Sample records for laboratory support laboratory

  1. U.S. Ebola Treatment Center Clinical Laboratory Support.

    PubMed

    Jelden, Katelyn C; Iwen, Peter C; Herstein, Jocelyn J; Biddinger, Paul D; Kraft, Colleen S; Saiman, Lisa; Smith, Philip W; Hewlett, Angela L; Gibbs, Shawn G; Lowe, John J

    2016-04-01

    Fifty-five hospitals in the United States have been designated Ebola treatment centers (ETCs) by their state and local health authorities. Designated ETCs must have appropriate plans to manage a patient with confirmed Ebola virus disease (EVD) for the full duration of illness and must have these plans assessed through a CDC site visit conducted by an interdisciplinary team of subject matter experts. This study determined the clinical laboratory capabilities of these ETCs. ETCs were electronically surveyed on clinical laboratory characteristics. Survey responses were returned from 47 ETCs (85%). Forty-one (87%) of the ETCs planned to provide some laboratory support (e.g., point-of-care [POC] testing) within the room of the isolated patient. Forty-four (94%) ETCs indicated that their hospital would also provide clinical laboratory support for patient care. Twenty-two (50%) of these ETC clinical laboratories had biosafety level 3 (BSL-3) containment. Of all respondents, 34 (72%) were supported by their jurisdictional public health laboratory (PHL), all of which had available BSL-3 laboratories. Overall, 40 of 44 (91%) ETCs reported BSL-3 laboratory support via their clinical laboratory and/or PHL. This survey provided a snapshot of the laboratory support for designated U.S. ETCs. ETCs have approached high-level isolation critical care with laboratory support in close proximity to the patient room and by distributing laboratory support among laboratory resources. Experts might review safety considerations for these laboratory testing/diagnostic activities that are novel in the context of biocontainment care. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. U.S. Ebola Treatment Center Clinical Laboratory Support

    PubMed Central

    Jelden, Katelyn C.; Iwen, Peter C.; Herstein, Jocelyn J.; Biddinger, Paul D.; Kraft, Colleen S.; Saiman, Lisa; Smith, Philip W.; Hewlett, Angela L.; Gibbs, Shawn G.

    2016-01-01

    Fifty-five hospitals in the United States have been designated Ebola treatment centers (ETCs) by their state and local health authorities. Designated ETCs must have appropriate plans to manage a patient with confirmed Ebola virus disease (EVD) for the full duration of illness and must have these plans assessed through a CDC site visit conducted by an interdisciplinary team of subject matter experts. This study determined the clinical laboratory capabilities of these ETCs. ETCs were electronically surveyed on clinical laboratory characteristics. Survey responses were returned from 47 ETCs (85%). Forty-one (87%) of the ETCs planned to provide some laboratory support (e.g., point-of-care [POC] testing) within the room of the isolated patient. Forty-four (94%) ETCs indicated that their hospital would also provide clinical laboratory support for patient care. Twenty-two (50%) of these ETC clinical laboratories had biosafety level 3 (BSL-3) containment. Of all respondents, 34 (72%) were supported by their jurisdictional public health laboratory (PHL), all of which had available BSL-3 laboratories. Overall, 40 of 44 (91%) ETCs reported BSL-3 laboratory support via their clinical laboratory and/or PHL. This survey provided a snapshot of the laboratory support for designated U.S. ETCs. ETCs have approached high-level isolation critical care with laboratory support in close proximity to the patient room and by distributing laboratory support among laboratory resources. Experts might review safety considerations for these laboratory testing/diagnostic activities that are novel in the context of biocontainment care. PMID:26842705

  3. Decision support for clinical laboratory capacity planning.

    PubMed

    van Merode, G G; Hasman, A; Derks, J; Goldschmidt, H M; Schoenmaker, B; Oosten, M

    1995-01-01

    The design of a decision support system for capacity planning in clinical laboratories is discussed. The DSS supports decisions concerning the following questions: how should the laboratory be divided into job shops (departments/sections), how should staff be assigned to workstations and how should samples be assigned to workstations for testing. The decision support system contains modules for supporting decisions at the overall laboratory level (concerning the division of the laboratory into job shops) and for supporting decisions at the job shop level (assignment of staff to workstations and sample scheduling). Experiments with these modules are described showing both the functionality and the validity.

  4. Wiki Laboratory Notebooks: Supporting Student Learning in Collaborative Inquiry-Based Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Lawrie, Gwendolyn Angela; Grøndahl, Lisbeth; Boman, Simon; Andrews, Trish

    2016-06-01

    Recent examples of high-impact teaching practices in the undergraduate chemistry laboratory that include course-based undergraduate research experiences and inquiry-based experiments require new approaches to assessing individual student learning outcomes. Instructors require tools and strategies that can provide them with insight into individual student contributions to collaborative group/teamwork throughout the processes of experimental design, data analysis, display and communication of their outcomes in relation to their research question(s). Traditional assessments in the form of laboratory notebooks or experimental reports provide limited insight into the processes of collaborative inquiry-based activities. A wiki environment offers a collaborative domain that can potentially support collaborative laboratory processes and scientific record keeping. In this study, the effectiveness of the wiki in supporting laboratory learning and assessment has been evaluated through analysis of the content and histories for three consenting, participating groups of students. The conversational framework has been applied to map the relationships between the instructor, tutor, students and laboratory activities. Analytics that have been applied to the wiki platform include: character counts, page views, edits, timelines and the extent and nature of the contribution by each student to the wiki. Student perceptions of both the role and the impact of the wiki on their experiences and processes have also been collected. Evidence has emerged from this study that the wiki environment has enhanced co-construction of understanding of both the experimental process and subsequent communication of outcomes and data. A number of features are identified to support success in the use of the wiki platform for laboratory notebooks.

  5. [Knowledge management system for laboratory work and clinical decision support].

    PubMed

    Inada, Masanori; Sato, Mayumi; Yoneyama, Akiko

    2011-05-01

    This paper discusses a knowledge management system for clinical laboratories. In the clinical laboratory of Toranomon Hospital, we receive about 20 questions relevant to laboratory tests per day from medical doctors or co-medical staff. These questions mostly involve the essence to appropriately accomplish laboratory tests. We have to answer them carefully and suitably because an incorrect answer may cause a medical accident. Up to now, no method has been in place to achieve a rapid response and standardized answers. For this reason, the laboratory staff have responded to various questions based on their individual knowledge. We began to develop a knowledge management system to promote the knowledge of staff working for the laboratory. This system is a type of knowledge base for assisting the work, such as inquiry management, laboratory consultation, process management, and clinical support. It consists of several functions: guiding laboratory test information, managing inquiries from medical staff, reporting results of patient consultation, distributing laboratory staffs notes, and recording guidelines for laboratory medicine. The laboratory test information guide has 2,000 records of medical test information registered in the database with flexible retrieval. The inquiry management tool provides a methos to record all questions, answer easily, and retrieve cases. It helps staff to respond appropriately in a short period of time. The consulting report system treats patients' claims regarding medical tests. The laboratory staffs notes enter a file management system so they can be accessed to aid in clinical support. Knowledge sharing using this function can achieve the transition from individual to organizational learning. Storing guidelines for laboratory medicine will support EBM. Finally, it is expected that this system will support intellectual activity concerning laboratory work and contribute to the practice of knowledge management for clinical work support.

  6. A qualitative case study of instructional support for web-based simulated laboratory exercises in online college chemistry laboratory courses

    NASA Astrophysics Data System (ADS)

    Schulman, Kathleen M.

    This study fills a gap in the research literature regarding the types of instructional support provided by instructors in online introductory chemistry laboratory courses that employ chemistry simulations as laboratory exercises. It also provides information regarding students' perceptions of the effectiveness of that instructional support. A multiple case study methodology was used to carry out the research. Two online introductory chemistry courses were studied at two community colleges. Data for this study was collected using phone interviews with faculty and student participants, surveys completed by students, and direct observation of the instructional designs of instructional support in the online Blackboard web sites and the chemistry simulations used by the participating institutions. The results indicated that the instructors provided multiple types of instructional support that correlated with forms of effective instructional support identified in the research literature, such as timely detailed feedback, detailed instructions for the laboratory experiments, and consistency in the instructional design of lecture and laboratory course materials, including the chemistry lab simulation environment. The students in one of these courses identified the following as the most effective types of instructional support provided: the instructor's feedback, opportunities to apply chemistry knowledge in the chemistry lab exercises, detailed procedures for the simulated laboratory exercises, the organization of the course Blackboard sites and the chemistry lab simulation web sites, and the textbook homework web sites. Students also identified components of instructional support they felt were missing. These included a desire for more interaction with the instructor, more support for the simulated laboratory exercises from the instructor and the developer of the chemistry simulations, and faster help with questions about the laboratory exercises or experimental

  7. Laboratory-supported influenza surveillance in Victorian sentinel general practices.

    PubMed

    Kelly, H; Murphy, A; Leong, W; Leydon, J; Tresise, P; Gerrard, M; Chibo, D; Birch, C; Andrews, R; Catton, M

    2000-12-01

    Laboratory-supported influenza surveillance is important as part of pandemic preparedness, for identifying and isolating candidate vaccine strains, for supporting trials of anti-influenza drugs and for refining the influenza surveillance case definition in practice. This study describes the implementation of laboratory-supported influenza surveillance in Victorian sentinel general practices and provides an estimate of the proportion of patients with an influenza-like illness proven to have influenza. During 1998 and 1999, 25 sentinel general practices contributed clinical surveillance data and 16 metropolitan practices participated in laboratory surveillance. Serological, virus-antigen detection, virus culture and multiplex polymerase chain reaction procedures were used to establish the diagnosis of influenza. Two laboratories at major teaching hospitals in Melbourne provided additional data on influenza virus identification. General practice sentinel surveillance and laboratory identification of influenza provided similar data on the pattern of influenza in the community between May and September. The clinical suspicion of influenza was confirmed in 49 to 54 per cent of cases seen in general practice.

  8. On the viability of supporting institutional sharing of remote laboratory facilities

    NASA Astrophysics Data System (ADS)

    Lowe, David; Dang, Bridgette; Daniel, Keith; Murray, Stephen; Lindsay, Euan

    2015-11-01

    Laboratories are generally regarded as critical to engineering education, and yet educational institutions face significant challenges in developing and maintaining high-quality laboratory facilities. Remote laboratories are increasingly being explored as a partial solution to this challenge, with research showing that - for the right learning outcomes - they can be viable adjuncts or alternatives to conventional hands-on laboratories. One consequential opportunity arising from the inherent support for distributed access is the possibility of cross-institutional shared facilities. While both technical feasibility and pedagogic implications of remote laboratories have been well studied within the literature, the organisational and logistical issues associated with shared facilities have received limited consideration. This paper uses an existing national-scale laboratory sharing initiative, along with a related survey and laboratory sharing data, to analyse a range of factors that can affect engagement in laboratory sharing. The paper also discusses the implications for supporting ongoing laboratory sharing.

  9. Analysis and Test Support for Phillips Laboratory Precision Structures

    DTIC Science & Technology

    1998-11-01

    Air Force Research Laboratory ( AFRL ), Phillips Research Site . Task objectives centered...around analysis and structural dynamic test support on experiments within the Space Vehicles Directorate at Kirtland Air Force Base. These efforts help...support for Phillips Laboratory Precision Structures." Mr. James Goodding of CSA Engineering was the principal investigator for this task. Mr.

  10. Promoting Good Clinical Laboratory Practices and Laboratory Accreditation to Support Clinical Trials in Sub-Saharan Africa

    PubMed Central

    Shott, Joseph P.; Saye, Renion; Diakité, Moussa L.; Sanogo, Sintry; Dembele, Moussa B.; Keita, Sekouba; Nagel, Mary C.; Ellis, Ruth D.; Aebig, Joan A.; Diallo, Dapa A.; Doumbo, Ogobara K.

    2012-01-01

    Laboratory capacity in the developing world frequently lacks quality management systems (QMS) such as good clinical laboratory practices, proper safety precautions, and adequate facilities; impacting the ability to conduct biomedical research where it is needed most. As the regulatory climate changes globally, higher quality laboratory support is needed to protect study volunteers and to accurately assess biological parameters. The University of Bamako and its partners have undertaken a comprehensive QMS plan to improve quality and productivity using the Clinical and Laboratory Standards Institute standards and guidelines. The clinical laboratory passed the College of American Pathologists inspection in April 2010, and received full accreditation in June 2010. Our efforts to implement high-quality standards have been valuable for evaluating safety and immunogenicity of malaria vaccine candidates in Mali. Other disease-specific research groups in resource-limited settings may benefit by incorporating similar training initiatives, QMS methods, and continual improvement practices to ensure best practices. PMID:22492138

  11. SOIL AND FILL LABORATORY SUPPORT - 1991

    EPA Science Inventory

    The report gives results of soil analysis laboratory work by the University of Florida in Support of the Florida Radon Research Program (FRRP). Analyses were performed on soil and fill samples collected during 1991 by the FRRP Research House program and the New House Evaluation P...

  12. The ESA Laboratory Support Equipment for the ISS.

    PubMed

    Petrivelli, A

    2002-02-01

    The Laboratory Support Equipment (LSE) for the International Space Station (ISS) is a suite of general-purpose items that will be available onboard the Station either as self-standing facilities or as equipment that can be used at defined locations. Dedicated to supporting system maintenance and payload operations, some LSE items are derived from commercial equipment, while others have been specifically developed for the ISS. ESA is currently engaged in developing three pressurised facilities and one pointing mechanism that will become part of the LSE complement, namely: the Minus Eighty degree centigrade Laboratory Freezer for the ISS (MELFI), the Microgravity Science Glovebox (MSG), the cryogenic storage and quick/snap freezer system (Cryosystem), the external-payload pointing system (Hexapod).

  13. Global Measles and Rubella Laboratory Network Support for Elimination Goals, 2010-2015.

    PubMed

    Mulders, Mick N; Rota, Paul A; Icenogle, Joseph P; Brown, Kevin E; Takeda, Makoto; Rey, Gloria J; Ben Mamou, Myriam C; Dosseh, Annick R G A; Byabamazima, Charles R; Ahmed, Hinda J; Pattamadilok, Sirima; Zhang, Yan; Gacic-Dobo, Marta; Strebel, Peter M; Goodson, James L

    2016-05-06

    In 2012, the World Health Assembly endorsed the Global Vaccine Action Plan (GVAP)* with the objective to eliminate measles and rubella in five World Health Organization (WHO) regions by 2020. In September 2013, countries in all six WHO regions had established measles elimination goals, and additional goals for elimination of rubella and congenital rubella syndrome were established in three regions (1). Capacity for surveillance, including laboratory confirmation, is fundamental to monitoring and verifying elimination. The 2012-2020 Global Measles and Rubella Strategic Plan of the Measles and Rubella Initiative(†) calls for effective case-based surveillance with laboratory testing for case confirmation (2). In 2000, the WHO Global Measles and Rubella Laboratory Network (GMRLN) was established to provide high quality laboratory support for surveillance (3). The GMRLN is the largest globally coordinated laboratory network, with 703 laboratories supporting surveillance in 191 countries. During 2010-2015, 742,187 serum specimens were tested, and 27,832 viral sequences were reported globally. Expansion of the capacity of the GMRLN will support measles and rubella elimination efforts as well as surveillance for other vaccine-preventable diseases (VPDs), including rotavirus, and for emerging pathogens of public health concern.

  14. Validation of "laboratory-supported" criteria for functional (psychogenic) tremor.

    PubMed

    Schwingenschuh, Petra; Saifee, Tabish A; Katschnig-Winter, Petra; Macerollo, Antonella; Koegl-Wallner, Mariella; Culea, Valeriu; Ghadery, Christine; Hofer, Edith; Pendl, Tamara; Seiler, Stephan; Werner, Ulrike; Franthal, Sebastian; Maurits, Natasha M; Tijssen, Marina A; Schmidt, Reinhold; Rothwell, John C; Bhatia, Kailash P; Edwards, Mark J

    2016-04-01

    In a small group of patients, we have previously shown that a combination of electrophysiological tests was able to distinguish functional (psychogenic) tremor and organic tremor with excellent sensitivity and specificity. This study aims to validate an electrophysiological test battery as a tool to diagnose patients with functional tremor with a "laboratory-supported" level of certainty. For this prospective data collection study, we recruited 38 new patients with functional tremor (mean age 37.9 ± 24.5 years; mean disease duration 5.9 ± 9.0 years) and 73 new patients with organic tremor (mean age 55.4 ± 25.4 years; mean disease duration 15.8 ± 17.7 years). Tremor was recorded at rest, posture (with and without loading), action, while performing tapping tasks (1, 3, and 5 Hz), and while performing ballistic movements with the less-affected hand. Electrophysiological tests were performed by raters blinded to the clinical diagnosis. We calculated a sum score for all performed tests (maximum of 10 points) and used a previously suggested cut-off score of 3 points for a diagnosis of laboratory-supported functional tremor. We demonstrated good interrater reliability and test-retest reliability. Patients with functional tremor had a higher average score on the test battery when compared with patients with organic tremor (3.6 ± 1.4 points vs 1.0 ± 0.8 points; P < .001), and the predefined cut-off score for laboratory-supported functional tremor yielded a test sensitivity of 89.5% and a specificity of 95.9%. We now propose this test battery as the basis of laboratory-supported criteria for the diagnosis of functional tremor, and we encourage its use in clinical and research practice. © 2016 International Parkinson and Movement Disorder Society.

  15. Economic Education Laboratory: Initiating a Meaningful Economic Learning through Laboratory

    ERIC Educational Resources Information Center

    Noviani, Leny; Soetjipto, Budi Eko; Sabandi, Muhammad

    2015-01-01

    Laboratory is considered as one of the resources in supporting the learning process. The laboratory can be used as facilities to deepen the concepts, learning methods and enriching students' knowledge and skills. Learning process by utilizing the laboratory facilities can help lecturers and students in grasping the concept easily, constructing the…

  16. Design of a Clinical Information Management System to Support DNA Analysis Laboratory Operation

    PubMed Central

    Dubay, Christopher J.; Zimmerman, David; Popovich, Bradley

    1995-01-01

    The LabDirector system has been developed at the Oregon Health Sciences University to support the operation of our clinical DNA analysis laboratory. Through an iterative design process which has spanned two years, we have produced a system that is both highly tailored to a clinical genetics production laboratory and flexible in its implementation, to support the rapid growth and change of protocols and methodologies in use in the field. The administrative aspects of the system are integrated with an enterprise schedule management system. The laboratory side of the system is driven by a protocol modeling and execution system. The close integration between these two aspects of the clinical laboratory facilitates smooth operations, and allows management to accurately measure costs and performance. The entire application has been designed and documented to provide utility to a wide range of clinical laboratory environments.

  17. Building laboratory capacity to support HIV care in Nigeria: Harvard/APIN PEPFAR, 2004-2012.

    PubMed

    Hamel, Donald J; Sankalé, Jean-Louis; Samuels, Jay Osi; Sarr, Abdoulaye D; Chaplin, Beth; Ofuche, Eke; Meloni, Seema T; Okonkwo, Prosper; Kanki, Phyllis J

    From 2004-2012, the Harvard/AIDS Prevention Initiative in Nigeria, funded through the US President's Emergency Plan for AIDS Relief programme, scaled up HIV care and treatment services in Nigeria. We describe the methodologies and collaborative processes developed to improve laboratory capacity significantly in a resource-limited setting. These methods were implemented at 35 clinic and laboratory locations. Systems were established and modified to optimise numerous laboratory processes. These included strategies for clinic selection and management, equipment and reagent procurement, supply chains, laboratory renovations, equipment maintenance, electronic data management, quality development programmes and trainings. Over the eight-year programme, laboratories supported 160 000 patients receiving HIV care in Nigeria, delivering over 2.5 million test results, including regular viral load quantitation. External quality assurance systems were established for CD4+ cell count enumeration, blood chemistries and viral load monitoring. Laboratory equipment platforms were improved and standardised and use of point-of-care analysers was expanded. Laboratory training workshops supported laboratories toward increasing staff skills and improving overall quality. Participation in a World Health Organisation-led African laboratory quality improvement system resulted in significant gains in quality measures at five laboratories. Targeted implementation of laboratory development processes, during simultaneous scale-up of HIV treatment programmes in a resource-limited setting, can elicit meaningful gains in laboratory quality and capacity. Systems to improve the physical laboratory environment, develop laboratory staff, create improvements to reduce costs and increase quality are available for future health and laboratory strengthening programmes. We hope that the strategies employed may inform and encourage the development of other laboratories in resource-limited settings.

  18. [Medical support on human resources and clinical laboratory in Myanmar].

    PubMed

    Koide, Norio

    2012-03-01

    I have been involved in medical cooperation programs between Myanmar and Japan for over 10 years. The purpose of the first visit to Myanmar was the investigation of hepatitis C spreading among thalassemia patients. I learned that the medical system was underdeveloped in this country, and have initiated several cooperation programs together with Professor Shigeru Okada, such as the "Protection against hepatitis C in Myanmar", "Scientist exchange between the Ministry of Health, Myanmar and Okayama University", and "Various activities sponsored by a Non-Profit Organization". As for clinical laboratories, the laboratory system itself is pre-constructed and the benefit of a clinical laboratory in modern medicine is not given to patients in Myanmar. The donation of drugs and reagents for laboratory tests is helpful, but it will be more helpful to assist the future leaders to learn modern medicine and develop their own various systems to support modern medicine. Our activity in the cooperation program is described.

  19. Roles of the International Council for Laboratory Animal Science (ICLAS) and International Association of Colleges of Laboratory Animal Medicine (IACLAM) in the Global Organization and Support of 3Rs Advances in Laboratory Animal Science.

    PubMed

    Turner, Patricia V; Pekow, Cynthia; Clark, Judy MacArthur; Vergara, Patri; Bayne, Kathryn; White, William J; Kurosawa, Tsutomu Miki; Seok, Seung-Hyeok; Baneux, Philippe

    2015-03-01

    Practical implementation of the 3Rs at national and regional levels around the world requires long-term commitment, backing, and coordinated efforts by international associations for laboratory animal medicine and science, including the International Association of Colleges of Laboratory Animal Medicine (IACLAM) and the International Council for Laboratory Animal Science (ICLAS). Together these organizations support the efforts of regional organization and communities of laboratory animal science professionals as well as the development of local associations and professional colleges that promote the training and continuing education of research facility personnel and veterinary specialists. The recent formation of a World Organization for Animal Health (OIE) Collaborating Center for Laboratory Animal Science and Welfare emphasizes the need for research into initiatives promoting laboratory animal welfare, particularly in emerging economies and regions with nascent associations of laboratory animal science.

  20. A comprehensive Laboratory Services Survey of State Public Health Laboratories.

    PubMed

    Inhorn, Stanley L; Wilcke, Burton W; Downes, Frances Pouch; Adjanor, Oluwatosin Omolade; Cada, Ronald; Ford, James R

    2006-01-01

    In November 2004, the Association of Public Health Laboratories (APHL) conducted a Comprehensive Laboratory Services Survey of State Public Health Laboratories (SPHLs) in order to establish the baseline data necessary for Healthy People 2010 Objective 23-13. This objective aims to measure the increase in the proportion of health agencies that provide or assure access to comprehensive laboratory services to support essential public health services. This assessment addressed only SPHLs and served as a baseline to periodically evaluate the level of improvement in the provision of laboratory services over the decade ending 2010. The 2004 survey used selected questions that were identified as key indicators of provision of comprehensive laboratory services. The survey was developed in consultation with the Centers for Disease Control and Prevention National Center for Health Statistics, based on newly developed data sources. Forty-seven states and one territory responded to the survey. The survey was based on the 11 core functions of SPHLs as previously defined by APHL. The range of performance among individual laboratories for the 11 core functions (subobjectives) reflects the challenging issues that have confronted SPHLs in the first half of this decade. APHL is now working on a coordinated effort with other stakeholders to create seamless state and national systems for the provision of laboratory services in support of public health programs. These services are necessary to help face the threats raised by the specter of terrorism, emerging infections, and natural disasters.

  1. Calgary Laboratory Services

    PubMed Central

    2015-01-01

    Calgary Laboratory Services provides global hospital and community laboratory services for Calgary and surrounding areas (population 1.4 million) and global academic support for the University of Calgary Cumming School of Medicine. It developed rapidly after the Alberta Provincial Government implemented an austerity program to address rising health care costs and to address Alberta’s debt and deficit in 1994. Over roughly the next year, all hospital and community laboratory test funding within the province was put into a single budget, fee codes for fee-for-service test billing were closed, roughly 40% of the provincial laboratory budget was cut, and roughly 40% of the pathologists left the province of Alberta. In Calgary, in the face of these abrupt changes in the laboratory environment, private laboratories, publicly funded hospital laboratories and the medical school department precipitously and reluctantly merged in 1996. The origin of Calgary Laboratory Services was likened to an “unhappy shotgun marriage” by all parties. Although such a structure could save money by eliminating duplicated services and excess capacity and could provide excellent city-wide clinical service by increasing standardization, it was less clear whether it could provide strong academic support for a medical school. Over the past decade, iterations of the Calgary Laboratory Services model have been implemented or are being considered in other Canadian jurisdictions. This case study analyzes the evolution of Calgary Laboratory Services, provides a metric-based review of academic performance over time, and demonstrates that this model, essentially arising as an unplanned experiment, has merit within a Canadian health care context. PMID:28725754

  2. Global and national laboratory networks support high quality surveillance for measles and rubella.

    PubMed

    Xu, Wenbo; Zhang, Yan; Wang, Huiling; Zhu, Zhen; Mao, Naiying; Mulders, Mick N; Rota, Paul A

    2017-05-01

    Laboratory networks are an essential component of disease surveillance systems because they provide accurate and timely confirmation of infection. WHO coordinates global laboratory surveillance of vaccine preventable diseases, including measles and rubella. The more than 700 laboratories within the WHO Global Measles and Rubella Laboratory Network (GMRLN) supports surveillance for measles, rubella and congenial rubella syndrome in 191 counties. This paper describes the overall structure and function of the GMRLN and highlights the largest of the national laboratory networks, the China Measles and Rubella Laboratory Network. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  3. Roles of the International Council for Laboratory Animal Science (ICLAS) and International Association of Colleges of Laboratory Animal Medicine (IACLAM) in the Global Organization and Support of 3Rs Advances in Laboratory Animal Science

    PubMed Central

    Turner, Patricia V; Pekow, Cynthia; Clark, Judy MacArthur; Vergara, Patri; Bayne, Kathryn; White, William J; Kurosawa, Tsutomu Miki; Seok, Seung-Hyeok; Baneux, Philippe

    2015-01-01

    Practical implementation of the 3Rs at national and regional levels around the world requires long-term commitment, backing, and coordinated efforts by international associations for laboratory animal medicine and science, including the International Association of Colleges of Laboratory Animal Medicine (IACLAM) and the International Council for Laboratory Animal Science (ICLAS). Together these organizations support the efforts of regional organization and communities of laboratory animal science professionals as well as the development of local associations and professional colleges that promote the training and continuing education of research facility personnel and veterinary specialists. The recent formation of a World Organization for Animal Health (OIE) Collaborating Center for Laboratory Animal Science and Welfare emphasizes the need for research into initiatives promoting laboratory animal welfare, particularly in emerging economies and regions with nascent associations of laboratory animal science. PMID:25836964

  4. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas.

    PubMed

    Yeh, Kenneth B; Adams, Martin; Stamper, Paul D; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D; Richards, Allen L; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community.

  5. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas

    PubMed Central

    Adams, Martin; Stamper, Paul D.; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D.; Richards, Allen L.; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community. PMID:27559843

  6. Duplicate laboratory test reduction using a clinical decision support tool.

    PubMed

    Procop, Gary W; Yerian, Lisa M; Wyllie, Robert; Harrison, A Marc; Kottke-Marchant, Kandice

    2014-05-01

    Duplicate laboratory tests that are unwarranted increase unnecessary phlebotomy, which contributes to iatrogenic anemia, decreased patient satisfaction, and increased health care costs. We employed a clinical decision support tool (CDST) to block unnecessary duplicate test orders during the computerized physician order entry (CPOE) process. We assessed laboratory cost savings after 2 years and searched for untoward patient events associated with this intervention. This CDST blocked 11,790 unnecessary duplicate test orders in these 2 years, which resulted in a cost savings of $183,586. There were no untoward effects reported associated with this intervention. The movement to CPOE affords real-time interaction between the laboratory and the physician through CDSTs that signal duplicate orders. These interactions save health care dollars and should also increase patient satisfaction and well-being.

  7. Skylab mobile laboratory

    NASA Technical Reports Server (NTRS)

    Primeaux, G. R.; Larue, M. A.

    1975-01-01

    The Skylab mobile laboratory was designed to provide the capability to obtain necessary data on the Skylab crewmen 30 days before lift-off, within 1 hour after recovery, and until preflight physiological baselines were reattained. The mobile laboratory complex consisted of six laboratories that supported cardiovascular, metabolic, nutrition and endocrinology, operational medicine, blood, and microbiology experiments; a utility package; and two shipping containers. The objectives and equipment requirements of the Skylab mobile laboratory and the data acquisition systems are discussed along with processes such as permanently mounting equipment in the individual laboratories and methods of testing and transporting the units. The operational performance, in terms of amounts of data collected, and the concept of mobile laboratories for medical and scientific experiments are evaluated. The Skylab mobile laboratory succeeded in facilitating the data collection and sample preservation associated with the three Skylab manned flights.

  8. Teaching laboratory neuroscience at bowdoin: the laboratory instructor perspective.

    PubMed

    Hauptman, Stephen; Curtis, Nancy

    2009-01-01

    Bowdoin College is a small liberal arts college that offers a comprehensive Neuroscience major. The laboratory experience is an integral part of the major, and many students progress through three stages. A core course offers a survey of concepts and techniques. Four upper-level courses function to give students more intensive laboratory research experience in neurophysiology, molecular neurobiology, social behavior, and learning and memory. Finally, many majors choose to work in the individual research labs of the Neuroscience faculty. We, as laboratory instructors, are vital to the process, and are actively involved in all aspects of the lab-based courses. We provide student instruction in state of the art techniques in neuroscience research. By sharing laboratory teaching responsibilities with course professors, we help to prepare students for careers in laboratory neuroscience and also support and facilitate faculty research programs.

  9. Building laboratory capacity to support HIV care in Nigeria: Harvard/APIN PEPFAR, 2004–2012

    PubMed Central

    Hamel, Donald J.; Sankalé, Jean-Louis; Samuels, Jay Osi; Sarr, Abdoulaye D.; Chaplin, Beth; Ofuche, Eke; Meloni, Seema T.; Okonkwo, Prosper; Kanki, Phyllis J.

    2015-01-01

    Introduction From 2004–2012, the Harvard/AIDS Prevention Initiative in Nigeria, funded through the US President’s Emergency Plan for AIDS Relief programme, scaled up HIV care and treatment services in Nigeria. We describe the methodologies and collaborative processes developed to improve laboratory capacity significantly in a resource-limited setting. These methods were implemented at 35 clinic and laboratory locations. Methods Systems were established and modified to optimise numerous laboratory processes. These included strategies for clinic selection and management, equipment and reagent procurement, supply chains, laboratory renovations, equipment maintenance, electronic data management, quality development programmes and trainings. Results Over the eight-year programme, laboratories supported 160 000 patients receiving HIV care in Nigeria, delivering over 2.5 million test results, including regular viral load quantitation. External quality assurance systems were established for CD4+ cell count enumeration, blood chemistries and viral load monitoring. Laboratory equipment platforms were improved and standardised and use of point-of-care analysers was expanded. Laboratory training workshops supported laboratories toward increasing staff skills and improving overall quality. Participation in a World Health Organisation-led African laboratory quality improvement system resulted in significant gains in quality measures at five laboratories. Conclusions Targeted implementation of laboratory development processes, during simultaneous scale-up of HIV treatment programmes in a resource-limited setting, can elicit meaningful gains in laboratory quality and capacity. Systems to improve the physical laboratory environment, develop laboratory staff, create improvements to reduce costs and increase quality are available for future health and laboratory strengthening programmes. We hope that the strategies employed may inform and encourage the development of other

  10. A Project-Based Laboratory for Learning Embedded System Design with Industry Support

    ERIC Educational Resources Information Center

    Lee, Chyi-Shyong; Su, Juing-Huei; Lin, Kuo-En; Chang, Jia-Hao; Lin, Gu-Hong

    2010-01-01

    A project-based laboratory for learning embedded system design with support from industry is presented in this paper. The aim of this laboratory is to motivate students to learn the building blocks of embedded systems and practical control algorithms by constructing a line-following robot using the quadratic interpolation technique to predict the…

  11. On the potential for using immersive virtual environments to support laboratory experiment contextualisation

    NASA Astrophysics Data System (ADS)

    Machet, Tania; Lowe, David; Gütl, Christian

    2012-12-01

    This paper explores the hypothesis that embedding a laboratory activity into a virtual environment can provide a richer experimental context and hence improve the understanding of the relationship between a theoretical model and the real world, particularly in terms of the model's strengths and weaknesses. While an identified learning objective of laboratories is to support the understanding of the relationship between models and reality, the paper illustrates that this understanding is hindered by inherently limited experiments and that there is scope for improvement. Despite the contextualisation of learning activities having been shown to support learning objectives in many fields, there is traditionally little contextual information presented during laboratory experimentation. The paper argues that the enhancing laboratory activity with contextual information affords an opportunity to improve students' understanding of the relationship between the theoretical model and the experiment (which is effectively a proxy for the complex real world), thereby improving their understanding of the relationship between the model and reality. The authors propose that these improvements can be achieved by setting remote laboratories within context-rich virtual worlds.

  12. A numerical cloud model for the support of laboratory experimentation

    NASA Technical Reports Server (NTRS)

    Hagen, D. E.

    1979-01-01

    A numerical cloud model is presented which can describe the evolution of a cloud starting from moist aerosol-laden air through the diffusional growth regime. The model is designed for the direct support of cloud chamber laboratory experimentation, i.e., experiment preparation, real-time control and data analysis. In the model the thermodynamics is uncoupled from the droplet growth processes. Analytic solutions for the cloud droplet growth equations are developed which can be applied in most laboratory situations. The model is applied to a variety of representative experiments.

  13. Accelerator-based techniques for the support of senior-level undergraduate physics laboratories

    NASA Astrophysics Data System (ADS)

    Williams, J. R.; Clark, J. C.; Isaacs-Smith, T.

    2001-07-01

    Approximately three years ago, Auburn University replaced its aging Dynamitron accelerator with a new 2MV tandem machine (Pelletron) manufactured by the National Electrostatics Corporation (NEC). This new machine is maintained and operated for the University by Physics Department personnel, and the accelerator supports a wide variety of materials modification/analysis studies. Computer software is available that allows the NEC Pelletron to be operated from a remote location, and an Internet link has been established between the Accelerator Laboratory and the Upper-Level Undergraduate Teaching Laboratory in the Physics Department. Additional software supplied by Canberra Industries has also been used to create a second Internet link that allows live-time data acquisition in the Teaching Laboratory. Our senior-level undergraduates and first-year graduate students perform a number of experiments related to radiation detection and measurement as well as several standard accelerator-based experiments that have been added recently. These laboratory exercises will be described, and the procedures used to establish the Internet links between our Teaching Laboratory and the Accelerator Laboratory will be discussed.

  14. Good Laboratory Practice. Part 3. Implementing Good Laboratory Practice in the Analytical Lab

    ERIC Educational Resources Information Center

    Wedlich, Richard C.; Pires, Amanda; Fazzino, Lisa; Fransen, Joseph M.

    2013-01-01

    Laboratories submitting experimental results to the Food and Drug Administration (FDA) or the Environmental Protection Agency (EPA) in support of Good Laboratory Practice (GLP) nonclinical laboratory studies must conduct such work in compliance with the GLP regulations. To consistently meet these requirements, lab managers employ a "divide…

  15. Exploring the Potential of Smartphones and Tablets for Performance Support in Food Chemistry Laboratory Classes

    NASA Astrophysics Data System (ADS)

    van der Kolk, Koos; Hartog, Rob; Beldman, Gerrit; Gruppen, Harry

    2013-12-01

    Increasingly, mobile applications appear on the market that can support students in chemistry laboratory classes. In a multiple app-supported laboratory, each of these applications covers one use-case. In practice, this leads to situations in which information is scattered over different screens and written materials. Such a multiple app-supported laboratory will become awkward with the growth of the number of applications and use cases. In particular, using and switching between applications is likely to induce extraneous cognitive load that can easily be avoided. The manuscript describes the design of a prototype smartphone web app (LabBuddy) designed to support students in food chemistry laboratory classes. The manuscript describes a case study ( n = 26) of the use of a LabBuddy prototype in such a laboratory class. Based on the evaluation of this case study, design requirements for LabBuddy were articulated. LabBuddy should work on HTML5 capable devices, independent of screen size, by having a responsive layout. In addition, LabBuddy should enable a student using LabBuddy to switch between devices without much effort. Finally, LabBuddy should offer an integrated representation of information.

  16. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 3: Laboratory descriptions

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The following study objectives are covered: (1) identification of major laboratory equipment; (2) systems and operations analysis in support of the laboratory design; and (3) conceptual design of the comm/nav research laboratory.

  17. EPA Environmental Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Environmental Protection Agency's (EPA) Chemistry Laboratory (ECL) is a national program laboratory specializing in residue chemistry analysis under the jurisdiction of the EPA's Office of Pesticide Programs in Washington, D.C. At Stennis Space Center, the laboratory's work supports many federal anti-pollution laws. The laboratory analyzes environmental and human samples to determine the presence and amount of agricultural chemicals and related substances. Pictured, ECL chemists analyze environmental and human samples for the presence of pesticides and other pollutants.

  18. Exploring the Potential of Smartphones and Tablets for Performance Support in Food Chemistry Laboratory Classes

    ERIC Educational Resources Information Center

    van der Kolk, Koos; Hartog, Rob; Beldman, Gerrit; Gruppen, Harry

    2013-01-01

    Increasingly, mobile applications appear on the market that can support students in chemistry laboratory classes. In a multiple app-supported laboratory, each of these applications covers one use-case. In practice, this leads to situations in which information is scattered over different screens and written materials. Such a multiple app-supported…

  19. Universal immunogenicity validation and assessment during early biotherapeutic development to support a green laboratory.

    PubMed

    Bautista, Ami C; Zhou, Lei; Jawa, Vibha

    2013-10-01

    Immunogenicity support during nonclinical biotherapeutic development can be resource intensive if supported by conventional methodologies. A universal indirect species-specific immunoassay can eliminate the need for biotherapeutic-specific anti-drug antibody immunoassays without compromising quality. By implementing the R's of sustainability (reduce, reuse, rethink), conservation of resources and greener laboratory practices were achieved in this study. Statistical analysis across four biotherapeutics supported identification of consistent product performance standards (cut points, sensitivity and reference limits) and a streamlined universal anti-drug antibody immunoassay method implementation strategy. We propose an efficient, fit-for-purpose, scientifically and statistically supported nonclinical immunogenicity assessment strategy. Utilization of a universal method and streamlined validation, while retaining comparability to conventional immunoassays and meeting the industry recommended standards, provides environmental credits in the scientific laboratory. Collectively, individual reductions in critical material consumption, energy usage, waste and non-environment friendly consumables, such as plastic and paper, support a greener laboratory environment.

  20. Superfund Contract Laboratory Program

    EPA Pesticide Factsheets

    The Contract Laboratory Program (CLP) is a national network of EPA personnel, commercial laboratories, and support contractors whose primary mission is to provide data of known and documented quality to the Superfund program.

  1. [The analytical reliability of clinical laboratory information and role of the standards in its support].

    PubMed

    Men'shikov, V V

    2012-12-01

    The article deals with the factors impacting the reliability of clinical laboratory information. The differences of qualities of laboratory analysis tools produced by various manufacturers are discussed. These characteristics are the causes of discrepancy of the results of laboratory analyses of the same analite. The role of the reference system in supporting the comparability of laboratory analysis results is demonstrated. The project of national standard is presented to regulate the requirements to standards and calibrators for analysis of qualitative and non-metrical characteristics of components of biomaterials.

  2. Improving quality management systems of laboratories in developing countries: an innovative training approach to accelerate laboratory accreditation.

    PubMed

    Yao, Katy; McKinney, Barbara; Murphy, Anna; Rotz, Phil; Wafula, Winnie; Sendagire, Hakim; Okui, Scolastica; Nkengasong, John N

    2010-09-01

    The Strengthening Laboratory Management Toward Accreditation (SLMTA) program was developed to promote immediate, measurable improvement in laboratories of developing countries. The laboratory management framework, a tool that prescribes managerial job tasks, forms the basis of the hands-on, activity-based curriculum. SLMTA is implemented through multiple workshops with intervening site visits to support improvement projects. To evaluate the effectiveness of SLMTA, the laboratory accreditation checklist was developed and subsequently adopted by the World Health Organization Regional Office for Africa (WHO AFRO). The SLMTA program and the implementation model were validated through a pilot in Uganda. SLMTA yielded observable, measurable results in the laboratories and improved patient flow and turnaround time in a laboratory simulation. The laboratory staff members were empowered to improve their own laboratories by using existing resources, communicate with clinicians and hospital administrators, and advocate for system strengthening. The SLMTA program supports laboratories by improving management and building preparedness for accreditation.

  3. A professional development model for medical laboratory scientists working in the microbiology laboratory.

    PubMed

    Amerson, Megan H; Pulido, Lila; Garza, Melinda N; Ali, Faheem A; Greenhill, Brandy; Einspahr, Christopher L; Yarsa, Joseph; Sood, Pramilla K; Hu, Peter C

    2012-01-01

    The University of Texas M.D. Anderson Cancer Center, Division of Pathology and Laboratory Medicine is committed to providing the best pathology and medicine through: state-of-the art techniques, progressive ground-breaking research, education and training for the clinical diagnosis and research of cancer and related diseases. After surveying the laboratory staff and other hospital professionals, the Department administrators and Human Resource generalists developed a professional development model for Microbiology to support laboratory skills, behavior, certification, and continual education within its staff. This model sets high standards for the laboratory professionals to allow the labs to work at their fullest potential; it provides organization to training technologists based on complete laboratory needs instead of training technologists in individual areas in which more training is required if the laboratory needs them to work in other areas. This model is a working example for all microbiology based laboratories who want to set high standards and want their staff to be acknowledged for demonstrated excellence and professional development in the laboratory. The PDM model is designed to focus on the needs of the laboratory as well as the laboratory professionals.

  4. Laboratory safety handbook

    USGS Publications Warehouse

    Skinner, E.L.; Watterson, C.A.; Chemerys, J.C.

    1983-01-01

    Safety, defined as 'freedom from danger, risk, or injury,' is difficult to achieve in a laboratory environment. Inherent dangers, associated with water analysis and research laboratories where hazardous samples, materials, and equipment are used, must be minimized to protect workers, buildings, and equipment. Managers, supervisors, analysts, and laboratory support personnel each have specific responsibilities to reduce hazards by maintaining a safe work environment. General rules of conduct and safety practices that involve personal protection, laboratory practices, chemical handling, compressed gases handling, use of equipment, and overall security must be practiced by everyone at all levels. Routine and extensive inspections of all laboratories must be made regularly by qualified people. Personnel should be trained thoroughly and repetitively. Special hazards that may involve exposure to carcinogens, cryogenics, or radiation must be given special attention, and specific rules and operational procedures must be established to deal with them. Safety data, reference materials, and texts must be kept available if prudent safety is to be practiced and accidents prevented or minimized.

  5. Laboratory and software applications for clinical trials: the global laboratory environment.

    PubMed

    Briscoe, Chad

    2011-11-01

    The Applied Pharmaceutical Software Meeting is held annually. It is sponsored by The Boston Society, a not-for-profit organization that coordinates a series of meetings within the global pharmaceutical industry. The meeting generally focuses on laboratory applications, but in recent years has expanded to include some software applications for clinical trials. The 2011 meeting emphasized the global laboratory environment. Global clinical trials generate massive amounts of data in many locations that must be centralized and processed for efficient analysis. Thus, the meeting had a strong focus on establishing networks and systems for dealing with the computer infrastructure to support such environments. In addition to the globally installed laboratory information management system, electronic laboratory notebook and other traditional laboratory applications, cloud computing is quickly becoming the answer to provide efficient, inexpensive options for managing the large volumes of data and computing power, and thus it served as a central theme for the meeting.

  6. The Laboratory for Terrestrial Physics

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Laboratory for Terrestrial Physics is dedicated to the advancement of knowledge in Earth and planetary science, by conducting innovative research using space technology. The Laboratory's mission and activities support the work and new initiatives at NASA's Goddard Space Flight Center (GSFC). The Laboratory's success contributes to the Earth Science Directorate as a national resource for studies of Earth from Space. The Laboratory is part of the Earth Science Directorate based at the GSFC in Greenbelt, MD. The Directorate itself is comprised of the Global Change Data Center (GCDC), the Space Data and Computing Division (SDCD), and four science Laboratories, including Laboratory for Terrestrial Physics, Laboratory for Atmospheres, and Laboratory for Hydrospheric Processes all in Greenbelt, MD. The fourth research organization, Goddard Institute for Space Studies (GISS), is in New York, NY. Relevant to NASA's Strategic Plan, the Laboratory ensures that all work undertaken and completed is within the vision of GSFC. The philosophy of the Laboratory is to balance the completion of near term goals, while building on the Laboratory's achievements as a foundation for the scientific challenges in the future.

  7. Laboratories | NREL

    Science.gov Websites

    | Z A Accelerated Exposure Testing Laboratory Advanced Optical Materials Laboratory Advanced Thermal Laboratory Structural Testing Laboratory Surface Analysis Laboratory Systems Performance Laboratory T Thermal Storage Materials Laboratory Thermal Storage Process and Components Laboratory Thin-Film Deposition

  8. Laboratory Computing Resource Center

    Science.gov Websites

    Systems Computing and Data Resources Purchasing Resources Future Plans For Users Getting Started Using LCRC Software Best Practices and Policies Getting Help Support Laboratory Computing Resource Center Laboratory Computing Resource Center Latest Announcements See All April 27, 2018, Announcements, John Low

  9. Space Food Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; Russo, Dane M. (Technical Monitor)

    2001-01-01

    The Space Food Systems Laboratory (SFSL) is a multipurpose laboratory responsible for space food and package research and development. It is located on-site at Johnson Space Center in Building 17. The facility supports the development of flight food, menus, packaging and food related hardware for Shuttle, International Space Station, and Advanced Life Support food systems. All foods used to support NASA ground tests and/or missions must meet the highest standards before they are 'accepted' for use on actual space flights. The foods are evaluated for nutritional content, sensory acceptability, safety, storage and shelf life, and suitability for use in micro-gravity. The food packaging is also tested to determine its functionality and suitability for use in space. Food Scientist, Registered Dieticians, Packaging Engineers, Food Systems Engineers, and Technicians staff the Space Food Systems Laboratory.

  10. Effectiveness of Podcasts Delivered on Mobile Devices as a Support for Student Learning during General Chemistry Laboratories

    ERIC Educational Resources Information Center

    Powell, Cynthia B.; Mason, Diana S.

    2013-01-01

    Chemistry instructors in teaching laboratories provide expert modeling of techniques and cognitive processes and provide assistance to enrolled students that may be described as scaffolding interaction. Such student support is particularly essential in laboratories taught with an inquiry-based curriculum. In a teaching laboratory with a high…

  11. OCCUPATION--LANGUAGE LABORATORY DIRECTOR.

    ERIC Educational Resources Information Center

    TURNER, DAYMOND

    TRUE PROFESSIONAL STATUS FOR A LABORATORY DIRECTOR, PLUS ADMINISTRATIVE SUPPORT OF SUCH INSTRUCTION, WILL GIVE COLLEGES AND UNIVERSITIES ADEQUATE RETURN FOR THEIR INVESTMENT IN ELECTRONIC EQUIPMENT. BY BEING INVOLVED IN IMPORTANT RESEARCH AND INSTRUCTIONAL ACTIVITIES, THE DIRECTOR OF A LANGUAGE LABORATORY CAN SERVE ALSO TO FREE THE TEACHER AND…

  12. Quality indicators and specifications for strategic and support processes in laboratory medicine.

    PubMed

    Ricós, Carmen; Biosca, Carme; Ibarz, Mercè; Minchinela, Joana; Llopis, Maantonia; Perich, Carmen; Alsina, Jesus; Alvarez, Virtudes; Doménech, Vicenta; Pastor, Rosa Ma; Sansalvador, Mireia; Isern, Gloria Trujillo; Navarro, Conrad Vilanova

    2008-01-01

    This work is the second part of a study regarding indicators and quality specifications for the non-analytical processes in laboratory medicine. Five primary care and five hospital laboratories agreed on the indicators for two strategic processes (quality planning and project development) and various support processes (client relationships, instrument and infrastructure maintenance, safety and risk prevention, purchases and storage, personnel training). In the majority of cases, the median values recorded over 1 year is considered to be the state-of-the-art in our setting and proposed as the quality specification for the indicators stated. Values have been stratified according to primary care and hospital laboratory for referred tests and group of personnel for training. In some cases, the specifications have been set equal to zero events, such as serious incidents in the infrastructure maintenance process and number of work accidents in the safety and risk prevention process. In light of this study, an effort is needed to optimize decisions regarding corrective actions and to move from a subjective individual criterion to systematic and comparative management. This preliminary study provides a comprehensive vision of a subject that could motivate further research and advances in the quality of laboratory services.

