spontaneous ecological succession. For this purpose, an experimental test was carried out in two sites characterized by different post-mining conditions: 1) natural succession, 2) reclamation with planting trees. These sites are located in the post-mining area of Sokolov (Czech Republic). For the experimental test repacked soil cores were prepared in laboratory with sieved soil sampled from the two sites. The soil cores were prepared maintaining the sequence of soil horizons present in the field. These samples were inoculated separately with two genera of earthworms (Lumbricus and Aporrectodea) and two of centipedes (Julida and Polydesmus). In particular, based on their body size, were inoculated for each cylinder 2 individuals of millipedes, 1 individual of Lumbricus and 4 individuals of Aporrectodea. For each treatment and for control samples 5 replicates were prepared and all samples were incubated in field for 1 month in the two original sampling sites. After the incubation the samples were removed from the field and transported in laboratory in order to perform the analysis of microbial respiration, of PLFA (phospholipid-derived fatty acids) and ergosterol contents and finally for the characterization of soil structure

  13. Use of the laboratory tests of soil modulus in modelling pile behaviour

    NASA Astrophysics Data System (ADS)

    Dyka, Ireneusz

    2012-10-01

    This article deals with the question of theoretical description of behaviour of a single pile rested in a layered soil medium. Particular attention is paid to soil modulus which is used in calculation method for pile load-settlement curve. A brief analysis of the results obtained by laboratory tests to assess soil modulus and its nonlinear variability has been presented. The results of tests have been used in triaxial apparatus and resonant column/torsional shear device. There have also been presented the results of load-settlement calculation for a single pile under axial load with implementation of different models of soil modulus degradation. On this basis, possibilities of using particular kinds of laboratory tests in calculation procedure of foundation settlement have been presented as well as further developments of them.

  14. Incubation of air-pollution-control residues from secondary Pb smelter in deciduous and coniferous organic soil horizons: leachability of lead, cadmium and zinc.

    PubMed

    Chrastný, Vladislav; Vaněk, Aleš; Komárek, Michael; Farkaš, Juraj; Drábek, Ondřej; Vokurková, Petra; Němcová, Jana

    2012-03-30

    The leachability of air-pollution-control (APC) residues from a secondary lead smelter in organic soil horizons (F and H) from a deciduous and a coniferous forest during incubation periods of 0, 3 and 6 months were compared in this work. While the concentration of Pb, Zn and Cd associated with the exchangeable/acid extractable fraction in the horizon F from the coniferous forest was higher compared to the deciduous, significantly lower concentrations in the humified horizon H was found. It is suggested that lower pH and a higher share of fulvic acids fraction (FAs) of solid phase soil organic matter (SOM) in the humified soil horizon H from the coniferous compared to the deciduous forest is responsible for a higher metal association with solid phase SOM and therefore a lower metal leaching in a soil system. From this point of view, the humified soil horizon H from the deciduous forest represents a soil system more vulnerable to Pb, Zn and Cd leaching from APC residues. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Effects of Biochar Amendment on Soil Properties and Soil Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Zhu, S.

    2015-12-01

    Biochar addition to soils potentially affects various soil properties and soil carbon sequestration, and these effects are dependent on biochars derived from different feedstock materials and pyrolysis processes. The objective of this study was to investigate the effects of amendment of different biochars on soil physical and biological properties as well as soil carbon sequestration. Biochars were produced with dairy manure and woodchip at temperatures of 300, 500, and 700°C, respectively. Each biochar was mixed at 5% (w/w) with a forest soil and the mixture was incubated for 180 days, during which soil physical and biological properties, and soil respiration rates were measured. Results showed that the biochar addition significantly enhanced the formation of soil macroaggregates at the early incubation time. The biochar application significantly reduced soil bulk density, increased the amount of soil organic matter, and stimulated microbial activity and soil respiration rates at the early incubation stage. Biochar applications improved water retention capacity, with stronger effects by biochars produced at higher pyrolysis temperatures. At the same suction, the soil with woodchip biochars possessed higher water content than with the dairy manure biochars. Biochar addition significantly affected the soil physical and biological properties, which resulted in different soil carbon mineralization rates and the amount of soil carbon storage.

  16. Effects of poultry manure on soil biochemical properties in phthalic acid esters contaminated soil.

    PubMed

    Gao, Jun; Qin, Xiaojian; Ren, Xuqin; Zhou, Haifeng

    2015-12-01

    This study aimed to evaluate the effects of poultry manure (PM) on soil biological properties in DBP- and DEHP-contaminated soils. An indoor incubation experiment was conducted. Soil microbial biomass C (Cmic), soil enzymatic activities, and microbial phospholipid fatty acid (PLFA) concentrations were measured during incubation period. The results indicated that except alkaline phosphatase activity, DBP and DEHP had negative effects on Cmic, dehydrogenase, urease, protease activities, and contents of total PLFA. However, 5 % PM treatment alleviated the negative effects of PAEs on the above biochemical parameters. In DBP-contaminated soil, 5 % PM amendment even resulted in dehydroenase activity and Cmic content increasing by 17.8 and 11.8 % on the day 15 of incubation, respectively. During the incubation periods, the total PLFA contents decreased maximumly by 17.2 and 11.6 % in DBP- and DEHP-contaminated soils without PM amendments, respectively. Compared with those in uncontaminated soil, the total PLFA contents increased slightly and the value of bacPLFA/fugalPLFA increased significantly in PAE-contaminated soils with 5 % PM amendment. Nevertheless, in both contaminated soils, the effects of 5 % PM amendment on the biochemical parameters were not observed with 10 % PM amendment. In 10 % PM-amended soils, DBP and DEHP had little effect on Cmic, soil enzymatic activities, and microbial community composition. At the end of incubation, the effects of PAEs on these parameters disappeared, irrespective of PM amendment. The application of PM ameliorated the negative effect of PAEs on soil biological environment. However, further work is needed to study the effect of PM on soil microbial gene expression in order to explain the change mechanisms of soil biological properties.

  17. Inter-laboratory variation in the chemical analysis of acidic forest soil reference samples from eastern North America

    USGS Publications Warehouse

    Ross, Donald S.; Bailiey, Scott W; Briggs, Russell D; Curry, Johanna; Fernandez, Ivan J.; Fredriksen, Guinevere; Goodale, Christine L.; Hazlett, Paul W.; Heine, Paul R; Johnson, Chris E.; Larson, John T; Lawrence, Gregory B.; Kolka, Randy K; Ouimet, Rock; Pare, D; Richter, Daniel D.; Shirmer, Charles D; Warby, Richard A.F.

    2015-01-01

    Long-term forest soil monitoring and research often requires a comparison of laboratory data generated at different times and in different laboratories. Quantifying the uncertainty associated with these analyses is necessary to assess temporal changes in soil properties. Forest soil chemical properties, and methods to measure these properties, often differ from agronomic and horticultural soils. Soil proficiency programs do not generally include forest soil samples that are highly acidic, high in extractable Al, low in extractable Ca and often high in carbon. To determine the uncertainty associated with specific analytical methods for forest soils, we collected and distributed samples from two soil horizons (Oa and Bs) to 15 laboratories in the eastern United States and Canada. Soil properties measured included total organic carbon and nitrogen, pH and exchangeable cations. Overall, results were consistent despite some differences in methodology. We calculated the median absolute deviation (MAD) for each measurement and considered the acceptable range to be the median 6 2.5 3 MAD. Variability among laboratories was usually as low as the typical variability within a laboratory. A few areas of concern include a lack of consistency in the measurement and expression of results on a dry weight basis, relatively high variability in the C/N ratio in the Bs horizon, challenges associated with determining exchangeable cations at concentrations near the lower reporting range of some laboratories and the operationally defined nature of aluminum extractability. Recommendations include a continuation of reference forest soil exchange programs to quantify the uncertainty associated with these analyses in conjunction with ongoing efforts to review and standardize laboratory methods.

  18. Biogenic NO emission from a spruce forest soil in the Fichtelgebirge (Germany) under the influence of different understorey vegetation cover

    NASA Astrophysics Data System (ADS)

    Bargsten, A.; Andreae, M. O.; Meixner, F. X.

    2009-04-01

    Within the framework of the EGER project (ExchanGE processes in mountainous Regions) soil samples have been taken from the spruce forest site "Weidenbrunnen" (Fichtelgebirge, Germany) in September 2008 to determine the NO exchange in the laboratory and for a series of soil analyses. The soil was sampled below different understorey vegetation covers: young Norway spruce, moss/litter, blueberries and grass. We investigated the net NO release rate from corresponding organic layers as well as from the A horizon of respective soils. Additionally we measured pH, C/N ratio, contents of ammonium, nitrate, and organic C, bulk density, the thickness of the organic layer and the quality of the organic matter. Net NO release rates (as well as the NO production and NO consumption rates) from the soil samples were determined by a fully automated laboratory incubation & fumigation system. Purified dry air passed five dynamic incubation chambers, four containing water saturated soil samples and one reference chamber. By this procedure, the soil samples dried out slowly (within 2-6 days), covering the full range of soil moisture (0-300% gravimetric soil moisture). To quantify NO production and NO consumption rates separately, soil samples were fumigated with zero-air (approx. 0 ppb NO) and air of 133 ppb NO. The chambers were placed in a thermostatted cabinet for incubation at 10 an 20˚ C. NO and H2O concentrations at the outlet of the five dynamic chambers were measured sequentially by chemiluminescence and IR-absorption based analyzers, switching corresponding valves every two minutes. Net NO release rates were determined from the NO concentration difference between soil containing and reference chambers. Corresponding measurements of H2O mixing ratio yielded the evaporation loss of the soil samples, which (referenced to the gravimetric soil water content before and after the incubation experiment) provided the individual soil moisture contents of each soil samples during the

  19. Temperature sensitivity of soil organic carbon decomposition increased with mean carbon residence time: Field incubation and data assimilation.

    PubMed

    Zhou, Xuhui; Xu, Xia; Zhou, Guiyao; Luo, Yiqi

    2018-02-01

    Temperature sensitivity of soil organic carbon (SOC) decomposition is one of the major uncertainties in predicting climate-carbon (C) cycle feedback. Results from previous studies are highly contradictory with old soil C decomposition being more, similarly, or less sensitive to temperature than decomposition of young fractions. The contradictory results are partly from difficulties in distinguishing old from young SOC and their changes over time in the experiments with or without isotopic techniques. In this study, we have conducted a long-term field incubation experiment with deep soil collars (0-70 cm in depth, 10 cm in diameter of PVC tubes) for excluding root C input to examine apparent temperature sensitivity of SOC decomposition under ambient and warming treatments from 2002 to 2008. The data from the experiment were infused into a multi-pool soil C model to estimate intrinsic temperature sensitivity of SOC decomposition and C residence times of three SOC fractions (i.e., active, slow, and passive) using a data assimilation (DA) technique. As active SOC with the short C residence time was progressively depleted in the deep soil collars under both ambient and warming treatments, the residences times of the whole SOC became longer over time. Concomitantly, the estimated apparent and intrinsic temperature sensitivity of SOC decomposition also became gradually higher over time as more than 50% of active SOC was depleted. Thus, the temperature sensitivity of soil C decomposition in deep soil collars was positively correlated with the mean C residence times. However, the regression slope of the temperature sensitivity against the residence time was lower under the warming treatment than under ambient temperature, indicating that other processes also regulated temperature sensitivity of SOC decomposition. These results indicate that old SOC decomposition is more sensitive to temperature than young components, making the old C more vulnerable to future warmer

  20. Martian Soil Ready for Robotic Laboratory Analysis

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander scooped up this Martian soil on the mission's 11th Martian day, or sol, after landing (June 5, 2008) as the first soil sample for delivery to the laboratory on the lander deck.

    The material includes a light-toned clod possibly from crusted surface of the ground, similar in appearance to clods observed near a foot of the lander.

    This approximately true-color view of the contents of the scoop on the Robotic Arm comes from combining separate images taken by the Robotic Arm Camera on Sol 11, using illumination by red, green and blue light-emitting diodes on the camera.

    The scoop loaded with this sample was poised over an open sample-delivery door of Thermal and Evolved-Gas Analyzer at the end of Sol 11, ready to be dumped into the instrument on the next sol.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Assessment of chemical and biochemical stabilization of organic C in soils from the long-term experiments at Rothamsted (UK).

    PubMed

    De Nobili, M; Contin, M; Mahieu, N; Randall, E W; Brookes, P C

    2008-01-01

    Biological and chemical stabilization of organic C was assessed in soils sampled from the long-term experiments at Rothamsted (UK), representing a wide range of carbon inputs and managements by extracting labile, non-humified organic matter (NH) and humic substances (HS). Four sequentially extracted humic substances fractions of soil organic matter (SOM) were extracted and characterized before and after a 215-day laboratory incubation at 25 degrees C from two arable soils, a woodland soil and an occasionally stubbed soil. The fractions corresponded to biochemically stabilised SOM extracted in 0.5M NaOH (free fulvic acids (FA) and humic acids (HA)) and chemically plus biochemically stabilised SOM extracted from the residue with 0.1M Na4P2O7 plus 0.1M NaOH (bound FA and HA). Our aim was to investigate the effects of chemical and biochemical stabilization on carbon sequestration. The non-humic to humic (NH/H) C ratio separated the soils into two distinct groups: arable soils (unless fertilised with farmyard manure) had an NH/H C ratio between 1.05 and 0.71, about twice that of the other soils (0.51-0.26). During incubation a slow, but detectable, decrease in the NH/H C ratio occurred in soils of C input equivalent or lower to 4Mgha(-1)y(-1), whereas the ratio remained practically constant in the other soils. Before incubation the free to bound humic C ratio increased linearly (R2=0.91) with C inputs in the soils from the Broadbalk experiment and decreased during incubation, showing that biochemical stabilization is less effective than chemical stabilization in preserving humic C. Changes in delta13C and delta15N after incubation were confined to the free FA fractions. The delta13C of free FA increased by 1.48 and 0.80 per thousand, respectively, in the stubbed and woodland soils, indicating a progressive biological transformation. On the contrary, a decrease was observed for the bound FA of both soils. Concomitantly, a Deltadelta15N of up to +3.52 per thousand was

  2. Aflatoxin decomposition in various soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angle, J.S.

    The persistence of aflatoxin in the soil environment could potentially result in a number of adverse environmental consequences. To determine the persistence of aflatoxin in soil, /sup 14/C-labeled aflatoxin B1, was added to silt loam, sandy loam, and silty clay loam soils and the subsequent release of /sup 14/CO/sub 2/ was determined. After 120 days of incubation, 8.1% of the original aflatoxin added to the silt loam soil was released as CO/sub 2/. Aflatoxin decomposition in the sandy loam soil proceeded more quickly than the other two soils for the first 20 days of incubation. After this time, the decompositionmore » rate declined and by the end of the study, 4.9% of the aflatoxin was released as CO/sub 2/. Aflatoxin decomposition proceeded most slowly in the silty clay loam soil. Only 1.4% of aflatoxin added to the soil was released as CO/sub 2/ after 120 days incubation. To determine whether aflatoxin was bound to the silty clay loam soil, aflatoxin B1 was added to this soil and incubated for 20 days. The soil was periodically extracted and the aflatoxin species present were determined using thin layer chromatographic (TLC) procedures. After one day of incubation, the degradation products, aflatoxins B2 and G2, were observed. It was also found that much of the aflatoxin extracted from the soil was not mobile with the TLC solvent system used. This indicated that a conjugate may have formed and thus may be responsible for the lack of aflatoxin decomposition.« less

  3. Association between Severity of MERS-CoV Infection and Incubation Period.

    PubMed

    Virlogeux, Victor; Park, Minah; Wu, Joseph T; Cowling, Benjamin J

    2016-03-01

    We analyzed data for 170 patients in South Korea who had laboratory-confirmed infection with Middle East respiratory syndrome coronavirus. A longer incubation period was associated with a reduction in the risk for death (adjusted odds ratio/1-day increase in incubation period 0.83, 95% credibility interval 0.68-1.03).

  4. Degradation of PVC/rPLA Thick Films in Soil Burial Experiment

    NASA Astrophysics Data System (ADS)

    Nowak, Bożena; Rusinowski, Szymon; Chmielnicki, Blazej; Kamińska-Bach, Grażyna; Bortel, Krzysztof

    2016-10-01

    Some of the biodegradable polymers can be blended with a synthetic polymer to facilitate their biodegradation in the environment. The objective of the study was to investigate the biodegradation of thick films of poly(vinyl chloride)/recycled polylactide (PVC/rPLA). The experiments were carried out in the garden soil or in the mixture of garden soil and hydrocarbon-contaminated soil under laboratory conditions. Since it is widely accepted that the biosurfactants secreted by microorganisms enable biotransformation of various hydrophobic substances in the environment, it was assumed that the use of contaminated soil, rich in biosurfactant producing bacteria, may accelerate biodegradation of plastics. After the experimental period, the more noticeable weight loss of polymer films was observed after incubation in the garden soil. However, more pronounced changes in the film surface morphology and chemical structure as well as decrease of tensile strength were observed after incubation of films in the mixture of garden and contaminated soil. It turned out that as a result of competition between two distinct groups of microorganisms present in the mixture of garden and hydrocarbon-contaminated soils the number of microorganisms and their activity were lower than the activity of indigenous microflora of garden soil as well as the amount of secreted biosurfactants towards plastics.

  5. Designing a Low-Cost Multifunctional Infant Incubator.

    PubMed

    Tran, Kevin; Gibson, Aaron; Wong, Don; Tilahun, Dagmawi; Selock, Nicholas; Good, Theresa; Ram, Geetha; Tolosa, Leah; Tolosa, Michael; Kostov, Yordan; Woo, Hyung Chul; Frizzell, Michael; Fulda, Victor; Gopinath, Ramya; Prasad, J Shashidhara; Sudarshan, Hanumappa; Venkatesan, Arunkumar; Kumar, V Sashi; Shylaja, N; Rao, Govind

    2014-06-01

    Every year, an unacceptably large number of infant deaths occur in developing nations, with premature birth and asphyxia being two of the leading causes. A well-regulated thermal environment is critical for neonatal survival. Advanced incubators currently exist, but they are far too expensive to meet the needs of developing nations. We are developing a thermodynamically advanced low-cost incubator suitable for operation in a low-resource environment. Our design features three innovations: (1) a disposable baby chamber to reduce infant mortality due to nosocomial infections, (2) a passive cooling mechanism using low-cost heat pipes and evaporative cooling from locally found clay pots, and (3) insulated panels and a thermal bank consisting of water that effectively preserve and store heat. We developed a prototype incubator and visited and presented our design to our partnership hospital site in Mysore, India. After obtaining feedback, we have determined realistic, nontrivial design requirements and constraints in order to develop a new prototype incubator for clinical trials in hospitals in India. © 2014 Society for Laboratory Automation and Screening.

  6. Effects of N-ammonoxidized lignins amendment on N availability and soil fertility: An incubation study

    NASA Astrophysics Data System (ADS)

    María De la Rosa, José; López-Martín, María; Liebner, Falk; Knicker, Heike

    2013-04-01

    The shift towards a biobased economy will probably generate the application of bioenergy by-products and charred residues to the soil as either amendments or fertilizers. The process of ammonoxidation (application of gaseous oxygen and aqueous ammonia under ambient pressure breaks down aromatic lignin moieties and introduces N in the form of urea, amides and amines), converts lignin, a major by-product of the pulp and paper industry, or other ligneous materials into artificial humic matter (N-lignin). The use of N-ammonoxidized lignin as soil improvers is in theory an economically viable solution, especially interesting for agricultural areas of Mediterranean countries, in which additional factors such as water shortage and fires contribute to declining N availability by lowering nutrient diffusion, litter input or sequestration of N in charred structures. However, limited research has been done to determine how this will influence C and N dynamics and soil fertility. Therefore we performed pot experiments in which a perennial ryegrass (Lolium perenne L.) was grown on a typical Andalusian soil (chromic Luvisol) after amendment of N-lignins highly enriched in 15N (Sarkanda and Indulin ammonoxidized lignins) for 75 days. For comparison, the incubation was also carried out on soils fertilized with 15NO3 and unfertilized (control). The application of ammonoxidized lignins altered the pH and electrical conductivity of the soil. At higher concentrations a retardation of seed germination was evidenced, an observation that needs further considerations before N-enriched technical lignins can be applied in agriculture. After 75 days, the plant shoots from the pots amended with15N-Indulin and 15N-Sarkanda accumulated 8% and 20%, respectively of the initial 15N (15N0). The N was efficiently sequestered from fast release or leaching and most of 15N0 remained in the soil (64%) in the 15N-Indulin pots. In contrast, the 15N-Sarkanda pots showed a lower efficiency in the N

  7. A laboratory procedure for measuring and georeferencing soil colour

    NASA Astrophysics Data System (ADS)

    Marques-Mateu, A.; Balaguer-Puig, M.; Moreno-Ramon, H.; Ibanez-Asensio, S.

    2015-04-01

    Remote sensing and geospatial applications very often require ground truth data to assess outcomes from spatial analyses or environmental models. Those data sets, however, may be difficult to collect in proper format or may even be unavailable. In the particular case of soil colour the collection of reliable ground data can be cumbersome due to measuring methods, colour communication issues, and other practical factors which lead to a lack of standard procedure for soil colour measurement and georeferencing. In this paper we present a laboratory procedure that provides colour coordinates of georeferenced soil samples which become useful in later processing stages of soil mapping and classification from digital images. The procedure requires a laboratory setup consisting of a light booth and a trichromatic colorimeter, together with a computer program that performs colour measurement, storage, and colour space transformation tasks. Measurement tasks are automated by means of specific data logging routines which allow storing recorded colour data in a spatial format. A key feature of the system is the ability of transforming between physically-based colour spaces and the Munsell system which is still the standard in soil science. The working scheme pursues the automation of routine tasks whenever possible and the avoidance of input mistakes by means of a convenient layout of the user interface. The program can readily manage colour and coordinate data sets which eventually allow creating spatial data sets. All the tasks regarding data joining between colorimeter measurements and samples locations are executed by the software in the background, allowing users to concentrate on samples processing. As a result, we obtained a robust and fully functional computer-based procedure which has proven a very useful tool for sample classification or cataloging purposes as well as for integrating soil colour data with other remote sensed and spatial data sets.

  8. The dissipation and microbial ecotoxicity of tebuconazole and its transformation products in soil under standard laboratory and simulated winter conditions.

    PubMed

    El Azhari, Najoi; Dermou, Eftychia; Barnard, Romain L; Storck, Veronika; Tourna, Maria; Beguet, Jérémie; Karas, Panagiotis A; Lucini, Luigi; Rouard, Nadine; Botteri, Lucio; Ferrari, Federico; Trevisan, Marco; Karpouzas, Dimitrios G; Martin-Laurent, Fabrice

    2018-05-12

    Tebuconazole (TBZ) is a widely used triazole fungicide at EU level on cereals and vines. It is relatively persistent in soil where it is transformed to various transformation products (TPs) which might be environmentally relevant. We assessed the dissipation of TBZ in soil under contrasting incubation conditions (standard vs winter simulated) that are relevant to its application scheme, determined its transformation pathway using advanced analytical tools and 14 C-labeled TBZ and assessed its soil microbial toxicity. Mineralization of 14 C-triazole-ring-labeled TBZ was negligible but up to 11% of 14 C-penyl-ring-labeled TBZ evolved as 14 CO 2 within 150 days of incubation. TBZ persistence increased at higher dose rates (×10 compared to the recommended agronomical dose ×1) and under winter simulated conditions compared to standard incubation conditions (at ×1 dose rate DT 50 of 202 and 88 days, respectively). Non-target suspect screening enabled the detection of 22 TPs of TBZ, among which 17 were unknown. Mass spectrometry analysis led to the identification of 1-(4-chlorophenyl) ethanone, a novel TP of TBZ, the formation of which and decay in soil was determined by gas chromatography mass spectrometry. Three hypothetical transformation pathways of TBZ, all converging to 1H-1,2,4-triazole are proposed based on suspect screening. The ecotoxicological effect of TBZ and of its TPs was assessed by measuring by qPCR the abundance of the total bacteria and the relative abundance of 11 prokaryotic taxa and 4 functional groups. A transient impact of TBZ on the relative abundance of all prokaryotic taxa (except α-proteobacteria and Bacteroidetes) and one functional microbial group (pcaH-carrying microorganisms) was observed. However the direction of the effect (positive or negative) varied, and in certain cases, depended on the incubation conditions. Proteobacteria was the most responsive phylum to TBZ with recovery observed 20 days after treatment. The

  9. Carbon sequestration in soil by in situ catalyzed photo-oxidative polymerization of soil organic matter.

    PubMed

    Piccolo, Alessandro; Spaccini, Riccardo; Nebbioso, Antonio; Mazzei, Pierluigi

    2011-08-01

    Here we describe an innovative mechanism for carbon sequestration in soil by in situ photopolymerization of soil organic matter under biomimetic catalysis. Three different Mediterranean soils were added with a synthetic water-soluble iron-porphyrin, irradiated by solar light, and subjected first to 5 days incubation and, then, 15, and 30 wetting and drying (w/d) cycles. The in situ catalyst-assisted photopolymerization of soil organic carbon (SOC) increased water stability of soil aggregates both after 5 days incubation and 15 w/d cycles, but not after 30 w/d cycles. Particle-size distribution of all treated soils confirmed the induced soil physical improvement, by showing a concomitant lower yield of the clay-sized fraction and larger yields of either coarse sand- or fine sand-size fractions, depending on soil texture, though only after 5 days incubation. The gain in soil physical quality was reflected by the shift of OC content from small to large soil aggregates, thereby suggesting that photopolymerization stabilized OC by both chemical and physical processes. A further evidence of the carbon sequestration capacity of the photocatalytic treatment was provided by the significant reduction of CO(2) respired by all soils after both incubation and w/d cycles. Our findings suggest that "green" catalytic technologies may potentially be the bases for future practices to increase soil carbon stabilization and mitigate CO(2) emissions from arable soils.

  10. Reduced substrate supply limits the temperature response of soil organic carbon decomposition

    Treesearch

    Cinzia Fissore; Christian P. Giardina; Randall K. Kolka

    2013-01-01

    Controls on the decomposition rate of soil organic carbon (SOC), especially the more stable fraction of SOC, remain poorly understood, with implications for confidence in efforts to model terrestrial C balance under future climate. We investigated the role of substrate supply in the temperature sensitivity of SOC decomposition in laboratory incubations of coarse-...

  11. Soil respiration and bacterial structure and function after 17 years of a reciprocal soil transplant experiment

    DOE PAGES

    Bond-Lamberty, Benjamin; Bolton, Harvey; Fansler, Sarah J.; ...

    2016-03-02

    The effects of climate change on soil organic matter—its structure, microbial community, carbon storage, and respiration response—remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampledmore » the original 1994 soil transplants and controls, measuring CO 2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5 °C monthly maximum air temperature, +50 mm yr -1precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. Lastly, these results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even

  12. Soil Respiration and Bacterial Structure and Function after 17 Years of a Reciprocal Soil Transplant Experiment.

    PubMed

    Bond-Lamberty, Ben; Bolton, Harvey; Fansler, Sarah; Heredia-Langner, Alejandro; Liu, Chongxuan; McCue, Lee Ann; Smith, Jeffrey; Bailey, Vanessa

    2016-01-01

    The effects of climate change on soil organic matter-its structure, microbial community, carbon storage, and respiration response-remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampled the original 1994 soil transplants and controls, measuring CO2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5°C monthly maximum air temperature, +50 mm yr-1 precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. These results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even as shorter- and

  13. Evolution of Incubation Models: Evidence from the Italian Incubation Industry

    ERIC Educational Resources Information Center

    Grandi, Alessandro; Grimaldi, Rosa

    2004-01-01

    This paper addresses the role of incubators in supporting new venture creation. A mapping of four different types of incubator is proposed: corporate private incubators (CPIs), independent private incubators (IPIs), business innovation centres (BICs) and university business incubators (UBIs). This mapping is exemplified through case studies of one…

  14. Variable temperature sensitivity of soil organic carbon in North American forests

    Treesearch

    Cinzia Fissore; Christian P. Giardina; Christopher W. Swanston; Gary M. King; Randall K. Kolka

    2009-01-01

    We investigated mean residence time (MRT) for soil organic carbon (SOC) sampled from paired hardwood and pine forests located along a 22 °C mean annual temperature (MAT) gradient in North America. We used acid hydrolysis fractionation, radiocarbon analyses, long-term laboratory incubations (525-d), and a three-pool model to describe the size and kinetics of...

  15. A laboratory rainfall simulator to study the soil erosion and runoff water

    NASA Astrophysics Data System (ADS)

    Cancelo González, Javier; Rial, M. E.; Díaz-Fierros, Francisco

    2010-05-01

    The soil erosion and the runoff water composition in some areas affected by forest fires or submitted to intensive agriculture are an important factor to keep an account, particularly in sensitive areas like estuary and rias that have a high importance in the socioeconomic development of some regions. An understanding of runoff production indicates the processes by which pollutants reach streams and also indicates the management techniques that might be uses to minimize the discharge of these materials into surface waters. One of the most methodology implemented in the soil erosion studies is a rainfall simulation. This method can reproduce the natural soil degradation processes in field or laboratory experiences. With the aim of improve the rainfall-runoff generation, a laboratory rainfall simulator which incorporates a fan-like intermittent water jet system for rainfall generation were modified. The major change made to the rainfall simulator consist in a system to coupling stainless steel boxes, whose dimensions are 12 x 20 x 45 centimeters, and it allows to place soil samples under the rainfall simulator. Previously these boxes were used to take soil samples in field with more of 20 centimeters of depth, causing the minimum disturbance in their properties and structure. These new implementations in the rainfall simulator also allow collect water samples of runoff in two ways: firstly, the rain water that constituted the overland flow or direct runoff and besides the rain water seeps into the soil by the process of infiltration and contributed to the subsurface runoff. Among main the variables controlled in the rainfall simulations were the soil slope and the intensity and duration of rainfall. With the aim of test the prototype, six soil samples were collected in the same sampling point and subjected to rainfall simulations in laboratory with the same intensity and duration. Two samples will constitute the control test, and they were fully undisturbed, and four

  16. Effects of biochar and wood pellets amendments added to landfill cover soil on microbial methane oxidation: A laboratory column study.

    PubMed

    Yargicoglu, Erin N; Reddy, Krishna R

    2017-05-15

    Alternate landfill covers designed to enhance microbial methane (CH 4 ) oxidation and reduce the negative impacts of landfill gas emissions on global climate have recently been proposed and investigated. In this study, the use of biochar as a soil amendment is examined in order to assess the feasibility and effectiveness for enhanced CH 4 removal in landfill covers when incorporated under high compaction conditions and relatively low soil moisture. Four different cover configurations were tested in large soil columns for ∼510 days and potential CH 4 oxidation rates were determined following long-term incubation in small batch assays. Cover designs tested include: a thin biochar layer at 15-18 cm; 2% mixed soil-biochar layer at 20-40 cm; 2% mixed soil-uncharred wood pellets at 20-40 cm; and soil obtained from intermediate cover at an active landfill site. The placement of a thin biochar layer in the cover significantly impacted moisture distribution and infiltration, which in turn affected CH 4 oxidation potential with depth. An increase in CH 4 removal rates was observed among all columns over the 500 day incubation period, with steady-state CH 4 removal efficiencies ranging from ∼60 to 90% in the final stages of incubation (inlet load ∼80 g CH 4  m -2  d -1 ). The thin biochar layer had the lowest average removal efficiency as a result of reduced moisture availability below the biochar layer. The addition of 2% biochar to soil yielded similar CH 4 oxidation rates in terminal assays as the 2% uncharred wood pellet amendment. CH 4 oxidation rates in terminal assays were positively correlated with soil moisture, which was affected by the materials' water holding capacity. The high water holding capacity of biochar led to higher oxidation rates within the thin biochar layer, supporting the initial hypothesis that biochar may confer more favorable physical conditions for methanotrophy. Ultimate performance was apparently affected by soil type and CH 4

  17. Organic and inorganic amendment application on mercury-polluted soils: effects on soil chemical and biochemical properties.

    PubMed

    García-Sánchez, Mercedes; Klouza, Martin; Holečková, Zlata; Tlustoš, Pavel; Száková, Jiřina

    2016-07-01

    On the basis of a previous study performed in our laboratory, the use of organic and inorganic amendments can significantly modify the Hg mobility in soil. We have compared the effectiveness of organic and inorganic amendments such as digestate and fly ash, respectively, reducing the Hg mobility in Chernozem and Luvisol soils differing in their physicochemical properties. Hence, the aim of this work was to compare the impact of digestate and fly ash application on the chemical and biochemical parameters in these two mercury-contaminated soils in a model batch experiment. Chernozem and Luvisol soils were artificially contaminated with Hg and then incubated under controlled conditions for 21 days. Digestate and fly ash were applied to both soils in a dose of 10 and 1.5 %, respectively, and soil samples were collected after 1, 7, 14, and 21 days of incubation. The presence of Hg in both soils negatively affected to processes such as nitrification, provoked a decline in the soil microbial biomass C (soil microbial biomass C (MBC)), and the microbial activities (arylsulfatase, and β-glucosaminidase) in both soils. Meanwhile, the digestate addition to Chernozem and Luvisol soils contaminated with Hg improved the soil chemical properties (pH, dissolved organic carbon (DOC), N (Ntot), inorganic-N forms (N-NH4 (+) and N-NO3 (-))), as consequence of high content in C and N contained in digestate. Likewise, the soil MBC and soil microbial activities (dehydrogenase, arylsulfatase, and β-glucosaminidase) were greatly enhanced by the digestate application in both soils. In contrast, fly ash application did not have a remarkable positive effect when compared to digestate in Chernozem and Luvisol soil contaminated with mercury. These results may indicate that the use of organic amendments such as digestate considerably improved the soil health in Chernozem and Luvisol compared with fly ash, alleviating the detrimental impact of Hg. Probably, the chemical properties present in

  18. Mapping Soil Surface Macropores Using Infrared Thermography: An Exploratory Laboratory Study

    PubMed Central

    de Lima, João L. M. P.; Abrantes, João R. C. B.; Silva, Valdemir P.; de Lima, M. Isabel P.; Montenegro, Abelardo A. A.

    2014-01-01

    Macropores and water flow in soils and substrates are complex and are related to topics like preferential flow, nonequilibrium flow, and dual-continuum. Hence, the quantification of the number of macropores and the determination of their geometry are expected to provide a better understanding on the effects of pores on the soil's physical and hydraulic properties. This exploratory study aimed at evaluating the potential of using infrared thermography for mapping macroporosity at the soil surface and estimating the number and size of such macropores. The presented technique was applied to a small scale study (laboratory soil flume). PMID:25371915

  19. SOIL AND FILL LABORATORY SUPPORT - 1992 RADIOLOGICAL ANALYSES - FLORIDA RADON RESEARCH PROGRAM

    EPA Science Inventory

    The report gives results of soil analysis laboratory work by the University of Florida in support of the Florida Radon Research Program (FRRP). Analyses were performed on soil and fill samples collected during 1992 by the FRRP Research House Program and the New House Evaluation P...

  20. Inter-laboratory variation in the chemical analysis of acidic forest soil reference samples from eastern North America

    Treesearch

    D.S. Ross; S.W. Bailey; R.D. Briggs; J. Curry; I.J. Fernandez; G. Fredriksen; C.L. Goodale; P.W. Hazlett; P.R. Heine; C.E. Johnson; J.T. Larson; G.B. Lawrence; R.K. Kolka; R. Ouimet; D. Pare; D. deB Richter; C.D. Schirmer; R.A. Warby

    2015-01-01

    Long-term forest soil monitoring and research often requires a comparison of laboratory data generated at different times and in different laboratories. Quantifying the uncertainty associated with these analyses is necessary to assess temporal changes in soil properties. Forest soil chemical properties, and methods to measure these properties, often differ from...

  1. Field versus laboratory experiments to evaluate the fate of azoxystrobin in an amended vineyard soil.

    PubMed

    Herrero-Hernández, E; Marín-Benito, J M; Andrades, M S; Sánchez-Martín, M J; Rodríguez-Cruz, M S

    2015-11-01

    This study reports the effect that adding spent mushroom substrate (SMS) to a representative vineyard soil from La Rioja region (Spain) has on the behaviour of azoxystrobin in two different environmental scenarios. Field dissipation experiments were conducted on experimental plots amended at rates of 50 and 150 t ha(-1), and similar dissipation experiments were simultaneously conducted in the laboratory to identify differences under controlled conditions. Azoxystrobin dissipation followed biphasic kinetics in both scenarios, although the initial dissipation phase was much faster in the field than in the laboratory experiments, and the half-life (DT50) values obtained in the two experiments were 0.34-46.3 days and 89.2-148 days, respectively. Fungicide residues in the soil profile increased in the SMS amended soil and they were much higher in the top two layers (0-20 cm) than in deeper layers. The persistence of fungicide in the soil profile is consistent with changes in azoxystrobin adsorption by unamended and amended soils over time. Changes in the dehydrogenase activity (DHA) of soils under different treatments assayed in the field and in the laboratory indicated that SMS and the fungicide had a stimulatory effect on soil DHA. The results reveal that the laboratory studies usually reported in the literature to explain the fate of pesticides in amended soils are insufficient to explain azoxystrobin behaviour under real conditions. Field studies are necessary to set up efficient applications of SMS and fungicide, with a view to preventing the possible risk of water contamination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The effects of substrate supply on the temperature sensitivity of soil carbon decomposition

    Treesearch

    Cinzia Fissore; Christian P. Giardina; Randall K. Kolka

    2013-01-01

    Controls on the decomposition rate of soil organic carbon (SOC), especially the more stable fraction of SOC, remain poorly understood, with implications for confidence in efforts to model terrestrial C balance under future climate. We investigated the role of substrate supply in the temperature sensitivity of SOC decomposition in laboratory incubations of coarse-...

  3. An improved method for field extraction and laboratory analysis of large, intact soil cores

    USGS Publications Warehouse

    Tindall, J.A.; Hemmen, K.; Dowd, J.F.

    1992-01-01

    Various methods have been proposed for the extraction of large, undisturbed soil cores and for subsequent analysis of fluid movement within the cores. The major problems associated with these methods are expense, cumbersome field extraction, and inadequate simulation of unsaturated flow conditions. A field and laboratory procedure is presented that is economical, convenient, and simulates unsaturated and saturated flow without interface flow problems and can be used on a variety of soil types. In the field, a stainless steel core barrel is hydraulically pressed into the soil (30-cm diam. and 38 cm high), the barrel and core are extracted from the soil, and after the barrel is removed from the core, the core is then wrapped securely with flexible sheet metal and a stainless mesh screen is attached to the bottom of the core for support. In the laboratory the soil core is set atop a porous ceramic plate over which a soil-diatomaceous earth slurry has been poured to assure good contact between plate and core. A cardboard cylinder (mold) is fastened around the core and the empty space filled with paraffin wax. Soil cores were tested under saturated and unsaturated conditions using a hanging water column for potentials ???0. Breakthrough curves indicated that no interface flow occurred along the edge of the core. This procedure proved to be reliable for field extraction of large, intact soil cores and for laboratory analysis of solute transport.

  4. Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production.

    NASA Astrophysics Data System (ADS)

    Heitkötter, Julian; Marschner, Bernd

    2015-04-01

    Biochar is suggested for soil amelioration and carbon sequestration, based on its assumed role as the key factor for the long-term fertility of Terra preta soils. Several studies have shown that certain biochar properties can undergo changes through ageing processes, especially regarding charge characteristics. However, only a few studies determined the changes of different biochars under the same incubation conditions and in different soils. The objective of this study was to characterize the changes of pine chip (PC)- and corn digestate (CD)-derived biochars pyrolyzed at 400 or 600 °C during 100 days of laboratory incubation in a historical kiln soil and an adjacent control soil. Separation between soil and biochar was ensured by using mesh bags. Especially, changes in charge characteristics depended on initial biochar properties affected by feedstock and pyrolysis temperature and on soil properties affected by historic charcoal production. While the cation exchange capacity (CEC) markedly increased for both CD biochars during incubation, PC biochars showed no or only slight increases in CEC. Corresponding to the changes in CEC, ageing of biochars also increased the amount of acid functional groups with increases being in average about 2-fold higher in CD biochars than in PC biochars. Further and in contrast to other studies, the surface areas of biochars increased during ageing, likely due to ash leaching and degradation of tar residues. Changes in CEC and surface acidity of CD biochars were more pronounced after incubation in the control soil, while surface area increase was higher in the kiln soil. Since the two acidic forest soils used in this this study did not greatly differ in physical or chemical properties, the main process for inducing these differences in the buried biochar most likely is related to the differences in dissolved organic carbon (DOC). Although the kiln soil contained about 50% more soil organic carbon due to the presence of charcoal

  5. National Security Technology Incubation Strategic Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This strategic plan contains information on the vision, mission, business and technology environment, goals, objectives, and incubation process of the National Security Technology Incubation Program (NSTI) at Arrowhead Center. The development of the NSTI is a key goal of the National Security Preparedness Project (NSPP). Objectives to achieve this goal include developing incubator plans (strategic, business, action, and operations), creating an incubator environment, creating a support and mentor network for companies in the incubator program, attracting security technology businesses to the region, encouraging existing business to expand, initiating business start-ups, evaluating products and processes of the incubator program, and achievingmore » sustainability of the incubator program. With the events of 9/11, the global community faces ever increasing and emerging threats from hostile groups determined to rule by terror. According to the National Nuclear Security Administration (NNSA) Strategic Plan, the United States must be able to quickly respond and adapt to unanticipated situations as they relate to protection of our homeland and national security. Technology plays a key role in a strong national security position, and the private business community, along with the national laboratories, academia, defense and homeland security organizations, provide this technology. Fostering innovative ideas, translated into relevant technologies answering the needs of NNSA, is the purpose of the NSTI. Arrowhead Center of New Mexico State University is the operator and manager of the NSTI. To develop the NSTI, Arrowhead Center must meet the planning, development, execution, evaluation, and sustainability activities for the program and identify and incubate new technologies to assist the NNSA in meeting its mission and goals. Technology alone does not give a competitive advantage to the country, but the creativity and speed with which it is employed does. For a company

  6. Rapid determination of soil quality and earthworm impacts on soil microbial communities using fluorescence-based respirometry

    NASA Astrophysics Data System (ADS)

    Prendergast-Miller, Miranda T.; Thurston, Josh; Taylor, Joe; Helgason, Thorunn; Ashauer, Roman; Hodson, Mark E.

    2017-04-01

    We applied a fluorescence-based respirometry method currently devised for aquatic ecotoxicology studies to rapidly measure soil microbial oxygen consumption as a function of soil quality. In this study, soil was collected from an arable wheat field and the field margin. These two soil habitats are known to differ in their soil quality due to differences in their use and management as well as plant, microbial and earthworm community. The earthworm Lumbricus terrestris was incubated in arable or margin soil for three weeks. After this initial phase, a transfer experiment was then conducted to test the hypothesis that earthworm 'migration' alters soil microbial community function and diversity. In this transfer experiment, earthworms incubated in margin soil were transferred to arable soil. The converse transfer (i.e. earthworms incubated in arable soil) was also conducted. Soils of each type with no earthworms were also incubated as controls. After a further four week incubation, the impact of earthworm migration on the soil microbial community was tested by measuring oxygen consumption. Replicated soil slurry subsamples were aliquoted into individual respirometer wells (600 μl volume) on a glass 24-well microplate (Loligo Systems, Denmark) fitted with non-invasive, reusable oxygen sensor spots. The sealed microplate was then attached to an oxygen fluorescence sensor (SDR SensorDish Reader, PreSens, Germany). Oxygen consumption was measured in real-time over a 2 hr period following standard operating procedures. Soil microbial activity was measured with and without an added carbon source (glucose or cellulose, 50 mg C L-1). Using this system, we were able to differentiate between soil type, earthworm treatment and C source. Earthworm-driven impacts on soil microbial oxygen consumption were also supported by changes in soil microbial community structure and diversity revealed using DNA-based sequencing techniques. This method provides a simple and rapid system for

  7. Volatile organic compound emissions from straw-amended agricultural soils and their relations to bacterial communities: A laboratory study.

    PubMed

    Zhao, Juan; Wang, Zhe; Wu, Ting; Wang, Xinming; Dai, Wanhong; Zhang, Yujie; Wang, Ran; Zhang, Yonggan; Shi, Chengfei

    2016-07-01

    A laboratory study was conducted to investigate volatile organic compound (VOC) emissions from agricultural soil amended with wheat straw and their associations with bacterial communities for a period of 66days under non-flooded and flooded conditions. The results indicated that ethene, propene, ethanol, i-propanol, 2-butanol, acetaldehyde, acetone, 2-butanone, 2-pentanone and acetophenone were the 10 most abundant VOCs, making up over 90% of the total VOCs released under the two water conditions. The mean emission of total VOCs from the amended soils under the non-flooded condition (5924ng C/(kg·hr)) was significantly higher than that under the flooded condition (2211ng C/(kg·hr)). One "peak emission window" appeared at days 0-44 or 4-44, and over 95% of the VOC emissions occurred during the first month under the two water conditions. Bacterial community analysis using denaturing gradient gel electrophoresis (DGGE) showed that a relative increase of Actinobacteria, Bacteroidetes, Firmicutes and γ-Proteobacteria but a relative decrease of Acidobacteria with time were observed after straw amendments under the two water conditions. Cluster analysis revealed that the soil bacterial communities changed greatly with incubation time, which was in line with the variation of the VOC emissions over the experimental period. Most of the above top 10 VOCs correlated positively with the predominant bacterial species of Bacteroidetes, Firmicutes and Verrucomicrobia but correlated negatively with the dominant bacterial species of Actinobacteria under the two water conditions. These results suggested that bacterial communities might play an important role in VOC emissions from straw-amended agricultural soils. Copyright © 2016. Published by Elsevier B.V.

  8. Differential priming of soil carbon driven by soil depth and root impacts on carbon availability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Graaff, Marie-Anne; Jastrow, Julie D.; Gillette, Shay

    2013-11-15

    Enhanced root-exudate inputs can stimulate decomposition of soil carbon (C) by priming soil microbial activity, but the mechanisms controlling the magnitude and direction of the priming effect remain poorly understood. With this study we evaluated how differences in soil C availability affect the impact of simulated root exudate inputs on priming. We conducted a 60-day laboratory incubation with soils collected (60 cm depth) from under six switchgrass (Panicum virgatum) cultivars. Differences in specific root length (SRL) among cultivars were expected to result in small differences in soil C inputs and thereby create small differences in the availability of recent labilemore » soil C; whereas soil depth was expected to create large overall differences in soil C availability. Soil cores from under each cultivar (roots removed) were divided into depth increments of 0–10, 20–30, and 40–60 cm and incubated with addition of either: (1) water or (2) 13C-labeled synthetic root exudates (0.7 mg C/g soil). We measured CO2 respiration throughout the experiment. The natural difference in 13C signature between C3 soils and C4 plants was used to quantify cultivar-induced differences in soil C availability. Amendment with 13C-labeled synthetic root-exudate enabled evaluation of SOC priming. Our experiment produced three main results: (1) switchgrass cultivars differentially influenced soil C availability across the soil profile; (2) small differences in soil C availability derived from recent root C inputs did not affect the impact of exudate-C additions on priming; but (3) priming was greater in soils from shallow depths (relatively high total soil C and high ratio of labile-to-stable C) compared to soils from deep depths (relatively low total soil C and low ratio of labile-to-stable C). These findings suggest that the magnitude of the priming effect is affected, in part, by the ratio of root exudate C inputs to total soil C and that the impact of changes in exudate

  9. A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback: The PCN Incubation-Panarctic Thermal (PInc-PanTher) Scaling Approach

    NASA Astrophysics Data System (ADS)

    Koven, C. D.; Schuur, E.; Schaedel, C.; Bohn, T. J.; Burke, E.; Chen, G.; Chen, X.; Ciais, P.; Grosse, G.; Harden, J. W.; Hayes, D. J.; Hugelius, G.; Jafarov, E. E.; Krinner, G.; Kuhry, P.; Lawrence, D. M.; MacDougall, A.; Marchenko, S. S.; McGuire, A. D.; Natali, S.; Nicolsky, D.; Olefeldt, D.; Peng, S.; Romanovsky, V. E.; Schaefer, K. M.; Strauss, J.; Treat, C. C.; Turetsky, M. R.

    2015-12-01

    We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation-Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a 3-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100.

  10. Changes in metal speciation and pH in olive processing waste and sulphur-treated contaminated soil.

    PubMed

    de la Fuente, C; Clemente, R; Bernal, M P

    2008-06-01

    Degradation of organic matter from olive mill waste and changes in the heavy metal fractionation of a metal-contaminated calcareous soil were studied in a laboratory experiment, in which the olive mill waste was mixed with the soil and then incubated under aerobic conditions. The soil was calcareous (15% CaCO(3)) with high Zn and Pb concentrations (2058 and 2947 mg kg(-1), respectively). The organic amendment was applied at a rate equivalent to 20 g kg(-1) soil, and unamended soil was run as a control. To discern if changes in metal solubility were due to the acidic character of the waste, elemental sulphur was applied to soil as a non-organic acidifying material. The S(0) rates used were 3.14, 4.71 and 6.28 g kg(-1). The mineralisation of total organic-C (TOC) from the waste reached 14.8% of the original TOC concentration after 56 days of incubation. The CO(2)-C produced from S(0)-treated soils showed the carbonate destruction by the H(2)SO(4) formed through S(0) oxidation. The organic waste increased EDTA-extractable Zn and Pb concentrations and CaCl(2)-extractable Mn levels in soil after two days of incubation. The changes in metal availability with time indicated that the oxidation of phenols from the waste reduced Mn (IV) oxides, releasing Zn and Pb associated with this mineral phase. Organic waste addition did not decrease soil pH; the acidifying effect of S(0) did not change metal fractionation in the soil.

  11. Azoxystrobin and soil interactions: degradation and impact on soil bacterial and fungal communities.

    PubMed

    Adetutu, E M; Ball, A S; Osborn, A M

    2008-12-01

    To provide an independent assessment of azoxystrobin effects on nontarget soil bacteria and fungi and generate some baseline information on azoxystrobin's persistence in soil. Plate based assay showed that azoxystrobin exhibited differential toxicity upon cultured fungi at different application rates. While (14)C labelled isotopes experiments showed that less than 1% of azoxystrobin was mineralized, degradation studies revealed over 60% azoxystrobin breakdown over 21 days. PCR DGGE analysis of 16S and 18S rRNA genes from different soil microcosms showed that azoxystrobin had some effects on fungal community after 21 days (up to 84 days) of incubation in either light or dark soil microcosms. Light incubations increased fungal diversity while dark incubations reduced fungal diversity. Bacterial diversity was unaffected. Significant biotic breakdown of parent azoxystrobin occurred within 21 days even in the absence of light. Azoxystrobin under certain conditions can reduce fungal soil diversity. One of the few independent assessments of azoxystrobin (a widely used strobilurins fungicide) effects on soil fungi when used at the recommended rate. Azoxystrobin and metabolites may persist after 21 days and affect soil fungi.

  12. Laboratory-Scale Evidence for Lightning-Mediated Gene Transfer in Soil

    PubMed Central

    Demanèche, Sandrine; Bertolla, Franck; Buret, François; Nalin, Renaud; Sailland, Alain; Auriol, Philippe; Vogel, Timothy M.; Simonet, Pascal

    2001-01-01

    Electrical fields and current can permeabilize bacterial membranes, allowing for the penetration of naked DNA. Given that the environment is subjected to regular thunderstorms and lightning discharges that induce enormous electrical perturbations, the possibility of natural electrotransformation of bacteria was investigated. We demonstrated with soil microcosm experiments that the transformation of added bacteria could be increased locally via lightning-mediated current injection. The incorporation of three genes coding for antibiotic resistance (plasmid pBR328) into the Escherichia coli strain DH10B recipient previously added to soil was observed only after the soil had been subjected to laboratory-scale lightning. Laboratory-scale lightning had an electrical field gradient (700 versus 600 kV m−1) and current density (2.5 versus 12.6 kA m−2) similar to those of full-scale lightning. Controls handled identically except for not being subjected to lightning produced no detectable antibiotic-resistant clones. In addition, simulated storm cloud electrical fields (in the absence of current) did not produce detectable clones (transformation detection limit, 10−9). Natural electrotransformation might be a mechanism involved in bacterial evolution. PMID:11472916

  13. The Evaluation of Basal Respiration for Various Soil Textures in Ecologically Sensitive Area

    NASA Astrophysics Data System (ADS)

    Huličová, P.; Kotorová, D.; Fazekašová, D.; Hynšt, J.

    2017-10-01

    The present contribution was focused on monitoring changes in the soil basal respiration in different textures of soil in the dry polder Beša. The research was conducted between 2012 and 2014 on soil type Fluvisol locations on three soil textures: clay - loam soil, clayey soil and clay soil in three soil depths. The basal respiration (BR) has been determine by soil CO2 production measuring from incubated soil samples in serum bottles in laboratory condition. Release Co2 has been analysed by gas chromatography. Content of clay particles were in the range 52.18 % to 81.31%, indicating the high difference between the minimum and maximum content. By using of multiple LSD-test we recorded statistically significant impact of clay on basal respiration. Results confirm the values of basal respiration with the depth of the soil profile decreased.

  14. Probing soil nitrogen transformations using triple nitrate isotopes

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Elliott, E. M.

    2017-12-01

    Models of soil nitrogen (N) transformations are essential for understanding biogeochemical N cycling and its environmental implications. While natural abundance stable N isotopes (δ15N) of the soil N pool are widely used to infer soil N dynamics, its quantitative use is limited by uncertainties in the relevant isotopic fractionations. Oxygen-17 isotope anomalies in nitrate (Δ17O-NO3-), originating from mass-independent fractionation during photochemical NO3- formation, are a conservative tracer of atmospherically deposited NO3- in terrestrial ecosystems. Therefore, measurement of soil Δ17O-NO3- may provide additional tracing power for δ15N-based process models, in that Δ17O-NO3- is not altered by mass-dependent isotopic fractionations. In this study, we conducted both laboratory and field experiments to assess the effectiveness of using triple NO3- isotopes (Δ17O, δ15N, δ18O) for modeling soil N transformations. Surface soil (0-7 cm) was sampled from an urban riparian area and temperate, upland forests in rural and urban settings for batch incubations and amendments with Δ17O-enriched NO3-. After amendment, the soils were extracted on six occasions over a 4-day period to measure concentrations and isotopic composition of NO3- and ammonium. A Δ17O-based numerical model was developed and used to derive gross N fluxes. In situ field soil and lysimeter sampling was also conducted at the rural forest site on five consecutive days immediately following snowmelt input of Δ17O-enriched NO3-. The results show that the temporal dynamics of Δ17O-NO3- can provide quantitative information on soil N turnover. In the laboratory incubations, modeled gross nitrification and denitrification rates were significantly higher for the urban forest and riparian soils, consistent with results from inhibitor-based potential measurements. Non-zero Δ17O-NO3- values, up to 4.3‰, were measured in the rural forest soil following the snowmelt event. A numerical model of the

  15. A comparison of soil moisture characteristics predicted by the Arya-Paris model with laboratory-measured data

    NASA Technical Reports Server (NTRS)

    Arya, L. M.; Richter, J. C.; Davidson, S. A. (Principal Investigator)

    1982-01-01

    Soil moisture characteristics predicted by the Arya-Paris model were compared with the laboratory measured data for 181 New Jersey soil horizons. For a number of soil horizons, the predicted and the measured moisture characteristic curves are almost coincident; for a large number of other horizons, despite some disparity, their shapes are strikingly similar. Uncertainties in the model input and laboratory measurement of the moisture characteristic are indicated, and recommendations for additional experimentation and testing are made.

  16. Effect of soil saturation on denitrification in a grassland soil

    NASA Astrophysics Data System (ADS)

    Maritza Cardenas, Laura; Bol, Roland; Lewicka-Szczebak, Dominika; Gregory, Andrew Stuart; Matthews, Graham Peter; Whalley, William Richard; Misselbrook, Thomas Henry; Scholefield, David; Well, Reinhard

    2017-10-01

    Nitrous oxide (N2O) is of major importance as a greenhouse gas and precursor of ozone (O3) destruction in the stratosphere mostly produced in soils. The soil-emitted N2O is generally predominantly derived from denitrification and, to a smaller extent, nitrification, both processes controlled by environmental factors and their interactions, and are influenced by agricultural management. Soil water content expressed as water-filled pore space (WFPS) is a major controlling factor of emissions and its interaction with compaction, has not been studied at the micropore scale. A laboratory incubation was carried out at different saturation levels for a grassland soil and emissions of N2O and N2 were measured as well as the isotopocules of N2O. We found that flux variability was larger in the less saturated soils probably due to nutrient distribution heterogeneity created from soil cracks and consequently nutrient hot spots. The results agreed with denitrification as the main source of fluxes at the highest saturations, but nitrification could have occurred at the lower saturation, even though moisture was still high (71 % WFSP). The isotopocules data indicated isotopic similarities in the wettest treatments vs. the two drier ones. The results agreed with previous findings where it is clear there are two N pools with different dynamics: added N producing intense denitrification vs. soil N resulting in less isotopic fractionation.

  17. Acidic leaching of potentially toxic metals cadmium, cobalt, chromium, copper, nickel, lead, and zinc from two Zn smelting slag materials incubated in an acidic soil.

    PubMed

    Liu, Taoze; Li, Feili; Jin, Zhisheng; Yang, Yuangen

    2018-07-01

    A column leaching study, coupled with acid deposition simulation, was conducted to investigate the leaching of potentially toxic metals (PTM) from zinc smelting slag materials (SSM) after being incubated in an acid Alfisol for 120 days at room temperature. Two SSMs (SSM-A: acidic, 10 yrs exposure with moderate high PTM concentrations versus SSM-B: alkaline, 2 yrs exposure with extremely high PTM concentrations), were used for the incubation at 0.5, 1, 2.5, 5 wt% amendment ratios in triplicate. Five leaching events were conducted at day 1, 3, 7, 14, and 28, and the leaching of PTMs mainly occurred in the first three leaching events, with the highest PTM concentrations in leachate measured from 5 wt% SSM amendments. After leaching, 2.5, 12, 5.5, 14, 11, and 9 wt% of M3 extractable Pb, Zn, Cd, Co, Cr, and Ni could be released from 5 wt% SSM-A amended soils, being respectively 25, 12, 4, 2, 2, and 2 times more than those from 5 wt% SSM-B amended soils. In the leachates, the concentrations of PTMs were mostly affected by leachant pH and were closely correlated to the concentrations of Fe, Al, Ca, Mg and P with Cd, Pb, and Zn showing the most environmental concern. Visual MINTEQ 3.1 modeling suggested metallic ions and sulfate forms as the common chemical species of PTMs in the leachates; whereas, organic bound species showed importance for Cd, Pb, Cu, and Ni, and CdCl + was observed for Cd. Aluminum hydroxy, phosphate, and sulfate minerals prevailed as the saturated minerals, followed by chloropyromorphite (Pb 5 (PO 4 ) 3 Cl) and plumbogummite (PbAl 3 (PO 4 ) 2 (OH) 5 ·H 2 O) in the leachates. This study suggested that incubation of SSMs in acidic soil for a long term can enhance the release of PTMs as the forms of metallic ions and sulfate when subjected to acid deposition leaching. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Soil and Crop management: Lessons from the laboratory biosphere 2002-2004

    NASA Astrophysics Data System (ADS)

    Silverstone, S.; Nelson, M.; Alling, A.; Allen, J.

    During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation with "Hoyt" Soy Beans, USU Apogee Wheat and TU-82-155 sweet potato using a 5.37 m2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching and returning crop residues to the soil after each experiment. Between experiment #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. Soil analyses for all three experiments are presented to show how the soils have changed with time and how the changes relate to crop selection and rotation, soil selection and management, water management and pest control. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth facility.