  13. Support of the Laboratory in the Diagnosis of Fungal Ocular Infections

    PubMed Central

    Vanzzini Zago, Virginia; Alcantara Castro, Marino; Naranjo Tackman, Ramon

    2012-01-01

    This is a retrospective, and descriptive study about the support that the laboratory of microbiology aids can provide in the diagnosis of ocular infections in patients whom were attended a tertiary-care hospital in México City in a 10-year-time period. We describe the microbiological diagnosis in palpebral mycose; in keratitis caused by Fusarium, Aspergillus, Candida, and melanized fungi; endophthalmitis; one Histoplasma scleritis and one mucormycosis. Nowadays, ocular fungal infections are more often diagnosed, because there is more clinical suspicion and there are easy laboratory confirmations. Correct diagnosis is important because an early medical treatment gives a better prognosis for visual acuity. In some cases, fungal infections are misdiagnosed and the antifungal treatment is delayed. PMID:22518339

  14. Wiki Laboratory Notebooks: Supporting Student Learning in Collaborative Inquiry-Based Laboratory Experiments

    ERIC Educational Resources Information Center

    Lawrie, Gwendolyn Angela; Grøndahl, Lisbeth; Boman, Simon; Andrews, Trish

    2016-01-01

    Recent examples of high-impact teaching practices in the undergraduate chemistry laboratory that include course-based undergraduate research experiences and inquiry-based experiments require new approaches to assessing individual student learning outcomes. Instructors require tools and strategies that can provide them with insight into individual…

  15. Inquiring Scaffolds in Laboratory Tasks: An Instance of a "Worked Laboratory Guide Effect"?

    ERIC Educational Resources Information Center

    Schmidt-Borcherding, Florian; Hänze, Martin; Wodzinski, Rita; Rincke, Karsten

    2013-01-01

    The study explores if established support devices for paper-pencil problem solving, namely worked examples and incremental scaffolds, are applicable to laboratory tasks. N?=?173 grade eight students solved in dyads a physics laboratory task in one of three conditions. In condition A (unguided problem solving), students were asked to determine the…

  16. EPA/ORD NATIONAL EXPOSURE RESEARCH LABORATORY MEASUREMENT SCIENCE SUPPORT FOR HOMELAND SECURITY

    EPA Science Inventory

    This product describes the National Exposure Research Laboratory research and development support for homeland security through the proposed National Exposure Measurements Center (NEMC). Key NEMC functional areas depicted in this poster are: standardized analytical method develo...

  17. Development opportunities for hospital clinical laboratory joint ventures.

    PubMed

    Van Riper, J A

    1995-01-01

    Regional health-care providers are being given the opportunity to collaborate in specialty health-care services. Collaboration to achieve superior economies of scale is very effective in the clinical laboratory industry. National laboratory chains are consolidating and enhancing their control of the industry to ensure their historic profitability. National companies have closed many laboratory facilities and have laid off substantial numbers of laboratory personnel. Health-care providers can regain control of their locally generated laboratory health-care dollars by joining forces with clinical laboratory joint ventures. Laboratorians can assist the healthcare providers in bringing laboratory services and employment back to the local community. New capital for operational development and laboratory information systems will help bring the laboratory to the point of care. The independent regional laboratory is focused on supporting the medical needs of the community. The profit generated from a laboratory joint venture is shared among local health-care providers, supporting their economic viability. The laboratories' ability to contribute to the development of profit-making ventures will provide capital for new laboratory development. All of the above will ensure the clinical laboratories' role in providing quality health care to our communities and employment opportunities for laboratory personnel.

  18. Laboratory Astrophysics White Paper

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy; Federman, Steve; Kwong, Victor; Salama, Farid; Savin, Daniel; Stancil, Phillip; Weingartner, Joe; Ziurys, Lucy

    2006-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomical and planetary research and will remain so for many generations to come. From the level of scientific conception to that of the scientific return, it is our understanding of the underlying processes that allows us to address fundamental questions regarding the origins and evolution of galaxies, stars, planetary systems, and life in the cosmos. In this regard, laboratory astrophysics is much like detector and instrument development at NASA and NSF; these efforts are necessary for the astronomical research being funded by the agencies. The NASA Laboratory Astrophysics Workshop met at the University of Nevada, Las Vegas (UNLV) from 14-16 February, 2006 to identify the current laboratory data needed to support existing and future NASA missions and programs in the Astrophysics Division of the Science Mission Directorate (SMD). Here we refer to both laboratory and theoretical work as laboratory astrophysics unless a distinction is necessary. The format for the Workshop involved invited talks by users of laboratory data, shorter contributed talks and poster presentations by both users and providers that highlighted exciting developments in laboratory astrophysics, and breakout sessions where users and providers discussed each others' needs and limitations. We also note that the members of the Scientific Organizing Committee are users as well as providers of laboratory data. As in previous workshops, the focus was on atomic, molecular, and solid state physics.

  19. The Effect of Chemistry Laboratory Activities on Students' Chemistry Perception and Laboratory Anxiety Levels

    ERIC Educational Resources Information Center

    Aydogdu, Cemil

    2017-01-01

    Chemistry lesson should be supported with experiments to understand the lecture effectively. For safety laboratory environment and to prevent laboratory accidents; chemical substances' properties, working principles for chemical substances' usage should be learnt. Aim of the present study was to analyze the effect of experiments which depend on…

  20. Energy Systems Sensor Laboratory | Energy Systems Integration Facility |

    Science.gov Websites

    NREL Sensor Laboratory Energy Systems Sensor Laboratory The Energy Systems Integration Facility's Energy Systems Sensor Laboratory is designed to support research, development, testing, and evaluation of advanced hydrogen sensor technologies to support the needs of the emerging hydrogen

  1. Performance of health laboratories in provision of HIV diagnostic and supportive services in selected districts of Tanzania.

    PubMed

    Ishengoma, Deus S; Kamugisha, Mathias L; Rutta, Acleus S M; Kagaruki, Gibson B; Kilale, Andrew M; Kahwa, Amos; Kamugisha, Erasmus; Baraka, Vito; Mandara, Celine I; Materu, Godlisten S; Massaga, Julius J; Magesa, Stephen M; Lemnge, Martha M; Mboera, Leonard E G

    2017-01-23

    Roll-out and implementation of antiretroviral therapy (ART) necessitated many countries in Sub-Saharan Africa to strengthen their national health laboratory systems (NHLSs) to provide high quality HIV diagnostic and supportive services. This study was conducted to assess the performance of health laboratories in provision of HIV diagnostic and supportive services in eight districts (from four regions of Iringa, Mtwara, Tabora and Tanga), after nine years of implementation of HIV/AIDS care and treatment plan in Tanzania. In this cross-sectional study, checklists and observations were utilized to collect information from health facilities (HFs) with care and treatment centres (CTCs) for HIV/AIDS patients; on availability of laboratories, CTCs, laboratory personnel, equipment and reagents. A checklist was also used to collect information on implementation of quality assurance (QA) systems at all levels of the NHLS in the study areas. The four regions had 354 HFs (13 hospitals, 41 Health Centres (HCs) and 300 dispensaries); whereby all hospitals had laboratories and 11 had CTCs while 97.5 and 61.0% of HCs had both laboratories and CTCs, respectively. Of the dispensaries, 36.0 and 15.0% had laboratories and CTCs (mainly in urban areas). Thirty nine HFs (12 hospitals, 21 HCs and six dispensaries) were assessed and 56.4% were located in urban areas. The assessed HFs had 199 laboratory staff of different cadres (laboratory assistants = 35.7%; technicians =32.7%; attendants = 22.6%; and others = 9.1%); with >61% of the staff and 72.3% of the technicians working in urban areas. All laboratories were using rapid diagnostic tests for HIV testing. Over 74% of the laboratories were performing internal quality control and 51.4% were participating in external QA programmes. Regional and district laboratories had all key equipment and harmonization was maintained for Fluorescence-Activated Cell Sorting (FACS) machines. Most of the biochemical (58.0%) and haematological

  2. Simulation of Laboratory Tests of Steel Arch Support

    NASA Astrophysics Data System (ADS)

    Horyl, Petr; Šňupárek, Richard; Maršálek, Pavel; Pacześniowski, Krzysztof

    2017-03-01

    The total load-bearing capacity of steel arch yielding roadways supports is among their most important characteristics. These values can be obtained in two ways: experimental measurements in a specialized laboratory or computer modelling by FEM. Experimental measurements are significantly more expensive and more time-consuming. However, for proper tuning, a computer model is very valuable and can provide the necessary verification by experiment. In the cooperating workplaces of GIG Katowice, VSB-Technical University of Ostrava and the Institute of Geonics ASCR this verification was successful. The present article discusses the conditions and results of this verification for static problems. The output is a tuned computer model, which may be used for other calculations to obtain the load-bearing capacity of other types of steel arch supports. Changes in other parameters such as the material properties of steel, size torques, friction coefficient values etc. can be determined relatively quickly by changing the properties of the investigated steel arch supports.

  3. Laboratory Safety is Everyone's Responsibility.

    ERIC Educational Resources Information Center

    Brubaker, Inara M.; And Others

    1981-01-01

    Outlines a survey of laboratory practices and policies for employee protection from exposure to chemicals. Findings support the argument that academic, industrial, and other research laboratories are different from the manufacturing environment and should have a different toxic chemical policy and standards. (Author/SK)

  4. Implications of the introduction of laboratory demand management at primary care clinics in South Africa on laboratory expenditure

    PubMed Central

    Lekalakala, Ruth; Asmall, Shaidah; Cassim, Naseem

    2016-01-01

    Background Diagnostic health laboratory services are regarded as an integral part of the national health infrastructure across all countries. Clinical laboratory tests contribute substantially to health system goals of increasing quality of care and improving patient outcomes. Objectives This study aimed to analyse current laboratory expenditures at the primary healthcare (PHC) level in South Africa as processed by the National Health Laboratory Service and to determine the potential cost savings of introducing laboratory demand management. Methods A retrospective cross-sectional analysis of laboratory expenditures for the 2013/2014 financial year across 11 pilot National Health Insurance health districts was conducted. Laboratory expenditure tariff codes were cross-tabulated to the PHC essential laboratory tests list (ELL) to determine inappropriate testing. Data were analysed using a Microsoft Access database and Excel software. Results Approximately R35 million South African Rand (10%) of the estimated R339 million in expenditures was for tests that were not listed within the ELL. Approximately 47% of expenditure was for laboratory tests that were indicated in the algorithmic management of patients on antiretroviral treatment. The other main cost drivers for non-ELL testing included full blood count and urea, as well as electrolyte profiles usually requested to support management of patients on antiretroviral treatment. Conclusions Considerable annual savings of up to 10% in laboratory expenditure are possible at the PHC level by implementing laboratory demand management. In addition, to achieve these savings, a standardised PHC laboratory request form and some form of electronic gatekeeping system that must be supported by an educational component should be implemented. PMID:28879107

  5. Integrating Reservations and Queuing in Remote Laboratory Scheduling

    ERIC Educational Resources Information Center

    Lowe, D.

    2013-01-01

    Remote laboratories (RLs) have become increasingly seen as a useful tool in supporting flexible shared access to scarce laboratory resources. An important element in supporting shared access is coordinating the scheduling of the laboratory usage. Optimized scheduling can significantly decrease access waiting times and improve the utilization level…

  6. Physics Laboratory in UEC

    NASA Astrophysics Data System (ADS)

    Takada, Tohru; Nakamura, Jin; Suzuki, Masaru

    All the first-year students in the University of Electro-Communications (UEC) take "Basic Physics I", "Basic Physics II" and "Physics Laboratory" as required subjects; Basic Physics I and Basic Physics II are calculus-based physics of mechanics, wave and oscillation, thermal physics and electromagnetics. Physics Laboratory is designed mainly aiming at learning the skill of basic experimental technique and technical writing. Although 95% students have taken physics in the senior high school, they poorly understand it by connecting with experience, and it is difficult to learn Physics Laboratory in the university. For this reason, we introduced two ICT (Information and Communication Technology) systems of Physics Laboratory to support students'learning and staff's teaching. By using quantitative data obtained from the ICT systems, we can easily check understanding of physics contents in students, and can improve physics education.

  7. Measuring laboratory-based influenza surveillance capacity: development of the 'International Influenza Laboratory Capacity Review' Tool.

    PubMed

    Muir-Paulik, S A; Johnson, L E A; Kennedy, P; Aden, T; Villanueva, J; Reisdorf, E; Humes, R; Moen, A C

    2016-01-01

    The 2005 International Health Regulations (IHR 2005) emphasized the importance of laboratory capacity to detect emerging diseases including novel influenza viruses. To support IHR 2005 requirements and the need to enhance influenza laboratory surveillance capacity, the Association of Public Health Laboratories (APHL) and the Centers for Disease Control and Prevention (CDC) Influenza Division developed the International Influenza Laboratory Capacity Review (Tool). Data from 37 assessments were reviewed and analyzed to verify that the quantitative analysis results accurately depicted a laboratory's capacity and capabilities. Subject matter experts in influenza and laboratory practice used an iterative approach to develop the Tool incorporating feedback and lessons learnt through piloting and implementation. To systematically analyze assessment data, a quantitative framework for analysis was added to the Tool. The review indicated that changes in scores consistently reflected enhanced or decreased capacity. The review process also validated the utility of adding a quantitative analysis component to the assessments and the benefit of establishing a baseline from which to compare future assessments in a standardized way. Use of the Tool has provided APHL, CDC and each assessed laboratory with a standardized analysis of the laboratory's capacity. The information generated is used to improve laboratory systems for laboratory testing and enhance influenza surveillance globally. We describe the development of the Tool and lessons learnt. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Saving Water at Los Alamos National Laboratory

    ScienceCinema

    Erickson, Andy

    2018-01-16

    Los Alamos National Laboratory decreased its water usage by 26 percent in 2014, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. The Laboratory's goal during 2014 was to use only re-purposed water to support the mission at the Strategic Computing Complex. Using reclaimed water from the Sanitary Effluent Reclamation Facility, or SERF, substantially decreased water usage and supported the overall mission. SERF collects industrial wastewater and treats it for reuse. The reclamation facility contributed more than 27 million gallons of re-purposed water to the Laboratory's computing center, a secured supercomputing facility that supports the Laboratory’s national security mission and is one of the institution’s larger water users. In addition to the strategic water reuse program at SERF, the Laboratory reduced water use in 2014 by focusing conservation efforts on areas that use the most water, upgrading to water-conserving fixtures, and repairing leaks identified in a biennial survey.

  9. Materials Characterization Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    | NREL Materials Characterization Laboratory Materials Characterization Laboratory The Energy Systems Integration Facility's Materials Characterization Laboratory supports the physical and photo -electrochemical characterization of novel materials. Photo of an NREL researcher preparing samples for a gas

  10. SOIL AND FILL LABORATORY SUPPORT - 1992 RADIOLOGICAL ANALYSES - FLORIDA RADON RESEARCH PROGRAM

    EPA Science Inventory

    The report gives results of soil analysis laboratory work by the University of Florida in support of the Florida Radon Research Program (FRRP). Analyses were performed on soil and fill samples collected during 1992 by the FRRP Research House Program and the New House Evaluation P...

  11. On the Viability of Supporting Institutional Sharing of Remote Laboratory Facilities

    ERIC Educational Resources Information Center

    Lowe, David; Dang, Bridgette; Daniel, Keith; Murray, Stephen; Lindsay, Euan

    2015-01-01

    Laboratories are generally regarded as critical to engineering education, and yet educational institutions face significant challenges in developing and maintaining high-quality laboratory facilities. Remote laboratories are increasingly being explored as a partial solution to this challenge, with research showing that--for the right learning…

  12. Evaluation of quality indicators in a laboratory supporting tertiary cancer care facilities in India.

    PubMed

    Kumar, Savitha Anil; Jayanna, Prashanth; Prabhudesai, Shilpa; Kumar, Ajai

    2014-01-01

    To collect and tabulate errors and nonconformities in the preanalytical, analytical, and postanalytical process phases in a diagnostic clinical laboratory that supports a super-specialty cancer center in India, and identify areas of potential improvement in patient services. We collected data from our laboratory during a period of 24 months. Departments in the study included clinical biochemistry, hematology, clinical pathology, microbiology and serology, surgical pathology, and molecular pathology. We had initiated quality assessment based on international standards in our laboratory in 2010, with the aim of obtaining accreditation by national and international governing bodies. We followed the guidelines specified by International Organization for Standardization (ISO) 15189:2007 to identify noncompliant elements of our processes. Among a total of 144,030 specimens that our referral laboratory received during the 2-year period of our study, we uncovered an overall error rate for all 3 process phases of 1.23%; all of our error rates closely approximated the results from our peer institutions. Errors were most common in the preanalytical phase in both years of study; preanalytical- and postanalytical-phase errors constituted more than 90% of all errors. Further improvements are warranted in laboratory services and are contingent on adequate training and interdepartmental communication and cooperation. Copyright© by the American Society for Clinical Pathology (ASCP).

  13. Design and Implementation Issues for Modern Remote Laboratories

    ERIC Educational Resources Information Center

    Guimaraes, E. G.; Cardozo, E.; Moraes, D. H.; Coelho, P. R.

    2011-01-01

    The design and implementation of remote laboratories present different levels of complexity according to the nature of the equipments operated by the remote laboratory, the requirements imposed on the accessing computers, the network linking the user to the laboratory, and the type of experiments the laboratory supports. This paper addresses the…

  14. Laboratory Astrophysics in Support of the Study of Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    den Hartog, Betsy

    2017-04-01

    One of the outstanding questions in our understanding of the Universe is how the elements were made. Only a few of the lightest or primordial nuclei were made just after the Big Bang. Other light nuclei up to the iron (Fe)-group are made by fusion reactions in the interior of stars. Heavier nuclei are made primarily via neutron-capture events which are categorized as either slow or rapid, the s-process or r-process, respectively. Although s-process neutron-capture is fairly well understood, the r-process, which occurs in neutron dense (explosive) environments, remains more elusive. In recent years, progress has been made in the understanding of r-process nucleosynthesis through the study of elemental abundances in metal-poor stars. These stars, which are among the oldest objects in our Galaxy, contain a fossil record of the elemental mix of the surrounding interstellar medium when they formed. The improvement of both the accuracy and precision of elemental abundances in metal-poor stars has required a long-term effort to improve the necessary laboratory data - first for the rare earth elements and more recently for the Fe-group. In this talk I will describe our laboratory effort measuring atomic transition probabilities, which are determined from a combination of radiative lifetimes and emission branching fractions. I will then show some examples of the application of our laboratory data to the determination of metal-poor star elemental abundances and discuss insights that can be gleaned from these improved data. Work in collaboration with (and supported by) Jim Lawler (NSF Grant AST-1516182, NASA Grant NNX16AE96G), Chris Sneden (NSF Grant AST-1211585) and John Cowan (NSF Grant PHY-1430152 (JINA Center for the Evolution of the Elements)), among others.

  15. Modernisation of the intermediate physics laboratory

    NASA Astrophysics Data System (ADS)

    Kontro, Inkeri; Heino, Olga; Hendolin, Ilkka; Galambosi, Szabolcs

    2018-03-01

    The intermediate laboratory courses at the Department of Physics, University of Helsinki, were reformed using desired learning outcomes as the basis for design. The reformed laboratory courses consist of weekly workshops and small-group laboratory sessions. Many of the laboratory exercises are open-ended and have several possible ways of execution. They were designed around affordable devices, to allow for the purchase of multiple sets of laboratory equipment. This allowed students to work on the same problems simultaneously. Thus, it was possible to set learning goals which build on each other. Workshop sessions supported the course by letting the students solve problems related to conceptual and technical aspects of each laboratory exercise. The laboratory exercises progressed biweekly to allow for iterative problem solving. Students reached the learning goals well and the reform improved student experiences. Neither positive or negative changes in expert-like attitudes towards experimental physics (measured by E-CLASS questionnaire) were observed.

  16. Systems engineering and integration: Advanced avionics laboratories

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In order to develop the new generation of avionics which will be necessary for upcoming programs such as the Lunar/Mars Initiative, Advanced Launch System, and the National Aerospace Plane, new Advanced Avionics Laboratories are required. To minimize costs and maximize benefits, these laboratories should be capable of supporting multiple avionics development efforts at a single location, and should be of a common design to support and encourage data sharing. Recent technological advances provide the capability of letting the designer or analyst perform simulations and testing in an environment similar to his engineering environment and these features should be incorporated into the new laboratories. Existing and emerging hardware and software standards must be incorporated wherever possible to provide additional cost savings and compatibility. Special care must be taken to design the laboratories such that real-time hardware-in-the-loop performance is not sacrificed in the pursuit of these goals. A special program-independent funding source should be identified for the development of Advanced Avionics Laboratories as resources supporting a wide range of upcoming NASA programs.

  17. Commercialization of a DOE Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephenson, Barry A.

    2008-01-15

    On April 1, 1998, Materials and Chemistry Laboratory, Inc. (MCLinc) began business as an employee-owned, commercial, applied research laboratory offering services to both government and commercial clients. The laboratory had previously been a support laboratory to DoE's gaseous diffusion plant in Oak Ridge (K-25). When uranium enrichment was halted at the site, the laboratory was expanded to as an environmental demonstration center and served from 1992 until 1997 as a DOE Environmental User Facility. In 1997, after the laboratory was declared surplus, it was made available to the employee group who operated the laboratory for DOE as a government-owned, contractor-operatedmore » facility. This paper describes briefly the process of establishing the business. Attributes that contributed to the success of MCLinc are described. Some attention is given to lessons learned and to changes that could facilitate future attempts to make similar transitions. Lessons learnt: as with any business venture, operation over time has revealed that some actions taken by the laboratory founders have contributed to its successful operation while others were not so successful. Observations are offered in hopes that lessons learned may suggest actions that will facilitate future attempts to make similar transitions. First, the decision to vest significant ownership of the business in the core group of professionals operating the business is key to its success. Employee-owners of the laboratory have consistently provided a high level of service to its customers while conducting business in a cost-efficient manner. Secondly, an early decision to provide business support services in-house rather than purchasing them from support contractors on site have proven cost-effective. Laboratory employees do multiple tasks and perform overhead tasks in addition to their chargeable technical responsibilities. Thirdly, assessment of technical capabilities in view of market needs and a decision to

  18. Strengths of the Northwell Health Laboratory Service Line

    PubMed Central

    Balfour, Erika; Stallone, Robert; Castagnaro, Joseph; Poczter, Hannah; Schron, Deborah; Martone, James; Breining, Dwayne; Simpkins, Henry; Neglia, Tom; Kalish, Paul

    2016-01-01

    From 2009 to 2015, the laboratories of the 19-hospital North Shore-LIJ Health System experienced 5 threatened interruptions in service and supported 2 regional health-care providers with threatened interruptions in their laboratory service. We report our strategies to maintain laboratory performance during these events, drawing upon the strengths of our integrated laboratory service line. Established in 2009, the laboratory service line has unified medical and administrative leadership and system-wide divisional structure, quality management, and standardization of operations and procedures. Among many benefits, this governance structure enabled the laboratories to respond to a series of unexpected events. Specifically, at our various service sites, the laboratories dealt with pandemic (2009), 2 floods (2010, 2012), 2 fires (2010, 2015), and laboratory floor subsidence (2013). We were also asked to provide support for a regional physician network facing abrupt loss of testing services from closure of another regional clinical laboratory (2010) and to intervene for a non-health system hospital threatened with closure owing to noncompliance of laboratory operations (2012). In all but a single instance, patient care was served without interruption in service. In the last instance, fire interrupted laboratory services for 30 minutes. We conclude that in a large integrated health system, threats to continuous laboratory operations are not infrequent when measured on an annual basis. While most threats are from external physical circumstances, some emanate from unexpected administrative events. A strong laboratory governance mechanism that includes unified medical and administrative leadership across the entirety of the laboratory service line enables successful responses to these threats. PMID:28725768

  19. Exploration Laboratory Analysis - ARC

    NASA Technical Reports Server (NTRS)

    Krihak, Michael K.; Fung, Paul P.

    2012-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk, Risk of Inability to Adequately Treat an Ill or Injured Crew Member, and ExMC Gap 4.05: Lack of minimally invasive in-flight laboratory capabilities with limited consumables required for diagnosing identified Exploration Medical Conditions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability in future exploration missions. Mission architecture poses constraints on equipment and procedures that will be available to treat evidence-based medical conditions according to the Space Medicine Exploration Medical Conditions List (SMEMCL). The SMEMCL provided diagnosis and treatment for the evidence-based medical conditions and hence, a basis for developing ELA functional requirements.

  20. Role of the Microcomputer-Based Laboratory Display in Supporting the Construction of New Understandings in Thermal Physics

    ERIC Educational Resources Information Center

    Russell, David W.; Lucas, Keith B.; McRobbie, Campbell J.

    2004-01-01

    Teachers' failure to use the microcomputer-based laboratory (MBL) more widely may be a result of not recognizing its capacity to transform laboratory activities. This research aimed to increase understanding of how MBL activities designed to be consistent with a constructivist theory of learning support or constrain student construction of…

  1. The role of total laboratory automation in a consolidated laboratory network.

    PubMed

    Seaberg, R S; Stallone, R O; Statland, B E

    2000-05-01

    In an effort to reduce overall laboratory costs and improve overall laboratory efficiencies at all of its network hospitals, the North Shore-Long Island Health System recently established a Consolidated Laboratory Network with a Core Laboratory at its center. We established and implemented a centralized Core Laboratory designed around the Roche/Hitachi CLAS Total Laboratory Automation system to perform the general and esoteric laboratory testing throughout the system in a timely and cost-effective fashion. All remaining STAT testing will be performed within the Rapid Response Laboratories (RRLs) at each of the system's hospitals. Results for this laboratory consolidation and implementation effort demonstrated a decrease in labor costs and improved turnaround time (TAT) at the core laboratory. Anticipated system savings are approximately $2.7 million. TATs averaged 1.3 h within the Core Laboratory and less than 30 min in the RRLs. When properly implemented, automation systems can reduce overall laboratory expenses, enhance patient services, and address the overall concerns facing the laboratory today: job satisfaction, decreased length of stay, and safety. The financial savings realized are primarily a result of labor reductions.

  2. Effectiveness of Podcasts Delivered on Mobile Devices as a Support for Student Learning During General Chemistry Laboratories

    NASA Astrophysics Data System (ADS)

    Powell, Cynthia B.; Mason, Diana S.

    2013-04-01

    Chemistry instructors in teaching laboratories provide expert modeling of techniques and cognitive processes and provide assistance to enrolled students that may be described as scaffolding interaction. Such student support is particularly essential in laboratories taught with an inquiry-based curriculum. In a teaching laboratory with a high instructor-to-student ratio, mobile devices can provide a platform for expert modeling and scaffolding during the laboratory sessions. This research study provides data collected on the effectiveness of podcasts delivered as needed in a first-semester general chemistry laboratory setting. Podcasts with audio and visual tracks covering essential laboratory techniques and central concepts that aid in experimental design or data processing were prepared and made available for students to access on an as-needed basis on iPhones® or iPod touches®. Research focused in three areas: the extent of podcast usage, the numbers and types of interactions between instructors and student laboratory teams, and student performance on graded assignments. Data analysis indicates that on average the podcast treatment laboratory teams accessed a podcast 2.86 times during the laboratory period during each week that podcasts were available. Comparison of interaction data for the lecture treatment laboratory teams and podcast treatment laboratory teams reveals that scaffolding interactions with instructors were statistically significantly fewer for teams that had podcast access rather than a pre-laboratory lecture. The implication of the results is that student laboratory teams were able to gather laboratory information more effectively when it was presented in an on-demand podcast format than in a pre-laboratory lecture format. Finally, statistical analysis of data on student performance on graded assignments indicates no significant differences between outcome measures for the treatment groups when compared as cohorts. The only statistically

  3. Laboratory Directed Research and Development Annual Report FY 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Kelly O.

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate upmore » to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.« less

  4. Laboratory Directed Research and Development Annual Report FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Kelly O.

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate upmore » to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.« less

  5. NATIONAL ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM (NELAP) SUPPORT

    EPA Science Inventory

    The nation has long suffered from the inefficiencies and inconsistencies of the current multiple environmental laboratory accreditation programs. In the 1970's, EPA set minimum standards for a drinking water certification program. The drinking water program was adopted by the s...

  6. National Vehicle and Fuel Emissions Laboratory (NVFEL)

    EPA Pesticide Factsheets

    NVFEL is the primary EPA research laboratory used for fuel and emissions testing. The laboratory supports emission standards for motor vehicles, engines, and fuels, as well as the development of automotive technology.

  7. Developing laboratory networks: a practical guide and application.

    PubMed

    Kirk, Carol J; Shult, Peter A

    2010-01-01

    The role of the public health laboratory (PHL) in support of public health response has expanded beyond testing to include a number of other core functions, such as emergency response, training and outreach, communications, laboratory-based surveillance, and laboratory data management. These functions can only be accomplished by a network that includes public health and other agency laboratories and clinical laboratories. It is a primary responsibility of the PHL to develop and maintain such a network. In this article, we present practical recommendations-based on 17 years of network development experience-for the development of statewide laboratory networks. These recommendations, and examples of current laboratory networks, are provided to facilitate laboratory network development in other states. The development of laboratory networks will enhance each state's public health system and is critical to the development of a robust national Laboratory Response Network.

  8. Thermal Storage Process and Components Laboratory | Energy Systems

    Science.gov Websites

    Integration Facility | NREL Process and Components Laboratory Thermal Storage Process and Components Laboratory The Energy Systems Integration Facility's Thermal Systems Process and Components Laboratory supports research and development, testing, and evaluation of new thermal energy storage systems

  9. Saving Water at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Andy

    Los Alamos National Laboratory decreased its water usage by 26 percent in 2014, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. The Laboratory's goal during 2014 was to use only re-purposed water to support the mission at the Strategic Computing Complex. Using reclaimed water from the Sanitary Effluent Reclamation Facility, or SERF, substantially decreased water usage and supported the overall mission. SERF collects industrial wastewater and treats it for reuse. The reclamation facility contributed more than 27 million gallons of re-purposed water to the Laboratory's computing center, a secured supercomputing facility thatmore » supports the Laboratory’s national security mission and is one of the institution’s larger water users. In addition to the strategic water reuse program at SERF, the Laboratory reduced water use in 2014 by focusing conservation efforts on areas that use the most water, upgrading to water-conserving fixtures, and repairing leaks identified in a biennial survey.« less

  10. Laboratory Animal Facilities. Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Jonas, Albert M.

    1965-01-01

    Design of laboratory animal facilities must be functional. Accordingly, the designer should be aware of the complex nature of animal research and specifically the type of animal research which will be conducted in a new facility. The building of animal-care facilities in research institutions requires special knowledge in laboratory animal…

  11. Students Using a Novel Web-Based Laboratory Class Support System: A Case Study in Food Chemistry Education

    ERIC Educational Resources Information Center

    van der Kolk, Koos; Beldman, Gerrit; Hartog, Rob; Gruppen, Harry

    2012-01-01

    The design, usage, and evaluation of a Web-based laboratory manual (WebLM) are described. The main aim of the WebLM is to support students while working in the laboratory by providing them with just-in-time information. Design guidelines for this electronic manual were derived from literature on cognitive load and user interface design. The WebLM…

  12. Hawaiian Electric Advanced Inverter Grid Support Function Laboratory Validation and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin; Nagarajan, Adarsh; Prabakar, Kumar

    The objective for this test plan was to better understand how to utilize the performance capabilities of advanced inverter functions to allow the interconnection of distributed energy resource (DER) systems to support the new Customer Self-Supply, Customer Grid-Supply, and other future DER programs. The purpose of this project was: 1) to characterize how the tested grid supportive inverters performed the functions of interest, 2) to evaluate the grid supportive inverters in an environment that emulates the dynamics of O'ahu's electrical distribution system, and 3) to gain insight into the benefits of the grid support functions on selected O'ahu island distributionmore » feeders. These goals were achieved through laboratory testing of photovoltaic inverters, including power hardware-in-the-loop testing.« less

  13. Emotional intelligence in medical laboratory science

    NASA Astrophysics Data System (ADS)

    Price, Travis

    The purpose of this study was to explore the role of emotional intelligence (EI) in medical laboratory science, as perceived by laboratory administrators. To collect and evaluate these perceptions, a survey was developed and distributed to over 1,400 medical laboratory administrators throughout the U.S. during January and February of 2013. In addition to demographic-based questions, the survey contained a list of 16 items, three skills traditionally considered important for successful work in the medical laboratory as well as 13 EI-related items. Laboratory administrators were asked to rate each item for its importance for job performance, their satisfaction with the item's demonstration among currently working medical laboratory scientists (MLS) and the amount of responsibility college-based medical laboratory science programs should assume for the development of each skill or attribute. Participants were also asked about EI training in their laboratories and were given the opportunity to express any thoughts or opinions about EI as it related to medical laboratory science. This study revealed that each EI item, as well as each of the three other items, was considered to be very or extremely important for successful job performance. Administrators conveyed that they were satisfied overall, but indicated room for improvement in all areas, especially those related to EI. Those surveyed emphasized that medical laboratory science programs should continue to carry the bulk of the responsibility for the development of technical skills and theoretical knowledge and expressed support for increased attention to EI concepts at the individual, laboratory, and program levels.

  14. Adding Audio Supported Smartboard Lectures to an Introductory Astronomy Online Laboratory

    NASA Astrophysics Data System (ADS)

    Lahaise, U. G. L.

    2003-12-01

    SMART Board(TM) and RealProducer(R) Plus technologies were used to develop a series of narrated pre-lab introductory online lectures. Smartboard slides were created by capturing images from internet pages and power point slides, then annotated and saved as web pages using smartboard technology. Short audio files were recorded using the RealProducer Plus software which were then linked to individual slides. WebCT was used to deliver the online laboratory. Students in an Introductory Astronomy of the Solar System Online laboratory used the lectures to prepare for laboratory exercises. The narrated pre-lab lectures were added to six out of eight suitable laboratory exercises. A survey was given to the students to research their online laboratory experience, in general, and the impact of the narrated smartboard lectures on their learning success, specifically. Data were collected for two accelerated sessions. Results show that students find the online laboratory equally hard or harder than a separate online lecture. The accelerated format created great time pressure which negatively affected their study habits. About half of the students used the narrated pre-lab lectures consistently. Preliminary findings show that lab scores in the accelerated sessions were brought up to the level of full semester courses.

  15. The total laboratory solution: a new laboratory E-business model based on a vertical laboratory meta-network.

    PubMed

    Friedman, B A

    2001-08-01

    Major forces are now reshaping all businesses on a global basis, including the healthcare and clinical laboratory industries. One of the major forces at work is information technology (IT), which now provides the opportunity to create a new economic and business model for the clinical laboratory industry based on the creation of an integrated vertical meta-network, referred to here as the "total laboratory solution" (TLS). Participants at the most basic level of such a network would include a hospital-based laboratory, a reference laboratory, a laboratory information system/application service provider/laboratory portal vendor, an in vitro diagnostic manufacturer, and a pharmaceutical/biotechnology manufacturer. It is suggested that each of these participants would add value to the network primarily in its area of core competency. Subvariants of such a network have evolved over recent years, but a TLS comprising all or most of these participants does not exist at this time. Although the TLS, enabled by IT and closely akin to the various e-businesses that are now taking shape, offers many advantages from a theoretical perspective over the current laboratory business model, its success will depend largely on (a) market forces, (b) how the collaborative networks are organized and managed, and (c) whether the network can offer healthcare organizations higher quality testing services at lower cost. If the concept is successful, new demands will be placed on hospital-based laboratory professionals to shift the range of professional services that they offer toward clinical consulting, integration of laboratory information from multiple sources, and laboratory information management. These information management and integration tasks can only increase in complexity in the future as new genomic and proteomics testing modalities are developed and come on-line in clinical laboratories.

  16. Implementation of a Parameterization Framework for Cybersecurity Laboratories

    DTIC Science & Technology

    2017-03-01

    designer of laboratory exercises with tools to parameterize labs for each student , and automate some aspects of the grading of laboratory exercises. A...is to provide the designer of laboratory exercises with tools to parameterize labs for each student , and automate some aspects of the grading of...support might assist the designer of laboratory exercises to achieve the following? 1. Verify that students performed lab exercises, with some

  17. Contracting with the Frederick National Laboratory | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Our Acquisitions Directorate supports the national laboratory with high quality products and services to achieve its national mission. In addition to engaging large subcontractors, we are also committed to working with small businesses, minority- and

  18. Errors in clinical laboratories or errors in laboratory medicine?

    PubMed

    Plebani, Mario

    2006-01-01

    Laboratory testing is a highly complex process and, although laboratory services are relatively safe, they are not as safe as they could or should be. Clinical laboratories have long focused their attention on quality control methods and quality assessment programs dealing with analytical aspects of testing. However, a growing body of evidence accumulated in recent decades demonstrates that quality in clinical laboratories cannot be assured by merely focusing on purely analytical aspects. The more recent surveys on errors in laboratory medicine conclude that in the delivery of laboratory testing, mistakes occur more frequently before (pre-analytical) and after (post-analytical) the test has been performed. Most errors are due to pre-analytical factors (46-68.2% of total errors), while a high error rate (18.5-47% of total errors) has also been found in the post-analytical phase. Errors due to analytical problems have been significantly reduced over time, but there is evidence that, particularly for immunoassays, interference may have a serious impact on patients. A description of the most frequent and risky pre-, intra- and post-analytical errors and advice on practical steps for measuring and reducing the risk of errors is therefore given in the present paper. Many mistakes in the Total Testing Process are called "laboratory errors", although these may be due to poor communication, action taken by others involved in the testing process (e.g., physicians, nurses and phlebotomists), or poorly designed processes, all of which are beyond the laboratory's control. Likewise, there is evidence that laboratory information is only partially utilized. A recent document from the International Organization for Standardization (ISO) recommends a new, broader definition of the term "laboratory error" and a classification of errors according to different criteria. In a modern approach to total quality, centered on patients' needs and satisfaction, the risk of errors and mistakes

  19. DB4US: A Decision Support System for Laboratory Information Management

    PubMed Central

    Hortas, Maria Luisa; Baena-García, Manuel; Lana-Linati, Jorge; González, Carlos; Redondo, Maximino; Morales-Bueno, Rafael

    2012-01-01

    Background Until recently, laboratory automation has focused primarily on improving hardware. Future advances are concentrated on intelligent software since laboratories performing clinical diagnostic testing require improved information systems to address their data processing needs. In this paper, we propose DB4US, an application that automates information related to laboratory quality indicators information. Currently, there is a lack of ready-to-use management quality measures. This application addresses this deficiency through the extraction, consolidation, statistical analysis, and visualization of data related to the use of demographics, reagents, and turn-around times. The design and implementation issues, as well as the technologies used for the implementation of this system, are discussed in this paper. Objective To develop a general methodology that integrates the computation of ready-to-use management quality measures and a dashboard to easily analyze the overall performance of a laboratory, as well as automatically detect anomalies or errors. The novelty of our approach lies in the application of integrated web-based dashboards as an information management system in hospital laboratories. Methods We propose a new methodology for laboratory information management based on the extraction, consolidation, statistical analysis, and visualization of data related to demographics, reagents, and turn-around times, offering a dashboard-like user web interface to the laboratory manager. The methodology comprises a unified data warehouse that stores and consolidates multidimensional data from different data sources. The methodology is illustrated through the implementation and validation of DB4US, a novel web application based on this methodology that constructs an interface to obtain ready-to-use indicators, and offers the possibility to drill down from high-level metrics to more detailed summaries. The offered indicators are calculated beforehand so that they

  20. DB4US: A Decision Support System for Laboratory Information Management.

    PubMed

    Carmona-Cejudo, José M; Hortas, Maria Luisa; Baena-García, Manuel; Lana-Linati, Jorge; González, Carlos; Redondo, Maximino; Morales-Bueno, Rafael

    2012-11-14

    Until recently, laboratory automation has focused primarily on improving hardware. Future advances are concentrated on intelligent software since laboratories performing clinical diagnostic testing require improved information systems to address their data processing needs. In this paper, we propose DB4US, an application that automates information related to laboratory quality indicators information. Currently, there is a lack of ready-to-use management quality measures. This application addresses this deficiency through the extraction, consolidation, statistical analysis, and visualization of data related to the use of demographics, reagents, and turn-around times. The design and implementation issues, as well as the technologies used for the implementation of this system, are discussed in this paper. To develop a general methodology that integrates the computation of ready-to-use management quality measures and a dashboard to easily analyze the overall performance of a laboratory, as well as automatically detect anomalies or errors. The novelty of our approach lies in the application of integrated web-based dashboards as an information management system in hospital laboratories. We propose a new methodology for laboratory information management based on the extraction, consolidation, statistical analysis, and visualization of data related to demographics, reagents, and turn-around times, offering a dashboard-like user web interface to the laboratory manager. The methodology comprises a unified data warehouse that stores and consolidates multidimensional data from different data sources. The methodology is illustrated through the implementation and validation of DB4US, a novel web application based on this methodology that constructs an interface to obtain ready-to-use indicators, and offers the possibility to drill down from high-level metrics to more detailed summaries. The offered indicators are calculated beforehand so that they are ready to use when the user

  1. Laboratory Information Systems.

    PubMed

    Henricks, Walter H

    2015-06-01

    Laboratory information systems (LISs) supply mission-critical capabilities for the vast array of information-processing needs of modern laboratories. LIS architectures include mainframe, client-server, and thin client configurations. The LIS database software manages a laboratory's data. LIS dictionaries are database tables that a laboratory uses to tailor an LIS to the unique needs of that laboratory. Anatomic pathology LIS (APLIS) functions play key roles throughout the pathology workflow, and laboratories rely on LIS management reports to monitor operations. This article describes the structure and functions of APLISs, with emphasis on their roles in laboratory operations and their relevance to pathologists. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. MIT Lincoln Laboratory Annual Report 2007: Technology in Support of National Security

    DTIC Science & Technology

    2007-01-01

    technical innovation and scientific discoveries. MISSION: TechnoLogy In SupporT of naTIonaL SecurITy 2007 Dr. Claude R. Canizares Vice president for...problems. The Lincoln Laboratory New Technology Initiatives Program is one of several internal technology innovation mechanisms. Technologies emerging...externships. LIFT2, an innovative professional learning program for science, technology , and math teachers, serves Massachusetts metro south/west region

  3. Secondary standards laboratories for ionizing radiation calibrations: The national laboratory interests

    NASA Astrophysics Data System (ADS)

    Roberson, P. I.; Campbell, G. W.

    1984-11-01

    The national laboratories are probable candidates to serve as secondary standards laboratories for the federal sector. Representatives of the major Department of Energy laboratories were polled concerning attitudes toward a secondary laboratory structure. Generally, the need for secondary laboratories was recognized and the development of such a program was encouraged. The secondary laboratories should be reviewed and inspected by the National Bureau of Standards. They should offer all of the essential, and preferably additional, calibration services in the field of radiological health protection. The selection of secondary laboratories should be based on economic and geographic criteria and/or be voluntary.

  4. Roles of laboratories and laboratory systems in effective tuberculosis programmes.

    PubMed

    Ridderhof, John C; van Deun, Armand; Kam, Kai Man; Narayanan, P R; Aziz, Mohamed Abdul

    2007-05-01

    Laboratories and laboratory networks are a fundamental component of tuberculosis (TB) control, providing testing for diagnosis, surveillance and treatment monitoring at every level of the health-care system. New initiatives and resources to strengthen laboratory capacity and implement rapid and new diagnostic tests for TB will require recognition that laboratories are systems that require quality standards, appropriate human resources, and attention to safety in addition to supplies and equipment. To prepare the laboratory networks for new diagnostics and expanded capacity, we need to focus efforts on strengthening quality management systems (QMS) through additional resources for external quality assessment programmes for microscopy, culture, drug susceptibility testing (DST) and molecular diagnostics. QMS should also promote development of accreditation programmes to ensure adherence to standards to improve both the quality and credibility of the laboratory system within TB programmes. Corresponding attention must be given to addressing human resources at every level of the laboratory, with special consideration being given to new programmes for laboratory management and leadership skills. Strengthening laboratory networks will also involve setting up partnerships between TB programmes and those seeking to control other diseases in order to pool resources and to promote advocacy for quality standards, to develop strategies to integrate laboratories functions and to extend control programme activities to the private sector. Improving the laboratory system will assure that increased resources, in the form of supplies, equipment and facilities, will be invested in networks that are capable of providing effective testing to meet the goals of the Global Plan to Stop TB.

  5. Frederick National Laboratory's Contribution to ATOM | Frederick National Laboratory for Cancer Research

    Cancer.gov

    As a founding member organization of ATOM, the Frederick National Laboratory will contribute scientific expertise in precision oncology, computational chemistry and cancer biology, as well as support for open sharing of data sets and predictive model

  6. Laboratory directed research and development program, FY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides themore » resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.« less

  7. Laboratory Spectroscopy of Large Carbon Molecules and Ions in Support of Space Missions. A New Generation of Laboratory & Space Studies

    NASA Technical Reports Server (NTRS)

    Salama, Farid; Tan, Xiaofeng; Cami, Jan; Biennier, Ludovic; Remy, Jerome

    2006-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. A long-standing and major challenge for laboratory astrophysics has been to measure the spectra of large carbon molecules in laboratory environments that mimic (in a realistic way) the physical conditions that are associated with the interstellar emission and absorption regions [1]. This objective has been identified as one of the critical Laboratory Astrophysics objectives to optimize the data return from space missions [2]. An extensive laboratory program has been developed to assess the properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space. We present and discuss the gas-phase electronic absorption spectra of neutral and ionized PAHs measured in the UV-Visible-NIR range in astrophysically relevant environments and discuss the implications for astrophysics [1]. The harsh physical conditions of the interstellar medium characterized by a low temperature, an absence of collisions and strong VUV radiation fields - have been simulated in the laboratory by associating a pulsed cavity ringdown spectrometer (CRDS) with a supersonic slit jet seeded with PAHs and an ionizing, penning-type, electronic discharge. We have measured for the {\\it first time} the spectra of a series of neutral [3,4] and ionized [5,6] interstellar PAHs analogs in the laboratory. An effort has also been attempted to quantify the mechanisms of ion and carbon nanoparticles production in the free jet expansion and to model our simulation of the diffuse interstellar medium in the laboratory [7]. These experiments provide {\\it unique} information on the spectra of free, large carbon-containing molecules and ions in the gas phase. We are now, for the first time, in the position to directly compare laboratory spectral data on free, cold, PAH ions and carbon nano-sized carbon particles with astronomical observations in the

  8. The Johns Hopkins Hunterian Laboratory Philosophy: Mentoring Students in a Scientific Neurosurgical Research Laboratory.

    PubMed

    Tyler, Betty M; Liu, Ann; Sankey, Eric W; Mangraviti, Antonella; Barone, Michael A; Brem, Henry

    2016-06-01

    After over 50 years of scientific contribution under the leadership of Harvey Cushing and later Walter Dandy, the Johns Hopkins Hunterian Laboratory entered a period of dormancy between the 1960s and early 1980s. In 1984, Henry Brem reinstituted the Hunterian Neurosurgical Laboratory, with a new focus on localized delivery of therapies for brain tumors, leading to several discoveries such as new antiangiogenic agents and Gliadel chemotherapy wafers for the treatment of malignant gliomas. Since that time, it has been the training ground for 310 trainees who have dedicated their time to scientific exploration in the lab, resulting in numerous discoveries in the area of neurosurgical research. The Hunterian Neurosurgical Laboratory has been a unique example of successful mentoring in a translational research environment. The laboratory's philosophy emphasizes mentorship, independence, self-directed learning, creativity, and people-centered collaboration, while maintaining productivity with a focus on improving clinical outcomes. This focus has been served by the diverse backgrounds of its trainees, both in regard to educational status as well as culturally. Through this philosophy and strong legacy of scientific contribution, the Hunterian Laboratory has maintained a positive and productive research environment that supports highly motivated students and trainees. In this article, the authors discuss the laboratory's training philosophy, linked to the principles of adult learning (andragogy), as well as the successes and the limitations of including a wide educational range of students in a neurosurgical translational laboratory and the phenomenon of combining clinical expertise with rigorous scientific training.

  9. Optical Communications Telescope Laboratory (OCTL) Support of Space to Ground Link Demonstrations

    NASA Technical Reports Server (NTRS)

    Biswas, Abhijit; Kovalik, Joseph M.; Wright, Malcolm W.; Roberts, William T.

    2014-01-01

    The NASA/JPL Optical Communication Telescope Laboratory (OCTL) was built for dedicated research and development toward supporting free-space laser communications from space. Recently, the OCTL telescope was used to support the Lunar Laser Communication Demonstration (LLCD) from the Lunar Atmospheric Dust Environment Explorer (LADEE) spacecraft and is planned for use with the upcoming Optical Payload for Lasercomm Science (OPALS) demonstration from the International Space Station (ISS). The use of OCTL to support these demonstrations is discussed in this report. The discussion will feed forward to ongoing and future space-to-ground laser communications as it advances toward becoming an operational capability.

  10. Fuel Cell Development and Test Laboratory | Energy Systems Integration

    Science.gov Websites

    Facility | NREL Fuel Cell Development and Test Laboratory Fuel Cell Development and Test Laboratory The Energy System Integration Facility's Fuel Cell Development and Test Laboratory supports fuel a fuel cell test in the Fuel Cell Development and Test Laboratory. Capability Hubs The Fuel Cell

  11. A tracking system for laboratory mice to support medical researchers in behavioral analysis.

    PubMed

    Macrì, S; Mainetti, L; Patrono, L; Pieretti, S; Secco, A; Sergi, I

    2015-08-01

    The behavioral analysis of laboratory mice plays a key role in several medical and scientific research areas, such as biology, toxicology, pharmacology, and so on. Important information on mice behavior and their reaction to a particular stimulus is deduced from a careful analysis of their movements. Moreover, behavioral analysis of genetically modified mice allows obtaining important information about particular genes, phenotypes or drug effects. The techniques commonly adopted to support such analysis have many limitations, which make the related systems particularly ineffective. Currently, the engineering community is working to explore innovative identification and sensing technologies to develop new tracking systems able to guarantee benefits to animals' behavior analysis. This work presents a tracking solution based on passive Radio Frequency Identification Technology (RFID) in Ultra High Frequency (UHF) band. Much emphasis is given to the software component of the system, based on a Web-oriented solution, able to process the raw tracking data coming from a hardware system, and offer 2D and 3D tracking information as well as reports and dashboards about mice behavior. The system has been widely tested using laboratory mice and compared with an automated video-tracking software (i.e., EthoVision). The obtained results have demonstrated the effectiveness and reliability of the proposed solution, which is able to correctly detect the events occurring in the animals' cage, and to offer a complete and user-friendly tool to support researchers in behavioral analysis of laboratory mice.

  12. Laboratory Design for Microbiological Safety

    PubMed Central

    Phillips, G. Briggs; Runkle, Robert S.

    1967-01-01

    Of the large amount of funds spent each year in this country on construction and remodeling of biomedical research facilities, a significant portion is directed to laboratories handling infectious microorganisms. This paper is intended for the scientific administrators, architects, and engineers concerned with the design of new microbiological facilities. It develops and explains the concept of primary and secondary barriers for the containment of microorganisms. The basic objectives of a microbiological research laboratory, (i) protection of the experimenter and staff, (ii) protection of the surrounding community, and (iii) maintenance of experimental validity, are defined. In the design of a new infectious-disease research laboratory, early identification should be made of the five functional zones of the facility and their relation to each other. The following five zones and design criteria applicable to each are discussed: clean and transition, research area, animal holding and research area, laboratory support, engineering support. The magnitude of equipment and design criteria which are necessary to integrate these five zones into an efficient and safe facility are delineated. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 PMID:4961771

  13. Establishment of National Laboratory Standards in Public and Private Hospital Laboratories

    PubMed Central

    ANJARANI, Soghra; SAFADEL, Nooshafarin; DAHIM, Parisa; AMINI, Rana; MAHDAVI, Saeed; MIRAB SAMIEE, Siamak

    2013-01-01

    In September 2007 national standard manual was finalized and officially announced as the minimal quality requirements for all medical laboratories in the country. Apart from auditing laboratories, Reference Health Laboratory has performed benchmarking auditing of medical laboratory network (surveys) in provinces. 12th benchmarks performed in Tehran and Alborz provinces, Iran in 2010 in three stages. We tried to compare different processes, their quality and accordance with national standard measures between public and private hospital laboratories. The assessment tool was a standardized checklist consists of 164 questions. Analyzing process show although in most cases implementing the standard requirements are more prominent in private laboratories, there is still a long way to complete fulfillment of requirements, and it takes a lot of effort. Differences between laboratories in public and private sectors especially in laboratory personnel and management process are significant. Probably lack of motivation, plays a key role in obtaining less desirable results in laboratories in public sectors. PMID:23514840

  14. Teaching Engineering Design in a Laboratory Setting

    ERIC Educational Resources Information Center

    Hummon, Norman P.; Bullen, A. G. R.

    1974-01-01

    Discusses the establishment of an environmental systems laboratory at the University of Pittsburgh with the support of the Sloan Foundation. Indicates that the "real world" can be brought into the laboratory by simulating on computers, software systems, and data bases. (CC)

  15. Energy and Water Conservation Assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Stephanie R.; Koehler, Theresa M.; Boyd, Brian K.

    2014-05-31

    This report summarizes the results of an energy and water conservation assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory (PNNL). The assessment was performed in October 2013 by engineers from the PNNL Building Performance Team with the support of the dedicated RPL staff and several Facilities and Operations (F&O) department engineers. The assessment was completed for the Facilities and Operations (F&O) department at PNNL in support of the requirements within Section 432 of the Energy Independence and Security Act (EISA) of 2007.

  16. The Point-of-Care Laboratory in Clinical Microbiology

    PubMed Central

    Michel-Lepage, Audrey; Boyer, Sylvie; Raoult, Didier

    2016-01-01

    SUMMARY Point-of-care (POC) laboratories that deliver rapid diagnoses of infectious diseases were invented to balance the centralization of core laboratories. POC laboratories operate 24 h a day and 7 days a week to provide diagnoses within 2 h, largely based on immunochromatography and real-time PCR tests. In our experience, these tests are conveniently combined into syndrome-based kits that facilitate sampling, including self-sampling and test operations, as POC laboratories can be operated by trained operators who are not necessarily biologists. POC laboratories are a way of easily providing clinical microbiology testing for populations distant from laboratories in developing and developed countries and on ships. Modern Internet connections enable support from core laboratories. The cost-effectiveness of POC laboratories has been established for the rapid diagnosis of tuberculosis and sexually transmitted infections in both developed and developing countries. PMID:27029593

  17. Acoustical Testing Laboratory Developed to Support the Low-Noise Design of Microgravity Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.

    2001-01-01

    The NASA John H. Glenn Research Center at Lewis Field has designed and constructed an Acoustical Testing Laboratory to support the low-noise design of microgravity space flight hardware. This new laboratory will provide acoustic emissions testing and noise control services for a variety of customers, particularly for microgravity space flight hardware that must meet International Space Station limits on noise emissions. These limits have been imposed by the space station to support hearing conservation, speech communication, and safety goals as well as to prevent noise-induced vibrations that could impact microgravity research data. The Acoustical Testing Laboratory consists of a 23 by 27 by 20 ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive 34-in. fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These criteria, along with very low design background levels, will enable the acquisition of accurate and repeatable acoustical measurements on test articles, up to a full space station rack in size, that produce very little noise. Removable floor wedges will allow the test chamber to operate in either a hemi/anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations but, alternatively, may be used as a noise-control enclosure for test articles that require the operation of noise-generating test support equipment.

  18. The Language Laboratory.

    ERIC Educational Resources Information Center

    Hughes, John P.

    Concepts pertaining to the language laboratory are clarified for the layman unfamiliar with recent educational developments in foreign language instruction. These include discussion of: (1) language laboratory components and functions, (2) techniques used in the laboratory, (3) new linguistic methods, (4) laboratory exercises, (5) traditional…

  19. Roles of laboratories and laboratory systems in effective tuberculosis programmes

    PubMed Central

    van Deun, Armand; Kam, Kai Man; Narayanan, PR; Aziz, Mohamed Abdul

    2007-01-01

    Abstract Laboratories and laboratory networks are a fundamental component of tuberculosis (TB) control, providing testing for diagnosis, surveillance and treatment monitoring at every level of the health-care system. New initiatives and resources to strengthen laboratory capacity and implement rapid and new diagnostic tests for TB will require recognition that laboratories are systems that require quality standards, appropriate human resources, and attention to safety in addition to supplies and equipment. To prepare the laboratory networks for new diagnostics and expanded capacity, we need to focus efforts on strengthening quality management systems (QMS) through additional resources for external quality assessment programmes for microscopy, culture, drug susceptibility testing (DST) and molecular diagnostics. QMS should also promote development of accreditation programmes to ensure adherence to standards to improve both the quality and credibility of the laboratory system within TB programmes. Corresponding attention must be given to addressing human resources at every level of the laboratory, with special consideration being given to new programmes for laboratory management and leadership skills. Strengthening laboratory networks will also involve setting up partnerships between TB programmes and those seeking to control other diseases in order to pool resources and to promote advocacy for quality standards, to develop strategies to integrate laboratories’ functions and to extend control programme activities to the private sector. Improving the laboratory system will assure that increased resources, in the form of supplies, equipment and facilities, will be invested in networks that are capable of providing effective testing to meet the goals of the Global Plan to Stop TB. PMID:17639219

  20. The future of the national laboratories

    PubMed Central

    Cohen, Linda R.; Noll, Roger G.

    1996-01-01

    The end of the Cold War has called into question the activities of the national laboratories and, more generally, the level of support now given to federal intramural research in the United States. This paper seeks to analyze the potential role of the laboratories, with particular attention to the possibility, on the one hand, of integrating private technology development into the laboratory’s menu of activities and, on the other hand, of outsourcing traditional mission activities. We review the economic efficiency arguments for intramural research and the political conditions that are likely to constrain the activities of the laboratories, and analyze the early history of programs intended to promote new technology via cooperative agreements between the laboratories and private industry. Our analysis suggests that the laboratories are likely to shrink considerably in size, and that the federal government faces a significant problem in deciding how to organize a downsizing of the federal research establishment. PMID:8917479

  1. Assessment of readiness for clinical decision support to aid laboratory monitoring of immunosuppressive care at U.S. liver transplant centers.

    PubMed

    Jacobs, J; Weir, C; Evans, R S; Staes, C

    2014-01-01

    Following liver transplantation, patients require lifelong immunosuppressive care and monitoring. Computerized clinical decision support (CDS) has been shown to improve post-transplant immunosuppressive care processes and outcomes. The readiness of transplant information systems to implement computerized CDS to support post-transplant care is unknown. a) Describe the current clinical information system functionality and manual and automated processes for laboratory monitoring of immunosuppressive care, b) describe the use of guidelines that may be used to produce computable logic and the use of computerized alerts to support guideline adherence, and c) explore barriers to implementation of CDS in U.S. liver transplant centers. We developed a web-based survey using cognitive interviewing techniques. We surveyed 119 U.S. transplant programs that performed at least five liver transplantations per year during 2010-2012. Responses were summarized using descriptive analyses; barriers were identified using qualitative methods. Respondents from 80 programs (67% response rate) completed the survey. While 98% of programs reported having an electronic health record (EHR), all programs used paper-based manual processes to receive or track immunosuppressive laboratory results. Most programs (85%) reported that 30% or more of their patients used external laboratories for routine testing. Few programs (19%) received most external laboratory results as discrete data via electronic interfaces while most (80%) manually entered laboratory results into the EHR; less than half (42%) could integrate internal and external laboratory results. Nearly all programs had guidelines regarding pre-specified target ranges (92%) or testing schedules (97%) for managing immunosuppressive care. Few programs used computerized alerting to notify transplant coordinators of out-of-range (27%) or overdue laboratory results (20%). Use of EHRs is common, yet all liver transplant programs were largely

  2. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - GEOCHEMISTRY LABORATORY AT SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  3. A Review of Research on Technology-Assisted School Science Laboratories

    ERIC Educational Resources Information Center

    Wang, Chia-Yu; Wu, Hsin-Ka; Lee, Silvia Wen-Yu; Hwang, Fu-Kwun; Chang, Hsin-Yi; Wu, Ying-Tien; Chiou, Guo-Li; Chen, Sufen; Liang, Jyh-Chong; Lin, Jing-Wen; Lo, Hao-Chang; Tsai, Chin-Chung

    2014-01-01

    Studies that incorporate technologies into school science laboratories have proliferated in the recent two decades. A total of 42 studies published from 1990 to 2011 that incorporated technologies to support school science laboratories are reviewed here. Simulations, microcomputer-based laboratories (MBLs), and virtual laboratories are commonly…

  4. Reduced Clostridium difficile Tests and Laboratory-Identified Events With a Computerized Clinical Decision Support Tool and Financial Incentive.

    PubMed

    Madden, Gregory R; German Mesner, Ian; Cox, Heather L; Mathers, Amy J; Lyman, Jason A; Sifri, Costi D; Enfield, Kyle B

    2018-06-01

    We hypothesized that a computerized clinical decision support tool for Clostridium difficile testing would reduce unnecessary inpatient tests, resulting in fewer laboratory-identified events. Census-adjusted interrupted time-series analyses demonstrated significant reductions of 41% fewer tests and 31% fewer hospital-onset C. difficile infection laboratory-identified events following this intervention.Infect Control Hosp Epidemiol 2018;39:737-740.

  5. Environmental Response Laboratory Network

    EPA Pesticide Factsheets

    The ERLN as a national network of laboratories that can be ramped up as needed to support large scale environmental responses. It integrates capabilities of existing public and private sector labs, providing consistent capacity and quality data.

  6. Laboratory automation: trajectory, technology, and tactics.

    PubMed

    Markin, R S; Whalen, S A

    2000-05-01

    Laboratory automation is in its infancy, following a path parallel to the development of laboratory information systems in the late 1970s and early 1980s. Changes on the horizon in healthcare and clinical laboratory service that affect the delivery of laboratory results include the increasing age of the population in North America, the implementation of the Balanced Budget Act (1997), and the creation of disease management companies. Major technology drivers include outcomes optimization and phenotypically targeted drugs. Constant cost pressures in the clinical laboratory have forced diagnostic manufacturers into less than optimal profitability states. Laboratory automation can be a tool for the improvement of laboratory services and may decrease costs. The key to improvement of laboratory services is implementation of the correct automation technology. The design of this technology should be driven by required functionality. Automation design issues should be centered on the understanding of the laboratory and its relationship to healthcare delivery and the business and operational processes in the clinical laboratory. Automation design philosophy has evolved from a hardware-based approach to a software-based approach. Process control software to support repeat testing, reflex testing, and transportation management, and overall computer-integrated manufacturing approaches to laboratory automation implementation are rapidly expanding areas. It is clear that hardware and software are functionally interdependent and that the interface between the laboratory automation system and the laboratory information system is a key component. The cost-effectiveness of automation solutions suggested by vendors, however, has been difficult to evaluate because the number of automation installations are few and the precision with which operational data have been collected to determine payback is suboptimal. The trend in automation has moved from total laboratory automation to a

  7. Laboratory Building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Joshua M.

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  8. Virtual Laboratory "vs." Traditional Laboratory: Which Is More Effective for Teaching Electrochemistry?

    ERIC Educational Resources Information Center

    Hawkins, Ian; Phelps, Amy J.

    2013-01-01

    The use of virtual laboratories has become an increasing issue regarding science laboratories due to the increasing cost of hands-on laboratories, and the increase in distance education. Recent studies have looked at the use of virtual tools for laboratory to be used as supplements to the regular hands-on laboratories but many virtual tools have…

  9. Design and implementation of a hospital-based usability laboratory: insights from a Department of Veterans Affairs laboratory for health information technology.

    PubMed

    Russ, Alissa L; Weiner, Michael; Russell, Scott A; Baker, Darrell A; Fahner, W Jeffrey; Saleem, Jason J

    2012-12-01

    Although the potential benefits of more usable health information technologies (HIT) are substantial-reduced HIT support costs, increased work efficiency, and improved patient safety--human factors methods to improve usability are rarely employed. The US Department of Veterans Affairs (VA) has emerged as an early leader in establishing usability laboratories to inform the design of HIT, including its electronic health record. Experience with a usability laboratory at a VA Medical Center provides insights on how to design, implement, and leverage usability laboratories in the health care setting. The VA Health Services Research and Development Service Human-Computer Interaction & Simulation Laboratory emerged as one of the first VA usability laboratories and was intended to provide research-based findings about HIT designs. This laboratory supports rapid prototyping, formal usability testing, and analysis tools to assess existing technologies, alternative designs, and potential future technologies. RESULTS OF IMPLEMENTATION: Although the laboratory has maintained a research focus, it has become increasingly integrated with VA operations, both within the medical center and on a national VA level. With this resource, data-driven recommendations have been provided for the design of HIT applications before and after implementation. The demand for usability testing of HIT is increasing, and information on how to develop usability laboratories for the health care setting is often needed. This article may assist other health care organizations that want to invest in usability resources to improve HIT. The establishment and utilization of usability laboratories in the health care setting may improve HIT designs and promote safe, high-quality care for patients.

  10. Exploration Laboratory Analysis FY13

    NASA Technical Reports Server (NTRS)

    Krihak, Michael; Perusek, Gail P.; Fung, Paul P.; Shaw, Tianna, L.

    2013-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk, which is stated as the Risk of Inability to Adequately Treat an Ill or Injured Crew Member, and ExMC Gap 4.05: Lack of minimally invasive in-flight laboratory capabilities with limited consumables required for diagnosing identified Exploration Medical Conditions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability in future exploration missions. Mission architecture poses constraints on equipment and procedures that will be available to treat evidence-based medical conditions according to the Space Medicine Exploration Medical Conditions List (SMEMCL), and to perform human research studies on the International Space Station (ISS) that are supported by the Human Health and Countermeasures (HHC) element. Since there are significant similarities in the research and medical operational requirements, ELA hardware development has emerged as a joint effort between ExMC and HHC. In 2012, four significant accomplishments were achieved towards the development of exploration laboratory analysis for medical diagnostics. These achievements included (i) the development of high priority analytes for research and medical operations, (ii) the development of Level 1 functional requirements and concept of operations documentation, (iii) the selection and head-to-head competition of in-flight laboratory analysis instrumentation, and (iv) the phase one completion of the Small Business Innovation Research (SBIR) projects under the topic Smart Phone Driven Blood-Based Diagnostics. To utilize resources efficiently, the associated documentation and advanced technologies were integrated into a single ELA plan that encompasses ExMC and HHC development efforts. The requirements and high priority analytes was used in the selection of the four in-flight laboratory analysis performers. Based upon the

  11. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of The Director)

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selectedmore » from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.« less

  12. Laboratory hemostasis: milestones in Clinical Chemistry and Laboratory Medicine.

    PubMed

    Lippi, Giuseppe; Favaloro, Emmanuel J

    2013-01-01

    Hemostasis is a delicate, dynamic and intricate system, in which pro- and anti-coagulant forces cooperate for either maintaining blood fluidity under normal conditions, or else will prompt blood clot generation to limit the bleeding when the integrity of blood vessels is jeopardized. Excessive prevalence of anticoagulant forces leads to hemorrhage, whereas excessive activation of procoagulant forces triggers excessive coagulation and thrombosis. The hemostasis laboratory performs a variety of first, second and third line tests, and plays a pivotal role in diagnostic and monitoring of most hemostasis disturbances. Since the leading targets of Clinical Chemistry and Laboratory Medicine include promotion of progress in fundamental and applied research, along with publication of guidelines and recommendations in laboratory diagnostics, this journal is an ideal source of information on current developments in the laboratory technology of hemostasis, and this article is aimed to celebrate some of the most important and popular articles ever published by the journal in the filed of laboratory hemostasis.

  13. Stirling laboratory research engine survey report

    NASA Technical Reports Server (NTRS)

    Anderson, J. W.; Hoehn, F. W.

    1979-01-01

    As one step in expanding the knowledge relative to and accelerating the development of Stirling engines, NASA, through the Jet Propulsion Laboratory (JPL), is sponsoring a program which will lead to a versatile Stirling Laboratory Research Engine (SLRE). An objective of this program is to lay the groundwork for a commercial version of this engine. It is important to consider, at an early stage in the engine's development, the needs of the potential users so that the SLRE can support the requirements of educators and researchers in academic, industrial, and government laboratories. For this reason, a survey was performed, the results of which are described.

  14. National and international veterinary reference laboratories for infectious diseases.

    PubMed

    Edwards, S; Alexander, D

    1998-08-01

    Reference laboratories play an increasingly important role in the harmonisation of laboratory diagnostic tests and the standardisation of veterinary vaccines. This is particularly important in building confidence between international trading partners. The authors review aspects of the organisation, designation and support of reference laboratories for infectious diseases of animals and discuss the principal activities which such laboratories would normally perform. These activities include advice and consultancy, publications and communication, training, research, disease surveillance, maintenance of culture collections, evaluation of reference methods, preparation of reference materials and organisation of inter-laboratory comparisons.

  15. Laboratory Governance: Issues for the Study Group on Regional Laboratories.

    ERIC Educational Resources Information Center

    Schultz, Thomas; Dominic, Joseph

    Background information and an analysis of issues involved in the governance of new regional educational laboratories are presented. The new laboratories are to be established through a 1984 competition administered by the National Institute of Education (NIE). The analysis is designed to assist the Study Group on Regional Laboratories to advise…

  16. [Role of the independent microbiology laboratory in supporting infection control programs in small to mid-sized hospitals].

    PubMed

    Yanagisawa, Hideji

    2009-05-01

    With the revision of the Medical Service Law in 2006 by the Japanese Ministry of Health, Labour and Welfare (MHLW), all healthcare institutions are now required to implement a healthcare risk management program including infection control program. At a national level, an infection control surveillance program (JANIS) was implemented in July 2007. Regular weekly, monthly, and yearly infection control surveillance reports from independent microbiology laboratories can make significant contributions to infection control programs in small to mid-sized hospitals; furthermore, such programs are consistent with the framework of the MHLW's objective of strengthening risk management in healthcare institutions. Against the backdrop of current efforts to improve risk management, independent laboratories can make a significant contribution. Independent laboratories must play a role beyond merely receiving and processing specimens for microbiological examination. In addition to generating results for patients, hospital epidemiological data that contribute to local infection control programs must be a value-added component of the service. A major obstacle for independent laboratories to make a significant contribution to risk management is the current reimbursement system, which makes it economically impossible for independent laboratories to support infection control programs in healthcare institutions.

  17. Competency Guidelines for Public Health Laboratory Professionals: CDC and the Association of Public Health Laboratories.

    PubMed

    Ned-Sykes, Renée; Johnson, Catherine; Ridderhof, John C; Perlman, Eva; Pollock, Anne; DeBoy, John M

    2015-05-15

    These competency guidelines outline the knowledge, skills, and abilities necessary for public health laboratory (PHL) professionals to deliver the core services of PHLs efficiently and effectively. As part of a 2-year workforce project sponsored in 2012 by CDC and the Association of Public Health Laboratories (APHL), competencies for 15 domain areas were developed by experts representing state and local PHLs, clinical laboratories, academic institutions, laboratory professional organizations, CDC, and APHL. The competencies were developed and reviewed by approximately 170 subject matter experts with diverse backgrounds and experiences in laboratory science and public health. The guidelines comprise general, cross-cutting, and specialized domain areas and are divided into four levels of proficiency: beginner, competent, proficient, and expert. The 15 domain areas are 1) Quality Management System, 2) Ethics, 3) Management and Leadership, 4) Communication, 5) Security, 6) Emergency Management and Response, 7) Workforce Training, 8) General Laboratory Practice, 9) Safety, 10) Surveillance, 11) Informatics, 12) Microbiology, 13) Chemistry, 14) Bioinformatics, and 15) Research. These competency guidelines are targeted to scientists working in PHLs, defined as governmental public health, environmental, and agricultural laboratories that provide analytic biological and/or chemical testing and testing-related services that protect human populations against infectious diseases, foodborne and waterborne diseases, environmental hazards, treatable hereditary disorders, and natural and human-made public health emergencies. The competencies support certain PHL workforce needs such as identifying job responsibilities, assessing individual performance, and providing a guiding framework for producing education and training programs. Although these competencies were developed specifically for the PHL community, this does not preclude their broader application to other professionals

  18. Creep Laboratory manual

    NASA Astrophysics Data System (ADS)

    Osgerby, S.; Loveday, M. S.

    1992-06-01

    A manual for the NPL Creep Laboratory, a collective name given to two testing laboratories, the Uniaxial Creep Laboratory and the Advanced High Temperature Mechanical Testing Laboratory, is presented. The first laboratory is devoted to uniaxial creep testing and houses approximately 50 high sensitivity creep machines including 10 constant stress cam lever machines. The second laboratory houses a low cycle fatigue testing machine of 100 kN capacity driven by a servo-electric actuator, five machines for uniaxial tensile creep testing of engineering ceramics at temperatures up to 1600C, and an electronic creep machine. Details of the operational procedures for carrying out uniaxial creep testing are given. Calibration procedures to be followed in order to comply with the specifications laid down by British standards, and to provide traceability back to the primary standards are described.

  19. The stem cell laboratory: design, equipment, and oversight.

    PubMed

    Wesselschmidt, Robin L; Schwartz, Philip H

    2011-01-01

    This chapter describes some of the major issues to be considered when setting up a laboratory for the culture of human pluripotent stem cells (hPSCs). The process of establishing a hPSC laboratory can be divided into two equally important parts. One is completely administrative and includes developing protocols, seeking approval, and establishing reporting processes and documentation. The other part of establishing a hPSC laboratory involves the physical plant and includes design, equipment and personnel. Proper planning of laboratory operations and proper design of the physical layout of the stem cell laboratory so that meets the scope of planned operations is a major undertaking, but the time spent upfront will pay long-term returns in operational efficiency and effectiveness. A well-planned, organized, and properly equipped laboratory supports research activities by increasing efficiency and reducing lost time and wasted resources.

  20. RealTime Physics: Active learning laboratory

    NASA Astrophysics Data System (ADS)

    Thornton, Ronald K.; Sokoloff, David R.

    1997-03-01

    Our research shows that student learning of physics concepts in introductory physics courses is enhanced by the use of special guided discovery laboratory curricula which embody the results of educational research and which are supported by the use of the Tools for Scientific Thinking microcomputer-based laboratory (MBL) tools. In this paper we first describe the general characteristics of the research-based RealTime Physics laboratory curricula developed for use in introductory physics classes in colleges, universities and high schools. We then describe RealTime Physics Mechanics in detail. Finally we examine student learning of dynamics in traditional physics courses and in courses using RealTime Physics Mechanics, primarily by the use of correlated questions on the Force and Motion Conceptual Evaluation. We present considerable evidence that students who use the new laboratory curricula demonstrate significantly improved learning and retention of dynamics concepts compared to students taught by traditional methods.

  1. Laboratory Animal Technician | Center for Cancer Research

    Cancer.gov

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  2. Preservice laboratory education strengthening enhances sustainable laboratory workforce in Ethiopia

    PubMed Central

    2013-01-01

    Background There is a severe healthcare workforce shortage in sub Saharan Africa, which threatens achieving the Millennium Development Goals and attaining an AIDS-free generation. The strength of a healthcare system depends on the skills, competencies, values and availability of its workforce. A well-trained and competent laboratory technologist ensures accurate and reliable results for use in prevention, diagnosis, care and treatment of diseases. Methods An assessment of existing preservice education of five medical laboratory schools, followed by remedial intervention and monitoring was conducted. The remedial interventions included 1) standardizing curriculum and implementation; 2) training faculty staff on pedagogical methods and quality management systems; 3) providing teaching materials; and 4) procuring equipment for teaching laboratories to provide practical skills to complement didactic education. Results A total of 2,230 undergraduate students from the five universities benefitted from the standardized curriculum. University of Gondar accounted for 252 of 2,230 (11.3%) of the students, Addis Ababa University for 663 (29.7%), Jimma University for 649 (29.1%), Haramaya University for 429 (19.2%) and Hawassa University for 237 (10.6%) of the students. Together the universities graduated 388 and 312 laboratory technologists in 2010/2011 and 2011/2012 academic year, respectively. Practical hands-on training and experience with well-equipped laboratories enhanced and ensured skilled, confident and competent laboratory technologists upon graduation. Conclusions Strengthening preservice laboratory education is feasible in resource-limited settings, and emphasizing its merits (ample local capacity, country ownership and sustainability) provides a valuable source of competent laboratory technologists to relieve an overstretched healthcare system. PMID:24164781

  3. The AAPT Advanced Laboratory Task Force Report

    NASA Astrophysics Data System (ADS)

    Dunham, Jeffrey

    2008-04-01

    In late 2005, the American Association of Physics Teachers (AAPT) assembled a seven-member Advanced Laboratory Task Force^ to recommend ways that AAPT could increase the degree and effectiveness of its interactions with physics teachers of upper-division physics laboratories, with the ultimate goal of improving the teaching of advanced laboratories. The task force completed its work during the first half of 2006 and its recommendations were presented to the AAPT Executive Committee in July 2006. This talk will present the recommendations of the task force and actions taken by AAPT in response to them. The curricular goals of the advanced laboratory course at various institutions will also be discussed. The talk will conclude with an appeal to the APS membership to support ongoing efforts to revitalize advanced laboratory course instruction. ^Members of the Advanced Laboratory Task Force: Van Bistrow, University of Chicago; Bob DeSerio, University of Florida; Jeff Dunham, Middlebury College (Chair); Elizabeth George, Wittenburg University; Daryl Preston, California State University, East Bay; Patricia Sparks, Harvey Mudd College; Gerald Taylor, James Madison University; and David Van Baak, Calvin College.

  4. Safety in laboratories: Indian scenario.

    PubMed

    Mustafa, Ajaz; Farooq, A Jan; Qadri, Gj; S A, Tabish

    2008-07-01

    Health and safety in clinical laboratories is becoming an increasingly important subject as a result of emergence of highly infectious diseases such as Hepatitis and HIV. A cross sectional study was carried out to study the safety measures being adopted in clinical laboratories of India. Heads of laboratories of teaching hospitals of India were subjected to a standardized, pretested questionnaire. Response rate was 44.8%. only 60% of laboratories had person in-charge of safety in laboratory. Seventy three percent of laboratories had safety education program regarding hazards. In 91% of laboratories staff is using protective clothing while working in laboratories. Hazardous material regulations are followed in 78% of laboratories. Regular health check ups are carried among laboratory staff in 43.4% of laboratories.Safety manual is available in 56.5% of laboratories. 73.9% of laboratories are equipped with fire extinguishers. Fume cupboards are provided in 34.7% of laboratories and they are regularly checked in 87.5% of these laboratories. In 78.26% of laboratories suitable measures are taken to minimize formation of aerosols.In 95.6% of laboratories waste is disposed off as per bio-medical waste management handling rules. Laboratory of one private medical college was accredited with NABL and safety parameters were better in that laboratory. Installing safety engineered devices apparently contributes to significant decrease in injuries in laboratories; laboratory safety has to be a part of overall quality assurance programme in hospitals. Accreditation has to be made necessary for all laboratories.

  5. Federal Security Laboratory Governance Panels: Observations and Recommendations

    DTIC Science & Technology

    2013-01-01

    operates under a sole-source, cost-plus-fixed-fee contract administered by the U.S. Navy’s Naval Sea Systems Command. There are currently 14 UARCs, 13... system of research organizations that support science and technology for U.S. national security. Within this system , the Departments of Defense, Energy...and Homeland Security support about 80 laboratories that focus predominantly on national security matters. These laboratories have different

  6. Radiation and Health Technology Laboratory Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bihl, Donald E.; Lynch, Timothy P.; Murphy, Mark K.

    2005-07-09

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrumentmore » calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.« less

  7. Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bretz, Stacey Lowery; Fay, Michael; Bruck, Laura B.; Towns, Marcy H.

    2013-01-01

    Forty chemistry faculty from American Chemical Society-approved departments were interviewed to determine their goals for undergraduate chemistry laboratory. Faculty were stratified by type of institution, departmental success with regard to National Science Foundation funding for laboratory reform, and level of laboratory course. Interview…

  8. Laboratory directed research and development fy1999 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R A

    2000-04-11

    Program also enables many collaborations with the scientific community in academia, national and international laboratories, and industry. The projects in the FY1999 LDRD portfolio were carefully selected to continue vigorous support of the strategic vision and the long-term goals of DOE and the Laboratory. Projects chosen for LDRD funding undergo stringent selection processes, which look for high-potential scientific return, emphasize strategic relevance, and feature technical peer reviews by external and internal experts. The FY1999 projects described in this annual report focus on supporting the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs. In the past, LDRD investments have significantly enhanced LLNL scientific capabilities and greatly contributed to the Laboratory's ability to meet its national security programmatic requirements. Examples of past investments include technical precursors to the Accelerated Strategic Computing Initiative (ASCI), special-materials processing and characterization, and biodefense. Our analysis of the FY1999 portfolio shows that it strongly supports the Laboratory's national security mission. About 95% of the LDRD dollars have directly supported LLNL's national security activities in FY1999, which far exceeds the portion of LLNL's overall budget supported by National Security Programs, which is 63% for FY1999.« less

  9. Laboratory Equipment Criteria.

    ERIC Educational Resources Information Center

    State Univ. Construction Fund, Albany, NY.

    Requirements for planning, designing, constructing and installing laboratory furniture are given in conjunction with establishing facility criteria for housing laboratory equipment. Furniture and equipment described include--(1) center tables, (2) reagent racks, (3) laboratory benches and their mechanical fixtures, (4) sink and work counters, (5)…

  10. 42 CFR 493.1355 - Condition: Laboratories performing PPM procedures; laboratory director.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing PPM procedures; laboratory director. 493.1355 Section 493.1355 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS...

  11. 42 CFR 493.1355 - Condition: Laboratories performing PPM procedures; laboratory director.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Condition: Laboratories performing PPM procedures; laboratory director. 493.1355 Section 493.1355 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS...

  12. The Stem Cell Laboratory: Design, Equipment, and Oversight

    PubMed Central

    Wesselschmidt, Robin L.; Schwartz, Philip H.

    2013-01-01

    This chapter describes some of the major issues to be considered when setting up a laboratory for the culture of human pluripotent stem cells (hPSCs). The process of establishing a hPSC laboratory can be divided into two equally important parts. One is completely administrative and includes developing protocols, seeking approval, and establishing reporting processes and documentation. The other part of establishing a hPSC laboratory involves the physical plant and includes design, equipment and personnel. Proper planning of laboratory operations and proper design of the physical layout of the stem cell laboratory so that meets the scope of planned operations is a major undertaking, but the time spent upfront will pay long-term returns in operational efficiency and effectiveness. A well-planned, organized, and properly equipped laboratory supports research activities by increasing efficiency and reducing lost time and wasted resources. PMID:21822863

  13. United States Supports Distributed Wind Technology Improvements; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, Karin

    2015-06-15

    This presentation provides information on the activities conducted through the Competitiveness Improvement Project (CIP), initiated in 2012 by the U.S. Department of Energy (DOE) and executed through the National Renewable Energy Laboratory (NREL) to support the distributed wind industry. The CIP provides research and development funding and technical support to improve distributed wind turbine technology and increase the competitiveness of U.S. small and midsize wind turbine manufacturers. Through this project, DOE/NREL assists U.S. manufacturers to lower the levelized cost of energy of wind turbines through component improvements, manufacturing process upgrades, and turbine testing. Ultimately, this support is expected to leadmore » to turbine certification through testing to industry-recognized wind turbine performance and safety standards.« less

  14. Theme: Laboratory Instruction.

    ERIC Educational Resources Information Center

    Bruening, Thomas H.; And Others

    1992-01-01

    A series of theme articles discuss setting up laboratory hydroponics units, the school farm at the Zuni Pueblo in New Mexico, laboratory experiences in natural resources management and urban horticulture, the development of teaching labs at Derry (PA) High School, management of instructional laboratories, and industry involvement in agricultural…

  15. Towards an evaluation framework for Laboratory Information Systems.

    PubMed

    Yusof, Maryati M; Arifin, Azila

    Laboratory testing and reporting are error-prone and redundant due to repeated, unnecessary requests and delayed or missed reactions to laboratory reports. Occurring errors may negatively affect the patient treatment process and clinical decision making. Evaluation on laboratory testing and Laboratory Information System (LIS) may explain the root cause to improve the testing process and enhance LIS in supporting the process. This paper discusses a new evaluation framework for LIS that encompasses the laboratory testing cycle and the socio-technical part of LIS. Literature review on discourses, dimensions and evaluation methods of laboratory testing and LIS. A critical appraisal of the Total Testing Process (TTP) and the human, organization, technology-fit factors (HOT-fit) evaluation frameworks was undertaken in order to identify error incident, its contributing factors and preventive action pertinent to laboratory testing process and LIS. A new evaluation framework for LIS using a comprehensive and socio-technical approach is outlined. Positive relationship between laboratory and clinical staff resulted in a smooth laboratory testing process, reduced errors and increased process efficiency whilst effective use of LIS streamlined the testing processes. The TTP-LIS framework could serve as an assessment as well as a problem-solving tool for the laboratory testing process and system. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  16. Safety in the Chemical Laboratory: Procedures for Laboratory Destruction of Chemicals.

    ERIC Educational Resources Information Center

    McKusick, Blaine C.

    1984-01-01

    Discusses a National Research Council report which summarizes what laboratories need to know about Environmental Protection Agency and Department of Transportation regulations that apply to laboratory waste. The report provides guidelines for establishing and operating waste management systems for laboratories and gives specific advice on waste…

  17. Inter-laboratory comparison measurements of radiochemical laboratories in Slovakia.

    PubMed

    Meresová, J; Belanová, A; Vrsková, M

    2010-01-01

    The first inter-laboratory comparison organized by the radiochemistry laboratory of Water Research Institute (WRI) in Bratislava was carried out in 1993 and since then is it realized on an annual basis and about 10 radiochemical laboratories from all over Slovakia are participating. The gross alpha and gross beta activities, and the activity concentrations of (222)Rn, tritium, and (226)Ra, and U(nat) concentration in synthetic water samples are compared. The distributed samples are covering the concentration range prevailing in potable and surface waters and are prepared by dilution of certified reference materials. Over the course of the years 1993-2008, we observed the improvement in the quality of results for most of the laboratories. However, the success rate of the gross alpha determination activity is not improving as much as the other parameters. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. External quality assurance performance of clinical research laboratories in sub-saharan Africa.

    PubMed

    Amukele, Timothy K; Michael, Kurt; Hanes, Mary; Miller, Robert E; Jackson, J Brooks

    2012-11-01

    Patient Safety Monitoring in International Laboratories (JHU-SMILE) is a resource at Johns Hopkins University that supports and monitors laboratories in National Institutes of Health-funded international clinical trials. To determine the impact of the JHU-SMILE quality assurance scheme in sub-Saharan African laboratories, we reviewed 40 to 60 months of external quality assurance (EQA) results of the College of American Pathologists (CAP) in these laboratories. We reviewed the performance of 8 analytes: albumin, alanine aminotransferase, creatinine, sodium, WBC, hemoglobin, hematocrit, and the human immunodeficiency virus antibody rapid test. Over the 40- to 60-month observation period, the sub-Saharan laboratories had a 1.63% failure rate, which was 40% lower than the 2011 CAP-wide rate of 2.8%. Seventy-six percent of the observed EQA failures occurred in 4 of the 21 laboratories. These results demonstrate that a system of remote monitoring, feedback, and audits can support quality in low-resource settings, even in places without strong regulatory support for laboratory quality.

  19. [Study of quality of a branch laboratory--an opinion of a laboratory manager].

    PubMed

    Yazawa, Naoyuki

    2006-11-01

    At the stage of establishing a branch laboratory, quality evaluation is extremely difficult. Even the results of a control survey by the headquarters of the branch laboratory are unhelpful. For a clinical laboratory, the most important function is to provide reliable data all the time, and to maintain the reliability of clinical doctors with informed responses. We mostly refer to control surveys and daily quality control data to evaluate a clinical laboratory, but we rarely check its fundamental abilities, such as planning events, preserving statistical data about the standard range, using the right method for quality control and others. This is generally disregarded and it is taken for granted that they will be correct the first time. From my six years of experience working with X's branch laboratory, I realized that there might be some relation between the quality of a branch laboratory and the fundamental abilities of the company itself. I would never argue that all branch laboratories are ineffective, but they should be conscious of fundamental activities. The referring laboratory, not the referral laboratory, should be responsible for ensuring that the referral laboratory's examination results and findings are correct.

  20. Anatomic pathology laboratory information systems: a review.

    PubMed

    Park, Seung Lyung; Pantanowitz, Liron; Sharma, Gaurav; Parwani, Anil Vasdev

    2012-03-01

    The modern anatomic pathology laboratory depends on a reliable information infrastructure to register specimens, record gross and microscopic findings, regulate laboratory workflow, formulate and sign out report(s), disseminate them to the intended recipients across the whole health system, and support quality assurance measures. This infrastructure is provided by the Anatomical Pathology Laboratory Information Systems (APLIS), which have evolved over decades and now are beginning to support evolving technologies like asset tracking and digital imaging. As digital pathology transitions from "the way of the future" to "the way of the present," the APLIS continues to be one of the key effective enablers of the scope and practice of pathology. In this review, we discuss the evolution, necessary components, architecture and functionality of the APLIS that are crucial to today's practicing pathologist and address the demands of emerging trends on the future APLIS.

  1. Managing laboratory automation in a changing pharmaceutical industry

    PubMed Central

    Rutherford, Michael L.

    1995-01-01

    The health care reform movement in the USA and increased requirements by regulatory agencies continue to have a major impact on the pharmaceutical industry and the laboratory. Laboratory management is expected to improve effciency by providing more analytical results at a lower cost, increasing customer service, reducing cycle time, while ensuring accurate results and more effective use of their staff. To achieve these expectations, many laboratories are using robotics and automated work stations. Establishing automated systems presents many challenges for laboratory management, including project and hardware selection, budget justification, implementation, validation, training, and support. To address these management challenges, the rationale for project selection and implementation, the obstacles encountered, project outcome, and learning points for several automated systems recently implemented in the Quality Control Laboratories at Eli Lilly are presented. PMID:18925014

  2. Cloud-Based Virtual Laboratory for Network Security Education

    ERIC Educational Resources Information Center

    Xu, Le; Huang, Dijiang; Tsai, Wei-Tek

    2014-01-01

    Hands-on experiments are essential for computer network security education. Existing laboratory solutions usually require significant effort to build, configure, and maintain and often do not support reconfigurability, flexibility, and scalability. This paper presents a cloud-based virtual laboratory education platform called V-Lab that provides a…

  3. The National Program of Educational Laboratories. Final Report.

    ERIC Educational Resources Information Center

    Chase, Francis S.

    This report presents results of a critical analysis of 20 regional educational laboratories and nine university research and development centers established under ESEA Title IV. Observations, supported by specific examples, are made concerning the laboratories and centers and deal with their roles, programs definitions, impact on educational…

  4. 2011 Mars Science Laboratory Mission Design Overview

    NASA Technical Reports Server (NTRS)

    Abilleira, Fernando

    2010-01-01

    Scheduled to launch in the fall of 2011 with arrival at Mars occurring in the summer of 2012, NASA's Mars Science Laboratory will explore and assess whether Mars ever had conditions capable of supporting microbial life. In order to achieve its science objectives, the Mars Science Laboratory will be equipped with the most advanced suite of instruments ever sent to the surface of the Red Planet. Delivering the next mobile science laboratory safely to the surface of Mars has various key challenges derived from a strict set of requirements which include launch vehicle performance, spacecraft mass, communications coverage during Entry, Descent, and Landing, atmosphere-relative entry speeds, latitude accessibility, and dust storm season avoidance among others. The Mars Science Laboratory launch/arrival strategy selected after careful review satisfies all these mission requirements.

  5. Expansion of Surveillance for Vaccine-preventable Diseases: Building on the Global Polio Laboratory Network and the Global Measles and Rubella Laboratory Network Platforms.

    PubMed

    Mulders, Mick N; Serhan, Fatima; Goodson, James L; Icenogle, Joseph; Johnson, Barbara W; Rota, Paul A

    2017-07-01

    Laboratory networks were established to provide accurate and timely laboratory confirmation of infections, an essential component of disease surveillance systems. The World Health Organization (WHO) coordinates global laboratory surveillance of vaccine-preventable diseases (VPDs), including polio, measles and rubella, yellow fever, Japanese encephalitis, rotavirus, and invasive bacterial diseases. In addition to providing high-quality laboratory surveillance data to help guide disease control, elimination, and eradication programs, these global networks provide capacity-building and an infrastructure for public health laboratories. There are major challenges with sustaining and expanding the global laboratory surveillance capacity: limited resources and the need for expansion to meet programmatic goals. Here, we describe the WHO-coordinated laboratory networks supporting VPD surveillance and present a plan for the further development of these networks. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  6. Teaching Laboratory Renovation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Zuhairi, Ali Jassim; Al-Dahhan, Wedad; Hussein, Falah

    Scientists at universities across Iraq are actively working to report actual incidents and accidents occurring in their laboratories, as well as structural improvements made to improve safety and security, to raise awareness and encourage openness, leading to widespread adoption of robust Chemical Safety and Security (CSS) practices. The improvement of students’ understanding of concepts in science and its applications, practical scientific skills and understanding of how science and scientists work in laboratory experiences have been considered key aspects of education in science for over 100 years. Facility requirements for the necessary level of safety and security combined with specific requirementsmore » relevant to the course to be conducted dictate the structural design of a particular laboratory, and the design process must address both. This manuscript is the second in a series of five case studies describing laboratory incidents, accidents, and laboratory improvements. We summarize the process used to guide a major renovation of the chemistry instructional laboratory facilities at Al-Nahrain University and discuss lessons learned from the project.« less

  7. Laboratory Spectroscopy of Large Carbon Molecules and Ions in Support of Space Missions

    NASA Technical Reports Server (NTRS)

    Salana, Farid; Tan, X.; Cami, J.; Remy, J.

    2006-01-01

    One of the major objectives of Laboratory Astrophysics is the optimization of data return from space missions by measuring spectra of atomic and molecular species in laboratory environments that mimic interstellar conditions (WhitePaper (2002, 2006)). Among interstellar species, PAHs are an important and ubiquitous component of carbon-bearing materials that represents a particularly difficult challenge for gas-phase laboratory studies. We present the absorption spectra of jet-cooled neutral and ionized PAHs and discuss the implications for astrophysics. The harsh physical conditions of the interstellar medium have been simulated in the laboratory. We are now, for the first time, in the position to directly compare laboratory spectra of PAHs and carbon nanoparticles with astronomical observations. This new phase offers tremendous opportunities for the data analysis of current and upcoming space missions geared toward the detection of large aromatic systems (HST/COS, FUSE, JWST, Spitzer).

  8. [Laboratory management fee in national health insurance; what is required from clinical laboratory physicians? --message from Chairpersons].

    PubMed

    Kimura, Satoshi; Koshiba, Masahiro

    2013-06-01

    The laboratory management fee (LMF) in national health insurance ("Kentai-Kensa-Kanri-Kasan" in Japanese) has had a major impact on Japanese clinical laboratories, especially in recent years. In 2012, the fee was raised to approximately 5,000 yen per admitted patient. In order to address this national support, clinical pathologists are required to increase their knowledge and skills. On the other hand, there are insufficient clinical pathologists in Japan. In order to solve this problem, the Japanese Society of Laboratory Medicine (JSLM) approved a new license for Qualified Clinical Laboratory Managing Physicians (CLMPs), in addition to Certified Clinical Laboratory Physicians (CCLPs). The requirements to become a CLMP are less strict than for CCLP. There are approximately 500 CLMPs and 600 CCLPs in this country. The aim of this symposium was to offer opportunities to increase attendees' clinical skills, especially CLMPs and young clinical pathologists. Four CCLPs were chosen as speakers from a university hospital, a major city hospital, a medium-sized acute care hospital, and a university hospital anatomical pathologist, together with a chief medical technologist from a university hospital. All the speakers presented their ideal role models of clinical pathologists matching LMF requirements. JSLM together with the Japanese Association of Clinical Laboratory Physicians (JACLaP) sponsored this symposium. It was a successful meeting with more than two hundred attendees.

  9. Materials Science Laboratory

    NASA Technical Reports Server (NTRS)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  10. Public health laboratory workforce outreach in Hawai'i: CLIA-focused student internship pilot program at the state laboratories.

    PubMed

    Whelen, A Christian; Kitagawa, Kent

    2013-01-01

    Chronically understaffed public health laboratories depend on a decreasing number of employees who must assume broader responsibilities in order to sustain essential functions for the many clients the laboratories support. Prospective scientists considering a career in public health are often not aware of the requirements associated with working in a laboratory regulated by the Clinical Laboratory Improvement Amendments (CLIA). The purpose of this pilot internship was two-fold; introduce students to operations in a regulated laboratory early enough in their academics so that they could make good career decisions, and evaluate internship methodology as one possible solution to workforce shortages. Four interns were recruited from three different local universities, and were paired with an experienced State Laboratories Division (SLD) staff mentor. Students performed tasks that demonstrated the importance of CLIA regulations for 10-15 hours per week over a 14 week period. Students also attended several directed group sessions on regulatory lab practice and quality systems. Both interns and mentors were surveyed periodically during the semester. Surveys of mentors and interns indicated overall positive experiences. One-on-one pairing of experienced public health professionals and students seems to be a mutually beneficial arrangement. Interns reported that they would participate if the internship was lower paid, unpaid, or for credit only. The internship appeared to be an effective tool to expose students to employment in CLIA-regulated laboratories, and potentially help address public health laboratory staffing shortfalls. Longer term follow up with multiple classes of interns may provide a more informed assessment.

  11. 1995 Laboratory-Directed Research and Development Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  12. Implementing a laboratory automation system: experience of a large clinical laboratory.

    PubMed

    Lam, Choong Weng; Jacob, Edward

    2012-02-01

    Laboratories today face increasing pressure to automate their operations as they are challenged by a continuing increase in workload, need to reduce expenditure, and difficulties in recruitment of experienced technical staff. Was the implementation of a laboratory automation system (LAS) in the Clinical Biochemistry Laboratory at Singapore General Hospital successful? There is no simple answer, so the following topics comparing and contrasting pre- and post-LAS have been explored: turnaround time (TAT), laboratory errors, and staff satisfaction. The benefits and limitations of LAS from the laboratory experience were also reviewed. The mean TAT for both stat and routine samples decreased post-LAS (30% and 13.4%, respectively). In the 90th percentile TAT chart, a 29% reduction was seen in the processing of stat samples on the LAS. However, no significant difference in the 90th percentile TAT was observed with routine samples. It was surprising to note that laboratory errors increased post-LAS. Considerable effort was needed to overcome the initial difficulties associated with adjusting to a new system, new software, and new working procedures. Although some of the known advantages and limitations of LAS have been validated, the claimed benefits such as improvements in TAT, laboratory errors, and staff morale were not evident in the initial months.