  19. Elucidating mineralisation-immobilisation dynamics in a grassland soil using triple 15N labelling in the field combined with a 15N tracing laboratory approach

    NASA Astrophysics Data System (ADS)

    Kleineidam, Kristina; Müller, Christoph

    2017-04-01

    Mineralisation is a key N transformation process supplying reactive nitrogen (N) to terrestrial ecosystems. The various soil organic matter fractions contribute to the total mineralisation according to their turnover characteristic. However, the exact mechanism and the gross dynamics of the various processes are not well understood. In this study we investigated the mineralisation-immobilisation dynamics in a grassland soil by a combined field-laboratory study. Eighteen microplots were established at a field site receiving 50 kg N ha-1 as ammonium nitrate. In nine (3 x 3) respective plots the ammonium, or the nitrate, or both moieties were 15N labelled at 60 atom%. Previous studies with this soil showed that rapid turnover occurred and available N would partly be immobilised by the microbial biomass increasing the 15N label of the soil organic nitrogen pool in the field. After one year, soil samples were taken from the 15N treated and the so far non-labelled plots and examined in a laboratory study (for details of the setup see: Müller et al., 2004). While the previously differentially 15N labelled field soils were now supplied with unlabelled ammonium nitrate, the previously unlabelled soils were now treated with either 15N labelled ammonium nitrate similar to the 15N treatments established in the field, resulting in six different 15N treatments in total. The incubation study was carried out over a two week period and data were analysed with the Ntrace model to quantify the simultaneously occurring gross N transformations while optimizing a single parameter set for all six treatments. Thus, the appearance of 15N from the previously labelled soils and the dilution of the 15N in the recently labelled treatments were assumed to be driven by the same processes and activities and were used to constrain the 15N tracing model. This approach allowed us to estimate the individual gross N transformation rates with a much higher accuracy than if only a common triple

  20. Don't wait to incubate: immediate versus delayed incubation in divergent thinking.

    PubMed

    Gilhooly, Kenneth J; Georgiou, George J; Garrison, Jane; Reston, Jon D; Sirota, Miroslav

    2012-08-01

    Previous evidence for the effectiveness of immediate incubation in divergent creative tasks has been weak, because earlier studies exhibited a range of methodological problems. This issue is theoretically important, as a demonstration of the effects of immediate incubation would strengthen the case for the involvement of unconscious work in incubation effects. For the present experiment, we used a creative divergent-thinking task (alternative uses) in which separate experimental groups had incubation periods that were either delayed or immediate and that consisted of either spatial or verbal tasks. Control groups were tested without incubation periods, and we carried out checks for intermittent conscious work on the target task during the incubation periods. The results showed significant incubation effects that were stronger for immediate than for delayed incubation. Performance was not different between the verbal and spatial incubation conditions, and we found no evidence for intermittent conscious working during the incubation periods. These results support a role for unconscious work in creative divergent thinking, particularly in the case of immediate incubation.

  1. Effect of N and P addition on soil organic C potential mineralization in forest soils in South China.

    PubMed

    Ouyang, Xuejun; Zhou, Guoyi; Huang, Zhongliang; Zhou, Cunyu; Li, Jiong; Shi, Junhui; Zhang, Deqiang

    2008-01-01

    Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N deposition promotes soil C storage through decreasing mineralization; (2) if the soil available P is a limitation to organic carbon mineralization. Soils (0-10 cm) was sampled from monsoon evergreen broad-leaved forest (MEBF), coniferous and broad-leaved mixed forest (CBMF), and Pinus massoniana forest (PMF) in Dinghushan Biosphere Reserve (located in Guangdong Province, China). The soils were incubated at 25 degrees C for 45 weeks, with addition of N (NH4NO3 solution) or P (KH2PO4 solution). CO2-C emission and the inorganic N (NH4(+)-N and NO3(-)-N) of the soils were determined during the incubation. The results showed that CO2-C emission decreased with the N addition. The addition of P led to a short-term sharp increase in CO2 emission after P application, and the responses of CO2-C evolution to P addition in the later period of incubation related to forest types. Strong P inhibition to CO2 emission occurred in both PMF and CBMF soils in the later incubation. The two-pool kinetic model was fitted well to the data for C turnover in this experiment. The model analysis demonstrated that the addition of N and P changed the distribution of soil organic C between the labile and recalcitrant pool, as well as their mineralization rates. In our experiment, soil pH can not completely explain the negative effect of N addition on CO2-C emission. The changes of soil inorganic N during incubation seemed to support the hypothesis that the polymerization of added nitrogen with soil organic compound by abiotic reactions during incubation made the added nitrogen retard the soil organic carbon mineralization. We conclude that atmospheric N deposition contributes to soil C accretion in the three subtropical forest ecosystems, however, the shortage of soil available P in

  2. Laboratory tests on the impact of superabsorbent polymers on transformation and sorption of xenobiotics in soil taking 14C-imazalil as an example.

    PubMed

    Achtenhagen, J; Kreuzig, R

    2011-11-15

    Due to water scarcity, the agricultural production in arid areas is dependent on a sustainable irrigation management. In order to optimize irrigation systems, the application of superabsorbent polymers (SAP) as soil amendments, frequently studied within the last years, may be an appropriate measure to enhance the water holding capacity and the plant-available water in poor arable soils. These persistent polymers are also able to reduce heavy metal and salt stress to crops by accumulating those inorganic compounds. However, the impact of SAP on fate and behavior of organic xenobiotics in soil is unknown. Therefore, transformation and sorption of the model substance 14C-imazalil were monitored without and with SAP amendment in silty sand and sand soil under laboratory conditions. Within the 100-d incubation period, the transformation of 14C-imazalil was not substantially affected by the SAP amendment even though the microbial activity increased considerably. In the silty sand soil, extractable residues dropped from 90% to 45% without and from 96% to 46% with SAP amendment. Non-extractable residues continuously increased up to 49% and 35% while mineralization reached 6% and 5%, respectively. In the sand soil, characterized by its lower microbial activity and lower organic carbon content, extractable residues merely dropped from 99% to 81% and from 100% to 85% while non-extractable residues increased from 2% to 14% and 1% to 10%, respectively. Mineralization was lower than 2%. The increased microbial activity, usually promoting transformation processes of xenobiotics, was compensated by the enhanced sorption in the amended soils revealed by the increase of soil/water distribution coefficients (Kd) of 26 to 42 L kg(-1) for the silty sand and 6 to 25 L kg(-1) for the sand, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Effects of metal-soil contact time on the extraction of mercury from soils.

    PubMed

    Ma, Lan; Zhong, Huan; Wu, Yong-Gui

    2015-03-01

    To investigate the mercury aging process in soils, soil samples were spiked with inorganic mercury (Hg(II)) or methylated mercury (MeHg) and incubated for 2, 7, 14 or 28 days in the laboratory. Potential availability of mercury, assessed by bovine serum albumin (BSA) or calcium chloride (CaCl2) extraction, decreased by 2-19 times for Hg(II) or 2-6 times for MeHg, when the contact time increased from 2 to 28 days. Decreased Hg(II) extraction could be explained by Hg(II) geochemical fractionation, i.e., Hg(II) migrated from more mobile fractions (water soluble and stomach acid soluble fractions) to refractory ones (organo-complexed, strongly complexed and residual fractions) over time, resulting in more stable association of Hg(II) with soils. In addition, decrease of mercury extraction was more evident in soils with lower organic content in most treatments, suggesting that organic matter may potentially play an important role in mercury aging process. In view of the significant decreased Hg(II) or MeHg extraction with prolonged contact time, mercury aging process should be taken into account when assessing risk of mercury in contaminated soils.

  4. Use of photoacoustic mid-infrared spectroscopy to characterize soil properties and soil organic matter stability

    NASA Astrophysics Data System (ADS)

    Peltre, Clement; Bruun, Sander; Du, Changwen; Stoumann Jensen, Lars

    2014-05-01

    The persistence of soil organic matter (SOM) is recognized as a major ecosystem property due to its key role in earth carbon cycling, soil quality and ecosystem services. SOM stability is typically studied using biological methods such as measuring CO2-C evolution from microbial decomposition of SOM during laboratory incubation or by physical or chemical fractionation methods, allowing the separation of a labile fraction of SOM. However these methods are time consuming and there is still a need for developing reliable techniques to characterize SOM stability, providing both quantitative measurements and qualitative information, in order to improve our understanding of the mechanisms controlling SOM persistence. Several spectroscopic techniques have been used to characterize and predict SOM stability, such as near infrared reflectance spectroscopy (NIRS) and diffuse reflectance mid-infrared spectroscopy (DRIFT). The latter allows a proper identification of spectral regions corresponding to vibrations of specific molecular or functional groups associated with SOM lability. However, reflectance spectroscopy for soil analyses raises some difficulties related to the low reflectance of soils, and to the high influence of particle size. In the last three decades, the progresses in microphone sensitivity dramatically increased the performance of photoacoustic Fourier transform mid-infrared spectroscopy (FTIR-PAS). This technique offers benefits over reflectance spectroscopy techniques, because particle size and the level of sample reflectance have little effect of on the PAS signal, since FTIR-PAS is a direct absorption technique. Despite its high potential for soil analysis, only a limited number of studies have so far applied FTIR-PAS for soil characterization and its potential for determining SOM degradability still needs to be investigated. The objective of this study was to assess the potential of FTIR-PAS for the characterization of SOM decomposability during

  5. Impact of soil organic carbon on monosodium methyl arsenate (MSMA) sorption and species transformation.

    PubMed

    Ou, Ling; Gannon, Travis W; Polizzotto, Matthew L

    2017-11-01

    Monosodium methyl arsenate (MSMA), a common arsenical herbicide, is a major contributor of anthropogenic arsenic (As) to the environment. Uncertainty about controls on MSMA fate and the rates and products of MSMA species transformation limits effective MSMA regulation and management. The main objectives of this research were to quantify the kinetics and mechanistic drivers of MSMA species transformation and removal from solution by soil. Laboratory MSMA incubation studies with two soils and varying soil organic carbon (SOC) levels were conducted. Arsenic removal from solution was more extensive and faster in sandy clay loam incubations than sand incubations, but for both systems, As removal was biphasic, with initially fast removal governed by sorption, followed by slower As removal limited by species transformation. Dimethylarsinic acid was the dominant product of species transformation at first, but inorganic As(V) was the ultimate transformation product by experiment ends. SOC decreased As removal and enhanced As species transformation, and SOC content had linear relationships with As removal rates (R 2  = 0.59-0.95) for each soil and reaction phase. These results reveal the importance of edaphic conditions on inorganic As production and overall mobility of As following MSMA use, and such information should be considered in MSMA management and regulatory decisions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Microbial physiology and soil CO2 efflux after 9 years of soil warming in a temperate forest - no indications for thermal adaptations.

    PubMed

    Schindlbacher, Andreas; Schnecker, Jörg; Takriti, Mounir; Borken, Werner; Wanek, Wolfgang

    2015-11-01

    Thermal adaptations of soil microorganisms could mitigate or facilitate global warming effects on soil organic matter (SOM) decomposition and soil CO2 efflux. We incubated soil from warmed and control subplots of a forest soil warming experiment to assess whether 9 years of soil warming affected the rates and the temperature sensitivity of the soil CO2 efflux, extracellular enzyme activities, microbial efficiency, and gross N mineralization. Mineral soil (0-10 cm depth) was incubated at temperatures ranging from 3 to 23 °C. No adaptations to long-term warming were observed regarding the heterotrophic soil CO2 efflux (R10 warmed: 2.31 ± 0.15 μmol m(-2)  s(-1) , control: 2.34 ± 0.29 μmol m(-2)  s(-1) ; Q10 warmed: 2.45 ± 0.06, control: 2.45 ± 0.04). Potential enzyme activities increased with incubation temperature, but the temperature sensitivity of the enzymes did not differ between the warmed and the control soils. The ratio of C : N acquiring enzyme activities was significantly higher in the warmed soil. Microbial biomass-specific respiration rates increased with incubation temperature, but the rates and the temperature sensitivity (Q10 warmed: 2.54 ± 0.23, control 2.75 ± 0.17) did not differ between warmed and control soils. Microbial substrate use efficiency (SUE) declined with increasing incubation temperature in both, warmed and control, soils. SUE and its temperature sensitivity (Q10 warmed: 0.84 ± 0.03, control: 0.88 ± 0.01) did not differ between warmed and control soils either. Gross N mineralization was invariant to incubation temperature and was not affected by long-term soil warming. Our results indicate that thermal adaptations of the microbial decomposer community are unlikely to occur in C-rich calcareous temperate forest soils. © 2015 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  7. Effects of imidacloprid on soil microbial communities in different saline soils.

    PubMed

    Zhang, Qingming; Xue, Changhui; Wang, Caixia

    2015-12-01

    The effects of imidacloprid in the soil environment are a worldwide concern. However, the impact of imidacloprid on soil microorganisms under salt stress is almost unknown. Therefore, an indoor incubation test was performed, and the denaturing gradient gel electrophoresis (DGGE) approach was used to determine the response of different saline soil bacterial and fungal community structures to the presence of imidacloprid (0.4, 2, 10 mg kg(-1)). The results showed that the soil bacterial diversity slightly declined with increasing imidacloprid concentration in soils with low salinity. In moderately saline soils, a new band in the DGGE profile suggested that imidacloprid could improve the soil bacterial diversity to some degree. An analysis of variance indicated that the measured soil bacterial diversity parameters were significantly affected by dose and incubation time. Compared with the control, the soil fungal community structure showed no obvious changes in low and moderately saline soils treated with imidacloprid. The results of these observations provide a basic understanding of the potential ecological effects of imidacloprid on different microorganisms in saline soils.

  8. Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater.

    PubMed

    Liang, Yuan; Cao, Xinde; Zhao, Ling; Arellano, Eduardo

    2014-03-01

    Long-term wastewater irrigation or solid waste disposal has resulted in the heavy metal contamination in both soil and groundwater. It is often separately implemented for remediation of contaminated soil or groundwater at a specific site. The main objective of this study was to demonstrate the hypothesis of simultaneous remediation of both heavy metal contaminated soil and groundwater by integrating the chemical immobilization and pump-and-treat methods. To accomplish the objective, three experiments were conducted, i.e., an incubation experiment was first conducted to determine how dairy-manure-derived biochar and phosphate rock tailing induced immobilization of Cd in the Cd-contaminated soils; second, a batch sorption experiment was carried out to determine whether the pre-amended contaminated soil still had the ability to retain Pb, Zn and Cd from aqueous solution. BCR sequential extraction as well as XRD and SEM analysis were conducted to explore the possible retention mechanism; and last, a laboratory-scale model test was undertaken by leaching the Pb, Zn, and Cd contaminated groundwater through the pre-amended contaminated soils to demonstrate how the heavy metals in both contaminated soil and groundwater were simultaneously retained and immobilized. The incubation experiment showed that the phosphate biochar were effective in immobilizing soil Cd with Cd concentration in TCLP (toxicity characteristics leaching procedure) extract reduced by 19.6 % and 13.7 %, respectively. The batch sorption experiment revealed that the pre-amended soil still had ability to retain Pb, Zn, and Cd from aqueous solution. The phosphate-induced metal retention was mainly due to the metal-phosphate precipitation, while both sorption and precipitation were responsible for the metal stabilization in the biochar amendment. The laboratory-scale test demonstrated that the soil amended with phosphate removed groundwater Pb, Zn, and Cd by 96.4 %, 44.6 %, and 49.2 %, respectively, and the

  9. Atmospheric nitrous oxide uptake in boreal spruce forest soil

    NASA Astrophysics Data System (ADS)

    Siljanen, Henri; Welti, Nina; Heikkinen, Juha; Biasi, Christina; Martikainen, Pertti

    2017-04-01

    Nitrous oxide (N2O) uptake from the atmosphere has been found in forest soils but environmental factors controlling the uptake and its atmospheric impact are poorly known. We measured N2O fluxes over growing season in a boreal spruce forest having control plots and plots with long nitrogen fertilization history. Also methane (CH4) fluxes were measured to compare the atmospheric impact of N2O and CH4fluxes. Soil chemical and physical characteristics and climatic conditions were measured as background data. Nitrous oxide consumption and uptake mechanisms were measured in complementary laboratory incubation experiments using stable isotope approaches. Gene transcript numbers of nitrous oxide reductase (nosZ) I and II genes were quantified along the incubation with elevated N2O atmosphere. The spruce forests without fertilization history showed highest N2O uptake rates whereas pine forest had low emissions. Nitrous oxide uptake correlated positively with soil moisture, high soil silt content, and low temperature. Nitrous oxide uptake varied seasonally, being highest in spring and autumn when temperature was low and water content was high. The spruce forest was sink for CH4.Methane fluxes were decoupled from the N2O fluxes (i.e. when the N2O uptake was high the CH4 uptake was low). By using GWP approach, the cooling effect of N2O uptake was on average 30% of the cooling effect of CH4 uptake in spruce forest without fertilization. Anoxic conditions promoted higher N2O consumption rates in all soils. Gene transcription of nosZ-I genes were activated at beginning of the incubation. However, atypical/clade-II nosZ was not detected. These results suggests, that also N2O uptake rates have to be considered when accounting for the GHG budget of spruce forests.

  10. Field and laboratory procedures used in a soil chronosequence study

    USGS Publications Warehouse

    Singer, Michael J.; Janitzky, Peter

    1986-01-01

    In 1978, the late Denis Marchand initiated a research project entitled "Soil Correlation and Dating at the U.S. Geological Survey" to determine the usefulness of soils in solving geologic problems. Marchand proposed to establish soil chronosequences that could be dated independently of soil development by using radiometric and other numeric dating methods. In addition, by comparing dated chronosequences in different environments, rates of soil development could be studied and compared among varying climates and mineralogical conditions. The project was fundamental in documenting the value of soils in studies of mapping, correlating, and dating late Cenozoic deposits and in studying soil genesis. All published reports by members of the project are included in the bibliography.The project demanded that methods be adapted or developed to ensure comparability over a wide variation in soil types. Emphasis was placed on obtaining professional expertise and on establishing consistent techniques, especially for the field, laboratory, and data-compilation methods. Since 1978, twelve chronosequences have been sampled and analyzed by members of this project, and methods have been established and used consistently for analysis of the samples.The goals of this report are to:Document the methods used for the study on soil chronosequences,Present the results of tests that were run for precision, accuracy, and effectiveness, andDiscuss our modifications to standard procedures.Many of the methods presented herein are standard and have been reported elsewhere. However, we assume less prior analytical knowledge in our descriptions; thus, the manual should be easy to follow for the inexperienced analyst. Each chapter presents one or more references of the basic principle, an equipment and reagents list, and the detailed procedure. In some chapters this is followed by additional remarks or example calculations.The flow diagram in figure 1 outlines the step-by-step procedures used to

  11. Soil mineralogy and microbes determine forest life history strategy and carbon cycling in humid tropical forests

    NASA Astrophysics Data System (ADS)

    Soong, J.; Verbruggen, E.; Peñuelas, J.; Janssens, I. A.; Grau, O.

    2017-12-01

    Tropical forests account for over one third of global terrestrial gross primary productivity and cycle more C than any other ecosystem on Earth. However, we still lack a mechanistic understanding of how such high productivity is maintained on the old, highly weathered and phosphorus depleted soils in the tropics. We hypothesized that heterogeneity in soil texture, mineralogy and microbial community composition may be the major drivers of differences in soil C storage and P limitation across tropical forests. We sampled 12 forest sites across a 200 km transect in the humid neo-tropics of French Guiana that varied in soil texture, precipitation and mineralogy. We found that soil texture was a major driver of soil carbon stocks and forest life history strategy, where sandy forests have lower soil C stocks, slower turnover and decomposition and a more closed nutrient cycle while clayey forests have higher soil C stocks, faster turnover and a more leaky nutrient cycle (using natural abundance stable isotope evidence). We found that although the presence of Al and Fe oxides in the clayey soils occludes soil organic matter and P, a greater abundance of arbuscular mycorrhizal fungi help forests to access occluded P in clayey soils fueling higher turnover and faster decomposition rates. Evidence from a laboratory incubation of tropical soils with nutrient additions further demonstrates the de-coupling of microbial P demands from C:N limitations providing further evidence for the need to examine microbial stoichiometry to explain C cycling in the P-limited tropics. We argue that microbial community composition and physiological demands, constrained within the limitations of soil mineralogical reactivity, largely controls nutrient and C cycling in tropical forest soils. Together our observational field study and laboratory incubation provide a unique dataset to shed light on the mineralogical and microbial controls on C and nutrient cycling in tropical soils. By integrating

  12. Effects of novel nitrification and urease inhibitors (DCD/TZ and 2-NPT) on N2O emissions from surface applied urea: An incubation study

    NASA Astrophysics Data System (ADS)

    Ni, Kang; Kage, Henning; Pacholski, Andreas

    2018-02-01

    A 41-day incubation trial was conducted to test the single and combined effects of the novel urease (N-(2-Nitrophenyl) phosphoric triamide, 2-NPT) and nitrification inhibitors (mixture of dicyandiamide and 1H-1,2,4-triazole, DCD/TZ) on N2O emissions and underlying soil processes from a North German sandy loam soil. The effects of treatment on N2O emission were determined using static closed chamber incubation and detected using a photo-acoustic gas monitor. The emission processes were strongly related to soil mineral N and pH dynamics, obtained from destructive sampling of replicate incubation chambers. The combined use of urease and nitrification inhibitors slightly increased the reduction of N2O compared with single use of the nitrification inhibitor (69% vs. 61%). The small amount of soil used in the incubation and the depletion of labile carbon by air drying and pre-incubation caused very low initial N2O emissions, and glucose addition significantly stimulated N2O emission by supplying labile carbon. The urease inhibitor significantly reduced simultaneously determined qualitative NH3 emissions in either urea alone (90%) or urea plus nitrification inhibitor treatment (82%). These results highlighted the potential of the combined use of urease and nitrification inhibitors with urea application to mitigate soil NH3 and N2O emissions.

  13. Population dynamics of hydrocarbon-oxidizing yeasts introduced into oil-contaminated soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulichevskaya, I.S.; Panikov, N.S.; Guzev, V.S.

    A pure culture of the yeastlike fungus Candida lipolytica, able to actively degrade crude oil, was isolated. In preliminary trials, an optimal dose for its introduction was adjusted (10{sup 8} cells/g soil) to ensure its predominance in contaminated soil. Laboratory incubation experiments in which the population dynamics of the introduced species and indigenous soil bacteria and the dynamics of soil respiration activity were followed showed that active proliferation of the introduced species in soil is accompanied by its elimination as a result of grazing by microfauna. The most favorable conditions for the development of introduced yeasts were found to bemore » provided in gray and gray forest soil, whereas in soddy-podzolic soil, their growth and oil degradation were retarded. The obtained results indicate that introduction of the tested culture can significantly increase the rate of oil degradation. In uncontaminated soil, the introduced species is rapidly eliminated. 9 refs., 5 figs.« less

  14. Reduction kinetics of hexavalent chromium in soils and its correlation with soil properties.

    PubMed

    Xiao, Wendan; Zhang, Yibin; Li, Tingqiang; Chen, Bao; Wang, Huan; He, Zhenli; Yang, Xiaoe

    2012-01-01

    The toxicity of chromium (Cr) to biota is related to its chemical forms and consequently to the redox conditions of soils. Hexavalent Cr[Cr(VI)] may undergo natural attenuation through reduction processes. In this study, the reduction kinetics of Cr(VI) in seven soils and its relationships with soil properties were investigated with laboratory incubation experiments. The results indicate that the reduction of Cr(VI) can be described by a first-order reaction. The reduction rates of Cr(VI) in the seven soils decreased in the order: Udic Ferrisols > Stagnic Anthrosols > Calcaric Regosols > Mollisol > Typic Haplustalf > Periudic Argosols > Ustic Cambosols. Simple correlation analysis revealed that the reduction of Cr(VI) in soils was positively related to organic matter content, dissolved organic matter content, Fe(II) content, clay fraction, and to the diversity index of the bacterial community but negatively correlated with easily reducible Mn content. Using stepwise regression, the reduction of Cr(VI) in soil could be quantitatively predicted by the measurement of dissolved organic matter content, Fe(II) content, pH, and soil particle size distribution, with a fitting level of 95.5%. The results indicated that the reduction of Cr(VI) in natural soils is not controlled by a single soil property but is the result of the combined effects of dissolved organic matter, Fe(II), pH, and soil particle size distribution. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Modeling Soil Organic Carbon at Regional Scale by Combining Multi-Spectral Images with Laboratory Spectra.

    PubMed

    Peng, Yi; Xiong, Xiong; Adhikari, Kabindra; Knadel, Maria; Grunwald, Sabine; Greve, Mogens Humlekrog

    2015-01-01

    There is a great challenge in combining soil proximal spectra and remote sensing spectra to improve the accuracy of soil organic carbon (SOC) models. This is primarily because mixing of spectral data from different sources and technologies to improve soil models is still in its infancy. The first objective of this study was to integrate information of SOC derived from visible near-infrared reflectance (Vis-NIR) spectra in the laboratory with remote sensing (RS) images to improve predictions of topsoil SOC in the Skjern river catchment, Denmark. The second objective was to improve SOC prediction results by separately modeling uplands and wetlands. A total of 328 topsoil samples were collected and analyzed for SOC. Satellite Pour l'Observation de la Terre (SPOT5), Landsat Data Continuity Mission (Landsat 8) images, laboratory Vis-NIR and other ancillary environmental data including terrain parameters and soil maps were compiled to predict topsoil SOC using Cubist regression and Bayesian kriging. The results showed that the model developed from RS data, ancillary environmental data and laboratory spectral data yielded a lower root mean square error (RMSE) (2.8%) and higher R2 (0.59) than the model developed from only RS data and ancillary environmental data (RMSE: 3.6%, R2: 0.46). Plant-available water (PAW) was the most important predictor for all the models because of its close relationship with soil organic matter content. Moreover, vegetation indices, such as the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), were very important predictors in SOC spatial models. Furthermore, the 'upland model' was able to more accurately predict SOC compared with the 'upland & wetland model'. However, the separately calibrated 'upland and wetland model' did not improve the prediction accuracy for wetland sites, since it was not possible to adequately discriminate the vegetation in the RS summer images. We conclude that laboratory Vis

  16. Modeling Soil Organic Carbon at Regional Scale by Combining Multi-Spectral Images with Laboratory Spectra

    PubMed Central

    Peng, Yi; Xiong, Xiong; Adhikari, Kabindra; Knadel, Maria; Grunwald, Sabine; Greve, Mogens Humlekrog

    2015-01-01

    There is a great challenge in combining soil proximal spectra and remote sensing spectra to improve the accuracy of soil organic carbon (SOC) models. This is primarily because mixing of spectral data from different sources and technologies to improve soil models is still in its infancy. The first objective of this study was to integrate information of SOC derived from visible near-infrared reflectance (Vis-NIR) spectra in the laboratory with remote sensing (RS) images to improve predictions of topsoil SOC in the Skjern river catchment, Denmark. The second objective was to improve SOC prediction results by separately modeling uplands and wetlands. A total of 328 topsoil samples were collected and analyzed for SOC. Satellite Pour l’Observation de la Terre (SPOT5), Landsat Data Continuity Mission (Landsat 8) images, laboratory Vis-NIR and other ancillary environmental data including terrain parameters and soil maps were compiled to predict topsoil SOC using Cubist regression and Bayesian kriging. The results showed that the model developed from RS data, ancillary environmental data and laboratory spectral data yielded a lower root mean square error (RMSE) (2.8%) and higher R2 (0.59) than the model developed from only RS data and ancillary environmental data (RMSE: 3.6%, R2: 0.46). Plant-available water (PAW) was the most important predictor for all the models because of its close relationship with soil organic matter content. Moreover, vegetation indices, such as the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), were very important predictors in SOC spatial models. Furthermore, the ‘upland model’ was able to more accurately predict SOC compared with the ‘upland & wetland model’. However, the separately calibrated ‘upland and wetland model’ did not improve the prediction accuracy for wetland sites, since it was not possible to adequately discriminate the vegetation in the RS summer images. We conclude that laboratory

  17. Load dissipation by corn residue on tilled soil in laboratory and field-wheeling conditions.

    PubMed

    Reichert, José M; Brandt, André A; Rodrigues, Miriam F; Reinert, Dalvan J; Braida, João A

    2016-06-01

    Crop residues may partially dissipate applied loads and reduce soil compaction. We evaluated the effect of corn residue on energy-applied dissipation during wheeling. The experiment consisted of a preliminary laboratory test and a confirmatory field test on a Paleaudalf soil. In the laboratory, an adapted Proctor test was performed with three energy levels, with and without corn residue. Field treatments consisted of three 5.1 Mg tractor wheeling intensities (0, 2, and 6), with and without 12 Mg ha(-1) corn residue on the soil surface. Corn residue on the soil surface reduced soil bulk density in the adapted Proctor test. By applying energy of 52.6 kN m m(-3) , soil dissipated 2.98% of applied energy, whereas with 175.4 kN m m(-3) a dissipation of 8.60% was obtained. This result confirms the hypothesis that surface mulch absorbs part of the compaction effort. Residue effects on soil compaction observed in the adapted Proctor test was not replicated under subsoiled soil field conditions, because of differences in applied pressure and soil conditions (structure, moisture and volume confinement). Nevertheless, this negative result does not mean that straw has no effect in the field. Such effects should be measured via stress transmission and compared to soil load-bearing capacity, rather than on bulk deformations. Wheeling by heavy tractor on subsoiled soil increased compaction, independently of surface residue. Two wheelings produced a significantly increase, but six wheelings did not further increase compaction. Reduced traffic intensity on recently tilled soil is necessary to minimize soil compaction, since traffic intensity show a greater effect than surface mulch on soil protection from excessive compaction. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  18. Calculation of incubation period and serial interval from multiple outbreaks of Marburg virus disease.

    PubMed

    Pavlin, Boris I

    2014-12-13

    Marburg viruses have been responsible for a number of outbreaks throughout sub-Saharan Africa, as well as a number of laboratory infections. Despite many years of experience with the viruses, little is known about several important epidemiologic parameters relating to the development of Marburg virus disease. The analysis uses pooled data from all Marburg cases between 1967 and 2008 to develop estimates for the incubation period and the clinical onset serial interval (COSI). Data were obtained from original outbreak investigation forms (n=406) and from published data (n=45). Incubation periods were calculated for person-to-person exposure, for laboratory-acquired infections, and for presumed zoonotic exposures. Similar analysis was conducted for COSI, using only cases with unambiguous person-to-person transmission where both the primary and the secondary case patients had well-defined illness onsets. Seventy-six cases were retained for the incubation period analysis. Incubation periods ranged from a minimum of 2 days in the case of two laboratory workers to a maximum of at least 26 days for a person-to-person household transmission. Thirty-eight cases were retained for COSI analysis. The median COSI was 11 days, with an interquartile range of 8 to 15. This study extends the maximum known incubation period of Marburg virus disease to 26 days. The analysis was severely hampered by a lack of completeness in epidemiologic data. It is necessary to prioritize obtaining more accurate epidemiologic data in future outbreaks; greater use of COSI may facilitate an improved understanding of outbreak dynamics in Marburg and other diseases.

  19. Varied effects of untreated textile wastewater onto soil carbon mineralization and associated biochemical properties of a dryland agricultural soil.

    PubMed

    Roohi, Mahnaz; Riaz, Muhammad; Arif, Muhammad Saleem; Shahzad, Sher Muhammad; Yasmeen, Tahira; Riaz, Muhammad Atif; Tahir, Shermeen; Mahmood, Khalid

    2016-12-01

    Wastewater is an alternative, valuable and cost effective resource for irrigation in water-scarce arid and sami-arid regions of the world including Pakistan. Soils near urban centers are cultivated for vegetable and cash crops using untreated wastewater. Current study was performed with objectives of assessing impacts of untreated textile wastewater on some soil chemical, biological and enzymatic activities. The microcosm incubation study used a clay loam soil that received 0 (distilled-water), 25, 50 and 100% wastewater concentrations and incubated for 30 and 60 days under optimum temperature and moisture conditions. Soil respiration was measured periodically throughout the experiment over 60 days. After the incubation periods of 30- and 60-d, soils were destructively analyzed for pH, electrical conductivity (EC), water extractable organic matter (WEOM), microbial biomass carbon (MBC), microbial metabolic quotient (qCO 2 ) and dehydrogenase enzymatic activity. Results revealed that wastewater and incubation time significantly altered chemical, biological and enzymatic properties of soils. The observed large surge in soil respiration, at initial stage, was stimulated by dissolved organic matter in wastewater. Dehydrogenase activity increased significantly with increasing wastewater concentrations. Increase in qCO 2 with wastewater concentration and incubation time suggested more stress to microorganisms but also enhanced microbial activity under stress to synthesize biomass. We found significant positive (R 2  = 0.64, p < 0.001) relationship between soil respiration and MBC, however, correlation between WEOM and MBC was significant negative (R 2  = 0.18, p < 0.01) indicating a dynamic mismatch between carbon substrate, soil respiration and buildup of MBC pool. Wastewater concentration and incubation time interaction had significant (p < 0.01) effect on WEOM suggesting that WEOM accumulated over time and comparatively less utilized by microorganisms. Short

  20. Toxic effects of ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate on soil enzyme activity and soil microbial community diversity.

    PubMed

    Sun, Xi; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Su, Benying; Liu, Tong; Zhang, Cheng; Gao, Chong; Shao, Yuting

    2017-01-01

    Ionic liquids (ILs) were considered as "green" solvents and have been used widely because of their excellent properties. But ILs are not as "green" as has been suggested, and the toxic effects of ILs on organisms have been shown in recent years. In the present study, the toxic effects of the IL 1-octyl-3-methylimidazolium tetrafluoroborate ([Omim]BF 4 ) on soil enzyme activity and soil microbial communities at three different concentrations (1.0, 5.0 and 10.0mg/kg) and a control treatment over 40 days of incubation time (sampled on days 10, 20, 30 and 40) were examined under laboratory conditions. The concentrations of [Omim]BF 4 in soils were detected by high performance liquid chromatography (HPLC) and the results indicated that [Omim]BF 4 were maintained stable in the soil during the exposure period. However, the enzyme activity results showed that urease activity was stimulated on day 20 and then decreased after 30 days of incubation. The activity of β-glucosidase was stimulated after 20 days of incubation in both treatment groups. Moreover, both dehydrogenase and acid phosphatase were inhibited at a high level (10.0mg/kg) only on day 20. The analysis of terminal restriction fragment length polymorphism (T-RFLP) revealed that the soil microbial community structures were altered by [Omim]BF 4 and that the soil microbial diversity and evenness of high levels (5.0mg/kg and 10.0mg/kg) treatments were decreased. Moreover, the dominant structure of the microbial communities was not changed by [Omim]BF 4 . Furthermore, the abundance of the ammonia monooxygenase (amoA) genes of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) was examined using real time polymerase chain reaction (RT-PCR). The results revealed that the copy numbers of the amoA-gene were decreased by [Omim]BF 4 with the 5.0 and 10.0mg/kg treatments. Based on the experiment, we concluded that high levels (5.0 and 10.0mg/kg) of [Omim]BF 4 could have significantly toxic effects on

  1. [Soil organic carbon pools and their turnover under two different types of forest in Xiao-xing'an Mountains, Northeast China].

    PubMed

    Gao, Fei; Jiang, Hang; Cui, Xiao-yang

    2015-07-01

    Soil samples collected from virgin Korean pine forest and broad-leaved secondary forest in Xiaoxing'an Mountains, Northeast China were incubated in laboratory at different temperatures (8, 18 and 28 °C) for 160 days, and the data from the incubation experiment were fitted to a three-compartment, first-order kinetic model which separated soil organic carbon (SOC) into active, slow, and resistant carbon pools. Results showed that the soil organic carbon mineralization rates and the cumulative amount of C mineralized (all based on per unit of dry soil mass) of the broad-leaved secondary forest were both higher than that of the virgin Korean pine forest, whereas the mineralized C accounted for a relatively smaller part of SOC in the broad-leaved secondary forest soil. Soil active and slow carbon pools decreased with soil depth, while their proportions in SOC increased. Soil resistant carbon pool and its contribution to SOC were both greater in the broad-leaved secondary forest soil than in the virgin Korean pine forest soil, suggesting that the broad-leaved secondary forest soil organic carbon was relatively more stable. The mean retention time (MRT) of soil active carbon pool ranged from 9 to 24 d, decreasing with soil depth; while the MRT of slow carbon pool varied between 7 and 24 a, increasing with soil depth. Soil active carbon pool and its proportion in SOC increased linearly with incubation temperature, and consequently, decreased the slow carbon pool. Virgin Korean pine forest soils exhibited a higher increasing rate of active carbon pool along temperature gradient than the broad-leaved secondary forest soils, indicating that the organic carbon pool of virgin Korean pine forest soil was relatively more sensitive to temperature change.

  2. [Effects of straw returning combined with medium and microelements application on soil organic carbon sequestration in cropland.

    PubMed

    Jiang, Zhen Hui; Shi, Jiang Lan; Jia, Zhou; Ding, Ting Ting; Tian, Xiao Hong

    2016-04-22

    A 52-day incubation experiment was conducted to investigate the effects of maize straw decomposition with combined medium element (S) and microelements (Fe and Zn) application on arable soil organic carbon sequestration. During the straw decomposition, the soil microbial biomass carbon (MBC) content and CO 2 -C mineralization rate increased with the addition of S, Fe and Zn, respectively. Also, the cumulative CO 2 -C efflux after 52-day laboratory incubation significantly increased in the treatments with S, or Fe, or Zn addition, while there was no significant reduction of soil organic carbon content in the treatments. In addition, Fe or Zn application increased the inert C pools and their proportion, and apparent balance of soil organic carbon, indicating a promoting effect of Fe or Zn addition on soil organic carbon sequestration. In contrast, S addition decreased the proportion of inert C pools and apparent balance of soil organic carbon, indicating an adverse effect of S addition on soil organic carbon sequestration. The results suggested that when nitrogen and phosphorus fertilizers were applied, inclusion of S, or Fe, or Zn in straw incorporation could promote soil organic carbon mineralization process, while organic carbon sequestration was favored by Fe or Zn addition, but not by S addition.

  3. Influence of redox fluctuations and rainfall on pedogenic iron alteration and soil magnetic properties (Invited)

    NASA Astrophysics Data System (ADS)

    Thompson, A.; Rancourt, D.; Chadwick, O.; Chorover, J. D.

    2009-12-01

    Soil iron mineral composition emerges from a dynamic interplay between processes causing selective mineral addition/removal (both physically and chemically-driven) and processes affecting in situ mineral transformation. Discerning the influence of these pedogenic processes in a temporally integrated manner is fundamentally relevant to many biogeochemical questions. Among them is to what extent the Fe-mineral system can be used to constrain paleo-interpretations of oceanic sediments and geological deposits. Here we describe results from field and laboratory experiments designed to explore the effects of variable redox conditions on soil iron mineral transformation. Our experimental systems include: (1) a climate gradient of basaltic soils from the island of Maui, HI (MCG) with a documented decrease in Eh. and (2) laboratory incubations where we subjected soil slurries to a series of bacterially-driven reduction-oxidation cycles. Our prior work in these systems examining the iron isotopic and mineral composition will be combined with in-progress analysis of magnetic susceptibility. Current results indicate that across the field gradient (MCG) we find average increases of 0.56‰±0.09‰ δ56Fe for the surface and subsurface soils that correlate very well (R2=0.88) with 57Fe Mössbauer-determined Fe-oxyhydroxide fraction. Such a correlation is difficult to explain on the basis of strict parameter co-variation with rainfall, and suggests isotopic and mineral composition may be coupled through in situ mineral transformation processes in these soils. In our soil slurry incubation experiments we reported previously that repeated redox oscillations generate a cumulative increase in Fe mineral crystallinity. Integration of these results with magnetic susceptibility measurements will provide the context for discussing how dynamic redox processes alter soil magnetic properties most often drawn on for paleoclimate interpretations.

  4. Laboratory degradation studies of 14C-atrazine and -isoproturon in soil from sugarcane cultivated fields under Kenyan tropical conditions.

    PubMed

    Getenga, Z M; Dörfler, U; Schroll, R

    2009-06-01

    A study to compare the degradation rates of atrazine (6-chloro-N(2)-ethyl-N(4)-isopropyl-1,3,5-triazine-2,4-diammine) and isoproturon [3-(4-isopropylphenyl)-1,1-dimethylurea] in soils from sugarcane fields with different practices of herbicides application was carried out. (14)C-atrazine was poorly mineralized to (14)CO(2) (1.10% +/- 0.22%) after 139 days of incubation in soil without previous exposure to atrazine. In the same soil also with no previous isoproturon exposure isoproturon was mineralized to (14)CO(2) by 7.70% +/- 0.94%. Atrazine mineralization after 98 days was 13.4% +/- 0.30% in soil which discontinued the use of atrazine in 1997 while it was 89.9% +/- 1.23% in soil in which atrazine is currently being used. The isoproturon mineralization values were 7.24% +/- 0.85% and 22.97% +/- 0.96% in soil which discontinued atrazine and soil currently using atrazine, respectively.

  5. Short-term effects of natural and NH4+-enriched chabazite zeolitite amendments to soil microbial biomass

    NASA Astrophysics Data System (ADS)

    Ferretti, Giacomo; Keiblinger, Katharina Maria; Di Giuseppe, Dario; Faccini, Barbara; Colombani, Nicolò; Zechmeister-Boltenstern, Sophie; Coltorti, Massimo; Mastrocicco, Micòl

    2017-04-01

    Natural zeolite-bearing rocks (zeolitites) are known to be a suitable material for agricultural purposes by improving soil physicochemical properties and nitrogen use efficiency (NUE). However, little is known about their effects on soil microbial biomass. Aim of this work is to evaluate short-term effects of different chabazite-zeolitite amendments on soil microbial biomass (and activity). To this purpose a silty-clay agricultural soil was amended in three different ways, by the addition of 5 and 15 wt% of natural chabazite zeolitites (NZ) and 10 wt% of NH4+-enriched chabazite zeolitites (CZ). Soil pH, water content, dissolved organic carbon (C), total dissolved N, NH4+, NO3-, NO2-, microbial biomass C and N and ergosterol were periodically measured over a time course of 16 days in a laboratory incubation experiment. In order to verify the immobilization of N derived from CZ into microbial biomass, the δ15N signature of microorganisms was evaluated by the Extraction-Fumigation-Extraction method followed by EA-IRMS analysis. This latter investigation was possible because zeolitites were enriched with NH4+ derived from pig-slurry, which have a very high 15N natural abundance that allow to trace microbial incorporation. Soil amended with 5 wt% of NZ showed increased ergosterol content as well as microbial C/N ratio starting from day 9 of incubation, suggesting that fungal biomass was probably favored, although the same behavior was not found in the soil amended with 15 wt% of the same material. On the other hand, the NH4+-enriched CZ showed strong interactions with soil microbial biomass N. Isotopic measurements supported microbial assimilation of the N introduced with CZ since the second day of incubation. The high dissolved organic C and microbial biomass N suggested an increase of mineralization and immobilization processes. In addition, in CZ amended soil, microbial biomass N was related to NO3- production over time and inversely related to NH4+, suggesting high

  6. Chemical Analysis of Soils: An Environmental Chemistry Laboratory for Undergraduate Science Majors.

    ERIC Educational Resources Information Center

    Willey, Joan D.; Avery, G. Brooks, Jr.; Manock, John J.; Skrabal, Stephen A.; Stehman, Charles F.

    1999-01-01

    Describes a laboratory exercise for undergraduate science students in which they evaluate soil samples for various parameters related to suitability for crop production and capability for retention of contaminants. (Contains 18 references.) (WRM)

  7. Incubation temperature effects on hatchling performance in the loggerhead sea turtle (Caretta caretta).

    PubMed

    Fisher, Leah R; Godfrey, Matthew H; Owens, David W

    2014-01-01

    Incubation temperature has significant developmental effects on oviparous animals, including affecting sexual differentiation for several species. Incubation temperature also affects traits that can influence survival, a theory that is verified in this study for the Northwest Atlantic loggerhead sea turtle (Caretta caretta). We conducted controlled laboratory incubations and experiments to test for an effect of incubation temperature on performance of loggerhead hatchlings. Sixty-eight hatchlings were tested in 2011, and 31 in 2012, produced from eggs incubated at 11 different constant temperatures ranging from 27°C to 33°C. Following their emergence from the eggs, we tested righting response, crawling speed, and conducted a 24-hour long swim test. The results support previous studies on sea turtle hatchlings, with an effect of incubation temperature seen on survivorship, righting response time, crawling speed, change in crawl speed, and overall swim activity, and with hatchlings incubated at 27°C showing decreased locomotor abilities. No hatchlings survived to be tested in both years when incubated at 32°C and above. Differences in survivorship of hatchlings incubated at high temperatures are important in light of projected higher sand temperatures due to climate change, and could indicate increased mortality from incubation temperature effects.

  8. Incubation Temperature Effects on Hatchling Performance in the Loggerhead Sea Turtle (Caretta caretta)

    PubMed Central

    Fisher, Leah R.; Godfrey, Matthew H.; Owens, David W.

    2014-01-01

    Incubation temperature has significant developmental effects on oviparous animals, including affecting sexual differentiation for several species. Incubation temperature also affects traits that can influence survival, a theory that is verified in this study for the Northwest Atlantic loggerhead sea turtle (Caretta caretta). We conducted controlled laboratory incubations and experiments to test for an effect of incubation temperature on performance of loggerhead hatchlings. Sixty-eight hatchlings were tested in 2011, and 31 in 2012, produced from eggs incubated at 11 different constant temperatures ranging from 27°C to 33°C. Following their emergence from the eggs, we tested righting response, crawling speed, and conducted a 24-hour long swim test. The results support previous studies on sea turtle hatchlings, with an effect of incubation temperature seen on survivorship, righting response time, crawling speed, change in crawl speed, and overall swim activity, and with hatchlings incubated at 27°C showing decreased locomotor abilities. No hatchlings survived to be tested in both years when incubated at 32°C and above. Differences in survivorship of hatchlings incubated at high temperatures are important in light of projected higher sand temperatures due to climate change, and could indicate increased mortality from incubation temperature effects. PMID:25517114

  9. Incubation temperature modifies neonatal thermoregulation in the lizard Anolis carolinensis.

    PubMed

    Goodman, Rachel M; Walguarnery, Justin W

    2007-08-01

    The thermal environment experienced during embryonic development can profoundly affect the phenotype, and potentially the fitness, of ectothermic animals. We examined the effect of incubation temperature on the thermal preferences of juveniles in the oviparous lizard, Anolis carolinensis. Temperature preference trials were conducted in a laboratory thermal gradient within 48 hr of hatching and after 22-27 days of maintenance in a common laboratory environment. Incubation temperature had a significant effect on the upper limit of the interquartile range (IQR) of temperatures selected by A. carolinensis within the first 2 days after hatching. Between the first and second trials, the IQR of selected temperatures decreased significantly and both the lower limit of the IQR and the median selected temperature increased significantly. This, along with a significant incubation temperature by time interaction in the upper limit of the IQR, resulted in a pattern of convergence in thermoregulation among treatment groups. The initial differences in selected temperatures, as well as the shift in selected temperatures between first and second trials, demonstrate plasticity in temperature selection. As a previous study failed to find environmentally induced plasticity in temperature selection in adult A. carolinensis, this study suggests that this type of plasticity is exclusive to the period of neonatal development. (c) 2007 Wiley-Liss, Inc.

  10. Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin

    USGS Publications Warehouse

    Wynn, J.G.; Harden, J.W.; Fries, T.L.

    2006-01-01

    Analysis of depth trends of 13C abundance in soil organic matter and of 13C abundance from soil-respired CO2 provides useful indications of the dynamics of the terrestrial carbon cycle and of paleoecological change. We measured depth trends of 13C abundance from cropland and control pairs of soils in the lower Mississippi Basin, as well as the 13C abundance of soil-respired CO2 produced during approximately 1-year soil incubation, to determine the role of several candidate processes on the 13C depth profile of soil organic matter. Depth profiles of 13C from uncultivated control soils show a strong relationship between the natural logarithm of soil organic carbon concentration and its isotopic composition, consistent with a model Rayleigh distillation of 13C in decomposing soil due to kinetic fractionation during decomposition. Laboratory incubations showed that initially respired CO 2 had a relatively constant 13C content, despite large differences in the 13C content of bulk soil organic matter. Initially respired CO2 was consistently 13C-depleted with respect to bulk soil and became increasingly 13C-depleted during 1-year, consistent with the hypothesis of accumulation of 13C in the products of microbial decomposition, but showing increasing decomposition of 13C-depleted stable organic components during decomposition without input of fresh biomass. We use the difference between 13C / 12C ratios (calculated as ??-values) between respired CO 2 and bulk soil organic carbon as an index of the degree of decomposition of soil, showing trends which are consistent with trends of 14C activity, and with results of a two-pooled kinetic decomposition rate model describing CO2 production data recorded during 1 year of incubation. We also observed inconsistencies with the Rayleigh distillation model in paired cropland soils and reasons for these inconsistencies are discussed. ?? 2005 Elsevier B.V. All rights reserved.

  11. Sensitivity of boreal forest carbon balance to soil thaw

    USGS Publications Warehouse

    Goulden, M.L.; Wofsy, S.C.; Harden, J.W.; Trumbore, S.E.; Crill, P.M.; Gower, S.T.; Fries, T.; Daube, B.C.; Fan, S.-M.; Sutton, D.J.; Bazzaz, A.; Munger, J.W.

    1998-01-01

    We used eddy covariance; gas-exchange chambers; radiocarbon analysis; wood, moss, and soil inventories; and laboratory incubations to measure the carbon balance of a 120-year-old black spruce forest in Manitoba, Canada. The site lost 0.3 ?? 0.5 metric ton of carbon per hectare per year (ton C ha-1 year-1) from 1994 to 1997, with a gain of 0.6 ?? 0.2 ton C ha-1 year-1 in moss and wood offset by a loss of 0.8 ?? 0.5 ton C ha-1 year-1 from the soil. The soil remained frozen most of the year, and the decomposition of organic matter in the soil increased 10-fold upon thawing. The stability of the soil carbon pool (~150 tons C ha-1) appears sensitive to the depth and duration of thaw, and climatic changes that promote thaw are likely to cause a net efflux of carbon dioxide from the site.

  12. Spectral properties of agricultural crops and soils measured from space, aerial, field, and laboratory sensors

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Vanderbilt, V. C.; Robinson, B. F.; Daughtry, C. S. T.

    1981-01-01

    Investigations of the multispectral reflectance characteristics of crops and soils as measured from laboratory, field, aerial, and satellite sensor systems are reviewed. The relationships of important biological and physical characteristics to the spectral properties of crops and soils are addressed.

  13. Influence of Herbicide Triasulfuron on Soil Microbial Community in an Unamended Soil and a Soil Amended with Organic Residues

    PubMed Central

    Pose-Juan, Eva; Igual, José M.; Sánchez-Martín, María J.; Rodríguez-Cruz, M. S.

    2017-01-01

    The effect of organic amendments and pesticides on a soil microbial community has garnered considerable interest due to the involvement of microorganisms in numerous soil conservation and maintenance reactions. The aim of this work was to assess the influence on a soil microbial community of the simultaneous application of the herbicide triasulfuron at three doses (2, 10, and 50 mg kg-1), with an organic amendment [sewage sludge (SS) or green compost (GC)]. Dissipation kinetics, soil microbial biomass, dehydrogenase activity (DHA) and respiration, and the profile of phospholipid fatty acids (PLFAs) extracted from the soil, were determined in unamended (S) soil and amended (S+SS and S+GC) ones. Triasulfuron dissipation followed the single first-order kinetics model. Half-life (DT50) values were higher in the amended soils than in the unamended one for the 10 and 50 mg kg-1 doses. The dissipation rates were lower in the S+GC soil for the three herbicide doses applied. In general, soil biomass, DHA and respiration values increased in SS- and GC-amended soils compared to the unamended one. DHA values decreased (S and S+SS) or increased (S+GC) with the incubation time of soil with herbicide at the different doses applied. Respiration values increased with the herbicide doses applied and decreased with the incubation time, although maximum values were obtained for soils treated with the highest dose after 70 days of incubation. PLFA analysis indicated different effects of triasulfuron on the soil microbial community structure depending on the organic amendments. While the increasing triasulfuron doses resulted in deeper alterations in the S soil, the time after triasulfuron application was the most important variation in the S+SS and S+GC soils. The overall results indicate that the soil amendment has an effect on herbicide dissipation rate and the soil microbial community. Initially, a high dose of triasulfuron had detrimental effects on the soil microbial community

  14. SUPERFUND TREATABILITY CLEARINGHOUSE: LABORATORY FEASIBILITY TESTING OF PROTOTYPE SOIL WASHING CONCEPTS

    EPA Science Inventory

    This draft document reports on laboratory testing of several washing solutions to decontaminate soils contaminated vith dioxins. The following extractants were evaluated; surfactant mixtures of 0.5% to 3% Adsee 799 and 0.5* to 3% Hyonic NP90 in distilled water, Freon TF with ...

  15. Dynamics of Gross Methane Production and Oxidation in a Peatland Soil

    NASA Astrophysics Data System (ADS)

    McNicol, G.; Yang, W. H.; Teh, Y.; Silver, W. L.

    2012-12-01

    Globally, peatlands are major sources of the potent greenhouse gas methane (CH4) that is implicated in 20% of the post-industrial increase in radiative forcing. Many temperate peatlands have been drained for alternative land-use and are characterized by a layer of unsaturated soil overlying the remnant organic histosol. Drained soil layers may attenuate surface CH4 emissions from deeper, flooded peat layers via microbial CH4 consumption. We measured gross rates of CH4 production and oxidation seasonally across a range of topographic landforms in a partially drained peatland on Sherman Island, California. Net CH4 fluxes across the soil-atmosphere interface ranged from -7.4 to 1096 mg-C m-2 d-1 across all landforms. Fluxes were highest in May and in irrigation ditches (date, p < 0.001; landform, p < 0.001; n = 55). Gross CH4 production rates ranged from 0-1461 mg-C m-2 d-1 and oxidation rates ranged from 0-40 mg-C m-2 d-1. Excluding the irrigation ditches, gross fluxes did not vary seasonally. Gross CH4 fluxes were significantly higher in the hollow/hummock than in the slope. We subsequently selected the hollow/hummock based upon the observation of a strong redox gradient with depth and characterized gross fluxes of CH4 both in the field and in laboratory incubations of four soil depth increments (0-10 cm, 10-30 cm, 30-60 cm, 60-80 cm). The laboratory incubation consisted of 3 separate gross flux experiments: the first using fresh soil under ambient headspace, the second after incubation in an N2 headspace, and the third after incubation in an ambient headspace. Gross CH4 fluxes in the field varied from a slight sink (-0.11 mg-C m-2 d-1) to a large source (23.9 mg-C m-2 d-1). In 3 plots net fluxes were reduced by competing CH4 oxidation. In the depth profile experiment, production and consumption were observed in the fresh soil, but without a clear depth trend. In contrast, we found that consumption rates increased with depth following the aerobic incubation and

  16. Release of cadmium in contaminated paddy soil amended with NPK fertilizer and lime under water management.

    PubMed

    Han, Xiao-Qing; Xiao, Xi-Yuan; Guo, Zhao-Hui; Xie, Ye-Hua; Zhu, Hui-Wen; Peng, Chi; Liang, Yu-Qin

    2018-05-03

    Agricultural soils contaminated with cadmium (Cd) pose a risk to receiving surface water via drainage or runoff. A 90-day laboratory incubation experiment was conducted to investigate the release characteristics and transformation of Cd from contaminated paddy soil amended with agrochemical (NPK fertilizer) and lime (L) under water management regimes of continuous flooding (F) and drying-wetting cycles (DW). The result showed that the dissolved Cd concentrations in overlying water of the fertilizer treatment under flooding (NPK+F) and drying-wetting (NPK+DW) reached up to 81.0 μg/L and 276 μg/L, and were much higher than that from the corresponding controls without NPK fertilizer addition at the end of experiment. The Cd concentration showed significantly negative correlation with overlying water pH, but positive correlation with soil redox potential and concentrations of dissolved total nitrogen, sulfate and manganese in overlying water (P < 0.05), indicating that drying-wetting cycles and N fertilizer addition may enhance soil Cd release. The Cd concentrations in overlying water from all treatments except NPK+L+F treatment exceeded the Cd threshold limit of Chinese Environmental Quality Standards for Surface Water (10 μg/L Grade V) and poses potential risk to surface water quality. Meanwhile, the proportion of Cd in the acid-soluble fraction from all incubated soil except NPK+L+F treatment increased compared to before incubation. The results indicated that continuous flooding was a reasonable water management candidate coupled with lime addition for immobilizing soil Cd. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Laboratory Jet Erosion Tests on the Lower American River Soil Samples, Sacramento, CA- Phase 2

    DTIC Science & Technology

    2017-05-01

    ER D C/ G SL T R- 17 -8 Laboratory Jet Erosion Tests on the Lower American River Soil Samples, Sacramento, CA – Phase 2 G eo te ch ni...Jet Erosion Tests on the Lower American River Soil Samples, Sacramento, CA – Phase 2 Johannes L. Wibowo and Bryant A. Robbins Geotechnical and...Appendix B: Soil Mechanics Data ........................................................................................................... 71

  18. Developing Rural Business Incubators.

    ERIC Educational Resources Information Center

    Weinberg, Mark L.; Burnier, DeLysa

    1991-01-01

    Offers background on rural entrepreneurship and incubation in the United States, with particular focus on rural incubators at community colleges and regional incubation systems. Explains how incubators, which provide shared services and business/management assistance for tenant companies, differ from other entrepreneurial development strategies.…

  19. Carbon Isotope Fractionation Effects During Degradation of Methyl Halides in Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Miller, L. G.; Baesman, S. M.; Oremland, R. S.; Bill, M.; Goldstein, A. H.

    2001-12-01

    Fumigation of agricultural soils prior to planting row crops constitutes the largest anthropogenic source of methyl bromide (MeBr) to the atmosphere. Typically, more than 60% of the MeBr added is lost to the atmosphere during the 5-6 day fumigation period. The remainder is oxidized by bacteria or otherwise degraded in the soil. In experiments using washed cells of methylotrophic bacteria isolated from agricultural soil (strain IMB-1), oxidation of MeBr, methyl chloride (MeCl) and methyl iodide to CO2 resulted in large (up to 70‰ ) fractionation of stable carbon isotopes (Miller, et al. 2001). By contrast, fractionation measured in field soils using both in situ techniques and bottle incubations with MeBr was less than 35‰ . This discrepancy was initially attributed to the large transportation losses that occur without isotopic fractionation during field fumigation. However, this rationale cannot explain why bottle incubations with soil resulted in lower fractionation factors than incubations with bacterial cultures. We conducted additional laboratory bottle experiments to examine the biological and chemical controls of carbon isotope fractionation during degradation of MeBr and MeCl by soils and bacteria. Soils were collected from a strawberry field in Santa Cruz County, California within two weeks of the start of each experiment. The rate of removal of methyl halides from the headspace was greatest during incubations at soil moisture contents around 8%. Increasing the amount of soil and hence native bacteria in each bottle minimized the lag in uptake by up to several days. No lag was observed during incubations of soils with added IMB-1. Stable isotope fractionation factors were similar for degradation by live soil and live soil with added IMB-1. Heat-killed controls of cell cultures showed little uptake (<10% over 5 days) and no isotope fractionation. Heat-killed soil controls, by contrast, demonstrated significant loss of MeBr (20-30%) with isotope

  20. Post fire organic matter biodegradation in permafrost soils: Case study after experimental heating of mineral horizons.