  13. Laboratory Directed Research and Development FY-15 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillai, Rekha Sukamar

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  14. Clinical Laboratories – Production Factories or Specialized Diagnostic Centers

    PubMed Central

    Tóth, Judit

    2016-01-01

    Since a large proportion of medical decisions are based on laboratory results, clinical laboratories should meet the increasing demand of clinicians and their patients. Huge central laboratories may process over 10 million tests annually; they act as production factories, measuring emergency and routine tests with sufficient speed and accuracy. At the same time, they also serve as specialized diagnostic centers where well-trained experts analyze and interpret special test results. It is essential to improve and constantly monitor this complex laboratory service, by several methods. Sample transport by pneumatic tube system, use of an advanced laboratory information system and point-of-care testing may result in decreased total turnaround time. The optimization of test ordering may result in a faster and more cost-effective laboratory service. Autovalidation can save time for laboratory specialists, when the analysis of more complex results requires their attention. Small teams of experts responsible for special diagnostic work, and their interpretative reporting according to predetermined principles, may help to minimize subjectivity of these special reports. Although laboratory investigations have become so diversely developed in the past decades, it is essential that the laboratory can provide accurate results relatively quickly, and that laboratory specialists can support the diagnosis and monitoring of patients by adequate interpretation of esoteric laboratory methods. PMID:27683528

  15. The role of diagnostic laboratories in support of animal disease surveillance systems.

    PubMed

    Zepeda, C

    2007-01-01

    Diagnostic laboratories are an essential component of animal disease surveillance systems. To understand the occurrence of disease in populations, surveillance systems rely on random or targeted surveys using three approaches: clinical, serological and virological surveillance. Clinical surveillance is the basis for early detection of disease and is usually centered on the detection of syndromes and clinical findings requiring confirmation by diagnostic laboratories. Although most of the tests applied usually perform to an acceptable standard, several have not been properly validated in terms of their diagnostic sensitivity and specificity. Sensitivity and specificity estimates can vary according to local conditions and, ideally, should be determined by national laboratories where the tests are to be applied. The importance of sensitivity and specificity estimates in the design and interpretation of statistically based surveys and risk analysis is fundamental to establish appropriate disease control and prevention strategies. The World Organisation for Animal Health's (OIE) network of reference laboratories acts as centers of expertise for the diagnosis of OIE listed diseases and have a role in promoting the validation of OIE prescribed tests for international trade. This paper discusses the importance of the epidemiological evaluation of diagnostic tests and the role of the OIE Reference Laboratories and Collaborating Centres in this process.

  16. Mechanical support and transport system used for the neutrino horn system at Brookhaven National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, J.C.; Carroll, A.S.; Leonhardt, W.

    1987-01-01

    The study of neutrinos at the Alternating Gradient Synchrotron (AGS), Brookhaven National Laboratory (BNL), requires hardware for their initiation and control. The basics consist of a target, two horns and three collimators. This paper describes the installation, support and positioning of these components within a settling concrete blockhouse.

  17. Astrochemistry and the Role of Laboratory and Theoretical Support

    NASA Technical Reports Server (NTRS)

    Herbst, E.

    2006-01-01

    We emphasize some current needs of astrochemists for laboratory data. The data are urgently required both to detect molecules in assorted regions and to produce robust models of these regions. Three areas of laboratory-based research are particularly crucial and yet are not being studied in the United States: (i) reactions more complex than the formation of molecular hydrogen occurring on interstellar grain analogs, (ii) molecular spectroscopy in the THz (far-infrared) region of the electromagnetic spectrum, and (iii) gas-phase kinetics of reactions leading to complex molecules. Without solid knowledge of many unstudied but key reactions, both in the gas and on grains, astrochemists will not be in position to keep up with the large amount of new information expected to come from the next generation of telescopes.

  18. 42 CFR 414.510 - Laboratory date of service for clinical laboratory and pathology specimens.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Laboratory date of service for clinical laboratory... AND OTHER HEALTH SERVICES Payment for New Clinical Diagnostic Laboratory Tests § 414.510 Laboratory date of service for clinical laboratory and pathology specimens. The date of service for either a...

  19. Remote RF Laboratory Requirements: Engineers' and Technicians' Perspective

    ERIC Educational Resources Information Center

    Cagiltay, Nergiz Ercil; Aydin, Elif Uray; Kara, Ali

    2007-01-01

    This study aims to find out requirements and needs to be fulfilled in developing remote Radio Frequency (RF) laboratory. Remote laboratories are newly emerging solutions for better supporting of e-learning platforms and for increasing their efficiency and effectiveness in technical education. By this way, modern universities aim to provide…

  20. NASA Dryden Flight Loads Laboratory

    NASA Technical Reports Server (NTRS)

    Horn, Tom

    2008-01-01

    This viewgraph presentation reviews the work of the Dryden Flight Loads Laboratory. The capabilities and research interests of the lab are: Structural, thermal, & dynamic analysis; Structural, thermal, & dynamic ground-test techniques; Advanced structural instrumentation; and Flight test support.

  1. Geometric Design Laboratory Fact Sheet

    DOT National Transportation Integrated Search

    2006-08-02

    This fact sheet provides concise information about the Geometric Design Laboratory (GDL) at the Turner-Fairbank Highway Research Center. The mission of the GDL is to provide technical support to the Federal Highway Administration's Office of Safety R...

  2. [Accreditation of medical laboratories].

    PubMed

    Horváth, Andrea Rita; Ring, Rózsa; Fehér, Miklós; Mikó, Tivadar

    2003-07-27

    In Hungary, the National Accreditation Body was established by government in 1995 as an independent, non-profit organization, and has exclusive rights to accredit, amongst others, medical laboratories. The National Accreditation Body has two Specialist Advisory Committees in the health care sector. One is the Health Care Specialist Advisory Committee that accredits certifying bodies, which deal with certification of hospitals. The other Specialist Advisory Committee for Medical Laboratories is directly involved in accrediting medical laboratory services of health care institutions. The Specialist Advisory Committee for Medical Laboratories is a multidisciplinary peer review group of experts from all disciplines of in vitro diagnostics, i.e. laboratory medicine, microbiology, histopathology and blood banking. At present, the only published International Standard applicable to laboratories is ISO/IEC 17025:1999. Work has been in progress on the official approval of the new ISO 15189 standard, specific to medical laboratories. Until the official approval of the International Standard ISO 15189, as accreditation standard, the Hungarian National Accreditation Body has decided to progress with accreditation by formulating explanatory notes to the ISO/IEC 17025:1999 document, using ISO/FDIS 15189:2000, the European EC4 criteria and CPA (UK) Ltd accreditation standards as guidelines. This harmonized guideline provides 'explanations' that facilitate the application of ISO/IEC 17025:1999 to medical laboratories, and can be used as a checklist for the verification of compliance during the onsite assessment of the laboratory. The harmonized guideline adapted the process model of ISO 9001:2000 to rearrange the main clauses of ISO/IEC 17025:1999. This rearrangement does not only make the guideline compliant with ISO 9001:2000 but also improves understanding for those working in medical laboratories, and facilitates the training and education of laboratory staff. With the

  3. Laboratory Response to Ebola - West Africa and United States.

    PubMed

    Sealy, Tara K; Erickson, Bobbie R; Taboy, Céline H; Ströher, Ute; Towner, Jonathan S; Andrews, Sharon E; Rose, Laura E; Weirich, Elizabeth; Lowe, Luis; Klena, John D; Spiropoulou, Christina F; Rayfield, Mark A; Bird, Brian H

    2016-07-08

    The 2014-2016 Ebola virus disease (Ebola) epidemic in West Africa highlighted the need to maintain organized laboratory systems or networks that can be effectively reorganized to implement new diagnostic strategies and laboratory services in response to large-scale events. Although previous Ebola outbreaks enabled establishment of critical laboratory practice safeguards and diagnostic procedures, this Ebola outbreak in West Africa highlighted the need for planning and preparedness activities that are better adapted to emerging pathogens or to pathogens that have attracted little commercial interest. The crisis underscored the need for better mechanisms to streamline development and evaluation of new diagnostic assays, transfer of material and specimens between countries and organizations, and improved processes for rapidly deploying health workers with specific laboratory expertise. The challenges and events of the outbreak forced laboratorians to examine not only the comprehensive capacities of existing national laboratory systems to recognize and respond to events, but also their sustainability over time and the mechanisms that need to be pre-established to ensure effective response. Critical to this assessment was the recognition of how response activities (i.e., infrastructure support, logistics, and workforce supplementation) can be used or repurposed to support the strengthening of national laboratory systems during the postevent transition to capacity building and recovery. This report compares CDC's domestic and international laboratory response engagements and lessons learned that can improve future responses in support of the International Health Regulations and Global Health Security Agenda initiatives.The activities summarized in this report would not have been possible without collaboration with many U.S. and international partners (http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/partners.html).

  4. Laboratory simulation of space plasma phenomena*

    NASA Astrophysics Data System (ADS)

    Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.

    2017-12-01

    Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.

  5. Development of a competency based training programme to support multidisciplinary working in a combined biochemistry/haematology laboratory

    PubMed Central

    Woods, R; Longmire, W; Galloway, M; Smellie, W

    2000-01-01

    The aim of this study was to develop a competency based training programme to support multidisciplinary working in a combined biochemistry and haematology laboratory. The training programme was developed to document that staff were trained in the full range of laboratory tests that they were expected to perform. This programme subsequently formed the basis for the annual performance review of all staff. All staff successfully completed the first phase of the programme. This allowed laboratory staff to work unsupervised at night as part of a partial shift system. All staff are now working towards achieving a level of competence equivalent to the training level required for state registration by the Council for Professions Supplementary to Medicine. External evaluation of the training programme has included accreditation by the Council for Professions Supplementary to Medicine and reinspection by Clinical Pathology Accreditation (UK) Ltd. The development of a competency based training system has facilitated the introduction of multidisciplinary working in the laboratory. In addition, it enables the documentation of all staff to ensure that they are fully trained and are keeping up to date, because the continuing professional development programme in use in our laboratory has been linked to this training scheme. This approach to documentation of training facilitated a recent reinspection by Clinical Pathology Accreditation (UK) Ltd. Key Words: Keyword: multidisciplinary working • competency based training PMID:10889827

  6. A remote laboratory for USRP-based software defined radio

    NASA Astrophysics Data System (ADS)

    Gandhinagar Ekanthappa, Rudresh; Escobar, Rodrigo; Matevossian, Achot; Akopian, David

    2014-02-01

    Electrical and computer engineering graduates need practical working skills with real-world electronic devices, which are addressed to some extent by hands-on laboratories. Deployment capacity of hands-on laboratories is typically constrained due to insufficient equipment availability, facility shortages, and lack of human resources for in-class support and maintenance. At the same time, at many sites, existing experimental systems are usually underutilized due to class scheduling bottlenecks. Nowadays, online education gains popularity and remote laboratories have been suggested to broaden access to experimentation resources. Remote laboratories resolve many problems as various costs can be shared, and student access to instrumentation is facilitated in terms of access time and locations. Labs are converted to homeworks that can be done without physical presence in laboratories. Even though they are not providing full sense of hands-on experimentation, remote labs are a viable alternatives for underserved educational sites. This paper studies remote modality of USRP-based radio-communication labs offered by National Instruments (NI). The labs are offered to graduate and undergraduate students and tentative assessments support feasibility of remote deployments.

  7. Safety in the Chemical Laboratory: Safety in the Chemistry Laboratories: A Specific Program.

    ERIC Educational Resources Information Center

    Corkern, Walter H.; Munchausen, Linda L.

    1983-01-01

    Describes a safety program adopted by Southeastern Louisiana University. Students are given detailed instructions on laboratory safety during the first laboratory period and a test which must be completely correct before they are allowed to return to the laboratory. Test questions, list of safety rules, and a laboratory accident report form are…

  8. 42 CFR 493.1441 - Condition: Laboratories performing high complexity testing; laboratory director.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Condition: Laboratories performing high complexity testing; laboratory director. 493.1441 Section 493.1441 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY...

  9. 42 CFR 493.1441 - Condition: Laboratories performing high complexity testing; laboratory director.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing high complexity testing; laboratory director. 493.1441 Section 493.1441 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY...

  10. Building Cross-Country Networks for Laboratory Capacity and Improvement.

    PubMed

    Schneidman, Miriam; Matu, Martin; Nkengasong, John; Githui, Willie; Kalyesubula-Kibuuka, Simeon; Silva, Kelly Araujo

    2018-03-01

    Laboratory networks are vital to well-functioning public health systems and disease control efforts. Cross-country laboratory networks play a critical role in supporting epidemiologic surveillance, accelerating disease outbreak response, and tracking drug resistance. The East Africa Public Health Laboratory Network was established to bolster diagnostic and disease surveillance capacity. The network supports the introduction of regional quality standards; facilitates the rollout and evaluation of new diagnostic tools; and serves as a platform for training, research, and knowledge sharing. Participating facilities benefitted from state-of-the art investments, capacity building, and mentorship; conducted multicountry research studies; and contributed to disease outbreak response. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. NASA's Laboratory Astrophysics Workshop: Opening Remarks

    NASA Technical Reports Server (NTRS)

    Hasan, Hashima

    2002-01-01

    The Astronomy and Physics Division at NASA Headquarters has an active and vibrant program in Laboratory Astrophysics. The objective of the program is to provide the spectroscopic data required by observers to analyze data from NASA space astronomy missions. The program also supports theoretical investigations to provide those spectroscopic parameters that cannot be obtained in the laboratory; simulate space environment to understand formation of certain molecules, dust grains and ices; and production of critically compiled databases of spectroscopic parameters. NASA annually solicits proposals, and utilizes the peer review process to select meritorious investigations for funding. As the mission of NASA evolves, new missions are launched, and old ones are terminated, the Laboratory Astrophysics program needs to evolve accordingly. Consequently, it is advantageous for NASA and the astronomical community to periodically conduct a dialog to assess the status of the program. This Workshop provides a forum for producers and users of laboratory data to get together and understand each others needs and limitations. A multi-wavelength approach enables a cross fertilization of ideas across wavelength bands.

  12. National Water Quality Laboratory - A Profile

    USGS Publications Warehouse

    Raese, Jon W.

    2001-01-01

    The U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) is a full-service laboratory that specializes in environmental analytical chemistry. The NWQL's primary mission is to support USGS programs requiring environmental analyses that provide consistent methodology for national assessment and trends analysis. The NWQL provides the following: high-quality chemical data; consistent, published, state-of-the-art methodology; extremely low-detection levels; high-volume capability; biological unit for identifying benthic invertebrates; quality assurance for determining long-term water-quality trends; and a professional staff.

  13. An e-health driven laboratory information system to support HIV treatment in Peru: E-quity for laboratory personnel, health providers and people living with HIV.

    PubMed

    García, Patricia J; Vargas, Javier H; Caballero N, Patricia; Calle V, Javier; Bayer, Angela M

    2009-12-10

    Peru has a concentrated HIV epidemic with an estimated 76,000 people living with HIV (PLHIV). Access to highly active antiretroviral therapy (HAART) expanded between 2004-2006 and the Peruvian National Institute of Health was named by the Ministry of Health as the institution responsible for carrying out testing to monitor the effectiveness of HAART. However, a national public health laboratory information system did not exist. We describe the design and implementation of an e-health driven, web-based laboratory information system--NETLAB--to communicate laboratory results for monitoring HAART to laboratory personnel, health providers and PLHIV. We carried out a needs assessment of the existing public health laboratory system, which included the generation and subsequent review of flowcharts of laboratory testing processes to generate better, more efficient streamlined processes, improving them and eliminating duplications. Next, we designed NETLAB as a modular system, integrating key security functions. The system was implemented and evaluated. The three main components of the NETLAB system, registration, reporting and education, began operating in early 2007. The number of PLHIV with recorded CD4 counts and viral loads increased by 1.5 times, to reach 18,907. Publication of test results with NETLAB took an average of 1 day, compared to a pre-NETLAB average of 60 days. NETLAB reached 2,037 users, including 944 PLHIV and 1,093 health providers, during its first year and a half. The percentage of overall PLHIV and health providers who were aware of NETLAB and had a NETLAB password has also increased substantially. NETLAB is an effective laboratory management tool since it is directly integrated into the national laboratory system and streamlined existing processes at the local, regional and national levels. The system also represents the best possible source of timely laboratory information for health providers and PLHIV, allowing patients to access their own

  14. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    Dawn Sumner, geologist, University of California, Davis speaks at a Mars Science Laboratory (MSL) press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The Mars Science Laboratory (MSL), or Curiosity, is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  15. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    John Grant, geologist, Smithsonian National Air and Space Museum in Washington, speaks at a Mars Science Laboratory (MSL) press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The Mars Science Laboratory (MSL), or Curiosity, is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  16. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    NASA chief scientist, Dr. Waleed Abdalati, speaks at a Mars Science Laboratory (MSL) press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The Mars Science Laboratory (MSL), or Curiosity, is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  17. Crew Systems Laboratory/Building 7. Historical Documentation

    NASA Technical Reports Server (NTRS)

    Slovinac, Patricia

    2011-01-01

    Building 7 is managed by the Crew and Thermal Systems Division of the JSC Engineering Directorate. Originally named the Life Systems Laboratory, it contained five major test facilities: two advanced environmental control laboratories and three human-rated vacuum chambers (8 , 11 , and the 20 ). These facilities supported flight crew familiarization and the testing and evaluation of hardware used in the early manned spaceflight programs, including Gemini, Apollo, and the ASTP.

  18. Capability of the Gas Analysis and Testing Laboratory at the NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Broerman, Craig; Jimenez, Javier; Sweterlitsch, Jeff

    2012-01-01

    The Gas Analysis and Testing Laboratory is an integral part of the testing performed at the NASA Johnson Space Center. The Gas Analysis and Testing Laboratory is a high performance laboratory providing real time analytical instruments to support manned and unmanned testing. The lab utilizes precision gas chromatographs, gas analyzers and spectrophotometers to support the technology development programs within the NASA community. The Gas Analysis and Testing Laboratory works with a wide variety of customers and provides engineering support for user-specified applications in compressed gas, chemical analysis, general and research laboratory.

  19. Capability of the Gas Analysis and Testing Laboratory at the NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Broerman, Craig; Jimenez, Javier; Sweterlitsch, Jeff

    2011-01-01

    The Gas Analysis and Testing Laboratory is an integral part of the testing performed at the NASA Johnson Space Center. The Gas Analysis and Testing Laboratory is a high performance laboratory providing real time analytical instruments to support manned and unmanned testing. The lab utilizes precision gas chromatographs, gas analyzers and spectrophotometers to support the technology development programs within the NASA community. The Gas Analysis and Testing Laboratory works with a wide variety of customers and provides engineering support for user-specified applications in compressed gas, chemical analysis, general and research laboratory

  20. National survey on intra-laboratory turnaround time for some most common routine and stat laboratory analyses in 479 laboratories in China.

    PubMed

    Fei, Yang; Zeng, Rong; Wang, Wei; He, Falin; Zhong, Kun; Wang, Zhiguo

    2015-01-01

    To investigate the state of the art of intra-laboratory turnaround time (intra-TAT), provide suggestions and find out whether laboratories accredited by International Organization for Standardization (ISO) 15189 or College of American Pathologists (CAP) will show better performance on intra-TAT than non-accredited ones. 479 Chinese clinical laboratories participating in the external quality assessment programs of chemistry, blood gas, and haematology tests organized by the National Centre for Clinical Laboratories in China were included in our study. General information and the median of intra-TAT of routine and stat tests in last one week were asked in the questionnaires. The response rate of clinical biochemistry, blood gas, and haematology testing were 36% (479/1307), 38% (228/598), and 36% (449/1250), respectively. More than 50% of laboratories indicated that they had set up intra-TAT median goals and almost 60% of laboratories declared they had monitored intra-TAT generally for every analyte they performed. Among all analytes we investigated, the intra-TAT of haematology analytes was shorter than biochemistry while the intra-TAT of blood gas analytes was the shortest. There were significant differences between median intra-TAT on different days of the week for routine tests. However, there were no significant differences in median intra-TAT reported by accredited laboratories and non-accredited laboratories. Many laboratories in China are aware of intra-TAT control and are making effort to reach the target. There is still space for improvement. Accredited laboratories have better status on intra-TAT monitoring and target setting than the non-accredited, but there are no significant differences in median intra-TAT reported by them.

  1. National survey on intra-laboratory turnaround time for some most common routine and stat laboratory analyses in 479 laboratories in China

    PubMed Central

    Fei, Yang; Zeng, Rong; Wang, Wei; He, Falin; Zhong, Kun

    2015-01-01

    Introduction To investigate the state of the art of intra-laboratory turnaround time (intra-TAT), provide suggestions and find out whether laboratories accredited by International Organization for Standardization (ISO) 15189 or College of American Pathologists (CAP) will show better performance on intra-TAT than non-accredited ones. Materials and methods 479 Chinese clinical laboratories participating in the external quality assessment programs of chemistry, blood gas, and haematology tests organized by the National Centre for Clinical Laboratories in China were included in our study. General information and the median of intra-TAT of routine and stat tests in last one week were asked in the questionnaires. Results The response rate of clinical biochemistry, blood gas, and haematology testing were 36% (479 / 1307), 38% (228 / 598), and 36% (449 / 1250), respectively. More than 50% of laboratories indicated that they had set up intra-TAT median goals and almost 60% of laboratories declared they had monitored intra-TAT generally for every analyte they performed. Among all analytes we investigated, the intra-TAT of haematology analytes was shorter than biochemistry while the intra-TAT of blood gas analytes was the shortest. There were significant differences between median intra-TAT on different days of the week for routine tests. However, there were no significant differences in median intra-TAT reported by accredited laboratories and non-accredited laboratories. Conclusions Many laboratories in China are aware of intra-TAT control and are making effort to reach the target. There is still space for improvement. Accredited laboratories have better status on intra-TAT monitoring and target setting than the non-accredited, but there are no significant differences in median intra-TAT reported by them. PMID:26110033

  2. Safety Precautions and Operating Procedures in an (A)BSL-4 Laboratory: 1. Biosafety Level 4 Suit Laboratory Suite Entry and Exit Procedures

    PubMed Central

    Janosko, Krisztina; Holbrook, Michael R.; Adams, Ricky; Barr, Jason; Bollinger, Laura; Newton, Je T'aime; Ntiforo, Corrie; Coe, Linda; Wada, Jiro; Pusl, Daniela; Jahrling, Peter B.; Kuhn, Jens H.; Lackemeyer, Matthew G.

    2016-01-01

    Biosafety level 4 (BSL-4) suit laboratories are specifically designed to study high-consequence pathogens for which neither infection prophylaxes nor treatment options exist. The hallmarks of these laboratories are: custom-designed airtight doors, dedicated supply and exhaust airflow systems, a negative-pressure environment, and mandatory use of positive-pressure (“space”) suits. The risk for laboratory specialists working with highly pathogenic agents is minimized through rigorous training and adherence to stringent safety protocols and standard operating procedures. Researchers perform the majority of their work in BSL-2 laboratories and switch to BSL-4 suit laboratories when work with a high-consequence pathogen is required. Collaborators and scientists considering BSL-4 projects should be aware of the challenges associated with BSL-4 research both in terms of experimental technical limitations in BSL-4 laboratory space and the increased duration of such experiments. Tasks such as entering and exiting the BSL-4 suit laboratories are considerably more complex and time-consuming compared to BSL-2 and BSL-3 laboratories. The focus of this particular article is to address basic biosafety concerns and describe the entrance and exit procedures for the BSL-4 laboratory at the NIH/NIAID Integrated Research Facility at Fort Detrick. Such procedures include checking external systems that support the BSL-4 laboratory, and inspecting and donning positive-pressure suits, entering the laboratory, moving through air pressure-resistant doors, and connecting to air-supply hoses. We will also discuss moving within and exiting the BSL-4 suit laboratories, including using the chemical shower and removing and storing positive-pressure suits. PMID:27768063

  3. Safety Precautions and Operating Procedures in an (A)BSL-4 Laboratory: 1. Biosafety Level 4 Suit Laboratory Suite Entry and Exit Procedures.

    PubMed

    Janosko, Krisztina; Holbrook, Michael R; Adams, Ricky; Barr, Jason; Bollinger, Laura; Newton, Je T'aime; Ntiforo, Corrie; Coe, Linda; Wada, Jiro; Pusl, Daniela; Jahrling, Peter B; Kuhn, Jens H; Lackemeyer, Matthew G

    2016-10-03

    Biosafety level 4 (BSL-4) suit laboratories are specifically designed to study high-consequence pathogens for which neither infection prophylaxes nor treatment options exist. The hallmarks of these laboratories are: custom-designed airtight doors, dedicated supply and exhaust airflow systems, a negative-pressure environment, and mandatory use of positive-pressure ("space") suits. The risk for laboratory specialists working with highly pathogenic agents is minimized through rigorous training and adherence to stringent safety protocols and standard operating procedures. Researchers perform the majority of their work in BSL-2 laboratories and switch to BSL-4 suit laboratories when work with a high-consequence pathogen is required. Collaborators and scientists considering BSL-4 projects should be aware of the challenges associated with BSL-4 research both in terms of experimental technical limitations in BSL-4 laboratory space and the increased duration of such experiments. Tasks such as entering and exiting the BSL-4 suit laboratories are considerably more complex and time-consuming compared to BSL-2 and BSL-3 laboratories. The focus of this particular article is to address basic biosafety concerns and describe the entrance and exit procedures for the BSL-4 laboratory at the NIH/NIAID Integrated Research Facility at Fort Detrick. Such procedures include checking external systems that support the BSL-4 laboratory, and inspecting and donning positive-pressure suits, entering the laboratory, moving through air pressure-resistant doors, and connecting to air-supply hoses. We will also discuss moving within and exiting the BSL-4 suit laboratories, including using the chemical shower and removing and storing positive-pressure suits.

  4. Senior Laboratory Animal Technician | Center for Cancer Research

    Cancer.gov

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  5. Laboratory medicine and sports: between Scylla and Charybdis.

    PubMed

    Lippi, Giuseppe; Banfi, Giuseppe; Botrè, Francesco; de la Torre, Xavier; De Vita, Francesco; Gomez-Cabrera, Mari Carmen; Maffulli, Nicola; Marchioro, Lucio; Pacifici, Roberta; Sanchis-Gomar, Fabian; Schena, Federico; Plebani, Mario

    2012-02-28

    Laboratory medicine is complex and contributes to the diagnosis, therapeutic monitoring and follow-up of acquired and inherited human disorders. The regular practice of physical exercise provides important benefits in heath and disease and sports medicine is thereby receiving growing focus from almost each and every clinical discipline, including laboratory medicine. Sport-laboratory medicine is a relatively innovative branch of laboratory science, which can provide valuable contributions to the diagnosis and follow-up of athletic injuries, and which is acquiring a growing clinical significance to support biomechanics and identify novel genomics and "exercisenomics" patterns that can help identify specific athlete's tendency towards certain types of sport traumas and injuries. Laboratory medicine can also provide sport physicians and coaches with valuable clues about personal inclination towards a certain sport, health status, fitness and nutritional deficiencies of professional, elite and recreational athletes in order to enable a better and earlier prediction of sport injuries, overreaching and overtraining. Finally, the wide armamentarium of laboratory tests represents the milestone for identifying cheating athletes in the strenuous fight against doping in sports.

  6. A professional development model for medical laboratory scientists working in the immunohematology laboratory.

    PubMed

    Garza, Melinda N; Pulido, Lila A; Amerson, Megan; Ali, Faheem A; Greenhill, Brandy A; Griffin, Gary; Alvarez, Enrique; Whatley, Marsha; Hu, Peter C

    2012-01-01

    Transfusion medicine, a section of the Department of Laboratory Medicine at The University of Texas MD Anderson Cancer Center is committed to the education and advancement of its health care professionals. It is our belief that giving medical laboratory professionals a path for advancement leads to excellence and increases overall professionalism in the Immunohematology Laboratory. As a result of this strong commitment to excellence and professionalism, the Immunohematology laboratory has instituted a Professional Development Model (PDM) that aims to create Medical Laboratory Scientists (MLS) that are not only more knowledgeable, but are continually striving for excellence. In addition, these MLS are poised for advancement in their careers. The professional development model consists of four levels: Discovery, Application, Maturation, and Expert. The model was formulated to serve as a detailed path to the mastery of all process and methods in the Immunohematology Laboratory. Each level in the professional development model consists of tasks that optimize the laboratory workflow and allow for concurrent training. Completion of a level in the PDM is rewarded with financial incentive and further advancement in the field. The PDM for Medical Laboratory Scientists in the Immunohematology Laboratory fosters personal development, rewards growth and competency, and sets high standards for all services and skills provided. This model is a vital component of the Immunohematology Laboratory and aims to ensure the highest quality of care and standards in their testing. It is because of the success of this model and the robustness of its content that we hope other medical laboratories aim to reach the same level of excellence and professionalism, and adapt this model into their own environment.

  7. Laboratory performance in the Sediment Laboratory Quality-Assurance Project, 1996-98

    USGS Publications Warehouse

    Gordon, John D.; Newland, Carla A.; Gagliardi, Shane T.

    2000-01-01

    Analytical results from all sediment quality-control samples are compiled and statistically summarized by the USGS, Branch of Quality Systems, both on an intra- and interlaboratory basis. When evaluating these data, the reader needs to keep in mind that every measurement has an error component associated with it. It is premature to use the data from the first five SLQA studies to judge any of the laboratories as performing in an unacceptable manner. There were, however, some notable differences in the results for the 12 laboratories that participated in the five SLQA studies. For example, the overall median percent difference for suspended-sediment concentration on an individual laboratory basis ranged from –18.04 to –0.33 percent. Five of the 12 laboratories had an overall median percent difference for suspended-sediment concentration of –2.02 to –0.33 percent. There was less variability in the median difference for the measured fine-size material mass. The overall median percent difference for fine-size material mass ranged from –10.11 to –4.27 percent. Except for one laboratory, the median difference for fine-size material mass was within a fairly narrow range of –6.76 to –4.27 percent. The median percent difference for sand-size material mass differed among laboratories more than any other physical sediment property measured in the study. The overall median percent difference for the sand-size material mass ranged from –1.49 percent to 26.39 percent. Five of the nine laboratories that do sand/fine separations had overall median percent differences that ranged from –1.49 to 2.98 percent for sand-size material mass. Careful review of the data reveals that certain laboratories consistently produced data within statistical control limits for some or all of the physical sediment properties measured in this study, whereas other laboratories occasionally produced data that exceeded the control limits.

  8. Horizontal and vertical integration in hospital laboratories and the laboratory information system.

    PubMed

    Friedman, B A; Mitchell, W

    1990-09-01

    An understanding of horizontal and vertical integration and their quasi-integration variants is important for pathologists to formulate a competitive strategy for hospital clinical laboratories. These basic organizational concepts, in turn, are based on the need to establish control over critical laboratory inputs and outputs. The pathologist seeks greater control of mission-critical system inputs and outputs to increase the quality and efficiency of the laboratory operations. The LIS produces horizontal integration of the various hospital laboratories by integrating them vertically. Forward vertical quasi-integration of the laboratories is mediated primarily by the LIS through front-end valued-added features such as reporting of results and creating a long-term on-line test result archive. These features increase the value of the information product of pathology for clinicians and increase the cost of switching to another system. The LIS can also serve as a means for customizing the information product of the laboratories to appeal to new market segments such as hospital administrators.

  9. Laboratory medicine education in Lithuania.

    PubMed

    Kucinskiene, Zita Ausrele; Bartlingas, Jonas

    2011-01-01

    In Lithuania there are two types of specialists working in medical laboratories and having a university degree: laboratory medicine physicians and medical biologists. Both types of specialists are officially being recognized and regulated by the Ministry of Health of Lithuania. Laboratory medicine physicians become specialists in laboratory medicine after an accredited 4-year multidisciplinary residency study program in Laboratory Medicine. The residency program curriculum for laboratory medicine physicians is presented. On December 9, 2009 the Equivalence of Standards for medical specialists was accepted and Lithuanian medical specialists in Clinical Chemistry and Laboratory Medicine can now apply for EC4 registration. Medical biologists become specialists in laboratory medicine after an accredited 2-year master degree multidisciplinary study program in Medical Biology, consisting of 80 credits. Various postgraduate advanced training courses for the continuous education of specialists in laboratory medicine were first introduced in 1966. Today it covers 1-2-week courses in different subspecialties of laboratory medicine. They are obligatory for laboratory medicine physicians for the renewal of their license. It is not compulsory for medical biologists to participate in these courses. The Centre of Laboratory Diagnostics represents a place for the synthesis and application of the basic sciences, the performance of research in various fields of laboratory medicine, as well as performance of thousands of procedures daily and provision of specific teaching programs.

  10. Investigating Student Perceptions of the Chemistry Laboratory and Their Approaches to Learning in the Laboratory

    NASA Astrophysics Data System (ADS)

    Berger, Spencer Granett

    This dissertation explores student perceptions of the instructional chemistry laboratory and the approaches students take when learning in the laboratory environment. To measure student perceptions of the chemistry laboratory, a survey instrument was developed. 413 students responded to the survey during the Fall 2011 semester. Students' perception of the usefulness of the laboratory in helping them learn chemistry in high school was related to several factors regarding their experiences in high school chemistry. Students' perception of the usefulness of the laboratory in helping them learn chemistry in college was also measured. Reasons students provided for the usefulness of the laboratory were categorized. To characterize approaches to learning in the laboratory, students were interviewed midway through semester (N=18). The interviews were used to create a framework describing learning approaches that students use in the laboratory environment. Students were categorized into three levels: students who view the laboratory as a requirement, students who believe that the laboratory augments their understanding, and students who view the laboratory as an important part of science. These categories describe the types of strategies students used when conducting experiments. To further explore the relationship between students' perception of the laboratory and their approaches to learning, two case studies are described. These case studies involve interviews in the beginning and end of the semester. In the interviews, students reflect on what they have learned in the laboratory and describe their perceptions of the laboratory environment. In order to encourage students to adopt higher-level approaches to learning in the laboratory, a metacognitive intervention was created. The intervention involved supplementary questions that students would answer while completing laboratory experiments. The questions were designed to encourage students to think critically about the

  11. Phillips Laboratory Geophysics Scholar Program

    DTIC Science & Technology

    1993-09-30

    research at Phillips Laboratory . Research sponsored by Air Force Geophysics Laboratory ...Geophysics Laboratory (now the Phillips Laboratory , Geophysics Directorate), United States Air Force for its sponsorship of this research through the Air ...September 1993 Approved for public release; distribution unlimited PHILLIPS LABORATORY Directorate of Geophysics AIR FORCE MATERIEL COMMAND

  12. [How do hospital clinical laboratories and laboratory testing companies cooperate and build reciprocal relations?].

    PubMed

    Kawano, Seiji

    2014-12-01

    As the 2nd Joint Symposium of the Japanese Society of Laboratory Medicine and the Japanese Association of Laboratory Pathologists, the symposium on clinical test out-sourcing and branch laboratories was held at the 60th General Meeting of the Japanese Society of Laboratory Medicine on November 2nd, 2013 in Kobe. For the symposium, we conducted a questionnaire survey on the usage of clinical test out-sourcing and the introduction of branch laboratories to clinical laboratories of Japanese university hospitals, both private and public, between July 25th and August 20th, 2013. Seventy-two hospitals responded to the questionnaire survey, consisting of 41 public medical school hospitals and 31 private ones. According to the survey, the selection of each clinical test for out-sourcing was mainly determined by the capacities of hospital clinical laboratories and their equipment, as well as the profitability of each test. The main concerns of clinical laboratory members of university hospitals involved the continuity of measurement principles, traceability, and standardization of reference values for each test. They strongly requested the interchangeability and computerization of test data between laboratory testing companies. A branch laboratory was introduced to six hospitals, all of which were private medical college hospitals, out of 72 university hospitals, and eight of the other hospitals were open to its introduction. The merits and demerits of introducing a branch laboratory were also discussed. (Review).

  13. Exploration Laboratory Analysis

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Ronzano, K.; Shaw, T.

    2016-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the down selection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institutes rHEALTH X and Intelligent Optical Systems later flow assays combined with Holomics smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements that will be finalized in FY16. Also, the down selected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.

  14. Exploration Laboratory Analysis

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Ronzano, K.; Shaw, T.

    2016-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the downselection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institute's rHEALTH X and Intelligent Optical System's lateral flow assays combined with Holomic's smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements. The technology demonstrations and metrics for success will be finalized in FY16. Also, the downselected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.

  15. Proceedings of the NASA Laboratory Astrophysics Workshop

    NASA Technical Reports Server (NTRS)

    Salama, Farid (Editor)

    2002-01-01

    This document is the proceedings of the NASA Laboratory Astrophysics Workshop, convened May 1-3, 2002 at NASA's Ames Research Center. Sponsored by the NASA Office of Space Science (OSS), this programmatic workshop is held periodically by NASA to discuss the current state of knowledge in the interdisciplinary field of laboratory astrophysics and to identify the science priorities (needs) in support of NASA's space missions. An important goal of the Workshop is to provide input to OSS in the form of a white paper for incorporation in its strategic planning. This report comprises a record of the complete proceedings of the Workshop and the Laboratory Astrophysics White Paper drafted at the Workshop.

  16. Air Force Research Laboratory’s Focused Long Term Challenges

    DTIC Science & Technology

    2008-04-01

    Air Force Research Laboratory ( AFRL ) mission is to provide support to the Air Force (AF) and the warfighters with... Air Force Research Laboratory’s Focused Long Term Challenges Leo J Rose Munitions Directorate, Air Force Research Laboratory , 101 W Eglin Blvd...This technology vision, which was born in our Air Force Research Laboratory , builds on the Air Force’s traditional kill

  17. The Virtual Robotics Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kress, R.L.; Love, L.J.

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well asmore » many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.« less

  18. Facilities to Support Beamed Energy Launch Testing at the Laser Hardened Materials Evaluation Laboratory (LHMEL)

    NASA Astrophysics Data System (ADS)

    Lander, Michael L.

    2003-05-01

    The Laser Hardened Materials Evaluation Laboratory (LHMEL) has been characterizing material responses to laser energy in support of national defense programs and the aerospace industry for the past 26 years. This paper reviews the overall resources available at LHMEL to support fundamental materials testing relating to impulse coupling measurement and to explore beamed energy launch concepts. Located at Wright-Patterson Air Force Base, Ohio, LHMEL is managed by the Air Force Research Laboratory Materials Directorate AFRL/MLPJ and operated by Anteon Corporation. The facility's advanced hardware is centered around carbon dioxide lasers producing output power up to 135kW and neodymium glass lasers producing up to 10 kilojoules of repetitively pulsed output. The specific capabilities of each laser device and related optical systems are discussed. Materials testing capabilities coupled with the laser systems are also described including laser output and test specimen response diagnostics. Environmental simulation capabilities including wind tunnels and large-volume vacuum chambers relevant to beamed energy propulsion are also discussed. This paper concludes with a summary of the procedures and methods by which the facility can be accessed.

  19. Laboratory Data for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, P.; Brown, G. V.; Chen, H.; Gu, M.-F.; Kahn, S. M.; Lepson, J. K.; Savin, D. W.; Utter, S. B.

    2000-01-01

    Laboratory facilities have made great strides in producing large sets of reliable data for X-ray astronomy, which include ionization and recombination cross sections needed for charge balance calculations as well as the atomic data needed for interpreting X-ray line formation. We discuss data from the new generation sources and pay special attention to the LLNL electron beam ion trap experiment, which is unique in its ability to provide direct laboratory access to spectral data under precisely controlled conditions that simulate those found in many astrophysical plasmas. Examples of spectral data obtained in the 1-160 A wavelength range are given illustrating the type of laboratory X-ray data produced in support of such missions as Chandra, X-Ray Multi-Mirror telescope (XMM), Advanced Satellite for Cosmology and Astrophysics (ASCA) and Extreme Ultraviolet Explorer Satellite (EUVE).

  20. Global Geospace Science/Polar Plasma Laboratory: POLAR

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Global Geospace Science (GGS) Project is discussed as part of the International Solar-Terrestrial Physics (ISTP) Science Initiative. The objectives of Polar Plasma Laboratory (POLAR), one of the two spacecraft to be used by the Project to fill critical gaps in the scientific understanding of solar and plasma physics, are outlined. POLAR Laboratory is described, along with POLAR instrumentation, support subsystems, and orbits. Launch vehicle and injection into orbit are also addressed.

  1. Machine learning in laboratory medicine: waiting for the flood?

    PubMed

    Cabitza, Federico; Banfi, Giuseppe

    2018-03-28

    This review focuses on machine learning and on how methods and models combining data analytics and artificial intelligence have been applied to laboratory medicine so far. Although still in its infancy, the potential for applying machine learning to laboratory data for both diagnostic and prognostic purposes deserves more attention by the readership of this journal, as well as by physician-scientists who will want to take advantage of this new computer-based support in pathology and laboratory medicine.

  2. Brookhaven National Laboratory Institutional Plan FY2001--FY2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, S.

    Brookhaven National Laboratory is a multidisciplinary laboratory in the Department of Energy National Laboratory system and plays a lead role in the DOE Science and Technology mission. The Laboratory also contributes to the DOE missions in Energy Resources, Environmental Quality, and National Security. Brookhaven strives for excellence in its science research and in facility operations and manages its activities with particular sensitivity to environmental and community issues. The Laboratory's programs are aligned continuously with the goals and objectives of the DOE through an Integrated Planning Process. This Institutional Plan summarizes the portfolio of research and capabilities that will assure successmore » in the Laboratory's mission in the future. It also sets forth BNL strategies for our programs and for management of the Laboratory. The Department of Energy national laboratory system provides extensive capabilities in both world class research expertise and unique facilities that cannot exist without federal support. Through these national resources, which are available to researchers from industry, universities, other government agencies and other nations, the Department advances the energy, environmental, economic and national security well being of the US, provides for the international advancement of science, and educates future scientists and engineers.« less

  3. 42 CFR 414.510 - Laboratory date of service for clinical laboratory and pathology specimens.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Laboratory date of service for clinical laboratory and pathology specimens. 414.510 Section 414.510 Public Health CENTERS FOR MEDICARE & MEDICAID... AND OTHER HEALTH SERVICES Payment for New Clinical Diagnostic Laboratory Tests § 414.510 Laboratory...

  4. Moving up the automation S-curve: The role of the laboratory automation support function in successful pharmaceutical R&D

    PubMed Central

    Maddux, Randy J.

    1995-01-01

    The political and economic climate that exists today is a challenging one for the pharmaceutical industry. To effectively compete in today's marketplace, companies must discover and develop truly innovative medicines. The R&D organizations within these companies are under increasing pressure to hold down costs while accomplishing this mission. In this environment of level head count and operating budgets, it is imperative that laboratory management uses resources in the most effective, efficient ways possible. Investment in laboratory automation is a proven tool for doing just that. This paper looks at the strategy and tactics behind the formation and evolution of a central automation/laboratory technology support function at the Glaxo Research Institute. Staffing of the function is explained, along with operating strategy and alignment with the scientific client base. Using the S-curve model of technological progress, both the realized and potential impact on successful R&D automation and laboratory technology development are assessed. PMID:18925012

  5. Clinical laboratory technician to clinical laboratory scientist articulation and distance learning.

    PubMed

    Crowley, J R; Laurich, G A; Mobley, R C; Arnette, A H; Shaikh, A H; Martin, S M

    1999-01-01

    Laboratory workers and educators alike are challenged to support access to education that is current and provides opportunities for career advancement in the work place. The clinical laboratory science (CLS) program at the Medical College of Georgia in Augusta developed a clinical laboratory technician (CLT) to CLS articulation option, expanded it through distance learning, and integrated computer based learning technology into the educational process over a four year period to address technician needs for access to education. Both positive and negative outcomes were realized through these efforts. Twenty-seven students entered the pilot articulation program, graduated, and took a CLS certification examination. Measured in terms of CLS certification, promotions, pay raises, and career advancement, the program described was a success. However, major problems were encountered related to the use of unfamiliar communication technology; administration of the program at distance sites; communication between educational institutions, students, and employers; and competition with CLT programs for internship sites. These problems must be addressed in future efforts to provide a successful distance learning program. Effective methods for meeting educational needs and career ladder expectations of CLTs and their employers are important to the overall quality and appeal of the profession. Educational technology that includes computer-aided instruction, multimedia, and telecommunications can provide powerful tools for education in general and CLT articulation in particular. Careful preparation and vigilant attention to reliable delivery methods as well as students' progress and outcomes is critical for an efficient, economically feasible, and educationally sound program.

  6. Relay Support for the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D. Jr,; Bell, David J.; Gladden, Roy E.; Ilott, Peter A.; Jedrey, Thomas C.; Johnston, M. Daniel; Maxwell, Jennifer L.; Mendoza, Ricardo; McSmith, Gaylon W.; Potts, Christopher L.; hide

    2013-01-01

    The Mars Science Laboratory (MSL) mission landed the Curiosity Rover on the surface of Mars on August 6, 2012, beginning a one-Martian-year primary science mission. An international network of Mars relay orbiters, including NASA's 2001 Mars Odyssey Orbiter (ODY) and Mars Reconnaissance Orbiter (MRO), and ESA's Mars Express Orbiter (MEX), were positioned to provide critical event coverage of MSL's Entry, Descent, and Landing (EDL). The EDL communication plan took advantage of unique and complementary capabilities of each orbiter to provide robust information capture during this critical event while also providing low-latency information during the landing. Once on the surface, ODY and MRO have provided effectively all of Curiosity's data return from the Martian surface. The link from Curiosity to MRO incorporates a number of new features enabled by the Electra and Electra-Lite software-defined radios on MRO and Curiosity, respectively. Specifically, the Curiosity-MRO link has for the first time on Mars relay links utilized frequency-agile operations, data rates up to 2.048 Mb/s, suppressed carrier modulation, and a new Adaptive Data Rate algorithm in which the return link data rate is optimally varied throughout the relay pass based on the actual observed link channel characteristics. In addition to the baseline surface relay support by ODY and MRO, the MEX relay service has been verified in several successful surface relay passes, and MEX now stands ready to provide backup relay support should NASA's orbiters become unavailable for some period of time.

  7. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - MANUFACTURING AND FABRICATION REPAIR LABORATORY AT SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  8. Aeroshell for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from July 2008 shows the aeroshell for NASA's Mars Science Laboratory while it was being worked on by spacecraft technicians at Lockheed Martin Space Systems Company near Denver.

    This hardware was delivered in early fall of 2008 to NASA's Jet Propulsion Laboratory, Pasadena, Calif., where the Mars Science Laboratory spacecraft is being assembled and tested.

    The aeroshell encapsulates the mission's rover and descent stage during the journey from Earth to Mars and shields them from the intense heat of friction with that upper atmosphere during the initial portion of descent.

    The aeroshell has two main parts: the backshell, which is on top in this image and during the descent, and the heat shield, on the bottom. The heat shield in this image is an engineering unit for testing. The heat shield to be used in flight will be substituted later. The heat shield has a diameter of about 15 feet. For comparison, the heat shields for NASA's Mars Exploraton Rovers Spirit and Opportunity were 8.5 feet and the heat shields for the Apollo capsules that protected astronauts returning to Earth from the moon were just under 13 feet.

    In addition to protecting the Mars Science Laboratory rover, the backshell provides structural support for the descent stage's parachute and sky crane, a system that will lower the rover to a soft landing on the surface of Mars. The backshell for the Mars Science Laboratory is made of an aluminum honeycomb structure sandwiched between graphite-epoxy face sheets. It is covered with a thermal protection system composed of a cork/silicone super light ablator material that originated with the Viking landers of the 1970s. This ablator material has been used on the heat shields of all NASA Mars landers in the past, but this mission is the first Mars mission using it on the backshell.

    The heat shield for Mars Science Laboratory's flight will use tiles made of phenolic impregnated carbon ablator. The engineering unit in

  9. [Laboratory accreditation and proficiency testing].

    PubMed

    Kuwa, Katsuhiko

    2003-05-01

    ISO/TC 212 covering clinical laboratory testing and in vitro diagnostic test systems will issue the international standard for medical laboratory quality and competence requirements, ISO 15189. This standard is based on the ISO/IEC 17025, general requirements for competence of testing and calibration laboratories and ISO 9001, quality management systems-requirements. Clinical laboratory services are essential to patient care and therefore should be available to meet the needs of all patients and clinical personnel responsible for human health care. If a laboratory seeks accreditation, it should select an accreditation body that operates according to this international standard and in a manner which takes into account the particular requirements of clinical laboratories. Proficiency testing should be available to evaluate the calibration laboratories and reference measurement laboratories in clinical medicine. Reference measurement procedures should be of precise and the analytical principle of measurement applied should ensure reliability. We should be prepared to establish a quality management system and proficiency testing in clinical laboratories.

  10. Analytical Chemistry Laboratory. Progress report for FY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients --more » Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.« less

  11. The ideal laboratory information system.

    PubMed

    Sepulveda, Jorge L; Young, Donald S

    2013-08-01

    Laboratory information systems (LIS) are critical components of the operation of clinical laboratories. However, the functionalities of LIS have lagged significantly behind the capacities of current hardware and software technologies, while the complexity of the information produced by clinical laboratories has been increasing over time and will soon undergo rapid expansion with the use of new, high-throughput and high-dimensionality laboratory tests. In the broadest sense, LIS are essential to manage the flow of information between health care providers, patients, and laboratories and should be designed to optimize not only laboratory operations but also personalized clinical care. To list suggestions for designing LIS with the goal of optimizing the operation of clinical laboratories while improving clinical care by intelligent management of laboratory information. Literature review, interviews with laboratory users, and personal experience and opinion. Laboratory information systems can improve laboratory operations and improve patient care. Specific suggestions for improving the function of LIS are listed under the following sections: (1) Information Security, (2) Test Ordering, (3) Specimen Collection, Accessioning, and Processing, (4) Analytic Phase, (5) Result Entry and Validation, (6) Result Reporting, (7) Notification Management, (8) Data Mining and Cross-sectional Reports, (9) Method Validation, (10) Quality Management, (11) Administrative and Financial Issues, and (12) Other Operational Issues.

  12. Multiprog virtual laboratory applied to PLC programming learning

    NASA Astrophysics Data System (ADS)

    Shyr, Wen-Jye

    2010-10-01

    This study develops a Multiprog virtual laboratory for a mechatronics education designed to teach how to programme a programmable logic controller (PLC). The study was carried out with 34 students in the Department of Industry Education and Technology at National Changhua University of Education in Taiwan. In total, 17 students were assigned to each group, experimental and control. Two laboratory exercises were designed to provide students with experience in PLC programming. The results show that the experiments supported by Multiprog virtual laboratory user-friendly control interfaces generate positive meaningful results in regard to students' knowledge and understanding of the material.

  13. NASA Glenn's Acoustical Testing Laboratory Awarded Accreditation by the National Voluntary Laboratory Accreditation Program

    NASA Technical Reports Server (NTRS)

    Akers, James C.; Cooper, Beth A.

    2004-01-01

    NASA Glenn Research Center's Acoustical Testing Laboratory (ATL) provides a comprehensive array of acoustical testing services, including sound pressure level, sound intensity level, and sound-power-level testing per International Standards Organization (ISO)1 3744. Since its establishment in September 2000, the ATL has provided acoustic emission testing and noise control services for a variety of customers, particularly microgravity space flight hardware that must meet International Space Station acoustic emission requirements. The ATL consists of a 23- by 27- by 20-ft (height) convertible hemi/anechoic test chamber and a separate sound-attenuating test support enclosure. The ATL employs a personal-computer-based data acquisition system that provides up to 26 channels of simultaneous data acquisition with real-time analysis (ref. 4). Specialized diagnostic tools, including a scanning sound-intensity system, allow the ATL's technical staff to support its clients' aggressive low-noise design efforts to meet the space station's acoustic emission requirement. From its inception, the ATL has pursued the goal of developing a comprehensive ISO 17025-compliant quality program that would incorporate Glenn's existing ISO 9000 quality system policies as well as ATL-specific technical policies and procedures. In March 2003, the ATL quality program was awarded accreditation by the National Voluntary Laboratory Accreditation Program (NVLAP) for sound-power-level testing in accordance with ISO 3744. The NVLAP program is administered by the National Institutes of Standards and Technology (NIST) of the U.S. Department of Commerce and provides third-party accreditation for testing and calibration laboratories. There are currently 24 NVLAP-accredited acoustical testing laboratories in the United States. NVLAP accreditation covering one or more specific testing procedures conducted in accordance with established test standards is awarded upon successful completion of an intensive

  14. Environmental Response Laboratory Network (ERLN) Overview

    EPA Pesticide Factsheets

    The Environmental Response Laboratory Network provides Federal, State, and local decision-makers with reliable, high quality analytical data used to identify chemical, biological, and radiological contaminants collected in support of response and cleanup.

  15. Mice examined in Animal Laboratory of Lunar Receiving Laboratory

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Landrum Young (seated), Brown and Root-Northrup, and Russell Stullken, Manned Spacecraft Center, examine mice in the Animal laboratory of the Lunar Receiving Laboratory which have been inoculated with lunar sample material. wish for peace for all mankind. astronauts will be released from quarantine on August 11, 1969. Donald K. Slayton (right), MSC Director of Flight Crew Operations; and Lloyd Reeder, training coordinator.

  16. Plasma creatinine in dogs: intra- and inter-laboratory variation in 10 European veterinary laboratories

    PubMed Central

    2011-01-01

    Background There is substantial variation in reported reference intervals for canine plasma creatinine among veterinary laboratories, thereby influencing the clinical assessment of analytical results. The aims of the study was to determine the inter- and intra-laboratory variation in plasma creatinine among 10 veterinary laboratories, and to compare results from each laboratory with the upper limit of its reference interval. Methods Samples were collected from 10 healthy dogs, 10 dogs with expected intermediate plasma creatinine concentrations, and 10 dogs with azotemia. Overlap was observed for the first two groups. The 30 samples were divided into 3 batches and shipped in random order by postal delivery for plasma creatinine determination. Statistical testing was performed in accordance with ISO standard methodology. Results Inter- and intra-laboratory variation was clinically acceptable as plasma creatinine values for most samples were usually of the same magnitude. A few extreme outliers caused three laboratories to fail statistical testing for consistency. Laboratory sample means above or below the overall sample mean, did not unequivocally reflect high or low reference intervals in that laboratory. Conclusions In spite of close analytical results, further standardization among laboratories is warranted. The discrepant reference intervals seem to largely reflect different populations used in establishing the reference intervals, rather than analytical variation due to different laboratory methods. PMID:21477356

  17. Pathology and Laboratory Medicine Support for the American Expeditionary Forces by the US Army Medical Corps During World War I.

    PubMed

    Wright, James R; Baskin, Leland B

    2015-09-01

    Historical research on pathology and laboratory medicine services in World War I has been limited. In the Spanish American War, these efforts were primarily focused on tropical diseases. World War I problems that could be addressed by pathology and laboratory medicine were strikingly different because of the new field of clinical pathology. Geographic differences, changing war tactics, and trench warfare created new issues. To describe the scope of pathology and laboratory medicine services in World War I and the value these services brought to the war effort. Available primary and secondary sources related to American Expeditionary Forces' laboratory services were analyzed and contrasted with the British and German approaches. The United States entered the war in April 1917. Colonel Joseph Siler, MD, a career medical officer, was the director, and Colonel Louis B. Wilson, MD, head of pathology at the Mayo Clinic, was appointed assistant director of the US Army Medical Corps Division of Laboratories and Infectious Disease, based in Dijon, France. During the next year, they organized 300 efficient laboratories to support the American Expeditionary Forces. Autopsies were performed to better understand treatment of battlefield injuries, effects of chemical warfare agents, and the influenza pandemic; autopsies also generated teaching specimens for the US Army Medical Museum. Bacteriology services focused on communicable diseases. Laboratory testing for social diseases was very aggressive. Significant advances in blood transfusion techniques, which allowed brief blood storage, occurred during the war but were not primarily overseen by laboratory services. Both Siler and Wilson received Distinguished Service Medals. Wilson's vision for military pathology services helped transform American civilian laboratory services in the 1920s.

  18. Laboratory Directed Research and Development Program Activities for FY 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annuallymore » in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and

  19. Apel - Applied Process Engineering Laboratory

    Science.gov Websites

    startup and testing Equipment can be quickly connected to building services and effluent systems. A professional, regulated environment for bringing forth new product processes and services. Testing shortens the support Pacific Northwest National Laboratory (PNNL) scientists, engineers, and other professional staff

  20. Development and implications of technology in reform-based physics laboratories

    NASA Astrophysics Data System (ADS)

    Chen, Sufen; Lo, Hao-Chang; Lin, Jing-Wen; Liang, Jyh-Chong; Chang, Hsin-Yi; Hwang, Fu-Kwun; Chiou, Guo-Li; Wu, Ying-Tien; Lee, Silvia Wen-Yu; Wu, Hsin-Kai; Wang, Chia-Yu; Tsai, Chin-Chung

    2012-12-01

    Technology has been widely involved in science research. Researchers are now applying it to science education in an attempt to bring students’ science activities closer to authentic science activities. The present study synthesizes the research to discuss the development of technology-enhanced laboratories and how technology may contribute to fulfilling the instructional objectives of laboratories in physics. To be more specific, this paper discusses the engagement of technology to innovate physics laboratories and the potential of technology to promote inquiry, instructor and peer interaction, and learning outcomes. We then construct a framework for teachers, scientists, and programmers to guide and evaluate technology-integrated laboratories. The framework includes inquiry learning and openness supported by technology, ways of conducting laboratories, and the diverse learning objectives on which a technology-integrated laboratory may be focused.

  1. Procedures of Exercise Physiology Laboratories

    NASA Technical Reports Server (NTRS)

    Bishop, Phillip A.; Fortney, Suzanne; Greenisen, Michael; Siconolfi, Steven F.; Bamman, Marcas M.; Moore, Alan D., Jr.; Squires, William

    1998-01-01

    This manual describes the laboratory methods used to collect flight crew physiological performance data at the Johnson Space Center. The Exercise Countermeasures Project Laboratory is a standard physiology laboratory; only the application to the study of human physiological adaptations to spaceflight is unique. In the absence of any other recently published laboratory manual, this manual should be a useful document staffs and students of other laboratories.

  2. Laboratory and Space Plasma Studies

    NASA Astrophysics Data System (ADS)

    Hyman, Ellis

    1996-08-01

    The work performed by Science Applications International Corporation (SAIC), encompasses a wide range of topics in experimental, computational, and analytical laboratory and space plasma physics. The accomplishments described in this report have been in support of the programs of the Laser Plasma Branch (Code 6730) and other segments of the Plasma Physics Division at the Naval Research Laboratory (NRL) and cover the period 27 September 1993 to August 1, 1996. SAIC's efforts have been supported by sub-contracts or consulting agreements with Pulse Sciences, Inc., Clark Richardson, and Biskup Consulting Engineers, Pharos Technical Enterprises, Plex Corporation, Cornell University, Stevens Institute of Technology, the University of Connecticut, Plasma Materials and Technologies, Inc., and GaSonics International, Inc. In the following discussions section we will describe each of the topics investigated and the results obtained. Much of the research work has resulted in journal publications and NRL Memorandum Reports in which the investigation is described in detail. These reports are included as Appendices to this Final Report.

  3. Laboratory Astrophysics White Paper: Summary of Laboratory Astrophysics Needs

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The NASA Laboratory Astrophysics Workshop (NASA LAW) met at NASA Ames Research Center from 1-3 May 2002 to assess the role that laboratory astrophysics plays in the optimization of NASA missions, both at the science conception level and at the science return level. Space missions provide understanding of fundamental questions regarding the origin and evolution of galaxies, stars, and planetary systems. In all of these areas the interpretation of results from NASA's space missions relies crucially upon data obtained from the laboratory. We stress that Laboratory Astrophysics is important not only in the interpretation of data, but also in the design and planning of future missions. We recognize a symbiosis between missions to explore the universe and the underlying basic data needed to interpret the data from those missions. In the following we provide a summary of the consensus results from our Workshop, starting with general programmatic findings and followed by a list of more specific scientific areas that need attention. We stress that this is a 'living document' and that these lists are subject to change as new missions or new areas of research rise to the fore.

  4. Lipid and lipoprotein testing in resource-limited laboratories.

    PubMed

    Myers, Gary L

    2003-01-01

    The role of total cholesterol (TC) and lipoproteins in the assessment of coronary heart disease (CHD) is firmly established from population and intervention studies. Total and low-density lipoprotein cholesterol (LDLC) levels are positively associated with CHD, and high-density lipoprotein cholesterol (HDLC) levels are negatively associated with CHD. Efforts to identify and treat people at increased risk based on cholesterol and lipoprotein levels have led to more lipid testing and the need for very reliable test results. Thus, quality laboratory services are an essential component of healthcare delivery and play a vital role in any strategy to reduce morbidity and mortality from CHD. In laboratories with limited resources, establishing laboratory capability to measure CHD risk markers may be a considerable challenge. Laboratories face problems in selecting proper techniques, difficulties in equipment availability and maintenance, and shortage of supplies, staffing, and supervision. The Centers for Disease Control and Prevention (CDC) has been providing technical assistance for more than 30 years to laboratories that measure lipids and lipoproteins and is willing to provide technical assistance as needed for other laboratories to develop this capability. CDC can provide technical assistance to establish lipid and lipoprotein testing capability to support a CHD public health program in areas with limited laboratory resources. This assistance includes: selecting a suitable testing instrument; providing training for laboratory technicians; establishing a simple quality control plan; and instructing staff on how to prepare frozen serum control materials suitable for assessing accuracy of lipid and lipoprotein testing.

  5. [ISO 15189 accreditation in clinical microbiology laboratory: general concepts and the status in our laboratory].

    PubMed

    Akyar, Işin

    2009-10-01

    One important trend in the laboratory profession and quality management is the global convergence of laboratory operations. The goal of an accredited medical laboratory is to continue "offering useful laboratory service for diagnosis and treatment of the patients and also aid to the health of the nation". An accredited clinical laboratory is managed by a quality control system, it is competent technically and the laboratory service meets the needs of all its patients and physicians by taking the responsibility of all the medical tests and therapies. For this purpose, ISO 15189 international standard has been prepared by 2003. ISO 15189 standard is originated from the arrangement of ISO 17025 and ISO 9001:2000 standards. Many countries such as England, Germany, France, Canada and Australia have preferred ISO 15189 as their own laboratory accreditation programme, meeting all the requirements of their medical laboratories. The accreditation performance of a clinical microbiology laboratory is mainly based on five essential points; preanalytical, analytical, postanalytical, quality control programmes (internal, external, interlaboratory) and audits (internal, external). In this review article, general concepts on ISO 15189 accreditation standards for the clinical microbiology laboratories have been summarized and the status of a private laboratory (Acibadem LabMed, Istanbul) in Turkey has been discussed.

  6. Inter-Laboratory Comparison for Calibration of Relative Humidity Devices Among Accredited Laboratories in Malaysia

    NASA Astrophysics Data System (ADS)

    Hussain, F.; Khairuddin, S.; Othman, H.

    2017-01-01

    An inter-laboratory comparison in relative humidity measurements among accredited laboratories has been coordinated by the National Metrology Institute of Malaysia. It was carried out to determine the performance of the participating laboratories. The objective of the comparison was to acknowledge the participating laboratories competencies and to verify the level of accuracies declared in their scope of accreditation, in accordance with the MS ISO/IEC 17025 accreditation. The measurement parameter involved was relative humidity for the range of 30-90 %rh at a nominal temperature of 50°C. Eight accredited laboratories participated in the inter-laboratory comparison. Two units of artifacts have been circulated among the participants as the transfer standards.

  7. Informatics and the Clinical Laboratory

    PubMed Central

    Jones, Richard G; Johnson, Owen A; Batstone, Gifford

    2014-01-01

    there is a need to rethink the architecture of pathology systems and in particular to address the changed environment in which electronic patient record systems are maturing rapidly. The opportunity for laboratory-based informaticians to work collaboratively with clinical systems developers to embed clinically intelligent decision support systems should not be missed. PMID:25336763

  8. Reliability on intra-laboratory and inter-laboratory data of hair mineral analysis comparing with blood analysis.

    PubMed

    Namkoong, Sun; Hong, Seung Phil; Kim, Myung Hwa; Park, Byung Cheol

    2013-02-01

    Nowadays, although its clinical value remains controversial institutions utilize hair mineral analysis. Arguments about the reliability of hair mineral analysis persist, and there have been evaluations of commercial laboratories performing hair mineral analysis. The objective of this study was to assess the reliability of intra-laboratory and inter-laboratory data at three commercial laboratories conducting hair mineral analysis, compared to serum mineral analysis. Two divided hair samples taken from near the scalp were submitted for analysis at the same time, to all laboratories, from one healthy volunteer. Each laboratory sent a report consisting of quantitative results and their interpretation of health implications. Differences among intra-laboratory and interlaboratory data were analyzed using SPSS version 12.0 (SPSS Inc., USA). All the laboratories used identical methods for quantitative analysis, and they generated consistent numerical results according to Friedman analysis of variance. However, the normal reference ranges of each laboratory varied. As such, each laboratory interpreted the patient's health differently. On intra-laboratory data, Wilcoxon analysis suggested they generated relatively coherent data, but laboratory B could not in one element, so its reliability was doubtful. In comparison with the blood test, laboratory C generated identical results, but not laboratory A and B. Hair mineral analysis has its limitations, considering the reliability of inter and intra laboratory analysis comparing with blood analysis. As such, clinicians should be cautious when applying hair mineral analysis as an ancillary tool. Each laboratory included in this study requires continuous refinement from now on for inducing standardized normal reference levels.

  9. [ISO 15189 medical laboratory accreditation].

    PubMed

    Aoyagi, Tsutomu

    2004-10-01

    This International Standard, based upon ISO/IEC 17025 and ISO 9001, provides requirements for competence and quality that are particular to medical laboratories. While this International Standard is intended for use throughout the currently recognized disciplines of medical laboratory services, those working in other services and disciplines will also find it useful and appropriate. In addition, bodies engaged in the recognition of the competence of medical laboratories will be able to use this International Standard as the basis for their activities. The Japan Accreditation Board for Conformity Assessment (AB) and the Japanese Committee for Clinical Laboratory Standards (CCLS) are jointly developing the program of accreditation of medical laboratories. ISO 15189 requirements consist of two parts, one is management requirements and the other is technical requirements. The former includes the requirements of all parts of ISO 9001, moreover it includes the requirement of conformity assessment body, for example, impartiality and independence from any other party. The latter includes the requirements of laboratory competence (e.g. personnel, facility, instrument, and examination methods), moreover it requires that laboratories shall participate proficiency testing(s) and laboratories' examination results shall have traceability of measurements and implement uncertainty of measurement. Implementation of ISO 15189 will result in a significant improvement in medical laboratories management system and their technical competence. The accreditation of medical laboratory will improve medical laboratory service and be useful for patients.

  10. Laboratory Activities in Israel

    ERIC Educational Resources Information Center

    Mamlok-Naaman, Rachel; Barnea, Nitza

    2012-01-01

    Laboratory activities have long had a distinctive and central role in the science curriculum, and science educators have suggested that many benefits accrue from engaging students in science laboratory activities. Many research studies have been conducted to investigate the educational effectiveness of laboratory work in science education in…

  11. Laboratory automation of high-quality and efficient ligand-binding assays for biotherapeutic drug development.

    PubMed

    Wang, Jin; Patel, Vimal; Burns, Daniel; Laycock, John; Pandya, Kinnari; Tsoi, Jennifer; DeSilva, Binodh; Ma, Mark; Lee, Jean

    2013-07-01

    Regulated bioanalytical laboratories that run ligand-binding assays in support of biotherapeutics development face ever-increasing demand to support more projects with increased efficiency. Laboratory automation is a tool that has the potential to improve both quality and efficiency in a bioanalytical laboratory. The success of laboratory automation requires thoughtful evaluation of program needs and fit-for-purpose strategies, followed by pragmatic implementation plans and continuous user support. In this article, we present the development of fit-for-purpose automation of total walk-away and flexible modular modes. We shared the sustaining experience of vendor collaboration and team work to educate, promote and track the use of automation. The implementation of laboratory automation improves assay performance, data quality, process efficiency and method transfer to CRO in a regulated bioanalytical laboratory environment.

  12. USING THE LANGUAGE LABORATORY.

    ERIC Educational Resources Information Center

    LADU, TORA TUVE

    TO ENCOURAGE UTILIZATION OF THE LANGUAGE LABORATORY AS A TEACHING TECHNIQUE, THIS BULLETIN DESCRIBES SUCH POSSIBLE USES OF THE LABORATORY AS PROGRAMING LESSONS, RECORDING, AND TESTING LANGUAGE SKILL DEVELOPMENT. ONE OF THE MOST IMPORTANT FUNCTIONS OF THE LABORATORY IS THE PATTERN DRILL, DESCRIBED HERE FOR FRENCH, GERMAN, AND SPANISH. EXAMPLES ARE…

  13. Interactive virtual optical laboratories

    NASA Astrophysics Data System (ADS)

    Liu, Xuan; Yang, Yi

    2017-08-01

    Laboratory experiences are essential for optics education. However, college students have limited access to advanced optical equipment that is generally expensive and complicated. Hence there is a need for innovative solutions to expose students to advanced optics laboratories. Here we describe a novel approach, interactive virtual optical laboratory (IVOL) that allows unlimited number of students to participate the lab session remotely through internet, to improve laboratory education in photonics. Although students are not physically conducting the experiment, IVOL is designed to engage students, by actively involving students in the decision making process throughout the experiment.

  14. Biotechnology Laboratory Methods.

    ERIC Educational Resources Information Center

    Davis, Robert H.; Kompala, Dhinakar S.

    1989-01-01

    Describes a course entitled "Biotechnology Laboratory" which introduces a variety of laboratory methods associated with biotechnology. Describes the history, content, and seven experiments of the course. The seven experiments are selected from microbiology and molecular biology, kinetics and fermentation, and downstream…

  15. Performance evaluation for screening laboratories of the Asia-Pacific region.

    PubMed

    Hannon, W Harry

    2003-01-01

    The Centers for Disease Control and Prevention (CDC) has a long history of involvement in quality assurance (QA) activities for support of newborn screening laboratories. Since 1978, CDC's Newborn Screening Quality Assurance Program (NSQAP), has distributed dried-blood spot (DBS) materials for external QA and has maintained related projects to serve newborn screening laboratories. The first DBS materials were distributed for congenital hypothyroidism screening in 1978 and by 2001, NSQAP had expanded to over 30 disorders and performance monitoring for all filter paper production lots from approved commercial sources. In 2001, there were 250 active NSQAP participants, 167 laboratories from 45 countries and 83 laboratories in the United States. Of these laboratories, 31 are from the Asia Pacific Region representing nine countries primarily for two disorders. In 1999, US laboratories had more errors for Performance Evaluation (PE) specimens than other laboratories; but in 2000, US laboratories had fewer errors. International laboratories reported 0.3% false-negative PE clinical assessments for congenital hypothyroidism and 0.5% for phenylketonuria (0.5%) in 2000. Paperless PE data-reporting operation using an Internet website has recently been implemented.

  16. NASA's DC-8 flying laboratory seen at sunset after a flight supporting the AirSAR 2004 Mesoamerica campaign

    NASA Image and Video Library

    2004-03-06

    NASA's DC-8 flying laboratory seen at sunset after a flight supporting the AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that uses an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. The radar, developed by NASA's Jet Propulsion Laboratory, can penetrate clouds and also collect data at night. Its high-resolution sensors operate at multiple wavelengths and modes, allowing AirSAR to see beneath treetops, through thin sand, and dry snow pack. AirSAR's 2004 campaign is a collaboration of many U.S. and Central American institutions and scientists, including NASA; the National Science Foundation; the Smithsonian Institution; National Geographic; Conservation International; the Organization of Tropical Studies; the Central American Commission for Environment and Development; and the Inter-American Development Bank.

  17. Laboratories | Energy Systems Integration Facility | NREL

    Science.gov Websites

    laboratories to be safely divided into multiple test stand locations (or "capability hubs") to enable Fabrication Laboratory Energy Systems High-Pressure Test Laboratory Energy Systems Integration Laboratory Energy Systems Sensor Laboratory Fuel Cell Development and Test Laboratory High-Performance Computing

  18. Proper laboratory notebook practices: protecting your intellectual property.

    PubMed

    Nickla, Jason T; Boehm, Matthew B

    2011-03-01

    A laboratory notebook contains a wealth of knowledge that can be critical for establishing evidence in support of intellectual property rights and for refuting claims of research misconduct. The proper type, organization, use, maintenance, and storage of laboratory notebooks should be a priority for everyone at research institutions. Failure to properly document research activities can lead to serious problems, including the loss of valuable patent rights. Consequences of improper laboratory notebook practices can be harsh; numerous examples are described in court cases and journal articles, indicating a need for research institutions to develop strict policies on the proper use and storage of research documentation.

  19. External quality assessment of medical laboratories in Croatia: preliminary evaluation of post-analytical laboratory testing.

    PubMed

    Krleza, Jasna Lenicek; Dorotic, Adrijana; Grzunov, Ana

    2017-02-15

    Proper standardization of laboratory testing requires assessment of performance after the tests are performed, known as the post-analytical phase. A nationwide external quality assessment (EQA) scheme implemented in Croatia in 2014 includes a questionnaire on post-analytical practices, and the present study examined laboratory responses in order to identify current post-analytical phase practices and identify areas for improvement. In four EQA exercises between September 2014 and December 2015, 145-174 medical laboratories across Croatia were surveyed using the Module 11 questionnaire on the post-analytical phase of testing. Based on their responses, the laboratories were evaluated on four quality indicators: turnaround time (TAT), critical values, interpretative comments and procedures in the event of abnormal results. Results were presented as absolute numbers and percentages. Just over half of laboratories (56.3%) monitored TAT. Laboratories varied substantially in how they dealt with critical values. Most laboratories (65-97%) issued interpretative comments with test results. One third of medical laboratories (30.6-33.3%) issued abnormal test results without confirming them in additional testing. Our results suggest that the nationwide post-analytical EQA scheme launched in 2014 in Croatia has yet to be implemented to the full. To close the gaps between existing recommendations and laboratory practice, laboratory professionals should focus on ensuring that TAT is monitored and lists of critical values are established within laboratories. Professional bodies/institutions should focus on clarify and harmonized rules to standardized practices and applied for adding interpretative comments to laboratory test results and for dealing with abnormal test results.

  20. Remote Sensing Laboratory - RSL

    ScienceCinema

    None

    2018-01-16

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  1. Laboratory Waste Management. A Guidebook.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…

  2. Electronic laboratory data quality and the value of a health information exchange to support public health reporting processes.

    PubMed

    Dixon, Brian E; McGowan, Julie J; Grannis, Shaun J

    2011-01-01

    There is increasing interest in leveraging electronic health data across disparate sources for a variety of uses. A fallacy often held by data consumers is that clinical data quality is homogeneous across sources. We examined one attribute of data quality, completeness, in the context of electronic laboratory reporting of notifiable disease information. We evaluated 7.5 million laboratory reports from clinical information systems for their completeness with respect to data needed for public health reporting processes. We also examined the impact of health information exchange (HIE) enhancement methods that attempt to improve completeness. The laboratory data were heterogeneous in their completeness. Fields identifying the patient and test results were usually complete. Fields containing patient demographics, patient contact information, and provider contact information were suboptimal. Data processed by the HIE were often more complete, suggesting that HIEs can support improvements to existing public health reporting processes.

  3. Cookstove Laboratory Research - Fiscal Year 2016 Report ...

    EPA Pesticide Factsheets

    This report provides an overview of the work conducted by the EPA cookstove laboratory research team in Fiscal Year 2016. The report describes research and activities including (1) ISO standards development, (2) capacity building for international testing and knowledge centers, (3) laboratory assessments of cookstove systems, (4) journal publications, and (5) cookstove events. The U.S. Environmental Protection Agency’s (EPA’s) cookstove laboratory research program was first developed to assist the EPA-led Partnership for Clean Indoor Air and is now part of the U.S. Government’s commitment to the Global Alliance for Clean Cookstoves (the Alliance). Goals of the program are to: (1) support the development of testing protocols and standards for cookstoves through ISO (International Organization for Standardization) TC (Technical Committee) 285: Clean Cookstoves and Clean Cooking Solutions, (2) support the development of international Regional Testing and Knowledge Centers (many sponsored by the Alliance) for scientifically evaluating and certifying cookstoves to international standards, and (3) provide an independent source of data to Alliance partners. This work supports EPA’s mission to protect human health and the environment. Household air pollution, mainly from solid-fuel cookstoves in the developing world, is estimated to cause approximately 4 million premature deaths per year, and emissions of black carbon and other pollutants from cookstoves aff

  4. Post-Baccalaureate Laboratory Specialist Certifications and Master’s Degrees in Laboratory Medicine

    PubMed Central

    Johnson, Susan T.

    2013-01-01

    Opportunities to advance one’s knowledge and position are available within the clinical laboratory arena. By obtaining a specialist credential in chemistry, hematology or microbiology, a laboratorian has demonstrated advance knowledge and ability in their respective discipline. These specialist certifications open doors within and outside the laboratory profession and may lead to promotion. The specialist in blood banking credential is unique in that accredited training programs are available, some of which are affiliated with universities and graduate credit is granted for program completion. Other avenues available include pathologist assistants programs, diplomats in laboratory management and Master of Science degrees in clinical laboratory science. There are a number of choices available to achieve your professional goal. PMID:27683434

  5. Laboratory Ventilation and Safety.

    ERIC Educational Resources Information Center

    Steere, Norman V.

    1965-01-01

    In order to meet the needs of both safety and economy, laboratory ventilation systems must effectively remove air-borne toxic and flammable materials and at the same time exhaust a minimum volume of air. Laboratory hoods are the most commonly used means of removing gases, dusts, mists, vapors, and fumed from laboratory operations. To be effective,…

  6. Laboratory Directed Research and Development FY-10 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  7. Laboratory Directed Research and Development Program FY 2006 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoreen, Terrence P

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about themore » FY 2006 projects and an internal evaluation of the program's management process.« less

  8. Helical Explosive Flux Compression Generator Research at the Air Force Research Laboratory

    DTIC Science & Technology

    1999-06-01

    Air Force Research Laboratory Kirtland AFB...ORGANIZATION NAME(S) AND ADDRESS(ES) Directed Energy Directorate, Air Force Research Laboratory Kirtland AFB, NM 8. PERFORMING ORGANIZATION REPORT...in support of the Air Force Research Laboratory ( AFRL ) explosive pulsed power program. These include circuit codes such as Microcap and

  9. The Case for Laboratory Developed Procedures

    PubMed Central

    Sabatini, Linda M.; Tsongalis, Gregory J.; Caliendo, Angela M.; Olsen, Randall J.; Ashwood, Edward R.; Bale, Sherri; Benirschke, Robert; Carlow, Dean; Funke, Birgit H.; Grody, Wayne W.; Hayden, Randall T.; Hegde, Madhuri; Lyon, Elaine; Pessin, Melissa; Press, Richard D.; Thomson, Richard B.

    2017-01-01

    An explosion of knowledge and technology is revolutionizing medicine and patient care. Novel testing must be brought to the clinic with safety and accuracy, but also in a timely and cost-effective manner, so that patients can benefit and laboratories can offer testing consistent with current guidelines. Under the oversight provided by the Clinical Laboratory Improvement Amendments, laboratories have been able to develop and optimize laboratory procedures for use in-house. Quality improvement programs, interlaboratory comparisons, and the ability of laboratories to adjust assays as needed to improve results, utilize new sample types, or incorporate new mutations, information, or technologies are positive aspects of Clinical Laboratory Improvement Amendments oversight of laboratory-developed procedures. Laboratories have a long history of successful service to patients operating under Clinical Laboratory Improvement Amendments. A series of detailed clinical examples illustrating the quality and positive impact of laboratory-developed procedures on patient care is provided. These examples also demonstrate how Clinical Laboratory Improvement Amendments oversight ensures accurate, reliable, and reproducible testing in clinical laboratories. PMID:28815200

  10. Guidelines for biosafety laboratory competency: CDC and the Association of Public Health Laboratories.

    PubMed

    Delany, Judy R; Pentella, Michael A; Rodriguez, Joyce A; Shah, Kajari V; Baxley, Karen P; Holmes, David E

    2011-04-15

    These guidelines for biosafety laboratory competency outline the essential skills, knowledge, and abilities required for working with biologic agents at the three highest biosafety levels (BSLs) (levels 2, 3, and 4). The competencies are tiered to a worker's experience at three levels: entry level, midlevel (experienced), and senior level (supervisory or managerial positions). These guidelines were developed on behalf of CDC and the Association of Public Health Laboratories (APHL) by an expert panel comprising 27 experts representing state and federal public health laboratories, private sector clinical and research laboratories, and academic centers. They were then reviewed by approximately 300 practitioners representing the relevant fields. The guidelines are intended for laboratorians working with hazardous biologic agents, obtained from either samples or specimens that are maintained and manipulated in clinical, environmental, public health, academic, and research laboratories.

  11. 75 FR 3245 - Accreditation and Approval of King Laboratories, Inc., as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... King Laboratories, Inc., as a Commercial Gauger and Laboratory AGENCY: U.S. Customs and Border... Laboratories, Inc., as a commercial gauger and laboratory. SUMMARY: Notice is hereby given that, pursuant to 19 CFR 151.12 and 19 CFR 151.13, King Laboratories, Inc., 1300 E. 223rd St., 401, Carson, CA 90745, has...

  12. 75 FR 57478 - Accreditation and Approval of King Laboratories, Inc., as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... King Laboratories, Inc., as a Commercial Gauger and Laboratory AGENCY: U.S. Customs and Border... Laboratories, Inc., as a commercial gauger and laboratory. SUMMARY: Notice is hereby given that, pursuant to 19 CFR 151.12 and 19 CFR 151.13, King Laboratories, Inc., 5009 S. MacDill Ave., Tampa, FL 33611, has been...

  13. Albuquerque Seismological Laboratory--50 years of global seismology

    USGS Publications Warehouse

    Hutt, C.R.; Peterson, Jon; Gee, Lind; Derr, John; Ringler, Adam; Wilson, David

    2011-01-01

    The U.S. Geological Survey Albuquerque Seismological Laboratory is about 15 miles southeast of Albuquerque on the Pueblo of Isleta, adjacent to Kirtland Air Force Base. The Albuquerque Seismological Laboratory supports the Global Seismographic Network Program and the Advanced National Seismic System through the installation, operation, and maintenance of seismic stations around the world and serves as the premier seismological instrumentation test facility for the U.S. Government.

  14. USING MODELS TO EXTRAPOLATE POPULATION-LEVEL EFFECTS FROM LABORATORY TOXICITY TESTS IN SUPPORT OF POPULATION RISK ASSESSMENTS

    EPA Science Inventory

    Using models to extrapolate population-level effects from laboratory toxicity tests in support of population risk assessments. Munns, W.R., Jr.*, Anne Kuhn, Matt G. Mitro, and Timothy R. Gleason, U.S. EPA ORD NHEERL, Narragansett, RI, USA. Driven in large part by management goa...

  15. The Role of the Microcomputer-Based Laboratory Display in Supporting the Construction of New Understandings in Kinematics.

    ERIC Educational Resources Information Center

    Russell, David W.; Lucas, Keith B.; McRobbie, Campbell J.

    2003-01-01

    Investigates how microcomputer-based laboratory (MBL) activities specifically designed to be consistent with a constructivist theory of learning support or constrain student construction of understanding. Analysis of students' discourse and actions reveal that students invented numerous techniques for manipulating data in the service of their…

  16. Earth Resources Laboratory research and technology

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The accomplishments of the Earth Resources Laboratory's research and technology program are reported. Sensors and data systems, the AGRISTARS project, applied research and data analysis, joint research projects, test and evaluation studies, and space station support activities are addressed.

  17. Evaluation of Calibration Laboratories Performance

    NASA Astrophysics Data System (ADS)

    Filipe, Eduarda

    2011-12-01

    One of the main goals of interlaboratory comparisons (ILCs) is the evaluation of the laboratories performance for the routine calibrations they perform for the clients. In the frame of Accreditation of Laboratories, the national accreditation boards (NABs) in collaboration with the national metrology institutes (NMIs) organize the ILCs needed to comply with the requirements of the international accreditation organizations. In order that an ILC is a reliable tool for a laboratory to validate its best measurement capability (BMC), it is needed that the NMI (reference laboratory) provides a better traveling standard—in terms of accuracy class or uncertainty—than the laboratories BMCs. Although this is the general situation, there are cases where the NABs ask the NMIs to evaluate the performance of the accredited laboratories when calibrating industrial measuring instruments. The aim of this article is to discuss the existing approaches for the evaluation of ILCs and propose a basis for the validation of the laboratories measurement capabilities. An example is drafted with the evaluation of the results of mercury-in-glass thermometers ILC with 12 participant laboratories.

  18. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  19. ISO 15189 accreditation: Requirements for quality and competence of medical laboratories, experience of a laboratory I.

    PubMed

    Guzel, Omer; Guner, Ebru Ilhan

    2009-03-01

    Medical laboratories are the key partners in patient safety. Laboratory results influence 70% of medical diagnoses. Quality of laboratory service is the major factor which directly affects the quality of health care. The clinical laboratory as a whole has to provide the best patient care promoting excellence. International Standard ISO 15189, based upon ISO 17025 and ISO 9001 standards, provides requirements for competence and quality of medical laboratories. Accredited medical laboratories enhance credibility and competency of their testing services. Our group of laboratories, one of the leading institutions in the area, had previous experience with ISO 9001 and ISO 17025 Accreditation at non-medical sections. We started to prepared for ISO 15189 Accreditation at the beginning of 2006 and were certified in March, 2007. We spent more than a year to prepare for accreditation. Accreditation scopes of our laboratory were as follows: clinical chemistry, hematology, immunology, allergology, microbiology, parasitology, molecular biology of infection serology and transfusion medicine. The total number of accredited tests is 531. We participate in five different PT programs. Inter Laboratory Comparison (ILC) protocols are performed with reputable laboratories. 82 different PT Program modules, 277 cycles per year for 451 tests and 72 ILC program organizations for remaining tests have been performed. Our laboratory also organizes a PT program for flow cytometry. 22 laboratories participate in this program, 2 cycles per year. Our laboratory has had its own custom made WEB based LIS system since 2001. We serve more than 500 customers on a real time basis. Our quality management system is also documented and processed electronically, Document Management System (DMS), via our intranet. Preparatory phase for accreditation, data management, external quality control programs, personnel related issues before, during and after accreditation process are presented. Every laboratory has

  20. Workstation-Based Avionics Simulator to Support Mars Science Laboratory Flight Software Development

    NASA Technical Reports Server (NTRS)

    Henriquez, David; Canham, Timothy; Chang, Johnny T.; McMahon, Elihu

    2008-01-01

    The Mars Science Laboratory developed the WorkStation TestSet (WSTS) to support flight software development. The WSTS is the non-real-time flight avionics simulator that is designed to be completely software-based and run on a workstation class Linux PC. This provides flight software developers with their own virtual avionics testbed and allows device-level and functional software testing when hardware testbeds are either not yet available or have limited availability. The WSTS has successfully off-loaded many flight software development activities from the project testbeds. At the writing of this paper, the WSTS has averaged an order of magnitude more usage than the project's hardware testbeds.

  1. The Language Laboratory.

    ERIC Educational Resources Information Center

    Hocking, Elton

    This condensed article on the language laboratory describes educational and financial possibilities and limitations, often citing the foreign language program at Purdue University as an example. The author discusses: (1) costs and amortization, (2) preventive maintenance, (3) laboratory design, (4) the multichannel recorder, and (5) visuals. Other…

  2. Harmonization of good laboratory practice requirements and laboratory accreditation programs.

    PubMed

    Royal, P D

    1994-09-01

    Efforts to harmonize Good Laboratory Practice (GLP) requirements have been underway through the Organization for Economic Cooperation and Development (OECD) since 1981. In 1985, a GLP panel was established to facilitate the practical implementation of the OECD/GLP program. Through the OECD/GLP program, Memoranda of Understanding (MOU) agreements which foster requirements for reciprocal data and study acceptance and unified GLP standards have been developed among member countries. Three OECD Consensus Workshops and three inspectors training workshops have been held. In concert with these efforts, several OECD countries have developed GLP accreditation programs, managed by local health and environmental ministries. In addition, Canada and the United States are investigating Laboratory Accreditation programs for environmental monitoring assessment and GLP-regulated studies. In the European Community (EC), the need for quality standards specifying requirements for production and international trade has promoted International Standards Organization (ISO) certification for certain products. ISO-9000 standards identify requirements for certification of quality systems. These certification programs may affect the trade and market of laboratories conducting GLP studies. Two goals identified by these efforts are common to both programs: first, harmonization and recognition of requirements, and second, confidence in the rigor of program components used to assess the integrity of data produced and study activities. This confidence can be promoted, in part, through laboratory inspection and screening processes. However, the question remains, will data produced by sanctioned laboratories be mutually accepted on an international basis?(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Learn About Laboratory Certification for Drinking Water

    EPA Pesticide Factsheets

    EPA’s Office of Water Technical Support Center implements the Drinking Water Laboratory Certification Program in partnership with EPA Regions, EPA’s Office of Research and Development, and States.

  4. Conceptual design of new metrology laboratories for the National Physical Laboratory, United Kingdom

    NASA Astrophysics Data System (ADS)

    Manning, Christopher J.

    1994-10-01

    The National Physical Laboratory is planning to house the Division of Mechanical and Optical Metrology and the Division of Material Metrology in a new purpose built laboratory building on its site at Teddington, London, England. The scientific staff were involved in identifying and agreeing the vibration performance requirements of the conceptual design. This was complemented by an extensive surgery of vibration levels within the existing facilities and ambient vibration studies at the proposed site. At one end of the site there is significant vibration input from road traffic. Some of the test equipment is also in itself a source of vibration input. These factors, together with normal occupancy inputs, footfalls and door slams, and a highly serviced building led to vibration being dominant in influencing the structural form. The resulting structural concept comprises three separate structural elements for vibration and geotechnical reasons. The laboratories most sensitive to disturbance by vibration are located at the end of the site farthest from local roads on a massive ground bearing slab. Less sensitive laboratories and those containing vibration sources are located on a massive slab in deep, piled foundations. A common central plant area is located alongside on its own massive slab. Medium sensitivity laboratories and offices are located at first floor level on a reinforced concrete suspended floor of maximum stiffness per unit mass. The whole design has been such as to permit upgrading of areas, eg office to laboratory; laboratory to `high sensitivity' laboratory, to cater for changes in future use of the building.

  5. Laboratory Directed Research and Development FY2001 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R

    2002-06-20

    Established by Congress in 1991, the Laboratory Directed Research and Development (LDRD) Program provides the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) laboratories, like Lawrence Livermore National Laboratory (LLNL or the Laboratory), with the flexibility to invest up to 6% of their budget in long-term, high-risk, and potentially high payoff research and development (R&D) activities to support the DOE/NNSA's national security missions. By funding innovative R&D, the LDRD Program at LLNL develops and extends the Laboratory's intellectual foundations and maintains its vitality as a premier research institution. As proof of the Program's success, many of the research thrusts thatmore » started many years ago under LDRD sponsorship are at the core of today's programs. The LDRD Program, which serves as a proving ground for innovative ideas, is the Laboratory's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. Basic and applied research activities funded by LDRD enhance the Laboratory's core strengths, driving its technical vitality to create new capabilities that enable LLNL to meet DOE/NNSA's national security missions. The Program also plays a key role in building a world-class multidisciplinary workforce by engaging the Laboratory's best researchers, recruiting its future scientists and engineers, and promoting collaborations with all sectors of the larger scientific community.« less

  6. [Quality use of commercial laboratory for clinical testing services - considering laboratory's role].

    PubMed

    Ogawa, Shinji

    2014-12-01

    The number of commercial laboratories for clinical testing in Japan run privately has decreased to about 30 companies, and their business is getting tougher. Branch Lab. and FMS businesses have not expanded recently due to the new reimbursement system which adds an additional sample management fee, becoming effective in 2010. This presentation gives an outline of each role for hospital and commercial laboratories, and their pros & cons considering the current medical situation. Commercial laboratories have investigated how to utilize ICT systems for sharing test information between hospitals and our facilities. It would be very helpful to clarify issues for each hospital. We will develop and create new values for clinical laboratory testing services and forge mutually beneficial relationships with medical institutions. (Review).

  7. Laboratory Directed Research and Development Program FY98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, T.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program providesmore » the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.« less

  8. Dental Laboratory Technology.

    ERIC Educational Resources Information Center

    Department of the Air Force, Washington, DC.

    The Air Force dental laboratory technology manual is designed as a basic training text as well as a reference source for dental laboratory technicians, a specialty occupation concerned with the design, fabrication, and repair of dental prostheses. Numerous instructive diagrams and photographs are included throughout the manual. The comprehensive…

  9. Student research laboratory for optical engineering

    NASA Astrophysics Data System (ADS)

    Tolstoba, Nadezhda D.; Saitgalina, Azaliya; Abdula, Polina; Butova, Daria

    2015-10-01

    Student research laboratory for optical engineering is comfortable place for student's scientific and educational activity. The main ideas of laboratory, process of creation of laboratory and also activity of laboratory are described in this article. At ITMO University in 2013-2014 were formed a lot of research laboratories. SNLO is a student research (scientific) laboratory formed by the Department of Applied and computer optics of the University ITMO (Information Technologies of Mechanics and Optics). Activity of laboratory is career guidance of entrants and students in the field of optical engineering. Student research laboratory for optical engineering is a place where student can work in the interesting and entertaining scientific atmosphere.

  10. Laboratory Astrophysics Using a Spare XRS Microcalorimeter

    NASA Technical Reports Server (NTRS)

    Audley, M. Damian; Beiersdorfer, Peter; Porter, Frederick Scott; Brown, Gregory; Boyce, Kevin R.; Brekosky, Regis; Brown, Gregory V.; Gendreau, Keith C.; Gygax, John; Kahn, Steve; hide

    2000-01-01

    The XRS instrument on Astro-E is a fully self-contained microcalorimeter x-ray instrument capable of acquiring optimally filtering, and characterizing events for 32 independent pixels. With the launch of the Astro-E spacecraft, a full flight spare detector system has been integrated into a laboratory cryostat for use on the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory. The detector system contains a microcalorimeter array with 32 instrumented pixels heat sunk to 60 mK using an adiabatic demagnetization refrio,erator. The instrument has a composite resolution of 8eV at 1 keV and 12eV at 6 keV with a minimum of 95% quantum efficiency. This will allow high spectral resolution, broadband observations of collisionally excited plasmas which are produced in the EBIT experiment. Unique to our instrument are exceptionally well characterized 1000 Angstrom thick aluminum on polyimide infrared blocking filters. The detailed transmission function including the edc,e fine structure of these filters has been measured in our laboratory using an erect field grating spectrometer. This will allow the instrument to perform the first broadband absolute flux measurements with the EBIT instrument. The instrument performance as well as the results of preliminary measurements will be discussed. Work performed under the auspices of the U.S. D.o.E. by Lawrence Livermore National Laboratory under contract W-7405-ENG-48 and was supported by the NASA High Energy Astrophysics Supporting Research and Technology Program.

  11. Anthropometric measures in cardiovascular disease prediction: comparison of laboratory-based versus non-laboratory-based model.

    PubMed

    Dhana, Klodian; Ikram, M Arfan; Hofman, Albert; Franco, Oscar H; Kavousi, Maryam

    2015-03-01

    Body mass index (BMI) has been used to simplify cardiovascular risk prediction models by substituting total cholesterol and high-density lipoprotein cholesterol. In the elderly, the ability of BMI as a predictor of cardiovascular disease (CVD) declines. We aimed to find the most predictive anthropometric measure for CVD risk to construct a non-laboratory-based model and to compare it with the model including laboratory measurements. The study included 2675 women and 1902 men aged 55-79 years from the prospective population-based Rotterdam Study. We used Cox proportional hazard regression analysis to evaluate the association of BMI, waist circumference, waist-to-hip ratio and a body shape index (ABSI) with CVD, including coronary heart disease and stroke. The performance of the laboratory-based and non-laboratory-based models was evaluated by studying the discrimination, calibration, correlation and risk agreement. Among men, ABSI was the most informative measure associated with CVD, therefore ABSI was used to construct the non-laboratory-based model. Discrimination of the non-laboratory-based model was not different than laboratory-based model (c-statistic: 0.680-vs-0.683, p=0.71); both models were well calibrated (15.3% observed CVD risk vs 16.9% and 17.0% predicted CVD risks by the non-laboratory-based and laboratory-based models, respectively) and Spearman rank correlation and the agreement between non-laboratory-based and laboratory-based models were 0.89 and 91.7%, respectively. Among women, none of the anthropometric measures were independently associated with CVD. Among middle-aged and elderly where the ability of BMI to predict CVD declines, the non-laboratory-based model, based on ABSI, could predict CVD risk as accurately as the laboratory-based model among men. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Environmental Response Laboratory Network Membership and Benefits

    EPA Pesticide Factsheets

    Member laboratories must meet core requirements including quality systems, policies and procedures, sample and data management, and analytical capabilities. Benefits include training and exercise opportunities, information sharing and technical support.

  13. Laboratory safety and the WHO World Alliance for Patient Safety.

    PubMed

    McCay, Layla; Lemer, Claire; Wu, Albert W

    2009-06-01

    Laboratory medicine has been a pioneer in the field of patient safety; indeed, the College of American Pathology first called attention to the issue in 1946. Delivering reliable laboratory results has long been considered a priority, as the data produced in laboratory medicine have the potential to critically influence individual patients' diagnosis and management. Until recently, most attention on laboratory safety has focused on the analytic stage of laboratory medicine. Addressing this stage has led to significant and impressive improvements in the areas over which laboratories have direct control. However, recent data demonstrate that pre- and post-analytical phases are at least as vulnerable to errors; to further improve patient safety in laboratory medicine, attention must now be focused on the pre- and post-analytic phases, and the concept of patient safety as a multi-disciplinary, multi-stage and multi-system concept better understood. The World Alliance for Patient Safety (WAPS) supports improvement of patient safety globally and provides a potential framework for considering the total testing process.

  14. Partnering at the National Laboratories: Catalysis as a Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JACKSON,NANCY B.

    1999-09-14

    The role of the national laboratories, particularly the defense program laboratories, since the end of the cold war, has been a topic of continuing debate. The relationship of national laboratories to industry spurred debate which ranged from designating the labs as instrumental to maintaining U.S. economic competitiveness to concern over the perception of corporate welfare to questions regarding the industrial globalization and the possibility of U.S. taxpayer dollars supporting foreign entities. Less debated, but equally important, has been the national laboratories' potential competition with academia for federal research dollars and discussions detailing the role of each in the national researchmore » enterprise.« less

  15. Remote Sensing Laboratory - RSL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-11-06

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip,more » maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.« less

  16. Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It alsomore » summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.« less

  17. Clinical laboratory accreditation in India.

    PubMed

    Handoo, Anil; Sood, Swaroop Krishan

    2012-06-01

    Test results from clinical laboratories must ensure accuracy, as these are crucial in several areas of health care. It is necessary that the laboratory implements quality assurance to achieve this goal. The implementation of quality should be audited by independent bodies,referred to as accreditation bodies. Accreditation is a third-party attestation by an authoritative body, which certifies that the applicant laboratory meets quality requirements of accreditation body and has demonstrated its competence to carry out specific tasks. Although in most of the countries,accreditation is mandatory, in India it is voluntary. The quality requirements are described in standards developed by many accreditation organizations. The internationally acceptable standard for clinical laboratories is ISO15189, which is based on ISO/IEC standard 17025. The accreditation body in India is the National Accreditation Board for Testing and Calibration Laboratories, which has signed Mutual Recognition Agreement with the regional cooperation the Asia Pacific Laboratory Accreditation Cooperation and with the apex cooperation the International Laboratory Accreditation Cooperation.