    PubMed

    Masyagina, O V; Tokareva, I V; Prokushkin, A S

    2016-12-15

    Periodical ground fires of high frequency in permafrost forest ecosystems of Siberia (Russian Federation) are essential factors determining quantitative and qualitative parameters of permafrost soil organic matter. Specific changes in physical and chemical parameters and microbial activity of permafrost soil mineral horizons of northern taiga larch stands were revealed after heating at high temperatures (150-500°C) used for imitation of different burn intensities. Burning at 150-200°C resulted in decreasing of soil pH, whilst heating at 300-500°C caused increase of pH compare to unheated soils. Water-soluble organic carbon concentration in permafrost soils heated at 150-200°C was much higher than that of unheated soils. All these changes determined soil microbial activity in heated soils. In particular, in soils heated at 300-500°C there was momentary stimulating effect on substrate-induced respiration registered and on basal respiration values in soils burned at 150°C and 300-400°C. Four-month laboratory incubation of permafrost soils heated at different temperatures showed stimulation of microbial activity in first several days after inoculation due to high substrate availability after heating. Then soon after that soil microbial community started to be depleted on substrate because of decreasing water-soluble organic carbon, C and N content and it continued to the end of incubation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A Study of Business Incubators: Models, Best Practices, and Recommendations for NASA and Florida

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This study was conducted to provide NASA-Kennedy Space Center with information and recommendations to support establishing one or more technology-based business incubators In Florida. The study involved assembling information about incubators: why they succeed, why they fail, how they are organized, and what services they provide. Consequently, this study focuses on widely-recognized "best practices," needed to establish successful technology- based business incubators. The findings are used to optimize the design and implementation of one or more technology-based business incubators to be established in Florida. Recommendations reflect both the essential characteristics of successful incubators and the optimal business demographics in Florida. Appendix A provides a fuller description of the objectives of the study. Technology-based business incubators are an increasing catalyst of new business development across the USi Incubators focus on providing entrepreneurs and small start-up firms with a wide array of support services necessary to bring forth new products and processes based on technologies developed in the nation's federal and private laboratories and universities. Appendix B provides extensive discussion of findings relative to technology- based business incubators.

  2. Notes: Water Flow and Chemical Retardation in Soils: A Simple Effective Laboratory Demonstration.

    ERIC Educational Resources Information Center

    Bowman, R. S.; And Others

    1988-01-01

    Describes a laboratory demonstration that illustrates principles of miscible displacement and chemical retardation in soils. Discusses how the experimental apparatus can be constructed from readily available materials. (TW)

  3. Simulating the volatilization of solvents in unsaturated soils during laboratory and field infiltration experiments

    USGS Publications Warehouse

    Cho, H. Jean; Jaffe, Peter R.; Smith, James A.

    1993-01-01

    This paper describes laboratory and field experiments which were conducted to study the dynamics of trichloroethylene (TCE) as it volatilized from contaminated groundwater and diffused in the presence of infiltrating water through the unsaturated soil zone to the land surface. The field experiments were conducted at the Picatinny Arsenal, which is part of the United States Geological Survey Toxic Substances Hydrology Program. In both laboratory and field settings the gas and water phase concentrations of TCE were not in equilibrium during infiltration. Gas-water mass transfer rate constants were calibrated to the experimental data using a model in which the water phase was treated as two phases: a mobile water phase and an immobile water phase. The mass transfer limitations of a volatile organic compound between the gas and liquid phases were described explicitly in the model. In the laboratory experiment the porous medium was nonsorbing, and water infiltration rates ranged from 0.076 to 0.28 cm h−1. In the field experiment the water infiltration rate was 0.34 cm h−1, and sorption onto the soil matrix was significant. The laboratory-calibrated gas-water mass transfer rate constant is 3.3×10−4 h−1 for an infiltration rate of 0.076 cm h−1 and 1.4×10−3 h−1 for an infiltration rate of 0.28 cm h−1. The overall mass transfer rate coefficients, incorporating the contribution of mass transfer between mobile and immobile water phases and the variation of interfacial area with moisture content, range from 3×10−4 h−1 to 1×10−2 h−1. A power law model relates the gas-water mass transfer rate constant to the infiltration rate and the fraction of the water phase which is mobile. It was found that the results from the laboratory experiments could not be extrapolated to the field. In order to simulate the field experiment the very slow desorption of TCE from the soil matrix was incorporated into the mathematical model. When desorption from the

  4. Changes of lead speciation and microbial toxicity in soil treated with repeated Pb exposure in the presence of BDE209.

    PubMed

    Zhang, Rong; Zhang, Wei; Liu, Gao; Lin, Kuangfei; Fu, Rongbing

    2016-03-01

    Lead (Pb) and decabromodiphenyl ether (BDE209) are main pollutants at electric waste (e-waste) recycling sites (EWRSs), and their joint toxicological effects have received extensive attention. Frequently, soil pollution at EWRSs usually results from the occurrence of repeated single or multiple pollution events, with continuous impacts on soil microorganisms. Therefore, a laboratory incubation study was conducted to determine Pb bioavailability and microbial toxicity in repeated Pb-polluted soil in the presence of BDE209 for the first time. We evaluated the impacts of repetitive exposure trials on chemical fractions of Pb, and the results showed that repeated single Pb pollution event resulted in an increase of carbonates fraction of Pb, which was different from one-off single Pb exposure. Moreover, one-off Pb-treated groups exhibited higher I R (reduced partition index) values on day 30 and all treatments remained the same I R level at the end of incubation period. The parameters of microbial toxicity were well reflected by soil enzymes. During the entire incubation, the dehydrogenase and urease activities were significantly inhibited by Pb (P < 0.01), and BDE209 supply could weaken the adverse influence. Additionally, significant correlations between available or metastable Pb and the two soil enzymes were clearly observed (P < 0.05 or 0.01). Such observations would provide useful information for ecological effects of Pb and BDE209 at EWRSs.

  5. Sources of nitric oxide and nitrous oxide following wetting of dry soil

    NASA Technical Reports Server (NTRS)

    Davidson, Eric A.

    1992-01-01

    A study is presented which is aimed at distinguishing among autotrophic nitrification, denitrification, and abiological processes as sources of NO and N2O production following wetting of dry soil. To distinguish among these processes, combinations of treatments in laboratory incubations of soil were used which included varying soil water content, autoclaving, C2H2 inhibition, and NO2(-) addition. Biological sources of NO and N2O commenced within minutes of wetting dry soil. Acetylene inhibition revealed that emissions of NO were dependent on nitrification, although a combination of NO2(-) production by nitrifiers and abiological reduction of NO2(-) to NO is also possible. NO emissions exceeded N2O emissions, and nitrification was the dominant source of both gases when soil water was below field capacity. It is concluded that NO emissions appear to be more important when good soil aeration favors nitrification, whereas N2O emissions appear more important when elevated soil water favors denitrification.

  6. Forced Incubation.

    ERIC Educational Resources Information Center

    Wells, Donald H.

    1996-01-01

    A survey of 98 college professors regarding their creative writing habits and productivity found that creative productivity was significantly correlated with the use of forced incubation (deliberate time delay to allow naturally unenhanced incubation of ideas to occur). Professors who intentionally set aside manuscripts for a period of time to…

  7. Anoxia-induced release of colloid- and nanoparticle-bound phosphorus in grassland soils.

    PubMed

    Henderson, R; Kabengi, N; Mantripragada, N; Cabrera, M; Hassan, S; Thompson, A

    2012-11-06

    Particle-facilitated transport is a key mechanism of phosphorus (P) loss in agroecosystems. We assessed contributions of colloid- and nanoparticle-bound P (nPP; 1-415 nm) to total P released from grassland soils receiving biannual poultry litter applications since 1995. In laboratory incubations, soils were subjected to 7 days of anoxic conditions or equilibrated at pH 6 and 8 under oxic conditions and then the extract was size fractionated by differential centrifugation/ultrafiltration for analysis of P, Al, Fe, Si, Ti, and Ca. Selected samples were characterized by transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS) and field flow fractionation (FFF-ICP-MS). Particles released were present as nanoaggregates with a mean diameter of 200-250 nm, composed of ~50-nm aluminosilicate flakes studded with Fe and Ti-rich clusters (<10 nm) that contained most of the P detected by EDS. Anoxic incubation of stimulated nPP release with seasonally saturated soils released more nPP and Fe(2+)(aq) than well-drained soils; whereas, nonreductive particle dispersion, accomplished by raising the pH, yielded no increase in nPP release. This suggests Fe acts as a cementing agent, binding to the bulk soil P-bearing colloids that can be released during reducing conditions. Furthermore, it suggests prior periodic exposure to anoxic conditions increases susceptibility to redox-induced P mobilization.

  8. Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond-Lamberty, Ben; Smith, A. Peyton; Bailey, Vanessa L.

    Rapid climatic changes, rising air temperatures, and increased fires are expected to drive permafrost degradation and alter soil carbon (C) cycling in many high-latitude ecosystems. How these soils will respond to changes in their temperature, moisture, and overlying vegetation is uncertain but critical to understand given the large soil C stocks in these regions. We used a laboratory experiment to examine how temperature and moisture control CO 2 and CH 4 emissions from mineral soils sampled from the bottom of the annual active layer, i.e., directly above permafrost, in an Alaskan boreal forest. Gas emissions from 30 cores, subjected tomore » two temperatures and either field moisture conditions or experimental drought, were tracked over a 100-day incubation; we also measured a variety of physical and chemical characteristics of the cores. Gravimetric water content was 0.31 ± 0.12 (unitless) at the beginning of the incubation; cores at field moisture were unchanged at the end, but drought cores had declined to 0.06 ± 0.04. Daily CO 2 fluxes were positively correlated with incubation chamber temperature, core water content, and percent soil nitrogen. They also had a temperature sensitivity ( Q 10) of 1.3 and 1.9 for the field moisture and drought treatments, respectively. Daily CH 4 emissions were most strongly correlated with percent nitrogen, but neither temperature nor water content was a significant first-order predictor of CH 4 fluxes. The cumulative production of C from CO 2 was over 6 orders of magnitude higher than that from CH 4; cumulative CO 2 was correlated with incubation temperature and moisture treatment, with drought cores producing 52–73 % lower C. Cumulative CH 4 production was unaffected by any treatment. These results suggest that deep active-layer soils may be sensitive to changes in soil moisture under aerobic conditions, a critical factor as discontinuous permafrost thaws in interior Alaska. Furthermore, deep but unfrozen high

  9. Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils

    DOE PAGES

    Bond-Lamberty, Ben; Smith, A. Peyton; Bailey, Vanessa L.

    2016-12-21

    Rapid climatic changes, rising air temperatures, and increased fires are expected to drive permafrost degradation and alter soil carbon (C) cycling in many high-latitude ecosystems. How these soils will respond to changes in their temperature, moisture, and overlying vegetation is uncertain but critical to understand given the large soil C stocks in these regions. We used a laboratory experiment to examine how temperature and moisture control CO 2 and CH 4 emissions from mineral soils sampled from the bottom of the annual active layer, i.e., directly above permafrost, in an Alaskan boreal forest. Gas emissions from 30 cores, subjected tomore » two temperatures and either field moisture conditions or experimental drought, were tracked over a 100-day incubation; we also measured a variety of physical and chemical characteristics of the cores. Gravimetric water content was 0.31 ± 0.12 (unitless) at the beginning of the incubation; cores at field moisture were unchanged at the end, but drought cores had declined to 0.06 ± 0.04. Daily CO 2 fluxes were positively correlated with incubation chamber temperature, core water content, and percent soil nitrogen. They also had a temperature sensitivity ( Q 10) of 1.3 and 1.9 for the field moisture and drought treatments, respectively. Daily CH 4 emissions were most strongly correlated with percent nitrogen, but neither temperature nor water content was a significant first-order predictor of CH 4 fluxes. The cumulative production of C from CO 2 was over 6 orders of magnitude higher than that from CH 4; cumulative CO 2 was correlated with incubation temperature and moisture treatment, with drought cores producing 52–73 % lower C. Cumulative CH 4 production was unaffected by any treatment. These results suggest that deep active-layer soils may be sensitive to changes in soil moisture under aerobic conditions, a critical factor as discontinuous permafrost thaws in interior Alaska. Furthermore, deep but unfrozen high

  10. Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, Ben; Smith, A. Peyton; Bailey, Vanessa

    2016-12-01

    Rapid climatic changes, rising air temperatures, and increased fires are expected to drive permafrost degradation and alter soil carbon (C) cycling in many high-latitude ecosystems. How these soils will respond to changes in their temperature, moisture, and overlying vegetation is uncertain but critical to understand given the large soil C stocks in these regions. We used a laboratory experiment to examine how temperature and moisture control CO2 and CH4 emissions from mineral soils sampled from the bottom of the annual active layer, i.e., directly above permafrost, in an Alaskan boreal forest. Gas emissions from 30 cores, subjected to two temperatures and either field moisture conditions or experimental drought, were tracked over a 100-day incubation; we also measured a variety of physical and chemical characteristics of the cores. Gravimetric water content was 0.31 ± 0.12 (unitless) at the beginning of the incubation; cores at field moisture were unchanged at the end, but drought cores had declined to 0.06 ± 0.04. Daily CO2 fluxes were positively correlated with incubation chamber temperature, core water content, and percent soil nitrogen. They also had a temperature sensitivity (Q10) of 1.3 and 1.9 for the field moisture and drought treatments, respectively. Daily CH4 emissions were most strongly correlated with percent nitrogen, but neither temperature nor water content was a significant first-order predictor of CH4 fluxes. The cumulative production of C from CO2 was over 6 orders of magnitude higher than that from CH4; cumulative CO2 was correlated with incubation temperature and moisture treatment, with drought cores producing 52-73 % lower C. Cumulative CH4 production was unaffected by any treatment. These results suggest that deep active-layer soils may be sensitive to changes in soil moisture under aerobic conditions, a critical factor as discontinuous permafrost thaws in interior Alaska. Deep but unfrozen high-latitude soils have been shown to be

  11. A Comparison of Corn (Zea mays L.) Residue and Its Biochar on Soil C and Plant Growth

    PubMed Central

    Calderón, Francisco J.; Benjamin, Joseph; Vigil, Merle F.

    2015-01-01

    In order to properly determine the value of charring crop residues, the C use efficiency and effects on crop performance of biochar needs to be compared to the un-charred crop residues. In this study we compared the addition of corn stalks to soil, with equivalent additions of charred (300 °C and 500 °C) corn residues. Two experiments were conducted: a long term laboratory mineralization, and a growth chamber trial with proso millet plants. In the laboratory, we measured soil mineral N dynamics, C use efficiency, and soil organic matter (SOM) chemical changes via infrared spectroscopy. The 300 °C biochar decreased plant biomass relative to a nothing added control. The 500°C biochar had little to no effect on plant biomass. With incubation we measured lower soil NO3 content in the corn stalk treatment than in the biochar-amended soils, suggesting that the millet growth reduction in the stalk treatment was mainly driven by N limitation, whereas other factors contributed to the biomass yield reductions in the biochar treatments. Corn stalks had a C sequestration use efficiency of up to 0.26, but charring enhanced C sequestration to values that ranged from 0.64 to 1.0. Infrared spectroscopy of the soils as they mineralized showed that absorbance at 3400, 2925-2850, 1737 cm-1, and 1656 cm-1 decreased during the incubation and can be regarded as labile SOM, corn residue, or biochar bands. Absorbances near 1600, 1500-1420, and 1345 cm-1 represented the more refractory SOM moieties. Our results show that adding crop residue biochar to soil is a sound C sequestration technology compared to letting the crop residues decompose in the field. This is because the resistance to decomposition of the chars after soil amendment offsets any C losses during charring of the crop residues. PMID:25836653

  12. A comparison of corn (Zea mays L.) residue and its biochar on soil C and plant growth.

    PubMed

    Calderón, Francisco J; Benjamin, Joseph; Vigil, Merle F

    2015-01-01

    In order to properly determine the value of charring crop residues, the C use efficiency and effects on crop performance of biochar needs to be compared to the un-charred crop residues. In this study we compared the addition of corn stalks to soil, with equivalent additions of charred (300 °C and 500 °C) corn residues. Two experiments were conducted: a long term laboratory mineralization, and a growth chamber trial with proso millet plants. In the laboratory, we measured soil mineral N dynamics, C use efficiency, and soil organic matter (SOM) chemical changes via infrared spectroscopy. The 300 °C biochar decreased plant biomass relative to a nothing added control. The 500°C biochar had little to no effect on plant biomass. With incubation we measured lower soil NO3 content in the corn stalk treatment than in the biochar-amended soils, suggesting that the millet growth reduction in the stalk treatment was mainly driven by N limitation, whereas other factors contributed to the biomass yield reductions in the biochar treatments. Corn stalks had a C sequestration use efficiency of up to 0.26, but charring enhanced C sequestration to values that ranged from 0.64 to 1.0. Infrared spectroscopy of the soils as they mineralized showed that absorbance at 3400, 2925-2850, 1737 cm-1, and 1656 cm-1 decreased during the incubation and can be regarded as labile SOM, corn residue, or biochar bands. Absorbances near 1600, 1500-1420, and 1345 cm-1 represented the more refractory SOM moieties. Our results show that adding crop residue biochar to soil is a sound C sequestration technology compared to letting the crop residues decompose in the field. This is because the resistance to decomposition of the chars after soil amendment offsets any C losses during charring of the crop residues.

  13. Pressure-Water Content Relations for a Sandy, Granitic Soil Under Field and Laboratory Conditions

    NASA Astrophysics Data System (ADS)

    Chandler, D. G.; McNamara, J. M.; Gribb, M. M.

    2001-12-01

    A new sensor was developed to measure soil water potential in order to determine the predominant mechanisms of snowmelt delivery to streamflow. The sensors were calibrated for +50 to -300 cm for application on steep granitic slopes and deployed at three depths and 2 locations on a slope in a headwater catchment of the Idaho Batholith throughout the 2001 snowmelt season. Soil moisture was measured simultaneously with Water Content Reflectometers (Cambell Scientific, Logan, UT), that were calibrated in situ with Time Domain Reflectometry measurements. Sensor performance was evaluated in a laboratory soil column via side-by-side monitoring during injection of water with a cone permeameter. Soil characteristic curves were also determined for the field site by multi-step outflow tests. Comparison of the results from the field study to those from the laboratory experiment and to the characteristic curves demonstrate the utility of the new sensor for recording dynamic changes in soil water status. During snowmelt, the sensor responded to both matric potential and bypass-flow pore potential. Large shifts in the pressure record that correspond to changes in the infiltration flux indicate initiation and cessation of macropore flow. The pore pressure records may be used to document the frequency, timing and duration of bypass flow that are not apparent from the soil moisture records.

  14. Laboratory investigations of the effects of nitrification-induced acidification on Cr cycling in vadose zone material partially derived from ultramafic rocks

    USGS Publications Warehouse

    Mills, Christopher T.; Goldhaber, Martin B.

    2012-01-01

    Sacramento Valley (California, USA) soils and sediments have high concentrations of Cr(III) because they are partially derived from ultramafic material. Some Cr(III) is oxidized to more toxic and mobile Cr(VI) by soil Mn oxides. Valley soils typically have neutral to alkaline pH at which Cr(III) is highly immobile. Much of the valley is under cultivation and is both fertilized and irrigated. A series of laboratory incubation experiments were conducted to assess how cultivation might impact Cr cycling in shallow vadose zone material from the valley. The first experiments employed low (7.1 mmol N per kg soil) and high (35 mmol N kg− 1) concentrations of applied (NH4)2SO4. Initially, Cr(VI) concentrations were up to 45 and 60% greater than controls in low and high incubations, respectively. After microbially-mediated oxidation of all NH4+, Cr(VI) concentrations dropped below control values. Increased nitrifying bacterial populations (estimated by measurement of phospholipid fatty acids) may have increased the Cr(VI) reduction capacity of the vadose zone material resulting in the observed decreases in Cr(VI). Another series of incubations employed vadose zone material from a different location to which low (45 meq kg− 1) and high (128 meq kg− 1) amounts of NH4Cl, KCl, and CaCl2 were applied. All treatments, except high concentration KCl, resulted in mean soil Cr(VI) concentrations that were greater than the control. High concentrations of water-leachable Ba2 + (mean 38 μmol kg− 1) in this treatment may have limited Cr(VI) solubility. A final set of incubations were amended with low (7.1 mmol N kg− 1) and high (35 mmol N kg− 1) concentrations of commercial liquid ammonium polyphosphate (APP) fertilizer which contained high concentrations of Cr(III). Soil Cr(VI) in the low APP incubations increased to a concentration of 1.8 μmol kg− 1 (5 × control) over 109 days suggesting that Cr(III) added with the APP fertilizer was more

  15. Testing the application of Teflon/quartz soil solution samplers for DOM sampling in the Critical Zone: Field and laboratory approaches

    NASA Astrophysics Data System (ADS)

    Dolan, E. M.; Perdrial, J. N.; Vazquez, A.; Hernández, S.; Chorover, J.

    2010-12-01

    Elizabeth Dolan1,2, Julia Perdrial3, Angélica Vázquez-Ortega3, Selene Hernández-Ruiz3, Jon Chorover3 1Deptartment of Soil, Environmental, and Atmospheric Science, University of Missouri. 2Biosphere 2, University of Arizona. 3Deptartment of Soil, Water, and Environmental Science, University of Arizona. Abstract: The behavior of dissolved organic matter (DOM) in soil is important to many biogeochemical processes. Extraction methods to obtain DOM from the unsaturated zone remain a current focus of research as different methods can influence the type and concentration of DOM obtained. Thus, the present comparison study involves three methods for soil solution sampling to assess their impact on DOM quantity and quality: 1) aqueous soil extracts, 2) solution yielded from laboratory installed suction cup samplers and 3) solutions from field installed suction cup samplers. All samples were analyzed for dissolved organic carbon and total nitrogen concentrations. Moreover, DOM quality was analyzed using fluorescence, UV-Vis and FTIR spectroscopies. Results indicate higher DOC values for laboratory extracted DOM: 20 mg/L for aqueous soil extracts and 31 mg/L for lab installed samplers compared to 12 mg/L for field installed samplers. Large variations in C/N ratios were also observed ranging from 1.5 in laboratory extracted DOM to 11 in field samples. Fluorescence excitation-emission matrices of DOM solutions obtained for the laboratory extraction methods showed higher intensities in regions typical for fulvic and humic acid-like materials relative to those extracted in the field. Similarly, the molar absorptivity calculated from DOC concentration normalization of UV-Vis absorbance of the laboratory-derived solutions was significantly higher as well, indicating greater aromaticity. The observed differences can be attributed to soil disturbance associated with obtaining laboratory derived solution samples. Our results indicate that laboratory extraction methods are not

  16. Sequestration of maize crop straw C in different soils: role of oxyhydrates in chemical binding and stabilization as recalcitrance.

    PubMed

    Song, Xiangyun; Li, Lianqing; Zheng, Jufeng; Pan, Genxing; Zhang, Xuhui; Zheng, Jinwei; Hussain, Qaiser; Han, Xiaojun; Yu, Xinyan

    2012-05-01

    While biophysical controls on the sequestration capacity of soils have been well addressed with physical protection, chemical binding and stabilization processes as well as microbial community changes, the role of chemical binding and stabilization has not yet well characterized for soil organic carbon (SOC) sequestration in rice paddies. In this study, a 6-month laboratory incubation with and without maize straw amendment (MSA) was conducted using topsoil samples from soils with different clay mineralogy and free oxy-hydrate contents collected across Southern China. The increase in SOC under MSA was found coincident with that in Fe- and Al-bound OC (Fe/Al-OC) after incubation for 30 d (R(2)=0.90, P=0.05), and with sodium dithionate-citrate-bicarbonate (DCB) extractable Fe after incubation for 180 d (R(2)=0.99, P<0.01). The increase in SOC under MSA was found higher in soils rich in DCB extractable Fe than those poor in DCB extractable Fe. The greater SOC sequestration in soils rich in DCB extractable Fe was further supported by the higher abundance of (13)C which was a natural signature of MSA. Moreover, a weak positive correlation of the increased SOC under MSA with the increased humin (R(2)=0.87, P=0.06) observed after incubation for 180 d may indicate a chemical stabilization of sequestered SOC as humin in the long run. These results improved our understanding of SOC sequestration in China's rice paddies that involves an initial chemical binding of amended C and a final stabilization as recalcitrant C of humin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. View of the Life Sciences Laboratory Equipment (LSLE) Incubator - Lymphocite Proliferation

    NASA Image and Video Library

    1984-10-18

    S84-43683 (26 Nov 1984) --- This vertically positioned rectangular piece of hardware, scheduled to fly on the science module of Spacelab Life Sciences-1, is important to the immunology investigation on the mission. Called Lymphocyte Proliferation in Weightlessness (Experiment 240), the test was developed by Dr. Augosto Cogoli of the Institute of Biotechnology, Gruppe Weltraum Biologie, in Zurich, Switzerland. It represents a continuation of previous Spacelab experiments by examining the effects of weightlessness on lymphocyte activation. Cultures will be grown in the microgravity incubators on the pictured hardware.

  18. Comparison of the Physical and Chemical Properties of Laboratory and Field-Aged Biochars.

    PubMed

    Bakshi, Santanu; Aller, Deborah M; Laird, David A; Chintala, Rajesh

    2016-09-01

    The long-term impact of biochar on soil properties and agronomic outcomes is influenced by changes in the physical and chemical properties of biochars that occur with time (aging) in soil environments. Fresh biochars, however, are often used in studies because aged biochars are generally unavailable. Therefore, a need exists to develop a method for rapid aging of biochars in the laboratory. The objectives of this study were to compare the physicochemical properties of fresh, laboratory-aged (LA), and field-aged (FA) (≥3 yr) biochars and to assess the appropriateness of a laboratory aging procedure that combines acidification, oxidation, and incubations as a mimic to field aging in neutral or acidic soil environments. Twenty-two biochars produced by fast and slow pyrolysis, and gasification techniques from five different biomass feedstocks (hardwood, corn stover, soybean stover, macadamia nut shells, and switchgrass) were studied. In general, both laboratory and field aging caused similar increases in ash-free volatile matter (% w/w), cation and anion exchange capacities, specific surface area, and modifications in oxygen-containing surface functional groups of the biochars. However, ash content increased for FA (18-195%) and decreased for LA (22-74%) biochars, and pH decreased to a greater extent for LA (2.8-6.7 units) than for FA (1.6-3.8 units) biochars. The results demonstrate that the proposed laboratory aging procedure is effective for predicting the direction of changes in biochar properties on field aging. However, in the future we recommend using a less aggressive acid treatment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Distinct temperature sensitivity of soil carbon decomposition in forest organic layer and mineral soil

    PubMed Central

    Xu, Wenhua; Li, Wei; Jiang, Ping; Wang, Hui; Bai, Edith

    2014-01-01

    The roles of substrate availability and quality in determining temperature sensitivity (Q10) of soil carbon (C) decomposition are still unclear, which limits our ability to predict how soil C storage and cycling would respond to climate change. Here we determined Q10 in surface organic layer and subsurface mineral soil along an elevation gradient in a temperate forest ecosystem. Q10 was calculated by comparing the times required to respire a given amount of soil C at 15 and 25°C in a 350-day incubation. Results indicated that Q10 of the organic layer was 0.22–0.71 (absolute difference) higher than Q10 of the mineral soil. Q10 in both the organic layer (2.5–3.4) and the mineral soil (2.1–2.8) increased with decreasing substrate quality during the incubation. This enhancement of Q10 over incubation time in both layers suggested that Q10 of more labile C was lower than that of more recalcitrant C, consistent with the Arrhenius kinetics. No clear trend of Q10 was found along the elevation gradient. Because the soil organic C pool of the organic layer in temperate forests is large, its higher temperature sensitivity highlights its importance in C cycling under global warming. PMID:25270905

  20. Carbon Mineralization and Nitrogen Transformation During a Long Term Permafrost Incubation

    NASA Astrophysics Data System (ADS)

    Salmon, V. G.; Mack, M. C.; Schuur, E. A. G.

    2014-12-01

    As the limiting nutrient in warming high latitude ecosystems, nitrogen (N) is expected to play a key role in determining the future balance between permafrost carbon (C) losses and increased C sequestration by plants. During decomposition, nitrogen previously locked in soil organic matter is released into the soil solution in the form of dissolved organic molecules following depolymerization by extracellular enzymes. These dissolved organic forms of N can be consumed by the soil microbial community and incorporated in their biomass or mineralized if they are in excess of microbial demand. Once mineralized and released into the soil solutions, N can be lost from the soil system via denitrification. In well drained, low N tussock tundra, however, this pathway is unlikely. Dissolved inorganic N (DIN) and dissolved organic N (DON) are both biologically available to arctic plants. Understanding how the size of these pools changes with depth and continuing decomposition is therefore crucial to projecting the C balance of high latitude systems in a warmer future. N transformations associated with decomposition may differ greatly in surface soils, where a large labile C pool is present and soil has a high C:N ratio, versus deep soils that have a relatively small labile C pool and a lower C:N ratio. In this experiment, the relationship between N availability and C release from permafrost soils was addressed with a 225 day soil incubation performed at 15°C. Seven soil cores were collected from undisturbed, well drained tussock tundra and were partitioned into ten centimeter depth intervals to a depth of 80 cm. Carbon dioxide (CO2) fluxes were measured throughout the incubation period and were used to assess cumulative carbon losses and determine the size of the labile C pool. Destructive harvests at days 16,34,55,83, 143 and 225 were performed and pools of plant available DON and DIN were measured using 2M KCl extractions. At day 225 the microbial biomass N pool was also

  1. Soil microbial activities beneath Stipa tenacissima L. and in surrounding bare soil

    NASA Astrophysics Data System (ADS)

    Novosadová, I.; Ruiz Sinoga, J. D.; Záhora, J.; Fišerová, H.

    2010-05-01

    Open steppes dominated by Stipa tenacissima L. constitute one of the most representative ecosystems of the semi-arid zones of Eastern Mediterranean Basin (Iberian Peninsula, North of Africa). These steppes show a higher degree of variability in composition and structure. Ecosystem functioning is strongly related to the spatial pattern of grass tussocks. Soils beneath S. tenacissima grass show higher fertility and improved microclimatic conditions, favouring the formation of "resource islands" (Maestre et al., 2007). On the other hand in "resource islands" and in surrounding bare soil exists the belowground zone of influence. The competition for water and resources between plants and microorganisms is strong and mediated trough an enormous variety of exudates and resource depletion intended to regulate soil microbial communities in the rhizosphere, control herbivory, encourage beneficial symbioses, and change chemical and physical properties in soil (Pugnaire et Armas, 2008). Secondary compounds and allelopathy restrict other species growth and contribute to patchy plant distribution. Active root segregation affects not only neighbourś growth but also soil microbial activities. The objective of this study was to assess the effect of Stipa tenacissima on the key soil microbial activities under controlled incubation conditions (basal and potential respiration; net nitrogen mineralization). The experimental plots were located in the province Almería in Sierra de los Filabres Mountains near the village Gérgal (southeast Spain) in the small catchment which is situated between 1090 - 1165 m a.s.l. The area with extent of 82 000 m2 is affected by soil degradation. The climate is semiarid Mediterranean. The mean annual rainfall is of about 240 mm mostly concentrated in autumn and spring. The mean annual temperature is 13.9° C. The studied soil has a loam to sandy clay texture and is classified as Lithosol (FAO-ISRIC and ISSS, 1998). The vegetation of these areas is an

  2. Removal of Two High Molecular Weight PAHs from Soils with Different Water Content.

    PubMed

    Corona, Lilia; Dendooven, Luc; Chicken, Anaí; Hernández, Omar; Iturbe, Rosario

    2017-11-01

    Polycyclic aromatic hydrocarbons (PAHs) such as benz[a]anthracene (BA) and dibenz[a,h]anthracene (DBA), which are considered toxic, are frequently found in contaminated soils in Mexico. A laboratory-scale study monitored the degradation of the mixture of these two PAHs in three soils from different Mexican states (Tabasco, Morelos and Veracruz), each with different organic matter content, particle size distribution and incubated under different water content conditions. The hydrocarbons were extracted using microwave digestion and quantified by GC/MS. The removal of the PAHs, the growth of aerobic bacteria and microbial activity were determined in soil samples with and without a bacterial growth inhibitor (HgCl 2 ). The conclusion is that more than 90% of both contaminants was removed from the three soils, independently of the soil water content or the application of a bacterial growth inhibitor. Biological properties of the soils showed changes at the end of the experiment, but the results of the removal of PAHs were similar in the three soils.

  3. Oxidation-Reduction Potential of Saturated Forest Soils

    Treesearch

    F. T. Bonner; C. W. Ralston

    1968-01-01

    Large decreases in redox potentials of saturated soil over a 25-day incubation period were favored by high temperature and the addition of sucrose, loblolly pine needles (Pinus taeda L. ), or yellow-poplar leaves (Liriodendron tulipifera L.). The addition of a complete nutrient solution had no effect in soils incubated with sucrose, but it reduced the drop in potential...

  4. Carbonyl sulfide produced by abiotic thermal and photodegradation of soil organic matter from wheat field substrate

    NASA Astrophysics Data System (ADS)

    Whelan, Mary E.; Rhew, Robert C.

    2015-01-01

    Carbonyl sulfide (COS) is a reduced sulfur gas that is taken up irreversibly in plant leaves proportionally with CO2, allowing its potential use as a tracer for gross primary production. Recently, wheat field soil at the Southern Great Plains Atmospheric Radiation Measurement site in Lamont, Oklahoma, was found to be a measureable source of COS to the atmosphere. To understand the mechanism of COS production, soil and root samples were collected from the site and incubated in the laboratory over a range of temperatures (15-34°C) and light conditions (light and dark). Samples exhibited mostly COS net uptake from the atmosphere in dark and cool (<22-25°C) trials. COS emission was observed during dark incubations at high temperatures (>25°C), consistent with field observations, and at a lower temperature (19°C) when a full spectrum lamp (max wavelength 600 nm) was applied. Sterilized soil and root samples yielded only COS production that increased with temperature, supporting the hypothesis that (a) COS production in these samples is abiotic, (b) production is directly influenced by temperature and light, and (c) some COS consumption in soil and root samples is biotic.

  5. Laboratory investigation of TerraZyme as a soil stabilizer

    NASA Astrophysics Data System (ADS)

    Yusoff, Siti Aimi Nadia Mohd; Azmi, Mastura; Ramli, Harris; Bakar, Ismail; Wijeyesekera, D. C.; Zainorabidin, Adnan

    2017-10-01

    In this study, a laboratory investigation was conducted to examine the performance of TerraZyme on different soil types. Laterite and kaolin were treated with 2% and 5% TerraZyme to determine changes in the soils' geotechnical properties. The obtained results were analysed and investigated in terms of compaction, Unconfined Compressive Strength (UCS) and California Bearing Ratio (CBR). The changes in geotechnical properties of the stabilised and unstabilised soils were monitored after curing periods of 0, 7, 15, 21 and 30 days. Changes in compaction properties, UCS and CBR were observed. It was found that laterite with 5% TerraZyme gave a higher maximum dry density (MDD) and decreased the optimum moisture content (OMC). For kaolin, a different TerraZyme percentage did not show any effect on both MDD and OMC. For strength properties, it was found that 2% TerraZyme showed the greatest change in UCS over a 30-day curing period. The CBR value of stabilised kaolin with 2% TerraZyme gave a higher CBR value than the kaolin treated with 5% TerraZyme. It was also found that laterite treated with TerraZyme gave a higher CBR value. Lastly, it can be concluded that TerraZyme is not suitable for stabilising kaolin; TerraZyme requires a cohesive soil to achieve a better performance.

  6. Vegetation and climate controls on potential CO2, DOC and DON production in northern latitude soils

    USGS Publications Warehouse

    Neff, J.C.; Hooper, D.U.

    2002-01-01

    Climatic change may influence decomposition dynamics in arctic and boreal ecosystems, affecting both atmospheric CO2 levels, and the flux of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) to aquatic systems. In this study, we investigated landscape-scale controls on potential production of these compounds using a one-year laboratory incubation at two temperatures (10?? and 30??C). We measured the release of CO2, DOC and DON from tundra soils collected from a variety of vegetation types and climatic regimes: tussock tundra at four sites along a latitudinal gradient from the interior to the north slope of Alaska, and soils from additional vegetation types at two of those sites (upland spruce at Fairbanks, and wet sedge and shrub tundra at Toolik Lake in northern Alaska). Vegetation type strongly influenced carbon fluxes. The highest CO2 and DOC release at the high incubation temperature occurred in the soils of shrub tundra communities. Tussock tundra soils exhibited the next highest DOC fluxes followed by spruce and wet sedge tundra soils, respectively. Of the fluxes, CO2 showed the greatest sensitivity to incubation temperatures and vegetation type, followed by DOC. DON fluxes were less variable. Total CO2 and total DOC release were positively correlated, with DOC fluxes approximately 10% of total CO2 fluxes. The ratio of CO2 production to DOC release varied significantly across vegetation types with Tussock soils producing an average of four times as much CO2 per unit DOC released compared to Spruce soils from the Fairbanks site. Sites in this study released 80-370 mg CO2-C g soil C-1 and 5-46 mg DOC g soil C-1 at high temperatures. The magnitude of these fluxes indicates that arctic carbon pools contain a large proportion of labile carbon that could be easily decomposed given optimal conditions. The size of this labile pool ranged between 9 and 41% of soil carbon on a g soil C basis, with most variation related to vegetation type rather than

  7. Soil transference patterns on bras: Image processing and laboratory dragging experiments.

    PubMed

    Murray, Kathleen R; Fitzpatrick, Robert W; Bottrill, Ralph S; Berry, Ron; Kobus, Hilton

    2016-01-01

    soil moisture content that would not have been possible otherwise. Soil type (e.g. Anthropogenic, gravelly sandy loam soil or Natural, organic-rich soil), clay mineralogy (smectite) and soil moisture content were the greatest influencing factors in all the dragging soil transference tests (both naked eye and measured properties) to explain the eight categories of soil transference patterns recorded. This study was intended to develop a method for dragging soil transference laboratory experiments and create a baseline of preliminary soil type/property knowledge. Results confirm the need to better understand soil behaviour and properties of clothing fabrics by further testing of a wider range of soil types and clay mineral properties. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Effect of soil moisture on the temperature sensitivity of Northern soils

    NASA Astrophysics Data System (ADS)

    Minions, C.; Natali, S.; Ludwig, S.; Risk, D.; Macintyre, C. M.

    2017-12-01

    Arctic and boreal ecosystems are vast reservoirs of carbon and are particularly sensitive to climate warming. Changes in the temperature and precipitation regimes of these regions could significantly alter soil respiration rates, impacting atmospheric concentrations and affecting climate change feedbacks. Many incubation studies have shown that both temperature and soil moisture are important environmental drivers of soil respiration; this relationship, however, has rarely been demonstrated with in situ data. Here we present the results of a study at six field sites in Alaska from 2016 to 2017. Low-power automated soil gas systems were used to measure soil surface CO2 flux from three forced diffusion chambers and soil profile concentrations from three soil depth chambers at hourly intervals at each site. HOBO Onset dataloggers were used to monitor soil moisture and temperature profiles. Temperature sensitivity (Q10) was determined at each site using inversion analysis applied over different time periods. With highly resolved data sets, we were able to observe the changes in soil respiration in response to changes in temperature and soil moisture. Through regression analysis we confirmed that temperature is the primary driver in soil respiration, but soil moisture becomes dominant beyond a certain threshold, suppressing CO2 flux in soils with high moisture content. This field study supports the conclusions made from previous soil incubation studies and provides valuable insights into the impact of both temperature and soil moisture changes on soil respiration.

  9. Multicenter Study on Incubation Conditions for Environmental Monitoring and Aseptic Process Simulation.

    PubMed

    Guinet, Roland; Berthoumieu, Nicole; Dutot, Philippe; Triquet, Julien; Ratajczak, Medhi; Thibaudon, Michel; Bechaud, Philippe; Arliaud, Christophe; Miclet, Edith; Giordano, Florine; Larcon, Marjorie; Arthaud, Catherine

    simulation confirm that pharmaceutical cleanrooms are in an appropriate hygienic condition for manufacturing of sterile drug products. Guidance documents from different health authorities or expert groups differ regarding recommendation of the applied incubation time and incubation temperature, leading to variable manufacturers practices. Some recent publications have demonstrated that laboratory studies are not relevant to determine the best incubation regime and that in situ manufacturing site studies should be used. To solve any possible bias coming from laboratory studies or single-site in situ studies, we conducted a multicenter study at four manufacturing sites with a significant amount of real environmental monitoring samples collected directly from the environment in pharmaceutical production during manufacturing operations with four solid and liquid nutrient media. These samples were then incubated under four different conditions suggested in the guidance documents. We believe that the results of our multicenter study confirming recent other single-site in situ studies could be the basis of the strategy to determine the best incubation regime for both viable environmental monitoring and aseptic process simulation in any manufacturing facility. © PDA, Inc. 2017.

  10. Proteomic signatures differentiating Bacillus anthracis Sterne sporulation on soil relative to laboratory media.

    PubMed

    Wunschel, D S; Hutchison, J R; Deatherage Kaiser, B L; Merkley, E D; Hess, B M; Lin, A; Warner, M G

    2017-12-18

    The process of sporulation is vital for the stability and infectious cycle of Bacillus anthracis. The spore is the infectious form of the organism and therefore relevant to biodefense. While the morphological and molecular events occurring during sporulation have been well studied, the influence of growth medium and temperature on the proteins expressed in sporulated cultures is not well understood. Understanding the features of B. anthracis sporulation specific to natural vs. laboratory production will address an important question in microbial forensics. In an effort to bridge this knowledge gap, a system for sporulation on two types of agar-immobilized soils was used for comparison to cultures sporulated on two common types of solid laboratory media, and one liquid sporulation medium. The total number of proteins identified as well as their identity differed between samples generated in each medium and growth temperature, demonstrating that sporulation environment significantly impacts the protein content of the spore. In addition, a subset of proteins common in all of the soil-cultivated samples was distinct from the expression profiles in laboratory medium (and vice versa). These differences included proteins involved in thiamine and phosphate metabolism in the sporulated cultures produced on soils with a notable increase in expression of ATP binding cassette (ABC) transporters annotated to be for phosphate and antimicrobial peptides. A distinct set of ABC transporters for amino acids, sugars and oligopeptides were found in cultures produced on laboratory media as well as increases in carbon and amino acid metabolism-related proteins. These protein expression changes indicate that the sporulation environment impacts the protein profiles in specific ways that are reflected in the metabolic and membrane transporter proteins present in sporulated cultures.

  11. Soil organic matter degradability in four Japanese forest soils

    NASA Astrophysics Data System (ADS)

    Moriya, K.; Koarashi, J.; Atarashi-Andoh, M.; Moriizumi, J.; Yamazawa, H.; Ishizuka, S.

    2011-12-01

    Soil organic carbon (SOC) is the largest carbon reservoir in terrestrial ecosystems, and CO2 emission derived from SOC decomposition is considered to strongly influence atmospheric CO2 concentration. Therefore, it is important to understand what factors control the process of SOC decomposition. We studied the temperature sensitivity of SOC decomposition in forest surface soils by an incubation experiment at two temperatures. Soil samples were collected from the top 20 cm of mineral soils at four forest sites in Japan: AP (Appi: 40°00'N, 140°56'E), US (Ushiku: 35°57'N, 140°10'E), OG (Ogawa: 36°56'N, 140°35'E), and HO (Hitsujigaoka: 43°59'N, 141°23'E). The soil samples were sieved with a 4 mm-mesh and remaining roots in the samples were carefully removed by hand. Approximately a 75 g dry weight equivalent of the sample was adjusted to 50% of water holding capacity and put into a 1 L jar. Triplicate jars were enclosed after flushing their headspaces with CO2-free air and incubated at temperatures of 10°C and 20°C, respectively. We periodically collected 1 mL of headspace gas from the jars to measure CO2 concentration using a gas chromatograph. When the CO2 concentration in each jar reached 1.5% in volume, the headspace gas in the jar was collected to measure carbon isotope ratio of the CO2, and then the headspace of the jar was re-flushed and continued to incubate. The SOC decomposition rate at 20°C was consistently higher than that at 10°C, the order of which was AP ≤ US ≤ OG < HO. This order did not correspond to the orders of both mean annual temperature at the sites (AP < HO < OG < US), and total organic carbon content per dry soil weight (HO < US < AP < OG). Our result suggests that field temperature does not exert predominant control over SOC degradability in Japanese forest surface soils. Q10 values obtained for the AP, US, and OG soils was initially approximately 3 and increased up to 4 after one month of incubation. The increase in Q10 value

  12. Assessment of soil toxicity from an antitank firing range using Lumbricus terrestris and Eisenia andrei in mesocosms and laboratory studies.

    PubMed

    Robidoux, Pierre Yves; Dubois, Charles; Hawari, Jalal; Sunahara, Geoffrey I

    2004-08-01

    Earthworm mesocosms studies were carried out on a explosives-contaminated site at an antitank firing range. Survival of earthworms and the lysosomal neutral red retention time (NRRT), a biomarker of lysosomal membrane stability, were used in these studies to assess the effect of explosives-contaminated soils on the earthworms Lumbricus terrestris and Eisenia andrei under field conditions. Toxicity of the soils samples for E. andrei was also assessed under laboratory conditions using the earthworms reproduction test and the NRRT. Results indicate that the survival was reduced up to 40% in certain explosive-contaminated soil mesocosms following 10 days of exposure under field conditions, whereas survival was reduced up to 100% following 28 days of exposure under laboratory conditions. Reproduction parameters such as number of cocoons and number of juveniles were reduced in many of the selected contaminated soils. Compared to the reference, NRRT was significantly reduced for E. andrei exposed to explosive-contaminated soils under both field and laboratory conditions, whereas for L. terrestris NRRT was similar compared to the reference mesocosm. Analyses showed that HMX was the major polynitro-organic compound in soils. HMX was also the only explosive detected in earthworm tissues. Thus, results from both field mesocosms and laboratory studies, showed lethal and sub-lethal effects associated to soil from the contaminated area of the antitank firing range.

  13. Assessing plant residue decomposition in soil using DRIFT spectroscopy

    NASA Astrophysics Data System (ADS)

    Ouellette, Lance; Van Eerd, Laura; Voroney, Paul

    2016-04-01

    Assessment of the decomposition of plant residues typically involves the use of tracer techniques combined with measurements of soil respiration. This laboratory study evaluated use of Diffuse Reflectance Fourier Transform (DRIFT) spectroscopy for its potential to assess plant residue decomposition in soil. A sandy loam soil (Orthic Humic Gleysol) obtained from a field research plot was passed through a 4.75 mm sieve moist (~70% of field capacity) to remove larger crop residues. The experimental design consisted of a randomized complete block with four replicates of ten above-ground cover crop residue-corn stover combinations, where sampling time was blocked. Two incubations were set up for 1) Drift analysis: field moist soil (250 g ODW) was placed in 500 mL glass jars, and 2) CO2 evolution: 100 g (ODW) was placed in 2 L jars. Soils were amended with the plant residues (oven-dried at 60°C and ground to <2 mm) at rates equivalent to field mean above-ground biomass yields, then moistened to 60% water holding capacity and incubated in the dark at 22±3°C. Measurements for DRIFT and CO2-C evolved were taken after 0.5, 2, 4, 7, 10, 15, 22, 29, 36, 43, 50 64 and 72 d. DRIFT spectral data (100co-added scans per sample) were recorded with a Varian Cary 660 FT-IR Spectrometer equipped with an EasiDiff Diffuse Reflectance accessory operated at a resolution of 4 cm-1 over the mid-infrared spectrum from 4000 to 400 cm-1. DRIFT spectra of amended soils indicated peak areas of aliphatics at 2930 cm-1, of aromatics at 1620, and 1530 cm-1 and of polysaccharides at 1106 and 1036 cm-1. Evolved CO2 was measured by the alkali trap method (1 M NaOH); the amount of plant residue-C remaining in soil was calculated from the difference in the quantity of plant residue C added and the additional CO2-C evolved from the amended soil. First-order model parameters of the change in polysaccharide peak area over the incubation were related to those generated from the plant residue C decay

  14. Some Incubated Thoughts on Incubation.

    ERIC Educational Resources Information Center

    Guilford, J. P.

    1979-01-01

    The author reviews research and theory about the role of incubation (a period in which there is no apparent activity toward problem solving but some progress toward a solution occurs) in creative thinking. Note: For related information, see EC 120 233-238. (CL)

  15. Taking nature into lab: biomineralization by heavy metal resistant streptomycetes in soil

    NASA Astrophysics Data System (ADS)

    Schütze, E.; Weist, A.; Klose, M.; Wach, T.; Schumann, M.; Nietzsche, S.; Merten, D.; Baumert, J.; Majzlan, J.; Kothe, E.

    2013-02-01

    Biomineralization by heavy metal resistant streptomycetes was tested to evaluate the potential influence on metal mobilities in soil. Thus, we designed an experiment adopting conditions from classical laboratory methods to natural conditions prevailing in metal-rich soils with media spiked with heavy metals, soil agar, and nutrient enriched or unamended soil incubated with the bacteria. As a result, all strains were able to form struvite minerals on tryptic soy broth (TSB) media supplemented with AlCl2, MnCl2 and CuSO4, as well as on soil agar. Some strains additionally formed struvite on nutrient enriched contaminated and control soil, as well as on metal contaminated soil without addition of media components. In contrast, switzerite was exclusively formed on minimal media spiked with MnCl2 by four heavy metal resistant strains, and on nutrient enriched control soil by one strain. Hydrated nickel hydrogen phosphate was only crystallized on complex media supplemented with NiSO4 by most strains. Thus, mineralization is a~dominant property of streptomycetes, with different processes likely to occur under laboratory conditions and sub-natural to natural conditions. This new understanding may be transferred to formation of minerals in rock and sediment evolution, to ore deposit formation, and also might have implications for our understanding of biological metal resistance mechanisms. We assume that biogeochemical cycles, nutrient storage and metal resistance might be affected by formation and re-solubilization of minerals like struvite in soil at microscale.

  16. Taking nature into lab: biomineralization by heavy metal-resistant streptomycetes in soil

    NASA Astrophysics Data System (ADS)

    Schütze, E.; Weist, A.; Klose, M.; Wach, T.; Schumann, M.; Nietzsche, S.; Merten, D.; Baumert, J.; Majzlan, J.; Kothe, E.

    2013-06-01

    Biomineralization by heavy metal-resistant streptomycetes was tested to evaluate the potential influence on metal mobilities in soil. Thus, we designed an experiment adopting conditions from classical laboratory methods to natural conditions prevailing in metal-rich soils with media spiked with heavy metals, soil agar, and nutrient-enriched or unamended soil incubated with the bacteria. As a result, all strains were able to form struvite minerals (MgNH4PO4• 6H2O) on tryptic soy broth (TSB)-media supplemented with AlCl3, MnCl2 and CuSO4, as well as on soil agar. Some strains additionally formed struvite on nutrient-enriched contaminated and control soil, as well as on metal contaminated soil without addition of media components. In contrast, switzerite (Mn3(PO4)2• 7H2O) was exclusively formed on minimal media spiked with MnCl2 by four heavy metal-resistant strains, and on nutrient-enriched control soil by one strain. Hydrated nickel hydrogen phosphate was only crystallized on complex media supplemented with NiSO4 by most strains. Thus, mineralization is a dominant property of streptomycetes, with different processes likely to occur under laboratory conditions and sub-natural to natural conditions. This new understanding might have implications for our understanding of biological metal resistance mechanisms. We assume that biogeochemical cycles, nutrient storage and metal resistance might be affected by formation and re-solubilization of minerals like struvite in soil at microscale.

  17. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions

    NASA Astrophysics Data System (ADS)

    Huang, S.; Jaffé, P. R.

    2015-02-01

    Incubation experiments were conducted using soil samples from a forested riparian wetland where we have previously observed anaerobic ammonium oxidation coupled to iron reduction. Production of both nitrite and ferrous iron was measured repeatedly during incubations when the soil slurry was supplied with either ferrihydrite or goethite and ammonium chloride. Significant changes in the microbial community were observed after 180 days of incubation as well as in a continuous flow membrane reactor, using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454 pyrosequencing, and real-time quantitative PCR analysis. We be Acidimicrobiaceae bacterium A6), belonging to the Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), might play a key role in this anaerobic biological process that uses ferric iron as an electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized to nitrite, nitrogen loss proceeded via denitrification and/or anammox.

  18. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron reducing conditions

    NASA Astrophysics Data System (ADS)

    Huang, S.; Jaffé, P. R.

    2014-08-01

    Incubation experiments were conducted using soil samples from a forested riparian wetland where we have previously observed anaerobic ammonium oxidation coupled to iron reduction. Production of both nitrite and ferrous iron were measured repeatedly during incubations when the soil slurry was supplied with either ferrihydrite or goethite and ammonium chloride. Significant changes in the microbial community were observed after 180 days of incubation as well as in a continuous flow membrane reactor, using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454-pyrosequencing, and real-time quantitative PCR analysis. We believe that one of the dominant microbial species in our system (an uncultured Acidimicrobiaceae bacterium A6), belonging to the Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), might play a key role in this anaerobic biological process that uses ferric iron as an electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized to nitrite, nitrogen loss proceeded via denitrification and/or anammox.

  19. The Influence of Nitrogen on the Biological Properties of Soil Contaminated with Zinc.

    PubMed

    Strachel, Rafał; Wyszkowska, Jadwiga; Baćmaga, Małgorzata

    2017-03-01

    This study analyzed the relationship between nitrogen fertilization and the biological properties of soil contaminated with zinc. The influence of various concentrations of zinc and nitrogen on the microbiological and biochemical activity of soil was investigated. In a laboratory experiment, loamy sand with pH KCl 5.6 was contaminated with zinc (ZnCl 2 ) and fertilized with urea as a source of nitrogen. The activity of acid phosphatase, alkaline phosphatase, urease and β-glucosidase, and microbial counts were determined in soil samples after 2 and 20 weeks of incubation. Zinc generally stimulated hydrolase activity, but the highest zinc dose (1250 mg kg -1 ) led to the inhibition of hydrolases. Nitrogen was not highly effective in neutralizing zinc's negative effect on enzyme activity, but it stimulated the growth of soil-dwelling microorganisms. The changes in soil acidity observed after the addition of urea modified the structure of microbial communities.

  20. Degradation pathway and field-scale DT50 determination of Boscalid in a sandy Soil

    NASA Astrophysics Data System (ADS)

    Karlsson, Anneli S.; Weihermüller, Lutz; Tappe, Wolfgang; Mukherjee, Santanu; Spielvogel, Sandra

    2016-04-01

    The research on environmental fate of pesticides has received increasing attention within the last decades and the persistence of several compounds in soil matrices is well documented. However, the fate of the new fungicide Boscalid (introduced in 2003) is not yet completely investigated. The aim of this study was to analyze the environmental fate of Boscalid in a sandy soil. Three years after the second application on a cropland site in Kaldenkirchen, Germany, 65 undisturbed soil samples from the plough layer were derived. Boscalid residues were extracted using Accelerated Solvent Extraction (ASE) and measured with UPLC-MS/MS. The Boscalid residues ranged between 0.12 and 0.53 μg kg-1with a field mean of 0.20 ± 0.09 μg kg-1. These results differed considerably from the predicted field concentration of 16.89 μg kg-1 (calculated from the application rate) and half-lives (DT50) of 104-182 days compared to 345 days reported in literature. Adjusting the extraction efficiency to 20% could not explain the large difference. Therefore, an incubation study with 14C-labeled Boscalid was conducted to measure the DT50 under controlled conditions. Here, the DT50 values were in the range of values stated in literature (297-337 days compared to 345 days) but still much larger than the DT50 based on the field-study values (104-182 days). Our results indicate that Boscalid dissipation under field conditions is much faster at agricultural sites with sandy soil type as expected from laboratory incubation experiments. Future experiments with Boscalid will be conducted in two different soils with different particle size. A laboratory experiment with uniformly 13C-labeled Boscalid will provide insight into the uptake and incorporation in microbial biomass.

  1. Advanced multivariate analysis to assess remediation of hydrocarbons in soils.

    PubMed

    Lin, Deborah S; Taylor, Peter; Tibbett, Mark

    2014-10-01

    Accurate monitoring of degradation levels in soils is essential in order to understand and achieve complete degradation of petroleum hydrocarbons in contaminated soils. We aimed to develop the use of multivariate methods for the monitoring of biodegradation of diesel in soils and to determine if diesel contaminated soils could be remediated to a chemical composition similar to that of an uncontaminated soil. An incubation experiment was set up with three contrasting soil types. Each soil was exposed to diesel at varying stages of degradation and then analysed for key hydrocarbons throughout 161 days of incubation. Hydrocarbon distributions were analysed by Principal Coordinate Analysis and similar samples grouped by cluster analysis. Variation and differences between samples were determined using permutational multivariate analysis of variance. It was found that all soils followed trajectories approaching the chemical composition of the unpolluted soil. Some contaminated soils were no longer significantly different to that of uncontaminated soil after 161 days of incubation. The use of cluster analysis allows the assignment of a percentage chemical similarity of a diesel contaminated soil to an uncontaminated soil sample. This will aid in the monitoring of hydrocarbon contaminated sites and the establishment of potential endpoints for successful remediation.

  2. Soil Microbial Community Structure across a Thermal Gradient following a Geothermal Heating Event

    PubMed Central

    Norris, Tracy B.; Wraith, Jon M.; Castenholz, Richard W.; McDermott, Timothy R.

    2002-01-01

    In this study microbial species diversity was assessed across a landscape in Yellowstone National Park, where an abrupt increase in soil temperature had occurred due to recent geothermal activity. Soil temperatures were measured, and samples were taken across a temperature gradient (35 to 65°C at a 15-cm depth) that spanned geothermally disturbed and unimpacted soils; thermally perturbed soils were visually apparent by the occurrence of dead or dying lodgepole pine trees. Changes in soil microbial diversity across the temperature gradient were qualitatively assessed based on 16S rRNA sequence variation as detected by denaturing gradient gel electrophoresis (DGGE) using both ribosomal DNA (rDNA) and rRNA as PCR templates and primers specific for the Bacteria or Archaea domain. The impact of the major heating disturbance was apparent in that DGGE profiles from heated soils appeared less complex than those from the unaffected soils. Phylogenetic analysis of a bacterial 16S rDNA PCR clone library from a recently heated soil showed that a majority of the clones belonged to the Acidobacterium (51%) and Planctomyces (18%) divisions. Agar plate counts of soil suspensions cultured on dilute yeast extract and R2A agar media incubated at 25 or 50°C revealed that thermophile populations were two to three orders of magnitude greater in the recently heated soil. A soil microcosm laboratory experiment simulated the geothermal heating event. As determined by both RNA- and DNA-based PCR coupled with DGGE, changes in community structure (marked change in the DGGE profile) of soils incubated at 50°C occurred within 1 week and appeared to stabilize after 3 weeks. The results of our molecular and culture data suggest that thermophiles or thermotolerant species are randomly distributed in this area within Yellowstone National Park and that localized thermal activity selects for them. PMID:12450855

  3. Soil microbial community structure across a thermal gradient following a geothermal heating event.

    PubMed

    Norris, Tracy B; Wraith, Jon M; Castenholz, Richard W; McDermott, Timothy R

    2002-12-01

    In this study microbial species diversity was assessed across a landscape in Yellowstone National Park, where an abrupt increase in soil temperature had occurred due to recent geothermal activity. Soil temperatures were measured, and samples were taken across a temperature gradient (35 to 65 degrees C at a 15-cm depth) that spanned geothermally disturbed and unimpacted soils; thermally perturbed soils were visually apparent by the occurrence of dead or dying lodgepole pine trees. Changes in soil microbial diversity across the temperature gradient were qualitatively assessed based on 16S rRNA sequence variation as detected by denaturing gradient gel electrophoresis (DGGE) using both ribosomal DNA (rDNA) and rRNA as PCR templates and primers specific for the Bacteria or Archaea domain. The impact of the major heating disturbance was apparent in that DGGE profiles from heated soils appeared less complex than those from the unaffected soils. Phylogenetic analysis of a bacterial 16S rDNA PCR clone library from a recently heated soil showed that a majority of the clones belonged to the Acidobacterium (51%) and Planctomyces (18%) divisions. Agar plate counts of soil suspensions cultured on dilute yeast extract and R2A agar media incubated at 25 or 50 degrees C revealed that thermophile populations were two to three orders of magnitude greater in the recently heated soil. A soil microcosm laboratory experiment simulated the geothermal heating event. As determined by both RNA- and DNA-based PCR coupled with DGGE, changes in community structure (marked change in the DGGE profile) of soils incubated at 50 degrees C occurred within 1 week and appeared to stabilize after 3 weeks. The results of our molecular and culture data suggest that thermophiles or thermotolerant species are randomly distributed in this area within Yellowstone National Park and that localized thermal activity selects for them.

  4. Lipase assay in soils by copper soap colorimetry.

    PubMed

    Saisuburamaniyan, N; Krithika, L; Dileena, K P; Sivasubramanian, S; Puvanakrishnan, R

    2004-07-01

    A simple and sensitive method for the estimation of lipase activity in soils is reported. In this method, 50mg of soil is incubated with emulsified substrate, the fatty acids liberated are treated with cupric acetate-pyridine reagent, and the color developed is measured at 715 nm. Use of olive oil in this protocol leads to an estimation of true lipase activity in soils. The problem of released fatty acids getting adsorbed onto the soil colloids is obviated by the use of isooctane, and separate standards for different soils need not be developed. Among the various surfactants used for emulsification, polyvinyl alcohol is found to be the most effective. Incubation time of 20 min, soil concentration of 50 mg, pH 6.5, and incubation temperature of 37 degrees C were found to be the most suitable conditions for this assay. During the process of enrichment of the soils with oil, interference by the added oil is avoided by the maintenance of a suitable control, wherein 50 mg of soil is added after stopping the reaction. This assay is sensitive and it could be adopted to screen for lipase producers from enriched soils and oil-contaminated soils before resorting to isolation of the microbes by classical screening methods.

  5. [Effects of tree species fine root decomposition on soil active organic carbon].

    PubMed

    Liu, Yan; Wang, Si-Long; Wang, Xiao-Wei; Yu, Xiao-Jun; Yang, Yue-Jun

    2007-03-01

    With incubation test, this paper studied the effects of fine root decomposition of Alnus cremastogyne, Cunninghamia lanceolata and Michelia macclurei on the content of soil active organic carbon at 9 degrees C , 14 degrees C , 24 degrees C and 28 degrees C. The results showed that the decomposition rate of fine root differed significantly with test tree species, which was decreased in the order of M. macclurei > A. cremastogyne > C. lanceolata. The decomposition rate was increased with increasing temperature, but declined with prolonged incubation time. Fine root source, incubation temperature, and incubation time all affected the contents of soil microbial biomass carbon and water-soluble organic carbon. The decomposition of fine root increased soil microbial biomass carbon and water-soluble organic carbon significantly, and the effect decreased in the order of M. macclurei > A. cremastogyne > C. lanceolata. Higher contents of soil microbial biomass carbon and water-soluble organic carbon were observed at medium temperature and middle incubation stage. Fine root decomposition had less effect on the content of soil readily oxidized organic carbon.

  6. A new method to study simultaneous methane oxidation and methane production in soils

    NASA Astrophysics Data System (ADS)

    Andersen, B. L.; Bidoglio, G.; Leip, A.; Rembges, D.

    1998-12-01

    Results of laboratory experiments show that 14C-labeled methane added to soil was consumed faster than atmospheric 12C methane. This implies a source of methane, presumably through methanogenesis, in a soil that is a net consumer of atmospheric methane. The soil was well-drained forest soil from Ispra, Italy. An undisturbed sample was taken with a steel corer and incubated under oxic conditions in a jar. Headspace samples were taken at time intervals and analyzed for total methane by gas chromatography and analyzed for 14C methane by liquid scintillation counting. Fluxes calculated from the decreasing headspace mixing ratios were, for example, -6.5 and -7.1 μmol m-2 hr-1 for 12C methane and 14C methane, respectively. A simple model is considered which reproduces reasonably well the observed mixing ratios as function of time.

  7. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats

    NASA Astrophysics Data System (ADS)

    Osborne, Brooke B.; Baron, Jill S.; Wallenstein, Matthew D.

    2016-03-01

    Climate change is altering the timing and magnitude of biogeochemical fluxes in many highelevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidzer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.

  8. Effect of Soil Fumigation on Degradation of Pendimethalin and Oxyfluorfen in Laboratory and Ginger Field Studies.

    PubMed

    Huang, Bin; Li, Jun; Fang, Wensheng; Liu, Pengfei; Guo, Meixia; Yan, Dongdong; Wang, Qiuxia; Cao, Aocheng

    2016-11-23

    Herbicides are usually applied to agricultural fields following soil fumigation to provide effective weed control in high-value cash crops. However, phytotoxicity has been observed in ginger seedlings following the application of herbicides in fumigated fields. This study tested a mixture of herbicides (pendimethalin and oxyfluorfen) and several fumigant treatments in laboratory and field studies to determine their effect on the growth of ginger. The results showed that soil fumigation significantly (P < 0.05) extended the degradation period of these herbicides in the field and in laboratory studies. The half-life of pendimethalin was extended by an average of approximately 1.29 times in the field and 1.74 times in the laboratory. The half-life of oxyfluorfen was extended by an average of about 1.19 times in the field and 1.32 times in the laboratory. Moreover, the extended period of herbicide degradation in the fumigant and nonfumigant treatments significantly reduced ginger plant height, leaf number, stem diameter, and the chlorophyll content. The study concluded that applying a dose below the recommended rate of these herbicides in chloropicrin (CP) or CP + 1,3-dichloropropene fumigated ginger fields is appropriate, as application of the recommended herbicide dose in fumigated soil may be phytotoxic to ginger.

  9. Dynamics of soil organic carbon and microbial activity in treated wastewater irrigated agricultural soils along soil profiles

    NASA Astrophysics Data System (ADS)

    Jüschke, Elisabeth; Marschner, Bernd; Chen, Yona; Tarchitzky, Jorge

    2010-05-01

    Treated wastewater (TWW) is an important source for irrigation water in arid and semiarid regions and already serves as an important water source in Jordan, the Palestinian Territories and Israel. Reclaimed water still contains organic matter (OM) and various compounds that may effect microbial activity and soil quality (Feigin et al. 1991). Natural soil organic carbon (SOC) may be altered by interactions between these compounds and the soil microorganisms. This study evaluates the effects of TWW irrigation on the quality, dynamics and microbial transformations of natural SOC. Priming effects (PE) and SOC mineralization were determined to estimate the influence of TWW irrigation on SOC along soil profiles of agricultural soils in Israel and the Westbank. The used soil material derived from three different sampling sites allocated in Israel and The Palestinian Authority. Soil samples were taken always from TWW irrigated sites and control fields from 6 different depths (0-10, 10-20, 20-30, 30-50, 50-70, 70-100 cm). Soil carbon content and microbiological parameters (microbial biomass, microbial activities and enzyme activities) were investigated. In several sites, subsoils (50-160 cm) from TWW irrigated plots were depleted in soil organic matter with the largest differences occurring in sites with the longest TWW irrigation history. Laboratory incubation experiments with additions of 14C-labelled compounds to the soils showed that microbial activity in freshwater irrigated soils was much more stimulated by sugars or amino acids than in TWW irrigated soils. The lack of such "priming effects" (Hamer & Marschner 2005) in the TWW irrigated soils indicates that here the microorganisms are already operating at their optimal metabolic activity due to the continuous substrate inputs with soluble organic compounds from the TWW. The fact that PE are triggered continuously due to TWW irrigation may result in a decrease of SOC over long term irrigation. Already now this could be

  10. Litter quality versus soil microbial community controls over decomposition: a quantitative analysis

    USGS Publications Warehouse

    Cleveland, Cory C.; Reed, Sasha C.; Keller, Adrienne B.; Nemergut, Diana R.; O'Neill, Sean P.; Ostertag, Rebecca; Vitousek, Peter M.

    2014-01-01

    The possible effects of soil microbial community structure on organic matter decomposition rates have been widely acknowledged, but are poorly understood. Understanding these relationships is complicated by the fact that microbial community structure and function are likely to both affect and be affected by organic matter quality and chemistry, thus it is difficult to draw mechanistic conclusions from field studies. We conducted a reciprocal soil inoculum × litter transplant laboratory incubation experiment using samples collected from a set of sites that have similar climate and plant species composition but vary significantly in bacterial community structure and litter quality. The results showed that litter quality explained the majority of variation in decomposition rates under controlled laboratory conditions: over the course of the 162-day incubation, litter quality explained nearly two-thirds (64 %) of variation in decomposition rates, and a smaller proportion (25 %) was explained by variation in the inoculum type. In addition, the relative importance of inoculum type on soil respiration increased over the course of the experiment, and was significantly higher in microcosms with lower litter quality relative to those with higher quality litter. We also used molecular phylogenetics to examine the relationships between bacterial community composition and soil respiration in samples through time. Pyrosequencing revealed that bacterial community composition explained 32 % of the variation in respiration rates. However, equal portions (i.e., 16 %) of the variation in bacterial community composition were explained by inoculum type and litter quality, reflecting the importance of both the meta-community and the environment in bacterial assembly. Taken together, these results indicate that the effects of changing microbial community composition on decomposition are likely to be smaller than the potential effects of climate change and/or litter quality changes in

  11. Severe soil frost reduced losses of carbon and nitrogen from the forest floor during simulated snowmelt: A laboratory experiment

    Treesearch

    Andrew B. Reinmann; Pamela H. Templer; John L. Campbell

    2012-01-01

    Considerable progress has been made in understanding the impacts of soil frost on carbon (C) and nitrogen (N) cycling, but the effects of soil frost on C and N fluxes during snowmelt remain poorly understood. We conducted a laboratory experiment to determine the effects of soil frost on C and N fluxes from forest floor soils during snowmelt. Soil cores were collected...

  12. Distribution, fate and formation of non-extractable residues of a nonylphenol isomer in soil with special emphasis on soil derived organo-clay complexes.

    PubMed

    Riefer, Patrick; Klausmeyer, Timm; Schäffer, Andreas; Schwarzbauer, Jan; Schmidt, Burkhard

    2011-01-01

    Anthropogenic contaminants like nonylphenols (NP) are added to soil, for instance if sewage-sludge is used as fertilizer in agriculture. A commercial mixture of NP consists of more than 20 isomers. For our study, we used one of the predominate isomers of NP mixtures, 4-(3,5-dimethylhept-3-yl)phenol, as a representative compound. The aim was to investigate the fate and distribution of the isomer within soil and soil derived organo-clay complexes. Therefore, (14)C- and (13)C-labeled NP was added to soil samples and incubated up to 180 days. Mineralization was measured and soil samples were fractionated into sand, silt and clay; the clay fraction was further separated in humic acids, fulvic acids and humin. The organo-clay complexes pre-incubated for 90 or 180 days were re-incubated with fresh soil for 180 days, to study the potential of re-mobilization of incorporated residues. The predominate incorporation sites of the nonylphenol isomer in soil were the organo-clay complexes. After 180 days of incubation, 22 % of the applied (14)C was mineralized. The bioavailable, water extractable portion was low (9 % of applied (14)C) and remained constant during the entire incubation period, which could be explained by an incorporation/release equilibrium. Separation of organo-clay complexes, after extraction with solvents to release weakly incorporated, bioaccessible portions, showed that non-extractable residues (NER) were preferentially located in the humic acid fraction, which was regarded as an effect of the chemical composition of this fraction. Generally, 27 % of applied (14)C was incorporated into organo-clay complexes as NER, whereas 9 % of applied (14)C was bioaccessible after 180 days of incubation. The re-mobilization experiments showed on the one hand, a decrease of the bioavailability of the nonylphenol residues due to stronger incorporation, when the pre-incubation period was increased from 90 to 180 days. On the other hand, a shift of these residues from the

  13. [Response of mineralization of dissolved organic carbon to soil moisture in paddy and upland soils in hilly red soil region].

    PubMed

    Chen, Xiang-Bi; Wang, Ai-Hua; Hu, Le-Ning; Huang, Yuan; Li, Yang; He, Xun-Yang; Su, Yi-Rong

    2014-03-01

    Typical paddy and upland soils were collected from a hilly subtropical red-soil region. 14C-labeled dissolved organic carbon (14C-DOC) was extracted from the paddy and upland soils incorporated with 14C-labeled straw after a 30-day (d) incubation period under simulated field conditions. A 100-d incubation experiment (25 degrees C) with the addition of 14C-DOC to paddy and upland soils was conducted to monitor the dynamics of 14C-DOC mineralization under different soil moisture conditions [45%, 60%, 75%, 90%, and 105% of the field water holding capacity (WHC)]. The results showed that after 100 days, 28.7%-61.4% of the labeled DOC in the two types of soils was mineralized to CO2. The mineralization rates of DOC in the paddy soils were significantly higher than in the upland soils under all soil moisture conditions, owing to the less complex composition of DOC in the paddy soils. The aerobic condition was beneficial for DOC mineralization in both soils, and the anaerobic condition was beneficial for DOC accumulation. The biodegradability and the proportion of the labile fraction of the added DOC increased with the increase of soil moisture (45% -90% WHC). Within 100 days, the labile DOC fraction accounted for 80.5%-91.1% (paddy soil) and 66.3%-72.4% (upland soil) of the cumulative mineralization of DOC, implying that the biodegradation rate of DOC was controlled by the percentage of labile DOC fraction.

  14. Stability of Soil Carbon Fractions - from molecules to aggregates

    NASA Astrophysics Data System (ADS)

    Mueller, C. W.; Mueller, K. E.; Freeman, K. H.; Eissenstat, D.; Kögel-Knabner, I.

    2009-12-01

    The turnover of soil organic matter (SOM) is controlled both by its chemical composition, its spatial bioavailability and the association with the mineral phase. Separation by physical fractionation of bulk soils and subsequent chemical analysis of these fractions should give insights to how compositional differences in SOM drive turnover rates of different size-defined carbon pools. The main objective of the study was to elucidate the relative abundance and recalcitrance of lignin and plant lipids (e.g. cutin and suberin) in the course of SOM decomposition within aggregated bulk soils and SOM fractions. By the parallel incubation of physically-separated size fractions and bulk soils of the Ah horizon from a forested soil (Picea abies L.Karst) over a period of 400 days, a unique set of samples was created to study SOM dynamics. We used solid-state 13C-CPMAS NMR spectroscopy and GC-MS (after copper oxide oxidation and solvent extraction) to analyze the composition of the incubated samples. The abundance and isotopic composition (including 13C and 14C) of respired CO2 further enabled us to monitor the dynamics of SOM mineralization. This approach allowed for differentiating between C stabilization of soil fractions due to accessibility/aggregation and to recalcitrance at different scales of resolution (GC-MS, NMR). A relative enrichment of alkyl C and decreasing lignin contents in the order of sand < silt < clay were observed by 13C-NMR and GC-MS within soils and fractions before the incubation, resulting in increased lipid to lignin ratios with decreasing particle size. A relative enrichment of lignin in the incubated fractions compared to the incubated bulk soils clearly indicated the preferential mineralization of less recalcitrant C compounds that were spatially inaccessible in aggregates of the bulk soil. Differences in the abundance of various lignin, cutin, and suberin monomers measured by GC-MS before and after the incubation indicate selective degradation

  15. Degradation and persistence of cotton pesticides in sandy loam soils from Punjab, Pakistan.

    PubMed

    Tariq, Muhammad Ilyas; Afzal, Shahzad; Hussain, Ishtiaq

    2006-02-01

    The present study evaluated the influence of temperature, moisture, and microbial activity on the degradation and persistence of commonly used cotton pesticides, i.e., carbosulfan, carbofuran, lambda-cyhalothrin, endosulfan, and monocrotophos, with the help of laboratory incubation and lysimeter studies on sandy loam soil (Typic Ustocurepts) in Pakistan. Drainage from the lysimeters was sampled on days 49, 52, 59, 73, 100, 113, and 119 against the pesticide application on days 37, 63, 82, 108, and 137 after the sowing of cotton. Carbofuran, monocrotophos, and nitrate were detected in the drainage samples, with an average value, respectively, of 2.34, 2.6 microg/L, and 15.6 mg/L for no-tillage and 2.16, 2.3 microg/L, and 13.4 mg/L for tillage. In the laboratory, pesticide disappearance kinetics were measured with sterile and nonsterile soils from 0 to 10 cm in depth at 15, 25, and 35 degrees C and 50% and 90% field water capacities. Monocrotophos and carbosulfan dissipation followed first-order kinetics while others followed second-order kinetics. The results of incubation studies showed that temperature and moisture contents significantly reduced the t(1/2) (half-life) values of pesticides in sterile and nonsterile soil, but the effect of microbial activity was nearly significant that might be due to less organic carbon (0.3%). The presence of carbofuran and monocrotophos in the soil profile (0-10, 10-30, 30-60, 60-90, 90-150 cm) and the higher concentrations of endosulfan and lambda-cyhalothrin in the top layer (0-10 cm) showed the persistence of the pesticides. The detection of endosulfan and lambda-cyhalothrin in the 10-30 cm soil layer might be due to preferential flow. The data generated from this study could be helpful for risk assessment studies of pesticides and for validating pesticide transport models for sandy loam soils in cotton-growing areas of Pakistan.

  16. Soil solution interactions may limit Pb remediation using P amendments in an urban soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obrycki, John F.; Scheckel, Kirk G.; Basta, Nicholas T.

    Lead (Pb) contaminated soils are a potential exposure hazard to the public. Amending soils with phosphorus (P) may reduce Pb soil hazards. Soil from Cleveland, OH containing 726 ± 14 mg Pb kg -1 was amended in a laboratory study with bone meal and triple super phosphate (TSP) at 5:1 P:Pb molar ratios. Soil was acidified, neturalized and re-acidified to encourage Pb phosphate formation. PRSTM-probes were used to evaluate changes in soil solution chemistry. Soil acidification did not decrease in vitro bioaccessible (IVBA) Pb using either a pH 1.5, 0.4 M glycine solution or a pH 2.5 solution with organicmore » acids. PRSTM-probe data found soluble Pb increased 10-fold in acidic conditions compared to circumnetural pH conditions. In acidic conditions (p = 3-4), TSP treated soils increased detected P 10-fold over untreated soils. Bone meal application did not increase PRSTM-probe detected P, indicating there may have been insufficient P to react with Pb. X-ray absorption spectroscopy suggested a 10% increase in pyromorphite formation for the TSP treated soil only. Treatments increased soil electrical conductivity above 16 mS cm -1, potentially causing a new salinity hazard. This study used a novel approach by combining the human ingestion endpoint, PRSTM-probes, and X-ray absorption spectroscopy to evaluate treatment efficacy. PRSTM-probe data indicated potentially excess Ca relative to P across incubation steps that could have competed with Pb for soluble P. More research is needed to characterize soil solutions in Pb contaminated urban soils to identify where P treatments might be effective and when competing cations, such as Ca, Fe, and Zn may limit low rate P applications for treating Pb soils.« less

  17. Soil solution interactions may limit Pb remediation using P amendments in an urban soil.

    PubMed

    Obrycki, John F; Scheckel, Kirk G; Basta, Nicholas T

    2017-01-01

    Lead (Pb) contaminated soils are a potential exposure hazard to the public. Amending soils with phosphorus (P) may reduce Pb soil hazards. Soil from Cleveland, OH containing 726 ± 14 mg Pb kg -1 was amended in a laboratory study with bone meal and triple super phosphate (TSP) at 5:1 P:Pb molar ratios. Soil was acidified, neturalized and re-acidified to encourage Pb phosphate formation. PRSTM-probes were used to evaluate changes in soil solution chemistry. Soil acidification did not decrease in vitro bioaccessible (IVBA) Pb using either a pH 1.5, 0.4 M glycine solution or a pH 2.5 solution with organic acids. PRSTM-probe data found soluble Pb increased 10-fold in acidic conditions compared to circumnetural pH conditions. In acidic conditions (p = 3-4), TSP treated soils increased detected P 10-fold over untreated soils. Bone meal application did not increase PRSTM-probe detected P, indicating there may have been insufficient P to react with Pb. X-ray absorption spectroscopy suggested a 10% increase in pyromorphite formation for the TSP treated soil only. Treatments increased soil electrical conductivity above 16 mS cm -1 , potentially causing a new salinity hazard. This study used a novel approach by combining the human ingestion endpoint, PRSTM-probes, and X-ray absorption spectroscopy to evaluate treatment efficacy. PRSTM-probe data indicated potentially excess Ca relative to P across incubation steps that could have competed with Pb for soluble P. More research is needed to characterize soil solutions in Pb contaminated urban soils to identify where P treatments might be effective and when competing cations, such as Ca, Fe, and Zn may limit low rate P applications for treating Pb soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Testing of mechanical ventilators and infant incubators in healthcare institutions.

    PubMed

    Badnjevic, Almir; Gurbeta, Lejla; Jimenez, Elvira Ruiz; Iadanza, Ernesto

    2017-01-01

    The medical device industry has grown rapidly and incessantly over the past century. The sophistication and complexity of the designed instrumentation is nowadays rising and, with it, has also increased the need to develop some better, more effective and efficient maintenance processes, as part of the safety and performance requirements. This paper presents the results of performance tests conducted on 50 mechanical ventilators and 50 infant incubators used in various public healthcare institutions. Testing was conducted in accordance to safety and performance requirements stated in relevant international standards, directives and legal metrology policies. Testing of output parameters for mechanical ventilators was performed in 4 measuring points while testing of output parameters for infant incubators was performed in 7 measuring points for each infant incubator. As performance criteria, relative error of output parameters for mechanical ventilators and absolute error of output parameters for infant incubators was calculated. The ranges of permissible error, for both groups of devices, are regulated by the Rules on Metrological and Technical Requirements published in the Official Gazette of Bosnia and Herzegovina No. 75/14, which are defined based on international recommendations, standards and guidelines. All ventilators and incubators were tested by etalons calibrated in an ISO 17025 accredited laboratory, which provides compliance to international standards for all measured parameters.The results show that 30% of the tested medical devices are not operating properly and should be serviced, recalibrated and/or removed from daily application.

  19. Photoautotrophic microorganisms as a carbon source for temperate soil invertebrates.

    PubMed

    Schmidt, Olaf; Dyckmans, Jens; Schrader, Stefan

    2016-01-01

    We tested experimentally if photoautotrophic microorganisms are a carbon source for invertebrates in temperate soils. We exposed forest or arable soils to a (13)CO2-enriched atmosphere and quantified (13)C assimilation by three common animal groups: earthworms (Oligochaeta), springtails (Hexapoda) and slugs (Gastropoda). Endogeic earthworms (Allolobophora chlorotica) and hemiedaphic springtails (Ceratophysella denticulata) were highly (13)C enriched when incubated under light, deriving up to 3.0 and 17.0%, respectively, of their body carbon from the microbial source in 7 days. Earthworms assimilated more (13)C in undisturbed soil than when the microbial material was mixed into the soil, presumably reflecting selective surface grazing. By contrast, neither adult nor newly hatched terrestrial slugs (Deroceras reticulatum) grazed on algal mats. Non-photosynthetic (13)CO2 fixation in the dark was negligible. We conclude from these preliminary laboratory experiments that, in addition to litter and root-derived carbon from vascular plants, photoautotrophic soil surface microorganisms (cyanobacteria, algae) may be an ecologically important carbon input route for temperate soil animals that are traditionally assigned to the decomposer channel in soil food web models and carbon cycling studies. © 2016 The Author(s).

  20. Soil pollution by petroleum products, III. Kerosene stability in soil columns as affected by volatilization

    NASA Astrophysics Data System (ADS)

    Galin, Ts.; Gerstl, Z.; Yaron, B.

    1990-05-01

    The stability of kerosene in soils as affected by volatization was determined in a laboratory column experiment by following the losses in the total concentration and the change in composition of the residuals in a dune sand, a loamy sand, and a silty loam soil during a 50-day period. Seven major compounds ranging between C 9 and C 15 were selected from a large variety of hydrocarbons forming kerosene and their presence in the remaining petroleum product was determined. The change in composition of kerosene during the experimental period was determined by gas chromatography and related to the seven major compounds selected. The experimental conditions — air-dairy soil and no subsequent addition of water—excluded both biodegradative and leaching. losses. The losses of kerosene in air-dried soil columns during the 50-day experimental period and the changes in the composition of the remaining residues due to volatilization are reported. The volatilization of all the components determined was greater from the dune sand and loamy sand soils than from the silty loam soil. It was assumed that the reason for this behavior was that the dune sand and the loamy sand soils contain a greater proportion of large pores (>4.5 μm) than the silty loam soil, even though the total porosity of the loamy sand and the silty loam is similar. In all the soils in the experiment, the components with a high carbon number formed the main fraction of the kerosene residues after 50 days of incubation.

  1. ATTENUATION/STABILIZATION OF ARSENIC BY IRON (HYDR)OXIDES IN SOILS/SEDIMENTS: LABORATORY STUDY.

    EPA Science Inventory

    Laboratory studies will be performed to assess the role of naturally occurring soil/sediment iron (hydr)oxides on the attenuation/stabilization of arsenic. Changes in the reversibility of arsenic partitioning will be assessed as a function of aging time using model experimental ...

  2. Temperature responses of individual soil organic matter components

    NASA Astrophysics Data System (ADS)

    Feng, Xiaojuan; Simpson, Myrna J.

    2008-09-01

    Temperature responses of soil organic matter (SOM) remain unclear partly due to its chemical and compositional heterogeneity. In this study, the decomposition of SOM from two grassland soils was investigated in a 1-year laboratory incubation at six different temperatures. SOM was separated into solvent extractable compounds, suberin- and cutin-derived compounds, and lignin-derived monomers by solvent extraction, base hydrolysis, and CuO oxidation, respectively. These SOM components have distinct chemical structures and stabilities and their decomposition patterns over the course of the experiment were fitted with a two-pool exponential decay model. The stability of SOM components was also assessed using geochemical parameters and kinetic parameters derived from model fitting. Compared with the solvent extractable compounds, a low percentage of lignin monomers partitioned into the labile SOM pool. Suberin- and cutin-derived compounds were poorly fitted by the decay model, and their recalcitrance was shown by the geochemical degradation parameter (ω - C16/∑C16), which was observed to stabilize during the incubation. The temperature sensitivity of decomposition, expressed as Q10, was derived from the relationship between temperature and SOM decay rates. SOM components exhibited varying temperature responses and the decomposition of lignin monomers exhibited higher Q10 values than the decomposition of solvent extractable compounds. Our study shows that Q10 values derived from soil respiration measurements may not be reliable indicators of temperature responses of individual SOM components.

  3. Rural Incubator Profile.

    ERIC Educational Resources Information Center

    Weinberg, Mark L.

    This profile summarizes the responses of 20 managers of rural business incubators, reporting on their operations, entry and exit policies, facility promotion, service arrangements and economic development outcomes. Incubators assist small businesses in the early stages of growth by providing them with rental space, shared services, management and…

  4. Treatability of volatile chlorinated hydrocarbon-contaminated soils of different textures along a vertical profile by mechanical soil aeration: A laboratory test.

    PubMed

    Ma, Yan; Shi, Yi; Hou, Deyi; Zhang, Xi; Chen, Jiaqi; Wang, Zhifen; Xu, Zhu; Li, Fasheng; Du, Xiaoming

    2017-04-01

    Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons (VCHs). Conventionally, this technique is used to treat the mixed soil of a site without considering the diversity and treatability of different soils within the site. A laboratory test was conducted to evaluate the effectiveness of mechanical soil aeration for remediating soils of different textures (silty, clayey, and sandy soils) along a vertical profile at an abandoned chloro-alkali chemical site in China. The collected soils were artificially contaminated with chloroform (TCM) and trichloroethylene (TCE). Mechanical soil aeration was effective for remediating VCHs (removal efficiency >98%). The volatilization process was described by an exponential kinetic function. In the early stage of treatment (0-7hr), rapid contaminant volatilization followed a pseudo-first order kinetic model. VCH concentrations decreased to low levels and showed a tailing phenomenon with very slow contaminant release after 8hr. Compared with silty and sandy soils, clayey soil has high organic-matter content, a large specific surface area, a high clay fraction, and a complex pore structure. These characteristics substantially influenced the removal process, making it less efficient, more time consuming, and consequently more expensive. Our findings provide a potential basis for optimizing soil remediation strategy in a cost-effective manner. Copyright © 2016. Published by Elsevier B.V.

  5. Modelling the fate of PAH added with composts in amended soil according to the origin of the exogenous organic matter.

    PubMed

    Brimo, Khaled; Ouvrard, Stéphanie; Houot, Sabine; Lafolie, François; Garnier, Patricia

    2018-03-01

    A new model that was able to simulate the behaviours of polycyclic aromatic hydrocarbons (PAH) during composting and after the addition of the composts to agricultural soil is presented here. This model associates modules that describe the physical, biological and biochemical processes involved in PAH dynamics in soils, along with a module describing the compost degradation resulting in PAH release. The model was calibrated from laboratory incubations using three 14 C-PAHs, phenanthrene, fluoranthene and benzo(a)pyrene, and three different composts consisting of two mature and one non-mature composts. First, the labelled PAHs were added to the compost over 28days, and spiked composts were then added to the soil over 55days. The model calculates the proportion of biogenic and physically bound residues in the non-extractable compartment of PAHs at the end of the compost incubation to feed the initial conditions of the model for soil amended with composts. For most of the treatments, a single parameter set enabled to simulate the observed dynamics of PAHs adequately for all the amended soil treatments using a Bayesian approach. However, for fluoranthene, different parameters that were able to simulate the growth of a specific microbial biomass had to be considered for mature compost. Processes that occurred before the compost application to the soil strongly influenced the fate of PAHs in the soil. Our results showed that the PAH dissipation during compost incubation was higher in mature composts because of the higher specific microbial activity, while the PAH dissipation in amended soil was higher in the non-mature compost because of the higher availability of PAHs and the higher co-metabolic microbial activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effect of some amendments on leachate properties of a calcareous saline- sodic soil: A laboratory experiment

    NASA Astrophysics Data System (ADS)

    Yazdanpanah, Najme; Mahmoodabadi, Majid

    2010-05-01

    Soil salinity and sodicity are escalating problems worldwide, especially in Iran since 90 percent of the country is located in arid and semi-arid. Reclamation of sodic soils involves replacement of exchangeable Na by Ca. While some researches have been undertaken in the controllable laboratory conditions using soil column with emphasis on soil properties, the properties of effluent as a measure of soil reclamation remain unstudied. In addition, little attention has been paid to the temporal variability of effluent quality. The objective of this study was to investigate the effect of different amendments consist of gypsum, manure, pistachio residue, and their combination for ameliorating a calcareous saline sodic soil. Temporal variability of effluent properties during reclamation period was studied, as well. A laboratory experiment was conducted to evaluate the effect of different amendments using soil columns. The amendment treatments were: control, manure, pistachio residue, gypsum powder (equivalent of gypsum requirement), manure+gypsum and pistachio residue+gypsum, which were applied once in the beginning of the experiment. The study was performed in 120 days period and totally four irrigation treatments were supplied to each column. After irrigations, the effluent samples were collected every day at the bottom of the soil columns and were analyzed. The results show that for all treatments, cations (e.g. Ca, Mg, Na and K) in the outflow decreased with time, exponentially. Manure treatment resulted in highest rate of Ca, Mg, Na leaching from soil solution, in spite of the control which had the lowest rate. In addition, pistachio residue had the most effect on K leaching. Manure treatment showed the most EC and SAR in the leachate, while gypsum application leads to the least rate of them. The findings of this research reveal different rates of cations leaching from soil profile, which is important in environmental issues. Keywords: Saline sodic soil, Reclamation

  7. Soil nitrogen cycling and nitrous oxide flux in a Rocky Mountain Douglas-fir forest - Effects of fertilization, irrigation and carbon addition

    NASA Technical Reports Server (NTRS)

    Matson, Pamela A.; Gower, Stith T.; Volkmann, Carol; Billow, Christine; Grier, Charles C.

    1992-01-01

    Nitrous oxide fluxes and soil nitrogen transformations were measured in experimentally-treated high elevation Douglas-fir forests in northwestern New Mexico, USA. On an annual basis, forests that were fertilized with 200 kg N/ha emitted an average of 0.66 kg/ha of N2O-N, with highest fluxes occurring in July and August when soils were both warm and wet. Control, irrigated, and woodchip treated plots did not differ, and annual average fluxes ranged from 0.03 to 0.23 kg/ha. Annual net nitrogen mineralization and nitrate production were estimated in soil and forest floor using in situ incubations; fertilized soil mineralized 277 kg/ha/y in contrast to 18 kg/ha/y in control plots. Relative recovery of 15NH4-N applied to soil in laboratory incubations was principally in the form of NO3-N in the fertilized soils, while recovery was mostly in microbial biomass-N in the other treatments. Fertilization apparently added nitrogen that exceeded the heterotrophic microbial demand, resulting in higher rates of nitrate production and higher nitrous oxide fluxes. Despite the elevated nitrous oxide emission resulting from fertilization, we estimate that global inputs of nitrogen into forests are not currently contributing significantly to the increasing concentrations of nitrous oxide in the atmosphere.

  8. Estimation of small-scale soil erosion in laboratory experiments with Structure from Motion photogrammetry

    NASA Astrophysics Data System (ADS)

    Balaguer-Puig, Matilde; Marqués-Mateu, Ángel; Lerma, José Luis; Ibáñez-Asensio, Sara

    2017-10-01

    The quantitative estimation of changes in terrain surfaces caused by water erosion can be carried out from precise descriptions of surfaces given by means of digital elevation models (DEMs). Some stages of water erosion research efforts are conducted in the laboratory using rainfall simulators and soil boxes with areas less than 1 m2. Under these conditions, erosive processes can lead to very small surface variations and high precision DEMs are needed to account for differences measured in millimetres. In this paper, we used a photogrammetric Structure from Motion (SfM) technique to build DEMs of a 0.5 m2 soil box to monitor several simulated rainfall episodes in the laboratory. The technique of DEM of difference (DoD) was then applied using GIS tools to compute estimates of volumetric changes between each pair of rainfall episodes. The aim was to classify the soil surface into three classes: erosion areas, deposition areas, and unchanged or neutral areas, and quantify the volume of soil that was eroded and deposited. We used a thresholding criterion of changes based on the estimated error of the difference of DEMs, which in turn was obtained from the root mean square error of the individual DEMs. Experimental tests showed that the choice of different threshold values in the DoD can lead to volume differences as large as 60% when compared to the direct volumetric difference. It turns out that the choice of that threshold was a key point in this method. In parallel to photogrammetric work, we collected sediments from each rain episode and obtained a series of corresponding measured sediment yields. The comparison between computed and measured sediment yields was significantly correlated, especially when considering the accumulated value of the five simulations. The computed sediment yield was 13% greater than the measured sediment yield. The procedure presented in this paper proved to be suitable for the determination of sediment yields in rainfall-driven soil

  9. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats

    USGS Publications Warehouse

    Osborne, Brooke B.; Baron, Jill S.; Wallenstein, Matthew D.

    2016-01-01

    Climate change is altering the timing and magnitude of biogeochemical fluxes in many high elevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidizer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.

  10. Assessment of Two Solid Anaerobic Digestate Soil Amendments for Effects on Soil Quality and Biosolarization Efficacy.

    PubMed

    Fernández-Bayo, Jesús D; Achmon, Yigal; Harrold, Duff R; McCurry, Dlinka G; Hernandez, Katie; Dahlquist-Willard, Ruth M; Stapleton, James J; VanderGheynst, Jean S; Simmons, Christopher W

    2017-05-03

    Anaerobic digestion is an organic waste bioconversion process that produces biofuel and digestates. Digestates have potential to be applied as soil amendment to improve properties for crop production including phytonutrient content and pest load. Our objective was to assess the impact of solid anaerobic digestates on weed seed inactivation and soil quality upon soil biosolarization (a pest control technique that combines solar heating and amendment-induced microbial activity). Two solid digestates from thermophilic (TD) and mesophilic (MD) digesters were tested. The solarized TD-amended samples presented significantly higher mortality of Brassica nigra (71%, P = 0.032) than its equivalent incubated at room temperature. However, biosolarization with digestate amendment led to decreased weed seed mortality in certain treatments. The plant-available water, total C, and extractable P and K were significantly increased (P < 0.05) in the incubated amended soils. The results confirm the potential of digestates as beneficial soil amendments. Further studies are needed to elucidate the impacts of digestate stability on biosolarization efficacy and soil properties.

  11. Responses of soil ammonia oxidizers to a short-term severe mercury stress.

    PubMed

    Zhou, Zhi-Feng; Liu, Yu-Rong; Sun, Guo-Xin; Zheng, Yuan-Ming

    2015-12-01

    The responses of soil ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) to mercury (Hg) stress were investigated through a short-term incubation experiment. Treated with four different concentrations of Hg (CK, Hg25, Hg50, and Hg100, denoting 0, 25, 50, and 100mgHg/kg dry soil, respectively), samples were harvested after 3, 7, and 28day incubation. Results showed that the soil potential nitrification rate (PNR) was significantly inhibited by Hg stress during the incubation. However, lower abundances of AOA (the highest in CK: 9.20×10(7)copies/g dry soil; the lowest in Hg50: 2.68×10(7)copies/g dry soil) and AOB (the highest in CK: 2.68×10(7)copies/g dry soil; the lowest in Hg50: 7.49×10(6)copies/g dry soil) were observed only at day 28 of incubation (P<0.05). Moreover, only the community structure of soil AOB obviously shifted under Hg stress as seen through DGGE profiles, which revealed that 2-3 distinct AOB bands emerged in the Hg treatments at day 28. In summary, soil PNR might be a very useful parameter to assess acute Hg stress on soil ecosystems, and the community structure of soil AOB might be a realistic biological indicator for the assessment of heavy metal stress on soil ecosystems in the future. Copyright © 2015. Published by Elsevier B.V.

  12. Bioavailability of organoclay formulations of atrazine in soil.

    PubMed

    Trigo, Carmen; Koskinen, William C; Celis, Rafael; Sadowsky, Michael J; Hermosín, María C; Cornejo, Juan

    2010-11-24

    Pesticide formulations based on organoclays have been proposed to prolong the efficacy and reduce the environmental impact of pesticides in soil. This research addressed the question of whether atrazine in organoclay-based formulations is irreversibly sorbed or is bioavailable for bacterial degradation in soil. Different cations of l-carnitine (CAR), tyramine (TYRAM), hexadimethrine (HEXADIM), phenyltrimethylammonium (PTMA), hexadecyltrimethylammonium (HDTMA), and Fe(III) were incorporated into Na-rich Wyoming montmorillonite (SWy-2) and Ca-rich Arizona montmorillonite (SAz-1) at 100% of the cation exchange capacity (CEC) of the clays as a strategy to enhance the affinity of the clay minerals for atrazine. A Buse loam soil from Becker, MN, was treated with three organoclay-based formulations of 14C-atrazine or free herbicide and incubated for 2 weeks. To determine the bioavailability of 14C-atrazine, the soil was inoculated with Pseudomonas sp. strain ADP, which rapidly mineralizes atrazine. At day 0, and after a 2 week incubation, mineralization and the amount of 14C-atrazine residues distributed between the aqueous-extractable, methanol-extractable, and bound fractions in the soil were determined to characterize the availability of nonaged and aged atrazine residues. By the end of the 2 week incubation, the microorganisms had mineralized >80% of the initial readily available (water-extractable) and >70% of the less readily available (methanol-extractable) 14C-atrazine in the soil. Bound residues increased from <4% at day 0 to ∼17% after the 2 week incubation for both the formulated and free forms of atrazine. The results of these incubation experiments show that the bioavailabilities of atrazine were similar in the case of the organoclay formulations and as free atrazine. This indicated that whereas more atrazine was sorbed and less likely to be transported in soil, when formulated as organoclay complexes, it was ultimately accessible to degrading bacteria, so

  13. Dynamics of soil water evaporation during soil drying: laboratory experiment and numerical analysis.

    PubMed

    Han, Jiangbo; Zhou, Zhifang

    2013-01-01

    Laboratory and numerical experiments were conducted to investigate the evolution of soil water evaporation during a continuous drying event. Simulated soil water contents and temperatures by the calibrated model well reproduced measured values at different depths. Results show that the evaporative drying process could be divided into three stages, beginning with a relatively high evaporation rate during stage 1, followed by a lower rate during transient stage and stage 2, and finally maintaining a very low and constant rate during stage 3. The condensation zone was located immediately below the evaporation zone in the profile. Both peaks of evaporation and condensation rate increased rapidly during stage 1 and transition stage, decreased during stage 2, and maintained constant during stage 3. The width of evaporation zone kept a continuous increase during stages 1 and 2 and maintained a nearly constant value of 0.68 cm during stage 3. When the evaporation zone totally moved into the subsurface, a dry surface layer (DSL) formed above the evaporation zone at the end of stage 2. The width of DSL also presented a continuous increase during stage 2 and kept a constant value of 0.71 cm during stage 3.

  14. Role of Siderophores in Dissimilatory Iron Reduction in Arctic Soils : Effect of Direct Amendment of Siderophores to Arctic Soil

    NASA Astrophysics Data System (ADS)

    Srinivas, A. J.; Dinsdale, E. A.; Lipson, D.

    2014-12-01

    Dissimilatory iron reduction (DIR), where ferric iron (Fe3+) is reduced to ferrous iron (Fe2+) anaerobically, is an important respiratory pathway used by soil bacteria. DIR contributes to carbon dioxide (CO2) efflux from the wet sedge tundra biome in the Arctic Coastal Plain (ACP) in Alaska, and could competitively inhibit the production of methane, a stronger greenhouse gas than CO2, from arctic soils. The occurrence of DIR as a dominant anaerobic process depends on the availability of substantial levels of Fe3+ in soils. Siderophores are metabolites made by microbes to dissolve Fe3+ from soil minerals in iron deficient systems, making Fe3+ soluble for micronutrient uptake. However, as the ACP is not iron deficient, siderophores in arctic soils may play a vital role in anaerobic respiration by dissolving Fe3+ for DIR. We studied the effects of direct siderophore addition to arctic soils through a field study conducted in Barrow, Alaska, and a laboratory incubation study conducted at San Diego State University. In the field experiment, 50μM deferroxamine mesylate (a siderophore), 50μM trisodium nitrilotriacetate (an organic chelator) or an equal volume of water was added to isolated experimental plots, replicated in clusters across the landscape. Fe2+ concentrations were measured in soil pore water samples collected periodically to measure DIR over time in each. In the laboratory experiment, frozen soil samples obtained from drained thaw lake basins in the ACP, were cut into cores and treated with the above-mentioned compounds to the same final concentrations. Along with measuring Fe2+ concentrations, CO2 output was also measured to monitor DIR over time in each core. Experimental addition of siderophores to soils in both the field and laboratory resulted in increased concentrations of soluble Fe3+ and a sustained increase in Fe2+concentrations over time, along with increased respiration rates in siderophore-amended cores. These results show increased DIR in

  15. Mineral Control of Soil Carbon Dynamics in Forest Soils: A Lithosequence Under Ponderosa Pine

    NASA Astrophysics Data System (ADS)

    Heckman, K. A.; Welty-Bernard, A.; Rasmussen, C.; Schwartz, E.; Chorover, J.

    2008-12-01

    The role of soil organic carbon in regulating atmospheric CO2 concentration has spurred interest in both quantifying existing soil C stocks and modeling the behavior of soil C under climate change scenarios. Soil parent material exerts direct control over soil organic carbon content through its influence on soil pH and mineral composition. Soil acidity and mineral composition also influence soil microbial community composition and activity, thereby controlling soil respiration rates and microbial biomass size. We sampled a lithosequence of four parent materials (rhyolite, granite, basalt, limestone) under Pinus ponderosa to examine the effects of soil mineralogy and acidity on soil organic carbon content and soil microbial community. Three soil profiles were examined on each parent material and analyzed by X-ray diffraction, pH, selective dissolution, C and N content, and 13C signature. Soils from each of the four parent materials were incubated for 40 days, and microbial communities were compared on the basis of community composition (as determined through T-RFLP analysis), specific metabolic activity, biomass, δ13C of respired CO2, and cumulative amount of C mineralized over the course of the incubation. Soil C content varied significantly among soils of different parent material, and was strongly and positively associated with the abundance of Al-humus complexes r2 = 0.71; P < 0.0001, Fe-humus complexes r2 = 0.74; P = 0.0003, and crystalline Fe-oxide content r2 = 0.63; P = 0.0023. Microbial community composition varied significantly among soils and showed strong associations with soil pH 1:1 in KCl; r2 = 0.87; P < 0.0001, concentration of exchangeable Al r2 = 0.81; P < 0.0001, amorphous Fe oxide content r2 = 0.59; P < 0.004, and Al-humus content r2 = 0.35; P < 0.04. Mineralization rates, biomass and δ13C of respired CO2 differed among parent materials, and also varied with incubation time as substrate quality and N availability changed. The results demonstrate

  16. Characterization of acetanilide herbicides degrading bacteria isolated from tea garden soil.

    PubMed

    Wang, Yei-Shung; Liu, Jian-Chang; Chen, Wen-Ching; Yen, Jui-Hung

    2008-04-01

    Three different green manures were added to the tea garden soils separately and incubated for 40 days. After, incubation, acetanilide herbicides alachlor and metolachlor were spiked into the soils, separately, followed by the isolation of bacteria in each soil at designed intervals. Several bacterial strains were isolated from the soils and identified as Bacillus silvestris, B. niacini, B. pseudomycoides, B. cereus, B. thuringiensis, B. simplex, B. megaterium, and two other Bacillus sp. (Met1 and Met2). Three unique strains with different morphologies were chosen for further investigation. They were B. megaterium, B. niacini, and B. silvestris. The isolated herbicide-degrading bacteria showed optimal performance among three incubation temperatures of 30 degrees C and the best activity in the 10 to 50 microg/ml concentration of the herbicide. Each bacterial strain was able to degrade more than one kind of test herbicides. After incubation for 119 days, B. cereus showed the highest activity to degrade alachlor and propachlor, and B. thuringiensis to degrade metolachlor.

  17. Evaluation of soil amendments as a remediation alternative for cadmium-contaminated soils under cacao plantations.

    PubMed

    Chavez, E; He, Z L; Stoffella, P J; Mylavarapu, R; Li, Y; Baligar, V C

    2016-09-01

    Elevated plant-available cadmium (Cd) in soils results in contamination to cacao (Theobroma cacao L) beans. Effectiveness of vermicompost and zeolite in reducing available Cd in three cacao-growing soils was studied under laboratory conditions. Sorption-desorption experiments were conducted in soils and amendments. Cadmium was added at 0 or 5 mg kg(-1) (spiked), then, amendments were incorporated at 0, 0.5, or 2 %. Amended soils were incubated at room temperature for 28 days. Plant-available Cd was determined using 0.01 M CaCl2 (WSE) and Mehlich 3 (M3) extraction procedures in subsamples taken from individual bags at six time intervals. Soils and amendments displayed different sorption characteristics and a better fit was attained with Freundlich model (R (2) > 0.82). Amendments were ineffective in reducing extractable Cd in non-spiked soils. In Cd-spiked soils, vermicompost at 2 % significantly reduced WSE-Cd (P < 0.01) from 3.36, 0.54, and 0.38 mg kg(-1) to values lower that instrument's detection in all the three soils and significantly diminished M3-extractable Cd (P < 0.05) from 4.62 to 4.11 mg kg(-1) in only one soil. Vermicompost at 0.5 % significantly decreased WSE-Cd (P < 0.01) from 3.04 and 0.31 to 1.69 and 0.20 mg kg(-1), respectively, in two soils with low sorption capacity for Cd. In contrast, zeolite failed to reduce WSE- or M3-extractable Cd in all studied soils. A negative correlation occurred between soil pH and WSE-Cd (r > -0.89, P < 0.01). The decrease in WSE-Cd appears to be associated with the increase in pH of the vermicompost-amended soils.

  18. Differences in SOM decomposition and temperature sensitivity among soil aggregate size classes in a temperate grasslands.

    PubMed

    Wang, Qing; Wang, Dan; Wen, Xuefa; Yu, Guirui; He, Nianpeng; Wang, Rongfu

    2015-01-01

    The principle of enzyme kinetics suggests that the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition is inversely related to organic carbon (C) quality, i.e., the C quality-temperature (CQT) hypothesis. We tested this hypothesis by performing laboratory incubation experiments with bulk soil, macroaggregates (MA, 250-2000 μm), microaggregates (MI, 53-250 μm), and mineral fractions (MF, <53 μm) collected from an Inner Mongolian temperate grassland. The results showed that temperature and aggregate size significantly affected on SOM decomposition, with notable interactive effects (P<0.0001). For 2 weeks, the decomposition rates of bulk soil and soil aggregates increased with increasing incubation temperature in the following order: MA>MF>bulk soil >MI(P <0.05). The Q10 values were highest for MA, followed (in decreasing order) by bulk soil, MF, and MI. Similarly, the activation energies (Ea) for MA, bulk soil, MF, and MI were 48.47, 33.26, 27.01, and 23.18 KJ mol-1, respectively. The observed significant negative correlations between Q10 and C quality index in bulk soil and soil aggregates (P<0.05) suggested that the CQT hypothesis is applicable to soil aggregates. Cumulative C emission differed significantly among aggregate size classes (P <0.0001), with the largest values occurring in MA (1101 μg g-1), followed by MF (976 μg g-1) and MI (879 μg g-1). These findings suggest that feedback from SOM decomposition in response to changing temperature is closely associated withsoil aggregation and highlights the complex responses of ecosystem C budgets to future warming scenarios.

  19. Penguins significantly increased phosphine formation and phosphorus contribution in maritime Antarctic soils.

    PubMed

    Zhu, Renbin; Wang, Qing; Ding, Wei; Wang, Can; Hou, Lijun; Ma, Dawei

    2014-11-14

    Most studies on phosphorus cycle in the natural environment focused on phosphates, with limited data available for the reduced phosphine (PH3). In this paper, matrix-bound phosphine (MBP), gaseous phosphine fluxes and phosphorus fractions in the soils were investigated from a penguin colony, a seal colony and the adjacent animal-lacking tundra and background sites. The MBP levels (mean 200.3 ng kg(-1)) in penguin colony soils were much higher than those in seal colony soils, animal-lacking tundra soils and the background soils. Field PH3 flux observation and laboratory incubation experiments confirmed that penguin colony soils produced much higher PH3 emissions than seal colony soils and animal-lacking tundra soils. Overall high MBP levels and PH3 emissions were modulated by soil biogeochemical processes associated with penguin activities: sufficient supply of the nutrients phosphorus, nitrogen, and organic carbon from penguin guano, high soil bacterial abundance and phosphatase activity. It was proposed that organic or inorganic phosphorus compounds from penguin guano or seal excreta could be reduced to PH3 in the Antarctic soils through the bacterial activity. Our results indicated that penguin activity significantly increased soil phosphine formation and phosphorus contribution, thus played an important role in phosphorus cycle in terrestrial ecosystems of maritime Antarctica.

  20. Penguins significantly increased phosphine formation and phosphorus contribution in maritime Antarctic soils

    PubMed Central

    Zhu, Renbin; Wang, Qing; Ding, Wei; Wang, Can; Hou, Lijun; Ma, Dawei

    2014-01-01

    Most studies on phosphorus cycle in the natural environment focused on phosphates, with limited data available for the reduced phosphine (PH3). In this paper, matrix-bound phosphine (MBP), gaseous phosphine fluxes and phosphorus fractions in the soils were investigated from a penguin colony, a seal colony and the adjacent animal-lacking tundra and background sites. The MBP levels (mean 200.3 ng kg−1) in penguin colony soils were much higher than those in seal colony soils, animal-lacking tundra soils and the background soils. Field PH3 flux observation and laboratory incubation experiments confirmed that penguin colony soils produced much higher PH3 emissions than seal colony soils and animal-lacking tundra soils. Overall high MBP levels and PH3 emissions were modulated by soil biogeochemical processes associated with penguin activities: sufficient supply of the nutrients phosphorus, nitrogen, and organic carbon from penguin guano, high soil bacterial abundance and phosphatase activity. It was proposed that organic or inorganic phosphorus compounds from penguin guano or seal excreta could be reduced to PH3 in the Antarctic soils through the bacterial activity. Our results indicated that penguin activity significantly increased soil phosphine formation and phosphorus contribution, thus played an important role in phosphorus cycle in terrestrial ecosystems of maritime Antarctica. PMID:25394572

  1. 'Green incubation': avian offspring benefit from aromatic nest herbs through improved parental incubation behaviour.

    PubMed

    Gwinner, Helga; Capilla-Lasheras, Pablo; Cooper, Caren; Helm, Barbara

    2018-06-13

    Development of avian embryos requires thermal energy, usually from parents. Parents may, however, trade off catering for embryonic requirements against their own need to forage through intermittent incubation. This dynamically adjusted behaviour can be affected by properties of the nest. Here, we experimentally show a novel mechanism by which parents, through incorporation of aromatic herbs into nests, effectively modify their incubation behaviour to the benefit of their offspring. Our study species, the European starling, includes in its nest aromatic herbs which promote offspring fitness. We provided wild starlings with artificial nests including or excluding the typically selected fresh herbs and found strong support for our prediction of facilitated incubation. Herb effects were not explained by thermal changes of the nests per se , but by modified parental behaviours. Egg temperatures and nest attendance were higher in herb than herbless nests, egg temperatures dropped less frequently below critical thresholds and parents started their active day earlier. These effects were dynamic over time and particularly strong during early incubation. Incubation period was shorter in herb nests, and nestlings were heavier one week after hatching. Aromatic herbs hence influenced incubation in beneficial ways for offspring, possibly through pharmacological effects on incubating parents. © 2018 The Author(s).

  2. Soil warming increases metabolic quotients of soil microorganisms without changes in temperature sensitivity of soil respiration

    NASA Astrophysics Data System (ADS)

    Marañón-Jiménez, Sara; Soong, Jenniffer L.; Leblans, Niki I. W.; Sigurdsson, Bjarni D.; Dauwe, Steven; Fransen, Erik; Janssens, Ivan A.

    2017-04-01

    Increasing temperatures can accelerate soil organic matter (SOM) decomposition and release large amounts of CO2 to the atmosphere, potentially inducing climate change feedbacks. Alterations to the temperature sensitivity and metabolic pathways of soil microorganisms in response to soil warming can play a key role in these soil carbon (C) losses. Here, we present results of an incubation experiment using soils from a geothermal gradient in Iceland that have been subjected to different intensities of soil warming (+0, +1, +3, +5, +10 and +20 °C above ambient) over seven years. We hypothesized that 7 years of soil warming would led to a depletion of labile organic substrates, with a subsequent decrease of the "apparent" temperature sensitivity of soil respiration. Associated to this C limitation and more sub-optimal conditions for microbial growth, we also hypothesized increased microbial metabolic quotients (soil respiration per unit of microbial biomass), which is associated with increases in the relative amount of C invested into catabolic pathways along the warming gradient. Soil respiration and basal respiration rates decreased with soil warming intensity, in parallel with a decline in soil C availability. Contrasting to our first hypothesis, we did not detect changes in the temperature sensitivity of soil respiration with soil warming or on the availability of nutrients and of labile C substrates at the time of incubation. However, in agreement to our second hypothesis, microbial metabolic quotients (soil respiration per unit of microbial biomass) increased at warmer temperatures, while the C retained in biomass decreased as substrate became limiting. Long-term (7 years) temperature increases thus triggered a change in the metabolic functioning of the soil microbial communities towards increasing energy costs for maintenance or resource acquisition, thereby lowering the capacity of C retention and stabilization of warmed soils. These results highlight the need

  3. Isotopic Expression of Soil Denitrification across Gradients in Nitrogen and Carbon Availability

    NASA Astrophysics Data System (ADS)

    Walker, R.; Houlton, B. Z.; Perakis, S. S.