  18. [Safety in the Microbiology laboratory].

    PubMed

    Rojo-Molinero, Estrella; Alados, Juan Carlos; de la Pedrosa, Elia Gómez G; Leiva, José; Pérez, José L

    2015-01-01

    The normal activity in the laboratory of microbiology poses different risks - mainly biological - that can affect the health of their workers, visitors and the community. Routine health examinations (surveillance and prevention), individual awareness of self-protection, hazard identification and risk assessment of laboratory procedures, the adoption of appropriate containment measures, and the use of conscientious microbiological techniques allow laboratory to be a safe place, as records of laboratory-acquired infections and accidents show. Training and information are the cornerstones for designing a comprehensive safety plan for the laboratory. In this article, the basic concepts and the theoretical background on laboratory safety are reviewed, including the main legal regulations. Moreover, practical guidelines are presented for each laboratory to design its own safety plan according its own particular characteristics. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  19. Impact of nonintrusive clinical decision support systems on laboratory test utilization in a large academic centre.

    PubMed

    Eaton, Kevin P; Chida, Natasha; Apfel, Ariella; Feldman, Leonard; Greenbaum, Adena; Tuddenham, Susan; Kendall, Emily A; Pahwa, Amit

    2018-06-01

    The near-universal prevalence of electronic health records (EHRs) has made the utilization of clinical decision support systems (CDSS) an integral strategy for improving the value of laboratory ordering. Few studies have examined the effectiveness of nonintrusive CDSS on inpatient laboratory utilization in large academic centres. Red blood cell folate, hepatitis C virus viral loads and genotypes, and type and screens were selected for study. We incorporated the appropriate indications for these labs into text that accompanied the laboratory orders in our hospital's EHR. Providers could proceed with the order without additional clicks. An interrupted time-series analysis was performed, and the primary outcome was the rate of tests ordered on all inpatient medicine floors. The rate of folate tests ordered per monthly admissions showed no significant level change at the time of the intervention with only a slight decrease in rate of 0.0109 (P = .07). There was a 43% decrease in the rate of hepatitis C virus tests per monthly admissions immediately after the intervention with a decrease of 0.0135 tests per monthly admissions (P = .02). The rate of type and screens orders per patient days each month had a significant downward trend by 0.114 before the intervention (P = .04) but no significant level change at the time of the intervention or significant change in rate after the intervention. Our study suggests that nonintrusive CDSS should be evaluated for individual laboratory tests to ensure only effective alerts continue to be used so as to avoid increasing EHR fatigue. © 2018 John Wiley & Sons, Ltd.

  20. 42 CFR 493.1850 - Laboratory registry.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Laboratory registry. 493.1850 Section 493.1850... (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Enforcement Procedures § 493.1850 Laboratory... laboratories, including the following: (1) A list of laboratories that have been convicted, under Federal or...

  1. 42 CFR 493.1850 - Laboratory registry.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Laboratory registry. 493.1850 Section 493.1850... (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Enforcement Procedures § 493.1850 Laboratory... laboratories, including the following: (1) A list of laboratories that have been convicted, under Federal or...

  2. Medical Laboratory Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document, which is designed for use in developing a tech prep competency profile for the occupation of medical laboratory technician, lists technical competencies and competency builders for 18 units pertinent to the health technologies cluster in general and 8 units specific to the occupation of medical laboratory technician. The following…

  3. Frederick National Laboratory Collaboration Success Stories | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Nanotechnology Characterization Laboratory Unveils New Technical Services for Drug Developers Drug developers now have access to a shared analytical technology, developed and provided by the Frederick National Laboratory, that helps fine-tune nano

  4. Is laboratory medicine ready for the era of personalized medicine? A survey addressed to laboratory directors of hospitals/academic schools of medicine in Europe.

    PubMed

    Malentacchi, Francesca; Mancini, Irene; Brandslund, Ivan; Vermeersch, Pieter; Schwab, Matthias; Marc, Janja; van Schaik, Ron H N; Siest, Gerard; Theodorsson, Elvar; Pazzagli, Mario; Di Resta, Chiara

    2015-06-01

    Developments in "-omics" are creating a paradigm shift in laboratory medicine leading to personalized medicine. This allows the increase in diagnostics and therapeutics focused on individuals rather than populations. In order to investigate whether laboratory medicine is ready to play a key role in the integration of personalized medicine in routine health care and set the state-of-the-art knowledge about personalized medicine and laboratory medicine in Europe, a questionnaire was constructed under the auspices of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) and the European Society of Pharmacogenomics and Personalised Therapy (ESPT). The answers of the participating laboratory medicine professionals indicate that they are aware that personalized medicine can represent a new and promising health model, and that laboratory medicine should play a key role in supporting the implementation of personalized medicine in the clinical setting. Participants think that the current organization of laboratory medicine needs additional/relevant implementations such as (i) new technological facilities in -omics; (ii) additional training for the current personnel focused on the new methodologies; (iii) incorporation in the laboratory of new competencies in data interpretation and counseling; and (iv) cooperation and collaboration among professionals of different disciplines to integrate information according to a personalized medicine approach.

  5. Laboratory for Atmospheres 2008 Technical Highlights

    NASA Technical Reports Server (NTRS)

    Cote, Charles E.

    2009-01-01

    out in collaboration with other laboratories and research groups within the Earth Sciences Division, across the Sciences and Exploration Directorate, and with partners in universities and other Government agencies. The Laboratory for Atmospheres is a vital participant in NASA s research agenda. Our Laboratory often has relatively large programs, sizable satellite missions, and observational campaigns that require the cooperative and collaborative efforts of many scientists. We ensure an appropriate balance between our scientists responsibility for these large collaborative projects and their need for an active individual research agenda. This balance allows members of the Laboratory to continuously improve their scientific credentials. Members of the Laboratory interact with the general public to support a wide range of interests in the atmospheric sciences. Among other activities, the Laboratory raises the public s awareness of atmospheric science by presenting public lectures and demonstrations, by making scientific data available to wide audiences, by teaching, and by mentoring students and teachers. The Laboratory makes substantial efforts to attract new scientists to the various areas of atmospheric research. We strongly encourage the establishment of partnerships with Federal and state agencies that have operational responsibilities to promote the societal application of our science products. This report describes our role in NASA s mission, gives a broad description of our research, and summarizes our scientists major accomplishments during calendar year 2008. The report also contains useful information on human resources, scientific interactions, and outreach activities.

  6. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chew, Joseph T.; Stroh, Suzanne C.; Maio, Linda R.

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describesmore » the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.« less

  7. 27 CFR 22.108 - Other laboratories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Other laboratories. 22.108... Other laboratories. Laboratories, other than pathological laboratories specified in § 22.107, may... products resulting from the use of tax-free alcohol shall be confined strictly to the laboratory premises...

  8. 27 CFR 22.108 - Other laboratories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Other laboratories. 22.108... Other laboratories. Laboratories, other than pathological laboratories specified in § 22.107, may... products resulting from the use of tax-free alcohol shall be confined strictly to the laboratory premises...

  9. Zero-gravity cloud physics laboratory: Candidate experiments definition and preliminary concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, R. V.; Hollinden, A. B.

    1973-01-01

    The candidate definition studies on the zero-g cloud physics laboratory are covered. This laboratory will be an independent self-contained shuttle sortie payload. Several critical technology areas have been identified and studied to assure proper consideration in terms of engineering requirements for the final design. Areas include chambers, gas and particle generators, environmental controls, motion controls, change controls, observational techniques, and composition controls. This unique laboratory will allow studies to be performed without mechanical, aerodynamics, electrical, or other type techniques to support the object under study. This report also covers the candidate experiment definitions, chambers and experiment classes, laboratory concepts and plans, special supporting studies, early flight opportunities and payload planning data for overall shuttle payload requirements assessments.

  10. Laboratory assessment of novel oral anticoagulants: method suitability and variability between coagulation laboratories.

    PubMed

    Helin, Tuukka A; Pakkanen, Anja; Lassila, Riitta; Joutsi-Korhonen, Lotta

    2013-05-01

    Laboratory tests to assess novel oral anticoagulants (NOACs) are under evaluation. Routine monitoring is unnecessary, but under special circumstances bioactivity assessment becomes crucial. We analyzed the effects of NOACs on coagulation tests and the availability of specific assays at different laboratories. Plasma samples spiked with dabigatran (Dabi; 120 and 300 μg/L) or rivaroxaban (Riva; 60, 146, and 305 μg/L) were sent to 115 and 38 European laboratories, respectively. International normalized ratio (INR) and activated partial thromboplastin time (APTT) were analyzed for all samples; thrombin time (TT) was analyzed specifically for Dabi and calibrated anti-activated factor X (anti-Xa) activity for Riva. We compared the results with patient samples. Results of Dabi samples were reported by 73 laboratories (13 INR and 9 APTT reagents) and Riva samples by 22 laboratories (5 INR and 4 APTT reagents). Both NOACs increased INR values; the increase was modest, albeit larger, for Dabi, with higher CV, especially with Quick (vs Owren) methods. Both NOACs dose-dependently prolonged the APTT. Again, the prolongation and CVs were larger for Dabi. The INR and APTT results varied reagent-dependently (P < 0.005), with less prolongation in patient samples. TT results (Dabi) and calibrated anti-Xa results (Riva) were reported by only 11 and 8 laboratories, respectively. The screening tests INR and APTT are suboptimal in assessing NOACs, having high reagent dependence and low sensitivity and specificity. They may provide information, if laboratories recognize their limitations. The variation will likely increase and the sensitivity differ in clinical samples. Specific assays measure NOACs accurately; however, few laboratories applied them. © 2013 American Association for Clinical Chemistry.

  11. Safety in the Chemical Laboratory. Chemical Laboratory Safety: The Academic Anomaly.

    ERIC Educational Resources Information Center

    Bretherick, Leslie

    1990-01-01

    Discussed are accidents that occur in the laboratories of highly trained chemists. Four examples are provided to illustrate potential hazards that are often overlooked in chemistry laboratories, molten inorganic salt baths, the reaction of acetone and hydrogen peroxide, halogenated acetylene compounds, and the reaction of hydrogen peroxide and…

  12. Intelligent Performance Assessment of Students' Laboratory Work in a Virtual Electronic Laboratory Environment

    ERIC Educational Resources Information Center

    Achumba, I. E.; Azzi, D.; Dunn, V. L.; Chukwudebe, G. A.

    2013-01-01

    Laboratory work is critical in undergraduate engineering courses. It is used to integrate theory and practice. This demands that laboratory activities are synchronized with lectures to maximize their derivable learning outcomes, which are measurable through assessment. The typical high costs of the traditional engineering laboratory, which often…

  13. 42 CFR 414.510 - Laboratory date of service for clinical laboratory and pathology specimens.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and pathology specimens. 414.510 Section 414.510 Public Health CENTERS FOR MEDICARE & MEDICAID... Laboratory date of service for clinical laboratory and pathology specimens. The date of service for either a clinical laboratory test or the technical component of physician pathology service is as follows: (a...

  14. 42 CFR 414.510 - Laboratory date of service for clinical laboratory and pathology specimens.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and pathology specimens. 414.510 Section 414.510 Public Health CENTERS FOR MEDICARE & MEDICAID... Laboratory date of service for clinical laboratory and pathology specimens. The date of service for either a clinical laboratory test or the technical component of physician pathology service is as follows: (a...

  15. 42 CFR 414.510 - Laboratory date of service for clinical laboratory and pathology specimens.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and pathology specimens. 414.510 Section 414.510 Public Health CENTERS FOR MEDICARE & MEDICAID... Laboratory date of service for clinical laboratory and pathology specimens. The date of service for either a clinical laboratory test or the technical component of physician pathology service is as follows: (a...

  16. Dental Laboratory Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document, which is designed for use in developing a tech prep competency profile for the occupation of dental laboratory technician, lists technical competencies and competency builders for 13 units pertinent to the health technologies cluster in general and 8 units to the occupation of dental laboratory technician. The following skill areas…

  17. Laboratory for Oceans

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A review is made of the activities of the Laboratory for Oceans. The staff and the research activities are nearly evenly divided between engineering and scientific endeavors. The Laboratory contributes engineering design skills to aircraft and ground based experiments in terrestrial and atmospheric sciences in cooperation with scientists from labs in Earth sciences.

  18. Sandia National Laboratories: Fabrication, Testing and Validation

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas safe, secure, reliable, and can fully support the Nation's deterrence policy. Employing only the most support of this mission, Sandia National Laboratories has a significant role in advancing the "state

  19. Reducing the Environmental Impact of Clinical Laboratories.

    PubMed

    Lopez, Joseph B; Jackson, David; Gammie, Alistair; Badrick, Tony

    2017-02-01

    Healthcare is a significant contributor to environmental impact but this has received little attention. The typical laboratory uses far more energy and water per unit area than the typical office building. There is a need to sensitise laboratories to the importance of adopting good environmental practices. Since this comes at an initial cost, it is vital to obtain senior management support. Convincing management of the various tangible and intangible benefits that can accrue in the long run should help achieve this support. Many good environmental practices do not have a cost but will require a change in the culture and mind-set of the organisation. Continuing education and training are important keys to successful implementation of good practices. There is a need to undertake a rigorous cost-benefit analysis of every change that is introduced in going green. The adoption of good practices can eventually lead to ISO certification if this is desired. This paper provides suggestions that will allow a laboratory to start going green. It will allow the industry to enhance its corporate citizenship whilst improving its competitive advantage for long-term.

  20. Using Interorganizational Partnerships to Strengthen Public Health Laboratory Systems

    PubMed Central

    Kimsey, Paul; Buehring, Gertrude

    2013-01-01

    Due to the current economic environment, many local and state health departments are faced with budget reductions. Health department administrators and public health laboratory (PHL) directors need to assess strategies to ensure that their PHLs can provide the same level of service with decreased funds. Exploratory case studies of interorganizational partnerships among local PHLs in California were conducted to determine the impact on local PHL testing services and capacity. Our findings suggest that interorganizational forms of cooperation among local PHLs can help bolster laboratory capacity by capturing economies of scale, leveraging scarce resources, and ensuring access to affordable, timely, and quality laboratory testing services. Interorganizational partnerships will help local and state public health departments continue to maintain a strong and robust laboratory system that supports their role in communicable disease surveillance. PMID:23997305

  1. EPOS-WP16: A Platform for European Multi-scale Laboratories

    NASA Astrophysics Data System (ADS)

    Spiers, Chris; Drury, Martyn; Kan-Parker, Mirjam; Lange, Otto; Willingshofer, Ernst; Funiciello, Francesca; Rosenau, Matthias; Scarlato, Piergiorgio; Sagnotti, Leonardo; W16 Participants

    2016-04-01

    The participant countries in EPOS embody a wide range of world-class laboratory infrastructures ranging from high temperature and pressure experimental facilities, to electron microscopy, micro-beam analysis, analogue modeling and paleomagnetic laboratories. Most data produced by the various laboratory centres and networks are presently available only in limited "final form" in publications. As such many data remain inaccessible and/or poorly preserved. However, the data produced at the participating laboratories are crucial to serving society's need for geo-resources exploration and for protection against geo-hazards. Indeed, to model resource formation and system behaviour during exploitation, we need an understanding from the molecular to the continental scale, based on experimental data. This contribution will describe the work plans that the laboratories community in Europe is making, in the context of EPOS. The main objectives are: - To collect and harmonize available and emerging laboratory data on the properties and processes controlling rock system behaviour at multiple scales, in order to generate products accessible and interoperable through services for supporting research activities. - To co-ordinate the development, integration and trans-national usage of the major solid Earth Science laboratory centres and specialist networks. The length scales encompassed by the infrastructures included range from the nano- and micrometer levels (electron microscopy and micro-beam analysis) to the scale of experiments on centimetre sized samples, and to analogue model experiments simulating the reservoir scale, the basin scale and the plate scale. - To provide products and services supporting research into Geo-resources and Geo-storage, Geo-hazards and Earth System Evolution.

  2. The Air Force's central reference laboratory: maximizing service while minimizing cost.

    PubMed

    Armbruster, D A

    1991-11-01

    The Laboratory Services Branch (Epi Lab) of the Epidemiology Division, Brooks AFB, Texas, is designated by regulation to serve as the Air Force's central reference laboratory, providing clinical laboratory testing support to all Air Force medical treatment facilities (MTFs). Epi Lab recognized that it was not offering the MTFs a service comparable to civilian reference laboratories and that, as a result, the Air Force medical system was spending hundreds of thousands of dollars yearly for commercial laboratory support. An in-house laboratory upgrade program was proposed to and approved by the USAF Surgeon General, as a Congressional Efficiencies Add project, to launch a two-phase initiative consisting of a 1-year field trial of 30 MTFs, followed by expansion to another 60 MTFs. Major components of the program include overnight air courier service to deliver patient samples to Epi Lab, a mainframe computer laboratory information system and electronic reporting of results to the MTFs throughout the CONUS. Application of medical marketing concepts and the Total Quality Management (TQM) philosophy allowed Epi to provide dramatically enhanced reference service at a cost savings of about $1 million to the medical system. The Epi Lab upgrade program represents an innovative problem-solving approach, combining technical and managerial improvements, resulting in substantial patient care service and financial dividends. It serves as an example of successful application of TQM and marketing within the military medical system.

  3. THE LANGUAGE LABORATORY. A HANDBOOK FOR TEACHERS OF FOREIGN LANGUAGE.

    ERIC Educational Resources Information Center

    New Orleans Public Schools, LA.

    THE PURPOSE OF THE LABORATORIES IS TO DEVELOP FOUR BASIC SKILLS IN FOREIGN LANGUAGE STUDY--AURAL UNDERSTANDING, SPEAKING, READING, WRITING, AND TO SUPPORT AN UNDERSTANDING AND APPRECIATION OF THE CULTURE OF THE COUNTRY STUDIED. THE LABORATORY PROVIDES INDIVIDUAL SEMI-SOUNDPROOF BOOTHS EQUIPPED WITH HEADPHONES, MICROPHONES AND TAPE RECORDING…

  4. DSP-Based Hands-On Laboratory Experiments for Photovoltaic Power Systems

    ERIC Educational Resources Information Center

    Muoka, Polycarp I.; Haque, Md. Enamul; Gargoom, Ameen; Negnetvitsky, Michael

    2015-01-01

    This paper presents a new photovoltaic (PV) power systems laboratory module that was developed to experimentally reinforce students' understanding of design principles, operation, and control of photovoltaic power conversion systems. The laboratory module is project-based and is designed to support a renewable energy course. By using MATLAB…

  5. Environmental Response Laboratory Network (ERLN) Laboratory Requirements

    EPA Pesticide Factsheets

    The Environmental Response Laboratory Network requires its member labs follow specified quality systems, sample management, data reporting, and general, in order to ensure consistent analytical data of known and documented quality.

  6. Modular laboratories--cost-effective and sustainable infrastructure for resource-limited settings.

    PubMed

    Bridges, Daniel J; Colborn, James; Chan, Adeline S T; Winters, Anna M; Dengala, Dereje; Fornadel, Christen M; Kosloff, Barry

    2014-12-01

    High-quality laboratory space to support basic science, clinical research projects, or health services is often severely lacking in the developing world. Moreover, the construction of suitable facilities using traditional methods is time-consuming, expensive, and challenging to implement. Three real world examples showing how shipping containers can be converted into modern laboratories are highlighted. These include use as an insectary, a molecular laboratory, and a BSL-3 containment laboratory. These modular conversions have a number of advantages over brick and mortar construction and provide a cost-effective and timely solution to offer high-quality, user-friendly laboratory space applicable within the developing world. © The American Society of Tropical Medicine and Hygiene.

  7. Practical Laboratory Planning.

    ERIC Educational Resources Information Center

    Ferguson, W. R.

    This book is intended as a guide for people who are planning chemistry and physics research laboratories. It deals with the importance of effective communication between client and architect, the value of preliminary planning, and the role of the project officer. It also discusses the size and layout of individual laboratories, the design of…

  8. Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop Laboratory Radio Frequency (RF) Propagation Section

    DTIC Science & Technology

    2016-10-01

    ARL-TR-7860 ● OCT 2016 US Army Research Laboratory Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop ...ARL-TR-7860 ● OCT 2016 US Army Research Laboratory Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop Laboratory...Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop Laboratory Radio Frequency (RF) Propagation Section 5a. CONTRACT NUMBER

  9. Laboratory space physics: Investigating the physics of space plasmas in the laboratory

    NASA Astrophysics Data System (ADS)

    Howes, Gregory G.

    2018-05-01

    Laboratory experiments provide a valuable complement to explore the fundamental physics of space plasmas without the limitations inherent to spacecraft measurements. Specifically, experiments overcome the restriction that spacecraft measurements are made at only one (or a few) points in space, enable greater control of the plasma conditions and applied perturbations, can be reproducible, and are orders of magnitude less expensive than launching spacecraft. Here, I highlight key open questions about the physics of space plasmas and identify the aspects of these problems that can potentially be tackled in laboratory experiments. Several past successes in laboratory space physics provide concrete examples of how complementary experiments can contribute to our understanding of physical processes at play in the solar corona, solar wind, planetary magnetospheres, and the outer boundary of the heliosphere. I present developments on the horizon of laboratory space physics, identifying velocity space as a key new frontier, highlighting new and enhanced experimental facilities, and showcasing anticipated developments to produce improved diagnostics and innovative analysis methods. A strategy for future laboratory space physics investigations will be outlined, with explicit connections to specific fundamental plasma phenomena of interest.

  10. 76 FR 4710 - Accreditation and Approval of Laboratory Service, Inc., as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... Laboratory Service, Inc., as a Commercial Gauger and Laboratory AGENCY: U.S. Customs and Border Protection, Department of Homeland Security. ACTION: Notice of accreditation and approval of Laboratory Service, Inc., as a commercial gauger and laboratory. SUMMARY: Notice is hereby given that, pursuant to 19 CFR 151.12...

  11. Biosafety and biosecurity in veterinary laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, Melissa R.; Astuto-Gribble, Lisa M.; Brass, Van Hildren

    Here, with recent outbreaks of MERS-Cov, Anthrax, Nipah, and Highly Pathogenic Avian Influenza, much emphasis has been placed on rapid identification of infectious agents globally. As a result, laboratories are building capacity, conducting more advanced and sophisticated research, increasing laboratory staff, and establishing collections of dangerous pathogens in an attempt to reduce the impact of infectious disease outbreaks and characterize disease causing agents. With this expansion, the global laboratory community has started to focus on laboratory biosafety and biosecurity to prevent the accidental and/or intent ional release o f these agents. Laboratory biosafety and biosecurity systems are used around themore » world to help mit igate the risks posed by dangerous pathogens in the laboratory. Veterinary laboratories carry unique responsibilities to workers and communities to safely and securely handle disease causing microorganisms. Many microorganisms studied in veterinary laboratories not only infect animals, but also have the potential to infect humans. This paper will discuss the fundamentals of laboratory biosafety and biosecurity.« less

  12. The SLMTA programme: Transforming the laboratory landscape in developing countries

    PubMed Central

    Maruta, Talkmore; Luman, Elizabeth T.; Nkengasong, John N.

    2014-01-01

    Background Efficient and reliable laboratory services are essential to effective and well-functioning health systems. Laboratory managers play a critical role in ensuring the quality and timeliness of these services. However, few laboratory management programmes focus on the competencies required for the daily operations of a laboratory in resource-limited settings. This report provides a detailed description of an innovative laboratory management training tool called Strengthening Laboratory Management Toward Accreditation (SLMTA) and highlights some challenges, achievements and lessons learned during the first five years of implementation (2009–2013) in developing countries. Programme SLMTA is a competency-based programme that uses a series of short courses and work-based learning projects to effect immediate and measurable laboratory improvement, while empowering laboratory managers to implement practical quality management systems to ensure better patient care. A SLMTA training programme spans from 12 to 18 months; after each workshop, participants implement improvement projects supported by regular supervisory visits or on-site mentoring. In order to assess strengths, weaknesses and progress made by the laboratory, audits are conducted using the World Health Organization’s Regional Office for Africa (WHO AFRO) Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist, which is based on International Organization for Standardization (ISO) 15189 requirements. These internal audits are conducted at the beginning and end of the SLMTA training programme. Conclusion Within five years, SLMTA had been implemented in 617 laboratories in 47 countries, transforming the laboratory landscape in developing countries. To our knowledge, SLMTA is the first programme that makes an explicit connection between the performance of specific management behaviours and routines and ISO 15189 requirements. Because of this close relationship, SLMTA is

  13. Development of the Design Laboratory.

    ERIC Educational Resources Information Center

    Silla, Harry

    1986-01-01

    Describes the design laboratory at the Stevens Institute of Technology (SIT). Considers course objectives, design projects, project structure, mechanical design, project management, and laboratory operation. This laboratory complements SIT's course in process design, giving students a complete design experience. (JN)

  14. Monitoring laboratory data across manufacturers and laboratories--A prerequisite to make "Big Data" work.

    PubMed

    Goossens, Kenneth; Van Uytfanghe, Katleen; Twomey, Patrick J; Thienpont, Linda M

    2015-05-20

    "The Percentiler" project provides quasi real-time access to patient medians across laboratories and manufacturers. This data can serve as "clearinghouse" for electronic health record applications, e.g., use of laboratory data for global health-care research. Participants send their daily outpatient medians to the Percentiler application. After 6 to 8weeks, the laboratory receives its login information, which gives access to the user interface. Data is assessed by peer group, i.e., 10 or more laboratories using the same test system. Participation is free of charge. Participation is global with, to date, >120 laboratories and >250 instruments. Up to now, several reports have been produced that address i) the general features of the project, ii) peer group observations; iii) synergisms between "The Percentiler" and dedicated external quality assessment surveys. Reasons for long-term instability and bias (calibration- or lot-effects) have been observed for the individual laboratory and manufacturers. "The Percentiler" project has the potential to build a continuous, global evidence base on in vitro diagnostic test comparability and stability. As such, it may be beneficial for all stakeholders and, in particular, the patient. The medical laboratory is empowered for contributing to the development, implementation, and management of global health-care policies. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Intelligent Intersection Traffic Control Laboratory Fact Sheet

    DOT National Transportation Integrated Search

    2006-07-27

    The Intelligent Intersection 11:affic Control Laboratory (IITCL) is an outdoor facility that supports the Federal Highway Administration's (FHWA) various research programs and research activities conducted by other U.S. Department of 11:ansportation ...

  16. 42 CFR 493.1403 - Condition: Laboratories performing moderate complexity testing; laboratory director.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing moderate complexity testing; laboratory director. 493.1403 Section 493.1403 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION...

  17. 42 CFR 493.1403 - Condition: Laboratories performing moderate complexity testing; laboratory director.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Condition: Laboratories performing moderate complexity testing; laboratory director. 493.1403 Section 493.1403 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION...

  18. Non-physics peer demonstrators in undergraduate laboratories: a study of students’ perceptions

    NASA Astrophysics Data System (ADS)

    Braun, Michael; Kirkup, Les

    2016-01-01

    Laboratory demonstrators play a crucial role in facilitating students’ learning in physics subjects. Inspired by the success of peer-led activities, we introduced peer demonstrators to support student learning in first-year physics subjects that enrol students not intending to major in physics. Surveys were administered to 1700 students over 4 years in four subjects to examine student perceptions of how demonstrators assisted them in the laboratory. Scores awarded to peer demonstrators by students were no lower than those awarded to demonstrators traditionally employed in the first year physics laboratory. These latter demonstrators were drawn mainly from the ranks of physics research students. The findings validate the recruitment of peer demonstrators and will be used to inform the recruitment and support programmes for laboratory demonstrators.

  19. Laboratory hematology in the history of Clinical Chemistry and Laboratory Medicine.

    PubMed

    Hoffmann, Johannes J M L

    2013-01-01

    For the occasion of the 50th anniversary of the journal Clinical Chemistry and Laboratory Medicine (CCLM), an historic overview of papers that the journal has published in the field of laboratory hematology (LH) is presented. All past volumes of CCLM were screened for papers on LH and these were categorized. Bibliographic data of these papers were also analyzed. CCLM published in total 387 LH papers. The absolute number of LH papers published annually showed a significant increase over the years since 1985. Also the share of LH papers demonstrated a steady increase (overall mean 5%, but mean 8% over the past 4 years). The most frequent category was coagulation and fibrinolysis (23.5%). Authors from Germany contributed the most LH papers to the journal (22.7%), followed by the Netherlands and Italy (16.3 and 13.2%, respectively). Recent citation data indicated that other publications cited LH review papers much more frequently than other types of papers. The history of the journal reflects the emergence and development of laboratory hematology as a separate discipline of laboratory medicine.

  20. Laboratory errors and patient safety.

    PubMed

    Miligy, Dawlat A

    2015-01-01

    Laboratory data are extensively used in medical practice; consequently, laboratory errors have a tremendous impact on patient safety. Therefore, programs designed to identify and reduce laboratory errors, as well as, setting specific strategies are required to minimize these errors and improve patient safety. The purpose of this paper is to identify part of the commonly encountered laboratory errors throughout our practice in laboratory work, their hazards on patient health care and some measures and recommendations to minimize or to eliminate these errors. Recording the encountered laboratory errors during May 2008 and their statistical evaluation (using simple percent distribution) have been done in the department of laboratory of one of the private hospitals in Egypt. Errors have been classified according to the laboratory phases and according to their implication on patient health. Data obtained out of 1,600 testing procedure revealed that the total number of encountered errors is 14 tests (0.87 percent of total testing procedures). Most of the encountered errors lay in the pre- and post-analytic phases of testing cycle (representing 35.7 and 50 percent, respectively, of total errors). While the number of test errors encountered in the analytic phase represented only 14.3 percent of total errors. About 85.7 percent of total errors were of non-significant implication on patients health being detected before test reports have been submitted to the patients. On the other hand, the number of test errors that have been already submitted to patients and reach the physician represented 14.3 percent of total errors. Only 7.1 percent of the errors could have an impact on patient diagnosis. The findings of this study were concomitant with those published from the USA and other countries. This proves that laboratory problems are universal and need general standardization and bench marking measures. Original being the first data published from Arabic countries that

  1. New Brunswick Laboratory progress report, October 1994--September 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The mission of the New Brunswick Laboratory (NBL) of the A. S. Department of Energy (DOE) is to serve as the National Certifying Authority for nuclear reference materials and to provide an independent Federal technical staff and laboratory resource performing nuclear material measurement, safeguards, and non-proliferation functions in support of multiple program sponsors. This annual report describes accomplishments achieved in carrying out NBL`s assigned missions.

  2. Software engineering laboratory series: Annotated bibliography of software engineering laboratory literature

    NASA Technical Reports Server (NTRS)

    Morusiewicz, Linda; Valett, Jon

    1992-01-01

    This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: (1) the Software Engineering Laboratory; (2) the Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. This document contains an index of these publications classified by individual author.

  3. Use of proficiency test performance to determine clinical laboratory director qualifications.

    PubMed

    Howanitz, P J

    1988-04-01

    Many activities and policies influence laboratory test quality. Proficiency test results are one measure of laboratory quality, and during the past 25 years, five studies have examined the relationship of laboratory director educational requirements to proficiency test results. Data from three studies support the association between director qualifications and quality as measured by proficiency test performance, whereas no relationship was found in the other two studies. Possible reasons for conflicting results include differences in database size and demographics; in addition, proficiency test results may be inappropriate, although widely used, as the sole measure of laboratory director performance.

  4. The State Public Health Laboratory System.

    PubMed

    Inhorn, Stanley L; Astles, J Rex; Gradus, Stephen; Malmberg, Veronica; Snippes, Paula M; Wilcke, Burton W; White, Vanessa A

    2010-01-01

    This article describes the development since 2000 of the State Public Health Laboratory System in the United States. These state systems collectively are related to several other recent public health laboratory (PHL) initiatives. The first is the Core Functions and Capabilities of State Public Health Laboratories, a white paper that defined the basic responsibilities of the state PHL. Another is the Centers for Disease Control and Prevention National Laboratory System (NLS) initiative, the goal of which is to promote public-private collaboration to assure quality laboratory services and public health surveillance. To enhance the realization of the NLS, the Association of Public Health Laboratories (APHL) launched in 2004 a State Public Health Laboratory System Improvement Program. In the same year, APHL developed a Comprehensive Laboratory Services Survey, a tool to measure improvement through the decade to assure that essential PHL services are provided.

  5. Integration of Video-Based Demonstrations to Prepare Students for the Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nadelson, Louis S.; Scaggs, Jonathan; Sheffield, Colin; McDougal, Owen M.

    2015-01-01

    Consistent, high-quality introductions to organic chemistry laboratory techniques effectively and efficiently support student learning in the organic chemistry laboratory. In this work, we developed and deployed a series of instructional videos to communicate core laboratory techniques and concepts. Using a quasi-experimental design, we tested the…

  6. Stirling Laboratory Research Engine: Preprototype configuration report

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.

    1982-01-01

    The concept of a simple Stirling research engine that could be used by industrial, university, and government laboratories was studied. The conceptual and final designs, hardware fabrication and the experimental validation of a preprototype stirling laboratory research engine (SLRE) were completed. Also completed was a task to identify the potential markets for research engines of this type. An analytical effort was conducted to provide a stirling cycle computer model. The versatile engine is a horizontally opposed, two piston, single acting stirling engine with a split crankshaft drive mechanism; special instrumentation is installed at all component interfaces. Results of a thermodynamic energy balance for the system are reported. Also included are the engine performance results obtained over a range of speeds, working pressures, phase angles and gas temperatures. The potential for a stirling research engine to support the laboratory requirements of educators and researchers was demonstrated.

  7. Internal audit in a microbiology laboratory.

    PubMed Central

    Mifsud, A J; Shafi, M S

    1995-01-01

    AIM--To set up a programme of internal laboratory audit in a medical microbiology laboratory. METHODS--A model of laboratory based process audit is described. Laboratory activities were examined in turn by specimen type. Standards were set using laboratory standard operating procedures; practice was observed using a purpose designed questionnaire and the data were analysed by computer; performance was assessed at laboratory audit meetings; and the audit circle was closed by re-auditing topics after an interval. RESULTS--Improvements in performance scores (objective measures) and in staff morale (subjective impression) were observed. CONCLUSIONS--This model of process audit could be applied, with amendments to take local practice into account, in any microbiology laboratory. PMID:7665701

  8. Laboratory Directed Research and Development Program Assessment for FY 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annuallymore » in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps BNL to respond new scientific opportunities

  9. Introductory Archaeology: The Inexpensive Laboratory.

    ERIC Educational Resources Information Center

    Rice, Patricia C.

    1990-01-01

    Describes a number of student-focused laboratory exercises that are inexpensive, yet show the scientific character of archaeology. Describes the environmental laboratory exercise which includes the following analysis topics: (1) pollen; (2) earth core; (3) microfaunal; and (4) microwear. Describes the ceramic laboratory which involves…

  10. Chemistry laboratory safety manual available

    NASA Technical Reports Server (NTRS)

    Elsbrock, R. G.

    1968-01-01

    Chemistry laboratory safety manual outlines safe practices for handling hazardous chemicals and chemistry laboratory equipment. Included are discussions of chemical hazards relating to fire, health, explosion, safety equipment and procedures for certain laboratory techniques and manipulations involving glassware, vacuum equipment, acids, bases, and volatile solvents.

  11. Undergraduate Organic Chemistry Laboratory Safety

    NASA Astrophysics Data System (ADS)

    Luckenbaugh, Raymond W.

    1996-11-01

    Each organic chemistry student should become familiar with the educational and governmental laboratory safety requirements. One method for teaching laboratory safety is to assign each student to locate safety resources for a specific class laboratory experiment. The student should obtain toxicity and hazardous information for all chemicals used or produced during the assigned experiment. For example, what is the LD50 or LC50 for each chemical? Are there any specific hazards for these chemicals, carcinogen, mutagen, teratogen, neurotixin, chronic toxin, corrosive, flammable, or explosive agent? The school's "Chemical Hygiene Plan", "Prudent Practices for Handling Hazardous Chemicals in the Laboratory" (National Academy Press), and "Laboratory Standards, Part 1910 - Occupational Safety and Health Standards" (Fed. Register 1/31/90, 55, 3227-3335) should be reviewed for laboratory safety requirements for the assigned experiment. For example, what are the procedures for safe handling of vacuum systems, if a vacuum distillation is used in the assigned experiment? The literature survey must be submitted to the laboratory instructor one week prior to the laboratory session for review and approval. The student should then give a short presentation to the class on the chemicals' toxicity and hazards and describe the safety precautions that must be followed. This procedure gives the student first-hand knowledge on how to find and evaluate information to meet laboartory safety requirements.

  12. LANGUAGE ARTS LABORATORY.

    ERIC Educational Resources Information Center

    ROBERTS, HERMESE E.

    THE LANGUAGE ARTS LABORATORY WAS ESTABLISHED TO IMPROVE READING ABILITY AND OTHER LANGUAGE ARTS SKILLS AS AN AID IN THE PREVENTION OF DROPOUTS. THE LABORATORY WAS OPERATED ON A SUMMER SCHEDULE WITH A FLEXIBLE PROGRAM OF FROM 45 MINUTES TO 2 1/2 HOURS DAILY. ALL PUPILS WERE 14 YEARS OF AGE OR OLDER, AND EXPRESSED A DESIRE TO IMPROVE THEIR READING…

  13. Kennedy's Biomedical Laboratory Makes Multi-Tasking Look Easy

    NASA Technical Reports Server (NTRS)

    Dunn, Carol Anne

    2009-01-01

    If it is one thing that Florida has in abundance, it is sunshine and with that sunshine heat and humidity. For workers at the Kennedy Space Center that have to work outside in the heat and humidity, heat exhaustion/stroke is a real possibility. It might help people to know that Kennedy's Biomedical Laboratory has been testing some new Koolvests(Trademark) that can be worn underneath SCAPE suits. They have also been working on how to block out high noise levels; in fact, Don Doerr, chief of the Biomedical Lab, says, "The most enjoyable aspect is knowing that the Biomedical Lab and the skills of its employees have been used to support safe space flight, not only for the astronaut flight crew, but just as important for the ground processing personnel as well." The NASA Biomedical Laboratory has existed in the John F. Kennedy's Operations and Checkout Building since the Apollo Program. The primary mission of this laboratory has been the biomedical support to major, manned space programs that have included Apollo, Apollo-Soyuz, Skylab, and Shuttle. In this mission, the laboratory has been responsible in accomplishing much of the technical design, planning, provision, fabrication, and maintenance of flight and ground biomedical monitoring instrumentation. This includes the electronics in the launch flight suit and similar instrumentation systems in the spacecraft. (Note: The Lab checked out the system for STS-128 at Pad A using Firing room 4 and ground support equipment in the lab.) During Apollo, there were six engineers and ten technicians in the facility. This has evolved today to two NASA engineers and two NASA technicians, a Life Science Support contract physiologist and part-time support from an LSSC nurse and physician. Over the years, the lab has enjoyed collaboration with outside agencies and investigators. These have included on-site support to the Ames Research Center bed rest studies (seven years) and the European Space Agency studies in Toulouse, France (two

  14. State of laboratory manual instruction in California community college introductory (non-majors) biology laboratory instruction

    NASA Astrophysics Data System (ADS)

    Priest, Michelle

    College students must complete a life science course prior to graduation for a bachelor's degree. Generally, the course has lecture and laboratory components. It is in the laboratory where there are exceptional opportunities for exploration, challenge and application of the material learned. Optimally, this would utilize the best of inquiry based approaches. Most community colleges are using a home-grown or self written laboratory manual for the direction of work in the laboratory period. Little was known about the motivation, development and adaptation of use. It was also not known about the future of the laboratory manuals in light of the recent learning reform in California Community Colleges, Student Learning Outcomes. Extensive interviews were conducted with laboratory manual authors to determine the motivation, process of development, who was involved and learning framework used in the creation of the manuals. It was further asked of manual authors their ideas about the future of the manual, the development of staff and faculty and finally, the role Student Learning Outcomes would play in the manual. Science faculty currently teaching the non-majors biology laboratories for at least two semesters were surveyed on-line about actual practice of the manual, assessment, manual flexibility, faculty training and incorporation of Student Learning Outcomes. Finally, an evaluation of the laboratory manual was done using an established Laboratory Task Analysis Instrument. Laboratory manuals were evaluated on a variety of categories to determine the level of inquiry instruction done by students in the laboratory section. The results were that the development of homegrown laboratory manuals was done by community colleges in the Los Angeles and Orange Counties in an effort to minimize the cost of the manual to the students, to utilize all the exercises in a particular lab and to effectively utilize the materials already owned by the department. Further, schools wanted to

  15. ORNLs Laboratory Directed Research and Development Program FY 2009 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2010-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2009. The associated FY 2009 ORNL LDRD Self-Assessment (ORNL/PPA-2010/2) provides financial data andmore » an internal evaluation of the program’s management process.« less

  16. ORNLs Laboratory Directed Research and Development Program FY 2013 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2013. The associated FY 2013 ORNL LDRD Self-Assessment (ORNL/PPA-2014/2) provides financial datamore » and an internal evaluation of the program’s management process.« less

  17. ORNLs Laboratory Directed Research and Development Program FY 2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2009-03-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2008. The associated FY 2008 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and anmore » internal evaluation of the program’s management process.« less

  18. ORNLs Laboratory Directed Research and Development Program FY 2012 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2013-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2012. The associated FY 2012 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial datamore » and an internal evaluation of the program’s management process.« less

  19. Recent trends in laboratory automation in the pharmaceutical industry.

    PubMed

    Rutherford, M L; Stinger, T

    2001-05-01

    The impact of robotics and automation on the pharmaceutical industry over the last two decades has been significant. In the last ten years, the emphasis of laboratory automation has shifted from the support of manufactured products and quality control of laboratory applications, to research and development. This shift has been the direct result of an increased emphasis on the identification, development and eventual marketing of innovative new products. In this article, we will briefly identify and discuss some of the current trends in laboratory automation in the pharmaceutical industry as they apply to research and development, including screening, sample management, combinatorial chemistry, ADME/Tox and pharmacokinetics.

  20. Overview of the NASA space radiation laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Tessa, Chiara; Sivertz, Michael; Chiang, I-Hung

    The NASA Space Radiation Laboratory (NSRL) is a multidisciplinary center for space radiation research funded by NASA and located at the Brookhaven National Laboratory (BNL), Upton NY. Operational since 2003, the scope of NSRL is to provide ion beams in support of the NASA Humans in Space program in radiobiology, physics and engineering to measure the risk and ameliorate the effect of radiation in space. Recently, it has also been recognized as the only facility in the U.S. currently capable of contributing to heavy ion radiotherapy research. Finally, this work contains a general overview of NSRL structure, capabilities and operation.

  1. Overview of the NASA space radiation laboratory

    DOE PAGES

    La Tessa, Chiara; Sivertz, Michael; Chiang, I-Hung; ...

    2016-11-11

    The NASA Space Radiation Laboratory (NSRL) is a multidisciplinary center for space radiation research funded by NASA and located at the Brookhaven National Laboratory (BNL), Upton NY. Operational since 2003, the scope of NSRL is to provide ion beams in support of the NASA Humans in Space program in radiobiology, physics and engineering to measure the risk and ameliorate the effect of radiation in space. Recently, it has also been recognized as the only facility in the U.S. currently capable of contributing to heavy ion radiotherapy research. Finally, this work contains a general overview of NSRL structure, capabilities and operation.

  2. Laboratory automation: total and subtotal.

    PubMed

    Hawker, Charles D

    2007-12-01

    Worldwide, perhaps 2000 or more clinical laboratories have implemented some form of laboratory automation, either a modular automation system, such as for front-end processing, or a total laboratory automation system. This article provides descriptions and examples of these various types of automation. It also presents an outline of how a clinical laboratory that is contemplating automation should approach its decision and the steps it should follow to ensure a successful implementation. Finally, the role of standards in automation is reviewed.

  3. The Gran Sasso Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Coccia, Eugenio

    2012-12-01

    Thirty years have passed since, thanks to Antonino Zichichi, the project for the largest underground laboratory in the world was conceived and brought to the attention of Italian authorities. The Gran Sasso National Laboratories of INFN have become a scientific reality of worldwide pre-eminence, in an expanding area of research where elementary particle physics, astrophysics and cosmology overlap. I briefly present here the main scientific challenges of underground laboratories and the activity and future perspectives of the INFN Gran Sasso Laboratory.

  4. Laboratory medicine: challenges and opportunities.

    PubMed

    Bossuyt, Xavier; Verweire, Kurt; Blanckaert, Norbert

    2007-10-01

    Technologic innovations have substantially improved the productivity of clinical laboratories, but the services provided by clinical laboratories are increasingly becoming commoditized. We reflect on how current developments may affect the future of laboratory medicine and how to deal with these changes. We argue that to be prepared for the future, clinical laboratories should enhance efficiency and reduce costs by forming alliances and networks; consolidating, integrating, or outsourcing; and more importantly, create additional value by providing knowledge services related to in vitro diagnostics.

  5. Air Force Research Laboratory

    DTIC Science & Technology

    2009-06-08

    Air Force Research Laboratory 8 June 2009 Mr. Leo Marple Ai F R h L b t r orce esearc a ora ory Leo.Marple@wpafb.af.mil DISTRIBUTION STATEMENT A...TITLE AND SUBTITLE Air Force Research Laboratory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory ,Wright

  6. Laboratory quality management system: road to accreditation and beyond.

    PubMed

    Wadhwa, V; Rai, S; Thukral, T; Chopra, M

    2012-01-01

    This review attempts to clarify the concepts of Laboratory Quality Management System (Lab QMS) for a medical testing and diagnostic laboratory in a holistic way and hopes to expand the horizon beyond quality control (QC) and quality assurance. It provides an insight on accreditation bodies and highlights a glimpse of existing laboratory practices but essentially it takes the reader through the journey of accreditation and during the course of reading and understanding this document, prepares the laboratory for the same. Some of the areas which have not been highlighted previously include: requirement for accreditation consultants, laboratory infrastructure and scope, applying for accreditation, document preparation. This section is well supported with practical illustrations and necessary tables and exhaustive details like preparation of a standard operating procedure and a quality manual. Concept of training and privileging of staff has been clarified and a few of the QC exercises have been dealt with in a novel way. Finally, a practical advice for facing an actual third party assessment and caution needed to prevent post-assessment pitfalls has been dealt with.

  7. A comparison of a biological sciences curriculum study (BSCS) laboratory and a traditional laboratory on student achievement at two private liberal arts colleges

    NASA Astrophysics Data System (ADS)

    Hall, Donald A.; McCurdy, Donald W.

    The purpose of this experiment was to compare an inquiry-oriented Biological Sciences Curriculum Study (BSCS) style laboratory approach with a more directive traditional approach on student outcomes in the cognitive and affective domains of learning at two private, midwestern liberal-arts colleges. The BSCS approach emphasized basic and integrated science processes, concept development through extensive questioning, and increased student discretion, while the traditional approach contained highly structured, more prescriptive, teacher-oriented activities. Intact laboratory sections of students enrolled in introductory general biology at two private liberal-arts colleges were randomly selected into two treatment groups. Pretest and posttest measures were taken on three dependent variables: (1) biological content achievement, measured with a researcher-generated Test on Biology Laboratory Concepts, (2) reasoning ability, measured with the Group Assessment of Logical Thinking, and (3) attitude toward biology, measured with the Biology Student Behavior Inventory. Analysis of covariance indicated the experimental group (n = 60) using the BSCS-style laboratory approach scored significantly higher than the comparison group (n = 59) in levels of performance on biology content achievement, F(1, 114) = 4.07, p < 0.05. There were no significant differences between the two groups in performance levels on attitude toward biology or on reasoning ability. However, both groups experienced a 15-percent increase in the number of formal thinkers as indicated by pretest-posttest gain scores on the reasoning ability test. These results lend support to the hypothesis that a BSCS-style laboratory approach fosters desired learner outcomes at the postsecondary level. In addition, these findings support the notion that the science laboratory may be used as a primary vehicle to promote formal reasoning skills.

  8. The Future Direction of Regional Educational Laboratories in Contributing to Urban School Improvement. Laboratory Policy Paper.

    ERIC Educational Resources Information Center

    McKenzie, Floretta Dukes

    This paper examines the current and future roles of organizations such as education laboratories in serving the changing needs of urban education. Concerns for greater effectiveness in support services stem from the growing need to effectively deal with some of the complex, lingering issues which to data have been only marginally addressed. Urban…

  9. Laboratory directed research and development FY98 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R; Holzrichter, J

    1999-05-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNLmore » with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs.« less

  10. Evaluation of the Use of Remote Laboratories for Secondary School Science Education

    NASA Astrophysics Data System (ADS)

    Lowe, David; Newcombe, Peter; Stumpers, Ben

    2013-06-01

    Laboratory experimentation is generally considered central to science-based education. Allowing students to "experience" science through various forms of carefully designed practical work, including experimentation, is often claimed to support their learning and motivate their engagement while fulfilling specific curriculum requirements. However, logistical constraints (most especially related to funding) place significant limitations on the ability of schools to provide and maintain high-quality science laboratory experiences and equipment. One potential solution that has recently been the subject of growing interest is the use of remotely accessible laboratories to either supplant, or more commonly to supplement, conventional hands-on laboratories. Remote laboratories allow students and teachers to use high-speed networks, coupled with cameras, sensors, and controllers, to carry out experiments on real physical laboratory apparatus that is located remotely from the student. Research has shown that when used appropriately this can bring a range of potential benefits, including the ability to share resources across multiple institutions, support access to facilities that would otherwise be inaccessible for cost or technical reasons, and provide augmentation of the experimental experience. Whilst there has been considerable work on evaluating the use of remote laboratories within tertiary education, consideration of their role within secondary school science education is much more limited. This paper describes trials of the use of remote laboratories within secondary schools, reporting on the student and teacher reactions to their interactions with the laboratories. The paper concludes that remote laboratories can be highly beneficial, but considerable care must be taken to ensure that their design and delivery address a number of critical issues identified in this paper.