    2016-12-01

    Denitrification removes biologically available nitrogen (N) from ecosystems, making it an important control over the biosphere's N balance, with implications for air quality, human health and climate change. Despite its importance, estimates of the global soil denitrification flux remain highly uncertain. Major challenges lie in directly measuring the gaseous by-products of denitrification and scaling this complex microbial processes in both space and time. Process-based models constrained by empirical isotopic evidence have emerged as a method to help overcome these challenges. These models use the terrestrial 15N budget, along with soil moisture and N input data, to quantify denitrification fluxes and its gaseous forms, including NO, N2O and N2. However, the robustness of this method is limited by incomplete understanding of isotopic expression of denitrification and how it varies across known controls, such as carbon (C) and nitrate (NO3) availability. Here, we present a quantitative assessment of the isotope effect expression of in situ soil denitrification across gradients in N and C concentrations. This experiment tests the hypothesis that isotopic expression of soil denitrification (a kinetic process) increases with NO3 availability (reaction substrate) and decreases with increasing availability of organic C (electron donor). To test the impact of NO3 availability on the isotope effect of denitrification, field incubations experiments were conducted across a natural soil N gradient, ranging from 0.11 to 0.69% N. Similarly, the impact of electron donor availability was tested by conducting field incubations across a natural soil C gradient ranging from 1.94 to 11.60%. Data show that in lower N sites, the percent of NO3 consumed during the incubation was higher, while C availability neither affected the fraction of NO3 consumed nor the rate of consumption. These findings suggest that greater NO3 concentrations allow for greater isotope expression of

  4. Litter quality impacts short- but not long-term soil carbon dynamics in soil aggregate fractions.

    PubMed

    Gentile, Roberta; Vanlauwe, Bernard; Six, Johan

    2011-04-01

    Complex molecules are presumed to be preferentially stabilized as soil organic carbon (SOC) based on the generally accepted concept that the chemical composition of litter is a major factor in its rate of decomposition. Hence, a direct link between litter quality and SOC quantity has been assumed, accepted, and ultimately incorporated in SOC models. Here, however, we present data from an incubation and field experiment that refutes the influence of litter quality on the quantity of stabilized SOC. Three different qualities of litter (Tithonia diversifolia, Calliandra calothyrsus, and Zea mays stover; 4 Mg C x ha(-1) yr(-1)) with and without the addition of mineral N fertilizer (0 or 120 kg N x ha(-1)season(-1) were added to a red clay Humic Nitisol in a 3-yr field trial and a 1.5-yr incubation experiment. The litters differed in their concentrations of N, lignin, and polyphenols with the ratio of (lignin + polyphenols): N ranging from 3.5 to 9.8 for the field trial and from 2.3 to 4.0 for the incubation experiment in the order of T. diversifolia < C. calothyrsus < or = Z. mays. Litter quality did not affect the amount of SOC stabilized after three annual additions in the field trial. Even within the most sensitive soil aggregate fractions, SOC contents and C:N ratios did not differ with litter quality, indicating that litter quality did not influence the mechanisms by which SOC was stabilized. While increasing litter quality displayed faster decomposition and incorporation of C into soil aggregates after 0.25 yr in the incubation study, all litters resulted in equivalent amounts of C stabilized in the soil after 1.5 yr, further corroborating the results of the field trial. The addition of N fertilizer did not affect SOC stabilization in either the field or the incubation trial. Thus, we conclude that, while litter quality controls shorter-term dynamics of C decomposition and accumulation in the soil, longer-term SOC patterns cannot be predicted based on initial

  5. Effect of Biochar on Greenhouse Gas Emissions and Nitrogen Cycling in Laboratory and Field Experiments

    NASA Astrophysics Data System (ADS)

    Hagemann, Nikolas; Harter, Johannes; Kaldamukova, Radina; Ruser, Reiner; Graeff-Hönninger, Simone; Kappler, Andreas; Behrens, Sebastian

    2014-05-01

    The extensive use of nitrogen (N) fertilizers in agriculture is a major source of anthropogenic N2O emissions contributing 8% to global greenhouse gas emissions. Soil biochar amendment has been suggested as a means to reduce both CO2 and non-CO2 greenhouse gas emissions. The reduction of N2O emissions by biochar has been demonstrated repeatedly in field and laboratory experiments. However, the mechanisms of the reduction remain unclear. Further it is not known how biochar field-weathering affects GHG emissions and how agro-chemicals, such as the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP), that is often simultaneously applied together with commercial N-fertilizers, impact nitrogen transformation and N2O emissions from biochar amended soils. In order investigate the duration of the biochar effect on soil N2O emissions and its susceptibility to DMPP application we performed a microcosm and field study with a high-temperature (400 ° C) beech wood derived biochar (60 t ha-1 and 5 % (w/w) biochar in the field and microcosms, respectively). While the field site contained the biochar already for three years, soil and biochar were freshly mixed for the laboratory microcosm experiments. In both studies we quantified GHG emissions and soil nitrogen speciation (nitrate, nitrite, ammonium). While the field study was carried out over the whole vegetation period of the sunflower Helianthus annuus L., soil microcosm experiments were performed for up to 9 days at 28° C. In both experiments a N-fertilizer containing DMPP was applied either before planting of the sunflowers or at the beginning of soil microcosms incubation. Laboratory microcosm experiments were performed at 60% water filled pore space reflecting average field conditions. Our results show that biochar effectively reduced soil N2O emissions by up to 60 % in the field and in the soil microcosm experiments. No significant differences in N2O emission mitigation potential between field-aged and fresh

  6. Sorption and pH determine the long-term partitioning of cadmium in natural soils.

    PubMed

    Ardestani, Masoud M; van Gestel, Cornelis A M

    2016-09-01

    The bioavailability of metals in soil is a dynamic process. For a proper extrapolation to the field of laboratory studies on fate and effects, it is important to understand the dynamics of metal bioavailability and the way it is influenced by soil properties. The aim of this study was to assess the parallel (concurrent) effect of pH and aging time on the partitioning of cadmium in natural LUFA 2.2 soil. Cadmium nitrate-spiked pH-amended LUFA 2.2 soils were incubated under laboratory conditions for up to 30 weeks. Measured pHpw was lower after 3 weeks and decreased only slightly toward the end of the test. Cadmium concentrations in the pore water increased with time for all soil pH levels, while they decreased with increasing pH. Freundlich kf values ranged between 4.26 and 934 L kg(-1) (n = 0.79 to 1.36) and were highest at the highest pH tested (pH = 6.5). Multiple linear regression analysis, based on a soil ligand modeling approach, resulted in affinity constants of 2.61 for Ca(2+) (log KCa-SL) and 5.05 for H(+) (log KH-SL) for their binding to the active sites on the soil surface. The results showed that pH and aging time are two important factors which together affect cadmium partitioning and mobility in spiked natural soils.

  7. Response of soil microbial activity and biodiversity in soils polluted with different concentrations of cypermethrin insecticide.

    PubMed

    Tejada, Manuel; García, Carlos; Hernández, Teresa; Gómez, Isidoro

    2015-07-01

    We performed a laboratory study into the effect of cypermethrin insecticide applied to different concentrations on biological properties in two soils [Typic Xerofluvent (soil A) and Xerollic Calciorthid (soil B)]. Two kg of each soil were polluted with cypermethrin at a rate of 60, 300, 600, and 1,200 g ha(-1) (C1, C2, C3, and C4 treatments). A nonpolluted soil was used as a control (C0 treatment). For all treatments and each experimental soil, soil dehydrogenase, urease, β-glucosidase, phosphatase, and arylsulphatase activities and soil microbial community were analysed by phospholipid fatty acids, which were measured at six incubation times (3, 7, 15, 30, 60, and 90 days). The behavior of the enzymatic activities and microbial population were dependent on the dose of insecticide applied to the soil. Compared with the C0 treatment, in soil A, the maximum inhibition of the enzymatic activities was at 15, 30, 45, and 90 days for the C1, C2, C3, and C4 treatments, respectively. However, in soil B, the maximum inhibition occurred at 7, 15, 30, and 45 days for the C1, C2, C3, and C4 treatments, respectively. These results suggest that the cypermethrin insecticide caused a negative effect on soil enzymatic activities and microbial diversity. This negative impact was greater when a greater dose of insecticide was used; this impact was also greater in soil with lower organic matter content. For both soils, and from these respective days onward, the enzymatic activities and microbial populations progressively increased by the end of the experimental period. This is possibly due to the fact that the insecticide or its breakdown products and killed microbial cells, subsequently killed by the insecticide, are being used as a source of energy or as a carbon source for the surviving microorganisms for cell proliferation.

  8. Toxicity of nitrogenous fertilizers to eggs of snapping turtles (Chelydra serpentina) in field and laboratory exposures.

    PubMed

    de Solla, Shane Raymond; Martin, Pamela Anne

    2007-09-01

    Many reptiles oviposit in soil of agricultural landscapes. We evaluated the toxicity of two commonly used nitrogenous fertilizers, urea and ammonium nitrate, on the survivorship of exposed snapping turtle (Chelydra serpentina) eggs. Eggs were incubated in a community garden plot in which urea was applied to the soil at realistic rates of up to 200 kg/ha in 2004, and ammonium nitrate was applied at rates of up to 2,000 kg/ha in 2005. Otherwise, the eggs were unmanipulated and were subject to ambient temperature and weather conditions. Eggs were also exposed in the laboratory in covered bins so as to minimize loss of nitrogenous compounds through volatilization or leaching from the soil. Neither urea nor ammonium nitrate had any impact on hatching success or development when exposed in the garden plot, despite overt toxicity of ammonium nitrate to endogenous plants. Both laboratory exposures resulted in reduced hatching success, lower body mass at hatching, and reduced posthatching survival compared to controls. The lack of toxicity of these fertilizers in the field was probably due to leaching in the soil and through atmospheric loss. In general, we conclude that nitrogenous fertilizers probably have little direct impacts on turtle eggs deposited in agricultural landscapes.

  9. Depth dependent microbial carbon use efficiency in the capillary fringe as affected by water table fluctuations in a column incubation experiment

    NASA Astrophysics Data System (ADS)

    Pronk, G. J.; Mellage, A.; Milojevic, T.; Smeaton, C. M.; Rezanezhad, F.; Van Cappellen, P.

    2017-12-01

    Microbial growth and turnover of soil organic carbon (SOC) depend on the availability of electron donors and acceptors. The steep geochemical gradients in the capillary fringe between the saturated and unsaturated zones provide hotspots of soil microbial activity. Water table fluctuations and the associated drying and wetting cycles within these zones have been observed to lead to enhanced turnover of SOC and adaptation of the local microbial communities. To improve our understanding of SOC degradation under changing moisture conditions, we carried out an automated soil column experiment with integrated of hydro-bio-geophysical monitoring under both constant and oscillating water table conditions. An artificial soil mixture composed of quartz sand, montmorillonite, goethite and humus was used to provide a well-defined system. This material was inoculated with a microbial community extracted from a forested riparian zone. The soils were packed into 6 columns (60 cm length and 7.5 cm inner diameter) to a height of 45 cm; and three replicate columns were incubated under constant water table while another three were saturated and drained monthly. The initial soil development, carbon cycling and microbial community development were then characterized during 10 months of incubation. This system provides an ideal artificial gradient from the saturated to the unsaturated zone to study soil development from initially homogeneous materials and the same microbial community composition under controlled conditions. Depth profiles of SOC and microbial biomass after 329 days of incubation showed a depletion of carbon in the transition drying and wetting zone that was not associated with higher accumulation of microbial biomass, indicating a lower carbon use efficiency of the microbial community established within the water table fluctuation zone. This was supported by a higher ATP to microbial biomass carbon ratio within the same zone. The findings from this study highlight the

  10. Effect of repeated drying-wetting-freezing-thawing cycles on the active soil organic carbon pool

    NASA Astrophysics Data System (ADS)

    Semenov, V. M.; Kogut, B. M.; Lukin, S. M.

    2014-04-01

    Samples of soddy-podzolic soil (long-term overgrown fallow and continuous bare fallow), gray forest soil (forest, farming agrocenosis), and a typical chernozem (virgin steppe, forest area, farming agrocenosis, continuous bare fallow) have been incubated under stable conditions; other samples of these soils have been subjected to six drying-wetting-incubation-freezing-thawing-incubation cycles during 136 days. The wetting of dried soils and the thawing of frozen soils result in an abrupt but short increase in the emission rate of C-CO2 by 2.7-12.4 and 1.6-2.7 times, respectively, compared to the stable incubation conditions. As the soil is depleted in potentially mineralizable organic matter, the rate of the C-CO2 emission pulses initiated by disturbing impacts decreases. The cumulative extra production of C-CO2 by soils of natural lands for six cycles makes up 21-40% of that in the treatments with stable incubation conditions; the corresponding value for cultivated soils, including continuous clean fallow, is in the range of 45-82%. The content of potentially mineralizable organic matter in the soils subjected to recurrent drying-wetting-freezingthawing cycles decreased compared to the soils without disturbing impacts by 1.6-4.4 times, and the mineralization constants decreased by 1.9-3.6 times. It has been emphasized that the cumulative effect of drying-wetting-freezing-thawing cycles is manifested not only in the decrease in the total Corg from the soil but also in the reduction of the mineralization potential of the soil organic matter.

  11. Perturbations and gradients as fundamental tests for modeling the soil carbon cycle

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B. P.; Bailey, V. L.; Becker, K.; Fansler, S.; Hinkle, C.; Liu, C.

    2013-12-01

    An important step in matching process-level knowledge to larger-scale measurements and model results is to challenge those models with site-specific perturbations and/or changing environmental conditions. Here we subject modified versions of an ecosystem process model to two stringent tests: replicating a long-term climate change dryland experiment (Rattlesnake Mountain) and partitioning the carbon fluxes of a soil drainage gradient in the northern Everglades (Disney Wilderness Preserve). For both sites, on-site measurements were supplemented by laboratory incubations of soil columns. We used a parameter-space search algorithm to optimize, within observational limits, the model's influential inputs, so that the spun-up carbon stocks and fluxes matched observed values. Modeled carbon fluxes (net primary production and net ecosystem exchange) agreed with measured values, within observational error limits, but the model's partitioning of soil fluxes (autotrophic versus heterotrophic), did not match laboratory measurements from either site. Accounting for site heterogeneity at DWP, modeled carbon exchange was reasonably consistent with values from eddy covariance. We discuss the implications of this work for ecosystem- to global scale modeling of ecosystems in a changing climate.

  12. Decoupling of lignin and total litter decomposition across North American forest soils: a phenomenon to reconcile old and new paradigms of soil organic matter?

    NASA Astrophysics Data System (ADS)

    Hall, S. J.; Hammel, K.

    2017-12-01

    An "old" paradigm of soil organic matter (SOM) posited that biochemically "recalcitrant" lignin derivatives were a dominant constituent. Over the past decade(s), evidence for a newer paradigm has emerged which suggests that recalcitrance has little long-term impact on the biochemical composition of SOM, and that lignin is relatively unimportant in comparison with dead microbial biomass. Yet, methodological biases have hampered accurate quantification of lignin dynamics in mineral soils, and may have led to systematic underestimates of lignin stocks and turnover. Here, we sought to test this aspect of the "new" SOM paradigm. Synthetic position-specific 13C-labeled lignins provide a robust quantitative method to track the mineralization and fate of lignin moieties in mineral soils. Relatively few microbial taxa are known to depolymerize macromolecular lignin, and lignin derivatives can specifically associate with iron oxide mineral phases. Consequently, we hypothesized that decomposition of lignin is poorly correlated with total litter decomposition across ecosystems, and that lignin may represent a variable but significant component of decadal-cycling SOM. We incubated 10 forest soils spanning diverse North American ecosystems over seven months under laboratory conditions at constant temperature and moisture. Soils were incubated alone, with added C4 grass litter and natural isotope abundance lignin, and with added C4 litter and 13Cß-labeled lignin. These treatments allowed us to partition respiration for each soil from SOM, litter, and the Cß moiety of lignin—which is diagnostic for cleavage of the polymer. Consistent with our hypothesis, we found much greater variability (ten-fold) in cumulative lignin mineralization relative to bulk litter (two-fold) among soils. Multiple-pool first-order decay models implied that mean turnover times for lignin ranged from one to several decades among soils, relative to several years for bulk litter. Our results suggest a

  13. Stress, deformation and micromorphological aspects of soil freezing under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Jetchick, Elizabeth

    In this thesis, frost heave is viewed as a process resulting from the interactions between thermodynamic conditions, soil environment controls such as texture, stress/deformation conditions and soil microstructure. A series of laboratory experiments was devised to investigate the links between these aspects. Because a limited number of studies exist on the development of internal stresses and strains in freezing soil, the work focussed on obtaining rheological data using conventional soil strain gauges and prototype stress transducers. A fine-grained unstructured silt was placed in a column (30 cm diameter by 100 cm length) and subjected to freezing and freeze-thaw cycles from the top down, lasting up to three months. Heat and water flows, as well as stresses and strains were monitored. The frozen soil was sectioned at the end of four of the experiments to examine the soil fabrics that had developed. From the experimental results, schematic stress and strain curves are proposed. For a single freeze cycle, compressive normal and tensile normal stresses were recorded simultaneously by the measuring devices within the freezing soil profile. Ice lens inception took place when the stress field changed, a condition which occurred either at the frost front level or at the base of the growing ice lens. Negative and positive strains reflected the different stress states that were sustained below and above the freezing front. Negative strains or soil consolidation took place as stresses increased before the passage of the frost line. Negligible soil strains were recorded as maximum soil consolidation was attained, before soil expansion. Distinct positive strain patterns indicating secondary and continuing heave, were recorded simultaneously throughout a thickness of soil, over a range of temperatures. Ice lens growth mostly took place as secondary frost heave, but continuing heave was measured, and the temperature conditions for both types of heave were determined. During

  14. [Seasonal dynamics of soil organic carbon mineralization for two forest types in Xiaoxing'an Mountains, China].

    PubMed

    Gao, Fei; Lin, Wei; Cui, Xiao-yang

    2016-01-01

    To investigate the seasonal dynamics of soil organic carbon (SOC) mineralization in Xiaoxing'an Mountain, we incubated soil samples collected from virgin Korean pine forest and broad-leaved secondary forest in different seasons in the laboratory and measured the SOC mineralization rate and cumulative SOC mineralization (Cm). We employed simultaneous reaction model to describe C mineralization kinetics and estimated SOC mineralization parameters including soil easily mineralizable C (C1), potentially mineralizable C (C₀). We also analyzed the relations between Cm, C₁and their influencing factors. Results showed that the incubated SOC mineralization rate and Cm for 0-5 cm soil layer decreased from early spring to late autumn, while for 5-10 cm soil layer the seasonal variation was not statistically significant for both forest types. The C₁ in 0-5 and 5-10 cm soil layers varied from 42.92-92.18 and 19.23-32.95 mg kg⁻¹, respectively, while the C₀ in 0-5 and 5-10 cm soil layers varied from 863.92-3957.15 and 434.15-865.79 mg · kg⁻¹, respec- tively. Both C₁ and C₀ decreased from early spring to late autumn. The proportions of C₀ in SOC for two forest types were 0.74%-2.78% and 1.11%-1.84% in 0-5 and 5-10 cm soil layers, respectively, and decreased from early spring to late autumn, indicating that SOC tended to become more stable as a whole from spring to autumn. The Cm and C₀ were significantly positively correlated to in situ soil water content and hot water-extractable carbohydrate content, but were not correlated to in situ soil temperature and cool water-extractable carbohydrate content. We concluded that soil labile organic carbon, soil physical and chemical properties contributed to the seasonal dynamics of SOC mineralization in the forests.

  15. Towards a methodology for removing and reconstructing soil protists with intact soil microbial communities

    NASA Astrophysics Data System (ADS)

    Hu, Junwei; Tsegaye Gebremikael, Mesfin; Salehi Hosseini, Pezhman; De Neve, Stefaan

    2017-04-01

    field: 1) non-irradiated (control); 2-6) irradiated with doses of 5, 7.5, 10, 12.5 and 15 kGy; 7) irradiated with 25 kGy followed by inoculation with multicellular fauna free soil powder. All treatments were incubated using Magenta™ vessels GA-7 which allow air exchange but exclude microbial infection, and we monitor nematode and protist populations after 0, 2, 4 and 8 weeks of incubation by destructive sampling. We also measure the degree of disturbance to the microbial community composition in all treatments as compared to the control soil at the end of incubation. The experiment is ongoing and the data will be presented at the conference.

  16. Evolution of organic matter fractions after application of co-compost of sewage sludge with pruning waste to four Mediterranean agricultural soils. A soil microcosm experiment.

    PubMed

    Pérez-Lomas, A L; Delgado, G; Párraga, J; Delgado, R; Almendros, G; Aranda, V

    2010-10-01

    The effect of co-compost application from sewage sludge and pruning waste, on quality and quantity of soil organic carbon (SOC) in four Mediterranean agricultural soils (South Spain), was studied in soil microcosm conditions. Control soil samples (no co-compost addition) and soils treated with co-composts to a rate equivalent of 140 Mg ha(-1) were incubated for 90 days at two temperatures: 5 and 35 degrees C. The significances of incubation temperature and the addition of co-compost, on the evolution of the different fractions of SOC, were studied using a 2(3) factorial design. The co-compost amendment increased the amounts of humic fractions: humic acids (HA) (1.9 times), fulvic acids (FA) (3.3 times), humin (1.5 times), as well as the free organic matter (1.4 times) and free lipids (21.8 times). Incubation of the soils enhanced its biological activity mainly in the amended soils and at 35 degrees C, leading to progressive SOC mineralization and humification, concomitant to the preferential accumulation of HA. The incubation results show large differences depending on temperature and soil types. This fact allows us to select suitable organic amendment for the soil when a rapid increase in nutrients through mineralization is preferred, or in cases intending the stabilization and preservation of the SOC through a process of humification. In soils with HA of more than 5 E(4)/E(6) ratio, the incubation temperature increased rates of mineralization and humification, whereas lower temperatures limited the extent of both processes. In these soils the addition of co-compost in spring or summer is the most recommendable. In soils with HA of lower E(4)/E(6) ratio (<5), the higher temperature favoured mineralization but not humification, whereas the low temperature maintained the SOC levels and even increased the HA/FA ratio. In these soils the moment of addition of organic amendment should be decided depending on the effect intended. On the other hand, the lower the SOC

  17. Soil calcium status and the response of stream chemistry to changing acidic deposition rates

    USGS Publications Warehouse

    Lawrence, G.B.; David, M.B.; Lovett, Gary M.; Murdoch, Peter S.; Burns, Douglas A.; Stoddard, J.L.; Baldigo, Barry P.; Porter, J.H.; Thompson, A.W.

    1999-01-01

    Despite a decreasing trend in acidic deposition rates over the past two to three decades, acidified surface waters in the northeastern United States have shown minimal changes. Depletion of soil Ca pools has been suggested as a cause, although changes in soil Ca pools have not been directly related to long-term records of stream chemistry. To investigate this problem, a comprehensive watershed study was conducted in the Neversink River Basin, in the Catskill Mountains of New York, during 1991-1996. Spatial variations of atmospheric deposition, soil chemistry, and stream chemistry were evaluated over an elevation range of 817-1234 m to determine whether these factors exhibited elevational patterns. An increase in atmospheric deposition of SO4 with increasing elevation corresponded with upslope decreases of exchangeable soil base concentrations and acid-neutralizing capacity of stream water. Exchangeable base concentrations in homogeneous soil incubated within the soil profile for one year also decreased with increasing elevation. An elevational gradient in precipitation was not observed, and effects of a temperature gradient on soil properties were not detected. Laboratory leaching experiments with soils from this watershed showed that (1) concentrations of Ca in leachate increased as the concentrations of acid anions in added solution increased, and (2) the slope of this relationship was positively correlated with base saturation. Field and laboratory soil analyses are consistent with the interpretation that decreasing trends in acid-neutralizing capacity in stream water in the Neversink Basin, dating back to 1984, are the result of decreases in soil base saturation caused by acidic deposition.

  18. Incubation temperature and hemoglobin dielectric of chicken embryos incubated under the influence of electric field.

    PubMed

    Shafey, T M; Al-Batshan, H A; Shalaby, M I; Ghannam, M M

    2006-01-01

    Eggs from a layer-type breeder flock (Baladi, King Saud University) between 61 and 63 weeks of age were used in 3 trials to study the effects of electric field (EF) during incubation on the internal temperature of incubation, and eggs and hemoglobin (Hb) dielectric of chicken embryos at 18 days of age. Dielectric relative permittivity (epsilon') and conductivity (sigma) of Hb were examined in the range of frequency from 20 to 100 kHz. The values of dielectric increment (Deltaepsilon') and the relaxation times (tau) of Hb molecules were calculated. The internal temperature of eggs was measured in empty (following the removal of egg contents) and fertilized eggs in trials 1 and 2, respectively. The level of the EF was 30 kV/m, 60 Hz. EF incubation of embryos influenced the temperature of incubation and electrical properties of Hb molecules and did not influence the temperature of incubation and internal environment of eggs when empty eggs were incubated. EF incubation of fertilized eggs significantly raised the temperature of incubation, egg air cell, and at the surface of the egg yolk by approximately 0.09, 0.60, and 0.61 degrees F, respectively and Hb epsilon', sigma, Deltaepsilon', and tau as a function of the range of frequency of 20 to 100 kHz when compared with their counterparts of the control group. It was concluded that the exposure of fertilized chicken eggs to EF of 30 kV/m, 60 Hz, during incubation altered dielectric properties of Hb and that probably affected cell to cell communication and created the right environment for enhancing the growing process and heat production of embryos consequently increasing the temperature of the internal environment of the egg, and incubation.

  19. Fungicide dissipation and impact on metolachlor aerobic soil degradation and soil microbial dynamics.

    PubMed

    White, Paul M; Potter, Thomas L; Culbreath, Albert K

    2010-02-15

    Pesticides are typically applied as mixtures and or sequentially to soil and plants during crop production. A common scenario is herbicide application at planting followed by sequential fungicide applications post-emergence. Fungicides depending on their spectrum of activity may alter and impact soil microbial communities. Thus there is a potential to impact soil processes responsible for herbicide degradation. This may change herbicide efficacy and environmental fate characteristics. Our study objective was to determine the effects of 4 peanut fungicides, chlorothalonil (2,4,5,6-tetrachloro-1,3-benzenedicarbonitrile), tebuconazole (alpha-[2-(4-chlorophenyl)ethyl]-alpha-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol), flutriafol (alpha-(2-fluorophenyl)-alpha-(4-fluorophenyl)-1H-1,2,4-triazole-1-ethanol), and cyproconazole (alpha-(4-chlorophenyl)-alpha-(1-cyclopropylethyl)-1H-1,2,4-triazole-1-ethanol) on the dissipation kinetics of the herbicide, metolachlor (2-chloro-N-(6-ethyl-o-tolyl)-N-[(1RS)-2-methoxy-1-methylethyl]acetamide), and on the soil microbial community. This was done through laboratory incubation of field treated soil. Chlorothalonil significantly reduced metolachlor soil dissipation as compared to the non-treated control or soil treated with the other fungicides. Metolachlor DT(50) was 99 days for chlorothalonil-treated soil and 56, 45, 53, and 46 days for control, tebuconazole, flutriafol, and cyproconazole-treated soils, respectively. Significant reductions in predominant metolachlor metabolites, metolachlor ethane sulfonic acid (MESA) and metolachlor oxanilic acid (MOA), produced by oxidation of glutathione-metolachlor conjugates were also observed in chlorothalonil-treated soil. This suggested that the fungicide impacted soil glutathione-S-transferase (GST) activity. Fungicide DT(50) was 27-80 days but impacts on the soil microbial community as indicated by lipid biomarker analysis were minimal. Overall study results indicated that

  20. Global Warming Potential from early phase decomposition of soil organic matter amendments

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Silver, W. L.

    2015-12-01

    Organic matter amendments to soil are widely used as a method of enhancing nutrient availability for crops or grassland. Amendments such as composted manure or greenwaste also have the co-benefits of potentially increasing soil carbon (C) stocks (DeLonge et al., 2013) and diverting organic waste from landfills or manure lagoons. However, application of organic matter amendments can also stimulate emissions of greenhouse gases (GHGs). In this study we determined how the chemical quality of organic matter amendments affected soil C and N content and GHG emissions during early stage decomposition. California grassland soils were amended with six different amendments of varying C and N content including three composts and three feedstocks (goat and horse bedding and cattle manure). Amendments and soils were incubated in the laboratory for 7 weeks; GHG fluxes were measured weekly. The three feedstocks emitted significantly more GHGs than the composted materials. With the exception of cow manure, N content of the amendment was linearly correlated with global warming potential emitted (R2= 0.66, P <0.0001). C:N ratios were not a significant predictor of GHG emissions. Cow manure stimulated a net loss of C (or C equivalents) in the mineral soil, as expected. However, greenwaste compost also surprisingly resulted in net C losses, while goat bedding, horse bedding, and the other compost were either C neutral or a slight net C sink at the end of the incubation. Ongoing analyses are examining the fate of the C incorporated from the amendment to the soil as occluded or free light fraction, as well as N mineralization rates. Our data suggest that N content of organic matter amendments is a good predictor of initial GHG emissions. The study also indicates that composting greenwaste with N-rich bedding and manure can result in lower GHG emissions and C sequestration compared to the individual uncomposted components.

  1. Impact of monovalent cations on soil structure. Part II. Results of two Swiss soils

    NASA Astrophysics Data System (ADS)

    Farahani, Elham; Emami, Hojat; Keller, Thomas

    2018-01-01

    In this study, we investigated the impact of adding solutions with different potassium and sodium concentrations on dispersible clay, water retention characteristics, air permeability, and soil shrinkage behaviour using two agricultural soils from Switzerland with different clay content but similar organic carbon to clay ratio. Three different solutions (including only Na, only K, and the combination of both) were added to soil samples at three different cation ratio of soil structural stability levels, and the soil samples were incubated for one month. Our findings showed that the amount of readily dispersible clay increased with increasing Na concentrations and with increasing cation ratio of soil structural stability. The treatment with the maximum Na concentration resulted in the highest water retention and in the lowest shrinkage capacity. This was was associated with high amounts of readily dispersible clay. Air permeability generally increased during incubation due to moderate wetting and drying cycles, but the increase was negatively correlated with readily dispersible clay. Readily dispersible clay decreased with increasing K, while readily dispersible clay increased with increasing K in Iranian soil (Part I of our study). This can be attributed to the different clay mineralogy of the studied soils (muscovite in Part I and illite in Part II).

  2. [Effects of soil properties on the stabilization process of cadmium in Cd alone and Cd-Pb contaminated soils].

    PubMed

    Wu, Man; Xu, Ming-Gang; Zhang, Wen-Ju; Wu, Hai-Wen

    2012-07-01

    In order to clarify the effects of soil properties on the stabilization process of the cadmium (Cd) added, 11 different soils were collected and incubated under a moisture content of 65%-70% at 25 degrees C. The changes of available Cd contents with incubation time (in 360 days) in Cd and Cd-Pb contaminated treatments were determined. The stabilization process was simulated using dynamic equations. The results showed that after 1.0 mg x kg(-1) Cd or 500 mg x kg(-1) Pb + 1.0 mg x kg(-1) Cd were added into the soil, the available Cd content decreased rapidly during the first 15 days, and then the decreasing rate slowed down, with an equilibrium content reached after 60 days' incubation. In Cd-Pb contaminated soils, the presence of Pb increased the content of available Cd. The stabilization process of Cd could be well described by the second-order equation and the first order exponential decay; meanwhile, dynamic parameters including equilibrium content and stabilization velocity were used to characterize the stabilization process of Cd. These two key dynamic parameters were significantly affected by soil properties. Correlation analysis and stepwise regression suggested that high pH and high cation exchange capacity (CEC) significantly retarded the availability of Cd. High pH had the paramount effect on the equilibrium content. The stabilization velocity of Cd was influenced by the soil texture. It took shorter time for Cd to get stabilized in sandy soil than in the clay.

  3. Sensitivity of Arctic Permafrost Carbon in the Mackenzie River Basin: A substrate addition and incubation experiment

    NASA Astrophysics Data System (ADS)

    Hedgpeth, A.; Beilman, D.; Crow, S. E.

    2014-12-01

    Arctic soil organic matter (SOM) mineralization processes are fundamental to the functioning of high latitude soils in relation to nutrients, stability, and feedbacks to atmospheric CO2 and climate. The arctic permafrost zone covers 25% of the northern hemisphere and contains 1672Pg of soil carbon (C). 88% of this C currently resides in frozen soils that are vulnerable to environmental change. For instance, arctic growing seasons may be lengthened, resulting in an increase in plant productivity and rate of below ground labile C inputs as root exudates. Understanding controls on Arctic SOM dynamics requires recognition that labile C inputs have the potential to significantly affect mineralization of previously stable SOM, also known as 'priming effects'. We conducted a substrate addition incubation experiment to quantify and compare respiration in highly organic (42-48 %C) permafrost soils along a north-south transect in western Canada. Near surface soils (10-20 cm) were collected from permafrost peatland sites in the Mackenzie River Basin from 69.2-62.6°N. The surface soils are fairly young (Δ14C values > -140.0) and can be assumed to contain relatively reactive soil carbon. To assess whether addition of labile substrate alters SOM decomposition dynamics, 4.77-11.75 g of permafrost soil were spiked with 0.5 mg D-glucose g-1 soil and incubated at 5°C. A mass balance approach was used to determin substrate-induced respiration and preliminary results suggest a potential for positive priming in these C-rich soils. Baseline respiration rates from the three sites were similar (0.067-0.263 mg CO2 g-1 soil C) yet show some site-specific trends. The rate at which added substrate was utilized within these soils suggests that other factors besides temperature and soil C content are controlling substrate consumption and its effect on SOM decomposition. Microbial activity can be stimulated by substrate addition to such an extent that SOM turnover is enhanced, suggesting that

  4. Priming of Native Soil Organic Matter by Pyrogenic Organic Matter

    NASA Astrophysics Data System (ADS)

    DeCiucies, S.; Lehmann, J.; Woolf, D.; Whitman, T.

    2016-12-01

    Within the global carbon (C) cycle, soil C makes up a critical and active pool. Pyrogenic C, (PyC) or black C, contributes to this pool, and has been shown to change the turnover rate of the non-pyrogenic soil organic carbon (nSOC) associated with it. This change in rate of mineralization is referred to as priming, which can be negative or positive. There are many possible mechanisms that may be causing this priming effect, both biological and chemical. This study employs incubation experiments to identify and parse these potential mechanisms, focusing on negative priming mechanisms which may have importance in global carbon storage and carbon cycling models. Continuous respiration measurements of soil/char and soil/biomass incubations using isotopically labeled biomass (13C and 15N) indicate that priming interactions are more significant in soils with higher carbon contents, and that higher temperature chars induce more negative priming over time. Current incubations are exploring the effects of chars pyrolyzed at different temperatures, chars extracted of DOC versus non-extracted, soils with differing carbon contents, and the effects of pH and nutrient adjusting incubations. We will continue to examine the contribution of the different mechanisms by isolating variables such as nutrient addition, soil texture, char application rate, and mineral availability. We anticipate that sorption on PyOM surfaces are important in nSOM stabilization and will continue to study these effects using highly labeled substrates and nano secondary ion mass spectrometry (nano-SIMS).

  5. Representativeness of laboratory sampling procedures for the analysis of trace metals in soil.

    PubMed

    Dubé, Jean-Sébastien; Boudreault, Jean-Philippe; Bost, Régis; Sona, Mirela; Duhaime, François; Éthier, Yannic

    2015-08-01

    This study was conducted to assess the representativeness of laboratory sampling protocols for purposes of trace metal analysis in soil. Five laboratory protocols were compared, including conventional grab sampling, to assess the influence of sectorial splitting, sieving, and grinding on measured trace metal concentrations and their variability. It was concluded that grinding was the most important factor in controlling the variability of trace metal concentrations. Grinding increased the reproducibility of sample mass reduction by rotary sectorial splitting by up to two orders of magnitude. Combined with rotary sectorial splitting, grinding increased the reproducibility of trace metal concentrations by almost three orders of magnitude compared to grab sampling. Moreover, results showed that if grinding is used as part of a mass reduction protocol by sectorial splitting, the effect of sieving on reproducibility became insignificant. Gy's sampling theory and practice was also used to analyze the aforementioned sampling protocols. While the theoretical relative variances calculated for each sampling protocol qualitatively agreed with the experimental variances, their quantitative agreement was very poor. It was assumed that the parameters used in the calculation of theoretical sampling variances may not correctly estimate the constitutional heterogeneity of soils or soil-like materials. Finally, the results have highlighted the pitfalls of grab sampling, namely, the fact that it does not exert control over incorrect sampling errors and that it is strongly affected by distribution heterogeneity.

  6. Temperature response of permafrost soil carbon is attenuated by mineral protection.

    PubMed

    Gentsch, Norman; Wild, Birgit; Mikutta, Robert; Čapek, Petr; Diáková, Katka; Schrumpf, Marion; Turner, Stephanie; Minnich, Cynthia; Schaarschmidt, Frank; Shibistova, Olga; Schnecker, Jörg; Urich, Tim; Gittel, Antje; Šantrůčková, Hana; Bárta, Jiři; Lashchinskiy, Nikolay; Fuß, Roland; Richter, Andreas; Guggenberger, Georg

    2018-05-18

    Climate change in Arctic ecosystems fosters permafrost thaw and makes massive amounts of ancient soil organic carbon (OC) available to microbial breakdown. However, fractions of the organic matter (OM) may be protected from rapid decomposition by their association with minerals. Little is known about the effects of mineral-organic associations (MOA) on the microbial accessibility of OM in permafrost soils and it is not clear which factors control its temperature sensitivity. In order to investigate if and how permafrost soil OC turnover is affected by mineral controls, the heavy fraction (HF) representing mostly MOA was obtained by density fractionation from 27 permafrost soil profiles of the Siberian Arctic. In parallel laboratory incubations, the unfractionated soils (bulk) and their HF were comparatively incubated for 175 days at 5 and 15°C. The HF was equivalent to 70 ± 9% of the bulk CO 2 respiration as compared to a share of 63 ± 1% of bulk OC that was stored in the HF. Significant reduction of OC mineralization was found in all treatments with increasing OC content of the HF (HF-OC), clay-size minerals and Fe or Al oxyhydroxides. Temperature sensitivity (Q10) decreased with increasing soil depth from 2.4 to 1.4 in the bulk soil and from 2.9 to 1.5 in the HF. A concurrent increase in the metal-to-HF-OC ratios with soil depth suggests a stronger bonding of OM to minerals in the subsoil. There, the younger 14 C signature in CO 2 than that of the OC indicates a preferential decomposition of the more recent OM and the existence of a MOA fraction with limited access of OM to decomposers. These results indicate strong mineral controls on the decomposability of OM after permafrost thaw and on its temperature sensitivity. Thus, we here provide evidence that OM temperature sensitivity can be attenuated by MOA in permafrost soils. © 2018 John Wiley & Sons Ltd.

  7. Soil solution interactions may limit Pb remediation using P ...

    EPA Pesticide Factsheets

    Lead (Pb) contaminated soils are a potential exposure hazard to the public. Amending soils with phosphorus (P) may reduce Pb soil hazards. Soil from Cleveland, OH containing 726 ± 14 mg Pb kg-1 was amended in a laboratory study with bone meal and triple super phosphate (TSP) at 5:1 P:Pb molar ratios. Soil was acidified, neturalized and re-acidified to encourage Pb phosphate formation. PRSTM-probes were used to evaluate changes in soil solution chemistry. Soil acidification did not decrease in vitro bioaccessible (IVBA) Pb using either a pH 1.5, 0.4 M glycine solution or a pH 2.5 solution with organic acids. PRSTM-probe data found soluble Pb increased 10-fold in acidic conditions compared to circumnetural pH conditions. In acidic conditions (p = 3-4), TSP treated soils increased detected P 10-fold over untreated soils. Bone meal application did not increase PRSTM-probe detected P, indicating there may have been insufficient P to react with Pb. X-ray absorption spectroscopy suggested a 10% increase in pyromorphite formation for the TSP treated soil only. Treatments increased soil electrical conductivity above 16 mS cm-1, potentially causing a new salinity hazard. This study used a novel approach by combining the human ingestion endpoint, PRSTM-probes, and X-ray absorption spectroscopy to evaluate treatment efficacy. PRSTM-probe data indicated potentially excess Ca relative to P across incubation steps that could have competed with Pb for soluble P. Mor

  8. Pore-water pressures associated with clogging of soil pipes: Numerical analysis of laboratory experiments

    USDA-ARS?s Scientific Manuscript database

    Clogging of soil pipes due to excessive internal erosion has been hypothesized to cause extreme erosion events such as landslides, debris flows, and gullies, but confirmation of this phenomenon has been lacking. Laboratory and field measurements have failed to measure pore water pressures within pip...

  9. Soil clay content controls the turnover of slow soil carbon across Chinese cropland

    NASA Astrophysics Data System (ADS)

    Feng, W.; Jiang, J.; Li, J.

    2017-12-01

    Improving the prediction of changes in global soil organic carbon (SOC) lies in accurate estimate of C inputs to soils and SOC turnover time. Since C inputs to soils in cropland can be estimated due to well documented data of crop yields, SOC turnover rate becomes critical for accurate prediction of changes in SOC. The laboratory incubation is widely used but cannot well represent the turnover of slow soil C that accounts for the majority of total SOC, while the long-term observation of temporal changes in SOC stock offers an opportunity to estimate the turnover of slow soil C. Using time series data of SOC stock of twenty long-term agricultural trials that have initiated since 1990 in China, we estimated SOC turnover rates based on changes in soil C pool size and aimed to identify the dominant controls on SOC turnover rate across Chinese cropland. We used the two-pool first-order kinetic soil C model and the inverse modeling with Markov chain the Monte Carlo algorithm, and estimated humification coefficient (h) of C inputs to soils, turnover rates of fast and slow soil C pools, and the transfer coefficient between these two soil C pools. The preliminary results show that the turnover rate of slow soil C is positively correlated with climate (i.e. mean annual temperature and precipitation) but negatively correlated with the clay content, demonstrating that the clay content is important in regulating SOC turnover rates. The ratio of humification coefficient to C turnover rate (h/k) that indicates soil C sequestration efficiency, is negatively correlated with climate and positively correlated with the clay content. In addition, the quantity of C inputs is correlated with h/k and the turnover rate of slow soil C, suggesting that the quantity of C inputs plays an important role in mediating C sequestration efficiency. Further results will inform us the main controls on SOC turnover in Chinese cropland. Keywords: SOC; turnover; long-term trial; temporal change; clay

  10. Dynamics of Soil Water Evaporation during Soil Drying: Laboratory Experiment and Numerical Analysis

    PubMed Central

    Han, Jiangbo; Zhou, Zhifang

    2013-01-01

    Laboratory and numerical experiments were conducted to investigate the evolution of soil water evaporation during a continuous drying event. Simulated soil water contents and temperatures by the calibrated model well reproduced measured values at different depths. Results show that the evaporative drying process could be divided into three stages, beginning with a relatively high evaporation rate during stage 1, followed by a lower rate during transient stage and stage 2, and finally maintaining a very low and constant rate during stage 3. The condensation zone was located immediately below the evaporation zone in the profile. Both peaks of evaporation and condensation rate increased rapidly during stage 1 and transition stage, decreased during stage 2, and maintained constant during stage 3. The width of evaporation zone kept a continuous increase during stages 1 and 2 and maintained a nearly constant value of 0.68 cm during stage 3. When the evaporation zone totally moved into the subsurface, a dry surface layer (DSL) formed above the evaporation zone at the end of stage 2. The width of DSL also presented a continuous increase during stage 2 and kept a constant value of 0.71 cm during stage 3. PMID:24489492

  11. Identification of Two Prion Protein Regions That Modify Scrapie Incubation Time

    PubMed Central

    Supattapone, Surachai; Muramoto, Tamaki; Legname, Giuseppe; Mehlhorn, Ingrid; Cohen, Fred E.; DeArmond, Stephen J.; Prusiner, Stanley B.; Scott, Michael R.

    2001-01-01

    A series of prion transmission experiments was performed in transgenic (Tg) mice expressing either wild-type, chimeric, or truncated prion protein (PrP) molecules. Following inoculation with Rocky Mountain Laboratory (RML) murine prions, scrapie incubation times for Tg(MoPrP)4053, Tg(MHM2)294/Prnp0/0, and Tg(MoPrP,Δ23–88)9949/Prnp0/0 mice were ∼50, 120, and 160 days, respectively. Similar scrapie incubation times were obtained after inoculation of these lines of Tg mice with either MHM2(MHM2(RML)) or MoPrP(Δ23–88)(RML) prions, excluding the possibility that sequence-dependent transmission barriers could account for the observed differences. Tg(MHM2)294/Prnp0/0 mice displayed prolonged scrapie incubation times with four different strains of murine prions. These data provide evidence that the N terminus of MoPrP and the chimeric region of MHM2 PrP (residues 108 through 111) both influence the inherent efficiency of prion propagation. PMID:11152514

  12. Effects of incubation substrates on hatch timing and success of White Sturgeon (Acipenser transmontanus) embryos

    USGS Publications Warehouse

    Parsley, Michael J.; Kofoot, Eric

    2013-01-01

    The Kootenai River white sturgeon (Acipenser transmontanus) was listed as endangered under the Endangered Species Act in 1994 because several decades of failed spawning had put the population at risk of extinction. Natural spawning is known to occur at several locations in the Kootenai River, Idaho, but there is little natural recruitment. Microhabitat where embryo incubation occurs is known to be an important factor in white sturgeon reproductive success. This study was conducted to address questions regarding the suitability of different substrates as egg attachment and incubation sites for these fish. A comparative laboratory study using six types of incubation substrates—clean river rocks, periphyton- and algae-covered rocks, waterlogged wood, sand, riparian vegetation, and clean glass plates—tested the hypothesis that survival to hatch of white sturgeon eggs differs among incubation substrates. The results showed that sand was unsuitable as an incubation substrate, as the adhesive embryos were easily dislodged. Periphyton- and algae-covered rocks had the lowest hatch success, and all other substrates had similar hatch success.

  13. Determination of $sup 241$Am in soil using an automated nuclear radiation measurement laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engstrom, D.E.; White, M.G.; Dunaway, P.B.

    The recent completion of REECo's Automated Laboratory and associated software systems has provided a significant increase in capability while reducing manpower requirements. The system is designed to perform gamma spectrum analyses on the large numbers of samples required by the current Nevada Applied Ecology Group (NAEG) and Plutonium Distribution Inventory Program (PDIP) soil sampling programs while maintaining sufficient sensitivities as defined by earlier investigations of the same type. The hardware and systems are generally described in this paper, with emphasis being placed on spectrum reduction and the calibration procedures used for soil samples. (auth)

  14. Determination of Sediment Oxygen Demand in the Ziya River Watershed, China: Based on Laboratory Core Incubation and Microelectrode Measurements

    PubMed Central

    Rong, Nan; Shan, Baoqing; Wang, Chao

    2016-01-01

    A study coupling sedimentcore incubation and microelectrode measurementwas performed to explore the sediment oxygen demand (SOD) at 16 stations in the Ziya River Watershed, a severely polluted and anoxic river system in the north of China. Total oxygen flux values in the range 0.19–1.41 g/(m2·d) with an average of 0.62 g/(m2·d) were obtained by core incubations, and diffusive oxygen flux values in the range 0.15–1.38 g/(m2·d) with an average of 0.51 g/(m2·d) were determined by microelectrodes. Total oxygen flux obviously correlated with diffusive oxygen flux (R2 = 0.842). The microelectrode method produced smaller results than the incubation method in 15 of 16 sites, and the diffusive oxygen flux was smaller than the total oxygen flux. Although the two sets of SOD values had significant difference accepted by the two methods via the Wilcoxon signed-rank test (p < 0.05), the microelectrode method was shown to produce results that were similar to those from the core incubation method. The microelectrode method, therefore, could be used as an alternative method for traditional core incubation method, or as a method to verify SOD rates measured by other methods. We consider that high potential sediment oxygen demand would occur in the Ziya River Watershed when the dissolved oxygen (DO) recovered in the overlying water. PMID:26907307

  15. The Laboratory Study of Shear Strength of the Overconsolidated and Quasi - Overconsolidated Fine - Grained Soil

    NASA Astrophysics Data System (ADS)

    Strozyk, Joanna

    2017-12-01

    The paper presents results of laboratory shear strength test conducted on fine-grained soil samples with different grain size distribution and with different geological age and stress history. The Triaxial Isotopic Consolidation Undrained Tests (TXCIU) were performed under different consolidation stress in normal and overconsolidadion stress state on the samples with natural structure. Soil samples were selected from soil series of different age and geological origins: overconsolidated sensu stricto Miopliocene silty clay (siCl) and quasi overconsolidated Pleistocene clayey silt (clSi). Paper pointed out that overconsolidated sensu stricto and quasi overconsolidated fine-grained soil in same stress and environmental condition could show almost similar behaviour, and in other condition could behave significantly different. The correct evaluation of geotechnical parameters, the possibility of predicting their time-correct ability is only possible with appropriately recognized geological past and past processes that accompanied the soil formation.

  16. Biofilm effect on soil hydraulic properties: Experimental investigation using soil-grown real biofilm

    NASA Astrophysics Data System (ADS)

    Volk, Elazar; Iden, Sascha C.; Furman, Alex; Durner, Wolfgang; Rosenzweig, Ravid

    2016-08-01

    Understanding the influence of attached microbial biomass on water flow in variably saturated soils is crucial for many engineered flow systems. So far, the investigation of the effects of microbial biomass has been mainly limited to water-saturated systems. We have assessed the influence of biofilms on the soil hydraulic properties under variably saturated conditions. A sandy soil was incubated with Pseudomonas Putida and the hydraulic properties of the incubated soil were determined by a combination of methods. Our results show a stronger soil water retention in the inoculated soil as compared to the control. The increase in volumetric water content reaches approximately 0.015 cm3 cm-3 but is only moderately correlated with the carbon deficit, a proxy for biofilm quantity, and less with the cell viable counts. The presence of biofilm reduced the saturated hydraulic conductivity of the soil by up to one order of magnitude. Under unsaturated conditions, the hydraulic conductivity was only reduced by a factor of four. This means that relative water conductance in biofilm-affected soils is higher compared to the clean soil at low water contents, and that the unsaturated hydraulic conductivity curve of biofilm-affected soil cannot be predicted by simply scaling the saturated hydraulic conductivity. A flexible parameterization of the soil hydraulic functions accounting for capillary and noncapillary flow was needed to adequately describe the observed properties over the entire wetness range. More research is needed to address the exact flow mechanisms in biofilm-affected, unsaturated soil and how they are related to effective system properties.

  17. Reductive microbial dechlorination of indigenous polychlorinated biphenyls in soil using a sediment-free inoculum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klasson, K.T.; Barton, J.W.; Evans, B.S.

    1996-05-01

    In laboratory experiments, unagitated soil slurry bioreactors inoculated with microorganisms extracted from polychlorinated biphenyl-contaminated (PCBs) sediments from the Hudson River were used to anaerobically dechlorinate PCBs. The onset of dechlorination activity was accelerated by the addition of certain organic acids (pyruvate and maleate) and single congeners (2,3,6-trichlorobiphenyl). Dechlorination was observed under several working conditions after 19 weeks of incubation with PCB-contaminated soil and nutrient solution. Best results showed a drop in average chlorine content from 4.3 to 3.6 chlorines per biphenyl due to a loss of m-chlorines. Soil used for these experiments was obtained from a PCB-contaminated (weathered Aroclor 1248)more » site at an electric power substation. Dechlorination was observed with no sediment particles or other matrix being added. 17 refs., 6 figs., 1 tab.« less

  18. A laboratory treatability study on RDX-contaminated soil from the Iowa Army Ammunition Plant, Burlington, Iowa.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boopathy, R.; Manning, J. F.; Environmental Research

    2000-03-01

    Soil in certain areas of the Iowa Army Ammunition Plant in Burlington, Iowa, was contaminated with hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). A laboratory treatability study was conducted to examine the ability of native soil bacteria present in the contaminated site to degrade RDX. The results indicated that RDX can be removed effectively from the soil by native soil bacteria through a co-metabolic process. Molasses, identified as an effective cosubstrate, is inexpensive, and this factor makes the treatment system cost effective. The successful operation of aerobic-anoxic soil-slurry reactors in batch mode with RDX-contaminated soil showed that the technology can be scaled up for fieldmore » demonstration. The RDX concentration in the contaminated soil was decreased by 98% after 4 months of reactor operation. The advantage of the slurry reactor is the simplicity of its operation. The method needs only mixing and the addition of molasses as cosubstrate.« less

  19. Effects of soil structure destruction on methane production and carbon partitioning between methanogenic pathways in tropical rain forest soils

    NASA Astrophysics Data System (ADS)

    Teh, Yit Arn; Silver, Whendee L.

    2006-03-01

    Controls on methanogenesis are often determined from laboratory incubations of soils converted to slurries. Destruction of soil structure during slurry conversion may disrupt syntrophic associations, kill methanogens, and/or alter the microsite distribution of methanogenic activity, suppressing CH4 production. The effects of slurry conversion on methanogenesis were investigated to determine if disruption of aggregate structure impacted methanogenesis, substrate utilization, and C partitioning between methanogenic pathways. Soils were collected from the tropical rain forest life zone of the Luquillo Experimental Forest, Puerto Rico, and exposed to different physical disturbances, including flooding and physical homogenization. Slurry conversion negatively impacted methanogenesis. Rates of CH4 production declined by a factor of 17 after well-aggregated soils were converted to slurries. Significantly more 13C-acetate was recovered in CO2 compared to CH4 after slurry conversion, suggesting that methanogens consumed less acetate after slurry conversion and may have competed less effectively with other anaerobes for acetate. Isotopic data indicate that the relative partitioning of C between aceticlastic and hydrogenotrophic pathways was unchanged after slurry conversion. These data suggest that experiments which destroy soil structure may significantly underestimate methanogenesis and overestimate the potential for other microorganisms to compete with methanogens for organic substrates. Current knowledge of the factors that regulate methanogenesis in soil may be biased by the findings of slurry-based experiments, that do not accurately represent the complex, spatially heterogeneous conditions found in well-aggregated soils.

  20. Incubation temperature fluctuation does not affect incubation length and hatchling phenotype in the Chinese skink Plestiodon chinensis.

    PubMed

    Qu, Yan-Fu; Lu, Hong-Liang; Li, Hong; Ji, Xiang

    2014-12-01

    Studies examining the effects of incubation temperature fluctuation on the phenotype of hatchling reptiles have shown species variation. To examine whether incubation temperature fluctuation has a key role in influencing the phenotype of hatchling Chinese skinks (Plestiodon chinensis), we incubated eggs produced by 20 females under five thermal regimes (treatments). Eggs in three treatments were incubated in three incubators, one set constant at 27°C and two ramp-programmed at 27 ± 3°C and 27 ± 5°C on a cycle of 12h (+) and 12h (-). The remaining eggs were incubated in two chambers: one inside a room where temperatures varied from 23.0 to 31.1°C, with a mean of 27.0°C; the other outside the room where temperatures varied from 20.2 to 35.3°C, with a mean of 26.1°C. We found that: (1) for eggs at a given embryonic stage at ovipositon, the mean rather than the variance of incubation temperatures determined the length of incubation; (2) most (egg mass, embryonic stage at oviposition, incubation length and all examined hatchling traits except tail length and locomotor performance) of the examined variables were affected by clutch; and (3) body mass was the only hatchling trait that differed among the five treatments, but the differences were tiny. These findings suggest that incubation temperature fluctuation has no direct role in influencing incubation length and hatchling phenotype in P. chinensis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Overexpression of the Hspa13 (Stch) gene reduces prion disease incubation time in mice.

    PubMed

    Grizenkova, Julia; Akhtar, Shaheen; Hummerich, Holger; Tomlinson, Andrew; Asante, Emmanuel A; Wenborn, Adam; Fizet, Jérémie; Poulter, Mark; Wiseman, Frances K; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Brandner, Sebastian; Collinge, John; Lloyd, Sarah E

    2012-08-21

    Prion diseases are fatal neurodegenerative disorders that include bovine spongiform encephalopathy (BSE) and scrapie in animals and Creutzfeldt-Jakob disease (CJD) in humans. They are characterized by long incubation periods, variation in which is determined by many factors including genetic background. In some cases it is possible that incubation time may be directly correlated to the level of gene expression. To test this hypothesis, we combined incubation time data from five different inbred lines of mice with quantitative gene expression profiling in normal brains and identified five genes with expression levels that correlate with incubation time. One of these genes, Hspa13 (Stch), is a member of the Hsp70 family of ATPase heat shock proteins, which have been previously implicated in prion propagation. To test whether Hspa13 plays a causal role in determining the incubation period, we tested two overexpressing mouse models. The Tc1 human chromosome 21 (Hsa21) transchromosomic mouse model of Down syndrome is trisomic for many Hsa21 genes including Hspa13 and following Chandler/Rocky Mountain Laboratory (RML) prion inoculation, shows a 4% reduction in incubation time. Furthermore, a transgenic model with eightfold overexpression of mouse Hspa13 exhibited highly significant reductions in incubation time of 16, 15, and 7% following infection with Chandler/RML, ME7, and MRC2 prion strains, respectively. These data further implicate Hsp70-like molecular chaperones in protein misfolding disorders such as prion disease.

  2. Changes in soil moisture drive soil methane uptake along a fire regeneration chronosequence in a eucalypt forest landscape.

    PubMed

    Fest, Benedikt; Wardlaw, Tim; Livesley, Stephen J; Duff, Thomas J; Arndt, Stefan K

    2015-11-01

    Disturbance associated with severe wildfires (WF) and WF simulating harvest operations can potentially alter soil methane (CH4 ) oxidation in well-aerated forest soils due to the effect on soil properties linked to diffusivity, methanotrophic activity or changes in methanotrophic bacterial community structure. However, changes in soil CH4 flux related to such disturbances are still rarely studied even though WF frequency is predicted to increase as a consequence of global climate change. We measured in-situ soil-atmosphere CH4 exchange along a wet sclerophyll eucalypt forest regeneration chronosequence in Tasmania, Australia, where the time since the last severe fire or harvesting disturbance ranged from 9 to >200 years. On all sampling occasions, mean CH4 uptake increased from most recently disturbed sites (9 year) to sites at stand 'maturity' (44 and 76 years). In stands >76 years since disturbance, we observed a decrease in soil CH4 uptake. A similar age dependency of potential CH4 oxidation for three soil layers (0.0-0.05, 0.05-0.10, 0.10-0.15 m) could be observed on incubated soils under controlled laboratory conditions. The differences in soil CH4 uptake between forest stands of different age were predominantly driven by differences in soil moisture status, which affected the diffusion of atmospheric CH4 into the soil. The observed soil moisture pattern was likely driven by changes in interception or evapotranspiration with forest age, which have been well described for similar eucalypt forest systems in south-eastern Australia. Our results imply that there is a large amount of variability in CH4 uptake at a landscape scale that can be attributed to stand age and soil moisture differences. An increase in severe WF frequency in response to climate change could potentially increase overall forest soil CH4 sinks. © 2015 John Wiley & Sons Ltd.

  3. Temperature Responses of Soil Organic Matter Components With Varying Recalcitrance

    NASA Astrophysics Data System (ADS)

    Simpson, M. J.; Feng, X.

    2007-12-01

    The response of soil organic matter (SOM) to global warming remains unclear partly due to the chemical heterogeneity of SOM composition. In this study, the decomposition of SOM from two grassland soils was investigated in a one-year laboratory incubation at six different temperatures. SOM was separated into solvent- extractable compounds, suberin- and cutin-derived compounds, and lignin monomers by solvent extraction, base hydrolysis, and CuO oxidation, respectively. These SOM components had distinct chemical structures and recalcitrance, and their decomposition was fitted by a two-pool exponential decay model. The stability of SOM components was assessed using geochemical parameters and kinetic parameters derived from model fitting. Lignin monomers exhibited much lower decay rates than solvent-extractable compounds and a relatively low percentage of lignin monomers partitioned into the labile SOM pool, which confirmed the generally accepted recalcitrance of lignin compounds. Suberin- and cutin-derived compounds had a poor fitting for the exponential decay model, and their recalcitrance was shown by the geochemical degradation parameter which stabilized during the incubation. The aliphatic components of suberin degraded faster than cutin-derived compounds, suggesting that cutin-derived compounds in the soil may be at a higher stage of degradation than suberin- derived compounds. The temperature sensitivity of decomposition, expressed as Q10, was derived from the relationship between temperature and SOM decay rates. SOM components exhibited varying temperature responses and the decomposition of the recalcitrant lignin monomers had much higher Q10 values than soil respiration or the solvent-extractable compounds decomposition. Our study shows that the decomposition of recalcitrant SOM is highly sensitive to temperature, more so than bulk soil mineralization. This observation suggests a potential acceleration in the degradation of the recalcitrant SOM pool with global

  4. The repeated drying-wetting and freezing-thawing cycles affect only the active pool of soil organic matter

    NASA Astrophysics Data System (ADS)

    Semenov, Vyacheslav; Zinyakova, Natalya; Tulina, Anastasiya

    2016-04-01

    The decrease in the content of soil organic carbon, particularly in active form, is one of the major problems of the 21st century, which is closely related to the disturbance of the biogeochemical carbon cycle and to the increase in the emission of carbon dioxide into the atmosphere. The main reasons for the SOM losses are the surplus of the SOM active pool losses due to mineralization, erosion, and infiltration over the input of fresh organic matter to the soil, as well as the changes in the soil conditions and processes due to natural and anthropogenic disturbing impacts. Experiments were carried out with mixed samples from the upper layers of soddy-podzolic soil, gray forest soil, and typical chernozems. Soil samples as controls were incubated after wetting for 150 days. The dynamics and cumulative production of C-CO2 under stable temperature (22°C) and moisture conditions were determined; the initial content of potentially mineralizable organic matter (C0) in the soil at the beginning of the incubation was then calculated to use these data as the control. Other soil samples were exposed in flasks to the following successive treatments: wetting →incubation → freezing → thawing → incubation →drying. Six repeated cycles of disturbing impacts were performed for 140 days of the experiment. After six cycles, the soil samples were incubated under stable temperature and moisture conditions for 150 days. The wetting of dried soils and the thawing of frozen soils are accompanied by the pulsed dynamics of the C-CO2 production with an abrupt increase in the rate of the C-CO2 emission within several days by 2.7-12.4 and 1.6-2.7 times, respectively, compared to the stable incubation conditions. The rate of the C-CO2 production pulses under each subsequent impact decreased compared to the preceding one similarly for all studied soils, which could be due to the depletion in potentially mineralizable soil organic matter (C0). The cumulative extra C-CO2 production by

  5. Innovation Incubator: Whisker Labs Technical Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparn, Bethany F.; Frank, Stephen M.; Earle, Lieko

    The Wells Fargo Innovation Incubator (IN2) is a program to foster and accelerate startup companies with commercial building energy-efficiency and demand management technologies. The program is funded by the Wells Fargo Foundation and co-administered by the National Renewable Energy Laboratory (NREL). Whisker Labs, an Oakland, California-based company, was one of four awardees in the first IN2 cohort and was invited to participate in the program because of its novel electrical power sensing technology for circuit breakers. The stick-on Whisker meters install directly on the front face of the circuit breakers in an electrical panel using adhesive, eliminating the need tomore » open the panel and install current transducers (CTs) on the circuit wiring.« less

  6. Effects on soil phosphorus dynamics of municipal solid waste compost addition to a burnt and unburnt forest soil.

    PubMed

    Turrión, María-Belén; Bueis, Teresa; Lafuente, Francisco; López, Olga; San José, Esther; Eleftheriadis, Alexandros; Mulas, Rafael

    2018-06-12

    The main aim of this research was to assess the effects of municipal solid waste compost (MSWC) addition to a burnt and unburnt calcareous soil, on the distribution of soil P forms in particle-size and extractable fractions. Three MSWC doses (1, 2 and 4% w/w) were added to burnt and unburnt soil samples and were incubated for 92 days at 29 °C and 75% of field capacity moisture. A particle-size fractionation followed by a sequential P extraction procedure was carried out. The burnt soil showed significantly lower concentrations of organic P forms (P org ) and significantly higher concentrations of stable P forms than the unburnt soil. Besides, in both burnt and unburnt soils, most P-forms presented higher concentrations in the clay fractions than in the sand and silt fractions, possibly due to the different proportions of microbial synthesized and plant-derived substances in the different particle-size fractions. Finer fractions of MSWC showed higher total P and P org concentrations than coarser fractions. Our results showed that the highest dose of MSWC was the most effective one for the rehabilitation of the burnt soil. MSWC amendment also caused an increase in soil P availability in the unburnt soil which initially contained relatively low levels of P. During the incubation process, a high proportion of organic P contained in the MSWC was mineralized into inorganic P forms. These forms were precipitated with Ca cations which are very abundant in these calcareous soils, significantly increasing the P fraction extracted by HCl in both amended soils. Hence, adding compost to the soil involved an increase in the available P reservoir in the long term. The combination of particle-size fractionation, chemical sequential extraction and incubation experiments can be a valuable tool for splitting soil phosphorus into different fractions regarding their availability in relation to short and long-term transformations in soil. Copyright © 2017 Elsevier B.V. All rights

  7. Fate and effect of imidacloprid on vermicompost-amended soils under dissimilar conditions: Risk for soil functions, structure, and bacterial abundance.