  11. [Errors in laboratory daily practice].

    PubMed

    Larrose, C; Le Carrer, D

    2007-01-01

    Legislation set by GBEA (Guide de bonne exécution des analyses) requires that, before performing analysis, the laboratory directors have to check both the nature of the samples and the patients identity. The data processing of requisition forms, which identifies key errors, was established in 2000 and in 2002 by the specialized biochemistry laboratory, also with the contribution of the reception centre for biological samples. The laboratories follow a strict criteria of defining acceptability as a starting point for the reception to then check requisition forms and biological samples. All errors are logged into the laboratory database and analysis report are sent to the care unit specifying the problems and the consequences they have on the analysis. The data is then assessed by the laboratory directors to produce monthly or annual statistical reports. This indicates the number of errors, which are then indexed to patient files to reveal the specific problem areas, therefore allowing the laboratory directors to teach the nurses and enable corrective action.

  12. Laboratory quality improvement in Tanzania.

    PubMed

    Andiric, Linda R; Massambu, Charles G

    2015-04-01

    The article describes the implementation and improvement in the first groups of medical laboratories in Tanzania selected to participate in the training program on Strengthening Laboratory Management Toward Accreditation (SLMTA). As in many other African nations, the selected improvement plan consisted of formalized hands-on training (SLMTA) that teaches the tasks and skills of laboratory management and provides the tools for implementation of best laboratory practice. Implementation of the improvements learned during training was verified before and after SLMTA with the World Health Organization African Region Stepwise Laboratory Improvement Process Towards Accreditation checklist. During a 4-year period, the selected laboratories described in this article demonstrated improvement with a range of 2% to 203% (cohort I) and 12% to 243% (cohort II) over baseline scores. The article describes the progress made in Tanzania's first cohorts, the obstacles encountered, and the lessons learned during the pilot and subsequent implementations. Copyright© by the American Society for Clinical Pathology.

  13. Cost analysis in the toxicology laboratory.

    PubMed

    Travers, E M

    1990-09-01

    The process of determining laboratory sectional and departmental costs and test costs for instrument-generated and manually generated reportable results for toxicology laboratories has been outlined in this article. It is hoped that the basic principles outlined in the preceding text will clarify and elucidate one of the most important areas needed for laboratory fiscal integrity and its survival in these difficult times for health care providers. The following general principles derived from this article are helpful aids for managers of toxicology laboratories. 1. To manage a cost-effective, efficient toxicology laboratory, several factors must be considered: the laboratory's instrument configuration, test turnaround time needs, the test menu offered, the analytic methods used, the cost of labor based on time expended and the experience and educational level of the staff, and logistics that determine specimen delivery time and costs. 2. There is a wide variation in costs for toxicologic methods, which requires that an analysis of capital (equipment) purchase and operational (test performance) costs be performed to avoid waste, purchase wisely, and determine which tests consume the majority of the laboratory's resources. 3. Toxicologic analysis is composed of many complex steps. Each step must be individually cost-accounted. Screening test results must be confirmed, and the cost for both steps must be included in the cost per reportable result. 4. Total costs will vary in the same laboratory and between laboratories based on differences in salaries paid to technical staff, differences in reagent/supply costs, the number of technical staff needed to operate the analyzer or perform the method, and the inefficient use of highly paid staff to operate the analyzer or perform the method. 5. Since direct test costs vary directly with the type and number of analyzers or methods and are dependent on the operational mode designed by the manufacturer, laboratory managers

  14. Flexibility of mobile laboratory unit in support of patient management during the 2007 Ebola-Zaire outbreak in the Democratic Republic of Congo.

    PubMed

    Grolla, A; Jones, S; Kobinger, G; Sprecher, A; Girard, G; Yao, M; Roth, C; Artsob, H; Feldmann, H; Strong, J E

    2012-09-01

    The mobile laboratory provides a safe, rapid and flexible platform to provide effective diagnosis of Ebola virus as well as additional differential diagnostic agents in remote settings of equatorial Africa. During the 2007 Democratic Republic of Congo outbreak of Ebola-Zaire, the mobile laboratory was set up in two different locations by two separate teams within a day of equipment arriving in each location. The first location was in Mweka where our laboratory took over the diagnostic laboratory space of the local hospital, whereas the second location, approximately 50 km south near Kampungu at the epicentre of the outbreak, required local labour to fabricate a tent structure as a suitable pre-existing structure was not available. In both settings, the laboratory was able to quickly set up, providing accurate and efficient molecular diagnostics (within 3 h of receiving samples) for 67 individuals, including four cases of Ebola, seven cases of Shigella and 13 cases of malaria. This rapid turn-around time provides an important role in the support of patient management and epidemiological surveillance. © 2012 Blackwell Verlag GmbH.

  15. Good laboratory practices guarantee biosafety in the Sierra Leone-China friendship biosafety laboratory.

    PubMed

    Wang, Qin; Zhou, Wei-Min; Zhang, Yong; Wang, Huan-Yu; Du, Hai-Jun; Nie, Kai; Song, Jing-Dong; Xiao, Kang; Lei, Wen-Wen; Guo, Jian-Qiang; Wei, He-Jiang; Cai, Kun; Wang, Yan-Hai; Wu, Jiang; Kamara, Gerard; Kamara, Idrissa; Wei, Qiang; Liang, Mi-Fang; Wu, Gui-Zhen; Dong, Xiao-Ping

    2016-06-23

    The outbreak of Ebola virus disease (EVD) in West Africa between 2014 and 2015 was the largest EDV epidemic since the identification of Ebola virus (EBOV) in 1976, and the countries most strongly affected were Sierra Leone, Guinea, and Liberia. The Sierra Leone-China Friendship Biological Safety Laboratory (SLE-CHN Biosafety Lab), a fixed Biosafety Level 3 laboratory in the capital city of Sierra Leone, was established by the Chinese government and has been active in EBOV detection since 11 March 2015. Complete management and program documents were created for the SLE-CHN Biosafety Lab, and it was divided into four zones (the green, yellow, brown, and red zones) based on the risk assessment. Different types of safe and appropriate personnel protection equipment (PPE) are used in different zones of the laboratory, and it fully meets the Biosafety Level 3 laboratory standards of the World Health Organization. Good preparedness, comprehensive risk assessment and operation documents, appropriate PPE, effective monitoring and intensive training, together with well-designed and reasonable laboratory sectioning are essential for guaranteeing biosafety.

  16. 27 CFR 22.107 - Pathological laboratories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Pathological laboratories... Pathological laboratories. (a) Pathological laboratories, not operated by a hospital or sanitarium, may... sanitariums. If a pathological laboratory does not exclusively conduct analyses or tests for hospitals or...

  17. 27 CFR 22.107 - Pathological laboratories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Pathological laboratories... Pathological laboratories. (a) Pathological laboratories, not operated by a hospital or sanitarium, may... sanitariums. If a pathological laboratory does not exclusively conduct analyses or tests for hospitals or...

  18. 42 CFR 493.645 - Additional fee(s) applicable to approved State laboratory programs and laboratories issued a...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS General Administration § 493.645 Additional fee(s) applicable to approved State laboratory programs and... laboratory programs and laboratories issued a certificate of accreditation, certificate of waiver, or...

  19. Robotic Lunar Rover Technologies and SEI Supporting Technologies at Sandia National Laboratories

    NASA Technical Reports Server (NTRS)

    Klarer, Paul R.

    1992-01-01

    Existing robotic rover technologies at Sandia National Laboratories (SNL) can be applied toward the realization of a robotic lunar rover mission in the near term. Recent activities at the SNL-RVR have demonstrated the utility of existing rover technologies for performing remote field geology tasks similar to those envisioned on a robotic lunar rover mission. Specific technologies demonstrated include low-data-rate teleoperation, multivehicle control, remote site and sample inspection, standard bandwidth stereo vision, and autonomous path following based on both internal dead reckoning and an external position location update system. These activities serve to support the use of robotic rovers for an early return to the lunar surface by demonstrating capabilities that are attainable with off-the-shelf technology and existing control techniques. The breadth of technical activities at SNL provides many supporting technology areas for robotic rover development. These range from core competency areas and microsensor fabrication facilities, to actual space qualification of flight components that are designed and fabricated in-house.

  20. Establishing Ebola Virus Disease (EVD) diagnostics using GeneXpert technology at a mobile laboratory in Liberia: Impact on outbreak response, case management and laboratory systems strengthening

    PubMed Central

    Condell, Orla; Wasunna, Christine; Kpaka, Jonathan; Zwizwai, Ruth; Nuha, Mahmood; Fallah, Mosoka; Freeman, Maxwell; Harris, Victoria; Miller, Mark; Baller, April; Massaquoi, Moses; Katawera, Victoria; Saindon, John; Bemah, Philip; Hamblion, Esther; Castle, Evelyn; Williams, Desmond; Gasasira, Alex; Nyenswah, Tolbert

    2018-01-01

    The 2014–16 Ebola Virus Disease (EVD) outbreak in West Africa highlighted the necessity for readily available, accurate and rapid diagnostics. The magnitude of the outbreak and the re-emergence of clusters of EVD cases following the declaration of interrupted transmission in Liberia, reinforced the need for sustained diagnostics to support surveillance and emergency preparedness. We describe implementation of the Xpert Ebola Assay, a rapid molecular diagnostic test run on the GeneXpert platform, at a mobile laboratory in Liberia and the subsequent impact on EVD outbreak response, case management and laboratory system strengthening. During the period of operation, site coordination, management and operational capacity was supported through a successful collaboration between Ministry of Health (MoH), World Health Organization (WHO) and international partners. A team of Liberian laboratory technicians were trained to conduct EVD diagnostics and the laboratory had capacity to test 64–100 blood specimens per day. Establishment of the laboratory significantly increased the daily testing capacity for EVD in Liberia, from 180 to 250 specimens at a time when the effectiveness of the surveillance system was threatened by insufficient diagnostic capacity. During the 18 months of operation, the laboratory tested a total of 9,063 blood specimens, including 21 EVD positives from six confirmed cases during two outbreaks. Following clearance of the significant backlog of untested EVD specimens in November 2015, a new cluster of EVD cases was detected at the laboratory. Collaboration between surveillance and laboratory coordination teams during this and a later outbreak in March 2016, facilitated timely and targeted response interventions. Specimens taken from cases during both outbreaks were analysed at the laboratory with results informing clinical management of patients and discharge decisions. The GeneXpert platform is easy to use, has relatively low running costs and can

  1. Establishing Ebola Virus Disease (EVD) diagnostics using GeneXpert technology at a mobile laboratory in Liberia: Impact on outbreak response, case management and laboratory systems strengthening.

    PubMed

    Raftery, Philomena; Condell, Orla; Wasunna, Christine; Kpaka, Jonathan; Zwizwai, Ruth; Nuha, Mahmood; Fallah, Mosoka; Freeman, Maxwell; Harris, Victoria; Miller, Mark; Baller, April; Massaquoi, Moses; Katawera, Victoria; Saindon, John; Bemah, Philip; Hamblion, Esther; Castle, Evelyn; Williams, Desmond; Gasasira, Alex; Nyenswah, Tolbert

    2018-01-01

    The 2014-16 Ebola Virus Disease (EVD) outbreak in West Africa highlighted the necessity for readily available, accurate and rapid diagnostics. The magnitude of the outbreak and the re-emergence of clusters of EVD cases following the declaration of interrupted transmission in Liberia, reinforced the need for sustained diagnostics to support surveillance and emergency preparedness. We describe implementation of the Xpert Ebola Assay, a rapid molecular diagnostic test run on the GeneXpert platform, at a mobile laboratory in Liberia and the subsequent impact on EVD outbreak response, case management and laboratory system strengthening. During the period of operation, site coordination, management and operational capacity was supported through a successful collaboration between Ministry of Health (MoH), World Health Organization (WHO) and international partners. A team of Liberian laboratory technicians were trained to conduct EVD diagnostics and the laboratory had capacity to test 64-100 blood specimens per day. Establishment of the laboratory significantly increased the daily testing capacity for EVD in Liberia, from 180 to 250 specimens at a time when the effectiveness of the surveillance system was threatened by insufficient diagnostic capacity. During the 18 months of operation, the laboratory tested a total of 9,063 blood specimens, including 21 EVD positives from six confirmed cases during two outbreaks. Following clearance of the significant backlog of untested EVD specimens in November 2015, a new cluster of EVD cases was detected at the laboratory. Collaboration between surveillance and laboratory coordination teams during this and a later outbreak in March 2016, facilitated timely and targeted response interventions. Specimens taken from cases during both outbreaks were analysed at the laboratory with results informing clinical management of patients and discharge decisions. The GeneXpert platform is easy to use, has relatively low running costs and can be

  2. Challenges in small screening laboratories: implementing an on-demand laboratory information management system.

    PubMed

    Lemmon, Vance P; Jia, Yuanyuan; Shi, Yan; Holbrook, S Douglas; Bixby, John L; Buchser, William

    2011-11-01

    The Miami Project to Cure Paralysis, part of the University of Miami Miller School of Medicine, includes a laboratory devoted to High Content Analysis (HCA) of neurons. The goal of the laboratory is to uncover signaling pathways, genes, compounds, or drugs that can be used to promote nerve growth. HCA permits the quantification of neuronal morphology, including the lengths and numbers of axons. HCA of various libraries on primary neurons requires a team-based approach, a variety of process steps and complex manipulations of cells and libraries to obtain meaningful results. HCA itself produces vast amounts of information including images, well-based data and cell-based phenotypic measures. Documenting and integrating the experimental workflows, library data and extensive experimental results is challenging. For academic laboratories generating large data sets from experiments involving thousands of perturbagens, a Laboratory Information Management System (LIMS) is the data tracking solution of choice. With both productivity and efficiency as driving rationales, the Miami Project has equipped its HCA laboratory with an On Demand or Software As A Service (SaaS) LIMS to ensure the quality of its experiments and workflows. The article discusses how the system was selected and integrated into the laboratory. The advantages of a SaaS based LIMS over a client-server based system are described. © 2011 Bentham Science Publishers

  3. Lawrence Livermore National Laboratory Environmental Report 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Henry E.; Armstrong, Dave; Blake, Rick G.

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security,more » LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  4. Lawrence Livermore National Laboratory Environmental Report 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H. E.; Bertoldo, N. A.; Blake, R. G.

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security,more » LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  5. 7 CFR 996.21 - USDA laboratory.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false USDA laboratory. 996.21 Section 996.21 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.21 USDA laboratory. USDA laboratory means laboratories of the Science and Technology Programs, Agricultural Marketing...

  6. 7 CFR 996.21 - USDA laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false USDA laboratory. 996.21 Section 996.21 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.21 USDA laboratory. USDA laboratory means laboratories of the Science and Technology Programs, Agricultural Marketing...

  7. 7 CFR 996.21 - USDA laboratory.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false USDA laboratory. 996.21 Section 996.21 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.21 USDA laboratory. USDA laboratory means laboratories of the Science and Technology Programs, Agricultural Marketing...

  8. 7 CFR 996.21 - USDA laboratory.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false USDA laboratory. 996.21 Section 996.21 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.21 USDA laboratory. USDA laboratory means laboratories of the Science and Technology Programs, Agricultural Marketing...

  9. 30 CFR 795.10 - Qualified laboratories.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Qualified laboratories. 795.10 Section 795.10... laboratories. (a) Basic qualifications. To be designated a qualified laboratory, a firm shall demonstrate that... necessary field samples and making hydrologic field measurements and analytical laboratory determinations by...

  10. 7 CFR 802.1 - Qualified laboratories.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Qualified laboratories. 802.1 Section 802.1... REQUIREMENTS FOR GRAIN WEIGHING EQUIPMENT AND RELATED GRAIN HANDLING SYSTEMS § 802.1 Qualified laboratories. (a) Metrology laboratories. (1) Any State metrology laboratory currently approved by the NBS ongoing...

  11. 21 CFR 606.140 - Laboratory controls.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Laboratory controls. 606.140 Section 606.140 Food... CURRENT GOOD MANUFACTURING PRACTICE FOR BLOOD AND BLOOD COMPONENTS Laboratory Controls § 606.140 Laboratory controls. Laboratory control procedures shall include: (a) The establishment of scientifically...

  12. 21 CFR 606.140 - Laboratory controls.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Laboratory controls. 606.140 Section 606.140 Food... CURRENT GOOD MANUFACTURING PRACTICE FOR BLOOD AND BLOOD COMPONENTS Laboratory Controls § 606.140 Laboratory controls. Laboratory control procedures shall include: (a) The establishment of scientifically...

  13. 21 CFR 606.140 - Laboratory controls.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Laboratory controls. 606.140 Section 606.140 Food... CURRENT GOOD MANUFACTURING PRACTICE FOR BLOOD AND BLOOD COMPONENTS Laboratory Controls § 606.140 Laboratory controls. Laboratory control procedures shall include: (a) The establishment of scientifically...

  14. 21 CFR 606.140 - Laboratory controls.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Laboratory controls. 606.140 Section 606.140 Food... CURRENT GOOD MANUFACTURING PRACTICE FOR BLOOD AND BLOOD COMPONENTS Laboratory Controls § 606.140 Laboratory controls. Laboratory control procedures shall include: (a) The establishment of scientifically...

  15. Science laboratory behavior strategies of students relative to performance in and attitude to laboratory work

    NASA Astrophysics Data System (ADS)

    Okebukola, Peter Akinsola

    The relationship between science laboratory behavior strategies of students and performance in and attitude to laboratory work was investigated in an observational study of 160 laboratory sessions involving 600 class five (eleventh grade) biology students. Zero-order correlations between the behavior strategies and outcome measures reveal a set of low to strong relationships. Transmitting information, listening and nonlesson related behaviors exhibited low correlations with practical skills and the attitude measure. The correlations between manipulating apparatus and observation with practical skills measures were found to be strong. Multiple correlation analysis revealed that the behaviors of students in the laboratories observed accounted for a large percentage of the variance in the scores on manipulative skills and a low percentage on interpretation of data, responsibility, initiative, and work habits. One significant canonical correlation emerged. The loadings on this canonical variate indicate that the practical skills measures, i.e., planning and design, manipulative skills and conduct of experiments, observation and recording of data, and attitude to laboratory work made primary contributions to the canonical relationship. Suggestions as to how students can be encouraged to go beyond cookbook-like laboratories and develop a more favorable attitude to laboratory work are made.

  16. The effect of restructuring student writing in the general chemistry laboratory on student understanding of chemistry and on students' approach to the laboratory course

    NASA Astrophysics Data System (ADS)

    Rudd, James Andrew, II

    Many students encounter difficulties engaging with laboratory-based instruction, and reviews of research have indicated that the value of such instruction is not clearly evident. Traditional forms of writing associated with laboratory activities are commonly in a style used by professional scientists to communicate developed explanations. Students probably lack the interpretative skills of a professional, and writing in this style may not support students in learning how to develop scientific explanations. The Science Writing Heuristic (SWH) is an inquiry-based approach to laboratory instruction designed in part to promote student ability in developing such explanations. However, there is not a convincing body of evidence for the superiority of inquiry-based laboratory instruction in chemistry. In a series of studies, the performance of students using the SWH student template in place of the standard laboratory report format was compared to the performance of students using the standard format. The standard reports had Title, Purpose, Procedure, Data & Observations, Calculations & Graphs, and Discussion sections. The SWH reports had Beginning Questions & Ideas, Tests & Procedures, Observations, Claims, Evidence, and Reflection sections. The pilot study produced evidence that using the SWH improved the quality of laboratory reports, improved student performance on a laboratory exam, and improved student approach to laboratory work. A main study found that SWH students statistically exhibited a better understanding of physical equilibrium when written explanations and equations were analyzed on a lecture exam and performed descriptively better on a physical equilibrium practical exam task. In another main study, the activities covering the general equilibrium concept were restructured as an additional change, and it was found that SWH students exhibited a better understanding of chemical equilibrium as shown by statistically greater success in overcoming the common

  17. Managing the Occupational Education Laboratory.

    ERIC Educational Resources Information Center

    Storm, George

    This guide for occupational educators deals with laboratory and instructional management on an interdisciplinary basis within the broad field of occupational education. The principles discussed are intended to be applied at all levels and in all types of laboratories. The text suggests effective ways of organizing laboratories so that students can…

  18. Laboratory Characteristics in Technical Education.

    ERIC Educational Resources Information Center

    Ives, Quay D.

    The research reported is intended to provide a body of information on technical-scientific shop and laboratory education in the field of technological education. The study seeks to address the dearth of organized information on the utilization of laboratories in the technical education context. Various programs involving use of laboratories are…

  19. UK dental laboratory technicians' views on the efficacy and teaching of clinical-laboratory communication.

    PubMed

    Juszczyk, A S; Clark, R K F; Radford, D R

    2009-05-23

    The General Dental Council states that 'good dental care is delivered by a team' and restorative treatment is enhanced by communication between team members. Commercial dental laboratories are ideally placed to comment on effective communication. To investigate contemporary attitudes and communication between dentist and dental technician from the technician's perspective. Eight hundred and three dental laboratories were invited to take part in a postal survey covering dentist/laboratory communication and the dentist's understanding of technical procedures. Forty percent of laboratories responded. Only 9% scored communication as very good, 48% scored communication with newly qualified dentists better than with established dentists but only 26% considered that dental students were taught to communicate with dental laboratories effectively. The free comments that the respondents were invited to make identified three distinct themes, 'recognition within the dental team', 'effective communication between dentist and dental technician' and 'dentists lack of technical knowledge'. Effective communication between dentist and dental technician is often poor. It was the view of the dental technicians who responded that newly qualified dentists do not have an appropriate understanding of technical techniques. Dental schools are still not preparing new graduates to communicate effectively with dental laboratories.

  20. Effective Laboratory Experiences for Students with Disabilities: The Role of a Student Laboratory Assistant

    NASA Astrophysics Data System (ADS)

    Pence, Laura E.; Workman, Harry J.; Riecke, Pauline

    2003-03-01

    Two separate experiences with students whose disabilities significantly limited the number of laboratory activities they could accomplish independently has given us a general experience base for determining successful strategies for accommodating students facing these situatiuons. For a student who had substantially limited physical mobility and for a student who had no visual ability, employing a student laboratory assistant allowed the students with disabilities to have a productive and positive laboratory experience. One of the priorities in these situations should be to avoid depersonalizing the student with a disability. Interactions with the instructor and with other students should focus on the disabled student rather than the student laboratory assistant who may be carrying out specific tasks. One of the most crucial aspects of a successful project is the selection of a laboratory assistant who has excellent interpersonal skills and who will add his or her creativity to that of the student with a disability to meet unforeseen challenges. Other considerations are discussed, such as the importance of advance notification that a disabled student has enrolled in a course as well as factors that should contribute to choosing an optimum laboratory station for each situation.

  1. An Electronics "Unit Laboratory"

    ERIC Educational Resources Information Center

    Davies, E. R.; Penton, S. J.

    1976-01-01

    Describes a laboratory teaching technique in which a single topic (in this case, bipolar junction transistors) is studied over a period of weeks under the supervision of one staff member, who also designs the laboratory work. (MLH)

  2. Survey of laboratory-acquired infections around the world in biosafety level 3 and 4 laboratories.

    PubMed

    Wurtz, N; Papa, A; Hukic, M; Di Caro, A; Leparc-Goffart, I; Leroy, E; Landini, M P; Sekeyova, Z; Dumler, J S; Bădescu, D; Busquets, N; Calistri, A; Parolin, C; Palù, G; Christova, I; Maurin, M; La Scola, B; Raoult, D

    2016-08-01

    Laboratory-acquired infections due to a variety of bacteria, viruses, parasites, and fungi have been described over the last century, and laboratory workers are at risk of exposure to these infectious agents. However, reporting laboratory-associated infections has been largely voluntary, and there is no way to determine the real number of people involved or to know the precise risks for workers. In this study, an international survey based on volunteering was conducted in biosafety level 3 and 4 laboratories to determine the number of laboratory-acquired infections and the possible underlying causes of these contaminations. The analysis of the survey reveals that laboratory-acquired infections have been infrequent and even rare in recent years, and human errors represent a very high percentage of the cases. Today, most risks from biological hazards can be reduced through the use of appropriate procedures and techniques, containment devices and facilities, and the training of personnel.

  3. A high efficiency, high quality and low cost internal regulated bioanalytical laboratory to support drug development needs.

    PubMed

    Song, Yan; Dhodda, Raj; Zhang, Jun; Sydor, Jens

    2014-05-01

    In the recent past, we have seen an increase in the outsourcing of bioanalysis in pharmaceutical companies in support of their drug development pipeline. This trend is largely driven by the effort to reduce internal cost, especially in support of late-stage pipeline assets where established bioanalytical assays are used to analyze a large volume of samples. This article will highlight our perspective of how bioanalytical laboratories within pharmaceutical companies can be developed into the best partner in the advancement of drug development pipelines with high-quality support at competitive cost.

  4. Revised guidelines for good practice in IVF laboratories (2015).

    PubMed

    De los Santos, Maria José; Apter, Susanna; Coticchio, Giovanni; Debrock, Sophie; Lundin, Kersti; Plancha, Carlos E; Prados, Fernando; Rienzi, Laura; Verheyen, Greta; Woodward, Bryan; Vermeulen, Nathalie

    2016-04-01

    Which recommendations can be provided by the European Society of Human Reproduction and Embryology Special Interest Group (ESHRE SIG) Embryology to support laboratory specialists in the organization and management of IVF laboratories and the optimization of IVF patient care? Structured in 13 sections, the guideline development group formulated recommendations for good practice in the organization and management of IVF laboratories, and for good practice of the specific procedures performed within the IVF laboratory. NA. The guideline was produced by a group of 10 embryologists representing different European countries, settings and levels of expertise. The group evaluated the document of 2008, and based on this assessment, each group member rewrote one or more sections. Two 2-day meetings were organized during which each of the recommendations was discussed and rewritten until consensus within the guideline group was reached. After finalizing the draft, the members of the ESHRE SIG embryology were invited to review the guideline. NA. The guideline provides recommendations on the general organization of an IVF laboratory (staffing and direction, quality management, laboratory safety), and on the specific aspects of the procedures performed in IVF laboratories (Identification of patients and traceability of their reproductive cells, consumables, handling of biological material, oocyte retrieval, sperm preparation, insemination of oocytes, scoring for fertilization, embryo culture and transfer, and cryopreservation). A last section provides recommendations regarding an Emergency plan for IVF laboratories. Evidence on most of the issues described is scarce, and therefore it was decided not to perform a formal search for and assessment of scientific evidence. However, recommendations published in the EUTCD and relevant and recent documents, manuals and consensus papers were taken into account when formulating the recommendations. Despite the limitations, the guideline

  5. Accidental fires in clinical laboratories.

    PubMed

    Hoeltge, G A; Miller, A; Klein, B R; Hamlin, W B

    1993-12-01

    The National Fire Protection Association, Quincy, Mass, estimates that 169 fires have occurred annually in health care, medical, and chemical laboratories. On the average, there are 13 civilian injuries and $1.5 million per year in direct property damage. Most fires in which the cause or ignition source can be identified originate in malfunctioning electrical equipment (41.6%) or in the facility's electrical distribution system (14.7%). The prevalence of fire safety deficiencies was measured in the College of American Pathologists Laboratory Accreditation Program. Of the 1732 inspected laboratories, 5.5% lacked records of electrical receptacle polarity and ground checks in the preceding year. Of these inspected laboratories, 4.7% had no or incomplete documentation of electrical safety checks on laboratory instruments. There was no evidence of quarterly fire exit drills in 9% of the laboratories. Deficiencies were also found in precautionary labeling (6.8%), in periodic review of safe work practices (4.2%), in the use of safety cans (3.7%), and in venting of flammable liquid storage areas (2.8%). Fire preparedness would be improved if all clinical laboratories had smoke detectors and automatic fire-extinguishing systems. In-service training courses in fire safety should be targeted to the needs of specific service areas.

  6. Three-dimensional printing physiology laboratory technology.

    PubMed

    Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R

    2013-12-01

    Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.

  7. Laboratory Activity on Sample Handling and Maintaining a Laboratory Notebook through Simple pH Measurements

    ERIC Educational Resources Information Center

    Erdmann, Mitzy A.; March, Joe L.

    2016-01-01

    Sample handling and laboratory notebook maintenance are necessary skills but can seem abstract if not presented to students in context. An introductory exercise focusing on proper sample handling, data collection and laboratory notebook keeping for the general chemistry laboratory was developed to emphasize the importance of keeping an accurate…

  8. Laboratory evaluation of the pointing stability of the ASPS Vernier System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The annular suspension and pointing system (ASPS) is an end-mount experiment pointing system designed for use in the space shuttle. The results of the ASPS Vernier System (AVS) pointing stability tests conducted in a laboratory environment are documented. A simulated zero-G suspension was used to support the test payload in the laboratory. The AVS and the suspension were modelled and incorporated into a simulation of the laboratory test. Error sources were identified and pointing stability sensitivities were determined via simulation. Statistical predictions of laboratory test performance were derived and compared to actual laboratory test results. The predicted mean pointing stability during simulated shuttle disturbances was 1.22 arc seconds; the actual mean laboratory test pointing stability was 1.36 arc seconds. The successful prediction of laboratory test results provides increased confidence in the analytical understanding of the AVS magnetic bearing technology and allows confident prediction of in-flight performance. Computer simulations of ASPS, operating in the shuttle disturbance environment, predict in-flight pointing stability errors less than 0.01 arc seconds.

  9. 40 CFR 141.705 - Approved laboratories.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Cryptosporidium analysis by an equivalent State laboratory certification program. (b) E. coli. Any laboratory... coliform or fecal coliform analysis under § 141.74 is approved for E. coli analysis under this subpart when the laboratory uses the same technique for E. coli that the laboratory uses for § 141.74. (c...

  10. 40 CFR 141.705 - Approved laboratories.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Cryptosporidium analysis by an equivalent State laboratory certification program. (b) E. coli. Any laboratory... coliform or fecal coliform analysis under § 141.74 is approved for E. coli analysis under this subpart when the laboratory uses the same technique for E. coli that the laboratory uses for § 141.74. (c...

  11. 40 CFR 141.705 - Approved laboratories.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Cryptosporidium analysis by an equivalent State laboratory certification program. (b) E. coli. Any laboratory... coliform or fecal coliform analysis under § 141.74 is approved for E. coli analysis under this subpart when the laboratory uses the same technique for E. coli that the laboratory uses for § 141.74. (c...

  12. 40 CFR 141.705 - Approved laboratories.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Cryptosporidium analysis by an equivalent State laboratory certification program. (b) E. coli. Any laboratory... coliform or fecal coliform analysis under § 141.74 is approved for E. coli analysis under this subpart when the laboratory uses the same technique for E. coli that the laboratory uses for § 141.74. (c...

  13. 40 CFR 141.705 - Approved laboratories.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Cryptosporidium analysis by an equivalent State laboratory certification program. (b) E. coli. Any laboratory... coliform or fecal coliform analysis under § 141.74 is approved for E. coli analysis under this subpart when the laboratory uses the same technique for E. coli that the laboratory uses for § 141.74. (c...

  14. Integration of Simulation into Pre-Laboratory Chemical Course: Computer Cluster versus WebCT

    ERIC Educational Resources Information Center

    Limniou, Maria; Papadopoulos, Nikos; Whitehead, Christopher

    2009-01-01

    Pre-laboratory activities have been known to improve students' preparation before their practical work as they assist students to make available more working memory capacity for actual learning during the laboratory. The aim of this investigation was to compare two different teaching approaches which supported a pre-laboratory session by using the…

  15. Sandia National Laboratories: Research: Laboratory Directed Research &

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  16. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  17. OSHA Laboratory Standard: Driving Force for Laboratory Safety!

    ERIC Educational Resources Information Center

    Roy, Kenneth R.

    2000-01-01

    Discusses the Occupational Safety and Health Administration's (OSHA's) Laboratory Safety Standards as the major driving force in establishing and maintaining a safe working environment for teachers and students. (Author)

  18. 7 CFR 983.1 - Accredited laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Accredited laboratory. 983.1 Section 983.1 Agriculture..., ARIZONA, AND NEW MEXICO Definitions § 983.1 Accredited laboratory. An accredited laboratory is a laboratory that has been approved or accredited by the U.S. Department of Agriculture. [74 FR 56539, Nov. 2...

  19. Leading Antibacterial Laboratory Research by Integrating Conventional and Innovative Approaches: The Laboratory Center of the Antibacterial Resistance Leadership Group.

    PubMed

    Manca, Claudia; Hill, Carol; Hujer, Andrea M; Patel, Robin; Evans, Scott R; Bonomo, Robert A; Kreiswirth, Barry N

    2017-03-15

    The Antibacterial Resistance Leadership Group (ARLG) Laboratory Center (LC) leads the evaluation, development, and implementation of laboratory-based research by providing scientific leadership and supporting standard/specialized laboratory services. The LC has developed a physical biorepository and a virtual biorepository. The physical biorepository contains bacterial isolates from ARLG-funded studies located in a centralized laboratory and they are available to ARLG investigators. The Web-based virtual biorepository strain catalogue includes well-characterized gram-positive and gram-negative bacterial strains published by ARLG investigators. The LC, in collaboration with the ARLG Leadership and Operations Center, developed procedures for review and approval of strain requests, guidance during the selection process, and for shipping strains from the distributing laboratories to the requesting investigators. ARLG strains and scientific and/or technical guidance have been provided to basic research laboratories and diagnostic companies for research and development, facilitating collaboration between diagnostic companies and the ARLG Master Protocol for Evaluating Multiple Infection Diagnostics (MASTERMIND) initiative for evaluation of multiple diagnostic devices from a single patient sampling event. In addition, the LC has completed several laboratory-based studies designed to help evaluate new rapid molecular diagnostics by developing, testing, and applying a MASTERMIND approach using purified bacterial strains. In collaboration with the ARLG's Statistical and Data Management Center (SDMC), the LC has developed novel analytical strategies that integrate microbiologic and genetic data for improved and accurate identification of antimicrobial resistance. These novel approaches will aid in the design of future ARLG studies and help correlate pathogenic markers with clinical outcomes. The LC's accomplishments are the result of a successful collaboration with the ARLG

  20. The Pathology Laboratory Act 2007 explained.

    PubMed

    Looi, Lai-Meng

    2008-06-01

    The past century has seen tremendous changes in the scope and practice of pathology laboratories in tandem with the development of the medical services in Malaysia. Major progress was made in the areas of training and specialization of pathologists and laboratory technical staff. Today the pathology laboratory services have entered the International arena, and are propelled along the wave of globalization. Many new challenges have emerged as have new players in the field. Landmark developments over the past decade include the establishment of national quality assurance programmes, the mushrooming of private pathology laboratories, the establishment of a National Accreditation Standard for medical testing laboratories based on ISO 15189, and the passing of the Pathology Laboratory Act in Parliament in mid-2007. The Pathology Laboratory Act 2007 seeks to ensure that the pathology laboratory is accountable to the public, meets required standards of practice, participates in Quality Assurance programmes, is run by qualified staff, complies with safety requirements and is subject to continuous audit. The Act is applicable to all private laboratories (stand alone or hospital) and laboratories in statutory bodies (Universities, foundations). It is not applicable to public laboratories (established and operated by the government) and side-room laboratories established in clinics of registered medical or dental practitioners for their own patients (tests as in the First and Second Schedules respectively). Tests of the Third Schedule (home test blood glucose, urine glucose, urine pregnancy test) are also exempted. The Act has 13 Parts and provides for control of the pathology laboratory through approval (to establish and maintain) and licensing (to operate or provide). The approval or license may only be issued to a sole proprietor, partnership or body corporate, and then only if the entity includes a registered medical practitioner. Details of personnel qualifications and

  1. Augmented Reality for the Improvement of Remote Laboratories: An Augmented Remote Laboratory

    ERIC Educational Resources Information Center

    Andujar, J. M.; Mejias, A.; Marquez, M. A.

    2011-01-01

    Augmented reality (AR) provides huge opportunities for online teaching in science and engineering, as these disciplines place emphasis on practical training and unsuited to completely nonclassroom training. This paper proposes a new concept in virtual and remote laboratories: the augmented remote laboratory (ARL). ARL is being tested in the first…

  2. Measuring preschool learning engagement in the laboratory.

    PubMed

    Halliday, Simone E; Calkins, Susan D; Leerkes, Esther M

    2018-03-01

    Learning engagement is a critical factor for academic achievement and successful school transitioning. However, current methods of assessing learning engagement in young children are limited to teacher report or classroom observation, which may limit the types of research questions one could assess about this construct. The current study investigated the validity of a novel assessment designed to measure behavioral learning engagement among young children in a standardized laboratory setting and examined how learning engagement in the laboratory relates to future classroom adjustment. Preschool-aged children (N = 278) participated in a learning-based Tangrams task and Story sequencing task and were observed based on seven behavioral indicators of engagement. Confirmatory factor analysis supported the construct validity for a behavioral engagement factor composed of six of the original behavioral indicators: attention to instructions, on-task behavior, enthusiasm/energy, persistence, monitoring progress/strategy use, and negative affect. Concurrent validity for this behavioral engagement factor was established through its associations with parent-reported mastery motivation and pre-academic skills in math and literacy measured in the laboratory, and predictive validity was demonstrated through its associations with teacher-reported classroom learning behaviors and performance in math and reading in kindergarten. These associations were found when behavioral engagement was observed during both the nonverbal task and the verbal story sequencing tasks and persisted even after controlling for child minority status, gender, and maternal education. Learning engagement in preschool appears to be successfully measurable in a laboratory setting. This finding has implications for future research on the mechanisms that support successful academic development. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Multiscale Laboratory Infrastructure and Services to users: Plans within EPOS

    NASA Astrophysics Data System (ADS)

    Spiers, Chris; Willingshofer, Ernst; Drury, Martyn; Funiciello, Francesca; Rosenau, Matthias; Scarlato, Piergiorgio; Sagnotti, Leonardo; EPOS WG6, Corrado Cimarelli

    2015-04-01

    The participant countries in EPOS embody a wide range of world-class laboratory infrastructures ranging from high temperature and pressure experimental facilities, to electron microscopy, micro-beam analysis, analogue modeling and paleomagnetic laboratories. Most data produced by the various laboratory centres and networks are presently available only in limited "final form" in publications. Many data remain inaccessible and/or poorly preserved. However, the data produced at the participating laboratories are crucial to serving society's need for geo-resources exploration and for protection against geo-hazards. Indeed, to model resource formation and system behaviour during exploitation, we need an understanding from the molecular to the continental scale, based on experimental data. This contribution will describe the plans that the laboratories community in Europe is making, in the context of EPOS. The main objectives are: • To collect and harmonize available and emerging laboratory data on the properties and processes controlling rock system behaviour at multiple scales, in order to generate products accessible and interoperable through services for supporting research activities. • To co-ordinate the development, integration and trans-national usage of the major solid Earth Science laboratory centres and specialist networks. The length scales encompassed by the infrastructures included range from the nano- and micrometer levels (electron microscopy and micro-beam analysis) to the scale of experiments on centimetre sized samples, and to analogue model experiments simulating the reservoir scale, the basin scale and the plate scale. • To provide products and services supporting research into Geo-resources and Geo-storage, Geo-hazards and Earth System Evolution. If the EPOS Implementation Phase proposal presently under construction is successful, then a range of services and transnational activities will be put in place to realize these objectives.

  4. Medical Laboratory Assistant. Laboratory Occupations Cluster.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide for medical laboratory assistant is intended to help the teacher develop a classroom management system where students learn by doing. Introductory materials include a Dictionary of Occupational Titles job code and title sheet, a career ladder, a matrix relating duty/task numbers to job titles, and a task list. Each…

  5. X-Ray Spectroscopic Laboratory Experiments in Support of the X-Ray Astronomy Program

    NASA Technical Reports Server (NTRS)

    Kahn, Steven M.

    1997-01-01

    Our program is to perform a series of laboratory investigations designed to resolved significant atomic physics uncertainties that limit the interpretation of cosmic X-ray spectra. Specific goals include a quantitative characterization of Fe L-shell spectra; the development of new techniques to simulate Maxwellian plasmas using an Electron Beam Ion Trap (EBIT); and the measurement of dielectronic recombination rates for photoionized gas. New atomic calculations have also been carried out in parallel with the laboratory investigations.

  6. Quality in the molecular microbiology laboratory.

    PubMed

    Wallace, Paul S; MacKay, William G

    2013-01-01

    In the clinical microbiology laboratory advances in nucleic acid detection, quantification, and sequence analysis have led to considerable improvements in the diagnosis, management, and monitoring of infectious diseases. Molecular diagnostic methods are routinely used to make clinical decisions based on when and how to treat a patient as well as monitor the effectiveness of a therapeutic regime and identify any potential drug resistant strains that may impact on the long term patient treatment program. Therefore, confidence in the reliability of the result provided by the laboratory service to the clinician is essential for patient treatment. Hence, suitable quality assurance and quality control measures are important to ensure that the laboratory methods and service meet the necessary regulatory requirements both at the national and international level. In essence, the modern clinical microbiology laboratory ensures the appropriateness of its services through a quality management system that monitors all aspects of the laboratory service pre- and post-analytical-from patient sample receipt to reporting of results, from checking and upholding staff competency within the laboratory to identifying areas for quality improvements within the service offered. For most European based clinical microbiology laboratories this means following the common International Standard Organization (ISO9001) framework and ISO15189 which sets out the quality management requirements for the medical laboratory (BS EN ISO 15189 (2003) Medical laboratories-particular requirements for quality and competence. British Standards Institute, Bristol, UK). In the United States clinical laboratories performing human diagnostic tests are regulated by the Centers for Medicare and Medicaid Services (CMS) following the requirements within the Clinical Laboratory Improvement Amendments document 1988 (CLIA-88). This chapter focuses on the key quality assurance and quality control requirements within the

  7. Critical Value Reporting at Egyptian Laboratories.

    PubMed

    Mosallam, Rasha; Ibrahim, Samaa Zenhom

    2015-06-12

    To examine critical value reporting policies and practices and to identify critical value ranges for selected common laboratory assays at inpatient division of laboratories of Alexandria hospitals. A cross-sectional descriptive study design was used. Subjects were from inpatient division of all laboratories of Alexandria hospitals (40 laboratories). Data were collected using a questionnaire composed of 4 sections. The first section explored hospital and laboratory characteristics. The second section assessed policies and procedures of critical value reporting. The third section explored the reporting process. The fourth section explored critical value ranges for selected common laboratory assays. Written procedure for reporting of critical values was present in 77.5% of laboratories and a comprehensive list of critical values in 72.55%. For laboratories having a critical value list, the number of tests in the list ranged from 7 to 40. Three-fifths of laboratories had a policy for assessing the timeliness of reporting and 3 quarters stated that the laboratory policy requires feedback (60.0% and 75.0%, respectively). The hospital laboratory physician was responsible for critical value reporting followed by the laboratory technician (75.0% and 50.0%, respectively). The call is received mainly by nurses and physicians ordering the test (67.5% and 55.0%, respectively) and the channel of reporting is mainly the telephone or through sending test report to the ward (67.5% and 50.0%, respectively). Wireless technologies are used in reporting in only 10.0% of hospitals. The cutoff limits for reporting different assays showed considerable interlaboratory variation. Critical value policies and practices showed interinstitutional variation with deficiencies in some reporting practices. Selection of critical assays for notification and setting the limits of notification exhibited wide variation as well.

  8. The Effect of Guided-Inquiry Laboratory Experiments on Science Education Students' Chemistry Laboratory Attitudes, Anxiety and Achievement

    ERIC Educational Resources Information Center

    Ural, Evrim

    2016-01-01

    The study aims to search the effect of guided inquiry laboratory experiments on students' attitudes towards chemistry laboratory, chemistry laboratory anxiety and their academic achievement in the laboratory. The study has been carried out with 37 third-year, undergraduate science education students, as a part of their Science Education Laboratory…

  9. Research Notes. OERI's Regional Laboratory Technology Efforts.

    ERIC Educational Resources Information Center

    Garnette, Cheryl P., Ed.; Withrow, Frank B., Ed.

    1989-01-01

    Examines various educational technology projects that regional laboratories supported by the Office of Educational Research and Improvement (OERI) are undertaking. Highlights include innovative uses of instructional technology; tele-teaching using interactive audio conferencing; making informed decisions about technology; national teleconferences…

  10. Inference and Discovery in an Exploratory Laboratory. Technical Report No. 10.

    ERIC Educational Resources Information Center

    Shute, Valerie; And Others

    This paper describes the results of a study done as part of a research program investigating the use of computer-based laboratories to support self-paced discovery learning in related to microeconomics, electricity, and light refraction. Program objectives include maximizing the laboratories' effectiveness in helping students learn content…

  11. Outreach Plans for Storm Peak Laboratory

    NASA Astrophysics Data System (ADS)

    Hallar, A. G.; McCubbin, I. B.

    2006-12-01

    The Desert Research Institute (DRI) operates a high elevation facility, Storm Peak Laboratory (SPL), located on the west summit of Mt. Werner in the Park Range near Steamboat Springs, Colorado at an elevation 10,500 ft. SPL provides an ideal location for long-term research on the interactions of atmospheric aerosol and gas- phase chemistry with cloud and natural radiation environments. SPL includes an office-type laboratory room for computer and instrumentation setup with outside air ports and cable access to the roof deck, a full kitchen and two bunk rooms with sleeping space for nine persons. We plan to create a unique summer undergraduate education experiences for students of diversity at Storm Peak Laboratory. As stressed by the College Pathways to Science Education Standards [Siebert and McIntosh, 2001], to support changes in K-12 science education transformations must first be made at the college level, including inquiry-oriented opportunities to engage in meaningful research. These workshops will be designed to allow students to experience the excitement of science, increasing their likelihood of pursing careers within the fields of scientific education or research.

  12. 21 CFR 58.49 - Laboratory operation areas.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Laboratory operation areas. 58.49 Section 58.49... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.49 Laboratory operation areas... procedures required by nonclinical laboratory studies. [52 FR 33780, Sept. 4, 1987] ...

  13. 21 CFR 58.49 - Laboratory operation areas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Laboratory operation areas. 58.49 Section 58.49... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.49 Laboratory operation areas... procedures required by nonclinical laboratory studies. [52 FR 33780, Sept. 4, 1987] ...

  14. 21 CFR 58.49 - Laboratory operation areas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Laboratory operation areas. 58.49 Section 58.49... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.49 Laboratory operation areas... procedures required by nonclinical laboratory studies. [52 FR 33780, Sept. 4, 1987] ...

  15. Plant and animal accommodation for Space Station Laboratory

    NASA Technical Reports Server (NTRS)

    Olson, Richard L.; Gustan, Edith A.; Wiley, Lowell F.

    1986-01-01

    An extended study has been conducted with the goals of defining and analyzing relevant parameters and significant tradeoffs for the accommodation of nonhuman research aboard the NASA Space Station, as well as conducting tradeoff analyses for orbital reconfiguring or reoutfitting of the laboratory facility and developing laboratory designs and program plans. The two items exerting the greatest influence on nonhuman life sciences research were identified as the centrifuge and the specimen environmental control and life support system; both should be installed on the ground rather than in orbit.

  16. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  17. Effective utilization of clinical laboratories.

    PubMed

    Murphy, J; Henry, J B

    1978-11-01

    Effective utilization of clinical laboratories requires that underutilization, overutilization, and malutilization be appreciated and eliminated or reduced. Optimal patient care service, although subjective to a major extent, is reflected in terms of outcome and cost. Increased per diem charges, reduced hospital stay, and increased laboratory workload over the past decade all require each laboratory to examine its internal operations to achieve economy and efficiency as well as maximal effectiveness. Increased research and development, an active managerial role on the part of pathologists, internal self-assessment, and an aggressive response to sophisticated scientific and clinical laboratory data base requirements are not only desirable but essential. The importance of undergraduate and graduate medical education in laboratory medicine to insure understanding as well as effective utilization is stressed. The costs and limitations as well as the accuracy, precision, sensitivity, specificity, and pitfalls of measurements and examinations must also be fully appreciated. Medical malpractice and defensive medicine and the use of critical values, emergency and routine services, and an active clinical role by the pathologist are of the utmost value in assuring effective utilization of the laboratory. A model for the optimal use of the laboratory including economy and efficiency has been achieved in the blood bank in regard to optimal hemotherapy for elective surgery, assuring superior patient care in a cost effective and safe manner.

  18. Improving laboratory data entry quality using Six Sigma.

    PubMed

    Elbireer, Ali; Le Chasseur, Julie; Jackson, Brooks

    2013-01-01

    The Uganda Makerere University provides clinical laboratory support to over 70 clients in Uganda. With increased volume, manual data entry errors have steadily increased, prompting laboratory managers to employ the Six Sigma method to evaluate and reduce their problems. The purpose of this paper is to describe how laboratory data entry quality was improved by using Six Sigma. The Six Sigma Quality Improvement (QI) project team followed a sequence of steps, starting with defining project goals, measuring data entry errors to assess current performance, analyzing data and determining data-entry error root causes. Finally the team implemented changes and control measures to address the root causes and to maintain improvements. Establishing the Six Sigma project required considerable resources and maintaining the gains requires additional personnel time and dedicated resources. After initiating the Six Sigma project, there was a 60.5 percent reduction in data entry errors from 423 errors a month (i.e. 4.34 Six Sigma) in the first month, down to an average 166 errors/month (i.e. 4.65 Six Sigma) over 12 months. The team estimated the average cost of identifying and fixing a data entry error to be $16.25 per error. Thus, reducing errors by an average of 257 errors per month over one year has saved the laboratory an estimated $50,115 a year. The Six Sigma QI project provides a replicable framework for Ugandan laboratory staff and other resource-limited organizations to promote quality environment. Laboratory staff can deliver excellent care at a lower cost, by applying QI principles. This innovative QI method of reducing data entry errors in medical laboratories may improve the clinical workflow processes and make cost savings across the health care continuum.

  19. Laboratory Astrochemistry: Interstellar PAH Analogs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  20. 7 CFR 996.21 - USDA laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.21 USDA laboratory. USDA laboratory means laboratories of the Science and Technology Programs, Agricultural Marketing...

  1. Open- and closed-formula laboratory animal diets and their importance to research.

    PubMed

    Barnard, Dennis E; Lewis, Sherry M; Teter, Beverly B; Thigpen, Julius E

    2009-11-01

    Almost 40 y ago the scientific community was taking actions to control environmental factors that contribute to variation in the responses of laboratory animals to scientific manipulation. Laboratory animal diet was recognized as an important variable. During the 1970s, the American Institute of Nutrition, National Academy of Science, Institute of Laboratory Animal Resources, and Laboratory Animals Centre Diets Advisory Committee supported the use of 'standard reference diets' in biomedical research as a means to improve the ability to replicate research. As a result the AIN76 purified diet was formulated. During this same time, the laboratory animal nutritionist at the NIH was formulating open-formula, natural-ingredient diets to meet the need for standardized laboratory animal diets. Since the development of open-formula diets, fixed-formula and constant-nutrient-concentration closed-formula laboratory animal natural ingredient diets have been introduced to help reduce the potential variation diet can cause in research.

  2. Open- and Closed-Formula Laboratory Animal Diets and Their Importance to Research

    PubMed Central

    Barnard, Dennis E; Lewis, Sherry M; Teter, Beverly B; Thigpen, Julius E

    2009-01-01

    Almost 40 y ago the scientific community was taking actions to control environmental factors that contribute to variation in the responses of laboratory animals to scientific manipulation. Laboratory animal diet was recognized as an important variable. During the 1970s, the American Institute of Nutrition, National Academy of Science, Institute of Laboratory Animal Resources, and Laboratory Animals Centre Diets Advisory Committee supported the use of ‘standard reference diets’ in biomedical research as a means to improve the ability to replicate research. As a result the AIN76 purified diet was formulated. During this same time, the laboratory animal nutritionist at the NIH was formulating open-formula, natural-ingredient diets to meet the need for standardized laboratory animal diets. Since the development of open-formula diets, fixed-formula and constant-nutrient–concentration closed-formula laboratory animal natural ingredient diets have been introduced to help reduce the potential variation diet can cause in research. PMID:19930817

  3. External Quality Assessment Scheme for reference laboratories - review of 8 years' experience.

    PubMed

    Kessler, Anja; Siekmann, Lothar; Weykamp, Cas; Geilenkeuser, Wolf Jochen; Dreazen, Orna; Middle, Jonathan; Schumann, Gerhard

    2013-05-01

    We describe an External Quality Assessment Scheme (EQAS) intended for reference (calibration) laboratories in laboratory medicine and supervised by the Scientific Division of the International Federation of Clinical Chemistry and Laboratory Medicine and the responsible Committee on Traceability in Laboratory Medicine. The official EQAS website, RELA (www.dgkl-rfb.de:81), is open to interested parties. Information on all requirements for participation and results of surveys are published annually. As an additional feature, the identity of every participant in relation to the respective results is disclosed. The results of various groups of measurands (metabolites and substrates, enzymes, electrolytes, glycated hemoglobins, proteins, hormones, thyroid hormones, therapeutic drugs) are discussed in detail. The RELA system supports reference measurement laboratories preparing for accreditation according to ISO 17025 and ISO 15195. Participation in a scheme such as RELA is one of the requirements for listing of the services of a calibration laboratory by the Joint Committee on Traceability in Laboratory Medicine.

  4. Laboratory Automation and Middleware.

    PubMed

    Riben, Michael

    2015-06-01

    The practice of surgical pathology is under constant pressure to deliver the highest quality of service, reduce errors, increase throughput, and decrease turnaround time while at the same time dealing with an aging workforce, increasing financial constraints, and economic uncertainty. Although not able to implement total laboratory automation, great progress continues to be made in workstation automation in all areas of the pathology laboratory. This report highlights the benefits and challenges of pathology automation, reviews middleware and its use to facilitate automation, and reviews the progress so far in the anatomic pathology laboratory. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. OB's high voltage laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1966-01-01

    The January issue of Hi-Tension News provides a detailed description of the advanced surge test facilities and procedures in daily operation at the OB High Voltage Laboratory in Barberton, Ohio. Technical competences achieved in this laboratory contribute to the essential factors of design confirmation to basic studies of ehv insulation systems, conductor and hardware performance, and optimum tower construction. Known throughout the industry for authenticity of its full scale, all weather outdoor testing, OB's High Voltage Laboratory is a full-fledged participant in the NEMA-sponsored program to make testing facilities available on a cooperative basis.

  6. Laboratory testing in hyperthyroidism.

    PubMed

    Grebe, Stefan K G; Kahaly, George J

    2012-09-01

    The clinical diagnosis of hypo- or hyperthyroidism is difficult (full text available online: http://education.amjmed.com/pp1/272). Clinical symptoms and signs are often non-specific, and there is incomplete correlation between structural and functional thyroid gland changes. Laboratory testing is therefore indispensible in establishing the diagnosis of thyrotoxicosis. Similar considerations apply to treatment monitoring. Laboratory testing also plays a crucial role in establishing the most likely cause for a patient's hyperthyroidism. Finally, during pregnancy, when isotopic scanning is relatively contraindicated and ultrasound is more difficult to interpret, laboratory testing becomes even more important. Copyright © 2012. Published by Elsevier Inc.

  7. Sonication standard laboratory module

    DOEpatents

    Beugelsdijk, Tony; Hollen, Robert M.; Erkkila, Tracy H.; Bronisz, Lawrence E.; Roybal, Jeffrey E.; Clark, Michael Leon

    1999-01-01

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  8. Laboratories for Teaching of Mathematical Subjects

    ERIC Educational Resources Information Center

    Berežný, Štefan

    2017-01-01

    We have adapted our two laboratories at our department based on our research results, which were presented at the conference CADGME 2014 in Halle and published in the journal. In this article we describe the hardware and software structure of the Laboratory 1: LabIT4KT-1: Laboratory of Computer Modelling and the Laboratory 2: LabIT4KT-2:…

  9. 77 FR 16551 - Standards for Private Laboratory Analytical Packages and Introduction to Laboratory Related...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... Food Modernization Safety Act for Private Laboratory Managers AGENCY: Food and Drug Administration, HHS... Food Modernization Safety Act for Private Laboratory Managers.'' The topic to be discussed is the...

  10. Understanding and Using the New Guided-Inquiry AP Chemistry Laboratory Manual

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.

    2014-01-01

    To support teaching and learning in the advanced placement (AP) chemistry laboratory, the College Board published a laboratory manual, "AP Chemistry Guided-Inquiry Experiments: Applying the Science Practices," in 2013 as part of the redesigned course. This article provides a discussion of the rationale for the existence of the manual as…

  11. 21 CFR 58.49 - Laboratory operation areas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Laboratory operation areas. 58.49 Section 58.49... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.49 Laboratory operation areas. Separate laboratory space shall be provided, as needed, for the performance of the routine and specialized...

  12. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    JPL Director Michael Watkins, standing, explains the history of NASA's Jet Propulsion Laboratory and the use of the Mission Support Area to Vice President Mike Pence during a tour of JPL, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  13. Service quality framework for clinical laboratories.

    PubMed

    Ramessur, Vinaysing; Hurreeram, Dinesh Kumar; Maistry, Kaylasson

    2015-01-01

    The purpose of this paper is to illustrate a service quality framework that enhances service delivery in clinical laboratories by gauging medical practitioner satisfaction and by providing avenues for continuous improvement. The case study method has been used for conducting the exploratory study, with focus on the Mauritian public clinical laboratory. A structured questionnaire based on the SERVQUAL service quality model was used for data collection, analysis and for the development of the service quality framework. The study confirms the pertinence of the following service quality dimensions within the context of clinical laboratories: tangibility, reliability, responsiveness, turnaround time, technology, test reports, communication and laboratory staff attitude and behaviour. The service quality framework developed, termed LabSERV, is vital for clinical laboratories in the search for improving service delivery to medical practitioners. This is a pioneering work carried out in the clinical laboratory sector in Mauritius. Medical practitioner expectations and perceptions have been simultaneously considered to generate a novel service quality framework for clinical laboratories.

  14. Personal epistemological growth in a college chemistry laboratory environment

    NASA Astrophysics Data System (ADS)

    Keen-Rocha, Linda S.

    The nature of this study was to explore changes in beliefs and lay a foundation for focusing on more specific features of reasoning related to personal epistemological and NOS beliefs in light of specific science laboratory instructional pedagogical practices (e.g., pre- and post-laboratory activities, laboratory work) for future research. This research employed a mixed methodology, foregrounding qualitative data. The total population consisted of 56 students enrolled in several sections of a general chemistry laboratory course, with the qualitative analysis focusing on the in-depth interviews. A quantitative NOS and epistemological beliefs measure was administered pre- and post-instruction. These measures were triangulated with pre-post interviews to assure the rigor of the descriptions generated. Although little quantitative change in NOS was observed from the pre-post NSKS assessment a more noticeable qualitative change was reflected by the participants during their final interviews. The NSKS results: the mean gain scores for the overall score and all dimensions, except for amoral were found to be significant at p ≤ .05. However there was a more moderate change in the populations' broader epistemological beliefs (EBAPS) which was supported during the final interviews. The EBAPS results: the mean gain scores for the overall score and all dimensions, except for the source of ability to learn were found to be significant at p ≤ .05. The participants' identified the laboratory work as the most effective instructional feature followed by the post-laboratory activities. The pre-laboratory was identified as being the least effective feature. The participants suggested the laboratory work offered real-life experiences, group discussions, and teamwork which added understanding and meaning to their learning. The post-laboratory was viewed as necessary in tying all the information together and being able to see the bigger picture. What one cannot infer at this point is

  15. Extrapolating non-target risk of Bt crops from laboratory to field.

    PubMed

    Duan, Jian J; Lundgren, Jonathan G; Naranjo, Steve; Marvier, Michelle

    2010-02-23

    The tiered approach to assessing ecological risk of insect-resistant transgenic crops assumes that lower tier laboratory studies, which expose surrogate non-target organisms to high doses of insecticidal proteins, can detect harmful effects that might be manifested in the field. To test this assumption, we performed meta-analyses comparing results for non-target invertebrates exposed to Bacillus thuringiensis (Bt) Cry proteins in laboratory studies with results derived from independent field studies examining effects on the abundance of non-target invertebrates. For Lepidopteran-active Cry proteins, laboratory studies correctly predicted the reduced field abundance of non-target Lepidoptera. However, laboratory studies incorporating tri-trophic interactions of Bt plants, herbivores and parasitoids were better correlated with the decreased field abundance of parasitoids than were direct-exposure assays. For predators, laboratory tri-trophic studies predicted reduced abundances that were not realized in field studies and thus overestimated ecological risk. Exposure to Coleopteran-active Cry proteins did not significantly reduce the laboratory survival or field abundance of any functional group examined. Our findings support the assumption that laboratory studies of transgenic insecticidal crops show effects that are either consistent with, or more conservative than, those found in field studies, with the important caveat that laboratory studies should explore all ecologically relevant routes of exposure.

  16. PR-PR: cross-platform laboratory automation system.

    PubMed

    Linshiz, Gregory; Stawski, Nina; Goyal, Garima; Bi, Changhao; Poust, Sean; Sharma, Monica; Mutalik, Vivek; Keasling, Jay D; Hillson, Nathan J

    2014-08-15

    To enable protocol standardization, sharing, and efficient implementation across laboratory automation platforms, we have further developed the PR-PR open-source high-level biology-friendly robot programming language as a cross-platform laboratory automation system. Beyond liquid-handling robotics, PR-PR now supports microfluidic and microscopy platforms, as well as protocol translation into human languages, such as English. While the same set of basic PR-PR commands and features are available for each supported platform, the underlying optimization and translation modules vary from platform to platform. Here, we describe these further developments to PR-PR, and demonstrate the experimental implementation and validation of PR-PR protocols for combinatorial modified Golden Gate DNA assembly across liquid-handling robotic, microfluidic, and manual platforms. To further test PR-PR cross-platform performance, we then implement and assess PR-PR protocols for Kunkel DNA mutagenesis and hierarchical Gibson DNA assembly for microfluidic and manual platforms.

  17. Technology Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Brame, Ray; And Others

    This guide contains 43 modules of laboratory activities for technology education courses. Each module includes an instructor's resource sheet and the student laboratory activity. Instructor's resource sheets include some or all of the following elements: module number, course title, activity topic, estimated time, essential elements, objectives,…

  18. Facilities | Argonne National Laboratory

    Science.gov Websites

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Research Facilities Advanced Powertrain Research Facility Center for Transportation Research Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Materials Engineering Research Facility

  19. Safety | Argonne National Laboratory

    Science.gov Websites

    laboratory's ongoing effort to provide a safe and productive environment for employees, users, other site Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Environment Careers Education Community Diversity Directory Energy Environment National Security User Facilities

  20. Quality in Teaching Laboratories.

    ERIC Educational Resources Information Center

    Stubington, John F.

    1995-01-01

    Describes a Japanese process-oriented approach called KAIZEN for improving the quality of existing teaching laboratories. It provides relevant quality measurements and indicates how quality can be improved. Use of process criteria sidesteps the difficulty of defining quality for laboratory experiments and allows separation of student assessment…

  1. District, state or regional veterinary diagnostic laboratories.

    PubMed

    Gosser, H S; Morehouse, L G

    1998-08-01

    The district, regional or state laboratory is the local laboratory to which veterinarian practitioners usually submit samples, and consequently these laboratories are usually the first to observe a suspected disease problem. In most countries, these laboratories are under the jurisdiction of the State or region in which they are located. In the United States of America (USA), most veterinary diagnostic laboratories are State-associated and operate under the aegis of either the State Department of Agriculture or a university. The national laboratory provides reference assistance to the State laboratories. In the USA, the national Laboratory (the National Veterinary Services Laboratories) acts as a consultant to confirm difficult diagnoses and administer performance tests for State-associated laboratories. District, state or regional laboratories need to share information regarding technological advances in diagnostic procedures. This need was met in the USA by the formation of the American Association of Veterinary Laboratory Diagnosticians (AAVLD) in the late 1950s. Another requirement of district, state or regional diagnostic laboratories is a method to confirm quality assurance, which was fulfilled in the USA by an accreditation programme established through the AAVLD. The Accreditation Committee evaluates laboratories (on request) in terms of organisation, personnel, physical facilities and equipment, records, finance and budget. Those laboratories which meet the standards as established in the 'Essential Requirements for Accreditation' are given accreditation status, which indicates that they have the expertise and facilities to perform tests on food-producing animals for shipment in national or international commerce and on companion, laboratory or zoo animals. While confidentiality of test records is most important, it is becoming necessary to release certain types of animal disease test information if a country is to participate in the exportation of animals

  2. Communication and the laboratory physician

    PubMed Central

    Penistan, J. L.

    1973-01-01

    A clinical laboratory documentation system is described, suitable for community hospitals without computer services. The system is cumulative and is designed to provide the laboratory physician with the clinical information necessary for intelligent review and comment on the laboratory's findings. The mode of presentation of requests to the laboratory and lay-out of the reports to the clinicians are designed to make the two-way communication as close and personal as possible; to encourage the selection of those investigations likely to prove rewarding, and to discourage unnecessary investigation. The possibility of important data escaping notice is minimized. The system is economical in capital equipment, labour and supplies. PMID:4758594

  3. Revitalizing chemistry laboratory instruction

    NASA Astrophysics Data System (ADS)

    McBride, Phil Blake

    This dissertation involves research in three major domains of chemical education as partial fulfillment of the requirements for the Ph.D. program in chemistry at Miami University with a major emphasis on chemical education, and concurrent study in organic chemistry. Unit I, Development and Assessment of a Column Chromatography Laboratory Activity, addresses the domain of Instructional Materials Development and Testing. This unit outlines the process of developing a publishable laboratory activity, testing and revising that activity, and subsequently sharing that activity with the chemical education community. A laboratory activity focusing on the separation of methylene blue and sodium fluorescein was developed to demonstrate the effects of both the stationary and mobile phase in conducting a separation. Unit II, Bringing Industry to the Laboratory, addresses the domain of Curriculum Development and Testing. This unit outlines the development of the Chemistry of Copper Mining module, which is intended for use in high school or undergraduate college chemistry. The module uses the learning cycle approach to present the chemistry of the industrial processes of mining copper to the students. The module includes thirteen investigations (three of which are web-based and ten which are laboratory experiments) and an accompanying interactive CD-ROM, which provides an explanation of the chemistry used in copper mining with a virtual tour of an operational copper mine. Unit III, An Alternative Method of Teaching Chemistry. Integrating Lecture and the Laboratory, is a project that addresses the domain of Research in Student Learning. Fundamental Chemistry was taught at Eastern Arizona College as an integrated lecture/laboratory course that met in two-hour blocks on Monday, Wednesday, and Friday. The students taking this integrated course were compared with students taking the traditional 1-hour lectures held on Monday, Wednesday, and Friday, with accompanying 3-hour lab on

  4. MIT Lincoln Laboratory Annual Report 2010

    DTIC Science & Technology

    2010-01-01

    Research and Development Center (FFRDC) and a DoD Research and Development Laboratory. The Laboratory conducts research and development pertinent to...year, the Laboratory restruc- tured three divisions to focus research and development in areas that are increasingly important to the nation...the Director 3 Collaborations with MIT campus continue to grow, leveraging the strengths of researchers at both the Laboratory and campus. The

  5. Evaluating Astronomy Laboratories

    NASA Astrophysics Data System (ADS)

    Zirbel, E. L.

    2002-12-01

    A set of non-traditional astronomy laboratories for non-science majors will be presented along with evaluations of lab technicians (these labs were originally developed at the College of Staten Island of the City University of New York). The goal of these labs is twofold: (a) to provide the students with hands-on experiences of scientific methodology and (b) to provoke critical thinking. Because non-science majors are often rather resistant to learning the relevant methodology - and especially to thinking critically - this manual is structured differently. It does not only provide traditional cook-book recipes but also contains several leading questions to make the students realize why they are doing what. The students are encouraged to write full sentences and explain how they reach which conclusions. This poster summarizes the experiences of the laboratory assistants that worked with the instructor and presents how they judge the effectiveness of the laboratories.

  6. Polio Eradication Initiative (PEI) contribution in strengthening public health laboratories systems in the African region.

    PubMed

    Gumede, Nicksy; Coulibaly, Sheick Oumar; Yahaya, Ali Ahmed; Ndihokubwayo, Jean-Bosco; Nsubuga, Peter; Okeibunor, Joseph; Dosseh, Annick; Salla, Mbaye; Mihigo, Richard; Mkanda, Pascal; Byabamazima, Charles

    2016-10-10

    The laboratory has always played a very critical role in diagnosis of the diseases. The success of any disease programme is based on a functional laboratory network. Health laboratory services are an integral component of the health system. Efficiency and effectiveness of both clinical and public health functions including surveillance, diagnosis, prevention, treatment, research and health promotion are influenced by reliable laboratory services. The establishment of the African Regional polio laboratory for the Polio Eradication Initiative (PEI) has contributed in supporting countries in their efforts to strengthen laboratory capacity. On the eve of the closing of the program, we have shown through this article, examples of this contribution in two countries of the African region: Côte d'Ivoire and the Democratic Republic of Congo. Descriptive studies were carried out in Côte d'Ivoire (RCI) and Democratic Republic of Congo (DRC) from October to December 2014. Questionnaires and self-administered and in-depth interviews and group discussions as well as records and observation were used to collect information during laboratory visits and assessments. The PEI financial support allows to maintain the majority of the 14 (DRC) and 12 (RCI) staff involved in the polio laboratory as full or in part time members. Through laboratory technical staff training supported by the PEI, skills and knowledge were gained to reinforce laboratories capacity and performance in quality laboratory functioning, processes and techniques such as cell culture. In the same way, infrastructure was improved and equipment provided. General laboratory quality standards, including the entire laboratory key elements was improved through the PEI accreditation process. The Polio Eradication Initiative (PEI) is a good example of contribution in strengthening public health laboratories systems in the African region. It has established strong Polio Laboratory network that contributed to the

  7. 46 CFR 160.076-19 - Recognized laboratories.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Recognized laboratories. 160.076-19 Section 160.076-19... Recognized laboratories. (a) PFDs. The following laboratories are recognized under § 159.010-9 of this... Laboratories, Inc., 12 Laboratory Drive, P.O. Box 13995, Research Triangle Park, NC 27709-3995, (919) 549-1400...

  8. 46 CFR 160.076-19 - Recognized laboratories.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Recognized laboratories. 160.076-19 Section 160.076-19... Recognized laboratories. (a) PFDs. The following laboratories are recognized under § 159.010-9 of this... Laboratories, Inc., 12 Laboratory Drive, P.O. Box 13995, Research Triangle Park, NC 27709-3995, (919) 549-1400...

  9. Safety in the Chemical Laboratory: Laboratory Air Quality: Part I. A Concentration Model.

    ERIC Educational Resources Information Center

    Butcher, Samuel S.; And Others

    1985-01-01

    Offers a simple model for estimating vapor concentrations in instructional laboratories. Three methods are described for measuring ventilation rates, and the results of measurements in six laboratories are presented. The model should provide a simple screening tool for evaluating worst-case personal exposures. (JN)

  10. The Vanderbilt University nanoscale science and engineering fabrication laboratory

    NASA Astrophysics Data System (ADS)

    Hmelo, Anthony B.; Belbusti, Edward F.; Smith, Mark L.; Brice, Sean J.; Wheaton, Robert F.

    2005-08-01

    Vanderbilt University has realized the design and construction of a 1635 sq. ft. Class 10,000 cleanroom facility to support the wide-ranging research mission associated with the Vanderbilt Institute for Nanoscale Science and Engineering (VINSE). By design we have brought together disparate technologies and researchers formerly dispersed across the campus to work together in a small contiguous space intended to foster interaction and synergy of nano-technologies not often found in close proximity. The space hosts a variety of tools for lithographic patterning of substrates, the deposition of thin films, the synthesis of diamond nanostructures and carbon nanotubes, and a variety of reactive ion etchers for the fabrication of nanostructures on silicon substrates. In addition, a separate 911 sq. ft. chemistry laboratory supports nanocrystal synthesis and the investigation of biomolecular films. The design criteria required an integrated space that would support the scientific agenda of the laboratory while satisfying all applicable code and safety concerns. This project required the renovation of pre-existing laboratory space with minimal disruption to ongoing activities in a mixed-use building, while meeting the requirements of the 2000 edition of the International Building Code for the variety of potentially hazardous processes that have been programmed for the space. In this paper we describe how architectural and engineering challenges were met in the areas of mitigating floor vibration issues, shielding our facility against EMI emanations, design of the contamination control facility itself, chemical storage and handling, toxic gas use and management, as well as mechanical, electrical, plumbing, lab security, fire and laboratory safety issues.

  11. Strengthening laboratory systems in resource-limited settings.

    PubMed

    Olmsted, Stuart S; Moore, Melinda; Meili, Robin C; Duber, Herbert C; Wasserman, Jeffrey; Sama, Preethi; Mundell, Ben; Hilborne, Lee H

    2010-09-01

    Considerable resources have been invested in recent years to improve laboratory systems in resource-limited settings. We reviewed published reports, interviewed major donor organizations, and conducted case studies of laboratory systems in 3 countries to assess how countries and donors have worked together to improve laboratory services. While infrastructure and the provision of services have seen improvement, important opportunities remain for further advancement. Implementation of national laboratory plans is inconsistent, human resources are limited, and quality laboratory services rarely extend to lower tier laboratories (eg, health clinics, district hospitals). Coordination within, between, and among governments and donor organizations is also frequently problematic. Laboratory standardization and quality control are improving but remain challenging, making accreditation a difficult goal. Host country governments and their external funding partners should coordinate their efforts effectively around a host country's own national laboratory plan to advance sustainable capacity development throughout a country's laboratory system.

  12. Laboratory testing in primary care: A systematic review of health IT impacts.

    PubMed

    Maillet, Éric; Paré, Guy; Currie, Leanne M; Raymond, Louis; Ortiz de Guinea, Ana; Trudel, Marie-Claude; Marsan, Josianne

    2018-08-01

    Laboratory testing in primary care is a fundamental process that supports patient management and care. Any breakdown in the process may alter clinical information gathering and decision-making activities and can lead to medical errors and potential adverse outcomes for patients. Various information technologies are being used in primary care with the goal to support the process, maximize patient benefits and reduce medical errors. However, the overall impact of health information technologies on laboratory testing processes has not been evaluated. To synthesize the positive and negative impacts resulting from the use of health information technology in each phase of the laboratory 'total testing process' in primary care. We conducted a systematic review. Databases including Medline, PubMed, CINAHL, Web of Science and Google Scholar were searched. Studies eligible for inclusion reported empirical data on: 1) the use of a specific IT system, 2) the impacts of the systems to support the laboratory testing process, and were conducted in 3) primary care settings (including ambulatory care and primary care offices). Our final sample consisted of 22 empirical studies which were mapped to a framework that outlines the phases of the laboratory total testing process, focusing on phases where medical errors may occur. Health information technology systems support several phases of the laboratory testing process, from ordering the test to following-up with patients. This is a growing field of research with most studies focusing on the use of information technology during the final phases of the laboratory total testing process. The findings were largely positive. Positive impacts included easier access to test results by primary care providers, reduced turnaround times, and increased prescribed tests based on best practice guidelines. Negative impacts were reported in several studies: paper-based processes employed in parallel to the electronic process increased the potential

  13. Factors that impact clinical laboratory scientists' commitment to their work organizations.

    PubMed

    Bamberg, Richard; Akroyd, Duane; Moore, Ti'eshia M

    2008-01-01

    To assess the predictive ability of various aspects of the work environment for organizational commitment. A questionnaire measuring three dimensions of organizational commitment along with five aspects of work environment and 10 demographic and work setting characteristics was sent to a national, convenience sample of clinical laboratory professionals. All persons obtaining the CLS certification by NCA from January 1, 1997 to December 31, 2006. Only respondents who worked full-time in a clinical laboratory setting were included in the database. Levels of affective, normative, and continuance organizational commitment, organizational support, role clarity, role conflict, transformational leadership behavior of supervisor, and organizational type, total years work experience in clinical laboratories, and educational level of respondents. Questionnaire items used either a 7-point or 5-point Likert response scale. Based on multiple regression analysis for the 427 respondents, organizational support and transformational leadership behavior were found to be significant positive predictors of affective and normative organizational commitment. Work setting (non-hospital laboratory) and total years of work experience in clinical laboratories were found to be significant positive predictors of continuance organizational commitment. Overall the organizational commitment levels for all three dimensions were at the neutral rating or below in the slightly disagree range. The results indicate a less than optimal level of organizational commitment to employers, which were predominantly hospitals, by CLS practitioners. This may result in continuing retention problems for hospital laboratories. The results offer strategies for improving organizational commitment via the significant predictors.

  14. Consolidated clinical microbiology laboratories.

    PubMed

    Sautter, Robert L; Thomson, Richard B

    2015-05-01

    The manner in which medical care is reimbursed in the United States has resulted in significant consolidation in the U.S. health care system. One of the consequences of this has been the development of centralized clinical microbiology laboratories that provide services to patients receiving care in multiple off-site, often remote, locations. Microbiology specimens are unique among clinical specimens in that optimal analysis may require the maintenance of viable organisms. Centralized laboratories may be located hours from patient care settings, and transport conditions need to be such that organism viability can be maintained under a variety of transport conditions. Further, since the provision of rapid results has been shown to enhance patient care, effective and timely means for generating and then reporting the results of clinical microbiology analyses must be in place. In addition, today, increasing numbers of patients are found to have infection caused by pathogens that were either very uncommon in the past or even completely unrecognized. As a result, infectious disease specialists, in particular, are more dependent than ever on access to high-quality diagnostic information from clinical microbiology laboratories. In this point-counterpoint discussion, Robert Sautter, who directs a Charlotte, NC, clinical microbiology laboratory that provides services for a 40-hospital system spread over 3 states in the southeastern United States explains how an integrated clinical microbiology laboratory service has been established in a multihospital system. Richard (Tom) Thomson of the NorthShore University HealthSystem in Evanston, IL, discusses some of the problems and pitfalls associated with large-scale laboratory consolidation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Components of laboratory accreditation.

    PubMed

    Royal, P D

    1995-12-01

    Accreditation or certification is a recognition given to an operation or product that has been evaluated against a standard; be it regulatory or voluntary. The purpose of accreditation is to provide the consumer with a level of confidence in the quality of operation (process) and the product of an organization. Environmental Protection Agency/OCM has proposed the development of an accreditation program under National Environmental Laboratory Accreditation Program for Good Laboratory Practice (GLP) laboratories as a supplement to the current program. This proposal was the result of the Inspector General Office reports that identified weaknesses in the current operation. Several accreditation programs can be evaluated and common components identified when proposing a structure for accrediting a GLP system. An understanding of these components is useful in building that structure. Internationally accepted accreditation programs provide a template for building a U.S. GLP accreditation program. This presentation will discuss the traditional structure of accreditation as presented in the Organization of Economic Cooperative Development/GLP program, ISO-9000 Accreditation and ISO/IEC Guide 25 Standard, and the Canadian Association for Environmental Analytical Laboratories, which has a biological component. Most accreditation programs are managed by a recognized third party, either privately or with government oversight. Common components often include a formal review of required credentials to evaluate organizational structure, a site visit to evaluate the facility, and a performance evaluation to assess technical competence. Laboratory performance is measured against written standards and scored. A formal report is then sent to the laboratory indicating accreditation status. Usually, there is a scheduled reevaluation built into the program. Fee structures vary considerably and will need to be examined closely when building a GLP program.

  16. 42 CFR 493.1780 - Standard: Inspection of CLIA-exempt laboratories or laboratories requesting or issued a...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... laboratories or laboratories requesting or issued a certificate of accreditation. (a) Validation inspection. CMS or a CMS agent may conduct a validation inspection of any accredited or CLIA-exempt laboratory at... requirements of this part. (c) Noncompliance determination. If a validation or complaint inspection results in...

  17. 42 CFR 493.1780 - Standard: Inspection of CLIA-exempt laboratories or laboratories requesting or issued a...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... laboratories or laboratories requesting or issued a certificate of accreditation. (a) Validation inspection. CMS or a CMS agent may conduct a validation inspection of any accredited or CLIA-exempt laboratory at... requirements of this part. (c) Noncompliance determination. If a validation or complaint inspection results in...

  18. 42 CFR 493.1780 - Standard: Inspection of CLIA-exempt laboratories or laboratories requesting or issued a...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... laboratories or laboratories requesting or issued a certificate of accreditation. (a) Validation inspection. CMS or a CMS agent may conduct a validation inspection of any accredited or CLIA-exempt laboratory at... requirements of this part. (c) Noncompliance determination. If a validation or complaint inspection results in...

  19. 42 CFR 493.1780 - Standard: Inspection of CLIA-exempt laboratories or laboratories requesting or issued a...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... laboratories or laboratories requesting or issued a certificate of accreditation. (a) Validation inspection. CMS or a CMS agent may conduct a validation inspection of any accredited or CLIA-exempt laboratory at... requirements of this part. (c) Noncompliance determination. If a validation or complaint inspection results in...

  20. 42 CFR 493.1780 - Standard: Inspection of CLIA-exempt laboratories or laboratories requesting or issued a...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... laboratories or laboratories requesting or issued a certificate of accreditation. (a) Validation inspection. CMS or a CMS agent may conduct a validation inspection of any accredited or CLIA-exempt laboratory at... requirements of this part. (c) Noncompliance determination. If a validation or complaint inspection results in...

  1. Integration of Video-Based Demonstrations to Prepare Students for the Organic Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Nadelson, Louis S.; Scaggs, Jonathan; Sheffield, Colin; McDougal, Owen M.

    2015-08-01

    Consistent, high-quality introductions to organic chemistry laboratory techniques effectively and efficiently support student learning in the organic chemistry laboratory. In this work, we developed and deployed a series of instructional videos to communicate core laboratory techniques and concepts. Using a quasi-experimental design, we tested the videos in five traditional laboratory experiments by integrating them with the standard pre-laboratory student preparation presentations and instructor demonstrations. We assessed the influence of the videos on student laboratory knowledge and performance, using sections of students who did not view the videos as the control. Our analysis of pre-quizzes revealed the control group had equivalent scores to the treatment group, while the post-quiz results show consistently greater learning gains for the treatment group. Additionally, the students who watched the videos as part of their pre-laboratory instruction completed their experiments in less time.

  2. MicroArray Facility: a laboratory information management system with extended support for Nylon based technologies.

    PubMed

    Honoré, Paul; Granjeaud, Samuel; Tagett, Rebecca; Deraco, Stéphane; Beaudoing, Emmanuel; Rougemont, Jacques; Debono, Stéphane; Hingamp, Pascal

    2006-09-20

    High throughput gene expression profiling (GEP) is becoming a routine technique in life science laboratories. With experimental designs that repeatedly span thousands of genes and hundreds of samples, relying on a dedicated database infrastructure is no longer an option.GEP technology is a fast moving target, with new approaches constantly broadening the field diversity. This technology heterogeneity, compounded by the informatics complexity of GEP databases, means that software developments have so far focused on mainstream techniques, leaving less typical yet established techniques such as Nylon microarrays at best partially supported. MAF (MicroArray Facility) is the laboratory database system we have developed for managing the design, production and hybridization of spotted microarrays. Although it can support the widely used glass microarrays and oligo-chips, MAF was designed with the specific idiosyncrasies of Nylon based microarrays in mind. Notably single channel radioactive probes, microarray stripping and reuse, vector control hybridizations and spike-in controls are all natively supported by the software suite. MicroArray Facility is MIAME supportive and dynamically provides feedback on missing annotations to help users estimate effective MIAME compliance. Genomic data such as clone identifiers and gene symbols are also directly annotated by MAF software using standard public resources. The MAGE-ML data format is implemented for full data export. Journalized database operations (audit tracking), data anonymization, material traceability and user/project level confidentiality policies are also managed by MAF. MicroArray Facility is a complete data management system for microarray producers and end-users. Particular care has been devoted to adequately model Nylon based microarrays. The MAF system, developed and implemented in both private and academic environments, has proved a robust solution for shared facilities and industry service providers alike.

  3. MicroArray Facility: a laboratory information management system with extended support for Nylon based technologies

    PubMed Central

    Honoré, Paul; Granjeaud, Samuel; Tagett, Rebecca; Deraco, Stéphane; Beaudoing, Emmanuel; Rougemont, Jacques; Debono, Stéphane; Hingamp, Pascal

    2006-01-01

    Background High throughput gene expression profiling (GEP) is becoming a routine technique in life science laboratories. With experimental designs that repeatedly span thousands of genes and hundreds of samples, relying on a dedicated database infrastructure is no longer an option. GEP technology is a fast moving target, with new approaches constantly broadening the field diversity. This technology heterogeneity, compounded by the informatics complexity of GEP databases, means that software developments have so far focused on mainstream techniques, leaving less typical yet established techniques such as Nylon microarrays at best partially supported. Results MAF (MicroArray Facility) is the laboratory database system we have developed for managing the design, production and hybridization of spotted microarrays. Although it can support the widely used glass microarrays and oligo-chips, MAF was designed with the specific idiosyncrasies of Nylon based microarrays in mind. Notably single channel radioactive probes, microarray stripping and reuse, vector control hybridizations and spike-in controls are all natively supported by the software suite. MicroArray Facility is MIAME supportive and dynamically provides feedback on missing annotations to help users estimate effective MIAME compliance. Genomic data such as clone identifiers and gene symbols are also directly annotated by MAF software using standard public resources. The MAGE-ML data format is implemented for full data export. Journalized database operations (audit tracking), data anonymization, material traceability and user/project level confidentiality policies are also managed by MAF. Conclusion MicroArray Facility is a complete data management system for microarray producers and end-users. Particular care has been devoted to adequately model Nylon based microarrays. The MAF system, developed and implemented in both private and academic environments, has proved a robust solution for shared facilities and

  4. MIT Lincoln Laboratory: Technology in Support of National Security

    DTIC Science & Technology

    2011-01-01

    not display a currently valid OMB control number. 1. REPORT DATE 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND...in a letter dated October 3, 1960, from Brigadier General Charles Terhune, Jr., U.S. Air Force, to Carl Overhage, director of Lincoln Laboratory...Karman asked Valley to put his concerns in writing, and Valley did in a letter dated November 8, 1949. In a key paragraph, he wrote: “I therefore

  5. 222-S Laboratory Quality Assurance Plan. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meznarich, H.K.

    1995-07-31

    This Quality Assurance Plan provides,quality assurance (QA) guidance, regulatory QA requirements (e.g., 10 CFR 830.120), and quality control (QC) specifications for analytical service. This document follows the U.S Department of Energy (DOE) issued Hanford Analytical Services Quality Assurance Plan (HASQAP). In addition, this document meets the objectives of the Quality Assurance Program provided in the WHC-CM-4-2, Section 2.1. Quality assurance elements required in the Guidelines and Specifications for Preparing Quality Assurance Program Plans (QAMS-004) and Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans (QAMS-005) from the US Environmental Protection Agency (EPA) are covered throughout this document. A qualitymore » assurance index is provided in the Appendix A. This document also provides and/or identifies the procedural information that governs laboratory operations. The personnel of the 222-S Laboratory and the Standards Laboratory including managers, analysts, QA/QC staff, auditors, and support staff shall use this document as guidance and instructions for their operational and quality assurance activities. Other organizations that conduct activities described in this document for the 222-S Laboratory shall follow this QA/QC document.« less

  6. Internal quality control indicators of cervical cytopathology exams performed in laboratories monitored by the External Quality Control Laboratory.

    PubMed

    Ázara, Cinara Zago Silveira; Manrique, Edna Joana Cláudio; Tavares, Suelene Brito do Nascimento; de Souza, Nadja Lindany Alves; Amaral, Rita Goreti

    2014-09-01

    To evaluate the impact of continued education provided by an external quality control laboratory on the indicators of internal quality control of cytopathology exams. The internal quality assurance indicators for cytopathology exams from 12 laboratories monitored by the External Quality Control Laboratory were evaluated. Overall, 185,194 exams were included, 98,133 of which referred to the period preceding implementation of a continued education program, while 87,061 referred to the period following this intervention. Data were obtained from the Cervical Cancer Database of the Brazilian National Health Service. Following implementation of the continued education program, the positivity index (PI) remained within recommended limits in four laboratories. In another four laboratories, the PI progressed from below the limits to within the recommended standards. In one laboratory, the PI remained low, in two laboratories, it remained very low, and in one, it increased from very low to low. The percentage of exams compatible with a high-grade squamous intraepithelial lesion (HSIL) remained within the recommended limits in five laboratories, while in three laboratories it progressed from below the recommended levels to >0.4% of the total number of satisfactory exams, and in four laboratories it remained below the standard limit. Both the percentage of atypical squamous cells of undetermined significance (ASC-US) in relation to abnormal exams, and the ratio between ASC-US and intraepithelial lesions remained within recommended levels in all the laboratories investigated. An improvement was found in the indicators represented by the positivity index and the percentage of exams compatible with a high-grade squamous intraepithelial lesion, showing that the role played by the external quality control laboratory in providing continued education contributed towards improving laboratory staff skills in detecting cervical cancer precursor lesions.

  7. Characterizing Instructional Practices in the Laboratory: The Laboratory Observation Protocol for Undergraduate STEM

    ERIC Educational Resources Information Center

    Velasco, Jonathan B.; Knedeisen, Adam; Xue, Dihua; Vickrey, Trisha L.; Abebe, Marytza; Stains, Marilyne

    2016-01-01

    Chemistry laboratories play an essential role in the education of undergraduate Science, Technology, Engineering, and Mathematics (STEM) and non-STEM students. The extent of student learning in any educational environment depends largely on the effectiveness of the instructors. In chemistry laboratories at large universities, the instructors of…

  8. Specialized Laboratory Information Systems.

    PubMed

    Dangott, Bryan

    2015-06-01

    Some laboratories or laboratory sections have unique needs that traditional anatomic and clinical pathology systems may not address. A specialized laboratory information system (LIS), which is designed to perform a limited number of functions, may perform well in areas where a traditional LIS falls short. Opportunities for specialized LISs continue to evolve with the introduction of new testing methodologies. These systems may take many forms, including stand-alone architecture, a module integrated with an existing LIS, a separate vendor-supplied module, and customized software. This article addresses the concepts underlying specialized LISs, their characteristics, and in what settings they are found. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Specialized Laboratory Information Systems.

    PubMed

    Dangott, Bryan

    2016-03-01

    Some laboratories or laboratory sections have unique needs that traditional anatomic and clinical pathology systems may not address. A specialized laboratory information system (LIS), which is designed to perform a limited number of functions, may perform well in areas where a traditional LIS falls short. Opportunities for specialized LISs continue to evolve with the introduction of new testing methodologies. These systems may take many forms, including stand-alone architecture, a module integrated with an existing LIS, a separate vendor-supplied module, and customized software. This article addresses the concepts underlying specialized LISs, their characteristics, and in what settings they are found. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Eye protection in dental laboratories.

    PubMed

    Palenik, C J

    1997-09-01

    Many dental laboratory procedures increase the chances of serious eye injury. This would include traumatic injuries due to projectiles or through exposure to harsh chemicals or heat and infections from contact with patient body fluids. To help assure a safer working environment, awareness of the need for eye protection must be established and maintained by all laboratory personnel. The purpose of this article are: 1) to list the applicable federal regulations concerning eye safety in dental laboratory workplaces; 2) to describe the various types of appropriate eyewear; and 3) to identify which protective devices best prevent exposure to specific types of hazards. The goal of this article is to help dental laboratories with their employee safety programs, especially concerning the selection of protective eyewear. Such programs must include engineering controls and work practice controls plus appropriate personal protective equipment. Laboratories today must comply with safety mandates in the most effective and efficient manner.

  11. Diagnostic equipment outside the laboratory.

    PubMed Central

    Burrin, J M; Fyffe, J A

    1988-01-01

    A questionnaire was circulated to clinical biochemistry laboratories in the North West Thames region of the United Kingdom requesting information on extralaboratory equipment. Data on the types and numbers of instruments in use, their relationship with the laboratory, and quality assurance procedures were obtained. Laboratories were prepared to maintain equipment over which they had no responsibility for purchase, training of users, or use. The quality assurance of these instruments gave even greater cause for concern. Although internal quality control procedures were performed on many of the instruments, laboratories were involved in only a minority of these procedures. Quality control procedures and training of users were undertaken on site in less than 50% of blood gas analysers and bilirubin meters and in less than 25% of glucose meters. External quality assessment procedures were non-existent for all of the instruments in use with the exception of glucose stick meters in two laboratories. PMID:3192750

  12. Using the Universal Design for Learning Approach in Science Laboratories to Minimize Student Stress

    ERIC Educational Resources Information Center

    Miller, Daniel K.; Lang, Patricia L.

    2016-01-01

    This commentary discusses how the principles of universal design for learning (UDL) can be applied in the science laboratory with an emphasis on assisting students who experience stress in the laboratory environment. The UDL approach in the laboratory is based on three elements: open-mindedness, supportive communication, and analysis and…

  13. Pigs as laboratory animals

    USDA-ARS?s Scientific Manuscript database

    The pig is increasingly popular as a laboratory animal either as the target species in its own right or as a model for humans in biomedical science. As an intelligent, social animal it has a complex behavioral repertoire reminiscent of its ancestor, the wild boar. Within a laboratory setting, the pi...

  14. A far-infrared spatial/spectral Fourier interferometry laboratory-based testbed instrument

    NASA Astrophysics Data System (ADS)

    Spencer, Locke D.; Naylor, David A.; Scott, Jeremy P.; Weiler, Vince F.; MacCrimmon, Roderick K.; Sitwell, Geoffrey R. H.; Ade, Peter A. R.

    2016-07-01

    We describe the current status, including preliminary design, characterization efforts, and recent progress, in the development of a spatial/spectral double Fourier laboratory-based interferometer testbed instrument within the Astronomical Instrumentation Group (AIG) laboratories at the University of Lethbridge, Canada (UL). Supported by CRC, CFI, and NSERC grants, this instrument development will provide laboratory demonstration of spatial-spectral interferometry with a concentration of furthering progress in areas including the development of spatial/spectral interferometry observation, data processing, characterization, and analysis techniques in the Far-Infrared (FIR) region of the electromagnetic spectrum.

  15. Postdoctoral Professional Fellowships in Laboratory Medicine.

    PubMed

    Straseski, Joely A

    2013-04-01

    Doctoral level scientists often pursue a traditional academic route, focusing their efforts on research and education. However, additional options exist for those that are interested in using their laboratory and research skills in a clinical setting. Clinical laboratory directors serve as the interface between the clinical laboratory and the users of laboratory test results. This article describes these career paths options for PhD scientists. Clinical laboratory directors are primarily trained via one of two routes: physicians that have been trained in clinical pathology or non-physician doctoral scientists that have completed professional fellowship training. This article will focus on the latter of these 2 routes. In the United States, completing a postdoctoral fellowship in laboratory-specific professional fields qualifies non-physician doctoral scientists as laboratory directors and consultants. Their expert consultation provides invaluable insight into testing procedures such as possible sources of interference or inaccurate test results, preferred testing for specific clinical situations, and confirmatory methods. They must also be knowledgeable about current instrumentation, assay limitations, and the newest available technologies. One of the older and more developed professional fellowships in the United States, clinical chemistry, encompasses many laboratory disciplines and will be highlighted in detail. Training information specific to clinical immunology, clinical microbiology, and clinical genetics is also discussed.

  16. Laboratory accidents--a matter of attitude.

    PubMed

    Karim, N; Choe, C K

    2000-12-01

    This is a prospective study on accidents occurring in the Pathology laboratories of Hospital Ipoh over the 3-year period from January 1996 to October 1999. 15 mishaps were recorded. The location of the accidents were the histology (40%), microbiology (33%), haematology (20%) and cytology (7%) laboratories. No mishaps were reported from the clinical chemistry, blood bank and outpatient laboratories. Cuts by sharp objects were the most common injuries sustained (47%) followed by splashes and squirts by fluid such as blood or chemicals (27%). There was 1 case each of contact with biohazardous fluid, burn, allergy and accidental drinking of disinfectant. 67% of the accidents involved medical laboratory technicians, 20% involved attendants and the rest were medical officers and the junior laboratory technicians. Although the accidents reported appeared trivial, it is vital to document them and bring them to the attention of all concerned in the laboratory, in order to prevent major accidents and also because of medico-legal implications. The role of the Laboratory Safety Committee cannot be overemphasised. Modification of staff attitude is considered an important remedial goal.

  17. LDRD Highlights at the National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alayat, R. A.

    2016-10-10

    To meet the nation’s critical challenges, the Department of Energy (DOE) national laboratories have always pushed the boundaries of science, technology, and engineering. The Atomic Energy Act of 1954 provided the basis for these laboratories to engage in the cutting edge of science and technology and respond to technological surprises, while retaining the best scientific and technological minds. To help re-energize this commitment, in 1991 the U.S. Congress authorized the national laboratories to devote a relatively small percentage of their budget to creative and innovative work that serves to maintain their vitality in disciplines relevant to DOE missions. Since then,more » this effort has been formally called the Laboratory Directed Research and Development (LDRD) Program. LDRD has been an essential mechanism to enable the laboratories to address DOE’s current and future missions with leading-edge research proposed independently by laboratory technical staff, evaluated through expert peer-review committees, and funded by the individual laboratories consistent with the authorizing legislation and the DOE LDRD Order 413.2C.« less

  18. The laboratory diagnosis of syphilis.

    PubMed

    Ratnam, Sam

    2005-01-01

    Syphilis has several clinical manifestations, making laboratory testing a very important aspect of diagnosis. In North America, many unsuspected cases are discovered by laboratory testing. The etiological agent, Treponema pallidum, cannot be cultured, and there is no single optimal alternative test. Serological testing is the most frequently used approach in the laboratory diagnosis of syphilis. The present paper discusses the various serological and alternative tests currently available along with their limitations, and relates their results to the likely corresponding clinical stage of the disease. The need to use multiple tests is discussed, and the importance of quality control is noted. The complexity of syphilis serology means that the services of reference laboratories and clinical experts are often needed.

  19. [On the way to national reference system of laboratory medicine].

    PubMed

    Muravskaia, N P; Men'shikov, V V

    2014-10-01

    The application of standard samples and reference techniques of implementation of measurements is needed for a valid support of reliability of analyses applied in clinical diagnostic laboratories. They play role of landmarks under metrologic monitoring, calibration of devices and control of quality of results. The article presents analysis of shortcomings interfering with formation of national reference system in Russia harmonized with possibilities provided by international organizations. Among them are the joint Committee on metrologic monitoring in laboratory medicine under the auspices of the International Bureau of Weights and Measures, the International Federation of clinical chemistry and laboratory medicine, etc. The results of the recent development of national normative documents, standard samples and techniques assisted by the authors of article are considered. They are the first steps to organization of national reference system which would comprise all range of modern analytical technologies of laboratory medicine. The national and international measures are proposed to enhance the promptest resolving of task of organization of national reference system for laboratory medicine in the interests of increasing of effectiveness of medical care to citizen of Russia.

  20. Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John Russell; Danneels, Jeffrey John

    2009-03-01

    Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraqmore » Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21-25, 2008. As noted in