    PubMed

    Castillo Diaz, Jean Manuel; Martin-Laurent, Fabrice; Beguet, Jérèmie; Nogales, Rogelio; Romero, Esperanza

    2017-02-01

    The fate and impact of pesticide on soil depend partly on the agricultural practices, such as prior treatment with pesticide and/or organic amendments. As a means of determining how the previous soil conditions can affect the fate of imidacloprid (IMI) and its effect on soil functions, experiments were made with soil samples, double-amended or not with either vine-shoot (W) or olive cake (O) vermicompost or contaminated or not with IMI. These soil samples, incubated for 3months, were placed in two microcosms (M1 with the pre-amended soils and M2 with the pre-exposed soils), treated with IMI and amended with vermicomposts and then incubated for 3months. The IMI distribution on soil fractions, sorption processes, dissipation kinetics, and biochemical as well as genetic structure and bacterial abundance were determined to assess the fate and impact of IMI on the soil. The addition of W vermicompost to the soil reduced the IMI availability. The dissipation kinetic in soils from M1 and M2 followed, respectively, a single first-order and a double first-order in parallel models. The lowest IMI persistence corresponded to the soil from M2 amended with O-vermicompost with DT50 and DT90 values of 67d and 265d, while in the other soils 90% dissipation required >512d. The vermicomposts-amended contaminated soils increased the dehydrogenase activity by 2- and 4-fold respect the control soils. However, the urease activity decreased due to the IMI influence. The changes in the bacterial community in the contaminated soil amended with O-vermicompost during incubation were correlated with the dissipation rate constant of IMI, suggesting a better tolerance of microorganisms to IMI. Thus, in the soil contaminated with IMI, the amendment with the vermicompost from olive cake can mitigate the impact of this insecticide on soil functions and promote its depuration capability while minimizing environmental risks. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Chemical and spectroscopic analyses of organic matter transformation in warming tundra soils

    NASA Astrophysics Data System (ADS)

    Herndon, E.; Roy Chowdhury, T.; Mann, B. F.; Graham, D. E.; Bargar, J.; Gu, B.; Liang, L.

    2013-12-01

    Many tundra soils are currently major carbon sinks; however, an increase in temperature may shift these systems to C sources and create a positive feedback for warming. In order to predict future C release from tundra soils, it is necessary to quantify rates of SOM degradation and to identify the reactants and products of microbial decomposition reactions. In this study, multiple spectroscopic techniques are used to investigate SOM during laboratory incubations of tundra soils. We aim to characterize the chemical transformation of organic matter during decomposition as a function of temperature and geochemistry. Frozen soil cores were obtained from the Barrow Environmental Observatory (BEO) in northern Alaska as part of the Next Generation Ecosystem Experiment Arctic project. To investigate the influence of temperature on organic matter degradation and compositional changes, soil horizons from each core were homogenized and soil material was incubated at -2°C, +4°C, or +8°C. Samples were sacrificed periodically over 100 days, and chemical and physical extractions were used to separate SOM into operationally-defined pools, including light (density < 1.6 g cm-2) and mineral-bound, and water-, acid-, base-, and non-soluble fractions. A suite of wet-chemical and spectroscopic analyses was used to measure CO2 and CH4 formation and soil C compositional changes, including techniques such as Fourier transform infrared spectroscopy, high performance liquid chromatography (HPLC), high resolution mass spectrometry, and X-ray absorption spectroscopy. Detailed chemical and spectroscopic analyses reveal significant differences amongst extracts and with depth in the soil. In general, more organic C was extracted in the base than in the acid and water fractions, and mineral-bound organic C increased with depth. The water-soluble C fraction showed the lowest molar absorptivity of the three extracts and consisted of mostly lower-molecular weight organics. Acid-soluble C increased

  9. Long Term Effect of Land Reclamation from Lake on Chemical Composition of Soil Organic Matter and Its Mineralization

    PubMed Central

    He, Dongmei; Ruan, Honghua

    2014-01-01

    Since the late 1950s, land reclamation from lakes has been a common human disturbance to ecosystems in China. It has greatly diminished the lake area, and altered natural ecological succession. However, little is known about its impact on the carbon (C) cycle. We conducted an experiment to examine the variations of chemical properties of dissolved organic matter (DOM) and C mineralization under four land uses, i.e. coniferous forest (CF), evergreen broadleaf forest (EBF), bamboo forest (BF) and cropland (CL) in a reclaimed land area from Taihu Lake. Soils and lake sediments (LS) were incubated for 360 days in the laboratory and the CO2 evolution from each soil during the incubation was fit to a double exponential model. The DOM was analyzed at the beginning and end of the incubation using UV and fluorescence spectroscopy to understand the relationships between DOM chemistry and C mineralization. The C mineralization in our study was influenced by the land use with different vegetation and management. The greatest cumulative CO2-C emission was observed in BF soil at 0–10 cm depth. The active C pool in EBF at 10–25 cm had longer (62 days) mean residence time (MRT). LS showed the highest cumulative CO2-C and shortest MRT comparing with the terrestrial soils. The carbohydrates in DOM were positively correlated with CO2-C evolution and negatively correlated to phenols in the forest soils. Cropland was consistently an outlier in relationships between DOM chemistry and CO2-evolution, highlighting the unique effects that this land use on soil C cycling, which may be attributed the tillage practices. Our results suggest that C mineralization is closely related to the chemical composition of DOM and sensitive to its variation. Conversion of an aquatic ecosystem into a terrestrial ecosystem may alter the chemical structure of DOM, and then influences soil C mineralization. PMID:24905998

  10. Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: Influence of pyrolysis temperature and feedstock type.

    PubMed

    Subedi, Raghunath; Taupe, Natalie; Pelissetti, Simone; Petruzzelli, Laura; Bertora, Chiara; Leahy, James J; Grignani, Carlo

    2016-01-15

    Manure-derived biochars can offer a potential option for the stabilization of manure, while mitigating climate change through carbon sequestration and the attenuation of nitrous oxide emission. A laboratory incubation study was conducted to assess the effects of four different manure-derived biochars produced from different feedstocks (poultry litter and swine manure) at different temperatures (400 or 600 °C). A commonly available standard wood chip biochar, produced at a greater temperature (1000 °C), and non-amended treatments were used as references. Two different soils (sandy and silt-loam) were amended with 2% (w/w) biochar on a dry soil weight basis (corresponding to 20 Mg ha(-1)), with the soil moisture being adjusted to 75% saturation level. After a pre-incubation period (21 days), 170 kg N ha(-1) of NH4NO3 fertilizer was added. Measurements of CO2, N2O, CH4 emissions and soil N mineralisation were carried out on different days during the 85 days of incubation. The net C mineralization and N2O emissions from both soils amended with poultry litter biochar at 400 °C were significantly greater than the other biochar treatments. Nitrate availability was greater in both soils in which the manure-derived biochar was used instead of the standard biochar. All of the biochars increased the pH of the silt-loam, sub-acid soil, but failed to improve the cation exchange capacities (CEC) in either soil. Total C and N, P, K and Mg (except Ca) were significantly increased in the manure-derived biochar amended soils, compared to the Control, and were positively correlated to the biochar nutrient contents. This study indicates that the soil application of biochar engenders effects that can vary considerably according to the biochar properties, as determined on the basis of the feedstock types and process conditions. Low-temperature biochar production from manure represents a possible way of producing a soil amendment that can stabilize C while supplying a

  11. Effect of interactions on the nutrient status of a tropical soil treated with green manures and inorganic phosphate fertilizers.

    PubMed

    Bah, Abdul R; Rahman, Zaharah A; Hussin, Aminuddin

    2004-06-08

    Integrated nutrient management systems using plant residues and inorganic P fertilizers have high potential for increasing crop production and ensuring sustainability in the tropics, but their adoption requires in-depth understanding of nutrient dynamics in such systems. This was examined in a highly weathered tropical soil treated with green manures (GMs) and P fertilizers in two experiments conducted in the laboratory and glasshouse. The treatments were factorial combinations of the GMs (Calopogonium caeruleum, Gliricidia sepium, and Imperata cylindrica) and P fertilizers (phosphate rocks [PRs] from North Carolina, China, and Algeria, and triple superphosphate) replicated thrice. Olsen P, mineral N, pH, and exchangeable K, Ca, and Mg were monitored in a laboratory incubation study for 16 months. The change in soil P fractions and available P was also determined at the end of the study. Phosphorus available from the amendments was quantified at monthly intervals for 5 months by 33P-32P double isotopic labeling in the glasshouse using Setaria sphacelata as test crop. The GMs were labeled with 33P to determine their contribution to P taken up by Setaria, while that from the P fertilizers was indirectly measured by labeling the soil with 32P. The P fertilizers hardly changed Olsen P and exchangeable cations during 16 months of incubation. The legume GMs and legume GM+P did not change Olsen P, lowered exchangeable Ca, and increased exchangeable K about threefold (4.5 cmol[+]kg(-1) soil) in the first 4 months, even as large amounts of NH4-N accumulated (approximately 1000 mg kg soil(-1)) and soil pH increased to more than 6.5. Afterwards, Olsen P and exchangeable Ca and Mg increased (threefold) as NH4+-N and soil pH declined. The legume GMs also augmented reversibly sorbed P in Al-P and Fe-P fractions resulting in high residual effect in the soil, while fertilizer-P was irreversibly retained. The GMs increased PR-P utilization by 40 to over 80%, mobilized soil P, and

  12. Comparison of basic laboratory test results with more sophisticated laboratory and in-situ tests methods on soils in southeastern Wisconsin : final report, March 21, 2009.

    DOT National Transportation Integrated Search

    2009-03-21

    This study investigates all of the generated soils data in an attempt to use the more 'routine' laboratory tests to determine geotechnical design parameters (such as phiangle, cohesion, wet unit weight, unconfined compression, consolidation character...

  13. Time evolution of the general characteristics and Cu retention capacity in an acid soil amended with a bentonite winery waste.

    PubMed

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-03-01

    The effect of bentonite waste added to a "poor" soil on its general characteristic and copper adsorption capacity was assessed. The soil was amended with different bentonite waste concentrations (0, 10, 20, 40 and 80 Mg ha(-1)) in laboratory pots, and different times of incubation of samples were tested (one day and one, four and eight months). The addition of bentonite waste increased the pH, organic matter content and phosphorus and potassium concentrations in the soil, being stable for P and K, whereas the organic matter decreased with time. Additionally, the copper sorption capacity of the soil and the energy of the Cu bonds increased with bentonite waste additions. However, the use of this type of waste in soil presented important drawbacks for waste dosages higher than 20 Mg ha(-1), such as an excessive increase of the soil pH and an increase of copper in the soil solution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. N2O emission from urine in the soil in the beef production in Southeast Brazil: soil moisture content and temperature effects

    NASA Astrophysics Data System (ADS)

    Simões Barneze, Arlete; Mancebo Mazzetto, Andre; Fernandes Zani, Caio; Siqueira Neto, Marcos; Clemente Cerri, Carlos

    2014-05-01

    Pasture expansion in Brazil has shown an increase in 4.5% per year, and a total cattle herd of about 200 millions in 2010. Associated to animal husbandry there are emissions of N2O (nitrous oxide) and other gases to the atmosphere. The liquid manure contributes to emitte 5% of the total N2O emissions. The urea content of cattle urine will readily hydrolyze to form ammonium after deposition to the soil. Nitrous oxide may then be emitted through the microbiological processes of nitrification and denitrification. Important factors can influence on these processes and consequently in nitrous oxide emissions, as soil water content and temperature (Bolan et al., 2004; Luo et al., 2008). The main goal of this research was to determine the soil water content and temperature influence on N2O emissions from urine depositions on the soil. In order to achieve the objective, soil incubation experiment was conducted in laboratory conditions at three levels of water-filled pore space (40%, 60% and 80% WFPS) and two temperatures (25ºC and 35ºC) with and without urine, with five replicates each. The soil used in this study was collected from the 0-10 cm layer of a grassland field in Southeast of Brazil and classified as Nitisols. For each measurement, the Kilner jar was hermetically sealed by replacing the lid and a first gas sample was immediately taken (time-zero, t0 sample) using a syringe and stored in a pre-evacuated gas vial. After 30 minutes the headspace of each jar was sampled again (time-thirty, t_30 sample). The lids were then removed and kept off until the next sampling day. Nitrous oxide concentrations in the sampled air were measured using a SRI Gas Chromatograph (Model 8610C). Gas fluxes were calculated by fitting linear regressions through the data collected at t0 and t_30 and were corrected for temperature and amount of soil incubated. Gas measurements were carried out up to 55 days. To determine the statistical significance, Tukey tests were carried out at 0

  15. [Effect of different N, P and K fertilizers on soil pH and available Cd under waterlogged conditions].

    PubMed

    Jia, Ka-La-Tie; Yu, Hua; Feng, Wen-Qiang; Qin, Yu-Sheng; Zhao, Jing; Liao, Ming-Lan; Wang, Chang-Quan; Tu, Shi-Hua

    2009-11-01

    In order to tackle the problem of Cd pollution in paddy soils and investigate soil available Cd as affected by different fertilizers, incubation experiments were carried out to study the effects of different N, P and K fertilizers and pH by adding acid or base on soil available Cd under waterlogged conditions. Results revealed that soil pH increased sharply after the soil was flooded, especially at the beginning of incubation, and gradually decreased with incubation time and finally tended to approach the neutral values. The patterns of soil pH change were just opposite to those of soil available Cd, a negative correlation observed between the two. Soil flooding made the soil available Cd drop by 58.2%-84.1%. There were significant differences between different fertilizer types/varieties on soil available Cd, being most complex with N fertilizers and followed by K and P fertilizers. Among the fertilizers studied, ammonium chloride showed the unique ability in reducing soil pH and enhancing soil available Cd, and urea, single super phosphate and potassium chloride also promoted to a less extent amounts of Cd extracted from the soil. Ammonium sulfate, potassium sulfate and mono-ammonium phosphate significantly decreased soil available Cd compared to the CK treatment. Whether or not the soil was flooded, soil available Cd was highly negatively correlated with soil pH after adding acid or base (R = - 0.994 without incubation and R = - 0.919 after incubation for 60 d). The results further suggest that in the Cd polluted paddy soil, use of ammonium chloride should be avoided, S bearing fertilizers in combination with alkaline materials can be adopted, and the rice field should be flooded all the time during growing season, all the these practices can effectively lower soil available Cd.

  16. Soil Organic Matter Stability and Soil Carbon Storage with Changes in Land Use Intensity in Uganda

    NASA Astrophysics Data System (ADS)

    Tiemann, L. K.; Grandy, S.; Hartter, J.

    2014-12-01

    As the foundation of soil fertility, soil organic matter (SOM) formation and break-down is a critical factor of agroecosystem sustainability. In tropical systems where soils are quickly weathered, the link between SOM and soil fertility is particularly strong; however, the mechanisms controlling the stabilization and destabilization of SOM are not well characterized in tropical soils. In western Uganda, we collected soil samples under different levels of land use intensity including maize fields, banana plantations and inside an un-cultivated native tropical forest, Kibale National Park (KNP). To better understand the link between land use intensity and SOM stability we measured total soil C and N, and respiration rates during a 369 d soil incubation. In addition, we separated soils into particle size fractions, and mineral adsorbed SOM in the silt (2-50 μm ) and clay (< 2 μm) fractions was dissociated, purified and chemically characterized via pyrolysis-GC/MS. Cultivated soil C and N have declined by 22 and 48%, respectively, in comparison to uncultivated KNP soils. Incubation data indicate that over the last decade, relatively accessible and labile soil organic carbon (SOC) pools have been depleted by 55-59% in cultivated soils. As a result of this depletion, the chemical composition of SOM has been altered such that clay and silt associated SOM differed significantly between agricultural fields and KNP. In particular, nitrogen containing compounds were in lower abundance in agricultural compared to KNP soils. This suggests that N depletion due to agriculture has advanced to pools of mineral associated organic N that are typically protected from break-down. In areas where land use intensity is relatively greater, increases in polysaccharides and lipids in maize fields compared to KNP indicate increases in microbial residues and decomposition by-products as microbes mine SOM for organic N. Chemical characterization of post-incubation SOM will help us better

  17. An Experimental Study of Effects in Soils by Potential CO2 Seepage

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Caramanna, G.; Nathanail, P.; Steven, M.; Maroto-Valer, M.

    2011-12-01

    Potential CO2 seepage during a CCS project will not only reduce its performing efficiency, but can also impact the local environment. Though scientists announce with confidence that CCS is a safe technology to store CO2 deep underground, it is essential to study the effects of CO2 seepage, to avoid any possible influences on soils. As a simplified environment, laboratory experiments can easily be controlled and vital to be studied to be compared with more complex natural analogues and modelling works. Recent research focuses on the effects on ecosystems of CO2 leakage. However, the impacts of long-term, low level exposure for both surface and subsurface ecosystems, as well as soil geochemistry changes are currently not clear. Moreover, previous work has focussed on pure CO2 leakage only and its impacts on the ecosystem. However, in a more realistic scenario the gas coming from a capture process may contain impurities, such as SO2, which are more dangerous than pure CO2 and could cause more severe consequences. Therefore, it is critical to assess the potential additional risks caused by CO2 leakage with impurities. Accordingly, both a batch and a continuous flow reactor were designed and used to study potential impacts caused by the CO2 seepage, focusing on soil geochemistry changes, due to different concentrations of CO2/SO2 mixtures. Stage 1- Batch experiments. In this stage, a soil sample was collected from the field and exposed to a controlled CO2/SO2 gas mixtures (100% CO2 and CO2:SO2=99:1). The water soluble fractions were measured before and after incubation. With 100% CO2 incubation it was found that: 1) the pH in the soil sample did not change significantly; 2) for soils with different moisture levels, greater moisture in the soil results in higher CO2 uptake during incubation; and 3) for sandy soils, small changes in CaCl2-exchangeable metal concentration, were observed after CO2 incubation. However, the increased concentration of toxic elements is still

  18. Linking Toluene Degradation with Specific Microbial Populations in Soil

    PubMed Central

    Hanson, Jessica R.; Macalady, Jennifer L.; Harris, David; Scow, Kate M.

    1999-01-01

    Phospholipid fatty acid (PLFA) analysis of a soil microbial community was coupled with 13C isotope tracer analysis to measure the community’s response to addition of 35 μg of [13C]toluene ml of soil solution−1. After 119 h of incubation with toluene, 96% of the incorporated 13C was detected in only 16 of the total 59 PLFAs (27%) extracted from the soil. Of the total 13C-enriched PLFAs, 85% were identical to the PLFAs contained in a toluene-metabolizing bacterium isolated from the same soil. In contrast, the majority of the soil PLFAs (91%) became labeled when the same soil was incubated with [13C]glucose. Our study showed that coupling 13C tracer analysis with PLFA analysis is an effective technique for distinguishing a specific microbial population involved in metabolism of a labeled substrate in complex environments such as soil. PMID:10583996

  19. Acid sulfate soils are an environmental hazard in Finland

    NASA Astrophysics Data System (ADS)

    Pihlaja, Jouni

    2016-04-01

    Acid sulfate soils (ASS) create significant threats to the environment on coastal regions of the Baltic Sea in Finland. The sediments were deposited during the ancient Litorina Sea phase of the Baltic Sea about 7500-4500 years ago. Finland has larger spatial extent of the ASS than any other European country. Mostly based on anthropogenic reasons (cultivation, trenching etc.) ASS deposits are currently being exposed to oxygen which leads to chemical reaction creating sulfuric acid. The acidic waters then dissolve metals form the soil. Acidic surface run off including the metals are then leached into the water bodies weakening the water quality and killing fish or vegetation. In constructed areas acidic waters may corrode building materials. Geological Survey of Finland (GTK) is mapping ASS deposits in Finland. The goal is to map a total of 5 million hectares of the potentially ASS affected region. It has been estimated that the problematic Litorina Sea deposits, which are situated 0-100 m above the recent Baltic Sea shoreline, cover 500 000 hectares area. There are several phases in mapping. The work begins at the office with gathering the existing data, interpreting airborne geophysical data and compiling a field working plan. In the field, quality of the soil is studied and in uncertain cases samples are taken to laboratory analyses. Also electrical conductivity and pH of soil and water are measured in the field. Laboratory methods include multielemental determinations with ICP-OES, analyses of grain size and humus content (LOI), and incubation. So far, approximately 60 % of the potential ASS affected regions in Finland are mapped. Over 15 000 sites have been studied in the field and 4000 laboratory analyses are done. The spatial database presented in the scale of 1: 250 000 can be viewed at the GTK's web pages (http://gtkdata.gtk.fi/hasu/index.html).

  20. Humidification of incubators.

    PubMed Central

    Harpin, V A; Rutter, N

    1985-01-01

    The effect of increasing the humidity in incubators was examined in 62 infants of less than 30 weeks' gestation. Thirty three infants nursed in high humidity for two weeks were compared retrospectively with 29 infants from an earlier study who were nursed under plastic bubble blankets or with topical paraffin but without raised humidity. Humidification reduced skin water loss and improved maintenance of body temperature from birth, but did not delay the normal postnatal maturation of the skin. Infants nursed without humidity frequently became hypothermic in spite of a high incubator air temperature. These advantages must be weighed against the finding that overheating was more common and Pseudomonas was more commonly isolated from the infants. It is recommended that incubator humidity is raised for babies under 30 weeks' gestation in the first days of life but meticulous attention should be paid to fluid balance, avoiding overheating, and cleansing of the humidifier reservoir. PMID:3985653

  1. Effect of Harsh or Mild Extraction of Soil on Pesticide Leaching to Groundwater.

    PubMed

    Boesten, Jos J T I

    2016-07-01

    Assessment of leaching to groundwater is an important aspect of pesticide risk assessment. The first leaching tier usually consists of simulations with leaching scenarios based on pesticide-soil properties derived from laboratory studies. Because the extractability of pesticide residues in such studies decreases with time, the harshness of the extraction method influences these pesticide-soil properties. This study investigates the effect of using a mild or harsh extraction method on simulated leaching to groundwater with consideration of substances with a range of half-lives and organic matter sorption coefficient values for selected leaching scenarios. The model for linking the concentrations of the mild and the harsh systems was based on laboratory studies with two pesticides and a Dutch sandy soil and was tested against Canadian field studies with atrazine (6-chloro-2-ethyl-4-isopropyl-1,3,5-triazine-2,4-diamine). The degradation rate and the aged-sorption parameters of each "mild" soil-substance system were derived from a hypothetical laboratory incubation study using prescribed parameter values for the corresponding "harsh" soil-substance system. Simulations were performed for three European leaching scenarios (United Kingdom, France, Portugal). For the best-guess parameter set, the leaching concentrations of the harsh system were approximately equal to those of the mild system at leaching concentrations greater than 1 μg L and were at most approximately a factor of two higher than those of the mild systems at mild leaching concentrations between 0.01 and 0.1 μg L. However, an extreme parameter set led to harsh leaching concentrations that were at most approximately 10 times higher than the mild leaching concentrations at levels between 0.01 and 0.1 μg L. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Soil microbial community responses to antibiotic-contaminated manure under different soil moisture regimes.

    PubMed

    Reichel, Rüdiger; Radl, Viviane; Rosendahl, Ingrid; Albert, Andreas; Amelung, Wulf; Schloter, Michael; Thiele-Bruhn, Sören

    2014-01-01

    Sulfadiazine (SDZ) is an antibiotic frequently administered to livestock, and it alters microbial communities when entering soils with animal manure, but understanding the interactions of these effects to the prevailing climatic regime has eluded researchers. A climatic factor that strongly controls microbial activity is soil moisture. Here, we hypothesized that the effects of SDZ on soil microbial communities will be modulated depending on the soil moisture conditions. To test this hypothesis, we performed a 49-day fully controlled climate chamber pot experiments with soil grown with Dactylis glomerata (L.). Manure-amended pots without or with SDZ contamination were incubated under a dynamic moisture regime (DMR) with repeated drying and rewetting changes of >20 % maximum water holding capacity (WHCmax) in comparison to a control moisture regime (CMR) at an average soil moisture of 38 % WHCmax. We then monitored changes in SDZ concentration as well as in the phenotypic phospholipid fatty acid and genotypic 16S rRNA gene fragment patterns of the microbial community after 7, 20, 27, 34, and 49 days of incubation. The results showed that strongly changing water supply made SDZ accessible to mild extraction in the short term. As a result, and despite rather small SDZ effects on community structures, the PLFA-derived microbial biomass was suppressed in the SDZ-contaminated DMR soils relative to the CMR ones, indicating that dynamic moisture changes accelerate the susceptibility of the soil microbial community to antibiotics.

  3. Temperature sensitivity of soil organic carbon mineralization along an elevation gradient in the Wuyi Mountains, China.

    PubMed

    Wang, Guobing; Zhou, Yan; Xu, Xia; Ruan, Honghua; Wang, Jiashe

    2013-01-01

    Soil organic carbon (SOC) actively participates in the global carbon (C) cycle. Despite much research, however, our understanding of the temperature sensitivity of soil organic carbon (SOC) mineralization is still very limited. To investigate the responses of SOC mineralization to temperature, we sampled surface soils (0-10 cm) from evergreen broad-leaf forest (EBF), coniferous forest (CF), sub-alpine dwarf forest (SDF), and alpine meadow (AM) along an elevational gradient in the Wuyi Mountains, China. The soil samples were incubated at 5, 15, 25, and 35°C with constant soil moisture for 360 days. The temperature sensitivity of SOC mineralization (Q(10)) was calculated by comparing the time needed to mineralize the same amount of C at any two adjacent incubation temperatures. Results showed that the rates of SOC mineralization and the cumulative SOC mineralized during the entire incubation significantly increased with increasing incubation temperatures across the four sites. With the increasing extent of SOC being mineralized (increasing incubation time), the Q(10) values increased. Moreover, we found that both the elevational gradient and incubation temperature intervals significantly impacted Q(10) values. Q(10) values of the labile and recalcitrant organic C linearly increased with elevation. For the 5-15, 15-25, and 25-35°C intervals, surprisingly, the overall Q(10) values for the labile C did not decrease as the recalcitrant C did. Generally, our results suggest that subtropical forest soils may release more carbon than expected in a warmer climate.

  4. Decadally cycling soil carbon is more sensitive to warming than faster-cycling soil carbon.

    PubMed

    Lin, Junjie; Zhu, Biao; Cheng, Weixin

    2015-12-01

    The response of soil organic carbon (SOC) pools to globally rising surface temperature crucially determines the feedback between climate change and the global carbon cycle. However, there is a lack of studies investigating the temperature sensitivity of decomposition for decadally cycling SOC which is the main component of total soil carbon stock and the most relevant to global change. We tackled this issue using two decadally (13) C-labeled soils and a much improved measuring system in a long-term incubation experiment. Results indicated that the temperature sensitivity of decomposition for decadally cycling SOC (>23 years in one soil and >55 years in the other soil) was significantly greater than that for faster-cycling SOC (<23 or 55 years) or for the entire SOC stock. Moreover, decadally cycling SOC contributed substantially (35-59%) to the total CO2 loss during the 360-day incubation. Overall, these results indicate that the decomposition of decadally cycling SOC is highly sensitive to temperature change, which will likely make this large SOC stock vulnerable to loss by global warming in the 21st century and beyond. © 2015 John Wiley & Sons Ltd.

  5. Characterization of the N2O isotopic composition (15N, 18O and N2O isotopomers) emitted from incubated Amazon forest soils. Implications for the global N2O isotope budget

    NASA Astrophysics Data System (ADS)

    Pérez, T.; García, D.; Trumbore, S.; Tyler, S.; de Camargo, P.; Moreira, M.; Piccolo, M.; Park, S.; Boering, K.; Cerri, C.

    2003-04-01

    Tropical rain forest soils are the largest natural source of N2O to the atmosphere. Uncertainty in the signature of this source limits the utility of isotopes in constraining the global N2O budget. Differentiating the relative contribution of nitrification and denitrification to the emitted N2O using stable isotopes has been difficult due to the lack of enrichment factors values for each process measured in situ. We have devised a method for measuring enrichment factors using soil incubation experiments. We selected three Amazon rain forest soils: (1) Clay and (2) Sandy from Santarem, Pará State, and (3) Sandy from Nova Vida Farm, Rondonia State, Brazil. The enrichment factor values for nitrification and denitrification are: -97.8±4.2 and -9.9±3.8 per mil for clay Santarem soil, -86.8±4.3 and -45.2±4.5 per mil for sandy Santarem soil and-112.6±3.8 and -10.4±3.5 per mil for Nova Vida Farm soils, respectively. Our results show that enrichment factors for both processes differ with soil texture and location. The enrichment factors for nitrification are significantly smaller than the range reported in the literature (-66 to -42 per mil). Also, the enrichment factors for the Santarem soils (clay and sandy) differ significantly implying that soil texture (which will affect the soil air filled pore space at a given water content) is influencing the bacteria isotopic discrimination. However, the enrichment factors for the Santarem clay sand Nova Vida sandy soils do not differ by much. This suggests that the enrichment factors not only can be affected by texture but also by the microbial fauna present in these soils. We also determined the measurement of the N2O positional dependence. N2O is a linear molecule with two nitrogen atoms. The 15N isotope can be located in either the central nitrogen (alpha position) or in the terminal nitrogen (beta position). The isotopomer site preference (15N alpha - 15N beta) can be used to differentiate processes of production and

  6. Does ochre have the potential to be a remedial treatment for As-contaminated soils?

    PubMed

    Olimah, J A; Shaw, L J; Hodson, M E

    2015-11-01

    Ochre is an iron oxyhydroxide-rich waste that accumulates in water bodies associated with disused mines. Laboratory experiments were conducted to examine the potential of four different ochres to be used as remedial agents for As contaminated soils. The ochres removed As from solution (200 and 500 mg L(-1)) in adsorption experiments at pH 3 and 8 and, when added to As contaminated soil (5% w/w) significantly reduced As release to solution. In both these experiments the highest surface area ochres performed best. The impact of ochre amendments on uptake of As from soil by plants and humans and release of As to ground water was assessed in a year-long incubation study. Ochres increased soil pH and reduced CaCl2 extractable As but had no consistent effect on plant growth, plant As uptake or As extraction in physiologically-based extraction tests. Ochre may be better used for water treatment than soil remediation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Microbial Community Response to Warming and Correlations to Organic Carbon Degradation in an Arctic Tundra Soil

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Yang, S.; Zhou, J.; Wullschleger, S. D.; Graham, D. E.; Yang, Y.; Gu, B.

    2016-12-01

    Climate warming increases microbial activity and thus decomposition of soil organic carbon (SOC) stored in Arctic tundra, but changes in microbial community and its correlations to SOC decomposition are poorly understood. Using a microbial functional gene array (GeoChip 5.0), we examined the microbial functional community structure changes with temperature (-2 and +8 °C) in an anoxic incubation experiment with a high-centered polygon trough soil from Barrow, Alaska. Through a 122-day incubation, we show that functional community structure was significantly altered (P < 0.05) by 8 °C warming, with functional diversity decreasing in response to warming and rapid degradation of the labile soil organic substrates. In contrast, microbial community structure was largely unchanged by -2 °C incubation. In the organic layer soil, gene abundances associated with fermentation, methanogenesis, and iron reduction all decreased significantly (P < 0.05) following the incubation at 8 °C. These observations corroborate strongly with decreased methane and reducing sugar production rates and iron reduction during the incubation. These results demonstrate a rapid and sensitive microbial response to increasing soil temperature, and suggest important roles of microbial communities in moderating SOC degradation and iron cycling in warming Arctic tundra.

  8. Iron Redox Transformations And Phosphorous Cycling In Tropical Soils

    NASA Astrophysics Data System (ADS)

    Peretyazhko, T.; Sposito, G.

    2003-12-01

    We are investigating the hypothesis that in highly weathered tropical soils iron oxidation-reduction reactions may mediate phosphorous solubility. In these soils phosphorous may be removed from the plant-available soil pool by sorption to Fe(III) oxides and by precipitation with Fe(III) to form insoluble minerals. The reduction of iron during episodic anoxic conditions has the potential to release phosphorous in a plant available form. We aim to explore the factors controlling Fe reduction and to evaluate the role of Fe reduction in P solubilization. Soil samples were collected along a toposequence (ridge-slope-valley) in the Luquillo Experimental Forest, Puerto Rico. Besides precipitation, the valley soils receive additional water through subsurface and upland runoff. These soils are poorly-drained and, therefore, periodically saturated with water, which creates anoxic conditions. Two series of incubation experiments were carried out on air-dried and freshly-sampled valley soils. During a 14-day incubation period, increasing production of Fe(II) was detected in both types of soil sample. We also found positive correlations between the concentrations of soluble Fe(II), pH, and soluble P. In general, the total amounts of Fe(II) and P produced were higher in the air-dried soil, mainly due to differences in microbial activity. To examine further the factors controlling Fe reduction and P solubilization, we are performing soil incubation experiments in the presence of "electron shuttle" compound (AQDS). SEM and STXM techniques will be applied to detect the formation of Fe(II) secondary minerals.

  9. BACTERIAL COMMUNITY DYNAMICS AND ECOTOXICOLOGICAL ASSESSMENT DURING BIOREMEDIATION OF SOILS CONTAMINATED BY BIODIESEL AND DIESEL/BIODIESEL BLENDS.

    PubMed

    Matos, G I; Junior, C S; Oliva, T C; Subtil, D F; Matsushita, L Y; Chaves, A L; Lutterbach, M T; Sérvulo, E F; Agathos, S N; Stenuit, B

    2015-01-01

    The gradual introduction of biodiesel in the Brazilian energy landscape has primarily occurred through its blending with conventional petroleum diesel (e.g., B20 (20% biodiesel) and B5 (5% biodiesel) formulations). Because B20 and lower-level blends generally do not require engine modifications, their use as transportation fuel is increasing in the Brazilian distribution networks. However, the environmental fate of low-level biodiesel blends and pure biodiesel (B100) is poorly understood and the ecotoxicological-safety endpoints of biodiesel-contaminated environments are unknown. Using laboratory microcosms consisting of closed reactor columns filled with clay loam soil contaminated with pure biodiesel (EXPB100) and a low-level blend (EXPB5) (10% w/v), this study presents soil ecotoxicity assessement and dynamics of culturable heterotrophic bacteria. Most-probable-number (MPN) procedures for enumeration of bacteria, dehydrogenase assays and soil ecotoxicological tests using Eisenia fetida have been performed at different column depths over the course of incubation. After 60 days of incubation, the ecotoxicity of EXPB100-derived samples showed a decrease from 63% of mortality to 0% while EXPB5-derived samples exhibited a reduction from 100% to 53% and 90% on the top and at the bottom of the reactor column, respectively. The dehydrogenase activity of samples from EXPB100 and EXPB5 increased significantly compared to pristine soil after 60 days of incubation. Growth of aerobic bacterial biomass was only observed on the top of the reactor column while the anaerobic bacteria exhibited significant growth at different column depths in EXPB100 and EXPB5. These preliminary results suggest the involvement of soil indigenous microbiota in the biodegradation of biodiesel and blends. However, GC-FID analyses for quantification of fatty acid methyl esters (FAMEs) and aliphatic hydrocarbons and targeted sequencing of 16S rRNA tags using illumina platforms will provide important

  10. Accumulation and oxidation of elemental mercury in tropical soils.

    PubMed

    Soares, Liliane Catone; Egreja Filho, Fernando Barboza; Linhares, Lucília Alves; Windmoller, Cláudia Carvalhinho; Yoshida, Maria Irene

    2015-09-01

    The role of chemical and mineralogical soil properties in the retention and oxidation of atmospheric mercury in tropical soils is discussed based on thermal desorption analysis. The retention of gaseous mercury by tropical soils varied greatly both quantitatively and qualitatively with soil type. The average natural mercury content of soils was 0.08 ± 0.06 μg g(-1) with a maximum of 0.215 ± 0.009 μg g(-1). After gaseous Hg(0) incubation experiments, mercury content of investigated soils ranged from 0.6 ± 0.2 to 735 ± 23 μg g(-1), with a mean value of 44 ± 146 μg g(-1). Comparatively, A horizon of almost all soil types adsorbed more mercury than B horizon from the same soil, which demonstrates the key role of organic matter in mercury adsorption. In addition to organic matter, pH and CEC also appear to be important soil characteristics for the adsorption of mercury. All thermograms showed Hg(2+) peaks, which were predominant in most of them, indicating that elemental mercury oxidized in tropical soils. After four months of incubation, the thermograms showed oxidation levels from 70% to 100%. As none of the samples presented only the Hg(0) peak, and the soils retained varying amounts of mercury despite exposure under the same incubation conditions, it became clear that oxidation occurred on soil surface. Organic matter seemed to play a key role in mercury oxidation through complexation/stabilization of the oxidized forms. The lower percentages of available mercury (extracted with KNO3) in A horizons when compared to B horizons support this idea. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Desert soil collection at the JPL soil science laboratory

    NASA Technical Reports Server (NTRS)

    Blank, G. B.; Cameron, R. E.

    1969-01-01

    Collection contains desert soils and other geologic materials collected from sites in the United States and foreign countries. Soils are useful for test purposes in research related to extraterrestrial life detection, sampling, harsh environmental studies, and determining suitable areas for training astronauts for lunar exploration.

  12. NMR spectroscopic study of the carbon and nitrogen dynamics of grass-derived pyrogenic organic material during 2.3 years of incubation in soil

    NASA Astrophysics Data System (ADS)

    Hilscher, André; Knicker, Heike

    2010-05-01

    Incomplete combustion of vegetation results in pyrogenic organic material (PyOM) which occurs ubiquitously in soils and sediments. To understand the C sequestration potential of PyOM in environmental systems knowledge is required about the respective degradation and humification mechanisms and the stability of the different chemical PyOM structures. The present study focuses on the microbial recalcitrance of PyOM on molecular scale. Therefore, microcosms incubation experiments were performed using PyOM produced from highly isotopically enriched 13C and 15N rye grass (Lolium perenne) at 350°C under oxic conditions for one (1M) and four minutes (4M). Solid-state CPMAS 13C and 15N NMR studies were accomplished to obtain insights into the involved humification mechanisms at different stages the PyOM degradation. In total up to 38% of the bulk PyOM C was mineralised during the 28 months of incubation. The O/N-alkyl C and alkyl C residues which survived the charring process were effectively decomposed. At the end of the incubation up to 73% and 57% of the initial O/N-alkyl C and alkyl C amount were mineralised or converted to other C groups, respectively. The total aryl C group recovery of the PyOM decreased significantly during the 28 months of incubation (P ≤ 0.001). After 20 months of incubation between 26% and 40% of the initial aryl C amount was lost. For this group, relative short half time periods in the range of 3.0 and 3.8 years were obtained. The observed loss of aromatic C structures may be attributed to two simultaneous processes, the mineralisation to CO2 and the conversion to other C groups by partial oxidation. The presence of a readily decomposable co-substrate showed no significant changes in the degradation pattern of the different PyOM, possibly because decomposable sources were already available in the starting PyOM. Most of the organic bound N of the fresh PyOM was assignable to heterocyclic aromatic compounds such as pyrrole and indole

  13. Loss pathways of N-nitrosodimethylamine (NDMA) in turfgrass soils.

    PubMed

    Arienzo, M; Gan, J; Ernst, F; Qin, S; Bondarenko, S; Sedlak, D L

    2006-01-01

    N-nitrosodimethylamine (NDMA) is a potent carcinogen that is often present in municipal wastewater effluents. In a previous field study, it was observed that NDMA did not leach through turfgrass soils following 4 mo of intensive irrigation with NDMA-containing wastewater effluent. To better understand the loss pathways for NDMA in landscape irrigation systems, a mass balance approach was employed using in situ lysimeters treated with 14C-NDMA. When the lysimeters were subjected to irrigation and field conditions after NDMA application, very rapid dissipation of NDMA was observed for both types of soil used in the field plots. After only 4 h, total 14C activity in the lysimeters decreased to 19.1 to 26.1% of the applied amount, and less than 1% of the activity was detected below the 20-cm depth. Analysis of plant materials showed that less than 3% of the applied 14C was incorporated into the plants, suggesting only a minor role for plant uptake in removing NDMA from the vegetated soils. The rapid dissipation and limited downward movement of NDMA in the in situ lysimeters was consistent with the negligible leaching observed in the field study, and suggests volatilization as the only significant loss pathway. This conclusion was further corroborated by rapid NDMA volatilization found from water or a thin layer of soil under laboratory conditions. In a laboratory incubation experiment, prolonged wastewater irrigation did not result in enhanced NDMA degradation in the soil. Therefore, although NDMA may be present at relatively high levels in treated wastewater, gaseous diffusion and volatilization in unsaturated soils may effectively impede significant leaching of NDMA, minimizing the potential for ground water contamination from irrigation with treated wastewater.

  14. Biogeochemistry of mercury in soils and sediments in a mining-impacted watershed, California

    NASA Astrophysics Data System (ADS)

    Holloway, J. M.; Goldhaber, M. B.

    2004-12-01

    The East Davis Creek watershed, located in the California Coast Ranges, is host to historic mines that provided mercury for recovery of gold in the Sierra Nevada goldfields in the mid-to-late 1800s. Bedrock in this watershed includes marine sedimentary rock, serpentinite, and hydrothermally altered serpentinite. Cinnabar (HgS) found in the altered serpentinite is the primary ore mineral for mercury. We evaluated the hypothesis that mercury is sequestered in soil organic matter downstream from source areas, releasing a fraction as water-soluble methylmercury. Microbial biomass and the presence of sulfur-reducing bacteria implicated in mercury methylation were quantified using phospholipid fatty acid (PLFA) data. Methylation incubations were performed on soil and sediment inoculated with water from Davis Creek Reservoir and sealed in glass containers under an anoxic headspace for 21 days. Methylmercury was measured on extracts of the soils at the start and at the end of the incubation period. Two sources of mercury to stream sediments, a soil with an altered serpentinite parent and mine tailings, were incubated. Stream sediment, an overbank deposit soil and a wetland soil forming from these sediments were also incubated. The overbank deposit soil is periodically flooded. The wetland soil around the edge of Davis Creek Reservoir is perennially saturated with water. The altered serpentinite soil and mine tailings had the highest total mercury concentrations (170 and 150 ng Hg /g, respectively). Total mercury concentrations in stream sediments are low (¡Ü1 ng Hg/g), with higher mercury concentrations in the overbank (3 ng/g) and wetland soils (18 ng Hg/g). Mercury leached from altered serpentinite soils and mine tailings may be transported downstream and sequestered through sorption to organic matter in the overbank and wetland soils. PLFA biomarkers for Desulfobacter (10Me16:0) and Desulfovibrio (i17:1) were present in all incubated materials, with lower

  15. Identifying the microbial taxa that consistently respond to soil warming across time and space.

    PubMed

    Oliverio, Angela M; Bradford, Mark A; Fierer, Noah

    2017-05-01

    Soil microbial communities are the key drivers of many terrestrial biogeochemical processes. However, we currently lack a generalizable understanding of how these soil communities will change in response to predicted increases in global temperatures and which microbial lineages will be most impacted. Here, using high-throughput marker gene sequencing of soils collected from 18 sites throughout North America included in a 100-day laboratory incubation experiment, we identified a core group of abundant and nearly ubiquitous soil microbes that shift in relative abundance with elevated soil temperatures. We then validated and narrowed our list of temperature-sensitive microbes by comparing the results from this laboratory experiment with data compiled from 210 soils representing multiple, independent global field studies sampled across spatial gradients with a wide range in mean annual temperatures. Our results reveal predictable and consistent responses to temperature for a core group of 189 ubiquitous soil bacterial and archaeal taxa, with these taxa exhibiting similar temperature responses across a broad range of soil types. These microbial 'bioindicators' are useful for understanding how soil microbial communities respond to warming and to discriminate between the direct and indirect effects of soil warming on microbial communities. Those taxa that were found to be sensitive to temperature represented a wide range of lineages and the direction of the temperature responses were not predictable from phylogeny alone, indicating that temperature responses are difficult to predict from simply describing soil microbial communities at broad taxonomic or phylogenetic levels of resolution. Together, these results lay the foundation for a more predictive understanding of how soil microbial communities respond to soil warming and how warming may ultimately lead to changes in soil biogeochemical processes. © 2016 John Wiley & Sons Ltd.

  16. The relationship of oocyte diameter and incubation temperature to incubation time in temperate freshwater fish species.

    PubMed

    Teletchea, F; Gardeur, J-N; Kamler, E; Fontaine, P

    2009-02-01

    Based on the analysis of six egg variables and incubation temperature of 65 temperate freshwater fish species, the possible relationships between oocyte diameter, incubation time and incubation temperature were reassessed and compared to the results obtained from marine fishes. Most freshwater species have eggs (mean +/-s.d. 2.19 +/- 1.52 mm) larger than marine species, that are chiefly demersal and develop stuck to various substrata, such as plants or rocks. A strong negative relationship was found between incubation time (t, days) and incubation temperature (T, degrees C): t = 186.23e(-0.197T) (r(2)= 0.87). A strong dependence of incubation time on oocyte diameter (Ø, mm) and incubation temperature was also found and was defined as: log(10)t= 3.002 + 0.599 log(10)Ø - 1.91 log(10) (T + 2), which explained 92% of the variance of the data set. Five major groups of species were defined based on the principal component analysis (PCA) of four quantitative variables. There were two distinct groups of salmonids, displaying demersal and non-adhesive eggs with a long incubation time at low temperature, the eggs of which required a high number of degree-days. There was a large group of species possessing small, mostly demersal and adhesive eggs developing at high temperature during a short period of time, and requiring a low number of degree-days. Between these two extremes, there was a fourth group displaying intermediate values and a fifth group including three species with large, adhesive and demersal eggs incubating at high temperatures during a short period of time. The burbot Lota lota displayed an unusual combination of variables compared to the remaining species in the data set.

  17. The influence of soil organic matter chemistry and site/soil properties in predicting the decomposability of tundra soils

    NASA Astrophysics Data System (ADS)

    Matamala, R.; Jastrow, J. D.; Fan, Z.; Liang, C.; Calderon, F.; Michaelson, G.; Mishra, U.; Ping, C. L.

    2017-12-01

    With the increase in high latitude warming, there is a need to better understand the potential vulnerability of soil organic matter (SOM) stored in Arctic regions. In this study, we used mid infrared spectroscopy (MidIR) to determine the influence of soil chemistry and site properties in the short-term mineralization potential of SOM stored in tundra soils. Soils from the active and permafrost layers were collected from four tundra sites on the Coastal Plain, and Arctic Foothills of the North Slope of Alaska and were incubated for 60 days at a range of temperatures. Site and soil properties including acidic versus non-acidic tundra, lowland versus upland areas, total soil organic carbon (TOC) and total nitrogen (TN) concentrations, 60-day carbon mineralization potential (CMP), MidIR spectra and the chemical composition of the SOM stored in these soils were determined. Partial least squares (PLS) models for CMP versus MidIR spectra were produced upon splitting the dataset into site and soil properties categories. We found that SOM composition determined by MidIR spectroscopy was most effective in predicting CMP for tundra soils and it was most relevant for the active-layer mineral and upper permafrost soil horizons and/or soils with C concentrations of 10% or lower. Analysis of the factor loadings and standardized beta coefficients from the CMP PLS models indicated that spectral bands associated with clay contents, phenolic OH, aliphatic, silicates, carboxylic acids, and polysaccharides were influential for lower TOC soils, but these bands were less important for higher TOC soils. High TOC soils were influenced by a combination of other factors. Our results suggest that different factors affect the short-term CMP of SOM in tundra soils depending on the amount of TOC present. We show MidIR as a powerful tool for quickly and reasonably estimating the short-term CMP of tundra soils. Widespread application of MidIR measurements to already collected and archived tundra

  18. Interactive effects of fire, soil climate, and moss on CO2 fluxes in black spruce ecosystems of interior Alaska

    USGS Publications Warehouse

    O'Donnell, J. A.; Turetsky, M.R.; Harden, J.W.; Manies, K.L.; Pruett, L.E.; Shetler, G.; Neff, J.C.

    2009-01-01

    Fire is an important control on the carbon (C) balance of the boreal forest region. Here, we present findings from two complementary studies that examine how fire modifies soil organic matter properties, and how these modifications influence rates of decomposition and C exchange in black spruce (Picea mariana) ecosystems of interior Alaska. First, we used laboratory incubations to explore soil temperature, moisture, and vegetation effects on CO2 and DOC production rates in burned and unburned soils from three study regions in interior Alaska. Second, at one of the study regions used in the incubation experiments, we conducted intensive field measurements of net ecosystem exchange (NEE) and ecosystem respiration (ER) across an unreplicated factorial design of burning (2 year post-fire versus unburned sites) and drainage class (upland forest versus peatland sites). Our laboratory study showed that burning reduced the sensitivity of decomposition to increased temperature, most likely by inducing moisture or substrate quality limitations on decomposition rates. Burning also reduced the decomposability of Sphagnum-derived organic matter, increased the hydrophobicity of feather moss-derived organic matter, and increased the ratio of dissolved organic carbon (DOC) to total dissolved nitrogen (TDN) in both the upland and peatland sites. At the ecosystem scale, our field measurements indicate that the surface organic soil was generally wetter in burned than in unburned sites, whereas soil temperature was not different between the burned and unburned sites. Analysis of variance results showed that ER varied with soil drainage class but not by burn status, averaging 0.9 ?? 0.1 and 1.4 ?? 0.1 g C m-2d-1 in the upland and peatland sites, respectively. However, a more complex general linear model showed that ER was controlled by an interaction between soil temperature, moisture, and burn status, and in general was less variable over time in the burned than in the unburned sites

  19. Interactive effects of fire, soil climate, and moss on CO2 fluxes in black spruce ecosystems of interior Alaska

    USGS Publications Warehouse

    O'Donnell, Jonathan A.; Turetsky, Merritt R.; Harden, Jennifer W.; Manies, Kristen L.; Pruett, L.E.; Shetler, Gordon; Neff, Jason C.

    2009-01-01

    Fire is an important control on the carbon (C) balance of the boreal forest region. Here, we present findings from two complementary studies that examine how fire modifies soil organic matter properties, and how these modifications influence rates of decomposition and C exchange in black spruce (Picea mariana) ecosystems of interior Alaska. First, we used laboratory incubations to explore soil temperature, moisture, and vegetation effects on CO2 and DOC production rates in burned and unburned soils from three study regions in interior Alaska. Second, at one of the study regions used in the incubation experiments, we conducted intensive field measurements of net ecosystem exchange (NEE) and ecosystem respiration (ER) across an unreplicated factorial design of burning (2 year post-fire versus unburned sites) and drainage class (upland forest versus peatland sites). Our laboratory study showed that burning reduced the sensitivity of decomposition to increased temperature, most likely by inducing moisture or substrate quality limitations on decomposition rates. Burning also reduced the decomposability of Sphagnum-derived organic matter, increased the hydrophobicity of feather moss-derived organic matter, and increased the ratio of dissolved organic carbon (DOC) to total dissolved nitrogen (TDN) in both the upland and peatland sites. At the ecosystem scale, our field measurements indicate that the surface organic soil was generally wetter in burned than in unburned sites, whereas soil temperature was not different between the burned and unburned sites. Analysis of variance results showed that ER varied with soil drainage class but not by burn status, averaging 0.9 ± 0.1 and 1.4 ± 0.1 g C m−2 d−1 in the upland and peatland sites, respectively. However, a more complex general linear model showed that ER was controlled by an interaction between soil temperature, moisture, and burn status, and in general was less variable over time in the burned than in the

  20. Differences in sorption behavior of the herbicide 4-chloro-2-methylphenoxyacetic acid on artificial soils as a function of soil pre-aging.

    PubMed

    Waldner, Georg; Friesl-Hanl, Wolfgang; Haberhauer, Georg; Gerzabek, Martin H

    The sorption behavior of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) to three different artificial soil mixtures was investigated. Artificial soils serve as model systems for improving understanding of sorption phenomena. The soils consisted of quartz, ferrihydrite, illite, montmorillonite, and charcoal. In a previous study, several selected mixtures had been inoculated with organic matter, and microbial aging (incubation) had been performed for different periods of time (3, 12, and 18 months) before conducting the sorption experiments. The effect of this pre-incubation time on the sorption behavior was determined. Interaction of MCPA with soil surfaces was monitored by aqueous phase sorption experiments, using high-performance liquid chromatography/ultraviolet and in selected cases Fourier-transformed infrared spectroscopy. The sorption behavior showed large differences between differently aged soils; Freundlich and linear sorption model fits (with sorption constants K f , 1/ n exponents, and K d values, respectively) were given for pH = 3 and the unbuffered pH of ∼7. The largest extent of sorption from diluted solutions was found on the surfaces with a pre-incubation time of 3 months. Sorption increased at acidic pH values. Regarding the influence of aging of artificial soils, the following conclusions were drawn: young artificial soils exhibit stronger sorption at lower concentrations, with a larger K f value than aged soils. A correlation with organic carbon content was not confirmed. Thus, the sorption characteristics of the soils are more influenced by the aging of the organic carbon than by the organic carbon content itself.

  1. Data Quality Objectives Supporting the Environmental Soil Monitoring Program for the Idaho National Laboratory Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haney, Thomas Jay

    This document describes the process used to develop data quality objectives for the Idaho National Laboratory (INL) Environmental Soil Monitoring Program in accordance with U.S. Environmental Protection Agency guidance. This document also develops and presents the logic that was used to determine the specific number of soil monitoring locations at the INL Site, at locations bordering the INL Site, and at locations in the surrounding regional area. The monitoring location logic follows the guidance from the U.S. Department of Energy for environmental surveillance of its facilities.

  2. Soil incubation studies with Cry1Ac protein indicate no adverse effect of Bt crops on soil microbial communities.

    PubMed

    Zhaolei, Li; Naishun, Bu; Xueping, Chen; Jun, Cui; Manqiu, Xiao; Zhiping, Song; Ming, Nie; Changming, Fang

    2018-05-15

    Bt crops that are transgenic crops engineered to produce Bt toxins which occur naturally with Bacillus thuringiensis (Bt) have been widely planted and its environmental risk assessment has been heavily debated. The effects of Bt crops on soil microbial communities are possible through changing the quantity and quality of C inputs and potential toxic activity of Bt protein on soil organisms. To date, the direct effects of Bt protein on soil microorganisms is unclear. Here we added Cry1Ac, one of the most commonly used Bt protein in Bt crops, to the soil and monitored changes in soil bacterial, fungal and archaeal diversities and community structures using ribosomal DNA-fingerprinting method, as well as their population sizes by real-time PCR over a 100-day period. Despite the fact that variations were observed in the indices of evenness, diversity and population sizes of bacteria, fungi and archaea with different Cry1Ac addition rates up to 100ngg -1 soil, the indices of soil microbial diversities and evennesses did not significantly shift with Cry1Ac protein addition, nor did population sizes change over time. The diversities of the dominant bacteria, fungi and archaea were not significantly changed, given Cry1Ac protein addition rates over a period of 100 days. These results suggested that Bt protein derived by cultivations of transgenic Bt crops is unlikely to cause transient or even persisting significant changes in soil microorganisms in field. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Activation energy and energy density: a bioenergetic framework for assessing soil organic matter stability

    NASA Astrophysics Data System (ADS)

    Williams, E. K.; Plante, A. F.

    2017-12-01

    The stability and cycling of natural organic matter depends on the input of energy needed to decompose it and the net energy gained from its decomposition. In soils, this relationship is complicated by microbial enzymatic activity which decreases the activation energies associated with soil organic matter (SOM) decomposition and by chemical and physical protection mechanisms which decreases the concentrations of the available organic matter substrate and also require additional energies to overcome for decomposition. In this study, we utilize differential scanning calorimetry and evolved CO2 gas analysis to characterize differences in the energetics (activation energy and energy density) in soils that have undergone degradation in natural (bare fallow), field (changes in land-use), chemical (acid hydrolysis), and laboratory (high temperature incubation) experimental conditions. We will present this data in a novel conceptual framework relating these energy dynamics to organic matter inputs, decomposition, and molecular complexity.

  4. Effect of different rates of spent mushroom substrate on the dissipation and bioavailability of cymoxanil and tebuconazole in an agricultural soil.

    PubMed

    Álvarez-Martín, Alba; Sánchez-Martín, María Jesús; Pose-Juan, Eva; Rodríguez-Cruz, María Sonia

    2016-04-15

    Physicochemical methods to immobilize pesticides in vulnerable soils are currently being developed to prevent water contamination. Some of these methods include the use of different organic residues to modify soils because they could limit the transport of pesticides and/or facilitate their dissipation. Spent mushroom substrate (SMS) may be used for these purposes. Accordingly a study was conducted under laboratory conditions to know the dissipation and bioavailability of the fungicides cymoxanil and tebuconazole over time in a vineyard soil amended with two rates of spent mushroom substrate (SMS) (5% and 50% (w/w)), selected to prevent the diffuse or point pollution of soil. The dissipation of cymoxanil was more rapid than that of tebuconazole in the different soils studied. The dissipation rate was higher in the amended soil than in the unamended one for both compounds, while no significant differences were observed between the amended soils in either case. An apparent dissipation occurred in the amended soil due to the formation of non-extractable residues. Bound residues increased with incubation time for tebuconazole, although a proportion of this fungicide was bioavailable after 303days. The major proportion of cymoxanil was tightly bound to the amended soil from the start, although an increasing fraction of bound fungicide was bioavailable for mineralization. Soil dehydrogenase activity was significantly affected by SMS application and incubation time; however, it was not significantly modified by fungicide application. The significance of this research suggests that SMS applied at a low or high rate to agricultural soil can be used to prevent both the diffuse or point pollution of soil through the formation of non-extractable residues, although more research is needed to discover the time that fungicides remain adsorbed into the soil decreasing either bioavailability (tebuconazole) or mineralization (cymoxanil) in SMS-amended soils. Copyright © 2016

  5. Small Technology Business Incubation Needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2007-12-31

    This report contains a summary of typical business incubation needs of small technology companies. This document will serve as a guide in the design and implementation of services offered by the National Security Technology Incubator (NSTI), an incubator program being designed and developed as part of the National Security Preparedness Project (NSPP), performed under a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This report includes a brief description of the methodology used to perform the needs assessment and services proposed to meet the needs of client companies. The purpose of the NSPP is to promote national security technologiesmore » through business incubation, technology demonstration and validation, and workforce development. The NSTI will focus on serving businesses with national security technology applications by nurturing them through critical stages of early development. The vision of the NSTI is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety, security, and protection of the homeland.« less

  6. Earth System Models Underestimate Soil Carbon Diagnostic Times in Dry and Cold Regions.

    NASA Astrophysics Data System (ADS)

    Jing, W.; Xia, J.; Zhou, X.; Huang, K.; Huang, Y.; Jian, Z.; Jiang, L.; Xu, X.; Liang, J.; Wang, Y. P.; Luo, Y.

    2017-12-01

    Soils contain the largest organic carbon (C) reservoir in the Earth's surface and strongly modulate the terrestrial feedback to climate change. Large uncertainty exists in current Earth system models (ESMs) in simulating soil organic C (SOC) dynamics, calling for a systematic diagnosis on their performance based on observations. Here, we built a global database of SOC diagnostic time (i.e.,turnover times; τsoil) measured at 320 sites with four different approaches. We found that the estimated τsoil was comparable among approaches of 14C dating () (median with 25 and 75 percentiles), 13C shifts due to vegetation change () and the ratio of stock over flux (), but was shortest from laboratory incubation studies (). The state-of-the-art ESMs underestimated the τsoil in most biomes, even by >10 and >5 folds in cold and dry regions, respectively. Moreover,we identified clear negative dependences of τsoil on temperature and precipitation in both of the observational and modeling results. Compared with Community Land Model (version 4), the incorporation of soil vertical profile (CLM4.5) could substantially extend the τsoil of SOC. Our findings suggest the accuracy of climate-C cycle feedback in current ESMs could be enhanced by an improved understanding of SOC dynamics under the limited hydrothermal conditions.

  7. Assessment of radiant temperature in a closed incubator.

    PubMed

    Décima, Pauline; Stéphan-Blanchard, Erwan; Pelletier, Amandine; Ghyselen, Laurent; Delanaud, Stéphane; Dégrugilliers, Loïc; Telliez, Frédéric; Bach, Véronique; Libert, Jean-Pierre

    2012-08-01

    In closed incubators, radiative heat loss (R) which is assessed from the mean radiant temperature (Tr) accounts for 40-60% of the neonate's total heat loss. In the absence of a benchmark method to calculate Tr--often considered to be the same as the air incubator temperature-errors could have a considerable impact on the thermal management of neonates. We compared Tr using two conventional methods (measurement with a black-globe thermometer and a radiative "view factor" approach) and two methods based on nude thermal manikins (a simple, schematic design from Wheldon and a multisegment, anthropometric device developed in our laboratory). By taking the Tr estimations for each method, we calculated metabolic heat production values by partitional calorimetry and then compared them with the values calculated from V(O2) and V(CO2) measured in 13 preterm neonates. Comparisons between the calculated and measured metabolic heat production values showed that the two conventional methods and Wheldon's manikin underestimated R, whereas when using the anthropomorphic thermal manikin, the simulated versus clinical difference was not statistically significant. In conclusion, there is a need for a safety standard for measuring TR in a closed incubator. This standard should also make available estimating equations for all avenues of the neonate's heat exchange considering the metabolic heat production and the modifying influence of the thermal insulation provided by the diaper and by the mattress. Although thermal manikins appear to be particularly appropriate for measuring Tr, the current lack of standardized procedures limits their widespread use.

  8. Impact of chlortetracycline and sulfapyridine antibiotics on soil enzyme activities

    NASA Astrophysics Data System (ADS)

    Molaei, Ali; Lakzian, Amir; Datta, Rahul; Haghnia, Gholamhosain; Astaraei, Alireza; Rasouli-Sadaghiani, MirHassan; Ceccherini, Maria T.

    2017-10-01

    Pharmaceutical antibiotics are frequently used in the livestock and poultry industries to control infectious diseases. Due to the lack of proper guidance for use, the majority of administrated antibiotics and their metabolites are excreted to the soil environment through urine and feces. In the present study, we used chlortetracycline and sulfapyridine antibiotics to screen out their effects on dehydrogenase, alkaline phosphatase and urease activity. Factorial experiments were conducted with different concentrations of antibiotic (0, 10, 25 and 100 mg kg-1 of soil) mixed with soil samples, and the enzyme activity was measured at intervals of 1, 4 and 21 days. The results show that the chlortetracycline and sulfapyridine antibiotics negatively affect the dehydrogenase activity, but the effect of sulfapyridine decreases with time of incubation. Indeed, sulfapyridine antibiotic significantly affect the alkaline phosphatase activity for the entire three-time interval, while chlortetracycline seems to inhibit its activity within 1 and 4 days of incubation. The effects of chlortetracycline and sulfapyridine antibiotics on urease activity appear similar, as they both significantly affect the urease activity on day 1 of incubation. The present study concludes that chlortetracycline and sulfapyridine antibiotics have harmful effects on soil microbes, with the extent of effects varying with the duration of incubation and the type of antibiotics used.

  9. Benefits of Incubation on Divergent Thinking

    ERIC Educational Resources Information Center

    Chiang, Noelle C.; Chen, Meng-Liang

    2017-01-01

    Studies on whether fixation cues provided in the first episode of divergent thinking tasks influence creative outcomes after incubation, as they do for convergent problem-solving tasks, remain limited. This research examined the beneficial effects of incubation using the delayed- and immediate-incubation paradigms. Participants in Experiment 1…

  10. Influence of Multiple Environmental Factors on Organic Matter Chlorination in Podsol Soil.

    PubMed

    Svensson, Teresia; Montelius, Malin; Andersson, Malin; Lindberg, Cecilia; Reyier, Henrik; Rietz, Karolina; Danielsson, Åsa; Bastviken, David

    2017-12-19

    Natural chlorination of organic matter is common in soils. The abundance of chlorinated organic compounds frequently exceeds chloride in surface soils, and the ability to chlorinate soil organic matter (SOM) appears widespread among microorganisms. Yet, the environmental control of chlorination is unclear. Laboratory incubations with 36 Cl as a Cl tracer were performed to test how combinations of environmental factors, including levels of soil moisture, nitrate, chloride, and labile organic carbon, influenced chlorination of SOM from a boreal forest. Total chlorination was hampered by addition of nitrate or by nitrate in combination with water but enhanced by addition of chloride or most additions including labile organic matter (glucose and maltose). The greatest chlorination was observed after 15 days when nitrate and water were added together with labile organic matter. The effect that labile organic matter strongly stimulated the chlorination rates was confirmed by a second independent experiment showing higher stimulation at increased availability of labile organic matter. Our results highlight cause-effect links between chlorination and the studied environmental variables in podsol soil-with consistent stimulation by labile organic matter that did overrule the negative effects of nitrate.

  11. [Biodegradation of landfill leachate in soil].

    PubMed

    Fu, Mei-yun; Zhou, Li-xiang

    2007-01-01

    With aerobic and anaerobic incubation tests, this paper studied the biodegradation of three kind landfill leachates in acidic and calcareous soils. The leachates were collected from a landfill just receiving refuse (fresh sample) and the landfills having received refuse for 4-5 years (Tianjingwa sample) and 12 years (Shuige sample). The results showed that in the first seven days of incubation, these three landfill leachates degraded more quickly. Under aerobic condition, the apparent degradation rate of fresh sample, Tianjingwa sample and Shuige sample was 88.9%, 60.5% and 25.0% in acidic soil, and 96.6%, 80.4%, and 65.0% in calcareous soil, respectively. Seven days after, a lower degradation rate was observed. In same test soils, the shorter the landfilling age, the higher apparent degradation rate of the leachates was. Similar results were obtained under anaerobic condition, but the degradation rates were lower. The degradation of test landfill leachates fitted first-order kinetics model well, with a half-life of 12-16 days for fresh sample, and 20-30 days for Tianjingwa and Shuige samples. Once the leachates penetrated into soil, their degradation quickened greatly, suggesting that soil treatment of landfill leachate could have definite efficacy.

  12. Effects of amendment of different biochars on soil physical and biological properties related to carbon mineralization

    NASA Astrophysics Data System (ADS)

    Zhang, Renduo; Zhu, Shuzhi; Ouyang, Lei

    2014-05-01

    Biochar addition to soils potentially affects various soil properties, and these effects are dependent on biochars derived from different feedstock materials and pyrolysis processes. The objective of this study was to investigate the effects of amendment of different biochars on soil physical and biological properties. Biochars were produced with dairy manure and woodchip at temperatures of 300, 500, and 700°C, respectively. Each biochar was mixed at 5% (w/w) with a forest soil and the mixture was incubated for 180 days, during which soil physical and biological properties, and soil respiration rates were measured. Results showed that the biochar addition significantly enhanced the formation of soil macroaggregates at the early incubation time. The biochar application significantly reduced soil bulk density, increased the amount of soil organic matter, and stimulated microbial activity and soil respiration rates at the early incubation stage. Biochar applications improved water retention capacity, with stronger effects by biochars produced at higher pyrolysis temperatures. At the same suction, the soil with woodchip biochars possessed higher water content than with the dairy manure biochars. Biochar addition significantly affected the soil physical and biological properties, which resulted in different soil carbon mineralization rates.

  13. Influences of composted hazelnut husk on some physical properties of soils.

    PubMed

    Zeytin, Serhat; Baran, Abdullah

    2003-07-01

    Some physical properties of clay loam and sandy loam soils amended with hazelnut husk (HH) were investigated. HH collected from hazelnut trees were dried, ground and composted for four months. Before use the composted material obtained was separated to three different aggregate sizes, smaller than 0.84 mm, 0.84-2.38 mm and bigger than 2.38 mm. Then these fractions were mixed with soil samples, at 0%, 1%, 2%, 4% and 8% by weight. Huzelnut husk compost-soil mixtures were placed to plastic pots and kept in an incubator at 25+/-5 degrees C for 45 and 90 days. At the end of incubation periods, water stable aggregate (WSA), hydraulic conductivity, total porosity, aeration porosity and macro- and micro-pore percentages of the mixtures were determined. Results obtained showed that composted HH increased the WSA, hydraulic conductivity, total porosity and macro-pore percentage in both clay loam and sandy loam soils depending on the incubation time and aggregate sizes.

  14. Changes in water extractable organic matter during incubation of forest floor material in the presence of quartz, goethite and gibbsite surfaces

    NASA Astrophysics Data System (ADS)

    Heckman, Katherine; Vazquez-Ortega, Angelica; Gao, Xiaodong; Chorover, Jon; Rasmussen, Craig

    2011-08-01

    The release of dissolved organic matter (DOM) from forest floor material constitutes a significant flux of C to the mineral soil in temperate forest ecosystems, with estimates on the order of 120-500 kg C ha -1 year -1. Interaction of DOM with minerals and metals results in sorptive fractionation and stabilization of OM within the soil profile. Iron and aluminum oxides, in particular, have a significant effect on the quantity and quality of DOM transported through forest soils due to their high surface area and the toxic effects of dissolved aluminum on microbial communities. We directly examined these interactions by incubating forest floor material, including native microbiota, for 154 days in the presence of (1) goethite (α-FeOOH), (2) gibbsite (γ-Al(OH) 3), and (3) quartz (α-SiO 2) sand (as a control). Changes in molecular and thermal properties of water extractable organic matter (WEOM, as a proxy for DOM) were evaluated. WEOM was harvested on days 5, 10, 20, 30, 60, 90, and 154, and examined by thermogravimetry/differential thermal analysis (TG/DTA) and diffuse reflectance Fourier transform infrared (DRIFT) spectroscopy. Results indicated significant differences in WEOM quality among treatments, though the way in which oxide surfaces influenced WEOM properties did not seem to change significantly with increasing incubation time. Dissolved organic C concentrations were significantly lower in WEOM from the oxide treatments in comparison to the control treatment. Incubation with goethite produced WEOM with mid-to-high-range thermal lability that was depleted in both protein and fatty acids relative to the control. The average enthalpy of WEOM from the goethite treatment was significantly higher than either the gibbsite or control treatment, suggesting that interaction with goethite surfaces increases the energy content of WEOM. Incubation with gibbsite produced WEOM rich in thermally recalcitrant and carboxyl-rich compounds in comparison to the control

  15. Soil resistivity over root area ratio, soil humidity, and bulk density: laboratory tests

    NASA Astrophysics Data System (ADS)

    Guastini, Enrico; Giambastiani, Yamuna; Preti, Federico

    2015-04-01

    Knowledge about root system distribution covers an important role in slope shallow stability stud-ies, as this factor grants an increase in soil geotechnical properties (soil cohesion and friction an-gle) and determines a different underground water circulation. Published studies (Amato et al., 2008 and 2011; Censini et al., 2014) about in situ application of ERT (Electrical Resistivity Tomo-graphy) analysis show how the root presence affects the measurable soil resistivity values, confirm-ing the suitability to investigate the application of such technique, aiming to estimate root density in soil with an indirect and non-invasive method. This study, laboratory-based and led on reconstructed samples in controlled condition, aim to find a correlation between the resistivity variations and the various factors that can affect them (humid-ity, bulk density, presence of foreign bodies, temperature). The tests involved a clay-loam soil (USDA classification) taken from Quaracchi (Florence, Italy), in an experimental fir-wood (Picea abies) owned by the Department of Agricultural, Food and For-estry System, Florence University, a previously chosen site for field ERT applications. The row ma-terial has been dried out in a lab stove, grounded and sieved at 2 mm, and then placed in a lexan box (30 x 20 x 20 cm) without compaction. Inside the sample have been inserted 3 series of 4 iron electrodes, insulated along the shaft and with the conductive end placed at three different depth: 2 cm from surface, in the middle of the sample and in contact with the bottom of the box; resistivity measures are conducted on the three levels using a Syscal R2 with electrodes connected in a dipole-dipole configuration. Root presence is simulated inserting bamboo spits (simple geometry, replicable "R.A.R.") in varying number from 0 to 16 in every area between two contiguous electrodes. The tests are repeated in time, monitoring the natural variations in humidity (evapotranspiration) and bulk

  16. 21 CFR 880.5400 - Neonatal incubator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Neonatal incubator. 880.5400 Section 880.5400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... § 880.5400 Neonatal incubator. (a) Identification. A neonatal incubator is a device consisting of a...

  17. National Security Technology Incubator Evaluation Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This report describes the process by which the National Security Technology Incubator (NSTI) will be evaluated. The technology incubator is being developed as part of the National Security Preparedness Project (NSPP), funded by a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This report includes a brief description of the components, steps, and measures of the proposed evaluation process. The purpose of the NSPP is to promote national security technologies through business incubation, technology demonstration and validation, and workforce development. The NSTI will focus on serving businesses with national security technology applications by nurturing them through critical stages ofmore » early development. An effective evaluation process of the NSTI is an important step as it can provide qualitative and quantitative information on incubator performance over a given period. The vision of the NSTI is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety and security. The mission of the NSTI is to identify, incubate, and accelerate technologies with national security applications at various stages of development by providing hands-on mentoring and business assistance to small businesses and emerging or growing companies. To achieve success for both incubator businesses and the NSTI program, an evaluation process is essential to effectively measure results and implement corrective processes in the incubation design if needed. The evaluation process design will collect and analyze qualitative and quantitative data through performance evaluation system.« less

  18. Investigation of biological destruction of benzo[a]pyrene andpolycyclic aromatic hydrocarbons of biochar in soil

    NASA Astrophysics Data System (ADS)

    Okunev, R. V.; Smirnova, E. V.; Sharipova, A. R.; Gilmutdinova, I. M.; Giniyatullin, K. G.

    2018-01-01

    The biological decomposition of benzo[a]pyrene in the concentrations exceeding the MAC (maximum permissible concentration) level in soils by 2, 5 and 10 times was studied in laboratory conditions. The gray forest soil samples were contaminated with benzo[a]pyrene and incubated in optimum for bacterial growth soil moisture for 30 and 60 days. The residual amount of contaminant was monitored by HPLC after extraction with acetone-cyclohexane (2:1). Soil microbial activity was evaluated by measuring basal respiration (BR) and substrate-induced respiration (SID) rates of the soil by gas chromatography. The results of the experiment showed that in 60 days the amount of benzo[a]pyrene in contaminated soils decreased; however, this time was not enough for complete decomposition of pollutant. In this case, benzo[a]pyrene has a negative effect on the BR and SIR rates. Soil contamination affected the BR rate only at high doses (10 MPC), whereas the SIR was a more sensitive indicator of the toxic effect of the pollutant and significantly reacts already at concentrations at the level of 2 MPC. The combination of PAHs isolated from biochar has a strong negative effect on the values of BR and SIR.

  19. Zinc transformations in acidic soil and zinc efficiency on maize by adding six organic zinc complexes.

    PubMed

    López-Valdivia, L M; Fernández, M D; Obrador, A; Alvarez, J M

    2002-03-13

    Experiments under laboratory and greenhouse conditions were conducted to study the response of maize (Zea mays L.) to Zn fertilizer applications (Zn-phenolate, Zn-EDDHA, Zn-EDTA, Zn-lignosulfonate, Zn-polyflavonoid, and Zn-heptagluconate) in an Aquic Haploxeralf soil. The application of Zn complexes significantly increased Zn uptake by the plant compared with that in the control soil. The highest enhancements were obtained in soil treated with Zn-EDTA, Zn-lignosulfonate, and Zn-EDDHA. The highest percentages of Zn taken up by the plants occurred when 20 mg x kg(-1) Zn was applied as Zn-EDTA fertilizer and 10 mg x kg(-1) as Zn-lignosulfonate fertilizer. In the greenhouse experiment, Zn speciation in soil after harvesting showed that almost all Zn was found in the residual fraction followed by metal in the water-soluble plus exchangeable fraction and metal bound to organic matter. The most effective fertilizers maintaining Zn in the most labile fractions were Zn-phenolate, Zn-EDTA, and Zn-lignosulfonate. Conversely, in the incubation experiment, only a small percentage of Zn was found in the water-soluble plus exchangeable fraction and no differences in the Zn distribution were observed between the different fertilizer treatments. The micronutrient content in maize was positively correlated with the water-soluble plus exchangeable Zn as well as with the available Zn determined by the diethylenetriaminepentaacetic acid and Mehlich-3 methods, in the greenhouse experiment. Results of this study showed that the incubation experiment in acidic soil is not a suitable tool to establish the different effectiveness of Zn chelates in plants.

  20. Isolation of Chromobacterium spp. from foods, soil, and water.

    PubMed Central

    Koburger, J A; May, S O

    1982-01-01

    Chromobacterium violaceum, a soil and water inhabitant, has been implicated in human disease with a high mortality rate, particularly in the southeastern United States. The psychrotrophic Chromobacterium lividum has been isolated from foods, water, and soil, but is not considered pathogenic. To determine the distribution of Chromobacterium spp. in soil, water, and foods in the Gainesville area, we evaluated Bennett, Ryalls and Moss, and Aeromonas membrane agars for their ability to recover these organisms from various samples when incubated at 25 or 35 degrees C. Bennett agar was best for the isolation of both species when incubated at 25 degrees C; however, at 35 degrees C, Aeromonas membrane agar gave the highest recoveries of C. violaceum. C. violaceum was recovered only from soil and water, whereas C. lividum was frequently recovered from foods as well as soil and water. PMID:7159087

  1. Quantifying N2O reduction to N2 based on N2O isotopocules - validation with independent methods (helium incubation and 15N gas flux method)

    NASA Astrophysics Data System (ADS)

    Lewicka-Szczebak, Dominika; Augustin, Jürgen; Giesemann, Anette; Well, Reinhard

    2017-02-01

    Stable isotopic analyses of soil-emitted N2O (δ15Nbulk, δ18O and δ15Nsp = 15N site preference within the linear N2O molecule) may help to quantify N2O reduction to N2, an important but rarely quantified process in the soil nitrogen cycle. The N2O residual fraction (remaining unreduced N2O, rN2O) can be theoretically calculated from the measured isotopic enrichment of the residual N2O. However, various N2O-producing pathways may also influence the N2O isotopic signatures, and hence complicate the application of this isotopic fractionation approach. Here this approach was tested based on laboratory soil incubations with two different soil types, applying two reference methods for quantification of rN2O: helium incubation with direct measurement of N2 flux and the 15N gas flux method. This allowed a comparison of the measured rN2O values with the ones calculated based on isotopic enrichment of residual N2O. The results indicate that the performance of the N2O isotopic fractionation approach is related to the accompanying N2O and N2 source processes and the most critical is the determination of the initial isotopic signature of N2O before reduction (δ0). We show that δ0 can be well determined experimentally if stable in time and then successfully applied for determination of rN2O based on δ15Nsp values. Much more problematic to deal with are temporal changes of δ0 values leading to failure of the approach based on δ15Nsp values only. For this case, we propose here a dual N2O isotopocule mapping approach, where calculations are based on the relation between δ18O and δ15Nsp values. This allows for the simultaneous estimation of the N2O-producing pathways' contribution and the rN2O value.

  2. Response of soil microbial activities and microbial community structure to vanadium stress.

    PubMed

    Xiao, Xi-Yuan; Wang, Ming-Wei; Zhu, Hui-Wen; Guo, Zhao-Hui; Han, Xiao-Qing; Zeng, Peng

    2017-08-01

    High levels of vanadium (V) have long-term, hazardous impacts on soil ecosystems and biological processes. In the present study, the effects of V on soil enzymatic activities, basal respiration (BR), microbial biomass carbon (MBC), and the microbial community structure were investigated through 12-week greenhouse incubation experiments. The results showed that V content affected soil dehydrogenase activity (DHA), BR, and MBC, while urease activity (UA) was less sensitive to V stress. The average median effective concentration (EC 50 ) thresholds of V were predicted using a log-logistic dose-response model, and they were 362mgV/kg soil for BR and 417mgV/kg soil for DHA. BR and DHA were more sensitive to V addition and could be used as biological indicators for soil V pollution. According to a polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis, the structural diversity of the microbial community decreased for soil V contents ranged between 254 and 1104mg/kg after 1 week of incubation. As the incubation time increased, the diversity of the soil microbial community structure increased for V contents ranged between 354 and 1104mg/kg, indicating that some new V-tolerant bacterial species might have replicated under these conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Comparative uptake of plutonium from soils by Brassica juncea and Helianthus annuus.

    PubMed

    Lee, J H; Hossner, L R; Attrep, M; Kung, K S

    2002-01-01

    Plutonium uptake by Brassica juncea (Indian mustard) and Helianthus annuus (sunflower) from soils with varying chemical composition and contaminated with Pu complexes (Pu-nitrate [239Pu(NO3)4], Pu-citrate [239Pu(C6H5O7)], and Pu-diethylenetriaminepentaacetic acid (Pu-DTPA [239Pu-C14H23O10N3]) was investigated. Sequential extraction of soils incubated with applied Pu was used to determine the distribution of Pu in the various soil fractions. The initial Pu activity levels in soils were 44.40-231.25 Bq g(-1) as Pu-nitrate Pu-citrate, or Pu-DTPA. A difference in Pu uptake between treatments of Pu-nitrate and Pu-citrate without chelating agent was observed only with Indian mustard in acidic Crowley soil. The uptake of Pu by plants was increased with increasing DTPA rates, however, the Pu concentration of plants was not proportionally increased with increasing application rate of Pu to soil. Plutonium uptake from Pu-DTPA was significantly higher from the acid Crowley soil than from the calcareous Weswood soil. The uptake of Pu from the soils was higher in Indian mustard than in sunflower. Sequential extraction of Pu showed that the ion-exchangeable Pu fraction in soils was dramatically increased with DTPA treatment and decreased with time of incubation. Extractability of Pu in all fractions was not different when Pu-nitrate and Pu-citrate were applied to the same soil. More Pu was associated with the residual Pu fraction without DTPA application. Consistent trends with time of incubation for other fractions were not apparent. The ion-exchangeable fraction, assumed as plant-available Pu, was significantly higher in acid soil compared with calcareous soil with or without DTPA treatment. When the calcareous soil was treated with DTPA, the ion-exchangeable Pu was comparatively less influenced. This fraction in the soil was more affected with time of incubation. The lowest extractable Pu was from a pH 6.55 Crockett soil that contained the highest clay compared to the other

  4. Use of laboratory geophysical and geotechnical investigation methods to characterize gypsum rich soils

    NASA Astrophysics Data System (ADS)

    Bhamidipati, Raghava A.

    Gypsum rich soils are found in many parts of the world, particularly in arid and semi-arid regions. Most gypsum occurs in the form of evaporites, which are minerals that precipitate out of water due to a high rate of evaporation and a high mineral concentration. Gypsum rich soils make good foundation material under dry conditions but pose major engineering hazards when exposed to water. Gypsum acts as a weak cementing material and has a moderate solubility of about 2.5 g/liter. The dissolution of gypsum causes the soils to undergo unpredictable collapse settlement leading to severe structural damages. The damages incur heavy financial losses every year. The objective of this research was to use geophysical methods such as free-free resonant column testing and electrical resistivity testing to characterize gypsum rich soils based on the shear wave velocity and electrical resistivity values. The geophysical testing methods could provide quick, non-intrusive and cost-effective methodologies to screen sites known to contain gypsum deposits. Reconstituted specimens of ground gypsum and quartz sand were prepared in the laboratory with varying amounts of gypsum and tested. Additionally geotechnical tests such as direct shear strength tests and consolidation tests were conducted to estimate the shear strength parameters (drained friction angle and cohesion) and the collapse potential of the soils. The effect of gypsum content on the geophysical and geotechnical parameters of soil was of particular interest. It was found that gypsum content had an influence on the shear wave velocity but had minimal effect on electrical resistivity. The collapsibility and friction angle of the soil increased with increase in gypsum. The information derived from the geophysical and geotechnical tests was used to develop statistical design equations and correlations to estimate gypsum content and soil collapse potential.

  5. Nitrous oxide emissions during biological soil disinfestation with different organic matter and plastic mulch films in laboratory-scale tests.

    PubMed

    Maeda, Morihiro; Kayano, Eisuke; Fujiwara, Taku; Nagare, Hideaki; Akao, Satoshi

    2015-10-23

    Nitrous oxide (N 2 O), which is a greenhouse gas, may be more emitted as an intermediate product of denitrification during biological soil disinfestation. The biological soil disinfestation is a method to suppress soil-borne pathogens under reductive soil conditions produced by the application of organic matter and water irrigation with plastic film. The objective of the study was to determine the effects of different organic matter and mulch films on N 2 O emissions during biological soil disinfestation. Grey lowland soil amended with cattle compost plus rice bran (0.2%), rice husk (0.2%) or dent corn (0.1%, 0.2% and 0.4%) was incubated at 100% water-holding capacity with or without plastic films made of polyvinyl chloride (PVC) and triple-layer polyolefin (3PO) for 72 h at 50°C. Permeation of the two films was also measured at 25°C and 50°C. Results showed that incorporation of organic matter increased N 2 O emissions compared with no organic matter addition at 50°C. Incorporation of rice bran and dent corn with easily decomposable C and low C:N ratios increased N 2 O emissions for the first 12 h, but thereafter, available C supply from these amendments suppressed N 2 O emissions. Permeability of mulch films increased at a higher temperature and was larger for PVC than for 3PO. Our study indicated that rice husk should not be used for soil disinfestation and that application rates of organic matter must be determined based on their decomposability. Moreover, mulch film covering would not suppress N 2 O emission in biological soil disinfestation because of high temperature.

  6. Effects of aging herbicide mixtures on soil respiration and plant survival in soils from a pesticide-contaminated site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, E.L.; Anhalt, J.C.; Anderson, T.A.

    Three herbicides, atrazine, metolachlor, and pendimethalin, were applied individually and in all possible combinations to soil taken from a pesticide-contaminated site in Iowa. The rate of application for each chemical was 50 {mu}g/g, representative of contamination problems at mixing and loading areas of agrochemical dealer sites. Treated soils were incubated at 24{degrees}C in the dark for 0, 21, and 63 d, and soil moisture tension was maintained at -33 kPa. Soil respiration was measured daily by using an infrared gas analyzer for 10 d at the end of each incubation period. Subsamples of treated soils were used in plant germinationmore » and survival studies. Concentrations of each herbicide were determined by gas chromatography at day 0, 21, and 63. Soil respiration was elevated for the first 6 d immediately following treatment, and then declined to very low levels. At the end of day 21 and 63, soil respiration remained at very low levels. The half-lives for atrazine, metolachlor, and pendimethalin individually in soil or in combination with one and/or the other herbicide will be reported. The results of germination and survival studies with kochia, giant foxtail, birdsfoot trefoil, crown vetch, and soybean will also be reported.« less

  7. Low C/N ratio raw textile wastewater reduced labile C and enhanced organic-inorganic N and enzymatic activities in a semiarid alkaline soil.

    PubMed

    Roohi, Mahnaz; Riaz, Muhammad; Arif, Muhammad Saleem; Shahzad, Sher Muhammad; Yasmeen, Tahira; Ashraf, Muhammad Arslan; Riaz, Muhammad Atif; Mian, Ishaq A

    2017-02-01

    Application of raw and treated wastewater for irrigation is an extensive practice for agricultural production in arid and semiarid regions. Raw textile wastewater has been used for cultivation in urban and peri-urban areas in Pakistan without any systematic consideration to soil quality. We conducted a laboratory incubation study to investigate the effects of low C/N ratio raw textile wastewater on soil nitrogen (N) contents, labile carbon (C) as water-soluble C (WSC) contents, and activities of urease and dehydrogenase enzymes. The 60-day incubation study used an alkaline clay loam aridisol that received 0 (distilled water), 25, 50, and 100% wastewater concentrations, and microcosms were incubated aerobically under room temperature at 70% water holding capacity. Results revealed that raw wastewater significantly (p < 0.05) changed soil N pools and processes, WSC contents, and enzymatic activities. The organic and inorganic N species increased with increasing wastewater concentrations, whereas WSC contents followed an opposite trend. The highest NH 4 + -N and NO 3 - -N contents were observed in soil treated with 100% wastewater. The extractable organic N (EON) contents always represented >50% of the soil total Kjeldahl N (TKN) contents and served as the major N pool. However, nitrification index (NO 3 - -N/NH 4 + -N ratio) decreased at high wastewater concentrations. A significant negative correlation was observed between EON and WSC (p < 0.05) and between net nitrification and WSC/EON ratio (p < 0.01). In contrast, nitrification index and WSC contents were correlated, positively suggesting WSC potentially controlling N turnover in nutrient-poor aridisol. We found significant (p < 0.0001) positive correlations of soil urease and dehydrogenase enzymatic activities with soil-extractable mineral N contents indicating coupled N cycling and soil biological activity. Higher production and accumulation of soil NO 3 - -N and EON contents in concentrated wastewater

  8. Enhancement and inhibition of microbial activity in hydrocarbon- contaminated arctic soils: Implications for nutrient-amended bioremediation

    USGS Publications Warehouse

    Braddock, J.F.; Ruth, M.L.; Catterall, P.H.; Walworth, J.L.; McCarthy, K.A.

    1997-01-01

    Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (<1%) end low moisture (1-3%) contents. We examined the effects of nutrient additions on microorganisms in contaminated soil from this site in laboratory microcosms and in mesocosms incubated for 6 weeks in the field. Nitrogen was the major limiting nutrient in this system, but microbial populations and activity were maximally enhanced by additions of both nitrogen and phosphorus. When nutrients were added to soil in the field at three levels of N:P (100:45, 200:90, and 300:135 mg/kg soil), the greatest stimulation in microbial activity occurred at the lowest, rather than the highest, level of nutrient addition. The total soil-water potentials ranged from -2 to -15 bar with increasing levels of fertilizer. Semivolatile hydrocarbon concentrations declined significantly only in the soils treated at the low fertilizer level. These results indicate that an understanding of nutrient effects at a specific site is essential for successful bioremediation.Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (<1%) and low moisture (1-3%) contents. We examined the effects of nutrient additions on microorganisms in contaminated soil from this site in laboratory microcosms and in mesocosms incubated for 6 weeks in the field. Nitrogen was the major limiting nutrient in this system, but microbial populations and activity were maximally enhanced by additions of both nitrogen and phosphorus

  9. Effects of biochar amendments on soil microbial biomass and activity.

    PubMed

    Zhang, H; Voroney, R P; Price, G W

    2014-11-01

    Environmental benefits reported in the literature of using biochar as a soil amendment are generally increased microbial activity and reduced greenhouse gas (GHG) emissions. This study determined the effects of amendment with biomass feedstocks (spent coffee grounds, wood pellets, and horse bedding compost) and that of biochars (700°C) produced from these feedstocks on soil microbial biomass (C and N) and activity. Soils were amended with these substrates at 0.75% by weight and incubated for up to 175 d under laboratory conditions. Biochar residual effects on soil microbial activity were also studied by amending these soils with either ammonium nitrate (NHNO, 35 mg N kg) or with glucose (864 mg C kg) plus NHNO. Soil microbial biomass C and N, net N mineralization, and CO, NO, and CH emissions were measured. Amendment with biomass feedstocks significantly increased soil microbial biomass and activity, whereas amendment with the biochars had no significant effect. Also, biochar amendment had no significant effect on either net N mineralization or NO and CH emissions from soil. These results indicate that production of biochars at this high temperature eliminated potential substrates. Microbial biomass C in biochar-amended and unamended soils was not significantly different following additions of NHNO or glucose plus NHNO, suggesting that microbial access to otherwise labile C and N was not affected. This study shows that biochars produced at 700°C, regardless of feedstock source, do not enhance soil microbial biomass or activity. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Stabilization by hydrophobic protection as a molecular mechanism for organic carbon sequestration in maize-amended rice paddy soils.

    PubMed

    Song, X Y; Spaccini, R; Pan, G; Piccolo, A

    2013-08-01

    The hydrophobic components of soil organic matter (SOM) are reckoned to play an important role in the stabilization of soil organic carbon (SOC). The contribution of hydrophobic substances to SOC sequestration was evaluated in four different paddy soils in the South of China, following a 6-month incubation experiment with maize straw amendments. Soil samples included: a well developed paddy soil (TP) derived from clayey lacustrine deposits in the Tai Lake plain of Jiangsu; an acid clayey paddy soil (RP) derived from red earth in the rolling red soil area of Jiangxi; a weakly developed neutral paddy soil (PP) formed on Jurassic purple shale from Chongq; and a calcic Fluvisol (MS) derived from riverine sediments from a wetland along the Yangtze valley of Anhui, China. The SOC molecular composition after 30 and 180 days of incubation, was determined by off-line thermochemolysis followed by gas chromatography-mass spectrometry analysis. Lignin, lipids and carbohydrates were the predominant thermochemolysis products released from the treated soils. A selective preservation of hydrophobic OM, including lignin and lipids, was shown in maize amended soils with prolonged incubation. The decomposition of lignin and lipids was significantly slower in the TP and RP soils characterized by a larger content of extractable iron oxyhydrates (Fed) and lower pH. The overall increase in hydrophobic substances in maize incubated samples was correlated, positively, with total content of clay and Fed, and, negatively, with soil pH. Moreover, yields of both lignin and lipid components showed a significant relationship with SOC increase after incubation. These findings showed that the larger the lipid and lignin content of SOM, the greater was the stability of SOC, thereby suggesting that OM hydrophobic components may have an essential role in controlling the processes of OC sequestration in paddy soils of South China. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Automated Microbial Metabolism Laboratory

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The effect of several environmental parameters on previously developed life detection systems is explored. Initial attempts were made to conduct all the experiments in a moist mode (high soil volume to water volume ratio). However, only labeled release and measurement of ATP were found to be feasible under conditions of low moisture. Therefore, these two life detection experiments were used for most of the environmental effects studies. Three soils, Mojave (California desert), Wyaconda (Maryland, sandy loam) and Victoria Valley (Antarctic desert) were generally used throughout. The environmental conditions studied included: incubation temperature 3 C to 80 C, ultraviolet irradiation of soils, variations in soil/liquid ratio, specific atmospheric gases, various antimetabolites, specific substrates, and variation in pH. An experiment designed to monitor nitrogen metabolism was also investigated.

  12. HTO and OBT activity concentrations in soil at the historical atmospheric HT release site (Chalk River Laboratories).

    PubMed

    Kim, S B; Bredlaw, M; Korolevych, V Y

    2012-01-01

    Tritium is routinely released by the Chalk River Laboratories (CRL) nuclear facilities. Three International HT release experiments have been conducted at the CRL site in the past. The site has not been disturbed since the last historical atmospheric testing in 1994 and presents an opportunity to assess the retention of tritium in soil. This study is devoted to the measurement of HTO and OBT activity concentration profiles in the subsurface 25 cm of soil. In terms of soil HTO, there is no evidence from the past HT release experiments that HTO was retained. The HTO activity concentration in the soil pore water appears similar to concentrations found in background areas in Ontario. In contrast, OBT activity concentrations in soil at the same site were significantly higher than HTO activity concentrations in soil. Elevated OBT appears to reside in the top layer of the soil (0-5 cm). In addition, OBT activity concentrations in the top soil layer did not fluctuate much with season, again, quite in contrast with soil HTO. This result suggests that OBT activity concentrations retained the signature of the historical tritium releases. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  13. The effect of young biochar on soil respiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jeffery L.; Collins, Harold P.; Bailey, Vanessa L.

    2010-12-01

    The low temperature pyrolysis of organic material produces biochar, a charcoal like substance. Biochar is being promoted as a soil amendment to enhance soil quality, it is also seen as a mechanism of lomg-term sequestration of carbon. Our experiments tested the hypothesis that biochar is inert in soil. However, we measured an increase in CO2 production from soils after biochar amendment which increased with increasing rates of biochar. The ∂13C signature of the CO2 evolved in the first several days of the incubation was the same as the ∂13C signature of the biochar, confirming that biochar contributed to the CO2more » flux. This effect diminished by day 6 of the incubation suggesting that most of the biochar C is slowly decomposing. Thus, aside from this short term mineralization increasing soil C with biochar may indeed be a long term C storage mechanism.« less

  14. Comparison of soil microbial respiration and carbon turnover under perennial and annual biofuel crops in two agricultural soils

    NASA Astrophysics Data System (ADS)

    Szymanski, L. M.; Marin-Spiotta, E.; Sanford, G. R.; Jackson, R. D.; Heckman, K. A.

    2015-12-01

    Bioenergy crops have the potential to provide a low carbon-intensive alternative to fossil fuels. More than a century of agricultural research has shown that conventional cropping systems can reduce soil organic matter (SOM) reservoirs, which cause long-term soil nutrient loss and C release to the atmosphere. In the face of climate change and other human disruptions to biogeochemical cycles, identifying biofuel crops that can maintain or enhance soil resources is desirable for the sustainable production of bioenergy. The objective of our study was to compare the effects of four biofuel crop treatments on SOM dynamics in two agricultural soils: Mollisols at Arlington Agricultural Research Station in Wisconsin and Alfisols at Kellogg Biological Station in Michigan, USA. We used fresh soils collected in 2013 and archived soils from 2008 to measure the effects of five years of crop management. Using a one-year long laboratory soil incubation coupled with a regression model and radiocarbon measurements, we separated soils into three SOM pools and their corresponding C turnover times. We found that the active pool, or biologically available C, was more sensitive to management and is an earlier indicator of changes to soil C dynamics than bulk soil C measurements. There was no effect of treatment on the active pool size at either site; however, the percent C in the active pool decreased, regardless of crop type, in surface soils with high clay content. At depth, the response of the slow pool differed between annual and perennial cropping systems. The distribution of C among SOM fractions varied between the two soil types, with greater C content associated with the active fraction in the coarser textured-soil and greater C content associated with the slow-cycling fraction in the soils with high clay content. These results suggest that the effects of bioenergy crops on soil resources will vary geographically, with implications for the carbon-cost of biocrop production.

  15. Progress of the PV Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullal, H.; Mitchell, R.; Keyes, B.

    In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubatormore » Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment total nearly $ 1.3 billion.« less

  16. Tannin-Metal Interactions in Soils: An Incubation-Extraction Approach in Hill-Land Environments

    NASA Astrophysics Data System (ADS)

    Gonzalez, J. M.; Halvorson, J. J.

    2007-12-01

    Tannins, plant polyphenols known to react with proteins, metals and soil organic matter, are commonly found in the vegetation growing in Appalachian hill-lands. Establishing silvopastoral grazing systems in these environments is a means for improving productivity however the fate of tannins in soils and, in particular, the effect on solubility/mobility of metals in soils is poorly understood. Soils from forest and pasture systems were sampled from two depths, treated with tannic acid or related phenolic compounds, and analyzed for metals in solution. The amount of Mn and Ca detected in solution varied among the different phenolic treatments, highest for gallic acid, and was also influenced by depth and land use. As expected, the Ca content in solution was correlated with the electrical conductivity (EC) and the Mn content was correlated with the redox potential in solution. Interestingly, the EC was also correlated with both Mn content and redox potential. The higher Ca content found in solution may result from the low pH of the phenolic compounds. The higher Mn in solution may result from the redox reaction of Mn (IV) oxides with the phenolic compounds, producing soluble Mn2+ and quinones. These quinones are very reactive compounds that can self-polymerize and/or copolymerize with other biomolecules, such as amino-containing compounds and carbohydrates, to form humic-like substances. Successful management of silvopastures, requires an understanding of factors that affect the quality and quantity of plant secondary compounds like tannins entering soil not only to increase forage productivity but also to enhance formation/stabilization of soil organic matter to increase nutrient cycling and reduce the toxicity risk of some metals such as Mn.

  17. Microbial biomass as a significant source of soil organic matter

    NASA Astrophysics Data System (ADS)

    Miltner, Anja; Kindler, Reimo; Schweigert, Michael; Achtenhagen, Jan; Bombach, Petra; Fester, Thomas; Kästner, Matthias

    2014-05-01

    Soil organic matter (SOM) plays an important role for soil fertility and in the global carbon cycle. SOM management should be based on knowledge about the chemical composition as well as the spatial distribution of SOM and its individual components in soils. Both parameters strongly depend on the direct precursors of SOM. In the past, microbial biomass has been neglected as a potential source of SOM, mainly because of its small pool size. Recent studies, however, show that a substantial portion of SOM is derived from microbial biomass residues. We therefore investigated the fate of microbial biomass residues in soils by means of incubation experiments with 13C-labelled microbial biomass. For our studies, we selected model organisms representing the three types of soil microorganisms and their characteristic cell wall structures: Escherichia coli (a Gram-negative bacterium), Bacillus subtilis (a Gram-positive bacterium) and Laccaria bicolor (an ectomycorrhizal fungus). We labelled the organisms by growing them on 13C glucose and incubated them in soil. During incubation, we followed the mineralisation of the labelled C, its incorporation into microbial biomass, and its transformation to non-living SOM. We found that 50-65% of the microbial biomass C remained in the soil during incubation. However, only a small part remained in the microbial biomass, the majority was transformed to SOM. In particular, proteins seemed to be rather stable in our experiments. In addition, we used scanning electron microscopy to identify microbial residues in soils and, for comparison, in artificial groundwater microcosms. Scanning electron micrographs showed a low number of intact cells, but mainly fragments of about 200-500 nm size. Similar fragments were found in artificial groundwater microcosms where the only possible origin was microbial biomass residues. Based on the results obtained, we provide a mechanistic model which explains how microbial biomass residues are formed and

  18. The Effect of Soil Warming on Decomposition of Biochar, Wood, and Bulk Soil Organic Carbon in Contrasting Temperate and Tropical Soils

    NASA Astrophysics Data System (ADS)

    Torn, Margaret; Tas, Neslihan; Reichl, Ken; Castanha, Cristina; Fischer, Marc; Abiven, Samuel; Schmidt, Michael; Brodie, Eoin; Jansson, Janet

    2013-04-01

    Biochar and wood are known to decay at different rates in soil, but the longterm effect of char versus unaltered wood inputs on soil carbon dynamics may vary by soil ecosystem and by their sensitivity to warming. We conducted an incubation experiment to explore three questions: (1) How do decomposition rates of char and wood vary with soil type and depth? (2) How vulnerable to warming are these slowly decomposing inputs? And (3) Do char or wood additions increase loss of native soil organic carbon (priming)? Soils from a Mediterranean grassland (Hopland Experimental Research Station, California) and a moist tropical forest (Tabunoco Forest, Puerto Rico) were collected from two soil depths and incubated at ambient temperature (14°C, 20°C for Hopland and Tabonuco respectively) and ambient +6°C. We added 13C-labeled wood and char (made from the wood at 450oC) to the soils and quantified CO2 and 13CO2 fluxes with continuous online carbon isotope measurements using a Cavity Ringdown Spectrometer (Picarro, Inc) for one year. As expected, in all treatments the wood decomposed much (about 50 times) more quickly than did the char amendment. With few exceptions, amendments placed in the surface soil decomposed more quickly than those in deeper soil, and in forest soil faster than that placed in grassland soil, at the same temperature. The two substrates were not very temperature sensitive. Both had Q10 less than 2 and char decomposition in particular was relatively insensitive to warming. Finally, the addition of wood caused a significant increase of roughly 30% in decomposition losses of the native soil organic carbon in the grassland and slightly less in forest. Char had only a slight positive priming effect but had a significant effect on microbial community. These results show that conversion of wood inputs to char through wildfire or intentional management will alter not only the persistence of the carbon in soil but also its temperature response and effect on

  19. Dietary crude protein and tannin impact dairy manure chemistry and ammonia emissions from incubated soils.

    PubMed

    Powell, J M; Aguerre, M J; Wattiaux, M A

    2011-01-01

    Excess crude protein (CP) in dairy cow diets is excreted mostly as urea nitrogen (N), which increases ammonia (NH) emissions from dairy farms and heightens human health and environmental concerns. Feeding less CP and more tannin to dairy cows may enhance feed N use and milk production, abate NH emissions, and conserve the fertilizer N value of manure. Lab-scale ventilated chambers were used to evaluate the impacts of CP and tannin feeding on slurry chemistry, NH emissions, and soil inorganic N levels after slurry application to a sandy loam soil and a silt loam soil. Slurry from lactating Holstein dairy cows (Bos taurus) fed two levels of dietary CP (low CP [LCP], 155 g kg; high CP [HCP], 168 g kg) each fed at four levels of dietary tannin extract, a mixture from red quebracho (Schinopsis lorentzii) and chestnut (Castanea sativa) trees (0 tannin [0T]; low tannin [LT], 4.5 g kg; medium tannin [MT], 9.0 g kg; and high tannin [HT], 18.0 g kg) were applied to soil-containing lab-scale chambers, and NH emissions were measured 1, 3, 6, 12, 24, 36, and 48 h after slurry application. Emissions from the HCP slurry were 1.53 to 2.57 times greater ( < 0.05) than from the LCP slurry. At trial's end (48 h), concentrations of inorganic N in soils were greater ( < 0.05) in HCP slurry-amended soils than in LCP slurry-amended soils. Emissions from HT slurry were 28 to 49% lower ( < 0.05) than emissions from 0T slurry, yet these differences did not affect soil inorganic N levels. Emissions from the sandy loam soil were 1.07 to 1.15 times greater ( < 0.05) than from silt loam soil, a result that decreased soil inorganic N in the sandy loam compared with the silt loam soil. Larger-scale and longer-term field trails are needed to ascertain the effectiveness of feeding tannin extracts to dairy cows in abating NH loss from land-applied slurry and the impact of tannin-containing slurry on soil N cycles. Copyright © by the American Society of Agronomy, Crop Science Society of America, and

  20. Soil spectral characterization

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.

    1981-01-01

    The spectral characterization of soils is discussed with particular reference to the bidirectional reflectance factor as a quantitative measure of soil spectral properties, the role of soil color, soil parameters affecting soil reflectance, and field characteristics of soil reflectance. Comparisons between laboratory-measured soil spectra and Landsat MSS data have shown good agreement, especially in discriminating relative drainage conditions and organic matter levels in unvegetated soils. The capacity to measure both visible and infrared soil reflectance provides information on other soil characteristics and makes it possible to predict soil response to different management conditions. Field and laboratory soil spectral characterization helps define the extent to which intrinsic spectral information is available from soils as a consequence of their composition and field characteristics.

  1. Lewis Incubator for Technology (LIFT)

    NASA Technical Reports Server (NTRS)

    Zeman, Wayne P.; King, Joseph B.; Jankura, Richard E., Jr.

    2004-01-01

    This report summarizes the work done to operate the Lewis Incubator for Technology for the period October 2000 through September 2004. The Lewis Incubator helped the startup and growth of technology based businesses with the potential to incorporate technology from the NASA Glenn Research Center.

  2. Measuring soil organic matter turn over and carbon stabilisation in pasture soils using 13C enrichment methodology.

    NASA Astrophysics Data System (ADS)

    Robinson, J. M.; Barker, S.; Schipper, L. A.

    2017-12-01

    Carbon storage in soil is a balance between photosynthesis and respiration, however, not all C compounds decompose equally in soil. Soil C consists of several fractions of C ranging from, accessible C (rapidly cycling) to stored or protected C (slow cycling). The key to increasing C storage is through the transfer of soil C from this accessible fraction, where it can be easily lost through microbial degradation, into the more stable fraction. With the increasing use of isotope enrichment techniques, 13C may be used to trace the movement of newly incorporated carbon in soil and examine how land management practises affect carbon storage. A laboratory method was developed to rapidly analyse soil respired CO2 for δ13C to determine the temperature sensitivity of newly incorporated 13C enriched carbon. A Horotiu silt loam (2 mm sieved, 60% MWHC) was mixed with 13C enriched ryegrass/clover plant matter in Hungate tubes and incubated for 5 hours at 20 temperatures( 4 - 50 °C) using a temperature gradient method (Robinson J. M., et al, (2017) Biogeochemistry, 13, 101-112). The respired CO2 was analysed using a modified Los Gatos, Off-axis ICOS carbon dioxide analyser. This method was able to analyse the δ13C signature of respired CO2 as long as a minimum concentration of CO2 was produced per tube. Further analysis used a two-component mixing model to separate the CO2 into source components to determine the contribution of added C and soil to total respiration. Preliminary data showed the decomposition of the two sources of C were both temperature dependant. Overall this method is a relatively quick and easy way to analyse δ13C of respired soil CO2 samples, and will allow for the testing of the effects of multiple variables on the decomposition of carbon fractions in future use.

  3. Efficacy of indigenous soil microbes in arsenic mitigation from contaminated alluvial soil of India.

    PubMed

    Majumder, Aparajita; Bhattacharyya, Kallol; Kole, S C; Ghosh, Sagarmoy

    2013-08-01

    Selected arsenic-volatilizing indigenous soil bacteria were isolated and their ability to form volatile arsenicals from toxic inorganic arsenic was assessed. Approximately 37 % of AsIII (under aerobic conditions) and 30 % AsV (under anaerobic conditions) were volatilized by new bacterial isolates in 3 days. In contrast to genetically modified organism, indigenous soil bacteria was capable of removing 16 % of arsenic from contaminated soil during 60 days incubation period while applied with a low-cost organic nutrient supplement (farm yard manure).

  4. Typeability of PowerPlex Y (Promega) profiles in selected tissue samples incubated in various environments.

    PubMed

    Niemcunowicz-Janica, Anna; Pepiński, Witold; Janica, Jacek Robert; Janica, Jerzy; Skawrońska, Małgorzata; Koc-Zórawska, Ewa

    2007-01-01

    In cases of decomposed bodies, Y chromosomal STR markers may be useful in identification of a male relative. The authors assessed typeability of PowerPlex Y (Promega) loci in post mortem tissue material stored in various environments. Kidney, spleen and pancreas specimens were collected during autopsies of five persons aged 20-30 years, whose time of death was determined within the limit of 14 hours. Tissue material was incubated at 21 degrees C and 4 degrees C in various environmental conditions. DNA was extracted by the organic method from tissue samples collected in 7-day intervals and subsequently typed using the PowerPlexY-STR kit and ABI 310. A fast decrease in the typeability rate was seen in specimens incubated in peat soil and in sand. Kidney tissue samples were typeable in all PowerPlexY-STR loci within 63 days of incubation at 4 degrees C. Faster DNA degradation was recorded in spleen and pancreas specimens. In samples with negative genotyping results, no DNA was found by fluorometric quantitation. Decomposed soft tissues are a potential material for DNA typing.

  5. Organics removal of combined wastewater through shallow soil infiltration treatment: a field and laboratory study.

    PubMed

    Zhang, Zhiyin; Lei, Zhongfang; Zhang, Zhenya; Sugiura, Norio; Xu, Xiaotian; Yin, Didi

    2007-11-19

    Soil infiltration treatment (SIT) was proved to be an effective and low-cost treatment technique for decentralized effluents in the areas without perfect sewage systems. Field-scale experiments were conducted under several conditions to assess organics removals through a shallow soil infiltration treatment (SSIT, with effective depth 0.3m) of combined wastewater (discharge from toilets, restaurants and a gas station), while bench-scale soil column experiments were performed in laboratory in parallel to investigate biological and abiological effects of this kind of system. From the start-up to the 10th month, the field SSIT trenches experienced the lowest and highest temperatures of the operation period in Shanghai and exhibited effective organics removals after maturation, with the highest removal rate 75.8% of chemical oxygen demand (COD), highest ultraviolet absorption at 254 nm (UV(254)) decrease by 67.2% and 35.2-100% removals of phenolic and phthalate pollutants. The laboratory results indicated that more organics could be removed in room-temperatured (25+/-2 degrees C) SSIT systems under different influent COD concentrations from 45 mg/l to 406 mg/l, and the highest total COD removal rate could reach 94.0%, in which biological effect accounted for 57.7-71.9%. The results showed that temperature and hydraulic loading rate were the most important factors influencing the removals of COD and organic pollutants in SSIT.

  6. Effects of the novel pyrimidynyloxybenzoic herbicide ZJ0273 on enzyme activities, microorganisms and its degradation in Chinese soils.

    PubMed

    Cai, Zhiqiang; Li, Shanshan; Zhang, Wenjie; Ma, Jiangtao; Wang, Jing; Cai, Jinyan; Yang, Guanghua

    2015-03-01

    Enzyme activity and microbial population in soils have important roles in keeping soil fertility. ZJ0273 is a novel pyrimidynyloxybenzoic-based herbicide, which was recently developed in China. The effect of ZJ0273 on soil enzyme activity and microbial population in two different soils was investigated in this study for the first time. The protease activity was significantly inhibited by ZJ0273 and this inhibiting effect gradually weakened after 60-day incubation. The results also showed that ZJ0273 had different stimulating effects on the activities of dehydrogenase, urease, and catalase. Dehydrogenase was consistently stimulated by all the applied concentrations of ZJ0273. The stimulating effect on urease weakened after 60-day incubation. Catalase activity was subject to variations during the period of the experiments. The results of microbial population showed that the number of bacteria and actinomycetes increased in ZJ0273-treated soil compared with the control after 20 days of incubation, while fungal number decreased after only 10 days of incubation in soils. DT50 (half-life value) and k (degradation rate constant) of ZJ0273 in S1 (marine-fluvigenic yellow loamy soil) and S2 (Huangshi soil) were found 69.31 and 49.50 days and 0.010 and 0.014 day(-1), respectively.

  7. Study of aliphatic-aromatic copolyester degradation in sandy soil and its ecotoxicological impact.

    PubMed

    Rychter, Piotr; Kawalec, Michał; Sobota, Michał; Kurcok, Piotr; Kowalczuk, Marek

    2010-04-12

    Degradation of poly[(1,4-butylene terephthalate)-co-(1,4-butylene adipate)] (Ecoflex, BTA) monofilaments (rods) in standardized sandy soil was investigated. Changes in the microstructure and chemical composition distribution of the degraded BTA samples were evaluated and changes in the pH and salinity of postdegradation soil, as well as the soil phytotoxicity impact of the degradation products, are reported. A macroscopic and microscopic evaluation of the surface of BTA rod samples after specified periods of incubation in standardized soil indicated erosion of the surface of BTA rods starting from the fourth month of their incubation, with almost total disintegration of the incubated BTA material observed after 22 months. However, the weight loss after this period of time was about 50% and only a minor change in the M(w) of the investigated BTA samples was observed, along with a slight increase in the dispersity (from an initial 2.75 up to 4.00 after 22 months of sample incubation). The multidetector SEC and ESI-MS analysis indicated retention of aromatic chain fragments in the low molar mass fraction of the incubated sample. Phytotoxicity studies revealed no visible damage, such as necrosis and chlorosis, or other inhibitory effects, in the following plants: radish, cres, and monocotyledonous oat, indicating that the degradation products of the investigated BTA copolyester are harmless to the tested plants.

  8. The effect of ambient temperature, habitat quality and individual age on incubation behaviour and incubation feeding in a socially monogamous songbird.

    PubMed

    Amininasab, Seyed Mehdi; Kingma, Sjouke A; Birker, Martje; Hildenbrandt, Hanno; Komdeur, Jan

    Incubation is an important aspect of avian life history. The behaviour is energetically costly, and investment in incubation strategies within species, like female nest attentiveness and the feeding by the non-incubating partner during incubation, can therefore vary depending on environmental and individual characteristics. However, little is known about the combined effect of these characteristics. We investigated the importance of ambient temperature, habitat quality, and bird age on female incubation behaviour and male feeding of the incubating female (incubation feeding) in blue tits Cyanistes caeruleus , a socially monogamous songbird. An increase in ambient temperature resulted in a higher nest temperature, and this enabled females to increase the time off the nest for self-maintenance activities. Probably as a consequence of this, an increase in ambient temperature was associated with fewer incubation feedings by the male. Moreover, in areas with more food available (more deciduous trees), females had shorter incubation recesses and males fed females less often. Additionally, males fed young females more, presumably to increase such females' investment in their eggs, which were colder on average (despite the length of recesses and female nest attentiveness being independent of female age). Male age did not affect incubation feeding rate. In conclusion, the patterns of incubation behaviour were related to both environmental and individual characteristics, and male incubation feeding was adjusted to females' need for food according these characteristics, which can facilitate new insights to the study of avian incubation energetics. Parents often invest a substantial amount of energy in raising offspring. How much they do so depends on several environmental factors and on the extent they cooperate to raise the offspring. In birds, males can feed incubating females, which may allow females to stay longer on the nest, which, in turn, may ultimately improve

  9. Predicting the diurnal blue-sky albedo of soils using their laboratory reflectance spectra and roughness indices

    NASA Astrophysics Data System (ADS)

    Cierniewski, Jerzy; Ceglarek, Jakub; Karnieli, Arnon; Królewicz, Sławomir; Kaźmierowski, Cezary; Zagajewski, Bogdan

    2017-10-01

    The objective of this study was to assess the relationship between the hyperspectral reflectance of soils and their albedo, measured under various roughness conditions. 108 soil surface measurements were conducted in Poland and Israel. Each surface was characterised by its diurnal albedo variation in the field as well as by its reflectance spectra obtained in the laboratory. The best fit to the model was achieved by post-processing manipulation of the spectra, namely second derivate transformation. Using a stepwise elimination process, four spectral wavelengths and the roughness index were selected for modelling. The resulting models allowed the albedo of a soil to be predicted for its different roughness states and any solar zenith angle, provided that hyperspectral reflectance data is available.

  10. Laboratory Measured Emission Losses of Methyl Isothiocyanate at Pacific Northwest Soil Surface Fumigation Temperatures.

    PubMed

    Lu, Zhou; Hebert, Vincent R; Miller, Glenn C

    2017-02-01

    Temperature is a major environmental factor influencing land surface volatilization at the time of agricultural field fumigation. Cooler fumigation soil temperatures relevant to Pacific Northwest (PNW) application practices with metam sodium/potassium should result in appreciably reduced methyl isothiocyanate (MITC) emission rates, thus minimizing off target movement and bystander inhalation exposure. Herein, a series of laboratory controlled flow-through soil column assessments were performed evaluating MITC emissions over the range of cooler temperatures (2-13°C). Assessments were also conducted at the maximum allowed label application temperature of 32°C. All assessments were conducted at registration label-specified field moisture capacity, and no more than 50% cumulative MITC loss was observed over the 2-day post-fumigation timeframe. Three-fold reductions in MITC peak fluxes at cooler PNW application temperatures were observed compared to the label maximum temperature. This study supports current EPA metam sodium/potassium label language that indicates surface fumigations during warmer soil conditions should be discouraged.

  11. Southwest Regional Clean Energy Incubation Initiative (SRCEII)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webber, Michael

    The Austin Technology Incubator’s (ATI’s) Clean Energy Incubator at the University of Texas at Austin (ATI-CEI) utilized the National Incubator Initiative for Clean Energy (NIICE) funding to establish the Southwest Regional Clean Energy Incubation Initiative, composed of clean energy incubators from The University of Texas at Austin (UT-Austin), The University of Texas at El Paso (UTEP), The University of Texas at San Antonio (UTSA), and Texas A&M University (TAMU).

  12. Carbon dioxide emissions from agricultural soils amended with livestock-derived organic materials

    NASA Astrophysics Data System (ADS)

    Pezzolla, D.; Said-Pullicino, D.; Gigliotti, G.

    2009-04-01

    Carbon dioxide gas xchange between terrestrial ecosystems and the atmosphere, as well as the carbon sink strength of various arable land ecosystems, is of primary interest for global change research. Measures for increasing soil C inputs include the preferential use of livestock-derived organic materials (e.g. animal manure and slurries, digestate from biogas production plants and compost). The application of such materials to agricultural soils returns essential nutrients for plant growth and organic matter to maintain long-term fertility. Whether or not such practices ultimately result in sustained C sequestration at the ecosystem level will depend on their mineralization rates. This work presents preliminary results from a laboratory incubation trial to evaluate carbon dioxide fluxes from two agricultural soils (a calcareous silt loam and a silty clay loam) amended with agricultural doses of (i) pig slurry (PSL), (ii) the digestate from the anaerobic fermentation of pig slurries (AAS) and (ii) a compost from the aerobic stabilisation of the digestate (LDC). These subsequent steps of slurry stabilisation resulted in a decrease in the content of labile organic matter which was reflected in a reduction in maximum carbon dioxide emission rates from amended soils. Measurements have shown that peak emissions from soils occur immediately after application of these organic materials (within 5 days) and decrease in the order PSL > AAS > LDC. Moreover, mean cumulative emissions over the first 40 days showed that a higher percentage (about 44%) of the C added with PSL was mineralised respect to C added with AAS (39%) and LDC (25%). Although it was hypothesised that apart from the quantity and stability of the added organic materials, even soil characteristics could influence C mineralisation rates, no significant differences were observed between emission fluxes for similarly treated soils. Mean cumulative emission fluxes after 40 days from treatment were of 114, 103 and

  13. Laboratory study on metal attenuation capacity of fine grained soil near ash pond site.

    PubMed

    Ghosh, Sudipta; Mukherjee, Somnath; Sarkar, Sujoy; Kumar, Sunil

    2008-10-01

    Waste settling tanks of earthen containment nature are common in India for disposal of solid waste in slurry form. For a large pond system, e.g. ash slurry disposal tank of coal base thermal power plant, leachate generation and its migration pose a serious problem. A natural attenuation of controlling the migratory leachate is to use locally available clay material as lining system due to the adsorption properties of soil for reducing some metallic ions. The present investigation was carried out to explore the Ni2+ and Cr6+ removal capacity of surrounding soil of the ash pond site of Super Thermal Power Plant in West Bengal, India through some laboratory scale and field studies. The soil and water samples collected from the site showed the existence of Ni2+ and Cr6+ in excess to permissible limit. A two-dimensional adsorption behaviour of these pollutants through soil was assessed. The results showed that more than 80% of nickel and 72% of chromium were found to be sorbed by the soil corresponding to initial concentrations of two ions, i.e. 1.366 mg/L and 0.76 mg/L respectively. The batch adsorption data are tested Langmuir and Freundlich isotherm models and found reasonably fit. Breakthrough adsorption study uptake also showed a good adsorption capacity of the soil. The experimental results found to fit well with the existing two dimensional (2D) mathematical models as proposed by Fetter (1999).

  14. Microbial degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in soils.

    PubMed Central

    Mergaert, J; Webb, A; Anderson, C; Wouters, A; Swings, J

    1993-01-01

    The microbial degradation of tensile test pieces made of poly(3-hydroxybutyrate) [P(3HB)] or a copolymer of 90% 3-hydroxybutyric acid and 10% 3-hydroxyvaleric acid was studied in soils incubated at a constant temperature of 15, 28, or 40 degrees C for up to 200 days. In addition, hydrolytic degradation in sterile buffer at temperatures ranging from 4 to 55 degrees C was monitored for 98 days. Degradation was measured through loss of weight (surface erosion), molecular weight, and mechanical strength. While no weight loss was recorded in sterile buffer, samples incubated in soils were degraded at an erosion rate of 0.03 to 0.64% weight loss per day, depending on the polymer, the soil, and the incubation temperature. The erosion rate was enhanced by incubation at higher temperatures, and in most cases the copolymer lost weight at a higher rate than the homopolymer. The molecular weights of samples incubated at 40 degrees C in soils and those incubated at 40 degrees C in sterile buffer decreased at similar rates, while the molecular weights of samples incubated at lower temperatures remained almost unaffected, indicating that molecular weight decrease is due to simple hydrolysis and not to the action of biodegrading microorganisms. The degradation resulted in loss of mechanical properties. From the samples used in the biodegradation studies, 295 dominant microbial strains capable of degrading P (3HB) and the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer in vitro were isolated and identified.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8250550

  15. Soil Carbon Inputs and Ecosystem Respiration: a Field Priming Experiment in Arctic Coastal Tundra

    NASA Astrophysics Data System (ADS)

    Vaughn, L. S.; Zhu, B.; Bimueller, C.; Curtis, J. B.; Chafe, O.; Bill, M.; Abramoff, R. Z.; Torn, M. S.

    2016-12-01

    In Arctic ecosystems, climate change is expected to influence soil carbon stocks through changes in both plant carbon inputs and organic matter decomposition. This study addresses the potential for a priming effect, an interaction between these changes in which root-derived carbon inputs alter SOM decomposition rates via microbial biomass increases, co-metabolism of substrates, induced nitrogen limitation, or other possible mechanisms. The priming effect has been observed in numerous laboratory and greenhouse experiments, and is increasingly included in ecosystem models. Few studies, however, have evaluated the priming effect with in situ field manipulations. In a two-year field experiment in Barrow, Alaska, we tested for a priming effect under natural environmental variability. In September 2014 and August 2015, we added 6.1g of 13C-labeled glucose to 25cm diameter mesocosms, 15cm below the soil surface in the mineral soil layer. Over the following month, we quantified effects on the rate and temperature sensitivity of native (non-glucose) ecosystem respiration and GPP. Following the 2014 treatment, soil samples were collected at 1 and 3 weeks for microbial biomass carbon and 13C/12C analysis, and ion exchange membranes were buried for one week to assess nitrate and ammonium availability. In contrast with many laboratory incubation studies using soils from a broad range of ecosystems, we observed no significant priming effect. In spite of a clear signal of 13C-glucose decomposition in respired CO2 and microbial biomass, we detected no treatment effect on background ecosystem respiration or total microbial biomass carbon. Our findings suggest that glucose taken up by microbes was not used for production of additional SOM-decomposing enzymes, possibly due to stoichiometric limitations on enzyme production. To best inform models representing complex and dynamic ecosystems, this study calls for further research relating theory, laboratory findings, and field

  16. An MR-compatible neonatal incubator.

    PubMed

    Paley, M N J; Hart, A R; Lait, M; Griffiths, P D

    2012-07-01

    To develop a neonatal MR-compatible incubator for transporting babies between a neonatal intensive care unit and an MRI unit that is within the same hospital but geographically separate. The system was strapped to a standard MR-compatible patient trolley, which provides space for resuscitation outside the incubator. A constant-temperature exothermic heat pad was used to maintain temperature together with a logging fluoro-optic temperature monitor and alarm system. The system has been designed to accommodate standard knee-sized coils from the major MR manufacturers. The original incubator was constructed from carbon fibre, but this required modification to prevent radiofrequency shading artefacts due to the conducting properties of the carbon fibre. A high-tensile polyester material was used, which combined light weight with high impact strength. The system could be moved onto the patient bed with the coils and infant in place by one technologist. Studies in eight neonatal patients produced high quality 1.5 T MR images with low motion artefacts. The incubator should also be compatible with imaging in 3 T MR systems, although further work is required to establish this. Images were acquired using both rapid and high-resolution sequences, including three-dimensional volumes, proton spectra and diffusion weighting. The incubator provides a safe, quiet environment for neonates during transport and imaging, at low cost.

  17. An MR-compatible neonatal incubator

    PubMed Central

    Paley, M N J; Hart, A R; Lait, M; Griffiths, P D

    2012-01-01

    Objectives To develop a neonatal MR-compatible incubator for transporting babies between a neonatal intensive care unit and an MRI unit that is within the same hospital but geographically separate. Methods The system was strapped to a standard MR-compatible patient trolley, which provides space for resuscitation outside the incubator. A constant-temperature exothermic heat pad was used to maintain temperature together with a logging fluoro-optic temperature monitor and alarm system. The system has been designed to accommodate standard knee-sized coils from the major MR manufacturers. The original incubator was constructed from carbon fibre, but this required modification to prevent radiofrequency shading artefacts due to the conducting properties of the carbon fibre. A high-tensile polyester material was used, which combined light weight with high impact strength. The system could be moved onto the patient bed with the coils and infant in place by one technologist. Results Studies in eight neonatal patients produced high quality 1.5 T MR images with low motion artefacts. The incubator should also be compatible with imaging in 3 T MR systems, although further work is required to establish this. Images were acquired using both rapid and high-resolution sequences, including three-dimensional volumes, proton spectra and diffusion weighting. Conclusion The incubator provides a safe, quiet environment for neonates during transport and imaging, at low cost. PMID:22167517

  18. Microbial adaption to a pesticide in agricultural soils: Accelerated degradation of 14C-atrazine in field soils from Brazil and Belgium

    NASA Astrophysics Data System (ADS)

    Jablonowski, Nicolai David; Martinazzo, Rosane; Hamacher, Georg; Accinelli, Cesare; Köppchen, Stephan; Langen, Ulrike; Linden, Andreas; Krause, Martina; Burauel, Peter

    2010-05-01

    .0 kg ha-1. Additionally, samples were taken from a Belgian field which was used for corn-plantations and which was regularly treated with atrazine for the last 30 years in varying doses of 0.5 - 3.0 kg ha-1. The experiment was performed using 14C-labelled and unlabelled atrazine in accordance to a field application dose of 3 mg kg-1 for the Brazilian soils, and 1 mg kg-1 for the Belgian soil, equaling approximately 3.0 and 1.0 kg ha-1, respectively. All soils with atrazine application history showed a high extent of atrazine mineralization, indicating a highly adapted microbial community being able to mineralize this pesticide. After 15 days of incubation, about 75 % of the initially applied 14C-atrazine was mineralized in the Rhodic Ferralsol, while in the Geric Ferralsol it did not exceed 15 % of the total applied 14C-activity. After a total incubation time of 85 days, the amount mineralized reached 82 % in the Rhodic Ferralsol and 74 % in the Geric Ferralsol. In the Belgian soil, after a total incubation time of 92 days, the mineralized amount of atrazine reached 83% of the initially applied 14C-activity in the atrazine treated soil for the slurry setup. A maximum of atrazine mineralization was observed in the treated field soil between 6 and 7 days of incubation for both, 50% WHCmax and slurry setups. The total 14C-atrazine mineralization was equally high for 50% WHCmax in the atrazine treated soil, totaling 81%. The formation of desorbable metabolites as well as the formation of unextractable, bound atrazine residues during the incubation process was monitored by desorption and accelerated solvent extraction, and successive LC-MSMS and LSC analyses, subsequent to sample oxidation. With increasing incubation time the presence of atrazine metabolites increased in the extracts, with hydroxyl-atrazine as the main metabolite.

  19. The Pre-Incubator: A Longitudinal Study of 10 Years of University Pre-Incubation in Wales

    ERIC Educational Resources Information Center

    Voisey, Pamela; Jones, Paul; Thomas, Brychan

    2013-01-01

    This paper describes a longitudinal study of over 10 years of university pre-incubation in Wales, using case studies of incubated businesses to track their performance since 2001. Surviving "graduated" businesses were investigated and quantitative and qualitative data were gathered to profile the current status of these businesses and…

  20. How do peat type, sand addition and soil moisture influence the soil organic matter mineralization in anthropogenically disturbed organic soils?

    NASA Astrophysics Data System (ADS)

    Säurich, Annelie; Tiemeyer, Bärbel; Don, Axel; Burkart, Stefan

    2017-04-01

    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. As a consequence of both drainage induced mineralization and anthropogenic sand mixing, large areas of former peatlands under agricultural use contain soil organic carbon (SOC) at the boundary between mineral and organic soils. Studies on SOC dynamics of such "low carbon organic soils" are rare as the focus of previous studies was mainly either on mineral soils or "true" peat soil. However, the variability of CO2 emissions increases with disturbance and therefore, we have yet to understand the reasons behind the relatively high CO2 emissions of these soils. Peat properties, soil organic matter (SOM) quality and water content are obviously influencing the rate of CO2 emissions, but a systematic evaluation of the hydrological and biogeochemical drivers for mineralization of disturbed peatlands is missing. With this incubation experiment, we aim at assessing the drivers of the high variability of CO2 emissions from strongly anthropogenically disturbed organic soil by systematically comparing strongly degraded peat with and without addition of sand under different moisture conditions and for different peat types. The selection of samples was based on results of a previous incubation study, using disturbed samples from the German Agricultural Soil Inventory. We sampled undisturbed soil columns from topsoil and subsoil (three replicates of each) of ten peatland sites all used as grassland. Peat types comprise six fens (sedge, Phragmites and wood peat) and four bogs (Sphagnum peat). All sites have an intact peat horizon that is permanently below groundwater level and a strongly disturbed topsoil horizon. Three of the fen and two of the bog sites have a topsoil horizon altered by sand-mixing. In addition the soil profile was mapped and samples for the determination of soil hydraulic properties were collected. All 64 soil columns (including four additional reference samples) will be installed

  1. Explaining the accelerated degradation of ciprofloxacin, sulfamethazine, and erythromycin in different soil exposure scenarios by their aqueous extractability.

    PubMed

    Goulas, Anaïs; Sabourin, Lyne; Asghar, Farah; Haudin, Claire-Sophie; Benoit, Pierre; Topp, Edward

    2018-06-01

    Antibiotics are frequently introduced into agricultural soils with the application of sewage sludge or farm organic fertilizers. Repeated exposure of soils to a pollutant can enrich for microbial populations that metabolize the chemical, reducing its environmental persistence. In London, Canada, soils from a long-term field experiment have received different concentrations of antibiotics annually for several years. The purpose of the present study was to assess the bioavailability of sulfamethazine, erythromycin, or ciprofloxacin through aqueous extractions with borax or EDTA solutions and their biodegradation following different soil exposure scenarios. Control soils and soils treated annually in the field with 10 mg antibiotics per kg were sampled, supplemented in the laboratory with radiolabeled antibiotic either added directly or carried in dairy manure. Sulfamethazine and erythromycin were initially more bioavailable than ciprofloxacin, with aqueous extractabilities representing 60, 36, and 8%, respectively. Sulfamethazine and erythromycin were degraded in soils, with a larger fraction mineralized in the long-term exposed soil (20 and 65%, respectively) than in control soil (0.4 and 3%, respectively) after 7 days of incubation. In contrast, ciprofloxacin was not mineralized neither in control nor long-term exposed soils. The mineralized fractions were similar for antibiotics added directly to soil or carried in dairy manure.

  2. [Effects of simulated acid rain on decomposition of soil organic carbon and crop straw].

    PubMed

    Zhu, Xue-Zhu; Huang, Yao; Yang, Xin-Zhong

    2009-02-01

    To evaluate the effects of acid rain on the organic carbon decomposition in different acidity soils, a 40-day incubation test was conducted with the paddy soils of pH 5.48, 6.70 and 8.18. The soils were amended with 0 and 15 g x kg(-1) of rice straw, adjusted to the moisture content of 400 g x kg(-1) air-dried soil by using simulated rain of pH 6.0, 4.5, and 3.0, and incubated at 20 degrees C. The results showed that straw, acid rain, and soil co-affected the CO2 emission from soil system. The amendment of straw increased the soil CO2 emission rate significantly. Acid rain had no significant effects on soil organic carbon decomposition, but significantly affected the straw decomposition in soil. When treated with pH 3.0 acid rain, the amount of decomposed straw over 40-day incubation in acid (pH 5.48) and alkaline (pH 8.18) soils was 8% higher, while that in neutral soil (pH 6.70) was 15% lower, compared to the treatment of pH 6.0 rain. In the treatment of pH 3.0 acid rain, the decomposition rate of soil organic C in acid (pH 5.48) soil was 43% and 50% (P < 0.05) higher than that in neutral (pH 6.70) and alkaline (pH 8.18) soils, while the decomposition rate of straw in neutral soil was 17% and 16% (P < 0.05) lower than that in acid and alkaline soils, respectively.

  3. Clinical impact of reducing routine blood culture incubation time from 7 to 5 days.

    PubMed

    Marginson, Michael J; Daveson, Kathryn L; Kennedy, Karina J

    2014-12-01

    The aim of this study was to determine the clinical impact of reducing the blood culture incubation protocol from 7 to 5 days.A laboratory data extraction identified positive blood cultures occurring after 5 or more days of incubation at Canberra Hospital, Australia between 1 January 2001 and 31 August 2011. Isolates were identified as clinically significant using a pre-existing prospective bacteraemia database. Medical records review determined whether the positive result affected clinical management.Positive blood cultures after 5 or more days of incubation accounted for 2.65% (423/15979) of all positive blood cultures, although the majority were false positives or contaminants. Eighty-five were significant/indeterminate, representing an average of eight cases per year or 0.47% (85/15979) of all positive blood cultures sets. Forty-three were isolated for the first time, representing 1.1% of all significant/indeterminate blood culture episodes. Fungi and anaerobic bacteria compromised over 50% of isolates. In 26 cases (2.4 cases per year), the culture result led to a change in patient management.A 7 day incubation protocol is preferable due to late isolation of organisms; however, if space is required to accommodate increasing blood culture numbers, reducing to a 5 or 6 day protocol would miss only a small percentage of clinically significant isolates.

  4. Biogenic nitric oxide emission from a spruce forest soil in mountainous terrain

    NASA Astrophysics Data System (ADS)

    Falge, Eva; Bargsten, Anika; Behrendt, Thomas; Meixner, Franz X.

    2010-05-01

    The process-based spatial simulation model SVAT-CN was used to estimate biogenic nitric oxide (NO) emission by soils of a Norway spruce forest (Weidenbrunnen) in the Fichtelgebirge, Germany. SVAT-CN core is a combination of a multiple-layer soil water balance model and a multi-layered canopy gas exchange model. The soil modules comprise a flexible hybrid between a layered bucket model and classical basic liquid flow theory. Further soil processes include: heat transport, distribution of transpiration demand proportionally to soil resistance, reduction of leaf physiological parameters with limiting soil moisture. Spruce forest soils usually are characterized by a thick organic layer (raw humus), with the topmost centimetres being the location where most of the biogenic NO is produced. Within individual spruce forest stands the understory might be composed of patches characterized by different species (e.g. Vaccinium myrtillus, Picea abies, Deschampsia caespitosa), and NO production potentials. The effect of soil physical and chemical parameters and understory types on NO emission from the organic layer was investigated in laboratory incubation and fumigation experiments on soils sampled below the various understory covers found at the Weidenbrunnen site. Results from the laboratory experiments were used to parameterize multi-factorial regression models of soil NO emission with respect to its response to soil temperature and moisture. Parameterization of the spatial model SVAT-CN includes horizontal heterogeneity of over- and understory PAI, understory species distribution, soil texture, bulk density, thickness of organic layer. Simulations are run for intensive observations periods of 2007 and 2008 of the EGER (ExchanGE processes in mountainous Regions) project, a late summer/fall and an early summer period, providing estimates for different understory types (young spruce, blueberry, grass, and moss/litter patches). Validation of the model is being carried out at

  5. Copper (II) lead (II), and zinc (II) reduce growth and zoospore release in four zoosporic true fungi from soils of NSW, Australia.

    PubMed

    Henderson, Linda; Pilgaard, Bo; Gleason, Frank H; Lilje, Osu

    2015-07-01

    This study examined the responses of a group of four zoosporic true fungi isolated from soils in NSW Australia, to concentrations of toxic metals in the laboratory that may be found in polluted soils. All isolates showed greatest sensitivity to Cu and least sensitivity to Pb. All isolates showed significant reduction in growth at 60 ppm (0.94 mmol m(-3)) for Cu, while three declined significantly at 60 ppm (0.92 mmol m(-3)) Zn. The growth of two isolates declined significantly at 100 ppm (0.48 mmol m(-3)) Pb and one at 200 ppm (0.96 mmol m(-3)) Pb. The rate of production of zoospores for all isolates was reduced when sporangia were grown in solid PYG media with 60 ppm Cu. Three isolates significantly declined in production at 60 ppm Zn and three at 100 ppm Pb. All isolates recovered growth after incubation in solid media with 60 ppm Zn or 100 ppm Pb. Two isolates did not recover growth after incubation in 60 ppm Cu. If these metals cause similar effects in the field, Cu, Pb, and Zn contamination of NSW soils is likely to reduce biomass of zoosporic true fungi. Loss of the fungi may reduce the rate of mineralisation of soil organic matter. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. Degradation of N-nitrosodimethylamine (NDMA) in landscape soils.

    PubMed

    Yang, W C; Gan, J; Liu, W P; Green, R

    2005-01-01

    N-nitrosodimethylamine (NDMA), a potential carcinogen, was commonly found in treated wastewater as a by-product of chlorination. As treated water is increasingly used for landscape irrigation, there is an imperative need to understand the leaching risk for NDMA in landscape soils. In this study, adsorption and incubation experiments were conducted using landscape soils planted with turfgrass, ground cover, and trees. Adsorption of NDMA was negligibly weak (K(d) < 1) in all soils, indicating that NDMA has a high potential for moving with percolating water in these soils. Degradation of NDMA occurred at different rates among these soils. At 21 degrees C, the half-life (t(1/2)) of NDMA was 4.1 d for the ground cover soil, 5.6 d for the turfgrass soil, and 22.5 d for the tree soil. The persistence was substantially prolonged after autoclaving or when incubated at 10 degrees C. The rate of degradation was not significantly affected by the initial NDMA concentration or addition of organic and inorganic nutrient sources. The relative persistence was inversely correlated with soil organic matter content, soil microbial biomass, and soil dehydrogenase activity, suggesting the importance of microorganisms in NDMA degradation in these soils. These results suggest that the behavior of NDMA depends closely on the vegetation cover in a landscape system, and prolonged persistence and increased leaching may be expected in soils with sparse vegetation due to low organic matter content and limited microbial activity.

  7. Laboratory analytical methods for the determination of the hydrocarbon status of soils (a review)

    NASA Astrophysics Data System (ADS)

    Pikovskii, Yu. I.; Korotkov, L. A.; Smirnova, M. A.; Kovach, R. G.

    2017-10-01

    Laboratory analytical methods suitable for the determination of the hydrocarbon status of soils (a specific soil characteristic involving information on the total content and qualitative features of soluble (bitumoid) carbonaceous substances and individual hydrocarbons (polycyclic aromatic hydrocarbons, alkanes, etc.) in bitumoid, as well as the composition and content of hydrocarbon gases) have been considered. Among different physicochemical methods of study, attention is focused on the methods suitable for the wide use. Luminescence-bituminological analysis, low-temperature spectrofluorimetry (Shpolskii spectroscopy), infrared (IR) spectroscopy, gas chromatography, chromatography-mass spectrometry, and some other methods have been characterized, as well as sample preparation features. Advantages and limitations of each of these methods are described; their efficiency, instrumental complexity, analysis duration, and accuracy are assessed.

  8. Managing a Small Business Incubator.

    ERIC Educational Resources Information Center

    Kirchner, Charles, Ed.

    An increasingly popular economic development tool to improve the success rate of new firms is the small business incubator. These are buildings in which a number of new or growing businesses can locate and operate at a much lower overhead cost than in conventional space where market rates prevail. Incubator facilities are characterized by access…

  9. Progress of the Photovoltaic Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullal, H.; Mitchell, R.; Keyes, B.

    In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubatormore » Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment totals nearly $ 1.3 billion.« less

  10. An Introduction to Developing an Urban Business Incubator.

    ERIC Educational Resources Information Center

    Montgomery, James; And Others

    Designed to provide a brief overview of the considerations involved in establishing a small business incubator, this guide presents information on incubator classification, funding methods, incubator operation techniques, and two-year college involvement in the formation of a working business incubator. Part 1 describes a small business incubator…

  11. Effects of egg incubation condition on the post-hatching growth and performance of the snapping turtle, Chelydra serpentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Kathleen M.

    1990-12-01

    The effect of incubation temperature on the post-hatching growth and performance capacities of the common snapping turtle, Chelydra serpentina was investigated in the laboratory. Turtle eggs were collected from four sites in New York State and randomly assigned to four incubation temperature treatments to produce males (constant 26°C and downshifted 30-26-30°C) and females (constant 30°C and upshifted 26-30-26°C) under constant and altered temperature regimes. The incubation conditions resulted in 92% males from the constant 26°C group and 93% males from the downshifted group. 100% females resulted from both the constant 30°C group and the upshifted group. Turtles hatching from eggsmore » incubated constantly at 26°C were significantly larger than hatchlings from eggs incubated at a constant 30°C or downshifted. Hatchlings were raised in individual aquaria at 25°C and fed earthworms and fish. After a 9-month growth period, turtles which had been incubated at a constant 30°C gained significantly more mass than did turtles from eggs which had been downshifted or upshifted. There was no extended effect of incubation condition on Post-hatching performance and learning ability as measured by righting and feeding responses. Thus, the mass gain differences seen in this study suggest that physiological differences do result as the consequence of incubation condition. However, these physiological differences are not reflected in normal locomotive or feeding behavior.« less

  12. Effects of egg incubation condition on the post-hatching growth and performance of the snapping turtle, Chelydra serpentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, K.M.

    1990-12-01

    The effect of incubation temperature on the post-hatching growth and performance capacities of the common snapping turtle, Chelydra serpentina was investigated in the laboratory. Turtle eggs were collected from four sites in New York State and randomly assigned to four incubation temperature treatments to produce males (constant 26[degree]C and downshifted 30-26-30[degree]C) and females (constant 30[degree]C and upshifted 26-30-26[degree]C) under constant and altered temperature regimes. The incubation conditions resulted in 92% males from the constant 26[degree]C group and 93% males from the downshifted group. 100% females resulted from both the constant 30[degree]C group and the upshifted group. Turtles hatching from eggsmore » incubated constantly at 26[degree]C were significantly larger than hatchlings from eggs incubated at a constant 30[degree]C or downshifted. Hatchlings were raised in individual aquaria at 25[degree]C and fed earthworms and fish. After a 9-month growth period, turtles which had been incubated at a constant 30[degree]C gained significantly more mass than did turtles from eggs which had been downshifted or upshifted. There was no extended effect of incubation condition on Post-hatching performance and learning ability as measured by righting and feeding responses. Thus, the mass gain differences seen in this study suggest that physiological differences do result as the consequence of incubation condition. However, these physiological differences are not reflected in normal locomotive or feeding behavior.« less

  13. 21 CFR 880.5410 - Neonatal transport incubator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Neonatal transport incubator. 880.5410 Section 880... Devices § 880.5410 Neonatal transport incubator. (a) Identification. A neonatal transport incubator is a... kept in a controlled environment while being transported for medical care. The device may include...

  14. 21 CFR 880.5410 - Neonatal transport incubator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Neonatal transport incubator. 880.5410 Section 880... Devices § 880.5410 Neonatal transport incubator. (a) Identification. A neonatal transport incubator is a... kept in a controlled environment while being transported for medical care. The device may include...

  15. Evaluation of a low-cost commercially available extraction device for assessing lead bioaccessibility in contaminated soils.

    PubMed

    Nelson, Clay M; Gilmore, Thomas M; Harrington, M; Scheckel, Kirk G; Miller, Bradley W; Bradham, Karen D

    2013-03-01

    The U.S. EPA's in vitro bioaccessibility (IVBA) method 9200.1-86 defines a validated analytical procedure for the determination of lead bioaccessibility in contaminated soils. The method requires the use of a custom-fabricated extraction device that uses a heated water bath for sample incubation. In an effort to improve ease of use, increase sample throughput, and reduce equipment acquisition and maintenance costs, an alternative low-cost, commercially available extraction device capable of sample incubation via heated air and end-over-end rotation was evaluated. An intra-laboratory study was conducted to compare lead bioaccessibility values derived using the two extraction devices. IVBA values were not statistically different (α = 0.05) between the two extraction devices for any of the soils (n = 6) evaluated in this study, with an average difference in mean lead IVBA of 0.8% (s.d. = 0.5%). The commercially available extraction device was able to generate accurate lead IVBA data as compared to the U.S. EPA's expected value for a National Institute of Standards and Technology standard reference material soil. The relative percent differences between high and low IVBA values for each soil, a measure of instrument precision, were also not statistically different (α = 0.05) between the two extraction devices. The statistical agreement of lead IVBA values observed using the two extraction devices supports the use of a low-cost, commercially available extraction device as a reliable alternative to a custom-fabricated device as required by EPA method 9200.1-86.

  16. Small Business Incubator Resource Kit.

    ERIC Educational Resources Information Center

    Small Business Administration, Washington, DC.

    This kit consists of a set of resources to assist those interested in the start-up and management (incubation) of a new business. A guide to starting and managing a small business incubator (SBI) is provided. Included in the guide are the following: a discussion of the role and characteristics of the SBI concept; guidelines for carrying out the…

  17. FORMATION OF CHLOROPYROMORPHITE IN A LEAD-CONTAMINATED SOIL AMENDED WITH HYDROXYAPATITE

    EPA Science Inventory

    To evaluate conversion of soil Pb to pyromorphite, a Pb contaminated soil collected adjacent to a historical smelter was reacted with hydroxyapatite in a traditional incubation experiment and in a dialysis system in which the soil and hydroxyapatite solids were separated by a dia...

  18. Agricultural management and labile carbon additions affect soil microbial community structure and interact with carbon and nitrogen cycling.

    PubMed

    Berthrong, Sean T; Buckley, Daniel H; Drinkwater, Laurie E

    2013-07-01

    We investigated how conversion from conventional agriculture to organic management affected the structure and biogeochemical function of soil microbial communities. We hypothesized the following. (1) Changing agricultural management practices will alter soil microbial community structure driven by increasing microbial diversity in organic management. (2) Organically managed soil microbial communities will mineralize more N and will also mineralize more N in response to substrate addition than conventionally managed soil communities. (3) Microbial communities under organic management will be more efficient and respire less added C. Soils from organically and conventionally managed agroecosystems were incubated with and without glucose ((13)C) additions at constant soil moisture. We extracted soil genomic DNA before and after incubation for TRFLP community fingerprinting of soil bacteria and fungi. We measured soil C and N pools before and after incubation, and we tracked total C respired and N mineralized at several points during the incubation. Twenty years of organic management altered soil bacterial and fungal community structure compared to continuous conventional management with the bacterial differences caused primarily by a large increase in diversity. Organically managed soils mineralized twice as much NO3 (-) as conventionally managed ones (44 vs. 23 μg N/g soil, respectively) and increased mineralization when labile C was added. There was no difference in respiration, but organically managed soils had larger pools of C suggesting greater efficiency in terms of respiration per unit soil C. These results indicate that the organic management induced a change in community composition resulting in a more diverse community with enhanced activity towards labile substrates and greater capacity to mineralize N.

  19. Chemical speciation and enzymatic impact of silver in antimicrobial fabric buried in soil.

    PubMed

    Takeuchi, Satoshi; Hashimoto, Yohey; Yamaguchi, Noriko; Toyota, Koki

    2016-11-05

    This study investigated the impact of Ag in antibacterial fabric on soil enzymes in relation to solubility and speciation of Ag. Sections of Ag-containing sock fabric (1.0-1.5cm(2)) were incubated in soils with aerobic and anaerobic conditions and periodically determined activity of arylsulfatase, dehydrogenase and urease. Microscale distribution and speciation of Ag at the interface between socks and soil particles were investigated using micro-focused X-ray fluorescence (μ-XRF), and Ag speciation was determined using micro-focused X-ray absorption near edge structure (μ-XANES) spectroscopy. Results showed that the sock fabric consisted of elemental Ag and Ag2S. After 60-day exposure to soil, majority (50-90%) of Ag in sock did not undergo phase transformation and present as elemental Ag and Ag2S in aerobic and anaerobic conditions. A part of Ag in sock fabric was bound with soil colloids (<15%), depending on the distance from the edge of sock fabric. Soil enzyme activities were overall unaffected by Ag in sock textile after 60days of incubation, although a significant decrease in arylsulfatase activity was found only in the initial stage of soil incubation. Silver in the sock fabric is relatively stable and has little detrimental impacts on enzyme activity in ordinary soil conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods.

    PubMed

    El-Temsah, Yehia S; Joner, Erik J

    2013-06-01

    Nano-sized zero valent iron (nZVI) has been studied for in situ remediation of contaminated soil and ground water. However, little is known about its effects on organisms in soil and aquatic ecosystems. In this study, the effect of nZVI on degradation of DDT and its ecotoxicological effects on collembola (Folsomia candida) and ostracods (Heterocypris incongruens) were investigated. Two soils were used in suspension incubation experiments lasting for 7 and 30 d; a spiked (20 mg DDT kg(-1)) sandy soil and an aged (>50 years) DDT-polluted soil (24 mg DDT kg(-1)). These were incubated with 1 or 10 g nZVI kg(-1), and residual toxicity in soil and the aqueous phase tested using ecotoxicological tests with collembola or ostracods. Generally, addition of either concentration of nZVI to soil led to about 50% degradation of DDT in spiked soil at the end of 7 and 30 d incubation, while the degradation of DDT was less in aged DDT-polluted soil (24%). Severe negative effects of nZVI were observed on both test organisms after 7 d incubation, but prolonged incubation led to oxidation of nZVI which reduced its toxic effects on the tested organisms. On the other hand, DDT had significant negative effects on collembolan reproduction and ostracod development. We conclude that 1 g nZVI kg(-1) was efficient for significant DDT degradation in spiked soil, while a higher concentration was necessary for treating aged pollutants in soil. The adverse effects of nZVI on tested organisms seem temporary and reduced after oxidation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Accuracy of egg flotation throughout incubation to determine embryo age and incubation day in waterbird nests

    USGS Publications Warehouse

    Ackerman, Joshua T.; Eagles-Smith, Collin A.

    2010-01-01

    Floating bird eggs to estimate their age is a widely used technique, but few studies have examined its accuracy throughout incubation. We assessed egg flotation for estimating hatch date, day of incubation, and the embryo's developmental age in eggs of the American Avocet (Recurvirostra americana), Black-necked Stilt (Himantopus mexicanus), and Forster's Tern (Sterna forsteri). Predicted hatch dates based on egg flotation during our first visit to a nest were highly correlated with actual hatch dates (r = 0.99) and accurate within 2.3 ± 1.7 (SD) days. Age estimates based on flotation were correlated with both day of incubation (r = 0.96) and the embryo's developmental age (r = 0.86) and accurate within 1.3 ± 1.6 days and 1.9 ± 1.6 days, respectively. However, the technique's accuracy varied substantially throughout incubation. Flotation overestimated the embryo's developmental age between 3 and 9 days, underestimated age between 12 and 21 days, and was most accurate between 0 and 3 days and 9 and 12 days. Age estimates based on egg flotation were generally accurate within 3 days until day 15 but later in incubation were biased progressively lower. Egg flotation was inaccurate and overestimated embryo age in abandoned nests (mean error: 7.5 ± 6.0 days). The embryo's developmental age and day of incubation were highly correlated (r = 0.94), differed by 2.1 ± 1.6 days, and resulted in similar assessments of the egg-flotation technique. Floating every egg in the clutch and refloating eggs at subsequent visits to a nest can refine age estimates.

  2. Mineralization of carbon and nitrogen from freeze- and over-dried plant material added to soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moorhead, K.K.; Graetz, D.A.; Reddy, K.R.

    Drying organic material before soil incorporation is a common procedure used in mineralization or decomposition studies. A laboratory study was conducted to determine the effect of drying methods on plant C and N and associated mineralization patterns in soil. Freeze- and oven-dried water hyacinth (Eichhornia crassipes (Mart) Solms) was added to a Kendrick soil (loamy, siliceous, hyperthermic Arenic Paleudults) at a rate of 5 g kg{sup {minus}1} and incubated in the dark at 27{degree}C for 90 d. Oven drying in paper bags significantly increased the lignin content and decreased the mineral content of the plant material compared to freeze drying.more » The total C and N was not significantly different for the two materials. The mineralization of C from freeze-dried plant material was more rapid during the initial stage of decomposition and remained significantly higher throughout the incubation. At 90 d, 50, and 41% of the plant C had evolved as CO{sub 2} for the freeze- and oven-dried plant material, respectively. Mineralization of {sup 15}N from the plant material accounted for 33% of the applied N of the freeze-dried material and 23% of the applied N of the oven-dried material. Nitrogen mineralization and CO{sub 2} evolution were linearly correlated (r=0.998) for the oven-dried plant material, but less correlated (r=0.770) for the freeze-dried material.« less

  3. Laboratory test on maximum and minimum void ratio of tropical sand matrix soils

    NASA Astrophysics Data System (ADS)

    Othman, B. A.; Marto, A.

    2018-04-01

    Sand is generally known as loose granular material which has a grain size finer than gravel and coarser than silt and can be very angular to well-rounded in shape. The present of various amount of fines which also influence the loosest and densest state of sand in natural condition have been well known to contribute to the deformation and loss of shear strength of soil. This paper presents the effect of various range of fines content on minimum void ratio e min and maximum void ratio e max of sand matrix soils. Laboratory tests to determine e min and e max of sand matrix soil were conducted using non-standard method introduced by previous researcher. Clean sand was obtained from natural mining site at Johor, Malaysia. A set of 3 different sizes of sand (fine sand, medium sand, and coarse sand) were mixed with 0% to 40% by weight of low plasticity fine (kaolin). Results showed that generally e min and e max decreased with the increase of fines content up to a minimal value of 0% to 30%, and then increased back thereafter.

  4. Bone char effects on soil: sequential fractionations and XANES spectroscopy

    NASA Astrophysics Data System (ADS)

    Morshedizad, Mohsen; Panten, Kerstin; Klysubun, Wantana; Leinweber, Peter

    2018-01-01

    The acceptability of novel bone char fertilizers depends on their P release, but reactions at bone char surfaces and impacts on soil P speciation are insufficiently known. By using sequential fractionation and synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy we investigated whether and how the chemical composition of bone char particles has been altered in soil and has consequently affected the P speciation of amended soils. Therefore, two different kinds of bone char particles (BC produced by the pyrolysis of degreased animal bone chips at 800 °C and BCplus, a BC enriched with reduced sulfur compounds) were manually separated from the soil at the end of two different experiments: incubation leaching and ryegrass cultivation. Sequential P fractionation of amended soils showed P enrichment in all fractions compared to the control. The most P increase between all treatments significantly occurred in the NaOH-P and resin-P fractions in response to BCplus application in both incubation-leaching and ryegrass cultivation experiments. This increase in the readily available P fraction in BCplus-treated soils was confirmed by linear combination fitting (LCF) analysis on P K-edge XANES spectra of BC particles and amended soils. The proportion of Ca hydroxyapatite decreased, whereas the proportion of CaHPO4 increased in BCplus particles after amended soils had been incubated and leached and cropped by ryegrass. Based on P XANES speciation as determined by LCF analysis, the proportion of inorganic Ca(H2PO4)2 increased in amended soils after BCplus application. These results indicate that soil amendment with BCplus particles leads to elevated P concentration and maintains more soluble P species than BC particles even after 230 days of ryegrass cultivation.

  5. What is the incubation period for listeriosis?

    PubMed

    Goulet, Véronique; King, Lisa A; Vaillant, Véronique; de Valk, Henriette

    2013-01-10

    Listeriosis is a foodborne infection with a low incidence but a high case fatality rate. Unlike common foodborne diseases, the incubation period can be long. The first incubation periods were documented during a large listeriosis outbreak published in 1987 by Linnan and al. in the New England Journal of Medicine (range: 3 days to 70 days). Data on the incubation period of listeriosis are scarce. Our study aim was to estimate precisely the incubation period of listeriosis using available data since 1987. We estimated the incubation period of listeriosis using available published data and data from outbreak investigations carried out by the French National Institute for Public Health Surveillance. We selected cases with an incubation period calculated when a patient had a single exposure to a confirmed food source contaminated by Listeria monocytogenes. We identified 37 cases of invasive listeriosis (10 cases with central nervous system involvement (CNS cases), 15 bacteraemia cases and 12 pregnancy-associated cases) and 9 outbreaks with gastroenteritis. The overall median incubation period of invasive listeriosis was 8 days (range: 1-67 days) and differed significantly by clinical form of the disease (p<0.0001). A longer incubation period was observed for pregnancy-associated cases (median: 27.5 days; range: 17-67 days) than for CNS cases (median: 9 days; range: 1-14 days) and for bacteraemia cases (median: 2 days; range: 1-12 days). For gastroenteritis cases, the median incubation period was 24 hours with variation from 6 to 240 hours. This information has implications for the investigation of food borne listeriosis outbreaks as the incubation period is used to determine the time period for which a food history is collected. We believe that, for listeriosis outbreaks, adapting the exposure window for documenting patients' food histories in accordance with the clinical form of infection will facilitate the identification of food products as the source of

  6. An Investigative Study into Perspectives and Experiences of Incubates at the Chandaria Business Innovation and Incubation Centre at the Kenyatta University

    ERIC Educational Resources Information Center

    Munyanyiwa, Takaruza; Mutsau, Morgen; Rudhumbu, Norman; Svotwa, Douglas

    2016-01-01

    The study presents results from an investigative study undertaken at the Kenyatta University (KU) Chandaria Business Innovation and Incubation Centre. A total of 10 incubates representing 10 projects were engaged in face to face interviews. The incubates were appreciative of the value that incubation centre such as the one at KU contributed to…

  7. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon

    USGS Publications Warehouse

    Waldrop, M.P.; Zak, D.R.

    2006-01-01

    Recent evidence suggests that atmospheric nitrate (NO3- ) deposition can alter soil carbon (C) storage by directly affecting the activity of lignin-degrading soil fungi. In a laboratory experiment, we studied the direct influence of increasing soil NO 3- concentration on microbial C cycling in three different ecosystems: black oak-white oak (BOWO), sugar maple-red oak (SMRO), and sugar maple-basswood (SMBW). These ecosystems span a broad range of litter biochemistry and recalcitrance; the BOWO ecosystem contains the highest litter lignin content, SMRO had intermediate lignin content, and SMBW leaf litter has the lowest lignin content. We hypothesized that increasing soil solution NO 3- would reduce lignolytic activity in the BOWO ecosystem, due to a high abundance of white-rot fungi and lignin-rich leaf litter. Due to the low lignin content of litter in the SMBW, we further reasoned that the NO3- repression of lignolytic activity would be less dramatic due to a lower relative abundance of white-rot basidiomycetes; the response in the SMRO ecosystem should be intermediate. We increased soil solution NO3- concentrations in a 73-day laboratory incubation and measured microbial respiration and soil solution dissolved organic carbon (DOC) and phenolics concentrations. At the end of the incubation, we measured the activity of ??-glucosidase, N-acetyl-glucosaminidase, phenol oxidase, and peroxidase, which are extracellular enzymes involved with cellulose and lignin degradation. We quantified the fungal biomass, and we also used fungal ribosomal intergenic spacer analysis (RISA) to gain insight into fungal community composition. In the BOWO ecosystem, increasing NO 3- significantly decreased oxidative enzyme activities (-30% to -54%) and increased DOC (+32% upper limit) and phenolic (+77% upper limit) concentrations. In the SMRO ecosystem, we observed a significant decrease in phenol oxidase activity (-73% lower limit) and an increase in soluble phenolic concentrations

  8. Microbiological characteristics of a sandy loam soil exposed to tebuconazole and lambda-cyhalothrin under laboratory conditions.

    PubMed

    Cycoń, M; Piotrowska-Seget, Z; Kaczyńska, A; Kozdrój, J

    2006-11-01

    Changes in microbiological properties of a sandy loam soil in response to the addition of different concentrations of fungicide tebuconazole and pyrethroid insecticide lambda-cyhalothrin were assessed under laboratory conditions. To ascertain these changes, the potentially active soil microbial biomass, concentrations of ammonium and nitrate ions, numbers of total culturable bacteria, fungi, nitrogen-fixing bacteria, nitrifying and denitrifying bacteria were determined. Substrate-induced respiration (SIR) increased with time in both control (ranged from 13.7 to 23.7 mg/O(2)/kg(-1)/dry soil/h(-1)) and pesticide treated soil portions. For both pesticides, SIR values ranged from 12-13 to 23-25 mg/O(2)/kg(-1)/dry soil/h(-1) on days 1 and 28, respectively. Also, concentrations of nitrate and ammonium ions, numbers of total culturable bacteria, denitrifying bacteria, nitrogen-fixing bacteria (for the insecticide) and fungi (for the insecticide) were either unaffected or even stimulated by the pesticide treatments. The adverse impacts of the pesticides were observed for nitrate concentrations (on days 1 or 7), numbers of nitrifying bacteria (on day 1), denitrifying bacteria (for the insecticide on days 1 and 14), nitrogen-fixing bacteria (for tebuconazole on day 1) as well as numbers of fungi in tebuconazole-treated soil (on days 1 and 14).

  9. Anaerobic soil volume as a major controlling factor for soil denitrification and respiration

    NASA Astrophysics Data System (ADS)

    Reent Köster, Jan; Tong, Bingxin; Grosz, Balázs; Burkart, Stefan; Ruoss, Nicolas; Well, Reinhard

    2017-04-01

    Gas diffusion in soil is a key variable to control denitrification and its N2O to N2 product ratio since it affects two major proximal denitrification factors, i.e. the concentrations of O2 and of N2O. Gas diffusivity is governed by the structure and the state of water saturation of the pore system. At a given O2 consumption rate decreasing diffusivity causes an enhanced anaerobic soil volume where denitrification can occur. Gas diffusivity is generally quantified as bulk diffusion coefficients that represent the lineal diffusive gas flux through the soil matrix. However, the spatial distribution of respiratory O2 consumption and denitrification - and hence the local concentration of O2 and N2O - is highly non-homogeneous. Knowledge of the anaerobic soil volume fraction (ansvf) has been proposed as a key control on denitrification, and has subsequently been used in many denitrification models. The ansvf has previously been quantified by direct measurement of O2 distribution in individual soil aggregates using microsensors. The measured ansvf corresponded to modelled values based on measured aggregate diffusivity and respiration, but was not yet correlated with measured denitrification rates. In the present ongoing study, we are incubating soil cores amended with nitrate and organic litter in an automated mesocosm system under aerobic as well as anaerobic conditions. An N2 depleted incubation atmosphere and the 15N labeled soil nitrate pool facilitate quantification of the N2 production in the soil by IRMS, and fluxes of N2O and CO2 are monitored via gas chromatography. The ansvf and the measured denitrification and respiration rates will then be used for model validation. During the session we will present first results of this study.

  10. Facilitated transport in European soils from the Euro-soil project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolfing, J.; Scheltens, S.D.

    1999-07-01

    The authors studied the response of five reference soils from the European Union (a vertic cambisol, rendzina, dystric cambisol, orthic luvisol, and orthic podzol, also known as Euro-soils 1 to 5) to the addition of HCl and NaOH. For all soils, which were incubated as soil slurries, the amount of organic carbon in solution remained essentially constant upon addition of HCl but increased upon addition of NaOH; that is, it was not the pH of the soil that determined changes in the solubilization of dissolved organic carbon but {Delta}pH. This observation has implications for the design of active soil managementmore » strategies, because increased amounts of dissolved organic carbon in the soil solution pose a risk for leaching of contaminants to deeper soil layers and eventually to the groundwater. In the past, much attention has been paid to the reaction of soils to acidification and changing land use as practiced when agricultural land is taken out of production. The observations reported here indicate that soil alkalization is not necessarily without environmental and toxicological risks.« less

  11. Justification of parameters and selection of equipment for laboratory researches of a rammer's operating element dynamics in a soil foundation of a tank for oil and oil products storage

    NASA Astrophysics Data System (ADS)

    Gruzin, A. V.; Gruzin, V. V.; Shalay, V. V.

    2017-08-01

    The development of technology for a directional soil compaction of tank foundations for oil and oil products storage is a relevant problem which solution will enable simultaneously provide required operational characteristics of a soil foundation and reduce time and material costs to prepare the foundation. The impact dynamics of rammers' operating elements on the soil foundation is planned to specify in the course of laboratory studies. A specialized technique is developed to justify the parameters and select the equipment for laboratory researches. The usage of this technique enabled us to calculate dimensions of the models, of a test bench and specifications of the recording equipment, and a lighting system. The necessary equipment for laboratory studies was selected. Preliminary laboratory tests were carried out. The estimate of accuracy for planned laboratory studies was given.

  12. Marketing Plan for the National Security Technology Incubator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This marketing plan was developed as part of the National Security Preparedness Project by the Arrowhead Center of New Mexico State University. The vision of the National Security Technology Incubator program is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety and security. The plan defines important aspects of developing the incubator, such as defining the target market, marketing goals, and creating strategies to reach the target market while meeting those goals. The three main marketing goals of the incubator are: 1) developing marketing materials for the incubatormore » program; 2) attracting businesses to become incubator participants; and 3) increasing name recognition of the incubator program on a national level.« less

  13. Effect of clay minerals and nanoparticles on chromium fractionation in soil contaminated with leather factory waste.

    PubMed

    Taghipour, Marzieh; Jalali, Mohsen

    2015-10-30

    This study was conducted to investigate the effect of time, clay minerals and nanoparticles (NPs) on chromium (Cr) fractionation in a soil contaminated with leather factory waste (LFW). Soil was mixed with LFW, then, the contaminated soils were treated with clay minerals (bentonite and zeolite) and nanoparticles (MgO, TiO2 and ZnO) at 5% and 1%, respectively. The samples were incubated for 15-180 days at 25 °C and constant moisture. After incubation, Cr in control and treated soils was fractionated by the sequential extraction procedure. The distribution of various Cr fractions in control soil indicated that the greatest amounts of Cr were found in the residual fraction (RES) followed by the carbonate (CAR), organic matter (OM) and exchangeable (EXC) fractions. The addition of LFW in soils increased Cr concentration in all fractions. The higher proportion of EXC fraction in the soil treated with LFW indicates its higher potential of leaching and runoff transport. In all treated soils, the RES fraction was increased, while EXC and OM fractions were decreased during incubation. The results indicated that NPs are effective adsorbent for the removal of Cr ions from LFW treated soil, and they could be useful in reducing their environment risk. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Biological Chlorine Cycling in Arctic Peat Soils

    NASA Astrophysics Data System (ADS)

    Zlamal, J. E.; Raab, T. K.; Lipson, D.

    2014-12-01

    . Incubations were conducted in the laboratory providing arctic soils with Clorg, and measurements taken to assess rates of organohalide respiration show an increase in chloride production due to microbial activity. Investigating these soils with diverse techniques affirms the importance of Cl-cycling in a pristine arctic tundra ecosystem.

  15. Active noise control for infant incubators.

    PubMed

    Yu, Xun; Gujjula, Shruthi; Kuo, Sen M

    2009-01-01

    This paper presents an active noise control system for infant incubators. Experimental results show that global noise reduction can be achieved for infant incubator ANC systems. An audio-integration algorithm is presented to introduce a healthy audio (intrauterine) sound with the ANC system to mask the residual noise and soothe the infant. Carbon nanotube based transparent thin film speaker is also introduced in this paper as the actuator for the ANC system to generate the destructive secondary sound, which can significantly save the congested incubator space and without blocking the view of doctors and nurses.

  16. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation–incubation procedure.

    Treesearch

    X.M. Zoua; H.H. Ruanc; Y. Fua; X.D. Yanga; L.Q. Sha

    2005-01-01

    Labile carbon is the fraction of soil organic carbon with most rapid turnover times and its oxidation drives the flux of CO2 between soils and atmosphere. Available chemical and physical fractionation methods for estimating soil labile organic carbon are indirect and lack a clear biological definition. We have modified the well-established Jenkinson and Powlson’s...

  17. Molecular Insights into Arctic Soil Organic Matter Degradation under Warming

    DOE PAGES

    Chen, Hongmei; Yang, Ziming; Chu, Rosalie K.; ...

    2018-03-23

    Molecular composition of the Arctic soil organic carbon (SOC) and its susceptibility to microbial degradation are uncertain due to heterogeneity and unknown SOC compositions. By using ultrahigh-resolution mass spectrometry, we determined the susceptibility and compositional changes of extractable dissolved organic matter (EDOM) in an anoxic warming incubation experiment (up to 122 days) with a tundra soil from Alaska (United States). EDOM was extracted with 10 mM NH 4HCO 3 from both the organic- and mineral-layer soils during incubation at both -2 and 8°C. Based on their O:C and H:C ratios, EDOM molecular formulas were qualitatively grouped into nine biochemical classesmore » of compounds, among which lignin-like compounds dominated both the organic and the mineral soils and were the most stable, whereas amino sugars, peptides, and carbohydrate-like compounds were the most biologically labile. These results corresponded with shifts in EDOM elemental composition in which the ratios of O:C and N:C decreased, while the average C content in EDOM, molecular mass, and aromaticity increased after 122 days of incubation. This research demonstrates that certain EDOM components, such as amino sugars, peptides, and carbohydrate-like compounds, are disproportionately more susceptible to microbial degradation than others in the soil, and these results should be considered in SOC degradation models to improve predictions of Arctic climate feedbacks.« less

  18. Molecular Insights into Arctic Soil Organic Matter Degradation under Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hongmei; Yang, Ziming; Chu, Rosalie K.

    Molecular composition of the Arctic soil organic carbon (SOC) and its susceptibility to microbial degradation are uncertain due to heterogeneity and unknown SOC compositions. By using ultrahigh-resolution mass spectrometry, we determined the susceptibility and compositional changes of extractable dissolved organic matter (EDOM) in an anoxic warming incubation experiment (up to 122 days) with a tundra soil from Alaska (United States). EDOM was extracted with 10 mM NH 4HCO 3 from both the organic- and mineral-layer soils during incubation at both -2 and 8°C. Based on their O:C and H:C ratios, EDOM molecular formulas were qualitatively grouped into nine biochemical classesmore » of compounds, among which lignin-like compounds dominated both the organic and the mineral soils and were the most stable, whereas amino sugars, peptides, and carbohydrate-like compounds were the most biologically labile. These results corresponded with shifts in EDOM elemental composition in which the ratios of O:C and N:C decreased, while the average C content in EDOM, molecular mass, and aromaticity increased after 122 days of incubation. This research demonstrates that certain EDOM components, such as amino sugars, peptides, and carbohydrate-like compounds, are disproportionately more susceptible to microbial degradation than others in the soil, and these results should be considered in SOC degradation models to improve predictions of Arctic climate feedbacks.« less

  19. Banana leaf and glucose mineralization and soil organic matter in microhabitats of banana plantations under long-term pesticide use.

    PubMed

    Blume, Elena; Reichert, José Miguel

    2015-06-01

    Soil organic matter (SOM) and microbial activity are key components of soil quality and sustainability. In the humid tropics of Costa Rica 3 pesticide regimes were studied-fungicide (low input); fungicide and herbicide (medium input); and fungicide, herbicide, and nematicide (high input)-under continuous banana cultivation for 5 yr (young) or 20 yr (old) in 3 microhabitats-nematicide ring around plants, litter pile of harvested banana, and bare area between litter pile and nematicide ring. Soil samples were incubated sequentially in the laboratory: unamended, amended with glucose, and amended with ground banana leaves. Soil organic matter varied with microhabitat, being greatest in the litter pile, where microbes had the greatest basal respiration with ground banana leaf, whereas microbes in the nematicide ring had the greatest respiration with glucose. These results suggest that soil microbes adapt to specific microhabitats. Young banana plantations had similar SOM compared with old plantations, but the former had greater basal microbial respiration in unamended and in glucose-amended soil and greater first-order mineralization rates in glucose-amended soil, thus indicating soil biological quality decline over time. High pesticide input did not decrease microbial activity or mineralization rate in surface soil. In conclusion, microbial activity in tropical volcanic soil is highly adaptable to organic and inorganic inputs. © 2015 SETAC.

  20. Biochar from sugarcane filtercake reduces soil CO2 emissions relative to raw residue and improves water retention and nutrient availability in a highly-weathered tropical soil.

    PubMed

    Eykelbosh, Angela Joy; Johnson, Mark S; Santos de Queiroz, Edmar; Dalmagro, Higo José; Guimarães Couto, Eduardo

    2014-01-01

    In Brazil, the degradation of nutrient-poor Ferralsols limits productivity and drives agricultural expansion into pristine areas. However, returning agricultural residues to the soil in a stabilized form may offer opportunities for maintaining or improving soil quality, even under conditions that typically promote carbon loss. We examined the use of biochar made from filtercake (a byproduct of sugarcane processing) on the physicochemical properties of a cultivated tropical soil. Filtercake was pyrolyzed at 575°C for 3 h yielding a biochar with increased surface area and porosity compared to the raw filtercake. Filtercake biochar was primarily composed of aromatic carbon, with some residual cellulose and hemicellulose. In a three-week laboratory incubation, CO2 effluxes from a highly weathered Ferralsol soil amended with 5% biochar (dry weight, d.w.) were roughly four-fold higher than the soil-only control, but 23-fold lower than CO2 effluxes from soil amended with 5% (d.w.) raw filtercake. We also applied vinasse, a carbon-rich liquid waste from bioethanol production typically utilized as a fertilizer on sugarcane soils, to filtercake- and biochar-amended soils. Total CO2 efflux from the biochar-amended soil in response to vinasse application was only 5% of the efflux when vinasse was applied to soil amended with raw filtercake. Furthermore, mixtures of 5 or 10% biochar (d.w.) in this highly weathered tropical soil significantly increased water retention within the plant-available range and also improved nutrient availability. Accordingly, application of sugarcane filtercake as biochar, with or without vinasse application, may better satisfy soil management objectives than filtercake applied to soils in its raw form, and may help to build soil carbon stocks in sugarcane-cultivating regions.